repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
sanjayankur31/nest-simulator
examples/nest/Potjans_2014/spike_analysis.py
20
6437
# -*- coding: utf-8 -*- # # spike_analysis.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # Merges spike files, produces raster plots, calculates and plots firing rates import numpy as np import glob import matplotlib.pyplot as plt import os import re datapath = '.' # get simulation time and numbers of neurons recorded from sim_params.sli with open(os.path.join(datapath, 'sim_params.sli'), 'r') as f: sim_params_contents = f.read() T = float(re.search(r'/t_sim (.+) def', sim_params_contents).group(1)) record_frac = re.search(r'/record_fraction_neurons_spikes (.+) def', sim_params_contents).group(1) == 'true' if record_frac: frac_rec = float(re.search(r'/frac_rec_spikes (.+) def', sim_params_contents).group(1)) else: n_rec = int(re.search(r'/n_rec_spikes (.+) def', sim_params_contents).group(1)) T_start = 200. # starting point of analysis (to avoid transients) # load node IDs node_ids = np.loadtxt(os.path.join(datapath, 'population_nodeIDs.dat'), dtype=int) print('Global IDs:') print(node_ids) print() # number of populations num_pops = len(node_ids) print('Number of populations:') print(num_pops) print() # first node ID in each population raw_first_node_ids = [node_ids[i][0] for i in np.arange(len(node_ids))] # population sizes pop_sizes = [node_ids[i][1] - node_ids[i][0] + 1 for i in np.arange(len(node_ids))] # numbers of neurons for which spikes were recorded if record_frac: rec_sizes = [int(pop_sizes[i] * frac_rec) for i in range(len(pop_sizes))] else: rec_sizes = [n_rec] * len(pop_sizes) # first node ID of each population once device node IDs are dropped first_node_ids = [int(1 + np.sum(pop_sizes[:i])) for i in np.arange(len(pop_sizes))] # last node ID of each population once device node IDs are dropped last_node_ids = [int(np.sum(pop_sizes[:i + 1])) for i in np.arange(len(pop_sizes))] # convert lists to a nicer format, i.e. [[2/3e, 2/3i], []....] Pop_sizes = [pop_sizes[i:i + 2] for i in range(0, len(pop_sizes), 2)] print('Population sizes:') print(Pop_sizes) print() Raw_first_node_ids = [raw_first_node_ids[i:i + 2] for i in range(0, len(raw_first_node_ids), 2)] First_node_ids = [first_node_ids[i:i + 2] for i in range(0, len(first_node_ids), 2)] Last_node_ids = [last_node_ids[i:i + 2] for i in range(0, len(last_node_ids), 2)] # total number of neurons in the simulation num_neurons = last_node_ids[len(last_node_ids) - 1] print('Total number of neurons:') print(num_neurons) print() # load spikes from gdf files, correct node IDs and merge them in population files, # and store spike trains # will contain neuron id resolved spike trains neuron_spikes = [[] for i in np.arange(num_neurons + 1)] # container for population-resolved spike data spike_data = [[[], []], [[], []], [[], []], [[], []], [[], []], [[], []], [[], []], [[], []]] counter = 0 for layer in ['0', '1', '2', '3']: for population in ['0', '1']: output = os.path.join(datapath, 'population_spikes-{}-{}.gdf'.format(layer, population)) file_pattern = os.path.join(datapath, 'spikes_{}_{}*'.format(layer, population)) files = glob.glob(file_pattern) print('Merge ' + str( len(files)) + ' spike files from L' + layer + 'P' + population) if files: merged_file = open(output, 'w') for f in files: data = open(f, 'r') nest_version = next(data) backend_version = next(data) column_header = next(data) for l in data: a = l.split() a[0] = int(a[0]) a[1] = float(a[1]) raw_first_node_id = Raw_first_node_ids[int(layer)][int(population)] first_node_id = First_node_ids[int(layer)][int(population)] a[0] = a[0] - raw_first_node_id + first_node_id if (a[1] > T_start): # discard data in the start-up phase spike_data[counter][0].append(num_neurons - a[0]) spike_data[counter][1].append(a[1] - T_start) neuron_spikes[a[0]].append(a[1] - T_start) converted_line = str(a[0]) + '\t' + str(a[1]) + '\n' merged_file.write(converted_line) data.close() merged_file.close() counter += 1 clrs = ['0', '0.5', '0', '0.5', '0', '0.5', '0', '0.5'] plt.ion() # raster plot plt.figure(1) counter = 1 for j in np.arange(num_pops): for i in np.arange(first_node_ids[j], first_node_ids[j] + rec_sizes[j]): plt.plot(neuron_spikes[i], np.ones_like(neuron_spikes[i]) + sum(rec_sizes) - counter, 'k o', ms=1, mfc=clrs[j], mec=clrs[j]) counter += 1 plt.xlim(0, T - T_start) plt.ylim(0, sum(rec_sizes)) plt.xlabel(r'time (ms)') plt.ylabel(r'neuron id') plt.savefig(os.path.join(datapath, 'rasterplot.png')) # firing rates rates = [] temp = 0 for i in np.arange(num_pops): for j in np.arange(first_node_ids[i], last_node_ids[i]): temp += len(neuron_spikes[j]) rates.append(temp / (rec_sizes[i] * (T - T_start)) * 1e3) temp = 0 print() print('Firing rates:') print(rates) plt.figure(2) ticks = np.arange(num_pops) plt.bar(ticks, rates, width=0.9, color='k') xticklabels = ['L2/3e', 'L2/3i', 'L4e', 'L4i', 'L5e', 'L5i', 'L6e', 'L6i'] plt.setp(plt.gca(), xticks=ticks + 0.5, xticklabels=xticklabels) plt.xlabel(r'subpopulation') plt.ylabel(r'firing rate (spikes/s)') plt.savefig(os.path.join(datapath, 'firing_rates.png')) plt.show()
gpl-2.0
bartosh/zipline
tests/test_bar_data.py
3
45350
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import timedelta, time from itertools import chain from nose_parameterized import parameterized import numpy as np from numpy import nan from numpy.testing import assert_almost_equal import pandas as pd from toolz import concat from zipline._protocol import handle_non_market_minutes from zipline.finance.asset_restrictions import ( Restriction, HistoricalRestrictions, RESTRICTION_STATES, ) from zipline.testing import ( MockDailyBarReader, create_daily_df_for_asset, create_minute_df_for_asset, str_to_seconds, ) from zipline.testing.fixtures import ( WithCreateBarData, WithDataPortal, ZiplineTestCase, ) from zipline.utils.calendars import get_calendar from zipline.utils.calendars.trading_calendar import days_at_time OHLC = ["open", "high", "low", "close"] OHLCP = OHLC + ["price"] ALL_FIELDS = OHLCP + ["volume", "last_traded"] # offsets used in test data field_info = { "open": 1, "high": 2, "low": -1, "close": 0 } def str_to_ts(dt_str): return pd.Timestamp(dt_str, tz='UTC') class WithBarDataChecks(object): def assert_same(self, val1, val2): try: self.assertEqual(val1, val2) except AssertionError: if val1 is pd.NaT: self.assertTrue(val2 is pd.NaT) elif np.isnan(val1): self.assertTrue(np.isnan(val2)) else: raise def check_internal_consistency(self, bar_data): df = bar_data.current([self.ASSET1, self.ASSET2], ALL_FIELDS) asset1_multi_field = bar_data.current(self.ASSET1, ALL_FIELDS) asset2_multi_field = bar_data.current(self.ASSET2, ALL_FIELDS) for field in ALL_FIELDS: asset1_value = bar_data.current(self.ASSET1, field) asset2_value = bar_data.current(self.ASSET2, field) multi_asset_series = bar_data.current( [self.ASSET1, self.ASSET2], field ) # make sure all the different query forms are internally # consistent self.assert_same(multi_asset_series.loc[self.ASSET1], asset1_value) self.assert_same(multi_asset_series.loc[self.ASSET2], asset2_value) self.assert_same(df.loc[self.ASSET1][field], asset1_value) self.assert_same(df.loc[self.ASSET2][field], asset2_value) self.assert_same(asset1_multi_field[field], asset1_value) self.assert_same(asset2_multi_field[field], asset2_value) # also verify that bar_data doesn't expose anything bad for field in ["data_portal", "simulation_dt_func", "data_frequency", "_views", "_universe_func", "_last_calculated_universe", "_universe_last_updatedat"]: with self.assertRaises(AttributeError): getattr(bar_data, field) class TestMinuteBarData(WithCreateBarData, WithBarDataChecks, WithDataPortal, ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-05', tz='UTC') END_DATE = ASSET_FINDER_EQUITY_END_DATE = pd.Timestamp( '2016-01-07', tz='UTC', ) ASSET_FINDER_EQUITY_SIDS = 1, 2, 3, 4, 5 SPLIT_ASSET_SID = 3 ILLIQUID_SPLIT_ASSET_SID = 4 HILARIOUSLY_ILLIQUID_ASSET_SID = 5 @classmethod def make_equity_minute_bar_data(cls): # asset1 has trades every minute # asset2 has trades every 10 minutes # split_asset trades every minute # illiquid_split_asset trades every 10 minutes for sid in (1, cls.SPLIT_ASSET_SID): yield sid, create_minute_df_for_asset( cls.trading_calendar, cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], ) for sid in (2, cls.ILLIQUID_SPLIT_ASSET_SID): yield sid, create_minute_df_for_asset( cls.trading_calendar, cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], 10, ) yield cls.HILARIOUSLY_ILLIQUID_ASSET_SID, create_minute_df_for_asset( cls.trading_calendar, cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], 50, ) @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 6: { 'symbol': 'CLG06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2005-12-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-01-20', tz='UTC'), 'exchange': 'ICEUS', }, 7: { 'symbol': 'CLK06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-03-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-04-20', tz='UTC'), 'exchange': 'ICEUS', }, }, orient='index', ) @classmethod def make_splits_data(cls): return pd.DataFrame([ { 'effective_date': str_to_seconds("2016-01-06"), 'ratio': 0.5, 'sid': cls.SPLIT_ASSET_SID, }, { 'effective_date': str_to_seconds("2016-01-06"), 'ratio': 0.5, 'sid': cls.ILLIQUID_SPLIT_ASSET_SID, }, ]) @classmethod def init_class_fixtures(cls): super(TestMinuteBarData, cls).init_class_fixtures() cls.ASSET1 = cls.asset_finder.retrieve_asset(1) cls.ASSET2 = cls.asset_finder.retrieve_asset(2) cls.SPLIT_ASSET = cls.asset_finder.retrieve_asset( cls.SPLIT_ASSET_SID, ) cls.ILLIQUID_SPLIT_ASSET = cls.asset_finder.retrieve_asset( cls.ILLIQUID_SPLIT_ASSET_SID, ) cls.HILARIOUSLY_ILLIQUID_ASSET = cls.asset_finder.retrieve_asset( cls.HILARIOUSLY_ILLIQUID_ASSET_SID, ) cls.ASSETS = [cls.ASSET1, cls.ASSET2] def test_current_session(self): regular_minutes = self.trading_calendar.minutes_for_sessions_in_range( self.equity_minute_bar_days[0], self.equity_minute_bar_days[-1] ) bts_minutes = days_at_time( self.equity_minute_bar_days, time(8, 45), "US/Eastern" ) # some other non-market-minute three_oh_six_am_minutes = days_at_time( self.equity_minute_bar_days, time(3, 6), "US/Eastern" ) all_minutes = [regular_minutes, bts_minutes, three_oh_six_am_minutes] for minute in list(concat(all_minutes)): bar_data = self.create_bardata(lambda: minute) self.assertEqual( self.trading_calendar.minute_to_session_label(minute), bar_data.current_session ) def test_current_session_minutes(self): first_day_minutes = self.trading_calendar.minutes_for_session( self.equity_minute_bar_days[0] ) for minute in first_day_minutes: bar_data = self.create_bardata(lambda: minute) np.testing.assert_array_equal( first_day_minutes, bar_data.current_session_minutes ) def test_minute_before_assets_trading(self): # grab minutes that include the day before the asset start minutes = self.trading_calendar.minutes_for_session( self.trading_calendar.previous_session_label( self.equity_minute_bar_days[0] ) ) # this entire day is before either asset has started trading for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute, ) self.check_internal_consistency(bar_data) self.assertFalse(bar_data.can_trade(self.ASSET1)) self.assertFalse(bar_data.can_trade(self.ASSET2)) self.assertFalse(bar_data.is_stale(self.ASSET1)) self.assertFalse(bar_data.is_stale(self.ASSET2)) for field in ALL_FIELDS: for asset in self.ASSETS: asset_value = bar_data.current(asset, field) if field in OHLCP: self.assertTrue(np.isnan(asset_value)) elif field == "volume": self.assertEqual(0, asset_value) elif field == "last_traded": self.assertTrue(asset_value is pd.NaT) def test_regular_minute(self): minutes = self.trading_calendar.minutes_for_session( self.equity_minute_bar_days[0] ) for idx, minute in enumerate(minutes): # day2 has prices # (every minute for asset1, every 10 minutes for asset2) # asset1: # opens: 2-391 # high: 3-392 # low: 0-389 # close: 1-390 # volume: 100-3900 (by 100) # asset2 is the same thing, but with only every 10th minute # populated. # this test covers the "IPO morning" case, because asset2 only # has data starting on the 10th minute. bar_data = self.create_bardata( lambda: minute, ) self.check_internal_consistency(bar_data) asset2_has_data = (((idx + 1) % 10) == 0) self.assertTrue(bar_data.can_trade(self.ASSET1)) self.assertFalse(bar_data.is_stale(self.ASSET1)) if idx < 9: self.assertFalse(bar_data.can_trade(self.ASSET2)) self.assertFalse(bar_data.is_stale(self.ASSET2)) else: self.assertTrue(bar_data.can_trade(self.ASSET2)) if asset2_has_data: self.assertFalse(bar_data.is_stale(self.ASSET2)) else: self.assertTrue(bar_data.is_stale(self.ASSET2)) for field in ALL_FIELDS: asset1_value = bar_data.current(self.ASSET1, field) asset2_value = bar_data.current(self.ASSET2, field) # now check the actual values if idx == 0 and field == "low": # first low value is 0, which is interpreted as NaN self.assertTrue(np.isnan(asset1_value)) else: if field in OHLC: self.assertEqual( idx + 1 + field_info[field], asset1_value ) if asset2_has_data: self.assertEqual( idx + 1 + field_info[field], asset2_value ) else: self.assertTrue(np.isnan(asset2_value)) elif field == "volume": self.assertEqual((idx + 1) * 100, asset1_value) if asset2_has_data: self.assertEqual((idx + 1) * 100, asset2_value) else: self.assertEqual(0, asset2_value) elif field == "price": self.assertEqual(idx + 1, asset1_value) if asset2_has_data: self.assertEqual(idx + 1, asset2_value) elif idx < 9: # no price to forward fill from self.assertTrue(np.isnan(asset2_value)) else: # forward-filled price self.assertEqual((idx // 10) * 10, asset2_value) elif field == "last_traded": self.assertEqual(minute, asset1_value) if idx < 9: self.assertTrue(asset2_value is pd.NaT) elif asset2_has_data: self.assertEqual(minute, asset2_value) else: last_traded_minute = minutes[(idx // 10) * 10] self.assertEqual( last_traded_minute - timedelta(minutes=1), asset2_value ) def test_minute_of_last_day(self): minutes = self.trading_calendar.minutes_for_session( self.equity_daily_bar_days[-1], ) # this is the last day the assets exist for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute, ) self.assertTrue(bar_data.can_trade(self.ASSET1)) self.assertTrue(bar_data.can_trade(self.ASSET2)) def test_minute_after_assets_stopped(self): minutes = self.trading_calendar.minutes_for_session( self.trading_calendar.next_session_label( self.equity_minute_bar_days[-1] ) ) last_trading_minute = self.trading_calendar.minutes_for_session( self.equity_minute_bar_days[-1] )[-1] # this entire day is after both assets have stopped trading for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute, ) self.assertFalse(bar_data.can_trade(self.ASSET1)) self.assertFalse(bar_data.can_trade(self.ASSET2)) self.assertFalse(bar_data.is_stale(self.ASSET1)) self.assertFalse(bar_data.is_stale(self.ASSET2)) self.check_internal_consistency(bar_data) for field in ALL_FIELDS: for asset in self.ASSETS: asset_value = bar_data.current(asset, field) if field in OHLCP: self.assertTrue(np.isnan(asset_value)) elif field == "volume": self.assertEqual(0, asset_value) elif field == "last_traded": self.assertEqual(last_trading_minute, asset_value) def test_get_value_is_unadjusted(self): # verify there is a split for SPLIT_ASSET splits = self.adjustment_reader.get_adjustments_for_sid( "splits", self.SPLIT_ASSET.sid ) self.assertEqual(1, len(splits)) split = splits[0] self.assertEqual( split[0], pd.Timestamp("2016-01-06", tz='UTC') ) # ... but that's it's not applied when using spot value minutes = self.trading_calendar.minutes_for_sessions_in_range( self.equity_minute_bar_days[0], self.equity_minute_bar_days[1] ) for idx, minute in enumerate(minutes): bar_data = self.create_bardata( lambda: minute, ) self.assertEqual( idx + 1, bar_data.current(self.SPLIT_ASSET, "price") ) def test_get_value_is_adjusted_if_needed(self): # on cls.days[1], the first 9 minutes of ILLIQUID_SPLIT_ASSET are # missing. let's get them. day0_minutes = self.trading_calendar.minutes_for_session( self.equity_minute_bar_days[0] ) day1_minutes = self.trading_calendar.minutes_for_session( self.equity_minute_bar_days[1] ) for idx, minute in enumerate(day0_minutes[-10:-1]): bar_data = self.create_bardata( lambda: minute, ) self.assertEqual( 380, bar_data.current(self.ILLIQUID_SPLIT_ASSET, "price") ) bar_data = self.create_bardata( lambda: day0_minutes[-1], ) self.assertEqual( 390, bar_data.current(self.ILLIQUID_SPLIT_ASSET, "price") ) for idx, minute in enumerate(day1_minutes[0:9]): bar_data = self.create_bardata( lambda: minute, ) # should be half of 390, due to the split self.assertEqual( 195, bar_data.current(self.ILLIQUID_SPLIT_ASSET, "price") ) def test_get_value_at_midnight(self): # make sure that if we try to get a minute price at a non-market # minute, we use the previous market close's timestamp day = self.equity_minute_bar_days[1] eight_fortyfive_am_eastern = \ pd.Timestamp("{0}-{1}-{2} 8:45".format( day.year, day.month, day.day), tz='US/Eastern' ) bar_data = self.create_bardata( lambda: day, ) bar_data2 = self.create_bardata( lambda: eight_fortyfive_am_eastern, ) with handle_non_market_minutes(bar_data), \ handle_non_market_minutes(bar_data2): for bd in [bar_data, bar_data2]: for field in ["close", "price"]: self.assertEqual( 390, bd.current(self.ASSET1, field) ) # make sure that if the asset didn't trade at the previous # close, we properly ffill (or not ffill) self.assertEqual( 350, bd.current(self.HILARIOUSLY_ILLIQUID_ASSET, "price") ) self.assertTrue( np.isnan(bd.current(self.HILARIOUSLY_ILLIQUID_ASSET, "high")) ) self.assertEqual( 0, bd.current(self.HILARIOUSLY_ILLIQUID_ASSET, "volume") ) def test_get_value_during_non_market_hours(self): # make sure that if we try to get the OHLCV values of ASSET1 during # non-market hours, we don't get the previous market minute's values bar_data = self.create_bardata( simulation_dt_func=lambda: pd.Timestamp("2016-01-06 4:15", tz="US/Eastern"), ) self.assertTrue(np.isnan(bar_data.current(self.ASSET1, "open"))) self.assertTrue(np.isnan(bar_data.current(self.ASSET1, "high"))) self.assertTrue(np.isnan(bar_data.current(self.ASSET1, "low"))) self.assertTrue(np.isnan(bar_data.current(self.ASSET1, "close"))) self.assertEqual(0, bar_data.current(self.ASSET1, "volume")) # price should still forward fill self.assertEqual(390, bar_data.current(self.ASSET1, "price")) def test_can_trade_equity_same_cal_outside_lifetime(self): # verify that can_trade returns False for the session before the # asset's first session session_before_asset1_start = \ self.trading_calendar.previous_session_label( self.ASSET1.start_date ) minutes_for_session = self.trading_calendar.minutes_for_session( session_before_asset1_start ) # for good measure, check the minute before the session too minutes_to_check = chain( [minutes_for_session[0] - pd.Timedelta(minutes=1)], minutes_for_session ) for minute in minutes_to_check: bar_data = self.create_bardata( simulation_dt_func=lambda: minute, ) self.assertFalse(bar_data.can_trade(self.ASSET1)) # after asset lifetime session_after_asset1_end = self.trading_calendar.next_session_label( self.ASSET1.end_date ) bts_after_asset1_end = session_after_asset1_end.replace( hour=8, minute=45 ).tz_convert(None).tz_localize("US/Eastern") minutes_to_check = chain( self.trading_calendar.minutes_for_session( session_after_asset1_end ), [bts_after_asset1_end] ) for minute in minutes_to_check: bar_data = self.create_bardata( simulation_dt_func=lambda: minute, ) self.assertFalse(bar_data.can_trade(self.ASSET1)) def test_can_trade_equity_same_cal_exchange_closed(self): # verify that can_trade returns true for minutes that are # outside the asset's calendar (assuming the asset is alive and # there is a last price), because the asset is alive on the # next market minute. minutes = self.trading_calendar.minutes_for_sessions_in_range( self.ASSET1.start_date, self.ASSET1.end_date ) for minute in minutes: bar_data = self.create_bardata( simulation_dt_func=lambda: minute, ) self.assertTrue(bar_data.can_trade(self.ASSET1)) def test_can_trade_equity_same_cal_no_last_price(self): # self.HILARIOUSLY_ILLIQUID_ASSET's first trade is at # 2016-01-05 15:20:00+00:00. Make sure that can_trade returns false # for all minutes in that session before the first trade, and true # for all minutes afterwards. minutes_in_session = \ self.trading_calendar.minutes_for_session(self.ASSET1.start_date) for minute in minutes_in_session[0:49]: bar_data = self.create_bardata( simulation_dt_func=lambda: minute, ) self.assertFalse(bar_data.can_trade( self.HILARIOUSLY_ILLIQUID_ASSET) ) for minute in minutes_in_session[50:]: bar_data = self.create_bardata( simulation_dt_func=lambda: minute, ) self.assertTrue(bar_data.can_trade( self.HILARIOUSLY_ILLIQUID_ASSET) ) def test_is_stale_during_non_market_hours(self): bar_data = self.create_bardata( lambda: self.equity_minute_bar_days[1], ) with handle_non_market_minutes(bar_data): self.assertTrue(bar_data.is_stale(self.HILARIOUSLY_ILLIQUID_ASSET)) def test_overnight_adjustments(self): # verify there is a split for SPLIT_ASSET splits = self.adjustment_reader.get_adjustments_for_sid( "splits", self.SPLIT_ASSET.sid ) self.assertEqual(1, len(splits)) split = splits[0] self.assertEqual( split[0], pd.Timestamp("2016-01-06", tz='UTC') ) # Current day is 1/06/16 day = self.equity_daily_bar_days[1] eight_fortyfive_am_eastern = \ pd.Timestamp("{0}-{1}-{2} 8:45".format( day.year, day.month, day.day), tz='US/Eastern' ) bar_data = self.create_bardata( lambda: eight_fortyfive_am_eastern, ) expected = { 'open': 391 / 2.0, 'high': 392 / 2.0, 'low': 389 / 2.0, 'close': 390 / 2.0, 'volume': 39000 * 2.0, 'price': 390 / 2.0, } with handle_non_market_minutes(bar_data): for field in OHLCP + ['volume']: value = bar_data.current(self.SPLIT_ASSET, field) # Assert the price is adjusted for the overnight split self.assertEqual(value, expected[field]) def test_can_trade_restricted(self): """ Test that can_trade will return False for a sid if it is restricted on that dt """ minutes_to_check = [ (str_to_ts("2016-01-05 14:31"), False), (str_to_ts("2016-01-06 14:31"), False), (str_to_ts("2016-01-07 14:31"), True), (str_to_ts("2016-01-07 15:00"), False), (str_to_ts("2016-01-07 15:30"), True), ] rlm = HistoricalRestrictions([ Restriction(1, str_to_ts('2016-01-05'), RESTRICTION_STATES.FROZEN), Restriction(1, str_to_ts('2016-01-07'), RESTRICTION_STATES.ALLOWED), Restriction(1, str_to_ts('2016-01-07 15:00'), RESTRICTION_STATES.FROZEN), Restriction(1, str_to_ts('2016-01-07 15:30'), RESTRICTION_STATES.ALLOWED), ]) for info in minutes_to_check: bar_data = self.create_bardata( simulation_dt_func=lambda: info[0], restrictions=rlm, ) self.assertEqual(bar_data.can_trade(self.ASSET1), info[1]) class TestMinuteBarDataFuturesCalendar(WithCreateBarData, WithBarDataChecks, ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-05', tz='UTC') END_DATE = ASSET_FINDER_EQUITY_END_DATE = pd.Timestamp( '2016-01-07', tz='UTC', ) ASSET_FINDER_EQUITY_SIDS = [1] @classmethod def make_equity_minute_bar_data(cls): # asset1 has trades every minute yield 1, create_minute_df_for_asset( cls.trading_calendar, cls.equity_minute_bar_days[0], cls.equity_minute_bar_days[-1], ) @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 6: { 'symbol': 'CLH16', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2016-01-04', tz='UTC'), 'notice_date': pd.Timestamp('2016-01-19', tz='UTC'), 'expiration_date': pd.Timestamp('2016-02-19', tz='UTC'), 'exchange': 'ICEUS', }, 7: { 'symbol': 'FVH16', 'root_symbol': 'FV', 'start_date': pd.Timestamp('2016-01-04', tz='UTC'), 'notice_date': pd.Timestamp('2016-01-22', tz='UTC'), 'expiration_date': pd.Timestamp('2016-02-22', tz='UTC'), 'auto_close_date': pd.Timestamp('2016-01-20', tz='UTC'), 'exchange': 'CME', }, }, orient='index', ) @classmethod def init_class_fixtures(cls): super(TestMinuteBarDataFuturesCalendar, cls).init_class_fixtures() cls.trading_calendar = get_calendar('CME') def test_can_trade_multiple_exchange_closed(self): nyse_asset = self.asset_finder.retrieve_asset(1) ice_asset = self.asset_finder.retrieve_asset(6) # minutes we're going to check (to verify that that the same bardata # can check multiple exchange calendars, all times Eastern): # 2016-01-05: # 20:00 (minute before ICE opens) # 20:01 (first minute of ICE session) # 20:02 (second minute of ICE session) # 00:00 (Cinderella's ride becomes a pumpkin) # 2016-01-06: # 9:30 (minute before NYSE opens) # 9:31 (first minute of NYSE session) # 9:32 (second minute of NYSE session) # 15:59 (second-to-last minute of NYSE session) # 16:00 (last minute of NYSE session) # 16:01 (minute after NYSE closed) # 17:59 (second-to-last minute of ICE session) # 18:00 (last minute of ICE session) # 18:01 (minute after ICE closed) # each row is dt, whether-nyse-is-open, whether-ice-is-open minutes_to_check = [ (pd.Timestamp("2016-01-05 20:00", tz="US/Eastern"), False, False), (pd.Timestamp("2016-01-05 20:01", tz="US/Eastern"), False, True), (pd.Timestamp("2016-01-05 20:02", tz="US/Eastern"), False, True), (pd.Timestamp("2016-01-06 00:00", tz="US/Eastern"), False, True), (pd.Timestamp("2016-01-06 9:30", tz="US/Eastern"), False, True), (pd.Timestamp("2016-01-06 9:31", tz="US/Eastern"), True, True), (pd.Timestamp("2016-01-06 9:32", tz="US/Eastern"), True, True), (pd.Timestamp("2016-01-06 15:59", tz="US/Eastern"), True, True), (pd.Timestamp("2016-01-06 16:00", tz="US/Eastern"), True, True), (pd.Timestamp("2016-01-06 16:01", tz="US/Eastern"), False, True), (pd.Timestamp("2016-01-06 17:59", tz="US/Eastern"), False, True), (pd.Timestamp("2016-01-06 18:00", tz="US/Eastern"), False, True), (pd.Timestamp("2016-01-06 18:01", tz="US/Eastern"), False, False), ] for info in minutes_to_check: # use the CME calendar, which covers 24 hours bar_data = self.create_bardata( simulation_dt_func=lambda: info[0], ) series = bar_data.can_trade([nyse_asset, ice_asset]) self.assertEqual(info[1], series.loc[nyse_asset]) self.assertEqual(info[2], series.loc[ice_asset]) def test_can_trade_delisted(self): """ Test that can_trade returns False for an asset on or after its auto close date. """ auto_closing_asset = self.asset_finder.retrieve_asset(7) # Our asset's auto close date is 2016-01-20, which means that as of the # market open for the 2016-01-20 session, `can_trade` should return # False. minutes_to_check = [ (pd.Timestamp('2016-01-19 00:00:00', tz='UTC'), True), (pd.Timestamp('2016-01-19 23:00:00', tz='UTC'), True), (pd.Timestamp('2016-01-19 23:01:00', tz='UTC'), False), (pd.Timestamp('2016-01-19 23:59:00', tz='UTC'), False), (pd.Timestamp('2016-01-20 00:00:00', tz='UTC'), False), (pd.Timestamp('2016-01-20 00:01:00', tz='UTC'), False), (pd.Timestamp('2016-01-21 00:00:00', tz='UTC'), False), ] for info in minutes_to_check: bar_data = self.create_bardata(simulation_dt_func=lambda: info[0]) self.assertEqual(bar_data.can_trade(auto_closing_asset), info[1]) class TestDailyBarData(WithCreateBarData, WithBarDataChecks, WithDataPortal, ZiplineTestCase): START_DATE = pd.Timestamp('2016-01-05', tz='UTC') END_DATE = ASSET_FINDER_EQUITY_END_DATE = pd.Timestamp( '2016-01-11', tz='UTC', ) CREATE_BARDATA_DATA_FREQUENCY = 'daily' sids = ASSET_FINDER_EQUITY_SIDS = set(range(1, 9)) SPLIT_ASSET_SID = 3 ILLIQUID_SPLIT_ASSET_SID = 4 MERGER_ASSET_SID = 5 ILLIQUID_MERGER_ASSET_SID = 6 DIVIDEND_ASSET_SID = 7 ILLIQUID_DIVIDEND_ASSET_SID = 8 @classmethod def make_equity_info(cls): frame = super(TestDailyBarData, cls).make_equity_info() frame.loc[[1, 2], 'end_date'] = pd.Timestamp('2016-01-08', tz='UTC') return frame @classmethod def make_splits_data(cls): return pd.DataFrame.from_records([ { 'effective_date': str_to_seconds("2016-01-06"), 'ratio': 0.5, 'sid': cls.SPLIT_ASSET_SID, }, { 'effective_date': str_to_seconds("2016-01-07"), 'ratio': 0.5, 'sid': cls.ILLIQUID_SPLIT_ASSET_SID, }, ]) @classmethod def make_mergers_data(cls): return pd.DataFrame.from_records([ { 'effective_date': str_to_seconds('2016-01-06'), 'ratio': 0.5, 'sid': cls.MERGER_ASSET_SID, }, { 'effective_date': str_to_seconds('2016-01-07'), 'ratio': 0.6, 'sid': cls.ILLIQUID_MERGER_ASSET_SID, } ]) @classmethod def make_dividends_data(cls): return pd.DataFrame.from_records([ { # only care about ex date, the other dates don't matter here 'ex_date': pd.Timestamp('2016-01-06', tz='UTC').to_datetime64(), 'record_date': pd.Timestamp('2016-01-06', tz='UTC').to_datetime64(), 'declared_date': pd.Timestamp('2016-01-06', tz='UTC').to_datetime64(), 'pay_date': pd.Timestamp('2016-01-06', tz='UTC').to_datetime64(), 'amount': 2.0, 'sid': cls.DIVIDEND_ASSET_SID, }, { 'ex_date': pd.Timestamp('2016-01-07', tz='UTC').to_datetime64(), 'record_date': pd.Timestamp('2016-01-07', tz='UTC').to_datetime64(), 'declared_date': pd.Timestamp('2016-01-07', tz='UTC').to_datetime64(), 'pay_date': pd.Timestamp('2016-01-07', tz='UTC').to_datetime64(), 'amount': 4.0, 'sid': cls.ILLIQUID_DIVIDEND_ASSET_SID, }], columns=[ 'ex_date', 'record_date', 'declared_date', 'pay_date', 'amount', 'sid', ] ) @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return MockDailyBarReader() @classmethod def make_equity_daily_bar_data(cls): for sid in cls.sids: asset = cls.asset_finder.retrieve_asset(sid) yield sid, create_daily_df_for_asset( cls.trading_calendar, asset.start_date, asset.end_date, interval=2 - sid % 2 ) @classmethod def init_class_fixtures(cls): super(TestDailyBarData, cls).init_class_fixtures() cls.ASSET1 = cls.asset_finder.retrieve_asset(1) cls.ASSET2 = cls.asset_finder.retrieve_asset(2) cls.SPLIT_ASSET = cls.asset_finder.retrieve_asset( cls.SPLIT_ASSET_SID, ) cls.ILLIQUID_SPLIT_ASSET = cls.asset_finder.retrieve_asset( cls.ILLIQUID_SPLIT_ASSET_SID, ) cls.MERGER_ASSET = cls.asset_finder.retrieve_asset( cls.MERGER_ASSET_SID, ) cls.ILLIQUID_MERGER_ASSET = cls.asset_finder.retrieve_asset( cls.ILLIQUID_MERGER_ASSET_SID, ) cls.DIVIDEND_ASSET = cls.asset_finder.retrieve_asset( cls.DIVIDEND_ASSET_SID, ) cls.ILLIQUID_DIVIDEND_ASSET = cls.asset_finder.retrieve_asset( cls.ILLIQUID_DIVIDEND_ASSET_SID, ) cls.ASSETS = [cls.ASSET1, cls.ASSET2] def get_last_minute_of_session(self, session_label): return self.trading_calendar.open_and_close_for_session( session_label )[1] def test_current_session(self): for session in self.trading_calendar.sessions_in_range( self.equity_daily_bar_days[0], self.equity_daily_bar_days[-1] ): bar_data = self.create_bardata( simulation_dt_func=lambda: self.get_last_minute_of_session( session ) ) self.assertEqual(session, bar_data.current_session) def test_day_before_assets_trading(self): # use the day before self.bcolz_daily_bar_days[0] minute = self.get_last_minute_of_session( self.trading_calendar.previous_session_label( self.equity_daily_bar_days[0] ) ) bar_data = self.create_bardata( simulation_dt_func=lambda: minute, ) self.check_internal_consistency(bar_data) self.assertFalse(bar_data.can_trade(self.ASSET1)) self.assertFalse(bar_data.can_trade(self.ASSET2)) self.assertFalse(bar_data.is_stale(self.ASSET1)) self.assertFalse(bar_data.is_stale(self.ASSET2)) for field in ALL_FIELDS: for asset in self.ASSETS: asset_value = bar_data.current(asset, field) if field in OHLCP: self.assertTrue(np.isnan(asset_value)) elif field == "volume": self.assertEqual(0, asset_value) elif field == "last_traded": self.assertTrue(asset_value is pd.NaT) def test_semi_active_day(self): # on self.equity_daily_bar_days[0], only asset1 has data bar_data = self.create_bardata( simulation_dt_func=lambda: self.get_last_minute_of_session( self.equity_daily_bar_days[0] ), ) self.check_internal_consistency(bar_data) self.assertTrue(bar_data.can_trade(self.ASSET1)) self.assertFalse(bar_data.can_trade(self.ASSET2)) # because there is real data self.assertFalse(bar_data.is_stale(self.ASSET1)) # because there has never been a trade bar yet self.assertFalse(bar_data.is_stale(self.ASSET2)) self.assertEqual(3, bar_data.current(self.ASSET1, "open")) self.assertEqual(4, bar_data.current(self.ASSET1, "high")) self.assertEqual(1, bar_data.current(self.ASSET1, "low")) self.assertEqual(2, bar_data.current(self.ASSET1, "close")) self.assertEqual(200, bar_data.current(self.ASSET1, "volume")) self.assertEqual(2, bar_data.current(self.ASSET1, "price")) self.assertEqual(self.equity_daily_bar_days[0], bar_data.current(self.ASSET1, "last_traded")) for field in OHLCP: self.assertTrue(np.isnan(bar_data.current(self.ASSET2, field)), field) self.assertEqual(0, bar_data.current(self.ASSET2, "volume")) self.assertTrue( bar_data.current(self.ASSET2, "last_traded") is pd.NaT ) def test_fully_active_day(self): bar_data = self.create_bardata( simulation_dt_func=lambda: self.get_last_minute_of_session( self.equity_daily_bar_days[1] ), ) self.check_internal_consistency(bar_data) # on self.equity_daily_bar_days[1], both assets have data for asset in self.ASSETS: self.assertTrue(bar_data.can_trade(asset)) self.assertFalse(bar_data.is_stale(asset)) self.assertEqual(4, bar_data.current(asset, "open")) self.assertEqual(5, bar_data.current(asset, "high")) self.assertEqual(2, bar_data.current(asset, "low")) self.assertEqual(3, bar_data.current(asset, "close")) self.assertEqual(300, bar_data.current(asset, "volume")) self.assertEqual(3, bar_data.current(asset, "price")) self.assertEqual( self.equity_daily_bar_days[1], bar_data.current(asset, "last_traded") ) def test_last_active_day(self): bar_data = self.create_bardata( simulation_dt_func=lambda: self.get_last_minute_of_session( self.equity_daily_bar_days[-1] ), ) self.check_internal_consistency(bar_data) for asset in self.ASSETS: if asset in (1, 2): self.assertFalse(bar_data.can_trade(asset)) else: self.assertTrue(bar_data.can_trade(asset)) self.assertFalse(bar_data.is_stale(asset)) if asset in (1, 2): assert_almost_equal(nan, bar_data.current(asset, "open")) assert_almost_equal(nan, bar_data.current(asset, "high")) assert_almost_equal(nan, bar_data.current(asset, "low")) assert_almost_equal(nan, bar_data.current(asset, "close")) assert_almost_equal(0, bar_data.current(asset, "volume")) assert_almost_equal(nan, bar_data.current(asset, "price")) else: self.assertEqual(6, bar_data.current(asset, "open")) self.assertEqual(7, bar_data.current(asset, "high")) self.assertEqual(4, bar_data.current(asset, "low")) self.assertEqual(5, bar_data.current(asset, "close")) self.assertEqual(500, bar_data.current(asset, "volume")) self.assertEqual(5, bar_data.current(asset, "price")) def test_after_assets_dead(self): session = self.END_DATE bar_data = self.create_bardata( simulation_dt_func=lambda: session, ) self.check_internal_consistency(bar_data) for asset in self.ASSETS: self.assertFalse(bar_data.can_trade(asset)) self.assertFalse(bar_data.is_stale(asset)) for field in OHLCP: self.assertTrue(np.isnan(bar_data.current(asset, field))) self.assertEqual(0, bar_data.current(asset, "volume")) last_traded_dt = bar_data.current(asset, "last_traded") if asset in (self.ASSET1, self.ASSET2): self.assertEqual(self.equity_daily_bar_days[3], last_traded_dt) @parameterized.expand([ ("split", 2, 3, 3, 1.5), ("merger", 2, 3, 3, 1.8), ("dividend", 2, 3, 3, 2.88) ]) def test_get_value_adjustments(self, adjustment_type, liquid_day_0_price, liquid_day_1_price, illiquid_day_0_price, illiquid_day_1_price_adjusted): """Test the behaviour of spot prices during adjustments.""" table_name = adjustment_type + 's' liquid_asset = getattr(self, (adjustment_type.upper() + "_ASSET")) illiquid_asset = getattr( self, ("ILLIQUID_" + adjustment_type.upper() + "_ASSET") ) # verify there is an adjustment for liquid_asset adjustments = self.adjustment_reader.get_adjustments_for_sid( table_name, liquid_asset.sid ) self.assertEqual(1, len(adjustments)) adjustment = adjustments[0] self.assertEqual( adjustment[0], pd.Timestamp("2016-01-06", tz='UTC') ) # ... but that's it's not applied when using spot value bar_data = self.create_bardata( simulation_dt_func=lambda: self.equity_daily_bar_days[0], ) self.assertEqual( liquid_day_0_price, bar_data.current(liquid_asset, "price") ) bar_data = self.create_bardata( simulation_dt_func=lambda: self.equity_daily_bar_days[1], ) self.assertEqual( liquid_day_1_price, bar_data.current(liquid_asset, "price") ) # ... except when we have to forward fill across a day boundary # ILLIQUID_ASSET has no data on days 0 and 2, and a split on day 2 bar_data = self.create_bardata( simulation_dt_func=lambda: self.equity_daily_bar_days[1], ) self.assertEqual( illiquid_day_0_price, bar_data.current(illiquid_asset, "price") ) bar_data = self.create_bardata( simulation_dt_func=lambda: self.equity_daily_bar_days[2], ) # 3 (price from previous day) * 0.5 (split ratio) self.assertAlmostEqual( illiquid_day_1_price_adjusted, bar_data.current(illiquid_asset, "price") ) def test_can_trade_restricted(self): """ Test that can_trade will return False for a sid if it is restricted on that dt """ minutes_to_check = [ (pd.Timestamp("2016-01-05", tz="UTC"), False), (pd.Timestamp("2016-01-06", tz="UTC"), False), (pd.Timestamp("2016-01-07", tz="UTC"), True), ] rlm = HistoricalRestrictions([ Restriction(1, str_to_ts('2016-01-05'), RESTRICTION_STATES.FROZEN), Restriction(1, str_to_ts('2016-01-07'), RESTRICTION_STATES.ALLOWED), ]) for info in minutes_to_check: bar_data = self.create_bardata( simulation_dt_func=lambda: info[0], restrictions=rlm ) self.assertEqual(bar_data.can_trade(self.ASSET1), info[1])
apache-2.0
DTMilodowski/LiDAR_canopy
src/BALI_synthesis_contribution/canopy_profiles_oilpalm.py
1
6736
############################################################################################################### # This driver function analyses the sensisitivity of the LiDAR-based metrics to spatial scale and point density ############################################################################################################### import numpy as np import sys from matplotlib import pyplot as plt from matplotlib import rcParams sys.path.append('../') import LiDAR_io as io import LiDAR_tools as lidar import LiDAR_MacHorn_LAD_profiles as LAD1 #--------------------------------------------------------------------------------------------------------------- # Some filenames & params las_list = '/home/dmilodow/DataStore_DTM/BALI/LiDAR/Data/SAFE_las_files/las_list_full_path.txt' ## CHANGE AS REQUIRED las_files = np.genfromtxt(las_list,delimiter=',',dtype='S256') n_files = las_files.size plot = 'OP' print(plot) plot_width = 100. sample_res = 20. max_height = 80 layer_thickness = 1. n_layers = np.ceil(max_height/layer_thickness) minimum_height = 2. subplot_width=20. kappa = 0.70 heights = np.arange(0,max_height,layer_thickness)+layer_thickness #--------------------------------------------------------------------------------------------------------------- # Load the data etc. center = [550140.405,512920.137] polygon = np.array([[center[0]-plot_width/2.,center[1]-plot_width/2.], [center[0]+plot_width/2.,center[1]-plot_width/2.], [center[0]+plot_width/2.,center[1]+plot_width/2.], [center[0]-plot_width/2.,center[1]+plot_width/2.]]) # simple square bounding box applied for all sensitivity analyses plot_lidar_pts, starting_ids, trees = io.load_lidar_data_by_polygon(las_list,polygon,max_pts_per_tree = 5*10**5, laz_files=False) N_trees = len(trees) plot_lidar_pts[plot_lidar_pts[:,2]<0,2]=0 n_returns = pts.shape[0] # Loop through all the spatial scales of interest print("generating sample grid") # Now create the subplot grids rows = int(plot_width/sample_res) cols = int(plot_width/sample_res) x=np.arange(0,plot_width+sample_res,sample_res)+[polygon[0,0]] y=np.arange(0,plot_width+sample_res,sample_res)+[polygon[0,1]] x_prime,y_prime=np.asarray(np.meshgrid(x,y)) count = 0 subplot_polygons = [] row_idx = [] col_idx = [] for i in range(0,rows): for j in range(0,cols): bbox = [ [x_prime[i,j], x_prime[i+1,j], x_prime[i+1,j+1], x_prime[i,j+1], x_prime[i,j]], [y_prime[i,j], y_prime[i+1,j], y_prime[i+1,j+1], y_prime[i,j+1], y_prime[i,j]] ] subplot_polygons.append( np.asarray(bbox).transpose() ) row_idx.append(i) col_idx.append(j) subplots=np.asarray(subplot_polygons) #----------------------------------------------------- # now get highest return in each grid cell to define the CHM print("generating canopy profiles") n_subplots = subplots.shape[0] #------------------------------------------------------------------------------------ # CLIP DATA TO PLOT # clip LiDAR point cloud to plot level (this makes subsequent processing much faster) print("canopy height = ", np.percentile(plot_lidar_pts[plot_lidar_pts[:,3]==1,2],99), "m") #------------------------------------------------------------------------------------ # SET UP ARRAYS TO HOST RESULTS MacArthurHorn_LAD={} LAD_MH = np.zeros((n_subplots, heights.size)) #------------------------------------------------------------------------------------ # LOOP THROUGH SUBPLOTS, CALCULATING CANOPY PROFILES pt_count = 0. # for each of the subplots, clip point cloud and model PAD and get the metrics for pp in range(0,n_subplots): # query the tree to locate points of interest # note that we will only have one tree for the number of points in sensitivity analysis centre_x = np.mean(subplots[pp][0:4,0]) centre_y = np.mean(subplots[pp][0:4,1]) radius = np.sqrt(sample_res**2/2.) ids = trees[0].query_ball_point([centre_x,centre_y], radius) sp_pts = lidar.filter_lidar_data_by_polygon(plot_lidar_pts[ids],subplots[pp],filter_by_first_return_location=False) pt_count += sp_pts.shape[0] # now get MacArthur-Horn profiles heights,first_return_profile,n_ground_returns = LAD1.bin_returns(sp_pts, max_height, layer_thickness) LAD_MH[pp,:] = LAD1.estimate_LAD_MacArthurHorn(first_return_profile, n_ground_returns, layer_thickness, kappa, zero_nodata=False) # Check for columns for which no pulses hit ground without interception. # Below the depth at which the canopy is not penetrated by first returns # some methods are infinite. Thus we need to expand the search radius # iteratively, so that we can build up a full vertical profile. Note that # this potentially gives rise to coarsening effective resolution down the # profile, but this seems preferable to more crude gap-filling schemes. nodata_test = np.any(~np.isfinite(LAD_MH[pp])) centre_x = np.mean(subplots[pp][0:4,0]) centre_y = np.mean(subplots[pp][0:4,1]) while nodata_test: # expand neighbourhood for point cloud sample ids = trees[0].query_ball_point([centre_x,centre_y], radius) sp_pts_iter = plot_lidar_pts[ids] # get MacArthur-Horn profiles nodata_gaps = ~np.isfinite(LAD_MH[pp]) heights,first_return_profile,n_ground_returns = LAD1.bin_returns(sp_pts_iter, max_height, layer_thickness) LAD_MH[pp,nodata_gaps] = LAD1.estimate_LAD_MacArthurHorn(first_return_profile, n_ground_returns, layer_thickness, kappa, zero_nodata=False)[nodata_gaps] # update check radius+=1. nodata_test = np.any(~np.isfinite(LAD_MH[pp])) print("average point density = ", pt_count/10.**4, " pts/m^2") #------------------------------------------------------------------------------------ # CLEANING AND STORING # now we have looped through and created the different profiles, need to account for any NaN's and apply minimum height # to the LAD distributions # - remove all profile values below minimum height prior to comparison mask = heights <= 2. LAD_MH[:,mask]=np.nan MacArthurHorn_LAD[plot] = LAD_MH.copy() #---------------------------------------------------------------------------- np.savez('lidar_canopy_profiles_adaptive_OP.npz',(MacArthurHorn_LAD))
gpl-3.0
mjvakili/ccppabc
ccppabc/code/test_subvol_xi.py
1
6067
import numpy as np import matplotlib.pyplot as plt from halotools.sim_manager import CachedHaloCatalog from halotools.empirical_models import PrebuiltHodModelFactory from halotools.mock_observables import tpcf from halotools.empirical_models.factories.mock_helpers import three_dim_pos_bundle from util import mask_func def mk_id_column(table=None): # set up ids from 0 to 63 for the box split into 4 along each edge edges = np.linspace(0, 750, 4) xs = table["halo_x"] ys = table["halo_y"] zs = table["halo_z"] subvol_ids = np.empty(xs.shape) for i in xrange(len(xs)): xi = np.where(edges < xs[i])[0][-1] yi = np.where(edges < ys[i])[0][-1] zi = np.where(edges < zs[i])[0][-1] subvol_ids[i] = zi * 16 + yi * 4 + xi return subvol_ids def random_shifter(index): zi = (index / 16) * 250. i2 = index % 16 yi = (i2 / 4) * 250. i3 = i2 % 4 xi = (i3) * 250. return xi , yi , zi def mk_id_column_2(table=None): edges = np.linspace(0, 500, 2) xs = table["halo_x"] ys = table["halo_y"] zs = table["halo_z"] subvol_ids = np.empty(xs.shape) for i in xrange(len(xs)): xi = np.where(edges < xs[i])[0][-1] yi = np.where(edges < ys[i])[0][-1] zi = np.where(edges < zs[i])[0][-1] subvol_ids[i] = zi * 4 + yi * 2 + xi return subvol_ids def random_shifter_2(index): zi = (index / 4) * 500. i2 = index % 4 yi = (i2 / 2) * 500. i3 = i2 % 2 xi = (i3) * 500. return xi , yi , zi xi_bin = np.concatenate([np.array([0.15]), np.logspace(np.log10(0.5), np.log10(20.), 15)]) rmax = xi_bin.max() # Get those randoms num_randoms = 50 * 800000 xran = np.random.uniform(0, 1000, num_randoms) yran = np.random.uniform(0, 1000, num_randoms) zran = np.random.uniform(0, 1000, num_randoms) full_randoms = np.vstack((xran, yran, zran)).T # Get the full box mock model = PrebuiltHodModelFactory('zheng07', threshold=-21) halocat = CachedHaloCatalog(simname='multidark', redshift=0, halo_finder='rockstar') model.populate_mock(halocat, enforce_PBC=False) pos = three_dim_pos_bundle(model.mock.galaxy_table, 'x', 'y', 'z') # Get full tpcf print "getting full vol tpcf..." xi_full_pc = tpcf(pos, xi_bin, randoms=full_randoms, do_auto=True, do_cross=False, max_sample_size=int(pos.shape[0]), estimator='Natural', approx_cell1_size=[rmax, rmax, rmax], approx_cellran_size=[rmax, rmax, rmax]) print "done" Nsub = 8 # Now set up for subvol boxes num_randoms = 50 * 8000 xran = np.random.uniform(0, 250, num_randoms) yran = np.random.uniform(0, 250, num_randoms) zran = np.random.uniform(0, 250, num_randoms) sub_randoms = np.vstack((xran, yran, zran)).T sub_model = PrebuiltHodModelFactory('zheng07') sub_model.new_haloprop_func_dict = {'sim_subvol': mk_id_column} sub_halocat = CachedHaloCatalog(simname='multidark', redshift=0, halo_finder='rockstar') print "starting with 250 mpc subvols:" sub_xi_list = [] for ii in range(1,Nsub+1): print ii simsubvol = lambda x: mask_func(x, ii) sub_model.populate_mock(sub_halocat, masking_function=simsubvol, enforce_PBC=False) sub_pos = three_dim_pos_bundle(sub_model.mock.galaxy_table, 'x', 'y', 'z') xi, yi, zi = random_shifter(ii) temp_randoms = sub_randoms.copy() temp_randoms[:,0] += xi temp_randoms[:,1] += yi temp_randoms[:,2] += zi sub_xi = tpcf(sub_pos, xi_bin, randoms=temp_randoms, do_auto=True, do_cross=False, max_sample_size=int(sub_pos.shape[0]), estimator='Natural', approx_cell1_size=full_approx_cell1_size, approx_cellran_size=full_approx_cellran_size) sub_xi_list.append(sub_xi) # And again for the larger subvols num_randoms = 50 * 100000 xran = np.random.uniform(0, 500, num_randoms) yran = np.random.uniform(0, 500, num_randoms) zran = np.random.uniform(0, 500, num_randoms) sub_randoms = np.vstack((xran, yran, zran)).T sub_model = PrebuiltHodModelFactory('zheng07') sub_model.new_haloprop_func_dict = {'sim_subvol': mk_id_column_2} sub_halocat = CachedHaloCatalog(simname='multidark', redshift=0, halo_finder='rockstar') print "starting with 500 mpc subvols" sub_xi_list_2 = [] for ii in range(1,Nsub+1): print ii simsubvol = lambda x: mask_func(x, ii) sub_model.populate_mock(sub_halocat, masking_function=simsubvol, enforce_PBC=False) sub_pos = three_dim_pos_bundle(sub_model.mock.galaxy_table, 'x', 'y', 'z') xi, yi, zi = random_shifter_2(ii) temp_randoms = sub_randoms.copy() temp_randoms[:,0] += xi temp_randoms[:,1] += yi temp_randoms[:,2] += zi sub_xi = tpcf(sub_pos, xi_bin, randoms=temp_randoms, do_auto=True, do_cross=False, max_sample_size=int(sub_pos.shape[0]), estimator='Natural', approx_cell1_size=full_approx_cell1_size, approx_cellran_size=full_approx_cellran_size, RR_precomputed=sub_RR, NR_precomputed=sub_NR) sub_xi_list_2.append(sub_xi) # And plot! fig = plt.figure() ax = fig.add_subplot(111) print "plotting..." lines = [] for ii in range(1,Nsub+1): # plot small vol ratio rat1 = sub_xi_list[ii] / xi_full_pc lines.append(ax.plot(0.5*(xi_bin[:-1] + xi_bin[1:]), rat1, color='g', alpha=0.2)) # plot large vol ratio rat2 = sub_xi_list[ii] / xi_full_pc lines.append(ax.plot(0.5*(xi_bin[:-1] + xi_bin[1:]), rat2, color='r', alpha=0.2)) ax.set_xscale('log') ax.set_xlabel('r') ax.set_ylabel('xi ratio') fig.savefig("subvol_compare.pdf")
mit
vermouthmjl/scikit-learn
sklearn/gaussian_process/kernels.py
24
66334
"""Kernels for Gaussian process regression and classification. The kernels in this module allow kernel-engineering, i.e., they can be combined via the "+" and "*" operators or be exponentiated with a scalar via "**". These sum and product expressions can also contain scalar values, which are automatically converted to a constant kernel. All kernels allow (analytic) gradient-based hyperparameter optimization. The space of hyperparameters can be specified by giving lower und upper boundaries for the value of each hyperparameter (the search space is thus rectangular). Instead of specifying bounds, hyperparameters can also be declared to be "fixed", which causes these hyperparameters to be excluded from optimization. """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause # Note: this module is strongly inspired by the kernel module of the george # package. from abc import ABCMeta, abstractmethod from collections import namedtuple import math import numpy as np from scipy.special import kv, gamma from scipy.spatial.distance import pdist, cdist, squareform from ..metrics.pairwise import pairwise_kernels from ..externals import six from ..base import clone from sklearn.externals.funcsigs import signature class Hyperparameter(namedtuple('Hyperparameter', ('name', 'value_type', 'bounds', 'n_elements', 'fixed'))): """A kernel hyperparameter's specification in form of a namedtuple. Attributes ---------- name : string The name of the hyperparameter. Note that a kernel using a hyperparameter with name "x" must have the attributes self.x and self.x_bounds value_type : string The type of the hyperparameter. Currently, only "numeric" hyperparameters are supported. bounds : pair of floats >= 0 or "fixed" The lower and upper bound on the parameter. If n_elements>1, a pair of 1d array with n_elements each may be given alternatively. If the string "fixed" is passed as bounds, the hyperparameter's value cannot be changed. n_elements : int, default=1 The number of elements of the hyperparameter value. Defaults to 1, which corresponds to a scalar hyperparameter. n_elements > 1 corresponds to a hyperparameter which is vector-valued, such as, e.g., anisotropic length-scales. fixed : bool, default: None Whether the value of this hyperparameter is fixed, i.e., cannot be changed during hyperparameter tuning. If None is passed, the "fixed" is derived based on the given bounds. """ # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __init__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __new__(cls, name, value_type, bounds, n_elements=1, fixed=None): if not isinstance(bounds, six.string_types) or bounds != "fixed": bounds = np.atleast_2d(bounds) if n_elements > 1: # vector-valued parameter if bounds.shape[0] == 1: bounds = np.repeat(bounds, n_elements, 0) elif bounds.shape[0] != n_elements: raise ValueError("Bounds on %s should have either 1 or " "%d dimensions. Given are %d" % (name, n_elements, bounds.shape[0])) if fixed is None: fixed = isinstance(bounds, six.string_types) and bounds == "fixed" return super(Hyperparameter, cls).__new__( cls, name, value_type, bounds, n_elements, fixed) class Kernel(six.with_metaclass(ABCMeta)): """Base class for all kernels.""" def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict() # introspect the constructor arguments to find the model parameters # to represent cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) init_sign = signature(init) args, varargs = [], [] for parameter in init_sign.parameters.values(): if (parameter.kind != parameter.VAR_KEYWORD and parameter.name != 'self'): args.append(parameter.name) if parameter.kind == parameter.VAR_POSITIONAL: varargs.append(parameter.name) if len(varargs) != 0: raise RuntimeError("scikit-learn kernels should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s doesn't follow this convention." % (cls, )) for arg in args: params[arg] = getattr(self, arg, None) return params def set_params(self, **params): """Set the parameters of this kernel. The method works on simple kernels as well as on nested kernels. The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for kernel %s. ' 'Check the list of available parameters ' 'with `kernel.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def clone_with_theta(self, theta): """Returns a clone of self with given hyperparameters theta. """ cloned = clone(self) cloned.theta = theta return cloned @property def n_dims(self): """Returns the number of non-fixed hyperparameters of the kernel.""" return self.theta.shape[0] @property def hyperparameters(self): """Returns a list of all hyperparameter specifications.""" r = [] for attr, value in sorted(self.__dict__.items()): if attr.startswith("hyperparameter_"): r.append(value) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ theta = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: theta.append(getattr(self, hyperparameter.name)) if len(theta) > 0: return np.log(np.hstack(theta)) else: return np.array([]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ i = 0 for hyperparameter in self.hyperparameters: if hyperparameter.fixed: continue if hyperparameter.n_elements > 1: # vector-valued parameter setattr(self, hyperparameter.name, np.exp(theta[i:i + hyperparameter.n_elements])) i += hyperparameter.n_elements else: setattr(self, hyperparameter.name, np.exp(theta[i])) i += 1 if i != len(theta): raise ValueError("theta has not the correct number of entries." " Should be %d; given are %d" % (i, len(theta))) @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ bounds = [] for hyperparameter in self.hyperparameters: if not hyperparameter.fixed: bounds.append(hyperparameter.bounds) if len(bounds) > 0: return np.log(np.vstack(bounds)) else: return np.array([]) def __add__(self, b): if not isinstance(b, Kernel): return Sum(self, ConstantKernel(b)) return Sum(self, b) def __radd__(self, b): if not isinstance(b, Kernel): return Sum(ConstantKernel(b), self) return Sum(b, self) def __mul__(self, b): if not isinstance(b, Kernel): return Product(self, ConstantKernel(b)) return Product(self, b) def __rmul__(self, b): if not isinstance(b, Kernel): return Product(ConstantKernel(b), self) return Product(b, self) def __pow__(self, b): return Exponentiation(self, b) def __eq__(self, b): if type(self) != type(b): return False params_a = self.get_params() params_b = b.get_params() for key in set(list(params_a.keys()) + list(params_b.keys())): if np.any(params_a.get(key, None) != params_b.get(key, None)): return False return True def __repr__(self): return "{0}({1})".format(self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.theta))) @abstractmethod def __call__(self, X, Y=None, eval_gradient=False): """Evaluate the kernel.""" @abstractmethod def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ @abstractmethod def is_stationary(self): """Returns whether the kernel is stationary. """ class NormalizedKernelMixin(object): """Mixin for kernels which are normalized: k(X, X)=1.""" def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.ones(X.shape[0]) class StationaryKernelMixin(object): """Mixin for kernels which are stationary: k(X, Y)= f(X-Y).""" def is_stationary(self): """Returns whether the kernel is stationary. """ return True class CompoundKernel(Kernel): """Kernel which is composed of a set of other kernels.""" def __init__(self, kernels): self.kernels = kernels def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ return dict(kernels=self.kernels) @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.hstack([kernel.theta for kernel in self.kernels]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k_dims = self.k1.n_dims for i, kernel in enumerate(self.kernels): kernel.theta = theta[i * k_dims:(i + 1) * k_dims] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return np.vstack([kernel.bounds for kernel in self.kernels]) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Note that this compound kernel returns the results of all simple kernel stacked along an additional axis. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y, n_kernels) Kernel k(X, Y) K_gradient : array, shape (n_samples_X, n_samples_X, n_dims, n_kernels) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K = [] K_grad = [] for kernel in self.kernels: K_single, K_grad_single = kernel(X, Y, eval_gradient) K.append(K_single) K_grad.append(K_grad_single[..., np.newaxis]) return np.dstack(K), np.concatenate(K_grad, 3) else: return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels]) def __eq__(self, b): if type(self) != type(b) or len(self.kernels) != len(b.kernels): return False return np.all([self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))]) def is_stationary(self): """Returns whether the kernel is stationary. """ return np.all([kernel.is_stationary() for kernel in self.kernels]) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X, n_kernels) Diagonal of kernel k(X, X) """ return np.vstack([kernel.diag(X) for kernel in self.kernels]).T class KernelOperator(Kernel): """Base class for all kernel operators. """ def __init__(self, k1, k2): self.k1 = k1 self.k2 = k2 def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(k1=self.k1, k2=self.k2) if deep: deep_items = self.k1.get_params().items() params.update(('k1__' + k, val) for k, val in deep_items) deep_items = self.k2.get_params().items() params.update(('k2__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.k1.hyperparameters: r.append(Hyperparameter("k1__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) for hyperparameter in self.k2.hyperparameters: r.append(Hyperparameter("k2__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.append(self.k1.theta, self.k2.theta) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k1_dims = self.k1.n_dims self.k1.theta = theta[:k1_dims] self.k2.theta = theta[k1_dims:] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ if self.k1.bounds.size == 0: return self.k2.bounds if self.k2.bounds.size == 0: return self.k1.bounds return np.vstack((self.k1.bounds, self.k2.bounds)) def __eq__(self, b): if type(self) != type(b): return False return (self.k1 == b.k1 and self.k2 == b.k2) \ or (self.k1 == b.k2 and self.k2 == b.k1) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.k1.is_stationary() and self.k2.is_stationary() class Sum(KernelOperator): """Sum-kernel k1 + k2 of two kernels k1 and k2. The resulting kernel is defined as k_sum(X, Y) = k1(X, Y) + k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the sum-kernel k2 : Kernel object The second base-kernel of the sum-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 + K2, np.dstack((K1_gradient, K2_gradient)) else: return self.k1(X, Y) + self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) + self.k2.diag(X) def __repr__(self): return "{0} + {1}".format(self.k1, self.k2) class Product(KernelOperator): """Product-kernel k1 * k2 of two kernels k1 and k2. The resulting kernel is defined as k_prod(X, Y) = k1(X, Y) * k2(X, Y) Parameters ---------- k1 : Kernel object The first base-kernel of the product-kernel k2 : Kernel object The second base-kernel of the product-kernel """ def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K1, K1_gradient = self.k1(X, Y, eval_gradient=True) K2, K2_gradient = self.k2(X, Y, eval_gradient=True) return K1 * K2, np.dstack((K1_gradient * K2[:, :, np.newaxis], K2_gradient * K1[:, :, np.newaxis])) else: return self.k1(X, Y) * self.k2(X, Y) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.k1.diag(X) * self.k2.diag(X) def __repr__(self): return "{0} * {1}".format(self.k1, self.k2) class Exponentiation(Kernel): """Exponentiate kernel by given exponent. The resulting kernel is defined as k_exp(X, Y) = k(X, Y) ** exponent Parameters ---------- kernel : Kernel object The base kernel exponent : float The exponent for the base kernel """ def __init__(self, kernel, exponent): self.kernel = kernel self.exponent = exponent def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ params = dict(kernel=self.kernel, exponent=self.exponent) if deep: deep_items = self.kernel.get_params().items() params.update(('kernel__' + k, val) for k, val in deep_items) return params @property def hyperparameters(self): """Returns a list of all hyperparameter.""" r = [] for hyperparameter in self.kernel.hyperparameters: r.append(Hyperparameter("kernel__" + hyperparameter.name, hyperparameter.value_type, hyperparameter.bounds, hyperparameter.n_elements)) return r @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return self.kernel.theta @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array, shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ self.kernel.theta = theta @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array, shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return self.kernel.bounds def __eq__(self, b): if type(self) != type(b): return False return (self.kernel == b.kernel and self.exponent == b.exponent) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ if eval_gradient: K, K_gradient = self.kernel(X, Y, eval_gradient=True) K_gradient *= \ self.exponent * K[:, :, np.newaxis] ** (self.exponent - 1) return K ** self.exponent, K_gradient else: K = self.kernel(X, Y, eval_gradient=False) return K ** self.exponent def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.kernel.diag(X) ** self.exponent def __repr__(self): return "{0} ** {1}".format(self.kernel, self.exponent) def is_stationary(self): """Returns whether the kernel is stationary. """ return self.kernel.is_stationary() class ConstantKernel(StationaryKernelMixin, Kernel): """Constant kernel. Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process. k(x_1, x_2) = constant_value for all x_1, x_2 Parameters ---------- constant_value : float, default: 1.0 The constant value which defines the covariance: k(x_1, x_2) = constant_value constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on constant_value """ def __init__(self, constant_value=1.0, constant_value_bounds=(1e-5, 1e5)): self.constant_value = constant_value self.constant_value_bounds = constant_value_bounds self.hyperparameter_constant_value = \ Hyperparameter("constant_value", "numeric", constant_value_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: Y = X elif eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") K = self.constant_value * np.ones((X.shape[0], Y.shape[0])) if eval_gradient: if not self.hyperparameter_constant_value.fixed: return (K, self.constant_value * np.ones((X.shape[0], X.shape[0], 1))) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.constant_value * np.ones(X.shape[0]) def __repr__(self): return "{0:.3g}**2".format(np.sqrt(self.constant_value)) class WhiteKernel(StationaryKernelMixin, Kernel): """White kernel. The main use-case of this kernel is as part of a sum-kernel where it explains the noise-component of the signal. Tuning its parameter corresponds to estimating the noise-level. k(x_1, x_2) = noise_level if x_1 == x_2 else 0 Parameters ---------- noise_level : float, default: 1.0 Parameter controlling the noise level noise_level_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on noise_level """ def __init__(self, noise_level=1.0, noise_level_bounds=(1e-5, 1e5)): self.noise_level = noise_level self.noise_level_bounds = noise_level_bounds self.hyperparameter_noise_level = \ Hyperparameter("noise_level", "numeric", noise_level_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is not None and eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") if Y is None: K = self.noise_level * np.eye(X.shape[0]) if eval_gradient: if not self.hyperparameter_noise_level.fixed: return (K, self.noise_level * np.eye(X.shape[0])[:, :, np.newaxis]) else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K else: return np.zeros((X.shape[0], Y.shape[0])) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return self.noise_level * np.ones(X.shape[0]) def __repr__(self): return "{0}(noise_level={1:.3g})".format(self.__class__.__name__, self.noise_level) class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Radial-basis function kernel (aka squared-exponential kernel). The RBF kernel is a stationary kernel. It is also known as the "squared exponential" kernel. It is parameterized by a length-scale parameter length_scale>0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel). The kernel is given by: k(x_i, x_j) = exp(-1 / 2 d(x_i / length_scale, x_j / length_scale)^2) This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square derivatives of all orders, and are thus very smooth. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5)): if np.iterable(length_scale): if len(length_scale) > 1: self.anisotropic = True self.length_scale = np.asarray(length_scale, dtype=np.float) else: self.anisotropic = False self.length_scale = float(length_scale[0]) else: self.anisotropic = False self.length_scale = float(length_scale) self.length_scale_bounds = length_scale_bounds if self.anisotropic: # anisotropic length_scale self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds, len(length_scale)) else: self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or self.length_scale.shape[0] == 1: K_gradient = \ (K * squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 \ / (self.length_scale ** 2) K_gradient *= K[..., np.newaxis] return K, K_gradient else: raise Exception("Anisotropic kernels require that the number " "of length scales and features match.") else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}])".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale))) else: # isotropic return "{0}(length_scale={1:.3g})".format( self.__class__.__name__, self.length_scale) class Matern(RBF): """ Matern kernel. The class of Matern kernels is a generalization of the RBF and the absolute exponential kernel parameterized by an additional parameter nu. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. Parameters ----------- length_scale : float or array with shape (n_features,), default: 1.0 The length scale of the kernel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where each dimension of l defines the length-scale of the respective feature dimension. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale nu: float, default: 1.5 The parameter nu controlling the smoothness of the learned function. The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel becomes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Important intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice differentiable functions). Note that values of nu not in [0.5, 1.5, 2.5, inf] incur a considerably higher computational cost (appr. 10 times higher) since they require to evaluate the modified Bessel function. Furthermore, in contrast to l, nu is kept fixed to its initial value and not optimized. """ def __init__(self, length_scale=1.0, length_scale_bounds=(1e-5, 1e5), nu=1.5): super(Matern, self).__init__(length_scale, length_scale_bounds) self.nu = nu def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if self.anisotropic and X.shape[1] != self.length_scale.shape[0]: raise Exception("Anisotropic kernel must have the same number of " "dimensions as data (%d!=%d)" % (self.length_scale.shape[0], X.shape[1])) if Y is None: dists = pdist(X / self.length_scale, metric='euclidean') else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / self.length_scale, Y / self.length_scale, metric='euclidean') if self.nu == 0.5: K = np.exp(-dists) elif self.nu == 1.5: K = dists * math.sqrt(3) K = (1. + K) * np.exp(-K) elif self.nu == 2.5: K = dists * math.sqrt(5) K = (1. + K + K ** 2 / 3.0) * np.exp(-K) else: # general case; expensive to evaluate K = dists K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan tmp = (math.sqrt(2 * self.nu) * K) K.fill((2 ** (1. - self.nu)) / gamma(self.nu)) K *= tmp ** self.nu K *= kv(self.nu, tmp) if Y is None: # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed K_gradient = np.empty((X.shape[0], X.shape[0], 0)) return K, K_gradient # We need to recompute the pairwise dimension-wise distances if self.anisotropic: D = (X[:, np.newaxis, :] - X[np.newaxis, :, :])**2 \ / (self.length_scale ** 2) else: D = squareform(dists**2)[:, :, np.newaxis] if self.nu == 0.5: K_gradient = K[..., np.newaxis] * D \ / np.sqrt(D.sum(2))[:, :, np.newaxis] K_gradient[~np.isfinite(K_gradient)] = 0 elif self.nu == 1.5: K_gradient = \ 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis] elif self.nu == 2.5: tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis] K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp) else: # approximate gradient numerically def f(theta): # helper function return self.clone_with_theta(theta)(X, Y) return K, _approx_fprime(self.theta, f, 1e-10) if not self.anisotropic: return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis] else: return K, K_gradient else: return K def __repr__(self): if self.anisotropic: return "{0}(length_scale=[{1}], nu={2:.3g})".format( self.__class__.__name__, ", ".join(map("{0:.3g}".format, self.length_scale)), self.nu) else: # isotropic return "{0}(length_scale={1:.3g}, nu={2:.3g})".format( self.__class__.__name__, self.length_scale, self.nu) class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Rational Quadratic kernel. The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different characteristic length-scales. It is parameterized by a length-scale parameter length_scale>0 and a scale mixture parameter alpha>0. Only the isotropic variant where length_scale is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = (1 + d(x_i, x_j)^2 / (2*alpha * length_scale^2))^-alpha Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. alpha : float > 0, default: 1.0 Scale mixture parameter length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale alpha_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on alpha """ def __init__(self, length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-5, 1e5), alpha_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.alpha = alpha self.length_scale_bounds = length_scale_bounds self.alpha_bounds = alpha_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_alpha = \ Hyperparameter("alpha", "numeric", alpha_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='sqeuclidean')) tmp = dists / (2 * self.alpha * self.length_scale ** 2) base = (1 + tmp) K = base ** -self.alpha np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='sqeuclidean') K = (1 + dists / (2 * self.alpha * self.length_scale ** 2)) \ ** -self.alpha if eval_gradient: # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ dists * K / (self.length_scale ** 2 * base) length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # l is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to alpha if not self.hyperparameter_alpha.fixed: alpha_gradient = \ K * (-self.alpha * np.log(base) + dists / (2 * self.length_scale ** 2 * base)) alpha_gradient = alpha_gradient[:, :, np.newaxis] else: # alpha is kept fixed alpha_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((alpha_gradient, length_scale_gradient)) else: return K def __repr__(self): return "{0}(alpha={1:.3g}, length_scale={2:.3g})".format( self.__class__.__name__, self.alpha, self.length_scale) class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel): """Exp-Sine-Squared kernel. The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter length_scale>0 and a periodicity parameter periodicity>0. Only the isotropic variant where l is a scalar is supported at the moment. The kernel given by: k(x_i, x_j) = exp(-2 sin(\pi / periodicity * d(x_i, x_j)) / length_scale)^2 Parameters ---------- length_scale : float > 0, default: 1.0 The length scale of the kernel. periodicity : float > 0, default: 1.0 The periodicity of the kernel. length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on length_scale periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on periodicity """ def __init__(self, length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-5, 1e5), periodicity_bounds=(1e-5, 1e5)): self.length_scale = length_scale self.periodicity = periodicity self.length_scale_bounds = length_scale_bounds self.periodicity_bounds = periodicity_bounds self.hyperparameter_length_scale = \ Hyperparameter("length_scale", "numeric", length_scale_bounds) self.hyperparameter_periodicity = \ Hyperparameter("periodicity", "numeric", periodicity_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: dists = squareform(pdist(X, metric='euclidean')) arg = np.pi * dists / self.periodicity sin_of_arg = np.sin(arg) K = np.exp(- 2 * (sin_of_arg / self.length_scale) ** 2) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X, Y, metric='euclidean') K = np.exp(- 2 * (np.sin(np.pi / self.periodicity * dists) / self.length_scale) ** 2) if eval_gradient: cos_of_arg = np.cos(arg) # gradient with respect to length_scale if not self.hyperparameter_length_scale.fixed: length_scale_gradient = \ 4 / self.length_scale**2 * sin_of_arg**2 * K length_scale_gradient = length_scale_gradient[:, :, np.newaxis] else: # length_scale is kept fixed length_scale_gradient = np.empty((K.shape[0], K.shape[1], 0)) # gradient with respect to p if not self.hyperparameter_periodicity.fixed: periodicity_gradient = \ 4 * arg / self.length_scale**2 * cos_of_arg \ * sin_of_arg * K periodicity_gradient = periodicity_gradient[:, :, np.newaxis] else: # p is kept fixed periodicity_gradient = np.empty((K.shape[0], K.shape[1], 0)) return K, np.dstack((length_scale_gradient, periodicity_gradient)) else: return K def __repr__(self): return "{0}(length_scale={1:.3g}, periodicity={2:.3g})".format( self.__class__.__name__, self.length_scale, self.periodicity) class DotProduct(Kernel): """Dot-Product kernel. The DotProduct kernel is non-stationary and can be obtained from linear regression by putting N(0, 1) priors on the coefficients of x_d (d = 1, . . . , D) and a prior of N(0, \sigma_0^2) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0^2. For sigma_0^2 =0, the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by k(x_i, x_j) = sigma_0 ^ 2 + x_i \cdot x_j The DotProduct kernel is commonly combined with exponentiation. Parameters ---------- sigma_0 : float >= 0, default: 1.0 Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogenous. sigma_0_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on l """ def __init__(self, sigma_0=1.0, sigma_0_bounds=(1e-5, 1e5)): self.sigma_0 = sigma_0 self.sigma_0_bounds = sigma_0_bounds self.hyperparameter_sigma_0 = \ Hyperparameter("sigma_0", "numeric", sigma_0_bounds) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) if Y is None: K = np.inner(X, X) + self.sigma_0 ** 2 else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") K = np.inner(X, Y) + self.sigma_0 ** 2 if eval_gradient: if not self.hyperparameter_sigma_0.fixed: K_gradient = np.empty((K.shape[0], K.shape[1], 1)) K_gradient[..., 0] = 2 * self.sigma_0 ** 2 return K, K_gradient else: return K, np.empty((X.shape[0], X.shape[0], 0)) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ return np.einsum('ij,ij->i', X, X) + self.sigma_0 ** 2 def is_stationary(self): """Returns whether the kernel is stationary. """ return False def __repr__(self): return "{0}(sigma_0={1:.3g})".format( self.__class__.__name__, self.sigma_0) # adapted from scipy/optimize/optimize.py for functions with 2d output def _approx_fprime(xk, f, epsilon, args=()): f0 = f(*((xk,) + args)) grad = np.zeros((f0.shape[0], f0.shape[1], len(xk)), float) ei = np.zeros((len(xk), ), float) for k in range(len(xk)): ei[k] = 1.0 d = epsilon * ei grad[:, :, k] = (f(*((xk + d,) + args)) - f0) / d[k] ei[k] = 0.0 return grad class PairwiseKernel(Kernel): """Wrapper for kernels in sklearn.metrics.pairwise. A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise. Note: Evaluation of eval_gradient is not analytic but numeric and all kernels support only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other kernel parameters are set directly at initialization and are kept fixed. Parameters ---------- gamma: float >= 0, default: 1.0 Parameter gamma of the pairwise kernel specified by metric gamma_bounds : pair of floats >= 0, default: (1e-5, 1e5) The lower and upper bound on gamma metric : string, or callable, default: "linear" The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. pairwise_kernels_kwargs : dict, default: None All entries of this dict (if any) are passed as keyword arguments to the pairwise kernel function. """ def __init__(self, gamma=1.0, gamma_bounds=(1e-5, 1e5), metric="linear", pairwise_kernels_kwargs=None): self.gamma = gamma self.gamma_bounds = gamma_bounds self.hyperparameter_gamma = \ Hyperparameter("gamma", "numeric", gamma_bounds) self.metric = metric if pairwise_kernels_kwargs is not None: self.pairwise_kernels_kwargs = pairwise_kernels_kwargs else: self.pairwise_kernels_kwargs = {} def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : array, shape (n_samples_Y, n_features), (optional, default=None) Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool (optional, default=False) Determines whether the gradient with respect to the kernel hyperparameter is determined. Only supported when Y is None. Returns ------- K : array, shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : array (opt.), shape (n_samples_X, n_samples_X, n_dims) The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when eval_gradient is True. """ X = np.atleast_2d(X) K = pairwise_kernels(X, Y, metric=self.metric, gamma=self.gamma, filter_params=True, **self.pairwise_kernels_kwargs) if eval_gradient: if self.hyperparameter_gamma.fixed: return K, np.empty((X.shape[0], X.shape[0], 0)) else: # approximate gradient numerically def f(gamma): # helper function return pairwise_kernels( X, Y, metric=self.metric, gamma=np.exp(gamma), filter_params=True, **self.pairwise_kernels_kwargs) return K, _approx_fprime(self.theta, f, 1e-10) else: return K def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array, shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Returns ------- K_diag : array, shape (n_samples_X,) Diagonal of kernel k(X, X) """ # We have to fall back to slow way of computing diagonal return np.apply_along_axis(self, 1, X)[:, 0] def is_stationary(self): """Returns whether the kernel is stationary. """ return self.metric in ["rbf"] def __repr__(self): return "{0}(gamma={1}, metric={2})".format( self.__class__.__name__, self.gamma, self.metric)
bsd-3-clause
michelrobijns/vandevooren
vandevooren.py
1
3229
#!/usr/bin/python3 import numpy as np import matplotlib.pyplot as plt from math import sqrt def van_de_vooren(tau, E, alpha): tau = np.radians(tau) alpha = np.radians(alpha) TL = 0.5 AK = (2 * np.pi - tau) / np.pi A = 2 * TL * np.power(E + 1, AK - 1) / np.power(2, AK) angles = np.arange(361) x = np.zeros(np.size(angles)) y = np.zeros(np.size(angles)) cp = np.zeros(np.size(angles)) for i in angles: if (i == 0 | i == 360): X = 1 Y = 0 CP = 1 x[i] = X y[i] = Y if (AK == 2 & (i == 0 | i == 360)): continue; cp[i] = CP TH = i / 180 * np.pi R1 = sqrt((A * (np.cos(TH) - 1)) ** 2 + (A * np.sin(TH)) ** 2) R2 = sqrt((A * (np.cos(TH) - E)) ** 2 + (A * np.sin(TH)) ** 2) if (TH == 0): TH1 = np.pi / 2 else: TH1 = np.arctan((A * np.sin(TH)) / (A * (np.cos(TH) - 1))) + np.pi if ((np.cos(TH) - E) < 0 and np.sin(TH) > 0): TH2 = np.arctan((A * np.sin(TH)) / (A * (np.cos(TH) - E))) + np.pi elif ((np.cos(TH) - E) < 0 and np.sin(TH) < 0): TH2 = np.arctan((A * np.sin(TH)) / (A * (np.cos(TH) - E))) + np.pi elif ((np.cos(TH) - E) > 0 and np.sin(TH) < 0): TH2 = np.arctan((A * np.sin(TH)) / (A * (np.cos(TH) - E))) + 2 * np.pi else: TH2 = np.arctan((A * np.sin(TH)) / (A * (np.cos(TH) - E))) # Compute transformed positions COM1 = (((R1 ** AK) / (R2 ** (AK - 1)) ) / ((np.cos((AK - 1)*TH2)) ** 2 + (np.sin((AK - 1) * TH2)) ** 2)) X = (COM1 * (np.cos(AK * TH1) * np.cos((AK - 1) * TH2) + np.sin(AK * TH1) * np.sin((AK - 1) * TH2)) + TL) Y = (COM1 * (np.sin(AK * TH1) * np.cos((AK - 1) * TH2) - np.cos(AK * TH1) * np.sin((AK - 1) * TH2)) + TL) x[i] = X y[i] = Y # Compute transformed pressure distribution A1 = np.cos((AK - 1) * TH1) * np.cos(AK * TH2) + np.sin((AK - 1) * TH1) * np.sin(AK * TH2) B1 = np.sin((AK - 1) * TH1) * np.cos(AK * TH2) - np.cos((AK - 1) * TH1) * np.sin(AK * TH2) C1 = (np.cos(AK * TH2)) ** 2 + (np.sin(AK * TH2)) ** 2 P = A * (1 - AK + AK * E) D1 = A1 * (A * np.cos(TH) - P) - B1 * A * np.sin(TH) D2 = A1 * A * np.sin(TH) + B1 * (A * np.cos(TH) - P) TEMP = 2 * C1 * (np.sin(alpha) - np.sin(alpha - TH)) / (D1 ** 2 + D2 ** 2) COM2 = TEMP * (R2 ** AK) / (R1 ** (AK - 1)) VX = D1 * np.sin(TH) + D2 * np.cos(TH) VY = -(D1 * np.cos(TH) - D2 * np.sin(TH)) CP = 1 - COM2 ** 2 * (VX ** 2 + VY ** 2) cp[i] = CP length = np.amax(x) - np.amin(x) thickness = np.amax(y) - np.amin(y) # Move the leading edge to the origin x = x - np.amin(x) y = y - y[-1] # Scale the airfoil to unit length x = x / length y = y / length return x, y, cp def main(): pass if __name__ == '__main__': main()
mit
3manuek/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
LiaoPan/scikit-learn
sklearn/neighbors/nearest_centroid.py
199
7249
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y, check_is_fitted from ..utils.sparsefuncs import csc_median_axis_0 class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric: string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to it's members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self, 'centroids_') X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
GitYiheng/reinforcement_learning_test
test01_cartpendulum/Feb/t7_cartpole_mc_plot.py
1
4579
import tensorflow as tf # neural network for function approximation import gym # environment import numpy as np # matrix operation and math functions from gym import wrappers import gym_morph # customized environment for cart-pole import matplotlib.pyplot as plt # Hyperparameters RANDOM_NUMBER_SEED = 2 # ENVIRONMENT = "CartPole-v0" # ENVIRONMENT = "CartPole-v1" ENVIRONMENT = "morph-v0" MAX_EPISODES = 1000 HIDDEN_LAYER = True HIDDEN_SIZE = 6 DISPLAY_WEIGHTS = False # Help debug weight update gamma = 0.99 # Discount per step alpha = 0.02205 # Learning rate RENDER = False # Render the cart-pole system VIDEO_INTERVAL = 50 # Generate a video at this interval CONSECUTIVE_TARGET = 50 # Including previous 50 rewards env = gym.make(ENVIRONMENT) env.seed(RANDOM_NUMBER_SEED) np.random.seed(RANDOM_NUMBER_SEED) tf.set_random_seed(RANDOM_NUMBER_SEED) # Input and output sizes input_size = env.observation_space.shape[0] try: output_size = env.action_space.shape[0] except AttributeError: output_size = env.action_space.n # Tensorflow network setup x = tf.placeholder(tf.float32, shape=(None, input_size)) y = tf.placeholder(tf.float32, shape=(None, 1)) expected_returns = tf.placeholder(tf.float32, shape=(None, 1)) # Xavier (2010) weights initializer for uniform distribution: # x = sqrt(6. / (in + out)); [-x, x] w_init = tf.contrib.layers.xavier_initializer() if HIDDEN_LAYER: hidden_W = tf.get_variable("W1", shape=[input_size, HIDDEN_SIZE], initializer=w_init) hidden_B = tf.Variable(tf.zeros(HIDDEN_SIZE)) dist_W = tf.get_variable("W2", shape=[HIDDEN_SIZE, output_size], initializer=w_init) dist_B = tf.Variable(tf.zeros(output_size)) hidden = tf.nn.elu(tf.matmul(x, hidden_W) + hidden_B) dist = tf.tanh(tf.matmul(hidden, dist_W) + dist_B) else: dist_W = tf.get_variable("W1", shape=[input_size, output_size], initializer=w_init) dist_B = tf.Variable(tf.zeros(output_size)) dist = tf.tanh(tf.matmul(x, dist_W) + dist_B) dist_soft = tf.nn.log_softmax(dist) dist_in = tf.matmul(dist_soft, tf.Variable([[1.], [0.]])) pi = tf.contrib.distributions.Bernoulli(dist_in) pi_sample = pi.sample() log_pi = pi.log_prob(y) optimizer = tf.train.RMSPropOptimizer(alpha) train = optimizer.minimize(-1.0 * expected_returns * log_pi) saver = tf.train.Saver() # Create and initialize a session sess = tf.Session() sess.run(tf.global_variables_initializer()) def run_episode(environment, ep, render=False): raw_reward = 0 discounted_reward = 0 cumulative_reward = [] discount = 1.0 states = [] actions = [] obs = environment.reset() done = False while not done: states.append(obs) cumulative_reward.append(discounted_reward) if render and ((ep % VIDEO_INTERVAL) == 0): environment.render() action = sess.run(pi_sample, feed_dict={x: [obs]})[0] actions.append(action) obs, reward, done, info = env.step(action[0]) raw_reward += reward if reward > 0: discounted_reward += reward * discount else: discounted_reward += reward discount *= gamma return raw_reward, discounted_reward, cumulative_reward, states, actions def display_weights(session): global HIDDEN_LAYER if HIDDEN_LAYER: w1 = session.run(hidden_W) b1 = session.run(hidden_B) w2 = session.run(dist_W) b2 = session.run(dist_B) print(w1, b1, w2, b2) else: w1 = session.run(dist_W) b1 = session.run(dist_B) print(w1, b1) returns = [] for ep in range(MAX_EPISODES): raw_G, discounted_G, cumulative_G, ep_states, ep_actions = \ run_episode(env, ep, RENDER) expected_R = np.transpose([discounted_G - np.array(cumulative_G)]) sess.run(train, feed_dict={x: ep_states, y: ep_actions, expected_returns: expected_R}) if DISPLAY_WEIGHTS: display_weights(sess) saver.save(sess, "/home/yh/repo/sim_test/Feb/CartPoleData/model.ckpt") returns.append(raw_G) running_returns = returns[max(0, ep-CONSECUTIVE_TARGET):(ep+1)] mean_returns = np.mean(running_returns) msg = "Episode: {}, Return: {}, Last {} returns mean: {}" msg = msg.format(ep, raw_G, CONSECUTIVE_TARGET, mean_returns) print(msg) env.close() # Plot # plt.style.use('ggplot') plt.style.use('dark_background') returns_for_plot = np.array(returns) plt.plot(returns_for_plot) plt.title("Returns") plt.show()
mit
bzero/statsmodels
statsmodels/examples/ex_emplike_1.py
34
3682
""" This is a basic tutorial on how to conduct basic empirical likelihood inference for descriptive statistics. If matplotlib is installed it also generates plots. """ from __future__ import print_function import numpy as np import statsmodels.api as sm print('Welcome to El') np.random.seed(634) # No significance of the seed. # Let's first generate some univariate data. univariate = np.random.standard_normal(30) # Now let's play with it # Initiate an empirical likelihood descriptive statistics instance eldescriptive = sm.emplike.DescStat(univariate) # Empirical likelihood is (typically) a method of inference, # not estimation. Therefore, there is no attribute eldescriptive.mean # However, we can check the mean: eldescriptive_mean = eldescriptive.endog.mean() #.42 #Let's conduct a hypothesis test to see if the mean is 0 print('Hypothesis test results for the mean:') print(eldescriptive.test_mean(0)) # The first value is is -2 *log-likelihood ratio, which is distributed #chi2. The second value is the p-value. # Let's see what the variance is: eldescriptive_var = eldescriptive.endog.var() # 1.01 #Let's test if the variance is 1: print('Hypothesis test results for the variance:') print(eldescriptive.test_var(1)) # Let's test if Skewness and Kurtosis are 0 print('Hypothesis test results for Skewness:') print(eldescriptive.test_skew(0)) print('Hypothesis test results for the Kurtosis:') print(eldescriptive.test_kurt(0)) # Note that the skewness and Kurtosis take longer. This is because # we have to optimize over the nuisance parameters (mean, variance). # We can also test for the joint skewness and kurtoses print(' Joint Skewness-Kurtosis test') eldescriptive.test_joint_skew_kurt(0, 0) # Let's try and get some confidence intervals print('Confidence interval for the mean') print(eldescriptive.ci_mean()) print('Confidence interval for the variance') print(eldescriptive.ci_var()) print('Confidence interval for skewness') print(eldescriptive.ci_skew()) print('Confidence interval for kurtosis') print(eldescriptive.ci_kurt()) # if matplotlib is installed, we can get a contour plot for the mean # and variance. mean_variance_contour = eldescriptive.plot_contour(-.5, 1.2, .2, 2.5, .05, .05) # This returns a figure instance. Just type mean_var_contour.show() # to see the plot. # Once you close the plot, we can start some multivariate analysis. x1 = np.random.exponential(2, (30, 1)) x2 = 2 * x1 + np.random.chisquare(4, (30, 1)) mv_data = np.concatenate((x1, x2), axis=1) mv_elmodel = sm.emplike.DescStat(mv_data) # For multivariate data, the only methods are mv_test_mean, # mv mean contour and ci_corr and test_corr. # Let's test the hypthesis that x1 has a mean of 2 and x2 has a mean of 7 print('Multivaraite mean hypothesis test') print(mv_elmodel.mv_test_mean(np.array([2, 7]))) # Now let's get the confidence interval for correlation print('Correlation Coefficient CI') print(mv_elmodel.ci_corr()) # Note how this took much longer than previous functions. That is # because the function is optimizing over 4 nuisance parameters. # We can also do a hypothesis test for correlation print('Hypothesis test for correlation') print(mv_elmodel.test_corr(.7)) # Finally, let's create a contour plot for the means of the data means_contour = mv_elmodel.mv_mean_contour(1, 3, 6,9, .15,.15, plot_dta=1) # This also returns a fig so we can type mean_contour.show() to see the figure # Sometimes, the data is very dispersed and we would like to see the confidence # intervals without the plotted data. Let's see the difference when we set # plot_dta=0 means_contour2 = mv_elmodel.mv_mean_contour(1, 3, 6,9, .05,.05, plot_dta=0)
bsd-3-clause
mmottahedi/neuralnilm_prototype
scripts/e335.py
2
5407
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import (scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive, scaled_cost3) from neuralnilm.plot import MDNPlotter from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 1000 GRADIENT_STEPS = 100 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], # 'hair straighteners', # 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 1800, 1800], min_off_durations=[12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=512, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], # skip_probability=0.5, one_target_per_seq=True, n_seq_per_batch=16, # subsample_target=8, include_diff=False, clip_appliance_power=True, target_is_prediction=False, # independently_center_inputs = True, standardise_input=True, unit_variance_targets=True, # input_padding=32 + 16 + 8, lag=0 # reshape_target_to_2D=True, # input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), # 'std': np.array([ 0.12636775], dtype=np.float32)}, # target_stats={ # 'mean': np.array([ 0.04066789, 0.01881946, # 0.24639061, 0.17608672, 0.10273963], # dtype=np.float32), # 'std': np.array([ 0.11449792, 0.07338708, # 0.26608968, 0.33463112, 0.21250485], # dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), loss_function=lambda x, t: mse(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), # loss_function=ignore_inactive, # loss_function=partial(scaled_cost3, ignore_inactive=False), updates_func=momentum, learning_rate=1e-2, learning_rate_changes_by_iteration={ 250: 1e-3 # 500: 1e-3 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True # plotter=MDNPlotter ) """ |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| 12345678901234567890 """ def exp_a(name): global source # source_dict_copy = deepcopy(source_dict) # source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 512 net_dict_copy['layers_config'] = [ { 'type': DenseLayer, 'num_units': N, 'W': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': N, 'W': Normal(std=1/sqrt(N)), 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'W': Normal(std=1/sqrt(N)), 'nonlinearity': T.nnet.softplus } ] net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") raise finally: logging.shutdown() if __name__ == "__main__": main()
mit
SiderZhang/p2pns3
src/flow-monitor/examples/wifi-olsr-flowmon.py
108
7439
# -*- Mode: Python; -*- # Copyright (c) 2009 INESC Porto # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation; # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Authors: Gustavo Carneiro <[email protected]> import sys import ns.applications import ns.core import ns.flow_monitor import ns.internet import ns.mobility import ns.network import ns.olsr import ns.wifi try: import ns.visualizer except ImportError: pass DISTANCE = 100 # (m) NUM_NODES_SIDE = 3 def main(argv): cmd = ns.core.CommandLine() cmd.NumNodesSide = None cmd.AddValue("NumNodesSide", "Grid side number of nodes (total number of nodes will be this number squared)") cmd.Results = None cmd.AddValue("Results", "Write XML results to file") cmd.Plot = None cmd.AddValue("Plot", "Plot the results using the matplotlib python module") cmd.Parse(argv) wifi = ns.wifi.WifiHelper.Default() wifiMac = ns.wifi.NqosWifiMacHelper.Default() wifiPhy = ns.wifi.YansWifiPhyHelper.Default() wifiChannel = ns.wifi.YansWifiChannelHelper.Default() wifiPhy.SetChannel(wifiChannel.Create()) ssid = ns.wifi.Ssid("wifi-default") wifi.SetRemoteStationManager("ns3::ArfWifiManager") wifiMac.SetType ("ns3::AdhocWifiMac", "Ssid", ns.wifi.SsidValue(ssid)) internet = ns.internet.InternetStackHelper() list_routing = ns.internet.Ipv4ListRoutingHelper() olsr_routing = ns.olsr.OlsrHelper() static_routing = ns.internet.Ipv4StaticRoutingHelper() list_routing.Add(static_routing, 0) list_routing.Add(olsr_routing, 100) internet.SetRoutingHelper(list_routing) ipv4Addresses = ns.internet.Ipv4AddressHelper() ipv4Addresses.SetBase(ns.network.Ipv4Address("10.0.0.0"), ns.network.Ipv4Mask("255.255.255.0")) port = 9 # Discard port(RFC 863) onOffHelper = ns.applications.OnOffHelper("ns3::UdpSocketFactory", ns.network.Address(ns.network.InetSocketAddress(ns.network.Ipv4Address("10.0.0.1"), port))) onOffHelper.SetAttribute("DataRate", ns.network.DataRateValue(ns.network.DataRate("100kbps"))) onOffHelper.SetAttribute("OnTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=1]")) onOffHelper.SetAttribute("OffTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=0]")) addresses = [] nodes = [] if cmd.NumNodesSide is None: num_nodes_side = NUM_NODES_SIDE else: num_nodes_side = int(cmd.NumNodesSide) for xi in range(num_nodes_side): for yi in range(num_nodes_side): node = ns.network.Node() nodes.append(node) internet.Install(ns.network.NodeContainer(node)) mobility = ns.mobility.ConstantPositionMobilityModel() mobility.SetPosition(ns.core.Vector(xi*DISTANCE, yi*DISTANCE, 0)) node.AggregateObject(mobility) devices = wifi.Install(wifiPhy, wifiMac, node) ipv4_interfaces = ipv4Addresses.Assign(devices) addresses.append(ipv4_interfaces.GetAddress(0)) for i, node in enumerate(nodes): destaddr = addresses[(len(addresses) - 1 - i) % len(addresses)] #print i, destaddr onOffHelper.SetAttribute("Remote", ns.network.AddressValue(ns.network.InetSocketAddress(destaddr, port))) app = onOffHelper.Install(ns.network.NodeContainer(node)) urv = ns.core.UniformRandomVariable() app.Start(ns.core.Seconds(urv.GetValue(20, 30))) #internet.EnablePcapAll("wifi-olsr") flowmon_helper = ns.flow_monitor.FlowMonitorHelper() #flowmon_helper.SetMonitorAttribute("StartTime", ns.core.TimeValue(ns.core.Seconds(31))) monitor = flowmon_helper.InstallAll() monitor = flowmon_helper.GetMonitor() monitor.SetAttribute("DelayBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("JitterBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("PacketSizeBinWidth", ns.core.DoubleValue(20)) ns.core.Simulator.Stop(ns.core.Seconds(44.0)) ns.core.Simulator.Run() def print_stats(os, st): print >> os, " Tx Bytes: ", st.txBytes print >> os, " Rx Bytes: ", st.rxBytes print >> os, " Tx Packets: ", st.txPackets print >> os, " Rx Packets: ", st.rxPackets print >> os, " Lost Packets: ", st.lostPackets if st.rxPackets > 0: print >> os, " Mean{Delay}: ", (st.delaySum.GetSeconds() / st.rxPackets) print >> os, " Mean{Jitter}: ", (st.jitterSum.GetSeconds() / (st.rxPackets-1)) print >> os, " Mean{Hop Count}: ", float(st.timesForwarded) / st.rxPackets + 1 if 0: print >> os, "Delay Histogram" for i in range(st.delayHistogram.GetNBins () ): print >> os, " ",i,"(", st.delayHistogram.GetBinStart (i), "-", \ st.delayHistogram.GetBinEnd (i), "): ", st.delayHistogram.GetBinCount (i) print >> os, "Jitter Histogram" for i in range(st.jitterHistogram.GetNBins () ): print >> os, " ",i,"(", st.jitterHistogram.GetBinStart (i), "-", \ st.jitterHistogram.GetBinEnd (i), "): ", st.jitterHistogram.GetBinCount (i) print >> os, "PacketSize Histogram" for i in range(st.packetSizeHistogram.GetNBins () ): print >> os, " ",i,"(", st.packetSizeHistogram.GetBinStart (i), "-", \ st.packetSizeHistogram.GetBinEnd (i), "): ", st.packetSizeHistogram.GetBinCount (i) for reason, drops in enumerate(st.packetsDropped): print " Packets dropped by reason %i: %i" % (reason, drops) #for reason, drops in enumerate(st.bytesDropped): # print "Bytes dropped by reason %i: %i" % (reason, drops) monitor.CheckForLostPackets() classifier = flowmon_helper.GetClassifier() if cmd.Results is None: for flow_id, flow_stats in monitor.GetFlowStats(): t = classifier.FindFlow(flow_id) proto = {6: 'TCP', 17: 'UDP'} [t.protocol] print "FlowID: %i (%s %s/%s --> %s/%i)" % \ (flow_id, proto, t.sourceAddress, t.sourcePort, t.destinationAddress, t.destinationPort) print_stats(sys.stdout, flow_stats) else: print monitor.SerializeToXmlFile(cmd.Results, True, True) if cmd.Plot is not None: import pylab delays = [] for flow_id, flow_stats in monitor.GetFlowStats(): tupl = classifier.FindFlow(flow_id) if tupl.protocol == 17 and tupl.sourcePort == 698: continue delays.append(flow_stats.delaySum.GetSeconds() / flow_stats.rxPackets) pylab.hist(delays, 20) pylab.xlabel("Delay (s)") pylab.ylabel("Number of Flows") pylab.show() return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
gpl-2.0
hlin117/statsmodels
statsmodels/sandbox/pca.py
33
7098
#Copyright (c) 2008 Erik Tollerud ([email protected]) from statsmodels.compat.python import zip import numpy as np from math import pi class Pca(object): """ A basic class for Principal Component Analysis (PCA). p is the number of dimensions, while N is the number of data points """ _colors=('r','g','b','c','y','m','k') #defaults def __calc(self): A = self.A M=A-np.mean(A,axis=0) N=M/np.std(M,axis=0) self.M = M self.N = N self._eig = None def __init__(self,data,names=None): """ p X N matrix input """ A = np.array(data).T n,p = A.shape self.n,self.p = n,p if p > n: from warnings import warn warn('p > n - intentional?', RuntimeWarning) self.A = A self._origA=A.copy() self.__calc() self._colors= np.tile(self._colors,int((p-1)/len(self._colors))+1)[:p] if names is not None and len(names) != p: raise ValueError('names must match data dimension') self.names = None if names is None else tuple([str(n) for n in names]) def getCovarianceMatrix(self): """ returns the covariance matrix for the dataset """ return np.cov(self.N.T) def getEigensystem(self): """ returns a tuple of (eigenvalues,eigenvectors) for the data set. """ if self._eig is None: res = np.linalg.eig(self.getCovarianceMatrix()) sorti=np.argsort(res[0])[::-1] res=(res[0][sorti],res[1][:,sorti]) self._eig=res return self._eig def getEigenvalues(self): return self.getEigensystem()[0] def getEigenvectors(self): return self.getEigensystem()[1] def getEnergies(self): """ "energies" are just normalized eigenvectors """ v=self.getEigenvalues() return v/np.sum(v) def plot2d(self,ix=0,iy=1,clf=True): """ Generates a 2-dimensional plot of the data set and principle components using matplotlib. ix specifies which p-dimension to put on the x-axis of the plot and iy specifies which to put on the y-axis (0-indexed) """ import matplotlib.pyplot as plt x,y=self.N[:,ix],self.N[:,iy] if clf: plt.clf() plt.scatter(x,y) vals,evs=self.getEigensystem() #evx,evy=evs[:,ix],evs[:,iy] xl,xu=plt.xlim() yl,yu=plt.ylim() dx,dy=(xu-xl),(yu-yl) for val,vec,c in zip(vals,evs.T,self._colors): plt.arrow(0,0,val*vec[ix],val*vec[iy],head_width=0.05*(dx*dy/4)**0.5,fc=c,ec=c) #plt.arrow(0,0,vals[ix]*evs[ix,ix],vals[ix]*evs[iy,ix],head_width=0.05*(dx*dy/4)**0.5,fc='g',ec='g') #plt.arrow(0,0,vals[iy]*evs[ix,iy],vals[iy]*evs[iy,iy],head_width=0.05*(dx*dy/4)**0.5,fc='r',ec='r') if self.names is not None: plt.xlabel('$'+self.names[ix]+'/\\sigma$') plt.ylabel('$'+self.names[iy]+'/\\sigma$') def plot3d(self,ix=0,iy=1,iz=2,clf=True): """ Generates a 3-dimensional plot of the data set and principle components using mayavi. ix, iy, and iz specify which of the input p-dimensions to place on each of the x,y,z axes, respectively (0-indexed). """ import enthought.mayavi.mlab as M if clf: M.clf() z3=np.zeros(3) v=(self.getEigenvectors()*self.getEigenvalues()) M.quiver3d(z3,z3,z3,v[ix],v[iy],v[iz],scale_factor=5) M.points3d(self.N[:,ix],self.N[:,iy],self.N[:,iz],scale_factor=0.3) if self.names: M.axes(xlabel=self.names[ix]+'/sigma',ylabel=self.names[iy]+'/sigma',zlabel=self.names[iz]+'/sigma') else: M.axes() def sigclip(self,sigs): """ clips out all data points that are more than a certain number of standard deviations from the mean. sigs can be either a single value or a length-p sequence that specifies the number of standard deviations along each of the p dimensions. """ if np.isscalar(sigs): sigs=sigs*np.ones(self.N.shape[1]) sigs = sigs*np.std(self.N,axis=1) n = self.N.shape[0] m = np.all(np.abs(self.N) < sigs,axis=1) self.A=self.A[m] self.__calc() return n-sum(m) def reset(self): self.A = self._origA.copy() self.__calc() def project(self,vals=None,enthresh=None,nPCs=None,cumen=None): """ projects the normalized values onto the components enthresh, nPCs, and cumen determine how many PCs to use if vals is None, the normalized data vectors are the values to project. Otherwise, it should be convertable to a p x N array returns n,p(>threshold) dimension array """ nonnones = sum([e != None for e in (enthresh,nPCs,cumen)]) if nonnones == 0: m = slice(None) elif nonnones > 1: raise ValueError("can't specify more than one threshold") else: if enthresh is not None: m = self.energies() > enthresh elif nPCs is not None: m = slice(None,nPCs) elif cumen is not None: m = np.cumsum(self.energies()) < cumen else: raise RuntimeError('Should be unreachable') if vals is None: vals = self.N.T else: vals = np.array(vals,copy=False) if self.N.T.shape[0] != vals.shape[0]: raise ValueError("shape for vals doesn't match") proj = np.matrix(self.getEigenvectors()).T*vals return proj[m].T def deproject(self,A,normed=True): """ input is an n X q array, where q <= p output is p X n """ A=np.atleast_2d(A) n,q = A.shape p = self.A.shape[1] if q > p : raise ValueError("q > p") evinv=np.linalg.inv(np.matrix(self.getEigenvectors()).T) zs = np.zeros((n,p)) zs[:,:q]=A proj = evinv*zs.T if normed: return np.array(proj.T).T else: mns=np.mean(self.A,axis=0) sds=np.std(self.M,axis=0) return (np.array(proj.T)*sds+mns).T def subtractPC(self,pc,vals=None): """ pc can be a scalar or any sequence of pc indecies if vals is None, the source data is self.A, else whatever is in vals (which must be p x m) """ if vals is None: vals = self.A else: vals = vals.T if vals.shape[1]!= self.A.shape[1]: raise ValueError("vals don't have the correct number of components") pcs=self.project() zpcs=np.zeros_like(pcs) zpcs[:,pc]=pcs[:,pc] upc=self.deproject(zpcs,False) A = vals.T-upc B = A.T*np.std(self.M,axis=0) return B+np.mean(self.A,axis=0)
bsd-3-clause
rahuldhote/scikit-learn
sklearn/neighbors/tests/test_nearest_centroid.py
305
4121
""" Testing for the nearest centroid module. """ import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from numpy.testing import assert_equal from sklearn.neighbors import NearestCentroid from sklearn import datasets from sklearn.metrics.pairwise import pairwise_distances # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] X_csr = sp.csr_matrix(X) # Sparse matrix y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] T_csr = sp.csr_matrix(T) true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset, including sparse versions. clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Same test, but with a sparse matrix to fit and test. clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit with sparse, test with non-sparse clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T), true_result) # Fit with non-sparse, test with sparse clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit and predict with non-CSR sparse matrices clf = NearestCentroid() clf.fit(X_csr.tocoo(), y) assert_array_equal(clf.predict(T_csr.tolil()), true_result) def test_precomputed(): clf = NearestCentroid(metric="precomputed") clf.fit(X, y) S = pairwise_distances(T, clf.centroids_) assert_array_equal(clf.predict(S), true_result) def test_iris(): # Check consistency on dataset iris. for metric in ('euclidean', 'cosine'): clf = NearestCentroid(metric=metric).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with score = " + str(score) def test_iris_shrinkage(): # Check consistency on dataset iris, when using shrinkage. for metric in ('euclidean', 'cosine'): for shrink_threshold in [None, 0.1, 0.5]: clf = NearestCentroid(metric=metric, shrink_threshold=shrink_threshold) clf = clf.fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.8, "Failed with score = " + str(score) def test_pickle(): import pickle # classification obj = NearestCentroid() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_array_equal(score, score2, "Failed to generate same score" " after pickling (classification).") def test_shrinkage_threshold_decoded_y(): clf = NearestCentroid(shrink_threshold=0.01) y_ind = np.asarray(y) y_ind[y_ind == -1] = 0 clf.fit(X, y_ind) centroid_encoded = clf.centroids_ clf.fit(X, y) assert_array_equal(centroid_encoded, clf.centroids_) def test_predict_translated_data(): # Test that NearestCentroid gives same results on translated data rng = np.random.RandomState(0) X = rng.rand(50, 50) y = rng.randint(0, 3, 50) noise = rng.rand(50) clf = NearestCentroid(shrink_threshold=0.1) clf.fit(X, y) y_init = clf.predict(X) clf = NearestCentroid(shrink_threshold=0.1) X_noise = X + noise clf.fit(X_noise, y) y_translate = clf.predict(X_noise) assert_array_equal(y_init, y_translate) def test_manhattan_metric(): # Test the manhattan metric. clf = NearestCentroid(metric='manhattan') clf.fit(X, y) dense_centroid = clf.centroids_ clf.fit(X_csr, y) assert_array_equal(clf.centroids_, dense_centroid) assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
bsd-3-clause
MJuddBooth/pandas
pandas/tests/groupby/test_index_as_string.py
3
2023
import numpy as np import pytest import pandas as pd from pandas.util.testing import assert_frame_equal, assert_series_equal @pytest.fixture(params=[['inner'], ['inner', 'outer']]) def frame(request): levels = request.param df = pd.DataFrame({'outer': ['a', 'a', 'a', 'b', 'b', 'b'], 'inner': [1, 2, 3, 1, 2, 3], 'A': np.arange(6), 'B': ['one', 'one', 'two', 'two', 'one', 'one']}) if levels: df = df.set_index(levels) return df @pytest.fixture() def series(): df = pd.DataFrame({'outer': ['a', 'a', 'a', 'b', 'b', 'b'], 'inner': [1, 2, 3, 1, 2, 3], 'A': np.arange(6), 'B': ['one', 'one', 'two', 'two', 'one', 'one']}) s = df.set_index(['outer', 'inner', 'B'])['A'] return s @pytest.mark.parametrize('key_strs,groupers', [ ('inner', # Index name pd.Grouper(level='inner') ), (['inner'], # List of index name [pd.Grouper(level='inner')] ), (['B', 'inner'], # Column and index ['B', pd.Grouper(level='inner')] ), (['inner', 'B'], # Index and column [pd.Grouper(level='inner'), 'B'])]) def test_grouper_index_level_as_string(frame, key_strs, groupers): result = frame.groupby(key_strs).mean() expected = frame.groupby(groupers).mean() assert_frame_equal(result, expected) @pytest.mark.parametrize('levels', [ 'inner', 'outer', 'B', ['inner'], ['outer'], ['B'], ['inner', 'outer'], ['outer', 'inner'], ['inner', 'outer', 'B'], ['B', 'outer', 'inner'] ]) def test_grouper_index_level_as_string_series(series, levels): # Compute expected result if isinstance(levels, list): groupers = [pd.Grouper(level=lv) for lv in levels] else: groupers = pd.Grouper(level=levels) expected = series.groupby(groupers).mean() # Compute and check result result = series.groupby(levels).mean() assert_series_equal(result, expected)
bsd-3-clause
dzbarsky/servo
tests/heartbeats/process_logs.py
42
15777
#!/usr/bin/env python # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import argparse import matplotlib.pyplot as plt import numpy as np import os from os import path import sys import warnings HB_LOG_IDX_START_TIME = 7 HB_LOG_IDX_END_TIME = HB_LOG_IDX_START_TIME + 1 HB_LOG_IDX_START_ENERGY = 14 HB_LOG_IDX_END_ENERGY = HB_LOG_IDX_START_ENERGY + 1 ENERGY_PROFILER_NAME = 'ApplicationHeartbeat' SUMMARY_OUTPUT = "summary.txt" SUMMARY_TIME_IDX = 8 SUMMARY_ENERGY_IDX = SUMMARY_TIME_IDX + 1 SUMMARY_POWER_IDX = SUMMARY_ENERGY_IDX + 1 def autolabel(rects, ax): """Attach some text labels. """ for rect in rects: ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * rect.get_height(), '', ha='center', va='bottom') def plot_raw_totals(config, plot_data, max_time, max_time_std, max_energy, max_energy_std, output_dir, normalize): """Plot the raw totals for a configuration. Keyword arguments: config -- configuration name plot_data -- (profiler name, total_time, total_time_std, total_energy, total_energy_std) max_time, max_time_std, max_energy, max_energy_std -- single values normalize -- True/False """ plot_data = sorted(plot_data) keys = [p for (p, tt, tts, te, tes) in plot_data] total_times = [tt for (p, tt, tts, te, tes) in plot_data] total_times_std = [tts for (p, tt, tts, te, tes) in plot_data] total_energies = [te for (p, tt, tts, te, tes) in plot_data] total_energies_std = [tes for (p, tt, tts, te, tes) in plot_data] fig, ax1 = plt.subplots() ind = np.arange(len(keys)) # the x locations for the groups width = 0.35 # the width of the bars # add some text for labels, title and axes ticks ax1.set_title('Time/Energy Data for Configuration ' + config) ax1.set_xticks(ind + width) ax1.set_xticklabels(keys, rotation=45) fig.set_tight_layout(True) fig.set_size_inches(len(plot_data) / 1.5, 8) ax2 = ax1.twinx() # Normalize if normalize: total_times_std /= np.sum(total_times) total_times /= np.sum(total_times) total_energies_std /= np.sum(total_energies) total_energies /= np.sum(total_energies) ax1.set_ylabel('Time (Normalized)') ax2.set_ylabel('Energy (Normalized)') else: # set time in us instead of ns total_times_std /= np.array(1000000.0) total_times /= np.array(1000000.0) total_energies_std /= np.array(1000000.0) total_energies /= np.array(1000000.0) ax1.set_ylabel('Time (ms)') ax2.set_ylabel('Energy (Joules)') rects1 = ax1.bar(ind, total_times, width, color='r', yerr=total_times_std) rects2 = ax2.bar(ind + width, total_energies, width, color='y', yerr=total_energies_std) ax1.legend([rects1[0], rects2[0]], ['Time', 'Energy']) # set axis x1, x2, y1, y2 = plt.axis() if normalize: ax1.set_ylim(ymin=0, ymax=1) ax2.set_ylim(ymin=0, ymax=1) else: ax1.set_ylim(ymin=0, ymax=((max_time + max_time_std) * 1.25 / 1000000.0)) ax2.set_ylim(ymin=0, ymax=((max_energy + max_energy_std) * 1.25 / 1000000.0)) autolabel(rects1, ax1) autolabel(rects2, ax2) # plt.show() plt.savefig(path.join(output_dir, config + ".png")) plt.close(fig) def create_raw_total_data(config_data): """Get the raw data to plot for a configuration Return: [(profiler, time_mean, time_stddev, energy_mean, energy_stddev)] Keyword arguments: config_data -- (trial, trial_data) """ # We can't assume that the same number of heartbeats are always issued across trials # key: profiler name; value: list of timing sums for each trial profiler_total_times = {} # key: profiler name; value: list of energy sums for each trial profiler_total_energies = {} for (t, td) in config_data: for (profiler, ts, te, es, ee) in td: # sum the total times and energies for each profiler in this trial total_time = np.sum(te - ts) total_energy = np.sum(ee - es) # add to list to be averaged later time_list = profiler_total_times.get(profiler, []) time_list.append(total_time) profiler_total_times[profiler] = time_list energy_list = profiler_total_energies.get(profiler, []) energy_list.append(total_energy) profiler_total_energies[profiler] = energy_list # Get mean and stddev for time and energy totals return [(profiler, np.mean(profiler_total_times[profiler]), np.std(profiler_total_times[profiler]), np.mean(profiler_total_energies[profiler]), np.std(profiler_total_energies[profiler])) for profiler in profiler_total_times.keys()] def plot_all_raw_totals(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ raw_total_norm_out_dir = path.join(output_dir, 'raw_totals_normalized') os.makedirs(raw_total_norm_out_dir) raw_total_out_dir = path.join(output_dir, 'raw_totals') os.makedirs(raw_total_out_dir) # (name, (profiler, (time_mean, time_stddev, energy_mean, energy_stddev))) raw_totals_data = [(config, create_raw_total_data(config_data)) for (config, config_data) in config_list] mean_times = [] mean_times_std = [] mean_energies = [] mean_energies_std = [] for profiler_tup in [config_tup[1] for config_tup in raw_totals_data]: for (p, tt, tts, te, tes) in profiler_tup: mean_times.append(tt) mean_times_std.append(tts) mean_energies.append(te) mean_energies_std.append(tes) # get consistent max time/energy values across plots max_t = np.max(mean_times) max_t_std = np.max(mean_times_std) max_e = np.max(mean_energies) max_e_std = np.max(mean_energies_std) [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_norm_out_dir, True) for data in raw_totals_data] [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_out_dir, False) for data in raw_totals_data] def plot_trial_time_series(config, trial, trial_data, max_end_time, max_power, output_dir): """Plot time series for a single trial. Keyword arguments: config -- the config name trial -- the trial name trial_data -- [(profiler, [start times], [end times], [start energies], [end energies])] max_end_time -- single value to use as max X axis value (for consistency across trials) output_dir -- the output directory """ # TODO: Some profilers may have parallel tasks - need to identify this on plots max_end_time = max_end_time / 1000000.0 trial_data = sorted(trial_data) fig, ax1 = plt.subplots() keys = [p for (p, ts, te, es, ee) in trial_data] # add some text for labels, title and axes ticks ax1.set_title('Profiler Activity for ' + config + ', ' + trial) ax1.set_xlabel('Time (ms)') ax1.grid(True) width = 8 # the width of the bars ax1.set_yticks(10 * np.arange(1, len(keys) + 2)) ax1.set_yticklabels(keys) ax1.set_ylim(ymin=0, ymax=((len(trial_data) + 1) * 10)) ax1.set_xlim(xmin=0, xmax=max_end_time) fig.set_tight_layout(True) fig.set_size_inches(16, len(trial_data) / 3) i = 10 for (p, ts, te, es, ee) in trial_data: xranges = [(ts[j] / 1000000.0, (te[j] - ts[j]) / 1000000.0) for j in xrange(len(ts))] ax1.broken_barh(xranges, (i - 0.5 * width, width)) i += 10 # place a vbar at the final time for this trial last_profiler_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in trial_data])) plt.axvline(np.max(last_profiler_times) / 1000000.0, color='black') power_times = [] power_values = [] for (p, ts, te, es, ee) in trial_data: if p == ENERGY_PROFILER_NAME: power_times = te / 1000000.0 power_values = (ee - es) / ((te - ts) / 1000.0) ax2 = ax1.twinx() ax2.set_xlim(xmin=0, xmax=max_end_time) ax2.set_ylim(ymin=0, ymax=max_power) ax2.set_ylabel('Power (Watts)') ax2.plot(power_times, power_values, color='r') # plt.show() plt.savefig(path.join(output_dir, "ts_" + config + "_" + trial + ".png")) plt.close(fig) def hb_energy_times_to_power(es, ee, ts, te): """Compute power from start and end energy and times. Return: power values """ return (ee - es) / ((te - ts) / 1000.0) def plot_all_time_series(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ time_series_out_dir = path.join(output_dir, 'time_series') os.makedirs(time_series_out_dir) max_end_times = [] max_power_values = [] for (c, cd) in config_list: for (t, td) in cd: trial_max_end_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in td])) max_end_times.append(np.nanmax(trial_max_end_times)) for (p, ts, te, es, ee) in td: # We only care about the energy profiler (others aren't reliable for instant power anyway) if p == ENERGY_PROFILER_NAME and len(te) > 0: max_power_values.append(np.nanmax(hb_energy_times_to_power(es, ee, ts, te))) max_time = np.nanmax(max_end_times) max_power = np.nanmax(np.array(max_power_values)) * 1.2 # leave a little space at the top for (config, config_data) in config_list: [plot_trial_time_series(config, trial, trial_data, max_time, max_power, time_series_out_dir) for (trial, trial_data) in config_data] def read_heartbeat_log(profiler_hb_log): """Read a heartbeat log file. Return: (profiler name, [start times], [end times], [start energies], [end energies], [instant powers]) Keyword arguments: profiler_hb_log -- the file to read """ with warnings.catch_warnings(): try: warnings.simplefilter("ignore") time_start, time_end, energy_start, energy_end = \ np.loadtxt(profiler_hb_log, dtype=np.dtype('uint64'), skiprows=1, usecols=(HB_LOG_IDX_START_TIME, HB_LOG_IDX_END_TIME, HB_LOG_IDX_START_ENERGY, HB_LOG_IDX_END_ENERGY), unpack=True, ndmin=1) except ValueError: time_start, time_end, energy_start, energy_end = [], [], [], [] name = path.split(profiler_hb_log)[1].split('-')[1].split('.')[0] return (name, np.atleast_1d(time_start), np.atleast_1d(time_end), np.atleast_1d(energy_start), np.atleast_1d(energy_end)) def process_trial_dir(trial_dir): """Process trial directory. Return: [(profiler name, [start times], [end times], [start energies], [end energies])] Time and energy are normalized to 0 start values. Keyword arguments: trial_dir -- the directory for this trial """ log_data = map(lambda h: read_heartbeat_log(path.join(trial_dir, h)), filter(lambda f: f.endswith(".log"), os.listdir(trial_dir))) # Find the earliest timestamps and energy readings min_t = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [ts for (profiler, ts, te, es, ee) in log_data]))) min_e = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [es for (profiler, ts, te, es, ee) in log_data]))) # Normalize timing/energy data to start values of 0 return [(profiler, ts - min_t, te - min_t, es - min_e, ee - min_e) for (profiler, ts, te, es, ee) in log_data] def process_config_dir(config_dir): """Process a configuration directory. Return: [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])] Keyword arguments: config_dir -- the directory for this configuration - contains subdirectories for each trial """ return [(trial_dir, process_trial_dir(path.join(config_dir, trial_dir))) for trial_dir in os.listdir(config_dir)] def process_logs(log_dir): """Process log directory. Return: [(config, [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])])] Keyword arguments: log_dir -- the log directory to process - contains subdirectories for each configuration """ return [((config_dir.split('_')[1], process_config_dir(path.join(log_dir, config_dir)))) for config_dir in os.listdir(log_dir)] def find_best_executions(log_dir): """Get the best time, energy, and power from the characterization summaries. Return: ((config, trial, min_time), (config, trial, min_energy), (config, trial, min_power)) Keyword arguments: results -- the results from process_logs(...). """ DEFAULT = ('', '', 1000000000.0) min_time = DEFAULT min_energy = DEFAULT min_power = DEFAULT for config_dir in os.listdir(log_dir): for trial_dir in os.listdir(path.join(log_dir, config_dir)): with open(path.join(log_dir, config_dir, trial_dir, SUMMARY_OUTPUT), "r") as s: lines = s.readlines() time = float(lines[SUMMARY_TIME_IDX].split(':')[1]) energy = int(lines[SUMMARY_ENERGY_IDX].split(':')[1]) power = float(lines[SUMMARY_POWER_IDX].split(':')[1]) if time < min_time[2]: min_time = (config_dir, trial_dir, time) if energy < min_energy[2]: min_energy = (config_dir, trial_dir, energy) if power < min_power: min_power = (config_dir, trial_dir, power) return (min_time, min_energy, min_power) def main(): """This script processes the log files from the "characterize.py" script and produces visualizations. """ # Default log directory directory = 'heartbeat_logs' # Default output directory output_dir = 'plots' # Parsing the input of the script parser = argparse.ArgumentParser(description="Process Heartbeat log files from characterization") parser.add_argument("-d", "--directory", default=directory, help="Heartbeat log directory \"-d heartbeat_logs\"") parser.add_argument("-o", "--output", default=output_dir, help="Specify the log output directory, for example \"-o plots\"") args = parser.parse_args() if args.directory: directory = args.directory if args.output: output_dir = args.output if not os.path.exists(directory): print "Input directory does not exist: " + directory sys.exit(1) if os.path.exists(output_dir): print "Output directory already exists: " + output_dir sys.exit(1) res = process_logs(directory) best = find_best_executions(directory) print 'Best time:', best[0] print 'Best energy:', best[1] print 'Best power:', best[2] os.makedirs(output_dir) plot_all_raw_totals(res, output_dir) plot_all_time_series(res, output_dir) if __name__ == "__main__": main()
mpl-2.0
jniediek/mne-python
examples/simulation/plot_simulate_raw_data.py
14
2711
""" =========================== Generate simulated raw data =========================== This example generates raw data by repeating a desired source activation multiple times. """ # Authors: Yousra Bekhti <[email protected]> # Mark Wronkiewicz <[email protected]> # Eric Larson <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import read_source_spaces, find_events, Epochs, compute_covariance from mne.datasets import sample from mne.simulation import simulate_sparse_stc, simulate_raw print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif' src_fname = data_path + '/subjects/sample/bem/sample-oct-6-src.fif' bem_fname = (data_path + '/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif') # Load real data as the template raw = mne.io.read_raw_fif(raw_fname) raw = raw.crop(0., 30.) # 30 sec is enough ############################################################################## # Generate dipole time series n_dipoles = 4 # number of dipoles to create epoch_duration = 2. # duration of each epoch/event n = 0 # harmonic number def data_fun(times): """Generate time-staggered sinusoids at harmonics of 10Hz""" global n n_samp = len(times) window = np.zeros(n_samp) start, stop = [int(ii * float(n_samp) / (2 * n_dipoles)) for ii in (2 * n, 2 * n + 1)] window[start:stop] = 1. n += 1 data = 25e-9 * np.sin(2. * np.pi * 10. * n * times) data *= window return data times = raw.times[:int(raw.info['sfreq'] * epoch_duration)] src = read_source_spaces(src_fname) stc = simulate_sparse_stc(src, n_dipoles=n_dipoles, times=times, data_fun=data_fun, random_state=0) # look at our source data fig, ax = plt.subplots(1) ax.plot(times, 1e9 * stc.data.T) ax.set(ylabel='Amplitude (nAm)', xlabel='Time (sec)') fig.show() ############################################################################## # Simulate raw data raw_sim = simulate_raw(raw, stc, trans_fname, src, bem_fname, cov='simple', iir_filter=[0.2, -0.2, 0.04], ecg=True, blink=True, n_jobs=1, verbose=True) raw_sim.plot() ############################################################################## # Plot evoked data events = find_events(raw_sim) # only 1 pos, so event number == 1 epochs = Epochs(raw_sim, events, 1, -0.2, epoch_duration) cov = compute_covariance(epochs, tmax=0., method='empirical') # quick calc evoked = epochs.average() evoked.plot_white(cov)
bsd-3-clause
SKA-ScienceDataProcessor/algorithm-reference-library
deprecated_code/workflows/mpi/reduction_test_mpi.py
1
3444
#!/usr/bin/env python # coding: utf-8 # In[1]: #Testing reductions MPI simple version (two reductions) # In[1]: import logging import numpy from mpi4py import MPI import astropy.units as u from astropy.coordinates import SkyCoord from data_models.polarisation import PolarisationFrame from processing_library.image.operations import create_empty_image_like from processing_library.image.operations import create_image_from_array #from processing_components.image.operations import qa_image, show_image, export_image_to_fits from processing_components.image.operations import qa_image from processing_components.simulation.testing_support import create_test_image from processing_components.image.gather_scatter import image_gather_facets, image_scatter_facets from workflows.shared.imaging.imaging_shared import sum_invert_results_local, remove_sumwt #from matplotlib import pyplot as plt #from matplotlib import pylab #pylab.rcParams['figure.figsize'] = (12.0, 12.0) #pylab.rcParams['image.cmap'] = 'rainbow' # In[2]: # Define a simple function to take the square root of an image def imagerooter(image_list) -> list(): new_image_list = [] for im in image_list: newim = create_empty_image_like(im) newim.data = numpy.sqrt(numpy.abs(im.data)) new_image_list.append(newim) return new_image_list # In[3]: # Set up MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() #recvdata = numpy.zeros((2,size),dtype='i') #recvdata = numpy.zeros((2,size),dtype=numpy.int) #senddata = numpy.array([(rank+1)*numpy.arange(size,dtype='i'),(rank+1)*numpy.arange(size,dtype='i')]) #senddata = numpy.array([(rank+1)*numpy.arange(size,dtype=numpy.int),(rank+1)*numpy.arange(size,dtype=numpy.int)]) #print('%d:before Reduce: send data = '%rank) #print(senddata) #op_sum = MPI.Op.Create(fn_sum, commute=True) # I have to create a datatype ??? #recvdata=comm.reduce(senddata,root=0,op=op_sum) #print('%d:after Reduce: data = '%rank) #print(recvdata) # Create data frequency = numpy.array([1e8]) phasecentre = SkyCoord(ra=+15.0 * u.deg, dec=-35.0 * u.deg, frame='icrs', equinox='J2000') model = create_test_image(frequency=frequency, phasecentre=phasecentre, cellsize=0.001, polarisation_frame=PolarisationFrame('stokesI')) #print(model) nchan, npol, ny, nx = model.data.shape sumwt = numpy.ones([nchan, npol]) print('%d:before Reduce: data = '%rank) print(sumwt) #f=show_image(model, title='Model image', cm='Greys', vmax=1.0, vmin=-0.1) print(qa_image(model, context='Model image')) #plt.show() # In[5]: # Accum images into one with weights result_image = create_empty_image_like(model) comm.Reduce(model.data,result_image.data,root=0,op=MPI.SUM) #f=show_image(result_image, title='Result image', cm='Greys', vmax=1.0, vmin=-0.1) #plt.show() if rank==0: print('%d:after Reduce: data = '%rank) print(qa_image(result_image,context='Result image')) # test correctness assert(result_image.data.shape==model.data.shape) numpy.testing.assert_array_almost_equal_nulp(result_image.data, (model.data)*size, 7) # In[6]: result_sumwt = numpy.zeros([nchan, npol]) comm.Reduce(sumwt,result_sumwt,root=0,op=MPI.SUM) if rank==0: print(result_sumwt) numpy.testing.assert_array_almost_equal_nulp(result_sumwt,sumwt*size,7) # In[ ]:
apache-2.0
ColumbiaCMB/kid_readout
apps/data_taking_scripts/old_scripts/fast_noise_sweep_downstairs_ybco.py
1
1994
import matplotlib from kid_readout.roach import baseband matplotlib.use('agg') import numpy as np import time import sys from kid_readout.utils import data_file,sweeps ri = baseband.RoachBaseband() #ri.initialize(use_config=False) #f0s = np.load('/home/gjones/workspace/apps/f8_fit_resonances.npy') #f0s = np.load('/home/gjones/workspace/apps/first_pass_sc3x3_0813f9.npy') #f0s = np.load('/home/gjones/workspace/apps/sc5x4_0813f10_first_pass.npy')#[:4] #f0s = np.load('/home/gjones/workspace/readout/apps/sc3x3_0813f9_2014-02-11.npy') #f0s = np.load('/home/gjones/workspace/readout/apps/sc3x3_0813f5_2014-02-27.npy') f0s = np.array([157.315, 201.49]) f0s.sort() #f0s = f0s*(1-4e-5) nf = len(f0s) atonce = 2 if nf % atonce > 0: print "extending list of resonators to make a multiple of ",atonce f0s = np.concatenate((f0s,np.arange(1,1+atonce-(nf%atonce))+f0s.max())) offsets = np.linspace(-4882.8125,4638.671875,20)#[5:15] #offsets = np.concatenate(([-40e3,-20e3],offsets,[20e3,40e3]))/1e6 offsets = np.concatenate(([-40e3],offsets,[40e3]))/1e6 offsets = offsets*4 print f0s print len(f0s) start = time.time() nsamp = 2**18 step = 1 nstep = 100 offset_bins = np.arange(-(nstep+1),(nstep+1))*step offsets = offset_bins*512.0/nsamp f0binned = np.round(f0s*nsamp/512.0)*512.0/nsamp measured_freqs = sweeps.prepare_sweep(ri,f0binned,offsets,nsamp=2**18) print "loaded waveforms in", (time.time()-start),"seconds" sys.stdout.flush() time.sleep(1) n =0 atten_list = [36]#np.linspace(27,34,8)#[30]#[35.5,33.5,46.5,43.5,40.5,37.5] for atten in atten_list: df = data_file.DataFile() ri.set_dac_attenuator(atten) while True: sweep_data = sweeps.do_prepared_sweep(ri, nchan_per_step=atonce, reads_per_step=2) df.add_sweep(sweep_data) df.sync() df.log_hw_state(ri) df.nc.sync() n = n + 1 print "done measurement", n time.sleep(60) df.nc.close() print "completed in",((time.time()-start)/60.0),"minutes"
bsd-2-clause
ishanic/scikit-learn
sklearn/ensemble/__init__.py
217
1307
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from .voting_classifier import VotingClassifier from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
szedlakmate/3D-truss-model-updating
truss.py
1
227350
# -*- coding: utf-8 -*- """ Created on Sun Oct 30 18:49:40 2016 3D truss model updater program created by Máté Szedlák (2016, 2017). Copyright GNU GPL v3.0, Máté Szedlák 2016, 2017. """ ### Code for "Processing" only #size(640, 360) #background(126) import math import itertools from copy import deepcopy # COMPATIBILITY MODES: # 0: User defined # 1: Processing3 # 2: Android # 3: Most information (with numpy) # 4: Maximum compatibility _COMPATIBLE_MODE = 0 _SIMULATION = 1 # Simulating measurements based on input file PORTS = ['COM1', 'COM2', 'COM3'] # List of possible communication ports PORTNUMBER = 0 # Applied communication port if _COMPATIBLE_MODE == 00: ### User defined ### # Modify as needed # _MODE_NAME = "User defined" _LOG = 1 # Logging time _GRAPHICS = 1 # Graphical features _SOLVER = 1 # 0: Basic solver, 1: NumPy solver _OSLIBRARYAVAILABLE = 1 # Basic OS file features (e.g. file size) _UPDATING = 1 # Model Updating: On/ Off _ARDUINO = 1 # Arduino input: On/Off _DEBUG = 1 # Debugging mode _REALISTICSIMULATION = 0 # Wait as long as it was originally. Only valid with _SIMULATION = 1 ############################################## ### DO NOT MODIFY ### # # elif _COMPATIBLE_MODE == 01: # ### "Processing 3" mode ### # _MODE_NAME = "Processing 3" # _LOG = 1*1 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 0*0 # _UPDATING = 1*1 # _ARDUINO = 1*1 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # elif _COMPATIBLE_MODE == 02: # ### Android mode ### # # DO NOT MODIFY # _MODE_NAME = "Android" # _LOG = 1*1 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 1*1 # _UPDATING = 0*0 # _ARDUINO = 0*0 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # elif _COMPATIBLE_MODE == 03: # ### Informative ### # # DO NOT MODIFY # _MODE_NAME = "Informative mode" # _LOG = 1*1 # _GRAPHICS = 1*1 # _SOLVER = 1*1 # _OSLIBRARYAVAILABLE = 1*1 # _UPDATING = 1*1 # _ARDUINO = 1*1 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # else: # ### Maximum compatibility ### # # DO NOT MODIFY # _MODE_NAME = "Maximum compatibility" # _LOG = 0*0 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 0*0 # _UPDATING = 0*0 # _ARDUINO = 0*0 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # ### DO NOT MODIFY ### # ############################################## if _OSLIBRARYAVAILABLE: import os if _SIMULATION or not _UPDATING: _ARDUINO = 0 if _COMPATIBLE_MODE == 2: os.chdir(os.path.dirname(os.path.abspath(__file__))) if _LOG: import time import datetime TIC = time.time() print '------------------------------------' print 'Truss calculational program' print 'Created by Máté Szedlák (23/11/2016)' print 'Compatibility mode: ' + _MODE_NAME if _SOLVER == 0: print '- Solver is set to default' elif _SOLVER == 1: print '- Solver is set to NumPy' else: raise Exception("Solver settings are invalid!") if _UPDATING: print '+ Model updating is turned ON' if _SIMULATION: print 'Input data is SIMULATED!' else: print '- Model updating is turned OFF' print '------------------------------------' if _ARDUINO: SER = 0 try: import serial except ImportError: print "You tried to import \'serial\' in Windows mode without installing \'pySerial\'." print "Please first install pySerial: http://playground.arduino.cc/Interfacing/Python" raise Exception('Android mode denied: pyserial not found') PORTNUMBER -= 1 while SER == 0: PORTNUMBER += 1 if PORTNUMBER >= len(PORTS): PORTNUMBER = 0 time.sleep(0.6) print 'Opening serial at port ' + str(PORTS[PORTNUMBER]) try: SER.close() except Exception: pass try: SER = serial.Serial(PORTS[PORTNUMBER], 9600, timeout=0) except serial.SerialException: Exception(PORTS[PORTNUMBER] + ' port is busy. It might be occupied by this program or another one :/ Be careful or try resetting this program') SER = 0 try: SER.close() except Exception: pass except Exception: SER = 0 try: SER.close() except Exception: pass #if _ARDUINO or _SIMULATION: # try: # mappingfile = 'arduino_mapping.txt' # with open(mappingfile, "r") as textfile: # line = textfile.readline().strip() # arduino_mapping = line.upper().split(',') # # except IOError: # raise Exception('File not found: ' + mappingfile) if _SOLVER: # NumPy library for solving linear equations in another way import numpy as np if _GRAPHICS: # libraries for drawing import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d # From here: def mat_vec_mult(mat_a, vec_b): """ Multiplying matrix with a vector, giving the result as a vector Source: https://stackoverflow.com/questions/10508021/matrix-multiplication-in-python """ vec_c = [0.]*len(mat_a) for i, row in enumerate(mat_a): for j, elem in enumerate(vec_b): vec_c[i] += row[j]*elem return vec_c def invert(mat_x): """ Invert a matrix X according to gauss-jordan elimination In gauss-jordan elimination, we perform basic row operations to turn a matrix into row-echelon form. If we concatenate an identity matrix to our input matrix during this process, we will turn the identity matrix into our inverse. X - input list of lists where each list is a matrix row output - inverse of X Source: http://www.vikparuchuri.com/blog/inverting-your-very-own-matrix/ """ #copy X to avoid altering input mat_x = deepcopy(mat_x) #Get dimensions of X rows = len(mat_x) cols = len(mat_x[0]) #Get the identity matrix and append it to the right of mat_x #This is done because our row operations will make the identity into the inverse identity = make_identity(rows, cols) for i in xrange(0, rows): mat_x[i] += identity[i] i = 0 for j in xrange(0, cols): #print("On col {0} and row {1}".format(j, i)) #Check to see if there are any nonzero values below the current row in the current column zero_sum, first_non_zero = check_for_all_zeros(mat_x, i, j) #If everything is zero, increment the columns if zero_sum == 0: if j == cols: return mat_x raise Exception("Matrix is singular") #If mat_x[i][j] is 0, and there is a nonzero value below it, swap the two rows if first_non_zero != i: mat_x = swap_row(mat_x, i, first_non_zero) #Divide mat_x[i] by mat_x[i][j] to make mat_x[i][j] equal 1 mat_x[i] = [m/mat_x[i][j] for m in mat_x[i]] #Rescale all other rows to make their values 0 below mat_x[i][j] for k in xrange(0, rows): if k != i: scaled_row = [mat_x[k][j] * m for m in mat_x[i]] mat_x[k] = [mat_x[k][m] - scaled_row[m] for m in xrange(0, len(scaled_row))] #If either of these is true, we have iterated through the matrix, and are done if i == rows or j == cols: break i += 1 #Get just the right hand matrix, which is now our inverse for i in xrange(0, rows): mat_x[i] = mat_x[i][cols:len(mat_x[i])] return mat_x def check_for_all_zeros(mat_x, i, j): """ Check matrix mat_x to see if only zeros exist at or below row i in column j mat_x - a list of lists i - row index j - column index returns - zero_sum - the count of non zero entries first_non_zero - index of the first non value """ non_zeros = [] first_non_zero = -1 for k in xrange(i, len(mat_x)): non_zero = mat_x[k][j] != 0 non_zeros.append(non_zero) if first_non_zero == -1 and non_zero: first_non_zero = k zero_sum = sum(non_zeros) return zero_sum, first_non_zero def swap_row(mat_x, i, j): """ Swap row i and row j in a list of lists mat_x - list of lists i - row index j - row index returns- modified matrix """ mat_x[j], mat_x[i] = mat_x[i], mat_x[j] return mat_x def swap_col(mat_x, i, j): """ Swap colum i and column j in a list of lists mat_x - list of lists i - column index j - column index returns- modified matrix """ for item in mat_x: item[i], item[j] = item[j], item[i] return mat_x def make_identity(row_num, col_num): """ Make an identity matrix with dimensions rxc row_num - number of rows col_num - number of columns returns - list of lists corresponding to the identity matrix """ identity = [] for i in xrange(0, row_num): row = [] for j in xrange(0, col_num): elem = 0 if i == j: elem = 1 row.append(elem) identity.append(row) return identity if _GRAPHICS: class Arrow3D(FancyArrowPatch): """ Vector drawer module from the internet """ def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): _xs3d, _ys3d, _zs3d = self._verts3d _xs, _ys, _zs = proj3d.proj_transform(_xs3d, _ys3d, _zs3d, renderer.M) self.set_positions((_xs[0], _ys[0]), (_xs[1], _ys[1])) FancyArrowPatch.draw(self, renderer) def plotstructure(struct, showorig, showresult, showsupports, \ showforces, showreactions, scaledisp, scale_f, z_corr, showvalues, saveplot): """ General plotting method for structures scaledisp: Scale drwaing of displacements scale_f: Scale force sign z_corr: Scale z-axis """ plotname = struct.name plot_width = 18.0 # Plot width in inches xframe = 0 # Frame width at X direction yframe = 0 # Frame width at Y direction zframe = 0 # Frame width at Z direction scale_sup = scale_f*0.3 # Scale support sign # All the others are input parameters # Stress coloring settings [R G B] - Examples considering pressure: # 0: [1, 0, 0] Plain red # 1: [x, 0, 0] Red to Black # 2: [1, 1-x, 0-x] Red to White # 3: [1, (1-x)/2, (1-x)/2] Red to MildRed - Distincts pressure and tension # 4: [x, 1-x, 0] Red to Green _coloring = 3 # € [0, 1, 2, 3, 4] fig = plt.figure() _ax = fig.add_subplot(111, projection='3d') if struct.dof == 2: _ax.view_init(elev=90., azim=-90.) _ax.w_zaxis.line.set_lw(0.) _ax.set_zticklabels([]) xmin = min(list(struct.nodalcoord[x][0] for x in range(struct.nodenum))) xmax = max(list(struct.nodalcoord[x][0] for x in range(struct.nodenum))) ymin = min(list(struct.nodalcoord[x][1] for x in range(struct.nodenum))) ymax = max(list(struct.nodalcoord[x][1] for x in range(struct.nodenum))) zmin = min(list(struct.nodalcoord[x][2] for x in range(struct.nodenum))) zmax = max(list(struct.nodalcoord[x][2] for x in range(struct.nodenum))) deltax = xmax - xmin deltay = ymax - ymin xframe = max(deltax * 0.05, 2) yframe = max(deltay * 1.5, 2) if struct.dof == 3: plot_height = plot_width * ((deltay + yframe*2)/(deltax + xframe*2)) *0.3 else: plot_height = plot_width * 0.5 fig.set_size_inches(plot_width, plot_height) _ax.set_xlim3d(xmin - xframe, xmax + xframe) _ax.set_ylim3d(ymin - yframe, ymax + yframe) _ax.set_zlim3d(zmin - zframe, zmax + zframe) if showorig == showresult: _coloring = 0 # Giving plot names if showorig == 1 and showresult == 0 and showsupports == 1 and showreactions == 0: plotname += ' - Initial structure' if showforces: plotname += ' with forces' elif showorig == 1 and showresult == 1: plotname += ' - Deformation' if showreactions == 0: plotname += ' with reactions' elif showorig == 0 and showresult == 1: plotname += ' - Stresses' if showreactions == 0: plotname += ' with reactions' else: plotname += ' - Unnamed' print plotname + ": " if showresult: dipslaydisplacement = deepcopy(struct.nodalcoord_def) if scaledisp != 1.0: if _LOG: print('Displacements are scaled with factor: ') + str(scaledisp) for i in range(struct.nodenum): for j in range(3): dipslaydisplacement[i][j] = (struct.nodalcoord_def[i][j] -\ struct.nodalcoord[i][j]) * scaledisp + struct.nodalcoord[i][j] for i in range(struct.elenum): # Plot undeformed structure if showorig: _ax.plot([struct.nodalcoord[struct.node[i][1]][0], struct.nodalcoord[struct.node[i][0]][0]], \ [struct.nodalcoord[struct.node[i][1]][1], struct.nodalcoord[struct.node[i][0]][1]], \ zs=[struct.nodalcoord[struct.node[i][1]][2], struct.nodalcoord[struct.node[i][0]][2]], color='b') # Plot deformed structure if showresult: if struct.postprocessed(): if struct.stresscolor[i] > 0: if _coloring == 1: rgb_col = [0, 0, abs(struct.stresscolor[i])] elif _coloring == 2: rgb_col = [1-abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i]), 1] elif _coloring == 3: rgb_col = [(1-abs(struct.stresscolor[i]))/2, \ (1-abs(struct.stresscolor[i]))/2, 1] elif _coloring == 4: rgb_col = [0, 1-abs(struct.stresscolor[i]), \ abs(struct.stresscolor[i])] else: rgb_col = [1, 0, 0] else: if _coloring == 1: rgb_col = [abs(struct.stresscolor[i]), 0, 0] elif _coloring == 2: rgb_col = [1, 1-abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i])] elif _coloring == 3: rgb_col = [1, (1-abs(struct.stresscolor[i]))/2, \ (1-abs(struct.stresscolor[i]))/2] elif _coloring == 4: rgb_col = [abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i]), 0] else: rgb_col = [1, 0, 0] else: print 'Stresses are not calculated' rgb_col = [1, 0, 0] _ax.plot([dipslaydisplacement[struct.node[i][1]][0], dipslaydisplacement[struct.node[i][0]][0]], \ [dipslaydisplacement[struct.node[i][1]][1], dipslaydisplacement[struct.node[i][0]][1]], \ zs=[dipslaydisplacement[struct.node[i][1]][2], dipslaydisplacement[struct.node[i][0]][2]], color=rgb_col) if showforces: for i in struct.known_f_notzero: if struct.force[i] < 0: value = -1.0 else: value = 1.0 if i % 3 == 0: f_dir = [value*scale_f, 0., 0.] elif i % 3 == 1: f_dir = [0., value*scale_f, 0.] else: f_dir = [0., 0., value*scale_f*z_corr] f_arrow = Arrow3D([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0] + f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1] + f_dir[1]], \ [struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2] + f_dir[2]], \ mutation_scale=20, lw=1, arrowstyle="-|>", color="k") _ax.add_artist(f_arrow) if showreactions: e_previous = -100 for i in struct.known_dis_a: value = 0.0 # Maybe this is useless <XXX> if struct.force[i] < 0: value = -1.0 elif struct.force[i] > 0: value = 1.0 if i % 3 == 0: f_dir = [value*scale_f, 0., 0.] elif i % 3 == 1: f_dir = [0., value*scale_f, 0.] else: f_dir = [0., 0., value*scale_f*z_corr] if abs(struct.force[i]) > 0: f_arrow = Arrow3D([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0] + f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1] + f_dir[1]], \ [struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2] + f_dir[2]], \ mutation_scale=20, lw=1, arrowstyle="-|>", color="darkolivegreen") _ax.add_artist(f_arrow) if showvalues: _ax.set_xticklabels([]) _ax.set_yticklabels([]) _ax.set_zticklabels([]) if not i//3 == e_previous//3: if struct.dof == 3: _ax.text(struct.nodalcoord[i//3][0], \ struct.nodalcoord[i//3][1], \ struct.nodalcoord[i//3][2], \ "{:10.2f}".format(struct.force[(i//3)*3+0])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+1])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+2]),\ fontsize=12, horizontalalignment='right') elif struct.dof == 2: _ax.text(struct.nodalcoord[i//3][0], \ struct.nodalcoord[i//3][1], \ struct.nodalcoord[i//3][2], \ "{:10.2f}".format(struct.force[(i//3)*3+0])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+1]),\ fontsize=12, horizontalalignment='right') e_previous = i if showsupports: for i in struct.known_dis_a: if i % 3 == 0: f_dir = [-1.0 * scale_sup, 0., 0.] col = 'g' elif i % 3 == 1: f_dir = [0., -1.0 * scale_sup, 0.] col = 'y' else: f_dir = [0., 0., -1.0 * scale_sup * z_corr] col = 'brown' if i % 3 != 2 or struct.dof == 3: _ax.plot([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0]+f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1]+f_dir[1]], \ zs=[struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2]+f_dir[2]], \ color=col, linewidth=4.0) plt.show() if saveplot: fig.savefig(plotname + '.png') print '\'' + plotname +'.png\' is saved.' print '------------------------------------' return def endoffile(givenfile, line): """ Check if end of file is reached. Implemented due to compatibility reasons. """ if _OSLIBRARYAVAILABLE: return givenfile.tell() < os.fstat(givenfile.fileno()).st_size else: return not line == "EOF" def logtime(prev_time, title): """ Calculating and printing the time consumption of tasks Should be called with the previously saved part-time and the name of the actual task At the first call, should be called with TIC value. The input argument should be overwritten by this funvtion's return value. """ if _LOG: new_time = time.time() print title print 'Time: ' + str("{:10.3f}".format(new_time - prev_time)) print '------------------------------------' return new_time else: return 0 def error(delta): """ Error function using least-square method """ sumerr = 0 for deltaelement in delta: sumerr += deltaelement**2 sumerr = math.sqrt(error) return sumerr class Truss(object): """ General structure class """ def __init__(self, name): self.name = name # Name of structure self.known_f_a = [] # Nodes without supports self.known_f_notzero = [] # Nodes with loads self.dof = 3 # Truss's degree of freedom self.node = [] # Element's end nodes self.constraint = [] # Supports self.force = [] # Force self.nodalcoord = [] # Coordinates of nodes self.nodalcoord_def = [] # Coordinates after deformations self.area = [] # Cross-sectional areas self.el_mod = [] # Material data self.nodenum = 0 # Number of nodes self.elenum = 0 # Number of elements self.eledof = [] # Mapping between DOF and node self.stiffness = [] # Global stiffness matrix self.mod_stiffnesses = [] # Modified stiffnesses in a hyper-matrix self.ele_length = [] # Length of the elements self._norm_stiff = [] # E/L self._cx = [] self._cy = [] self._cz = [] self._s_loc = [] self._loc_stiff = [] # Local stiffnes matrix self.dis_new = [] self.force_new = [] self.stiff_new = [] self.displacement = [] # Relative displacements self._stiffisfresh = 0 self._postprocessed = 0 self.init_disp = [] self.stresscolor = [] # Color mapping for stresses self.known_dis_a = [] self.stress = [] # Element's stresses self._io_origin = 0 # Array's first element number during IO. Default is 0. self.analysis = {} self._mod_stiffisfresh = 0 self.mod_displacements = [] self.keypoint = [] self.keypnum = 0 self.effect = [] self.toteffect = [] self.sortedeff = [] self.specdof_inputstring = '' self.tresshold = 0.1 self.effectratio = [] self.processeddata = [] # To store last input line self.modifications = [] # Storing modifications for model updating self.readelements = [0]*9 self.arduino_mapping = [] self.errorlimit = 0.5 self.modificationlimit = 0.6 self.unitmodification = 0.05 self.measurement = [0.] self.numofupdates = [0, 0, 0] # [#Successfully updated model, #Updates with overflow exit, #Updates where there were no more modification option] self.iterationlimit = 20 def read(self, filename): """ Input file for TRUSS.py program All commands must be written with uppercase characters *** The values MUST be written in the exact following line of a command Only lines with the command and nothing more counts. Everything else will be neglected. Even hastags are useless :) The order of the commands are indifferent. Commands and their format (example): DOF - Degree of freedom: 3 ELEMENTS - Elements given by end-nodes: 0, 1 | 0, 2 ... COORDINATES - Nodal coordinates: 0., 0., 0., | 0., 3., 0. ... CROSS-SECTIONS - This data will be evaluated in Python: 3.0*(10**(-4)), 5.0*(10**(-4)) ... MATERIALS - This data will be evaluated in Python: 70.0*(10**9), 100.0*(10**9) ... FORCES - Selected DOF + Force: 11, +1000000.0 | 12, +1000000.0 ... SUPPORTS - Selected DOF + Prescribed displacement: 0, 0.0 | 1, 0.0 ... SPECDOF - Selected node's DOF will be analysed during Model Updating: 1, xyz | 3 y | 10 xz ... EOF - For compatibility reasons EOF should be placed after the commands """ self._io_origin = 0 readelementnames = ["Origin", "DOF", "Elements", "Coordinates", "Cross-sections", "Materials", "Forces", "Supports", "Measured DOFs"] with open(filename, "r") as sourcefile: sourceline = "" while endoffile(sourcefile, sourceline): sourceline = sourcefile.readline().strip() if sourceline.upper() == "_ORIGIN": sourceline = sourcefile.readline().strip() self._io_origin = int(sourceline) self.readelements[0] = 1 if sourceline.upper() == "DOF": sourceline = sourcefile.readline().strip() self.setdof(int(sourceline)) self.readelements[1] = 1 if sourceline.upper() == "ELEMENTS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, int(x[1]) - self._io_origin] for x in inpstr] self.setelements(inpnum) self.readelements[2] = 1 if sourceline.upper() == "COORDINATES": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) if self.dof == 3: inpnum = [[float(x[0]), float(x[1]), float(x[2])] for x in inpstr] elif self.dof == 2: inpnum = [[float(x[0]), float(x[1]), 0.] for x in inpstr] self.setcoordinates(inpnum) self.readelements[3] = 1 if sourceline.upper() == "CROSS-SECTIONS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = sourceline.split(',') if len(inpstr) == 1: inpstr = sourceline.split(';') if '' in inpstr: inpstr.remove('') inpnum = [float(eval(x)) for x in inpstr] self.setcrosssections(inpnum) self.readelements[4] = 1 if sourceline.upper() == "MATERIALS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = sourceline.split(',') if len(inpstr) == 1: inpstr = sourceline.split(';') if '' in inpstr: inpstr.remove('') inpnum = [float(eval(x)) for x in inpstr] self.setmaterials(inpnum) self.readelements[5] = 1 if sourceline.upper() == "FORCES": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, float(x[1])] for x in inpstr] self.setforces(sorted(inpnum)) self.readelements[6] = 1 if sourceline.upper() == "SUPPORTS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, float(x[1])] for x in inpstr] self.setsupports(sorted(inpnum)) self.readelements[7] = 1 if sourceline.upper() == "MEASUREMENTS": sourceline = sourcefile.readline().strip() self.specdof_inputstring = sourceline inpstr = [] self.arduino_mapping = sourceline.split(',') self.setspecdofs(self.arduino_mapping) self.readelements[8] = 1 terminate = False for i, value in enumerate(self.readelements): if i > 0 and (i < 8 or _UPDATING): #if i > 0: if value == 0: print "The following was not found: " + readelementnames[i] terminate = True if terminate: raise Exception def plot(self, showorig, showresult, showsupports, showforces, \ showreactions, scaledisplacement, scaleforce, scalez, saveplot): """ Plot function of the Truss class This method calls the more general plotstructure() method. Plot settings: O: Original D: Deformed S: Supports F: Forces R: Reactions ScD: Scale displacments (Z-axis) (def:1.0) ScF: Scale forces (def:1.0) ScS: Scale Support signs (Z-axis) (def:1.0) Save: Save plot to file plot(O, D, S, F, R, ScD, ScF, ScS, Save) """ _showvalues = 1 # Show values of forces if self._postprocessed == 0: print 'Postprocess is needed before plotting structure!' else: if scaledisplacement == 0: scaledisplacement = 1.0 # Scale drwaing of displacements if scaleforce == 0: scaleforce = 1.0 # Scale force sign if scalez == 0: scalez = 0.3 # Scale z-axis plotstructure(self, showorig, showresult, showsupports, showforces, showreactions, \ scaledisplacement, scaleforce, scalez, _showvalues, saveplot) def __checkcoordinates(self, ignorable): """ Checking coordinates for repeating elements. ignorable: [True | False] If the warning is ignorable, only message apperas and the input becomes neglected. If the warning is not ignorable, then exceptions will be raised. return: [0 | 1] 1 f no error found, otherwise 0. """ if len(self.nodalcoord) != len(list(k for k, _ in itertools.groupby(sorted(self.nodalcoord)))): if ignorable == 0: raise Exception('Coordinate list has repeating items. Calculation is terminated') else: print "This node already exists. Input is ignored." return 0 else: return 1 def setdof(self, dof): """ Setting problem's degree of freedom dof: [2 | 3] Model's Degree Of Freedom. """ self.dof = dof if self.dof != 2 and self.dof != 3: raise Exception('DOF must be 2 or 3.') self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setelements(self, node): """ Setting elements (nodal connections) in bulk mode """ self.node = node self.nodenum = len(set(list(itertools.chain.from_iterable(sorted(self.node))))) self.elenum = len(self.node) self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 # Creating mapping tool for elements for node in self.node: self.eledof.append([node[0]*3, node[0]*3+1, node[0]*3+2, \ node[1]*3, node[1]*3+1, node[1]*3+2]) # Initialazing matrix for all matrices self.init_disp = [0.]*(3*self.nodenum) self.force = [0.]*(3*self.nodenum) self.stiffness = [0.]*(3*self.nodenum) self.known_f_a = [] self.known_f_notzero = [] def setcoordinates(self, coordinates): """ Setting coordinates in bulk mode """ self.nodalcoord = coordinates self._stiffisfresh = 0 self._mod_stiffisfresh = 0 if self.nodenum > len(self.nodalcoord): raise Exception('More coordinates are needed') elif self.node == []: raise Exception('Nodes must be set before defining elements') self.__checkcoordinates(False) def modcoordinate(self, node, coordinate): """ Modify coordinate """ if self.__checkcoordinates(True): self.nodalcoord[node] = coordinate self._stiffisfresh = 0 self._mod_stiffisfresh = 0 def setcrosssections(self, area): """ Setting cross-sections in bulk mode """ self.area = area self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def modcrosssection(self, element, area): """ Modifying cross-sections by elements """ self.area[element] = area self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setmaterials(self, el_mod): """ Setting material data in bulk mode """ self.el_mod = el_mod self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def modmaterial(self, element, el_mod): """ Modifying material data by elements """ self.el_mod[element] = el_mod self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setforces(self, forces): """ Set forces """ for fdof, force in forces: if self.dof == 3: self.force[fdof] = force elif self.dof == 2: self.force[fdof + (fdof//2)] = force self._postprocessed = 0 def modforce(self, element, force): """ Modifying forces by each """ self.force[element] = force self._postprocessed = 0 def setsupports(self, constraints): """ Set supports """ for cdof, constraint in constraints: if self.dof == 3: self.constraint.append([cdof, constraint]) elif self.dof == 2: self.constraint.append([cdof + (cdof // 2), constraint]) self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setspecdofs(self, specdofs): """ Set special nodal DOFs """ self.analysis = {} for dofname in specdofs: node = int(dofname[:len(dofname)-1])-self._io_origin if 'X' in dofname: self.analysis[dofname] = node*3+0 self.keypoint.append(node*3+0) if 'Y' in dofname: self.analysis[dofname] = node*3+1 self.keypoint.append(node*3+1) if 'Z' in dofname: if self.dof == 3: self.analysis[dofname] = node*3+2 self.keypoint.append(node*3+2) else: print "Z-direction is not allowed in 2D structures. Please check the \'MEASUREMENTS\' section in the input file." raise Exception self.keypnum = len(self.analysis) if self.keypnum == 0 and _UPDATING: print "There is no valid measured DOF. Please check the \'MEASUREMENTS\' section in the input file." raise Exception def calcstiffness(self): """ Stiffness matrix compilation """ self._postprocessed = 0 if self.dof == 2: for zdof in range(self.nodenum): self.constraint.append([int(zdof*3+2), 0.]) self.constraint = list(k for k, _ in itertools.groupby(sorted(self.constraint))) #Setting known forces for dofloc in range(3*self.nodenum): self.known_f_a.append(dofloc) if self.force[dofloc] != 0: self.known_f_notzero.append(dofloc) self.known_dis_a = [] for constr in self.constraint: self.init_disp[constr[0]] = constr[1] self.known_dis_a.append(constr[0]) try: self.known_f_a.remove(constr[0]) self.known_f_notzero.remove(constr[0]) except ValueError: pass ele_length = [0.]*self.elenum self._norm_stiff = [0.]*self.elenum self._cx = [0.]*self.elenum self._cy = [0.]*self.elenum self._cz = [0.]*self.elenum self._s_loc = [0.]*self.elenum self._loc_stiff = [0.]*self.elenum self.stress = [0.]*self.elenum self.stiffness = [[0.]*(len(self.nodalcoord)*3)]*(len(self.nodalcoord)*3) for i in range(self.elenum): ele_length[i] = math.sqrt((self.nodalcoord[self.node[i][1]][0]-self.nodalcoord[self.node[i][0]][0])**2+ \ (self.nodalcoord[self.node[i][1]][1]-self.nodalcoord[self.node[i][0]][1])**2 + \ (self.nodalcoord[self.node[i][1]][2]-self.nodalcoord[self.node[i][0]][2])**2) self._cx[i] = (self.nodalcoord[self.node[i][1]][0]-self.nodalcoord[self.node[i][0]][0])/ele_length[i] self._cy[i] = (self.nodalcoord[self.node[i][1]][1]-self.nodalcoord[self.node[i][0]][1])/ele_length[i] self._cz[i] = (self.nodalcoord[self.node[i][1]][2]-self.nodalcoord[self.node[i][0]][2])/ele_length[i] self._norm_stiff[i] = self.el_mod[i]/ele_length[i] self._s_loc[i] = [[self._cx[i]**2, self._cx[i]*self._cy[i], self._cx[i]*self._cz[i], -self._cx[i]**2, -self._cx[i]*self._cy[i], -self._cx[i]*self._cz[i]], \ [self._cx[i]*self._cy[i], self._cy[i]**2, self._cy[i]*self._cz[i], -self._cx[i]*self._cy[i], -self._cy[i]**2, -self._cy[i]*self._cz[i]], \ [self._cx[i]*self._cz[i], self._cy[i]*self._cz[i], self._cz[i]**2, -self._cx[i]*self._cz[i], -self._cy[i]*self._cz[i], -self._cz[i]**2], \ [-self._cx[i]**2, -self._cx[i]*self._cy[i], -self._cx[i]*self._cz[i], self._cx[i]**2, self._cx[i]*self._cy[i], self._cx[i]*self._cz[i]], \ [-self._cx[i]*self._cy[i], -self._cy[i]**2, -self._cy[i]*self._cz[i], self._cx[i]*self._cy[i], self._cy[i]**2, self._cy[i]*self._cz[i]], \ [-self._cx[i]*self._cz[i], -self._cy[i]*self._cz[i], -self._cz[i]**2, self._cx[i]*self._cz[i], self._cy[i]*self._cz[i], self._cz[i]**2]] self._loc_stiff[i] = [[y* self.area[i]* self._norm_stiff[i] for y in x] for x in self._s_loc[i]] ele_dof_vec = self.eledof[i] stiffincrement = [0.]*(len(self.nodalcoord)*3) for j in range(3*2): for k in range(3*2): stiffincrement[ele_dof_vec[k]] = self._loc_stiff[i][j][k] self.stiffness[ele_dof_vec[j]] = [x + y for x, y in zip(self.stiffness[ele_dof_vec[j]], stiffincrement)] self._stiffisfresh = 1 def calcmodstiffness(self, index, magnitude): """ Convergency step in stiffness matrix modification """ if self.mod_stiffnesses == []: self.mod_stiffnesses = [0.]*(self.elenum+1) #for loopindex in range(self.elenum): _mod_stiffnesses_temp = [[0.]*(len(self.nodalcoord)*3)]*(len(self.nodalcoord)*3) for i in range(self.elenum): if i == index: _mod_norm_stiff = self._norm_stiff[i] * (1.0 + self.modifications[i] + magnitude) #self.el_mod[i]/ele_length[i] else: _mod_norm_stiff = self._norm_stiff[i] * (1.0 + self.modifications[i]) #self.el_mod[i]/ele_length[i] _mod_loc_stiff = [[y*self.area[i]*_mod_norm_stiff for y in x] for x in self._s_loc[i]] ele_dof_vec = self.eledof[i] stiffincrement = [0.]*(len(self.nodalcoord)*3) for j in range(3*2): for k in range(3*2): stiffincrement[ele_dof_vec[k]] = _mod_loc_stiff[j][k] _mod_stiffnesses_temp[ele_dof_vec[j]] = [x + y for x, y in zip(_mod_stiffnesses_temp[ele_dof_vec[j]], stiffincrement)] self.mod_stiffnesses[index] = _mod_stiffnesses_temp def solve(self): """ Main solver of the code """ if self._stiffisfresh == 0: if _LOG: print 'Stiffness matrix is recalculated' self.calcstiffness() self.dis_new = [0.]*(self.nodenum*3-len(self.constraint)) self.force_new = [0.]*(self.nodenum*3-len(self.constraint)) self.stiff_new = [[0.]*(self.nodenum*3-len(self.constraint))]*(self.nodenum*3-len(self.constraint)) # known force array for i, known_f_a in enumerate(self.known_f_a): self.force_new[i] = self.force[known_f_a] stiffincrement = [0.]*(self.nodenum*3-len(self.constraint)) for i, kfai in enumerate(self.known_f_a): for j, kfaj in enumerate(self.known_f_a): stiffincrement[j] = self.stiffness[kfai][kfaj] self.stiff_new[i] = [x + y for x, y in zip(self.stiff_new[i], stiffincrement)] # SOLVING THE STRUCTURE if _SOLVER == 0: if _LOG: print 'Built-in solver' self.dis_new = mat_vec_mult(invert(self.stiff_new), self.force_new) else: if _LOG: print 'NumPy solver' self.dis_new = np.linalg.solve(np.array(self.stiff_new), np.array(self.force_new)) self.displacement = deepcopy(self.init_disp) for i, known_f_a in enumerate(self.known_f_a): self.displacement[known_f_a] = self.dis_new[i] # Deformed shape self.nodalcoord_def = [] for i in range(self.nodenum): self.nodalcoord_def.append([self.nodalcoord[i][0]+ self.displacement[i*3+0], \ self.nodalcoord[i][1]+ self.displacement[i*3+1], self.nodalcoord[i][2]+ self.displacement[i*3+2]]) # Postrpocesses self.postprocess() self.mod_displacements = [0.]*(self.elenum+1) def solvemodstruct(self, index): """ Solver for the modified structures. 'Index' shows the actual modification number. """ self.mod_displacements[index] = [0.]*(self.nodenum*3) dis_new = [0.]*(self.nodenum*3-len(self.constraint)) stiff_new = [[0.]*(self.nodenum*3-len(self.constraint))]*(self.nodenum*3-len(self.constraint)) stiffincrement = [0.]*(self.nodenum*3-len(self.constraint)) for i, kfai in enumerate(self.known_f_a): for j, kfaj in enumerate(self.known_f_a): stiffincrement[j] = self.mod_stiffnesses[index][kfai][kfaj] stiff_new[i] = [x + y for x, y in zip(stiff_new[i], stiffincrement)] # SOLVING THE MODIFIED STRUCTURE if _SOLVER == 0: dis_new = mat_vec_mult(invert(stiff_new), self.force_new) else: dis_new = np.linalg.solve(np.array(stiff_new), np.array(self.force_new)) mod_displacement_temp = deepcopy(self.init_disp) for i, kfa in enumerate(self.known_f_a): mod_displacement_temp[kfa] = dis_new[i] - self.dis_new[i] self.mod_displacements[index] = [x + y for x, y in zip(self.mod_displacements[index], mod_displacement_temp)] def evaluate(self): """ Calculates the relative displacement of each individual available unit-modification compared to the measured differencies (delta). delta: [DOF number, difference] return effect: [efffect on 1. point, effect on 2. point, ..., modification number] where each line number shows the corresponding modification number """ self.effect = [[0.]*(self.keypnum + 2)]*self.elenum self.toteffect = [0.]*self.keypnum self.sortedeff = [[[0.]*(self.keypnum + 2)]*self.elenum]*self.keypnum effect_temp = [0.]*(self.keypnum + 2) for modnum in range(self.elenum): effect_temp[self.keypnum] = int(modnum) for j, dofnum in enumerate(self.keypoint): try: effect_temp[j] = self.mod_displacements[modnum][dofnum] self.effect[modnum] = [x for x in effect_temp] self.toteffect[j] += abs(self.effect[modnum][j]) except IndexError: print "Maybe the mapping data is invalid." print "Please check the \'arduino_mapping.txt\' input whether the given DOFs are correct or not." raise IndexError self.effectratio = deepcopy(self.effect) for i in range(self.elenum): for j in range(self.keypnum): if self.toteffect[j] > 0: self.effectratio[i][j] = abs(self.effectratio[i][j]/self.toteffect[j]) else: self.effectratio[i][j] = 0 #print " \'effectratio\' is not used yet" # Sort by effectiveness for i in range(self.keypnum): self.sortedeff[i] = deepcopy(self.effect) # Check sign of the effect for ktemp in range(self.elenum): if self.sortedeff[i][ktemp][i] < 0: for jtemp in range(self.keypnum): self.sortedeff[i][ktemp][jtemp] = abs(self.sortedeff[i][ktemp][jtemp]) self.sortedeff[i][ktemp][self.keypnum +1] = -1 else: self.sortedeff[i][ktemp][self.keypnum +1] = +1 for j in range(self.keypnum): if i != j and j != 0: self.sortedeff[i] = swap_col(sorted(swap_col(self.sortedeff[i], 0, j), reverse=True), 0, j) if i != 0: self.sortedeff[i] = swap_col(sorted(swap_col(self.sortedeff[i], 0, i), reverse=True), 0, i) else: self.sortedeff[i] = sorted(self.sortedeff[i], reverse=True) def difference(self, num_displ, measurement): """ Calculate the difference between the Numerical solution and Real-life measurement. The Real-life measurement should be given the following format: MEASUREMENT: [[13X, -2.154], [16Y, 5.256], ...] """ #Print nodenumber option should be added! <XXX> delta = [] for loc, measured in measurement: try: dof = self.analysis[loc.upper()] except KeyError: print 'The given measurement location cannot be matched with the input data.' print 'The available nodes are: {\'NAMES\': mapping addresses}' print self.analysis SER.close() raise Exception('Watchpoint name error') delta.append(measured - num_displ[dof]) return delta def optimize(self, delta): """ Modell updating - core function """ #modnum = min(10, self.elenum) modnum = self.elenum self.modifications = [0.0]*self.elenum if not _SIMULATION: appendix = "" else: appendix = " - SIMULATED" newdelta = delta j = 0 print "-----" print "Step: 0/"+ str(self.iterationlimit) while (error(newdelta) > self.errorlimit and j <= self.iterationlimit and (self.capable() or j <= 1)): # Optimization loop j += 1 print "Error: " + str(error(newdelta)) print "-----" print "Step: " + str(j) + "/"+ str(self.iterationlimit) ratio = [0.]*modnum unit = 0 prevmodifications = self.modifications for index in range(self.elenum): self.modifications[index] = min(abs(self.modifications[index] - self.unitmodification), self.modificationlimit) *math.copysign(1, self.modifications[index]- self.unitmodification) self.calcmodstiffness(index, self.modifications[index]) self.solvemodstruct(index) self.evaluate() self.calcmodstiffness(self.elenum, 0) self.solvemodstruct(self.elenum) newdelta = self.difference(self.mod_displacements[self.elenum], self.measurement) for i, effect in enumerate(self.toteffect): if effect == 0.0: print "None of the variables has effect on " + str(self.arduino_mapping[i]) print "Model updating has no solution." raise Exception for i in range(self.elenum): modificationnumber = self.sortedeff[0][i][1] ratio[modificationnumber] = abs(self.sortedeff[0][i][0] / self.toteffect[0])*math.copysign(1, self.sortedeff[0][i][2]) unit += abs(ratio[modificationnumber]*self.sortedeff[0][i][0]) scale = newdelta[0]/unit for i in range(self.elenum): modificationnumber = self.sortedeff[0][i][1] self.modifications[modificationnumber] = min(abs(prevmodifications[modificationnumber] - self.unitmodification*ratio[modificationnumber]), self.modificationlimit)\ *math.copysign(1, prevmodifications[modificationnumber] - self.unitmodification*ratio[modificationnumber]) # the last part is already the sign itself without the sign function print "Ratio: " + str(scale) print "Final error: " + str(error(newdelta)) if not self.capable() and j > 1: print "Optimization could not be finished successfully." print "The remaining error is: " + str(error(newdelta)) with open(self.name + ' - UpdateResults'+ appendix +'.txt', 'a') as outfile: if j > 1: if j <= self.iterationlimit and self.capable(): self.numofupdates[0] += 1 outfile.write("Update state: SUCCESSFUL\n") if not j <= self.iterationlimit: self.numofupdates[1] += 1 outfile.write("Update state: Run out of iteration limit\n") if not self.capable() and j > 1: self.numofupdates[2] += 1 outfile.write("Update state: No more possible modification\n") else: outfile.write("Update state: Optimization was skipped\n") outfile.write("Requiered iterations: " + str(j) + "\n") outfile.write("Measurement: " + str(self.measurement) + "\n") outfile.write("Original delta: " + str(delta) + "\n") outfile.write("New delta: " + str(newdelta) + " (limit: " + str(self.errorlimit) +")\n") outfile.write("Final error: " + str(error(newdelta)) + "\n") outfile.write("Modifications [%]: \n") outfile.write(str(self.modifications) + "\n") outfile.write("Original displacements: \n") outfile.write(str(self.displacement) + "\n") if j > 1: outfile.write("New displacements: \n") outfile.write(str(self.mod_displacements[self.elenum]) + "\n") outfile.write("----------------------\n") def capable(self): """ Function telling whether there are more options to modify """ capable = False for variable in self.modifications: if abs(variable) <= 0.95*self.modificationlimit and abs(variable) > 0.01: capable = True return capable def seterrorlimit(self, errorlimit): """ Setting general stop parameter for model updating """ if errorlimit > 0.0: self.errorlimit = errorlimit else: print "The error limit must be a positive number" raise Exception def setmodificationlimit(self, modificationlimit): """ Setting modification limit for members (model updating) """ if modificationlimit > 0.0 and modificationlimit < 1.0: self.modificationlimit = modificationlimit else: print "The modification limit must be higher than 0.0 and lower than 1.0" raise Exception def setunitmodification(self, unitmodification): """ Setting modification step (model updating) """ if abs(unitmodification) >= 0.01 and abs(unitmodification) < 0.5: self.unitmodification = unitmodification else: print "The absolut value of the unit modification must be minimum 0.01 and maximum 0.5" raise Exception def setiterationlimit(self, iterationlimit): """ Setting maximum number of iterations (model updating) """ if int(iterationlimit) > 1 and int(iterationlimit) <= math.pow(10, 4): self.iterationlimit = int(iterationlimit) else: print "The iterationlimit must be between 2 and 10.000" raise Exception def readarduino(self, base, saveinput): """ Read data from Arduino """ # Read data from Arduino maxdifference = 0.8 # Maximum input difference treshold in mm arduinovalues = [] data = [0.]*len(self.arduino_mapping) newdata = False bigdifference = False readerror = False try: arduinoline = SER.readline() if len(arduinoline) > 0: arduinovalues = arduinoline.split(',') try: if arduinovalues[0][len(arduinovalues)-1] == '.': arduinovalues[0] = arduinovalues[0][:len(arduinovalues[0])-2] else: del arduinovalues[len(arduinovalues)-1] except IndexError: print "Index Error... continuing" if len(arduinovalues) == len(self.arduino_mapping): try: for i in range(len(self.arduino_mapping)): data[i] = float(arduinovalues[i]) - float(base[i][1]) if abs(data[i] - self.processeddata[i]) > maxdifference: bigdifference = True if abs(float(arduinovalues[i])) < 2.0: readerror = True self.processeddata = data newdata = True except ValueError: print "Value error... continuing" SER.flushInput() time.sleep(0.5) except Exception: print "Type error: " + str(arduinovalues) + "... continuing" SER.flushInput() time.sleep(0.5) SER.flushInput() except serial.SerialTimeoutException: print "Data could not be read... continuing" SER.flushInput() time.sleep(0.5) if newdata and not bigdifference and not readerror: self.measurement = zip(self.arduino_mapping, data) saveinput.write(str(data) +', '+ str(time.time()) + "\n") # Calculate differences delta = self.difference(self.displacement, self.measurement) print "Delta: " + str(delta) newdata = False bigdifference = False readerror = False return delta newdata = False bigdifference = False readerror = False def simulatearduino(self, arduinoline, prevline): """ Simulate data, based on previous measurement """ arduinovalues = [] data = [0.]*len(self.arduino_mapping) skip = 0 sleeptime = 0. try: try: prevreadtime = float(str(prevline.split(']')[1]).split(',')[1]) nowreadtime = float(str(arduinoline.split(']')[1]).split(',')[1]) try: if _REALISTICSIMULATION: sleeptime = nowreadtime - prevreadtime except Exception: pass except Exception: skip = 1 sleeptime = 0. if not skip: if not sleeptime > 0: sleeptime = 0. arduinoline = str(arduinoline.split(']')[0])+"]" arduinovalues = eval(arduinoline) try: for i in range(len(self.arduino_mapping)): data[i] = float(arduinovalues[i]) self.processeddata = data except Exception: print "Type error: " + str(arduinovalues) + "... continuing" self.measurement = zip(self.arduino_mapping, data) # Calculate differences delta = self.difference(self.displacement, self.measurement) time.sleep(sleeptime) print delta return delta except IndexError: print "IndexError" #pass except Exception: print "Exception in simulation data" #pass def updatemodel(self): """ General function to manage model updatin procedure. """ self.processeddata = [0.]*len(self.arduino_mapping) if not _SIMULATION: base = self.calibrate() filemode = 'a' else: base = ['SIMULATION'] try: os.remove(self.name + ' - UpdateResults - SIMULATED.txt') except Exception: pass filemode = 'r' with open(self.name + ' - Input Data.txt', filemode) as inputfile: # Saving input data if not _SIMULATION: inputfile.write('Input data of \'' + self.name + '\':\n\n') inputfile.write('Start Time: ' + str(datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) + "\n") inputfile.write('Base: ' + str(base) + '\n') inputline = "[],0.0" for i in range(1000): if not _SIMULATION: delta = self.readarduino(base, inputfile) self.optimize(delta) else: try: delta = None previnputline = inputline inputline = inputfile.readline() if not inputline == '': delta = self.simulatearduino(inputline, previnputline) except Exception: pass if not delta is None: self.optimize(delta) print "Update statistics:" print "Totally updated models: " + str(TRUSS.numofupdates[0] + TRUSS.numofupdates[1]++ TRUSS.numofupdates[2]) print " Successfully updated models: " + str(TRUSS.numofupdates[0]) print " Updates with running out of possibilities: " + str(TRUSS.numofupdates[2]) print " Updates did not finshed: " + str(TRUSS.numofupdates[1]) def calibrate(self): """ Calibration for Arduino measurement. All the measurements will describe the dispalecements from the claibration-state. """ answer_1 = '0' restart = '0' accept = '0' arduinovalues = [] print "Before starting the model updating, the measuring tools must be calibrated." print "The calibration should be done in load-free state." while (answer_1 not in ['Y', 'N']): answer_1 = raw_input('Can we start the calibration? (y/n) ').upper() if answer_1 == 'N': SER.close() raise Exception('Calibration is terminated') else: try: SER.flushInput() #time.sleep(0.2) arduinoline = '' #SER.readline() while len(arduinoline) == 0: time.sleep(0.2) arduinoline = SER.readline() if len(arduinoline) > 0: arduinovalues = arduinoline.split(',') del arduinovalues[len(arduinovalues)-1] # if needed!!! if len(arduinovalues) == len(self.arduino_mapping): measurement = zip(self.arduino_mapping, arduinovalues) print "Calibration result:" print measurement while (accept not in ['Y', 'N']): accept = raw_input('Ok? Can we start the main part? Put on the loads! (y/n) ').upper() if accept == 'N': restart = 'Y' else: print "Data error. Calibartion is restarting." print "Arduino values:" + str(arduinovalues) restart = 'Y' else: print 'The calibration cannot be done: no data' while (restart not in ['Y', 'N']): restart = raw_input('Do you want to restart calibration? (y/n) ').upper() except Exception: print 'The calibration cannot be done: exception was raised' while (restart not in ['Y', 'N']): restart = raw_input('Do you want to restart calibration? (y/n) ').upper() if restart == 'Y': print "Restarting calibration" SER.flushInput() return self.calibrate() elif restart == 'N': SER.close() raise Exception('Calibration is terminated') if accept == 'Y': return measurement def postprocess(self): """ Calculates reaction forces and stresses """ self._reactions() self._stresses() self._postprocessed = 1 def _reactions(self): """ Calculates reaction forces """ for i in self.known_dis_a: self.force[i] = 0 for j, displ in enumerate(self.displacement): self.force[i] += self.stiffness[i][j]*displ def _stresses(self): """ Calculates stress in elements Last part: Coloring elements for graphical output """ self.stress = [0.]*self.elenum for element in range(self.elenum): locstiff = [-self._cx[element], -self._cy[element], -self._cz[element], \ self._cx[element], self._cy[element], self._cz[element]] for i in range(3*2): self.stress[element] += locstiff[i]*self.displacement[self.eledof[element][i]] self.stress[element] = self.stress[element]*self._norm_stiff[element] smax = max([abs(min(self.stress)), max(self.stress), 0.000000001]) self.stresscolor = [float(x)/float(smax) for x in self.stress] def postprocessed(self): """ Tells if the structure's postprocess part is already calcuated """ return self._postprocessed def writeresults(self, fname): """ Writing results to file. """ out_element = '' for i in self.node: out_element += str(i[0] + self._io_origin) + ', ' + str(i[1] + self._io_origin) + ' | ' out_coords = '' for i in self.nodalcoord: out_coords += str(i[0]) + ', ' + str(i[1]) + ', ' + str(i[2]) + ' | ' out_crsect = '' for i in self.area: out_crsect += str(i) + ', ' out_materials = '' for i in self.el_mod: out_materials += str(i) + ', ' out_forces = '' for forcedof in self.known_f_notzero: if self.dof == 3: out_forces += str(forcedof + self._io_origin) + ', ' + str(self.force[forcedof]) + ' | ' elif self.dof == 2 and i % 3 != 2: out_forces += str(forcedof - forcedof//3 + self._io_origin) + ', ' + str(self.force[forcedof]) + ' | ' out_supports = '' for i in self.constraint: if self.dof == 3: out_supports += str(i[0] + self._io_origin) + ', ' + str(i[1]) + ' | ' elif i[0] % 3 != 2: out_supports += str(i[0] - i[0]//3 + self._io_origin) + ', ' + str(i[1]) + ' | ' # Not elegant solution out_specdofs = self.specdof_inputstring with open(fname, 'w') as outfile: # Writing data outfile.write('Calculation of \'' + self.name + '\':\n\n') outfile.write('Reactions\n') #for i in range(len(self.force)//3): prev = -1 for i in self.known_dis_a: if self.dof == 3 or i%3 != 2: if i//3 != prev: if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') nodalforce = '' if (i//3)*3+0 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+0]) + ', ' else: nodalforce += ' ' if (i//3)*3+1 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+1]) + ', ' else: nodalforce += ' ' if self.dof != 2 and (i//3)*3+2 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+2]) + '\n' else: nodalforce += ' \n' if nodalforce != ' \n': outfile.write(str(i//3 + self._io_origin) + ', ' + nodalforce) prev = i//3 outfile.write('\n') outfile.write('Displacements\n') for i in range(len(self.displacement)//3): if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') outfile.write(str(i + self._io_origin) + ', ' + "{:10.3f}".format(self.displacement[i*3 +0]) + ', ' \ + "{:10.3f}".format(self.displacement[i*3 +1]) + ', ' + "{:10.3f}".format(self.displacement[i*3 +2]) + ', ' + '\n') outfile.write('\n') outfile.write('Stresses\n') for i, stress in enumerate(self.stress): if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') outfile.write(str(i + self._io_origin) + ', ' + "{:10.3f}".format(stress) + '\n') outfile.write('\n') # Saving original input outfile.write('----- Original input: -----\n\n') outfile.write('_ORIGIN\n') outfile.write(str(self._io_origin) + '\n\n') outfile.write('DOF\n') outfile.write(str(self.dof) + '\n\n') outfile.write('ELEMENTS\n') outfile.write(out_element + '\n\n') outfile.write('COORDINATES\n') outfile.write(out_coords + '\n\n') outfile.write('CROSS-SECTIONS\n') outfile.write(out_crsect + '\n\n') outfile.write('MATERIALS\n') outfile.write(out_materials + '\n\n') outfile.write('FORCES\n') outfile.write(out_forces + '\n\n') outfile.write('SUPPORTS\n') outfile.write(out_supports + '\n\n') outfile.write('SPECDOF\n') outfile.write(out_specdofs + '\n\n') outfile.write('EOF\n') ################################## # BEGINNING OF THE MAIN PART # ################################## PARTTIME = logtime(TIC, "Initialization") # Define new truss TRUSS = Truss('bridge') if not _DEBUG: TRUSS.name = raw_input('Test name: ') else: print "*** Debug mode ***" print "*** The following file will be opened: " + TRUSS.name + ".str" # Read input file #TRUSS.read('lab_01.txt') try: TRUSS.read(TRUSS.name + ".str") except IOError: print "The following file could not be opened: " + TRUSS.name + ".str" print "Please make sure that the structural data is available for the program in the running directory." raise IOError #if _ARDUINO or _SIMULATION: # deprecated # TRUSS.setspecdofs(arduino_mapping) PARTTIME = logtime(PARTTIME, "Setting up structure") # Calculate stiffness-matrix TRUSS.calcstiffness() #TRUSS.calcstiffness_plate() PARTTIME = logtime(PARTTIME, "Calculating Stiffness Matrix") #Solve structure TRUSS.solve() #TRUSS.solve_plate() PARTTIME = logtime(PARTTIME, "Solving") if _UPDATING: TRUSS.setunitmodification(0.05) TRUSS.seterrorlimit(1.2) TRUSS.setmodificationlimit(0.7) TRUSS.setiterationlimit(100) TRUSS.updatemodel() PARTTIME = logtime(PARTTIME, "Updating numerical model") if _GRAPHICS: # Plot settings: # O: Original D: Deformed S: Supports F: Forces R: Reactions # ScD: Scale displacments (Z-axis) (def:1.0) ScF: Scale forces (def:1.0) # ScS: Scale Support signs (Z-axis) (def:1.0) # Save: Save plot to file # plot(O, D, S, F, R, ScD, ScF, ScS, Save) TRUSS.plot(1, 0, 1, 1, 0, 1.0, 0.0, 0.0, True) TRUSS.plot(1, 1, 1, 0, 0, 1.0, 0.0, 0.0, True) TRUSS.plot(0, 1, 1, 1, 1, 2.0, 0.0, 0.0, True) #pass PARTTIME = logtime(PARTTIME, "Plotting") # Write results to file TRUSS.writeresults(TRUSS.name + ' - Results.txt') PARTTIME = logtime(PARTTIME, "Writing results to the output file") if _ARDUINO: # Closing Arduino port SER.close() if _LOG: TAC = time.time() TOTALTIME = TAC-TIC if _UPDATING: print "Update statistics:" print "Totally updated models: " + str(TRUSS.numofupdates[0] + TRUSS.numofupdates[1]++ TRUSS.numofupdates[2]) print " Successfully updated models: " + str(TRUSS.numofupdates[0]) print " Updates with running out of possibilities: " + str(TRUSS.numofupdates[2]) print " Updates did not finshed: " + str(TRUSS.numofupdates[1]) print 'Total time: ' + str("{:10.3f}".format(TOTALTIME)) _UPDATING = 1 # Model Updating: On/ Off _ARDUINO = 1 # Arduino input: On/Off _DEBUG = 1 # Debugging mode _REALISTICSIMULATION = 0 # Wait as long as it was originally. Only valid with _SIMULATION = 1 ############################################## ### DO NOT MODIFY ### # # elif _COMPATIBLE_MODE == 01: # ### "Processing 3" mode ### # _MODE_NAME = "Processing 3" # _LOG = 1*1 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 0*0 # _UPDATING = 1*1 # _ARDUINO = 1*1 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # elif _COMPATIBLE_MODE == 02: # ### Android mode ### # # DO NOT MODIFY # _MODE_NAME = "Android" # _LOG = 1*1 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 1*1 # _UPDATING = 0*0 # _ARDUINO = 0*0 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # elif _COMPATIBLE_MODE == 03: # ### Informative ### # # DO NOT MODIFY # _MODE_NAME = "Informative mode" # _LOG = 1*1 # _GRAPHICS = 1*1 # _SOLVER = 1*1 # _OSLIBRARYAVAILABLE = 1*1 # _UPDATING = 1*1 # _ARDUINO = 1*1 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # else: # ### Maximum compatibility ### # # DO NOT MODIFY # _MODE_NAME = "Maximum compatibility" # _LOG = 0*0 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 0*0 # _UPDATING = 0*0 # _ARDUINO = 0*0 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # ### DO NOT MODIFY ### # ############################################## if _OSLIBRARYAVAILABLE: import os if _SIMULATION or not _UPDATING: _ARDUINO = 0 if _COMPATIBLE_MODE == 2: os.chdir(os.path.dirname(os.path.abspath(__file__))) if _LOG: import time import datetime TIC = time.time() print '------------------------------------' print 'Truss calculational program' print 'Created by Máté Szedlák (23/11/2016)' print 'Compatibility mode: ' + _MODE_NAME if _SOLVER == 0: print '- Solver is set to default' elif _SOLVER == 1: print '- Solver is set to NumPy' else: raise Exception("Solver settings are invalid!") if _UPDATING: print '+ Model updating is turned ON' if _SIMULATION: print 'Input data is SIMULATED!' else: print '- Model updating is turned OFF' print '------------------------------------' if _ARDUINO: SER = 0 try: import serial except ImportError: print "You tried to import \'serial\' in Windows mode without installing \'pySerial\'." print "Please first install pySerial: http://playground.arduino.cc/Interfacing/Python" raise Exception('Android mode denied: pyserial not found') PORTNUMBER -= 1 while SER == 0: PORTNUMBER += 1 if PORTNUMBER >= len(PORTS): PORTNUMBER = 0 time.sleep(0.6) print 'Opening serial at port ' + str(PORTS[PORTNUMBER]) try: SER.close() except Exception: pass try: SER = serial.Serial(PORTS[PORTNUMBER], 9600, timeout=0) except serial.SerialException: Exception(PORTS[PORTNUMBER] + ' port is busy. It might be occupied by this program or another one :/ Be careful or try resetting this program') SER = 0 try: SER.close() except Exception: pass except Exception: SER = 0 try: SER.close() except Exception: pass #if _ARDUINO or _SIMULATION: # try: # mappingfile = 'arduino_mapping.txt' # with open(mappingfile, "r") as textfile: # line = textfile.readline().strip() # arduino_mapping = line.upper().split(',') # # except IOError: # raise Exception('File not found: ' + mappingfile) if _SOLVER: # NumPy library for solving linear equations in another way import numpy as np if _GRAPHICS: # libraries for drawing import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d # From here: def mat_vec_mult(mat_a, vec_b): """ Multiplying matrix with a vector, giving the result as a vector Source: https://stackoverflow.com/questions/10508021/matrix-multiplication-in-python """ vec_c = [0.]*len(mat_a) for i, row in enumerate(mat_a): for j, elem in enumerate(vec_b): vec_c[i] += row[j]*elem return vec_c def invert(mat_x): """ Invert a matrix X according to gauss-jordan elimination In gauss-jordan elimination, we perform basic row operations to turn a matrix into row-echelon form. If we concatenate an identity matrix to our input matrix during this process, we will turn the identity matrix into our inverse. X - input list of lists where each list is a matrix row output - inverse of X Source: http://www.vikparuchuri.com/blog/inverting-your-very-own-matrix/ """ #copy X to avoid altering input mat_x = deepcopy(mat_x) #Get dimensions of X rows = len(mat_x) cols = len(mat_x[0]) #Get the identity matrix and append it to the right of mat_x #This is done because our row operations will make the identity into the inverse identity = make_identity(rows, cols) for i in xrange(0, rows): mat_x[i] += identity[i] i = 0 for j in xrange(0, cols): #print("On col {0} and row {1}".format(j, i)) #Check to see if there are any nonzero values below the current row in the current column zero_sum, first_non_zero = check_for_all_zeros(mat_x, i, j) #If everything is zero, increment the columns if zero_sum == 0: if j == cols: return mat_x raise Exception("Matrix is singular") #If mat_x[i][j] is 0, and there is a nonzero value below it, swap the two rows if first_non_zero != i: mat_x = swap_row(mat_x, i, first_non_zero) #Divide mat_x[i] by mat_x[i][j] to make mat_x[i][j] equal 1 mat_x[i] = [m/mat_x[i][j] for m in mat_x[i]] #Rescale all other rows to make their values 0 below mat_x[i][j] for k in xrange(0, rows): if k != i: scaled_row = [mat_x[k][j] * m for m in mat_x[i]] mat_x[k] = [mat_x[k][m] - scaled_row[m] for m in xrange(0, len(scaled_row))] #If either of these is true, we have iterated through the matrix, and are done if i == rows or j == cols: break i += 1 #Get just the right hand matrix, which is now our inverse for i in xrange(0, rows): mat_x[i] = mat_x[i][cols:len(mat_x[i])] return mat_x def check_for_all_zeros(mat_x, i, j): """ Check matrix mat_x to see if only zeros exist at or below row i in column j mat_x - a list of lists i - row index j - column index returns - zero_sum - the count of non zero entries first_non_zero - index of the first non value """ non_zeros = [] first_non_zero = -1 for k in xrange(i, len(mat_x)): non_zero = mat_x[k][j] != 0 non_zeros.append(non_zero) if first_non_zero == -1 and non_zero: first_non_zero = k zero_sum = sum(non_zeros) return zero_sum, first_non_zero def swap_row(mat_x, i, j): """ Swap row i and row j in a list of lists mat_x - list of lists i - row index j - row index returns- modified matrix """ mat_x[j], mat_x[i] = mat_x[i], mat_x[j] return mat_x def swap_col(mat_x, i, j): """ Swap colum i and column j in a list of lists mat_x - list of lists i - column index j - column index returns- modified matrix """ for item in mat_x: item[i], item[j] = item[j], item[i] return mat_x def make_identity(row_num, col_num): """ Make an identity matrix with dimensions rxc row_num - number of rows col_num - number of columns returns - list of lists corresponding to the identity matrix """ identity = [] for i in xrange(0, row_num): row = [] for j in xrange(0, col_num): elem = 0 if i == j: elem = 1 row.append(elem) identity.append(row) return identity if _GRAPHICS: class Arrow3D(FancyArrowPatch): """ Vector drawer module from the internet """ def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): _xs3d, _ys3d, _zs3d = self._verts3d _xs, _ys, _zs = proj3d.proj_transform(_xs3d, _ys3d, _zs3d, renderer.M) self.set_positions((_xs[0], _ys[0]), (_xs[1], _ys[1])) FancyArrowPatch.draw(self, renderer) def plotstructure(struct, showorig, showresult, showsupports, \ showforces, showreactions, scaledisp, scale_f, z_corr, showvalues, saveplot): """ General plotting method for structures scaledisp: Scale drwaing of displacements scale_f: Scale force sign z_corr: Scale z-axis """ plotname = struct.name plot_width = 18.0 # Plot width in inches xframe = 0 # Frame width at X direction yframe = 0 # Frame width at Y direction zframe = 0 # Frame width at Z direction scale_sup = scale_f*0.3 # Scale support sign # All the others are input parameters # Stress coloring settings [R G B] - Examples considering pressure: # 0: [1, 0, 0] Plain red # 1: [x, 0, 0] Red to Black # 2: [1, 1-x, 0-x] Red to White # 3: [1, (1-x)/2, (1-x)/2] Red to MildRed - Distincts pressure and tension # 4: [x, 1-x, 0] Red to Green _coloring = 3 # € [0, 1, 2, 3, 4] fig = plt.figure() _ax = fig.add_subplot(111, projection='3d') if struct.dof == 2: _ax.view_init(elev=90., azim=-90.) _ax.w_zaxis.line.set_lw(0.) _ax.set_zticklabels([]) xmin = min(list(struct.nodalcoord[x][0] for x in range(struct.nodenum))) xmax = max(list(struct.nodalcoord[x][0] for x in range(struct.nodenum))) ymin = min(list(struct.nodalcoord[x][1] for x in range(struct.nodenum))) ymax = max(list(struct.nodalcoord[x][1] for x in range(struct.nodenum))) zmin = min(list(struct.nodalcoord[x][2] for x in range(struct.nodenum))) zmax = max(list(struct.nodalcoord[x][2] for x in range(struct.nodenum))) deltax = xmax - xmin deltay = ymax - ymin xframe = max(deltax * 0.05, 2) yframe = max(deltay * 1.5, 2) if struct.dof == 3: plot_height = plot_width * ((deltay + yframe*2)/(deltax + xframe*2)) *0.3 else: plot_height = plot_width * 0.5 fig.set_size_inches(plot_width, plot_height) _ax.set_xlim3d(xmin - xframe, xmax + xframe) _ax.set_ylim3d(ymin - yframe, ymax + yframe) _ax.set_zlim3d(zmin - zframe, zmax + zframe) if showorig == showresult: _coloring = 0 # Giving plot names if showorig == 1 and showresult == 0 and showsupports == 1 and showreactions == 0: plotname += ' - Initial structure' if showforces: plotname += ' with forces' elif showorig == 1 and showresult == 1: plotname += ' - Deformation' if showreactions == 0: plotname += ' with reactions' elif showorig == 0 and showresult == 1: plotname += ' - Stresses' if showreactions == 0: plotname += ' with reactions' else: plotname += ' - Unnamed' print plotname + ": " if showresult: dipslaydisplacement = deepcopy(struct.nodalcoord_def) if scaledisp != 1.0: if _LOG: print('Displacements are scaled with factor: ') + str(scaledisp) for i in range(struct.nodenum): for j in range(3): dipslaydisplacement[i][j] = (struct.nodalcoord_def[i][j] -\ struct.nodalcoord[i][j]) * scaledisp + struct.nodalcoord[i][j] for i in range(struct.elenum): # Plot undeformed structure if showorig: _ax.plot([struct.nodalcoord[struct.node[i][1]][0], struct.nodalcoord[struct.node[i][0]][0]], \ [struct.nodalcoord[struct.node[i][1]][1], struct.nodalcoord[struct.node[i][0]][1]], \ zs=[struct.nodalcoord[struct.node[i][1]][2], struct.nodalcoord[struct.node[i][0]][2]], color='b') # Plot deformed structure if showresult: if struct.postprocessed(): if struct.stresscolor[i] > 0: if _coloring == 1: rgb_col = [0, 0, abs(struct.stresscolor[i])] elif _coloring == 2: rgb_col = [1-abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i]), 1] elif _coloring == 3: rgb_col = [(1-abs(struct.stresscolor[i]))/2, \ (1-abs(struct.stresscolor[i]))/2, 1] elif _coloring == 4: rgb_col = [0, 1-abs(struct.stresscolor[i]), \ abs(struct.stresscolor[i])] else: rgb_col = [1, 0, 0] else: if _coloring == 1: rgb_col = [abs(struct.stresscolor[i]), 0, 0] elif _coloring == 2: rgb_col = [1, 1-abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i])] elif _coloring == 3: rgb_col = [1, (1-abs(struct.stresscolor[i]))/2, \ (1-abs(struct.stresscolor[i]))/2] elif _coloring == 4: rgb_col = [abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i]), 0] else: rgb_col = [1, 0, 0] else: print 'Stresses are not calculated' rgb_col = [1, 0, 0] _ax.plot([dipslaydisplacement[struct.node[i][1]][0], dipslaydisplacement[struct.node[i][0]][0]], \ [dipslaydisplacement[struct.node[i][1]][1], dipslaydisplacement[struct.node[i][0]][1]], \ zs=[dipslaydisplacement[struct.node[i][1]][2], dipslaydisplacement[struct.node[i][0]][2]], color=rgb_col) if showforces: for i in struct.known_f_notzero: if struct.force[i] < 0: value = -1.0 else: value = 1.0 if i % 3 == 0: f_dir = [value*scale_f, 0., 0.] elif i % 3 == 1: f_dir = [0., value*scale_f, 0.] else: f_dir = [0., 0., value*scale_f*z_corr] f_arrow = Arrow3D([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0] + f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1] + f_dir[1]], \ [struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2] + f_dir[2]], \ mutation_scale=20, lw=1, arrowstyle="-|>", color="k") _ax.add_artist(f_arrow) if showreactions: e_previous = -100 for i in struct.known_dis_a: value = 0.0 # Maybe this is useless <XXX> if struct.force[i] < 0: value = -1.0 elif struct.force[i] > 0: value = 1.0 if i % 3 == 0: f_dir = [value*scale_f, 0., 0.] elif i % 3 == 1: f_dir = [0., value*scale_f, 0.] else: f_dir = [0., 0., value*scale_f*z_corr] if abs(struct.force[i]) > 0: f_arrow = Arrow3D([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0] + f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1] + f_dir[1]], \ [struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2] + f_dir[2]], \ mutation_scale=20, lw=1, arrowstyle="-|>", color="darkolivegreen") _ax.add_artist(f_arrow) if showvalues: _ax.set_xticklabels([]) _ax.set_yticklabels([]) _ax.set_zticklabels([]) if not i//3 == e_previous//3: if struct.dof == 3: _ax.text(struct.nodalcoord[i//3][0], \ struct.nodalcoord[i//3][1], \ struct.nodalcoord[i//3][2], \ "{:10.2f}".format(struct.force[(i//3)*3+0])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+1])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+2]),\ fontsize=12, horizontalalignment='right') elif struct.dof == 2: _ax.text(struct.nodalcoord[i//3][0], \ struct.nodalcoord[i//3][1], \ struct.nodalcoord[i//3][2], \ "{:10.2f}".format(struct.force[(i//3)*3+0])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+1]),\ fontsize=12, horizontalalignment='right') e_previous = i if showsupports: for i in struct.known_dis_a: if i % 3 == 0: f_dir = [-1.0 * scale_sup, 0., 0.] col = 'g' elif i % 3 == 1: f_dir = [0., -1.0 * scale_sup, 0.] col = 'y' else: f_dir = [0., 0., -1.0 * scale_sup * z_corr] col = 'brown' if i % 3 != 2 or struct.dof == 3: _ax.plot([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0]+f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1]+f_dir[1]], \ zs=[struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2]+f_dir[2]], \ color=col, linewidth=4.0) plt.show() if saveplot: fig.savefig(plotname + '.png') print '\'' + plotname +'.png\' is saved.' print '------------------------------------' return def endoffile(givenfile, line): """ Check if end of file is reached. Implemented due to compatibility reasons. """ if _OSLIBRARYAVAILABLE: return givenfile.tell() < os.fstat(givenfile.fileno()).st_size else: return not line == "EOF" def logtime(prev_time, title): """ Calculating and printing the time consumption of tasks Should be called with the previously saved part-time and the name of the actual task At the first call, should be called with TIC value. The input argument should be overwritten by this funvtion's return value. """ if _LOG: new_time = time.time() print title print 'Time: ' + str("{:10.3f}".format(new_time - prev_time)) print '------------------------------------' return new_time else: return 0 def error(delta): """ Error function using least-square method """ sumerr = 0 for deltaelement in delta: sumerr += deltaelement**2 sumerr = math.sqrt(sumerr) return sumerr class Truss(object): """ General structure class """ def __init__(self, name): self.name = name # Name of structure self.known_f_a = [] # Nodes without supports self.known_f_notzero = [] # Nodes with loads self.dof = 3 # Truss's degree of freedom self.node = [] # Element's end nodes self.constraint = [] # Supports self.force = [] # Force self.nodalcoord = [] # Coordinates of nodes self.nodalcoord_def = [] # Coordinates after deformations self.area = [] # Cross-sectional areas self.el_mod = [] # Material data self.nodenum = 0 # Number of nodes self.elenum = 0 # Number of elements self.eledof = [] # Mapping between DOF and node self.stiffness = [] # Global stiffness matrix self.mod_stiffnesses = [] # Modified stiffnesses in a hyper-matrix self.ele_length = [] # Length of the elements self._norm_stiff = [] # E/L self._cx = [] self._cy = [] self._cz = [] self._s_loc = [] self._loc_stiff = [] # Local stiffnes matrix self.dis_new = [] self.force_new = [] self.stiff_new = [] self.displacement = [] # Relative displacements self._stiffisfresh = 0 self._postprocessed = 0 self.init_disp = [] self.stresscolor = [] # Color mapping for stresses self.known_dis_a = [] self.stress = [] # Element's stresses self._io_origin = 0 # Array's first element number during IO. Default is 0. self.analysis = {} self._mod_stiffisfresh = 0 self.mod_displacements = [] self.keypoint = [] self.keypnum = 0 self.effect = [] self.toteffect = [] self.sortedeff = [] self.specdof_inputstring = '' self.tresshold = 0.1 self.effectratio = [] self.processeddata = [] # To store last input line self.modifications = [] # Storing modifications for model updating self.readelements = [0]*9 self.arduino_mapping = [] self.errorlimit = 0.5 self.modificationlimit = 0.6 self.unitmodification = 0.05 self.measurement = [0.] self.numofupdates = [0, 0, 0] # [#Successfully updated model, #Updates with overflow exit, #Updates where there were no more modification option] self.iterationlimit = 20 def read(self, filename): """ Input file for TRUSS.py program All commands must be written with uppercase characters *** The values MUST be written in the exact following line of a command Only lines with the command and nothing more counts. Everything else will be neglected. Even hastags are useless :) The order of the commands are indifferent. Commands and their format (example): DOF - Degree of freedom: 3 ELEMENTS - Elements given by end-nodes: 0, 1 | 0, 2 ... COORDINATES - Nodal coordinates: 0., 0., 0., | 0., 3., 0. ... CROSS-SECTIONS - This data will be evaluated in Python: 3.0*(10**(-4)), 5.0*(10**(-4)) ... MATERIALS - This data will be evaluated in Python: 70.0*(10**9), 100.0*(10**9) ... FORCES - Selected DOF + Force: 11, +1000000.0 | 12, +1000000.0 ... SUPPORTS - Selected DOF + Prescribed displacement: 0, 0.0 | 1, 0.0 ... SPECDOF - Selected node's DOF will be analysed during Model Updating: 1, xyz | 3 y | 10 xz ... EOF - For compatibility reasons EOF should be placed after the commands """ self._io_origin = 0 readelementnames = ["Origin", "DOF", "Elements", "Coordinates", "Cross-sections", "Materials", "Forces", "Supports", "Measured DOFs"] with open(filename, "r") as sourcefile: sourceline = "" while endoffile(sourcefile, sourceline): sourceline = sourcefile.readline().strip() if sourceline.upper() == "_ORIGIN": sourceline = sourcefile.readline().strip() self._io_origin = int(sourceline) self.readelements[0] = 1 if sourceline.upper() == "DOF": sourceline = sourcefile.readline().strip() self.setdof(int(sourceline)) self.readelements[1] = 1 if sourceline.upper() == "ELEMENTS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, int(x[1]) - self._io_origin] for x in inpstr] self.setelements(inpnum) self.readelements[2] = 1 if sourceline.upper() == "COORDINATES": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) if self.dof == 3: inpnum = [[float(x[0]), float(x[1]), float(x[2])] for x in inpstr] elif self.dof == 2: inpnum = [[float(x[0]), float(x[1]), 0.] for x in inpstr] self.setcoordinates(inpnum) self.readelements[3] = 1 if sourceline.upper() == "CROSS-SECTIONS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = sourceline.split(',') if len(inpstr) == 1: inpstr = sourceline.split(';') if '' in inpstr: inpstr.remove('') inpnum = [float(eval(x)) for x in inpstr] self.setcrosssections(inpnum) self.readelements[4] = 1 if sourceline.upper() == "MATERIALS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = sourceline.split(',') if len(inpstr) == 1: inpstr = sourceline.split(';') if '' in inpstr: inpstr.remove('') inpnum = [float(eval(x)) for x in inpstr] self.setmaterials(inpnum) self.readelements[5] = 1 if sourceline.upper() == "FORCES": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, float(x[1])] for x in inpstr] self.setforces(sorted(inpnum)) self.readelements[6] = 1 if sourceline.upper() == "SUPPORTS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, float(x[1])] for x in inpstr] self.setsupports(sorted(inpnum)) self.readelements[7] = 1 if sourceline.upper() == "MEASUREMENTS": sourceline = sourcefile.readline().strip() self.specdof_inputstring = sourceline inpstr = [] self.arduino_mapping = sourceline.split(',') self.setspecdofs(self.arduino_mapping) self.readelements[8] = 1 terminate = False for i, value in enumerate(self.readelements): if i > 0 and (i < 8 or _UPDATING): #if i > 0: if value == 0: print "The following was not found: " + readelementnames[i] terminate = True if terminate: raise Exception def plot(self, showorig, showresult, showsupports, showforces, \ showreactions, scaledisplacement, scaleforce, scalez, saveplot): """ Plot function of the Truss class This method calls the more general plotstructure() method. Plot settings: O: Original D: Deformed S: Supports F: Forces R: Reactions ScD: Scale displacments (Z-axis) (def:1.0) ScF: Scale forces (def:1.0) ScS: Scale Support signs (Z-axis) (def:1.0) Save: Save plot to file plot(O, D, S, F, R, ScD, ScF, ScS, Save) """ _showvalues = 1 # Show values of forces if self._postprocessed == 0: print 'Postprocess is needed before plotting structure!' else: if scaledisplacement == 0: scaledisplacement = 1.0 # Scale drwaing of displacements if scaleforce == 0: scaleforce = 1.0 # Scale force sign if scalez == 0: scalez = 0.3 # Scale z-axis plotstructure(self, showorig, showresult, showsupports, showforces, showreactions, \ scaledisplacement, scaleforce, scalez, _showvalues, saveplot) def __checkcoordinates(self, ignorable): """ Checking coordinates for repeating elements. ignorable: [True | False] If the warning is ignorable, only message apperas and the input becomes neglected. If the warning is not ignorable, then exceptions will be raised. return: [0 | 1] 1 f no error found, otherwise 0. """ if len(self.nodalcoord) != len(list(k for k, _ in itertools.groupby(sorted(self.nodalcoord)))): if ignorable == 0: raise Exception('Coordinate list has repeating items. Calculation is terminated') else: print "This node already exists. Input is ignored." return 0 else: return 1 def setdof(self, dof): """ Setting problem's degree of freedom dof: [2 | 3] Model's Degree Of Freedom. """ self.dof = dof if self.dof != 2 and self.dof != 3: raise Exception('DOF must be 2 or 3.') self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setelements(self, node): """ Setting elements (nodal connections) in bulk mode """ self.node = node self.nodenum = len(set(list(itertools.chain.from_iterable(sorted(self.node))))) self.elenum = len(self.node) self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 # Creating mapping tool for elements for node in self.node: self.eledof.append([node[0]*3, node[0]*3+1, node[0]*3+2, \ node[1]*3, node[1]*3+1, node[1]*3+2]) # Initialazing matrix for all matrices self.init_disp = [0.]*(3*self.nodenum) self.force = [0.]*(3*self.nodenum) self.stiffness = [0.]*(3*self.nodenum) self.known_f_a = [] self.known_f_notzero = [] def setcoordinates(self, coordinates): """ Setting coordinates in bulk mode """ self.nodalcoord = coordinates self._stiffisfresh = 0 self._mod_stiffisfresh = 0 if self.nodenum > len(self.nodalcoord): raise Exception('More coordinates are needed') elif self.node == []: raise Exception('Nodes must be set before defining elements') self.__checkcoordinates(False) def modcoordinate(self, node, coordinate): """ Modify coordinate """ if self.__checkcoordinates(True): self.nodalcoord[node] = coordinate self._stiffisfresh = 0 self._mod_stiffisfresh = 0 def setcrosssections(self, area): """ Setting cross-sections in bulk mode """ self.area = area self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def modcrosssection(self, element, area): """ Modifying cross-sections by elements """ self.area[element] = area self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setmaterials(self, el_mod): """ Setting material data in bulk mode """ self.el_mod = el_mod self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def modmaterial(self, element, el_mod): """ Modifying material data by elements """ self.el_mod[element] = el_mod self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setforces(self, forces): """ Set forces """ for fdof, force in forces: if self.dof == 3: self.force[fdof] = force elif self.dof == 2: self.force[fdof + (fdof//2)] = force self._postprocessed = 0 def modforce(self, element, force): """ Modifying forces by each """ self.force[element] = force self._postprocessed = 0 def setsupports(self, constraints): """ Set supports """ for cdof, constraint in constraints: if self.dof == 3: self.constraint.append([cdof, constraint]) elif self.dof == 2: self.constraint.append([cdof + (cdof // 2), constraint]) self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setspecdofs(self, specdofs): """ Set special nodal DOFs """ self.analysis = {} for dofname in specdofs: node = int(dofname[:len(dofname)-1])-self._io_origin if 'X' in dofname: self.analysis[dofname] = node*3+0 self.keypoint.append(node*3+0) if 'Y' in dofname: self.analysis[dofname] = node*3+1 self.keypoint.append(node*3+1) if 'Z' in dofname: if self.dof == 3: self.analysis[dofname] = node*3+2 self.keypoint.append(node*3+2) else: print "Z-direction is not allowed in 2D structures. Please check the \'MEASUREMENTS\' section in the input file." raise Exception self.keypnum = len(self.analysis) if self.keypnum == 0 and _UPDATING: print "There is no valid measured DOF. Please check the \'MEASUREMENTS\' section in the input file." raise Exception def calcstiffness(self): """ Stiffness matrix compilation """ self._postprocessed = 0 if self.dof == 2: for zdof in range(self.nodenum): self.constraint.append([int(zdof*3+2), 0.]) self.constraint = list(k for k, _ in itertools.groupby(sorted(self.constraint))) #Setting known forces for dofloc in range(3*self.nodenum): self.known_f_a.append(dofloc) if self.force[dofloc] != 0: self.known_f_notzero.append(dofloc) self.known_dis_a = [] for constr in self.constraint: self.init_disp[constr[0]] = constr[1] self.known_dis_a.append(constr[0]) try: self.known_f_a.remove(constr[0]) self.known_f_notzero.remove(constr[0]) except ValueError: pass ele_length = [0.]*self.elenum self._norm_stiff = [0.]*self.elenum self._cx = [0.]*self.elenum self._cy = [0.]*self.elenum self._cz = [0.]*self.elenum self._s_loc = [0.]*self.elenum self._loc_stiff = [0.]*self.elenum self.stress = [0.]*self.elenum self.stiffness = [[0.]*(len(self.nodalcoord)*3)]*(len(self.nodalcoord)*3) for i in range(self.elenum): ele_length[i] = math.sqrt((self.nodalcoord[self.node[i][1]][0]-self.nodalcoord[self.node[i][0]][0])**2+ \ (self.nodalcoord[self.node[i][1]][1]-self.nodalcoord[self.node[i][0]][1])**2 + \ (self.nodalcoord[self.node[i][1]][2]-self.nodalcoord[self.node[i][0]][2])**2) self._cx[i] = (self.nodalcoord[self.node[i][1]][0]-self.nodalcoord[self.node[i][0]][0])/ele_length[i] self._cy[i] = (self.nodalcoord[self.node[i][1]][1]-self.nodalcoord[self.node[i][0]][1])/ele_length[i] self._cz[i] = (self.nodalcoord[self.node[i][1]][2]-self.nodalcoord[self.node[i][0]][2])/ele_length[i] self._norm_stiff[i] = self.el_mod[i]/ele_length[i] self._s_loc[i] = [[self._cx[i]**2, self._cx[i]*self._cy[i], self._cx[i]*self._cz[i], -self._cx[i]**2, -self._cx[i]*self._cy[i], -self._cx[i]*self._cz[i]], \ [self._cx[i]*self._cy[i], self._cy[i]**2, self._cy[i]*self._cz[i], -self._cx[i]*self._cy[i], -self._cy[i]**2, -self._cy[i]*self._cz[i]], \ [self._cx[i]*self._cz[i], self._cy[i]*self._cz[i], self._cz[i]**2, -self._cx[i]*self._cz[i], -self._cy[i]*self._cz[i], -self._cz[i]**2], \ [-self._cx[i]**2, -self._cx[i]*self._cy[i], -self._cx[i]*self._cz[i], self._cx[i]**2, self._cx[i]*self._cy[i], self._cx[i]*self._cz[i]], \ [-self._cx[i]*self._cy[i], -self._cy[i]**2, -self._cy[i]*self._cz[i], self._cx[i]*self._cy[i], self._cy[i]**2, self._cy[i]*self._cz[i]], \ [-self._cx[i]*self._cz[i], -self._cy[i]*self._cz[i], -self._cz[i]**2, self._cx[i]*self._cz[i], self._cy[i]*self._cz[i], self._cz[i]**2]] self._loc_stiff[i] = [[y* self.area[i]* self._norm_stiff[i] for y in x] for x in self._s_loc[i]] ele_dof_vec = self.eledof[i] stiffincrement = [0.]*(len(self.nodalcoord)*3) for j in range(3*2): for k in range(3*2): stiffincrement[ele_dof_vec[k]] = self._loc_stiff[i][j][k] self.stiffness[ele_dof_vec[j]] = [x + y for x, y in zip(self.stiffness[ele_dof_vec[j]], stiffincrement)] self._stiffisfresh = 1 def calcmodstiffness(self, index, magnitude): """ Convergency step in stiffness matrix modification """ if self.mod_stiffnesses == []: self.mod_stiffnesses = [0.]*(self.elenum+1) #for loopindex in range(self.elenum): _mod_stiffnesses_temp = [[0.]*(len(self.nodalcoord)*3)]*(len(self.nodalcoord)*3) for i in range(self.elenum): if i == index: _mod_norm_stiff = self._norm_stiff[i] * (1.0 + self.modifications[i] + magnitude) #self.el_mod[i]/ele_length[i] else: _mod_norm_stiff = self._norm_stiff[i] * (1.0 + self.modifications[i]) #self.el_mod[i]/ele_length[i] _mod_loc_stiff = [[y*self.area[i]*_mod_norm_stiff for y in x] for x in self._s_loc[i]] ele_dof_vec = self.eledof[i] stiffincrement = [0.]*(len(self.nodalcoord)*3) for j in range(3*2): for k in range(3*2): stiffincrement[ele_dof_vec[k]] = _mod_loc_stiff[j][k] _mod_stiffnesses_temp[ele_dof_vec[j]] = [x + y for x, y in zip(_mod_stiffnesses_temp[ele_dof_vec[j]], stiffincrement)] self.mod_stiffnesses[index] = _mod_stiffnesses_temp def solve(self): """ Main solver of the code """ if self._stiffisfresh == 0: if _LOG: print 'Stiffness matrix is recalculated' self.calcstiffness() self.dis_new = [0.]*(self.nodenum*3-len(self.constraint)) self.force_new = [0.]*(self.nodenum*3-len(self.constraint)) self.stiff_new = [[0.]*(self.nodenum*3-len(self.constraint))]*(self.nodenum*3-len(self.constraint)) # known force array for i, known_f_a in enumerate(self.known_f_a): self.force_new[i] = self.force[known_f_a] stiffincrement = [0.]*(self.nodenum*3-len(self.constraint)) for i, kfai in enumerate(self.known_f_a): for j, kfaj in enumerate(self.known_f_a): stiffincrement[j] = self.stiffness[kfai][kfaj] self.stiff_new[i] = [x + y for x, y in zip(self.stiff_new[i], stiffincrement)] # SOLVING THE STRUCTURE if _SOLVER == 0: if _LOG: print 'Built-in solver' self.dis_new = mat_vec_mult(invert(self.stiff_new), self.force_new) else: if _LOG: print 'NumPy solver' self.dis_new = np.linalg.solve(np.array(self.stiff_new), np.array(self.force_new)) self.displacement = deepcopy(self.init_disp) for i, known_f_a in enumerate(self.known_f_a): self.displacement[known_f_a] = self.dis_new[i] # Deformed shape self.nodalcoord_def = [] for i in range(self.nodenum): self.nodalcoord_def.append([self.nodalcoord[i][0]+ self.displacement[i*3+0], \ self.nodalcoord[i][1]+ self.displacement[i*3+1], self.nodalcoord[i][2]+ self.displacement[i*3+2]]) # Postrpocesses self.postprocess() self.mod_displacements = [0.]*(self.elenum+1) def solvemodstruct(self, index): """ Solver for the modified structures. 'Index' shows the actual modification number. """ self.mod_displacements[index] = [0.]*(self.nodenum*3) dis_new = [0.]*(self.nodenum*3-len(self.constraint)) stiff_new = [[0.]*(self.nodenum*3-len(self.constraint))]*(self.nodenum*3-len(self.constraint)) stiffincrement = [0.]*(self.nodenum*3-len(self.constraint)) for i, kfai in enumerate(self.known_f_a): for j, kfaj in enumerate(self.known_f_a): stiffincrement[j] = self.mod_stiffnesses[index][kfai][kfaj] stiff_new[i] = [x + y for x, y in zip(stiff_new[i], stiffincrement)] # SOLVING THE MODIFIED STRUCTURE if _SOLVER == 0: dis_new = mat_vec_mult(invert(stiff_new), self.force_new) else: dis_new = np.linalg.solve(np.array(stiff_new), np.array(self.force_new)) mod_displacement_temp = deepcopy(self.init_disp) for i, kfa in enumerate(self.known_f_a): mod_displacement_temp[kfa] = dis_new[i] - self.dis_new[i] self.mod_displacements[index] = [x + y for x, y in zip(self.mod_displacements[index], mod_displacement_temp)] def evaluate(self): """ Calculates the relative displacement of each individual available unit-modification compared to the measured differencies (delta). delta: [DOF number, difference] return effect: [efffect on 1. point, effect on 2. point, ..., modification number] where each line number shows the corresponding modification number """ self.effect = [[0.]*(self.keypnum + 2)]*self.elenum self.toteffect = [0.]*self.keypnum self.sortedeff = [[[0.]*(self.keypnum + 2)]*self.elenum]*self.keypnum effect_temp = [0.]*(self.keypnum + 2) for modnum in range(self.elenum): effect_temp[self.keypnum] = int(modnum) for j, dofnum in enumerate(self.keypoint): try: effect_temp[j] = self.mod_displacements[modnum][dofnum] self.effect[modnum] = [x for x in effect_temp] self.toteffect[j] += abs(self.effect[modnum][j]) except IndexError: print "Maybe the mapping data is invalid." print "Please check the \'arduino_mapping.txt\' input whether the given DOFs are correct or not." raise IndexError self.effectratio = deepcopy(self.effect) for i in range(self.elenum): for j in range(self.keypnum): if self.toteffect[j] > 0: self.effectratio[i][j] = abs(self.effectratio[i][j]/self.toteffect[j]) else: self.effectratio[i][j] = 0 #print " \'effectratio\' is not used yet" # Sort by effectiveness for i in range(self.keypnum): self.sortedeff[i] = deepcopy(self.effect) # Check sign of the effect for ktemp in range(self.elenum): if self.sortedeff[i][ktemp][i] < 0: for jtemp in range(self.keypnum): self.sortedeff[i][ktemp][jtemp] = abs(self.sortedeff[i][ktemp][jtemp]) self.sortedeff[i][ktemp][self.keypnum +1] = -1 else: self.sortedeff[i][ktemp][self.keypnum +1] = +1 for j in range(self.keypnum): if i != j and j != 0: self.sortedeff[i] = swap_col(sorted(swap_col(self.sortedeff[i], 0, j), reverse=True), 0, j) if i != 0: self.sortedeff[i] = swap_col(sorted(swap_col(self.sortedeff[i], 0, i), reverse=True), 0, i) else: self.sortedeff[i] = sorted(self.sortedeff[i], reverse=True) def difference(self, num_displ, measurement): """ Calculate the difference between the Numerical solution and Real-life measurement. The Real-life measurement should be given the following format: MEASUREMENT: [[13X, -2.154], [16Y, 5.256], ...] """ #Print nodenumber option should be added! <XXX> delta = [] for loc, measured in measurement: try: dof = self.analysis[loc.upper()] except KeyError: print 'The given measurement location cannot be matched with the input data.' print 'The available nodes are: {\'NAMES\': mapping addresses}' print self.analysis SER.close() raise Exception('Watchpoint name error') delta.append(measured - num_displ[dof]) return delta def optimize(self, delta): """ Modell updating - core function """ #modnum = min(10, self.elenum) modnum = self.elenum self.modifications = [0.0]*self.elenum if not _SIMULATION: appendix = "" else: appendix = " - SIMULATED" newdelta = delta j = 0 print "-----" print "Step: 0/"+ str(self.iterationlimit) while (error(newdelta) > self.errorlimit and j <= self.iterationlimit and (self.capable() or j <= 1)): # Optimization loop j += 1 print "Error: " + str(error(newdelta)) print "-----" print "Step: " + str(j) + "/"+ str(self.iterationlimit) ratio = [0.]*modnum unit = 0 prevmodifications = self.modifications for index in range(self.elenum): self.modifications[index] = min(abs(self.modifications[index] - self.unitmodification), self.modificationlimit) *math.copysign(1, self.modifications[index]- self.unitmodification) self.calcmodstiffness(index, self.modifications[index]) self.solvemodstruct(index) self.evaluate() self.calcmodstiffness(self.elenum, 0) self.solvemodstruct(self.elenum) newdelta = self.difference(self.mod_displacements[self.elenum], self.measurement) for i, effect in enumerate(self.toteffect): if effect == 0.0: print "None of the variables has effect on " + str(self.arduino_mapping[i]) print "Model updating has no solution." raise Exception for i in range(self.elenum): modificationnumber = self.sortedeff[0][i][1] ratio[modificationnumber] = abs(self.sortedeff[0][i][0] / self.toteffect[0])*math.copysign(1, self.sortedeff[0][i][2]) unit += abs(ratio[modificationnumber]*self.sortedeff[0][i][0]) scale = newdelta[0]/unit for i in range(self.elenum): modificationnumber = self.sortedeff[0][i][1] self.modifications[modificationnumber] = min(abs(prevmodifications[modificationnumber] - self.unitmodification*ratio[modificationnumber]), self.modificationlimit)\ *math.copysign(1, prevmodifications[modificationnumber] - self.unitmodification*ratio[modificationnumber]) # the last part is already the sign itself without the sign function print "Ratio: " + str(scale) print "Final error: " + str(error(newdelta)) if not self.capable() and j > 1: print "Optimization could not be finished successfully." print "The remaining error is: " + str(error(newdelta)) with open(self.name + ' - UpdateResults'+ appendix +'.txt', 'a') as outfile: if j > 1: if j <= self.iterationlimit and self.capable(): self.numofupdates[0] += 1 outfile.write("Update state: SUCCESSFUL\n") if not j <= self.iterationlimit: self.numofupdates[1] += 1 outfile.write("Update state: Run out of iteration limit\n") if not self.capable() and j > 1: self.numofupdates[2] += 1 outfile.write("Update state: No more possible modification\n") else: outfile.write("Update state: Optimization was skipped\n") outfile.write("Requiered iterations: " + str(j) + "\n") outfile.write("Measurement: " + str(self.measurement) + "\n") outfile.write("Original delta: " + str(delta) + "\n") outfile.write("New delta: " + str(newdelta) + " (limit: " + str(self.errorlimit) +")\n") outfile.write("Final error: " + str(error(newdelta)) + "\n") outfile.write("Modifications [%]: \n") outfile.write(str(self.modifications) + "\n") outfile.write("Original displacements: \n") outfile.write(str(self.displacement) + "\n") if j > 1: outfile.write("New displacements: \n") outfile.write(str(self.mod_displacements[self.elenum]) + "\n") outfile.write("----------------------\n") def capable(self): """ Function telling whether there are more options to modify """ capable = False for variable in self.modifications: if abs(variable) <= 0.95*self.modificationlimit and abs(variable) > 0.01: capable = True return capable def seterrorlimit(self, errorlimit): """ Setting general stop parameter for model updating """ if errorlimit > 0.0: self.errorlimit = errorlimit else: print "The error limit must be a positive number" raise Exception def setmodificationlimit(self, modificationlimit): """ Setting modification limit for members (model updating) """ if modificationlimit > 0.0 and modificationlimit < 1.0: self.modificationlimit = modificationlimit else: print "The modification limit must be higher than 0.0 and lower than 1.0" raise Exception def setunitmodification(self, unitmodification): """ Setting modification step (model updating) """ if abs(unitmodification) >= 0.01 and abs(unitmodification) < 0.5: self.unitmodification = unitmodification else: print "The absolut value of the unit modification must be minimum 0.01 and maximum 0.5" raise Exception def setiterationlimit(self, iterationlimit): """ Setting maximum number of iterations (model updating) """ if int(iterationlimit) > 1 and int(iterationlimit) <= math.pow(10, 4): self.iterationlimit = int(iterationlimit) else: print "The iterationlimit must be between 2 and 10.000" raise Exception def readarduino(self, base, saveinput): """ Read data from Arduino """ # Read data from Arduino maxdifference = 0.8 # Maximum input difference treshold in mm arduinovalues = [] data = [0.]*len(self.arduino_mapping) newdata = False bigdifference = False readerror = False try: arduinoline = SER.readline() if len(arduinoline) > 0: arduinovalues = arduinoline.split(',') try: if arduinovalues[0][len(arduinovalues)-1] == '.': arduinovalues[0] = arduinovalues[0][:len(arduinovalues[0])-2] else: del arduinovalues[len(arduinovalues)-1] except IndexError: print "Index Error... continuing" if len(arduinovalues) == len(self.arduino_mapping): try: for i in range(len(self.arduino_mapping)): data[i] = float(arduinovalues[i]) - float(base[i][1]) if abs(data[i] - self.processeddata[i]) > maxdifference: bigdifference = True if abs(float(arduinovalues[i])) < 2.0: readerror = True self.processeddata = data newdata = True except ValueError: print "Value error... continuing" SER.flushInput() time.sleep(0.5) except Exception: print "Type error: " + str(arduinovalues) + "... continuing" SER.flushInput() time.sleep(0.5) SER.flushInput() except serial.SerialTimeoutException: print "Data could not be read... continuing" SER.flushInput() time.sleep(0.5) if newdata and not bigdifference and not readerror: self.measurement = zip(self.arduino_mapping, data) saveinput.write(str(data) +', '+ str(time.time()) + "\n") # Calculate differences delta = self.difference(self.displacement, self.measurement) print "Delta: " + str(delta) newdata = False bigdifference = False readerror = False return delta newdata = False bigdifference = False readerror = False def simulatearduino(self, arduinoline, prevline): """ Simulate data, based on previous measurement """ arduinovalues = [] data = [0.]*len(self.arduino_mapping) skip = 0 sleeptime = 0. try: try: prevreadtime = float(str(prevline.split(']')[1]).split(',')[1]) nowreadtime = float(str(arduinoline.split(']')[1]).split(',')[1]) try:# -*- coding: utf-8 -*- """ Created on Sun Oct 30 18:49:40 2016 !!! ORIGINAL COPYRIGHT NOTES 3D truss program # In case of special conditions, compatible mode can help get rid of all the unnecessary features # COMPATIBILITY SETTINGS # OVERWRITES ALL OTHER SETTINGS HERE BELOW # 0-Basic solver 1-NumPy solver # Importing modules # Mathematical library | Vector drawing library | Deepcopy for matrix inversion Other libraries might be imported later due to compatibility reasons. """ ### Code for "Processing" only #size(640, 360) #background(126) import math import itertools from copy import deepcopy # COMPATIBILITY MODES: # 0: User defined # 1: Processing3 # 2: Android # 3: Most information (with numpy) # 4: Maximum compatibility _COMPATIBLE_MODE = 0 _SIMULATION = 1 # Simulating measurements based on input file PORTS = ['COM1', 'COM2', 'COM3'] # List of possible communication ports PORTNUMBER = 0 # Applied communication port if _COMPATIBLE_MODE == 00: ### User defined ### # Modify as needed # _MODE_NAME = "User defined" _LOG = 1 # Logging time _GRAPHICS = 1 # Graphical features _SOLVER = 1 # 0: Basic solver, 1: NumPy solver _OSLIBRARYAVAILABLE = 1 # Basic OS file features (e.g. file size) _UPDATING = 1 # Model Updating: On/ Off _ARDUINO = 1 # Arduino input: On/Off _DEBUG = 1 # Debugging mode _REALISTICSIMULATION = 0 # Wait as long as it was originally. Only valid with _SIMULATION = 1 ############################################## ### DO NOT MODIFY ### # # elif _COMPATIBLE_MODE == 01: # ### "Processing 3" mode ### # _MODE_NAME = "Processing 3" # _LOG = 1*1 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 0*0 # _UPDATING = 1*1 # _ARDUINO = 1*1 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # elif _COMPATIBLE_MODE == 02: # ### Android mode ### # # DO NOT MODIFY # _MODE_NAME = "Android" # _LOG = 1*1 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 1*1 # _UPDATING = 0*0 # _ARDUINO = 0*0 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # elif _COMPATIBLE_MODE == 03: # ### Informative ### # # DO NOT MODIFY # _MODE_NAME = "Informative mode" # _LOG = 1*1 # _GRAPHICS = 1*1 # _SOLVER = 1*1 # _OSLIBRARYAVAILABLE = 1*1 # _UPDATING = 1*1 # _ARDUINO = 1*1 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # else: # ### Maximum compatibility ### # # DO NOT MODIFY # _MODE_NAME = "Maximum compatibility" # _LOG = 0*0 # _GRAPHICS = 0*0 # _SOLVER = 0*0 # _OSLIBRARYAVAILABLE = 0*0 # _UPDATING = 0*0 # _ARDUINO = 0*0 # _DEBUG = 0*0 # _REALISTICSIMULATION = 1*1 # # ### DO NOT MODIFY ### # ############################################## if _OSLIBRARYAVAILABLE: import os if _SIMULATION or not _UPDATING: _ARDUINO = 0 if _COMPATIBLE_MODE == 2: os.chdir(os.path.dirname(os.path.abspath(__file__))) if _LOG: import time import datetime TIC = time.time() print '------------------------------------' print 'Truss calculational program' print 'Created by Máté Szedlák (23/11/2016)' print 'Compatibility mode: ' + _MODE_NAME if _SOLVER == 0: print '- Solver is set to default' elif _SOLVER == 1: print '- Solver is set to NumPy' else: raise Exception("Solver settings are invalid!") if _UPDATING: print '+ Model updating is turned ON' if _SIMULATION: print 'Input data is SIMULATED!' else: print '- Model updating is turned OFF' print '------------------------------------' if _ARDUINO: SER = 0 try: import serial except ImportError: print "You tried to import \'serial\' in Windows mode without installing \'pySerial\'." print "Please first install pySerial: http://playground.arduino.cc/Interfacing/Python" raise Exception('Android mode denied: pyserial not found') PORTNUMBER -= 1 while SER == 0: PORTNUMBER += 1 if PORTNUMBER >= len(PORTS): PORTNUMBER = 0 time.sleep(0.6) print 'Opening serial at port ' + str(PORTS[PORTNUMBER]) try: SER.close() except Exception: pass try: SER = serial.Serial(PORTS[PORTNUMBER], 9600, timeout=0) except serial.SerialException: Exception(PORTS[PORTNUMBER] + ' port is busy. It might be occupied by this program or another one :/ Be careful or try resetting this program') SER = 0 try: SER.close() except Exception: pass except Exception: SER = 0 try: SER.close() except Exception: pass #if _ARDUINO or _SIMULATION: # try: # mappingfile = 'arduino_mapping.txt' # with open(mappingfile, "r") as textfile: # line = textfile.readline().strip() # arduino_mapping = line.upper().split(',') # # except IOError: # raise Exception('File not found: ' + mappingfile) if _SOLVER: # NumPy library for solving linear equations in another way import numpy as np if _GRAPHICS: # libraries for drawing import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d # From here: def mat_vec_mult(mat_a, vec_b): """ Multiplying matrix with a vector, giving the result as a vector Source: https://stackoverflow.com/questions/10508021/matrix-multiplication-in-python """ vec_c = [0.]*len(mat_a) for i, row in enumerate(mat_a): for j, elem in enumerate(vec_b): vec_c[i] += row[j]*elem return vec_c def invert(mat_x): """ Invert a matrix X according to gauss-jordan elimination In gauss-jordan elimination, we perform basic row operations to turn a matrix into row-echelon form. If we concatenate an identity matrix to our input matrix during this process, we will turn the identity matrix into our inverse. X - input list of lists where each list is a matrix row output - inverse of X Source: http://www.vikparuchuri.com/blog/inverting-your-very-own-matrix/ """ #copy X to avoid altering input mat_x = deepcopy(mat_x) #Get dimensions of X rows = len(mat_x) cols = len(mat_x[0]) #Get the identity matrix and append it to the right of mat_x #This is done because our row operations will make the identity into the inverse identity = make_identity(rows, cols) for i in xrange(0, rows): mat_x[i] += identity[i] i = 0 for j in xrange(0, cols): #print("On col {0} and row {1}".format(j, i)) #Check to see if there are any nonzero values below the current row in the current column zero_sum, first_non_zero = check_for_all_zeros(mat_x, i, j) #If everything is zero, increment the columns if zero_sum == 0: if j == cols: return mat_x raise Exception("Matrix is singular") #If mat_x[i][j] is 0, and there is a nonzero value below it, swap the two rows if first_non_zero != i: mat_x = swap_row(mat_x, i, first_non_zero) #Divide mat_x[i] by mat_x[i][j] to make mat_x[i][j] equal 1 mat_x[i] = [m/mat_x[i][j] for m in mat_x[i]] #Rescale all other rows to make their values 0 below mat_x[i][j] for k in xrange(0, rows): if k != i: scaled_row = [mat_x[k][j] * m for m in mat_x[i]] mat_x[k] = [mat_x[k][m] - scaled_row[m] for m in xrange(0, len(scaled_row))] #If either of these is true, we have iterated through the matrix, and are done if i == rows or j == cols: break i += 1 #Get just the right hand matrix, which is now our inverse for i in xrange(0, rows): mat_x[i] = mat_x[i][cols:len(mat_x[i])] return mat_x def check_for_all_zeros(mat_x, i, j): """ Check matrix mat_x to see if only zeros exist at or below row i in column j mat_x - a list of lists i - row index j - column index returns - zero_sum - the count of non zero entries first_non_zero - index of the first non value """ non_zeros = [] first_non_zero = -1 for k in xrange(i, len(mat_x)): non_zero = mat_x[k][j] != 0 non_zeros.append(non_zero) if first_non_zero == -1 and non_zero: first_non_zero = k zero_sum = sum(non_zeros) return zero_sum, first_non_zero def swap_row(mat_x, i, j): """ Swap row i and row j in a list of lists mat_x - list of lists i - row index j - row index returns- modified matrix """ mat_x[j], mat_x[i] = mat_x[i], mat_x[j] return mat_x def swap_col(mat_x, i, j): """ Swap colum i and column j in a list of lists mat_x - list of lists i - column index j - column index returns- modified matrix """ for item in mat_x: item[i], item[j] = item[j], item[i] return mat_x def make_identity(row_num, col_num): """ Make an identity matrix with dimensions rxc row_num - number of rows col_num - number of columns returns - list of lists corresponding to the identity matrix """ identity = [] for i in xrange(0, row_num): row = [] for j in xrange(0, col_num): elem = 0 if i == j: elem = 1 row.append(elem) identity.append(row) return identity if _GRAPHICS: class Arrow3D(FancyArrowPatch): """ Vector drawer module from the internet """ def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): _xs3d, _ys3d, _zs3d = self._verts3d _xs, _ys, _zs = proj3d.proj_transform(_xs3d, _ys3d, _zs3d, renderer.M) self.set_positions((_xs[0], _ys[0]), (_xs[1], _ys[1])) FancyArrowPatch.draw(self, renderer) def plotstructure(struct, showorig, showresult, showsupports, \ showforces, showreactions, scaledisp, scale_f, z_corr, showvalues, saveplot): """ General plotting method for structures scaledisp: Scale drwaing of displacements scale_f: Scale force sign z_corr: Scale z-axis """ plotname = struct.name plot_width = 18.0 # Plot width in inches xframe = 0 # Frame width at X direction yframe = 0 # Frame width at Y direction zframe = 0 # Frame width at Z direction scale_sup = scale_f*0.3 # Scale support sign # All the others are input parameters # Stress coloring settings [R G B] - Examples considering pressure: # 0: [1, 0, 0] Plain red # 1: [x, 0, 0] Red to Black # 2: [1, 1-x, 0-x] Red to White # 3: [1, (1-x)/2, (1-x)/2] Red to MildRed - Distincts pressure and tension # 4: [x, 1-x, 0] Red to Green _coloring = 3 # € [0, 1, 2, 3, 4] fig = plt.figure() _ax = fig.add_subplot(111, projection='3d') if struct.dof == 2: _ax.view_init(elev=90., azim=-90.) _ax.w_zaxis.line.set_lw(0.) _ax.set_zticklabels([]) xmin = min(list(struct.nodalcoord[x][0] for x in range(struct.nodenum))) xmax = max(list(struct.nodalcoord[x][0] for x in range(struct.nodenum))) ymin = min(list(struct.nodalcoord[x][1] for x in range(struct.nodenum))) ymax = max(list(struct.nodalcoord[x][1] for x in range(struct.nodenum))) zmin = min(list(struct.nodalcoord[x][2] for x in range(struct.nodenum))) zmax = max(list(struct.nodalcoord[x][2] for x in range(struct.nodenum))) deltax = xmax - xmin deltay = ymax - ymin xframe = max(deltax * 0.05, 2) yframe = max(deltay * 1.5, 2) if struct.dof == 3: plot_height = plot_width * ((deltay + yframe*2)/(deltax + xframe*2)) *0.3 else: plot_height = plot_width * 0.5 fig.set_size_inches(plot_width, plot_height) _ax.set_xlim3d(xmin - xframe, xmax + xframe) _ax.set_ylim3d(ymin - yframe, ymax + yframe) _ax.set_zlim3d(zmin - zframe, zmax + zframe) if showorig == showresult: _coloring = 0 # Giving plot names if showorig == 1 and showresult == 0 and showsupports == 1 and showreactions == 0: plotname += ' - Initial structure' if showforces: plotname += ' with forces' elif showorig == 1 and showresult == 1: plotname += ' - Deformation' if showreactions == 0: plotname += ' with reactions' elif showorig == 0 and showresult == 1: plotname += ' - Stresses' if showreactions == 0: plotname += ' with reactions' else: plotname += ' - Unnamed' print plotname + ": " if showresult: dipslaydisplacement = deepcopy(struct.nodalcoord_def) if scaledisp != 1.0: if _LOG: print('Displacements are scaled with factor: ') + str(scaledisp) for i in range(struct.nodenum): for j in range(3): dipslaydisplacement[i][j] = (struct.nodalcoord_def[i][j] -\ struct.nodalcoord[i][j]) * scaledisp + struct.nodalcoord[i][j] for i in range(struct.elenum): # Plot undeformed structure if showorig: _ax.plot([struct.nodalcoord[struct.node[i][1]][0], struct.nodalcoord[struct.node[i][0]][0]], \ [struct.nodalcoord[struct.node[i][1]][1], struct.nodalcoord[struct.node[i][0]][1]], \ zs=[struct.nodalcoord[struct.node[i][1]][2], struct.nodalcoord[struct.node[i][0]][2]], color='b') # Plot deformed structure if showresult: if struct.postprocessed(): if struct.stresscolor[i] > 0: if _coloring == 1: rgb_col = [0, 0, abs(struct.stresscolor[i])] elif _coloring == 2: rgb_col = [1-abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i]), 1] elif _coloring == 3: rgb_col = [(1-abs(struct.stresscolor[i]))/2, \ (1-abs(struct.stresscolor[i]))/2, 1] elif _coloring == 4: rgb_col = [0, 1-abs(struct.stresscolor[i]), \ abs(struct.stresscolor[i])] else: rgb_col = [1, 0, 0] else: if _coloring == 1: rgb_col = [abs(struct.stresscolor[i]), 0, 0] elif _coloring == 2: rgb_col = [1, 1-abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i])] elif _coloring == 3: rgb_col = [1, (1-abs(struct.stresscolor[i]))/2, \ (1-abs(struct.stresscolor[i]))/2] elif _coloring == 4: rgb_col = [abs(struct.stresscolor[i]), \ 1-abs(struct.stresscolor[i]), 0] else: rgb_col = [1, 0, 0] else: print 'Stresses are not calculated' rgb_col = [1, 0, 0] _ax.plot([dipslaydisplacement[struct.node[i][1]][0], dipslaydisplacement[struct.node[i][0]][0]], \ [dipslaydisplacement[struct.node[i][1]][1], dipslaydisplacement[struct.node[i][0]][1]], \ zs=[dipslaydisplacement[struct.node[i][1]][2], dipslaydisplacement[struct.node[i][0]][2]], color=rgb_col) if showforces: for i in struct.known_f_notzero: if struct.force[i] < 0: value = -1.0 else: value = 1.0 if i % 3 == 0: f_dir = [value*scale_f, 0., 0.] elif i % 3 == 1: f_dir = [0., value*scale_f, 0.] else: f_dir = [0., 0., value*scale_f*z_corr] f_arrow = Arrow3D([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0] + f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1] + f_dir[1]], \ [struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2] + f_dir[2]], \ mutation_scale=20, lw=1, arrowstyle="-|>", color="k") _ax.add_artist(f_arrow) if showreactions: e_previous = -100 for i in struct.known_dis_a: value = 0.0 # Maybe this is useless <XXX> if struct.force[i] < 0: value = -1.0 elif struct.force[i] > 0: value = 1.0 if i % 3 == 0: f_dir = [value*scale_f, 0., 0.] elif i % 3 == 1: f_dir = [0., value*scale_f, 0.] else: f_dir = [0., 0., value*scale_f*z_corr] if abs(struct.force[i]) > 0: f_arrow = Arrow3D([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0] + f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1] + f_dir[1]], \ [struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2] + f_dir[2]], \ mutation_scale=20, lw=1, arrowstyle="-|>", color="darkolivegreen") _ax.add_artist(f_arrow) if showvalues: _ax.set_xticklabels([]) _ax.set_yticklabels([]) _ax.set_zticklabels([]) if not i//3 == e_previous//3: if struct.dof == 3: _ax.text(struct.nodalcoord[i//3][0], \ struct.nodalcoord[i//3][1], \ struct.nodalcoord[i//3][2], \ "{:10.2f}".format(struct.force[(i//3)*3+0])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+1])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+2]),\ fontsize=12, horizontalalignment='right') elif struct.dof == 2: _ax.text(struct.nodalcoord[i//3][0], \ struct.nodalcoord[i//3][1], \ struct.nodalcoord[i//3][2], \ "{:10.2f}".format(struct.force[(i//3)*3+0])+'\n'+\ "{:10.2f}".format(struct.force[(i//3)*3+1]),\ fontsize=12, horizontalalignment='right') e_previous = i if showsupports: for i in struct.known_dis_a: if i % 3 == 0: f_dir = [-1.0 * scale_sup, 0., 0.] col = 'g' elif i % 3 == 1: f_dir = [0., -1.0 * scale_sup, 0.] col = 'y' else: f_dir = [0., 0., -1.0 * scale_sup * z_corr] col = 'brown' if i % 3 != 2 or struct.dof == 3: _ax.plot([struct.nodalcoord[i//3][0], struct.nodalcoord[i//3][0]+f_dir[0]], \ [struct.nodalcoord[i//3][1], struct.nodalcoord[i//3][1]+f_dir[1]], \ zs=[struct.nodalcoord[i//3][2], struct.nodalcoord[i//3][2]+f_dir[2]], \ color=col, linewidth=4.0) plt.show() if saveplot: fig.savefig(plotname + '.png') print '\'' + plotname +'.png\' is saved.' print '------------------------------------' return def endoffile(givenfile, line): """ Check if end of file is reached. Implemented due to compatibility reasons. """ if _OSLIBRARYAVAILABLE: return givenfile.tell() < os.fstat(givenfile.fileno()).st_size else: return not line == "EOF" def logtime(prev_time, title): """ Calculating and printing the time consumption of tasks Should be called with the previously saved part-time and the name of the actual task At the first call, should be called with TIC value. The input argument should be overwritten by this funvtion's return value. """ if _LOG: new_time = time.time() print title print 'Time: ' + str("{:10.3f}".format(new_time - prev_time)) print '------------------------------------' return new_time else: return 0 def error(delta): """ Error function using least-square method """ sumerr = 0 for deltaelement in delta: sumerr += deltaelement**2 sumerr = math.sqrt(error) return sumerr class Truss(object): """ General structure class """ def __init__(self, name): self.name = name # Name of structure self.known_f_a = [] # Nodes without supports self.known_f_notzero = [] # Nodes with loads self.dof = 3 # Truss's degree of freedom self.node = [] # Element's end nodes self.constraint = [] # Supports self.force = [] # Force self.nodalcoord = [] # Coordinates of nodes self.nodalcoord_def = [] # Coordinates after deformations self.area = [] # Cross-sectional areas self.el_mod = [] # Material data self.nodenum = 0 # Number of nodes self.elenum = 0 # Number of elements self.eledof = [] # Mapping between DOF and node self.stiffness = [] # Global stiffness matrix self.mod_stiffnesses = [] # Modified stiffnesses in a hyper-matrix self.ele_length = [] # Length of the elements self._norm_stiff = [] # E/L self._cx = [] self._cy = [] self._cz = [] self._s_loc = [] self._loc_stiff = [] # Local stiffnes matrix self.dis_new = [] self.force_new = [] self.stiff_new = [] self.displacement = [] # Relative displacements self._stiffisfresh = 0 self._postprocessed = 0 self.init_disp = [] self.stresscolor = [] # Color mapping for stresses self.known_dis_a = [] self.stress = [] # Element's stresses self._io_origin = 0 # Array's first element number during IO. Default is 0. self.analysis = {} self._mod_stiffisfresh = 0 self.mod_displacements = [] self.keypoint = [] self.keypnum = 0 self.effect = [] self.toteffect = [] self.sortedeff = [] self.specdof_inputstring = '' self.tresshold = 0.1 self.effectratio = [] self.processeddata = [] # To store last input line self.modifications = [] # Storing modifications for model updating self.readelements = [0]*9 self.arduino_mapping = [] self.errorlimit = 0.5 self.modificationlimit = 0.6 self.unitmodification = 0.05 self.measurement = [0.] self.numofupdates = [0, 0, 0] # [#Successfully updated model, #Updates with overflow exit, #Updates where there were no more modification option] self.iterationlimit = 20 def read(self, filename): """ Input file for TRUSS.py program All commands must be written with uppercase characters *** The values MUST be written in the exact following line of a command Only lines with the command and nothing more counts. Everything else will be neglected. Even hastags are useless :) The order of the commands are indifferent. Commands and their format (example): DOF - Degree of freedom: 3 ELEMENTS - Elements given by end-nodes: 0, 1 | 0, 2 ... COORDINATES - Nodal coordinates: 0., 0., 0., | 0., 3., 0. ... CROSS-SECTIONS - This data will be evaluated in Python: 3.0*(10**(-4)), 5.0*(10**(-4)) ... MATERIALS - This data will be evaluated in Python: 70.0*(10**9), 100.0*(10**9) ... FORCES - Selected DOF + Force: 11, +1000000.0 | 12, +1000000.0 ... SUPPORTS - Selected DOF + Prescribed displacement: 0, 0.0 | 1, 0.0 ... SPECDOF - Selected node's DOF will be analysed during Model Updating: 1, xyz | 3 y | 10 xz ... EOF - For compatibility reasons EOF should be placed after the commands """ self._io_origin = 0 readelementnames = ["Origin", "DOF", "Elements", "Coordinates", "Cross-sections", "Materials", "Forces", "Supports", "Measured DOFs"] with open(filename, "r") as sourcefile: sourceline = "" while endoffile(sourcefile, sourceline): sourceline = sourcefile.readline().strip() if sourceline.upper() == "_ORIGIN": sourceline = sourcefile.readline().strip() self._io_origin = int(sourceline) self.readelements[0] = 1 if sourceline.upper() == "DOF": sourceline = sourcefile.readline().strip() self.setdof(int(sourceline)) self.readelements[1] = 1 if sourceline.upper() == "ELEMENTS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, int(x[1]) - self._io_origin] for x in inpstr] self.setelements(inpnum) self.readelements[2] = 1 if sourceline.upper() == "COORDINATES": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) if self.dof == 3: inpnum = [[float(x[0]), float(x[1]), float(x[2])] for x in inpstr] elif self.dof == 2: inpnum = [[float(x[0]), float(x[1]), 0.] for x in inpstr] self.setcoordinates(inpnum) self.readelements[3] = 1 if sourceline.upper() == "CROSS-SECTIONS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = sourceline.split(',') if len(inpstr) == 1: inpstr = sourceline.split(';') if '' in inpstr: inpstr.remove('') inpnum = [float(eval(x)) for x in inpstr] self.setcrosssections(inpnum) self.readelements[4] = 1 if sourceline.upper() == "MATERIALS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = sourceline.split(',') if len(inpstr) == 1: inpstr = sourceline.split(';') if '' in inpstr: inpstr.remove('') inpnum = [float(eval(x)) for x in inpstr] self.setmaterials(inpnum) self.readelements[5] = 1 if sourceline.upper() == "FORCES": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, float(x[1])] for x in inpstr] self.setforces(sorted(inpnum)) self.readelements[6] = 1 if sourceline.upper() == "SUPPORTS": sourceline = sourcefile.readline().strip() inpstr = [] inpnum = [] inpstr = [x.split(',') for x in sourceline.split('|')] if len(inpstr[0]) == 1: inpstr = [x.split(';') for x in sourceline.split('|')] if [''] in inpstr: inpstr.remove(['']) inpnum = [[int(x[0]) - self._io_origin, float(x[1])] for x in inpstr] self.setsupports(sorted(inpnum)) self.readelements[7] = 1 if sourceline.upper() == "MEASUREMENTS": sourceline = sourcefile.readline().strip() self.specdof_inputstring = sourceline inpstr = [] self.arduino_mapping = sourceline.split(',') self.setspecdofs(self.arduino_mapping) self.readelements[8] = 1 terminate = False for i, value in enumerate(self.readelements): if i > 0 and (i < 8 or _UPDATING): #if i > 0: if value == 0: print "The following was not found: " + readelementnames[i] terminate = True if terminate: raise Exception def plot(self, showorig, showresult, showsupports, showforces, \ showreactions, scaledisplacement, scaleforce, scalez, saveplot): """ Plot function of the Truss class This method calls the more general plotstructure() method. Plot settings: O: Original D: Deformed S: Supports F: Forces R: Reactions ScD: Scale displacments (Z-axis) (def:1.0) ScF: Scale forces (def:1.0) ScS: Scale Support signs (Z-axis) (def:1.0) Save: Save plot to file plot(O, D, S, F, R, ScD, ScF, ScS, Save) """ _showvalues = 1 # Show values of forces if self._postprocessed == 0: print 'Postprocess is needed before plotting structure!' else: if scaledisplacement == 0: scaledisplacement = 1.0 # Scale drwaing of displacements if scaleforce == 0: scaleforce = 1.0 # Scale force sign if scalez == 0: scalez = 0.3 # Scale z-axis plotstructure(self, showorig, showresult, showsupports, showforces, showreactions, \ scaledisplacement, scaleforce, scalez, _showvalues, saveplot) def __checkcoordinates(self, ignorable): """ Checking coordinates for repeating elements. ignorable: [True | False] If the warning is ignorable, only message apperas and the input becomes neglected. If the warning is not ignorable, then exceptions will be raised. return: [0 | 1] 1 f no error found, otherwise 0. """ if len(self.nodalcoord) != len(list(k for k, _ in itertools.groupby(sorted(self.nodalcoord)))): if ignorable == 0: raise Exception('Coordinate list has repeating items. Calculation is terminated') else: print "This node already exists. Input is ignored." return 0 else: return 1 def setdof(self, dof): """ Setting problem's degree of freedom dof: [2 | 3] Model's Degree Of Freedom. """ self.dof = dof if self.dof != 2 and self.dof != 3: raise Exception('DOF must be 2 or 3.') self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setelements(self, node): """ Setting elements (nodal connections) in bulk mode """ self.node = node self.nodenum = len(set(list(itertools.chain.from_iterable(sorted(self.node))))) self.elenum = len(self.node) self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 # Creating mapping tool for elements for node in self.node: self.eledof.append([node[0]*3, node[0]*3+1, node[0]*3+2, \ node[1]*3, node[1]*3+1, node[1]*3+2]) # Initialazing matrix for all matrices self.init_disp = [0.]*(3*self.nodenum) self.force = [0.]*(3*self.nodenum) self.stiffness = [0.]*(3*self.nodenum) self.known_f_a = [] self.known_f_notzero = [] def setcoordinates(self, coordinates): """ Setting coordinates in bulk mode """ self.nodalcoord = coordinates self._stiffisfresh = 0 self._mod_stiffisfresh = 0 if self.nodenum > len(self.nodalcoord): raise Exception('More coordinates are needed') elif self.node == []: raise Exception('Nodes must be set before defining elements') self.__checkcoordinates(False) def modcoordinate(self, node, coordinate): """ Modify coordinate """ if self.__checkcoordinates(True): self.nodalcoord[node] = coordinate self._stiffisfresh = 0 self._mod_stiffisfresh = 0 def setcrosssections(self, area): """ Setting cross-sections in bulk mode """ self.area = area self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def modcrosssection(self, element, area): """ Modifying cross-sections by elements """ self.area[element] = area self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setmaterials(self, el_mod): """ Setting material data in bulk mode """ self.el_mod = el_mod self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def modmaterial(self, element, el_mod): """ Modifying material data by elements """ self.el_mod[element] = el_mod self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setforces(self, forces): """ Set forces """ for fdof, force in forces: if self.dof == 3: self.force[fdof] = force elif self.dof == 2: self.force[fdof + (fdof//2)] = force self._postprocessed = 0 def modforce(self, element, force): """ Modifying forces by each """ self.force[element] = force self._postprocessed = 0 def setsupports(self, constraints): """ Set supports """ for cdof, constraint in constraints: if self.dof == 3: self.constraint.append([cdof, constraint]) elif self.dof == 2: self.constraint.append([cdof + (cdof // 2), constraint]) self._stiffisfresh = 0 self._mod_stiffisfresh = 0 self._postprocessed = 0 def setspecdofs(self, specdofs): """ Set special nodal DOFs """ self.analysis = {} for dofname in specdofs: node = int(dofname[:len(dofname)-1])-self._io_origin if 'X' in dofname: self.analysis[dofname] = node*3+0 self.keypoint.append(node*3+0) if 'Y' in dofname: self.analysis[dofname] = node*3+1 self.keypoint.append(node*3+1) if 'Z' in dofname: if self.dof == 3: self.analysis[dofname] = node*3+2 self.keypoint.append(node*3+2) else: print "Z-direction is not allowed in 2D structures. Please check the \'MEASUREMENTS\' section in the input file." raise Exception self.keypnum = len(self.analysis) if self.keypnum == 0 and _UPDATING: print "There is no valid measured DOF. Please check the \'MEASUREMENTS\' section in the input file." raise Exception def calcstiffness(self): """ Stiffness matrix compilation """ self._postprocessed = 0 if self.dof == 2: for zdof in range(self.nodenum): self.constraint.append([int(zdof*3+2), 0.]) self.constraint = list(k for k, _ in itertools.groupby(sorted(self.constraint))) #Setting known forces for dofloc in range(3*self.nodenum): self.known_f_a.append(dofloc) if self.force[dofloc] != 0: self.known_f_notzero.append(dofloc) self.known_dis_a = [] for constr in self.constraint: self.init_disp[constr[0]] = constr[1] self.known_dis_a.append(constr[0]) try: self.known_f_a.remove(constr[0]) self.known_f_notzero.remove(constr[0]) except ValueError: pass ele_length = [0.]*self.elenum self._norm_stiff = [0.]*self.elenum self._cx = [0.]*self.elenum self._cy = [0.]*self.elenum self._cz = [0.]*self.elenum self._s_loc = [0.]*self.elenum self._loc_stiff = [0.]*self.elenum self.stress = [0.]*self.elenum self.stiffness = [[0.]*(len(self.nodalcoord)*3)]*(len(self.nodalcoord)*3) for i in range(self.elenum): ele_length[i] = math.sqrt((self.nodalcoord[self.node[i][1]][0]-self.nodalcoord[self.node[i][0]][0])**2+ \ (self.nodalcoord[self.node[i][1]][1]-self.nodalcoord[self.node[i][0]][1])**2 + \ (self.nodalcoord[self.node[i][1]][2]-self.nodalcoord[self.node[i][0]][2])**2) self._cx[i] = (self.nodalcoord[self.node[i][1]][0]-self.nodalcoord[self.node[i][0]][0])/ele_length[i] self._cy[i] = (self.nodalcoord[self.node[i][1]][1]-self.nodalcoord[self.node[i][0]][1])/ele_length[i] self._cz[i] = (self.nodalcoord[self.node[i][1]][2]-self.nodalcoord[self.node[i][0]][2])/ele_length[i] self._norm_stiff[i] = self.el_mod[i]/ele_length[i] self._s_loc[i] = [[self._cx[i]**2, self._cx[i]*self._cy[i], self._cx[i]*self._cz[i], -self._cx[i]**2, -self._cx[i]*self._cy[i], -self._cx[i]*self._cz[i]], \ [self._cx[i]*self._cy[i], self._cy[i]**2, self._cy[i]*self._cz[i], -self._cx[i]*self._cy[i], -self._cy[i]**2, -self._cy[i]*self._cz[i]], \ [self._cx[i]*self._cz[i], self._cy[i]*self._cz[i], self._cz[i]**2, -self._cx[i]*self._cz[i], -self._cy[i]*self._cz[i], -self._cz[i]**2], \ [-self._cx[i]**2, -self._cx[i]*self._cy[i], -self._cx[i]*self._cz[i], self._cx[i]**2, self._cx[i]*self._cy[i], self._cx[i]*self._cz[i]], \ [-self._cx[i]*self._cy[i], -self._cy[i]**2, -self._cy[i]*self._cz[i], self._cx[i]*self._cy[i], self._cy[i]**2, self._cy[i]*self._cz[i]], \ [-self._cx[i]*self._cz[i], -self._cy[i]*self._cz[i], -self._cz[i]**2, self._cx[i]*self._cz[i], self._cy[i]*self._cz[i], self._cz[i]**2]] self._loc_stiff[i] = [[y* self.area[i]* self._norm_stiff[i] for y in x] for x in self._s_loc[i]] ele_dof_vec = self.eledof[i] stiffincrement = [0.]*(len(self.nodalcoord)*3) for j in range(3*2): for k in range(3*2): stiffincrement[ele_dof_vec[k]] = self._loc_stiff[i][j][k] self.stiffness[ele_dof_vec[j]] = [x + y for x, y in zip(self.stiffness[ele_dof_vec[j]], stiffincrement)] self._stiffisfresh = 1 def calcmodstiffness(self, index, magnitude): """ Convergency step in stiffness matrix modification """ if self.mod_stiffnesses == []: self.mod_stiffnesses = [0.]*(self.elenum+1) #for loopindex in range(self.elenum): _mod_stiffnesses_temp = [[0.]*(len(self.nodalcoord)*3)]*(len(self.nodalcoord)*3) for i in range(self.elenum): if i == index: _mod_norm_stiff = self._norm_stiff[i] * (1.0 + self.modifications[i] + magnitude) #self.el_mod[i]/ele_length[i] else: _mod_norm_stiff = self._norm_stiff[i] * (1.0 + self.modifications[i]) #self.el_mod[i]/ele_length[i] _mod_loc_stiff = [[y*self.area[i]*_mod_norm_stiff for y in x] for x in self._s_loc[i]] ele_dof_vec = self.eledof[i] stiffincrement = [0.]*(len(self.nodalcoord)*3) for j in range(3*2): for k in range(3*2): stiffincrement[ele_dof_vec[k]] = _mod_loc_stiff[j][k] _mod_stiffnesses_temp[ele_dof_vec[j]] = [x + y for x, y in zip(_mod_stiffnesses_temp[ele_dof_vec[j]], stiffincrement)] self.mod_stiffnesses[index] = _mod_stiffnesses_temp def solve(self): """ Main solver of the code """ if self._stiffisfresh == 0: if _LOG: print 'Stiffness matrix is recalculated' self.calcstiffness() self.dis_new = [0.]*(self.nodenum*3-len(self.constraint)) self.force_new = [0.]*(self.nodenum*3-len(self.constraint)) self.stiff_new = [[0.]*(self.nodenum*3-len(self.constraint))]*(self.nodenum*3-len(self.constraint)) # known force array for i, known_f_a in enumerate(self.known_f_a): self.force_new[i] = self.force[known_f_a] stiffincrement = [0.]*(self.nodenum*3-len(self.constraint)) for i, kfai in enumerate(self.known_f_a): for j, kfaj in enumerate(self.known_f_a): stiffincrement[j] = self.stiffness[kfai][kfaj] self.stiff_new[i] = [x + y for x, y in zip(self.stiff_new[i], stiffincrement)] # SOLVING THE STRUCTURE if _SOLVER == 0: if _LOG: print 'Built-in solver' self.dis_new = mat_vec_mult(invert(self.stiff_new), self.force_new) else: if _LOG: print 'NumPy solver' self.dis_new = np.linalg.solve(np.array(self.stiff_new), np.array(self.force_new)) self.displacement = deepcopy(self.init_disp) for i, known_f_a in enumerate(self.known_f_a): self.displacement[known_f_a] = self.dis_new[i] # Deformed shape self.nodalcoord_def = [] for i in range(self.nodenum): self.nodalcoord_def.append([self.nodalcoord[i][0]+ self.displacement[i*3+0], \ self.nodalcoord[i][1]+ self.displacement[i*3+1], self.nodalcoord[i][2]+ self.displacement[i*3+2]]) # Postrpocesses self.postprocess() self.mod_displacements = [0.]*(self.elenum+1) def solvemodstruct(self, index): """ Solver for the modified structures. 'Index' shows the actual modification number. """ self.mod_displacements[index] = [0.]*(self.nodenum*3) dis_new = [0.]*(self.nodenum*3-len(self.constraint)) stiff_new = [[0.]*(self.nodenum*3-len(self.constraint))]*(self.nodenum*3-len(self.constraint)) stiffincrement = [0.]*(self.nodenum*3-len(self.constraint)) for i, kfai in enumerate(self.known_f_a): for j, kfaj in enumerate(self.known_f_a): stiffincrement[j] = self.mod_stiffnesses[index][kfai][kfaj] stiff_new[i] = [x + y for x, y in zip(stiff_new[i], stiffincrement)] # SOLVING THE MODIFIED STRUCTURE if _SOLVER == 0: dis_new = mat_vec_mult(invert(stiff_new), self.force_new) else: dis_new = np.linalg.solve(np.array(stiff_new), np.array(self.force_new)) mod_displacement_temp = deepcopy(self.init_disp) for i, kfa in enumerate(self.known_f_a): mod_displacement_temp[kfa] = dis_new[i] - self.dis_new[i] self.mod_displacements[index] = [x + y for x, y in zip(self.mod_displacements[index], mod_displacement_temp)] def evaluate(self): """ Calculates the relative displacement of each individual available unit-modification compared to the measured differencies (delta). delta: [DOF number, difference] return effect: [efffect on 1. point, effect on 2. point, ..., modification number] where each line number shows the corresponding modification number """ self.effect = [[0.]*(self.keypnum + 2)]*self.elenum self.toteffect = [0.]*self.keypnum self.sortedeff = [[[0.]*(self.keypnum + 2)]*self.elenum]*self.keypnum effect_temp = [0.]*(self.keypnum + 2) for modnum in range(self.elenum): effect_temp[self.keypnum] = int(modnum) for j, dofnum in enumerate(self.keypoint): try: effect_temp[j] = self.mod_displacements[modnum][dofnum] self.effect[modnum] = [x for x in effect_temp] self.toteffect[j] += abs(self.effect[modnum][j]) except IndexError: print "Maybe the mapping data is invalid." print "Please check the \'arduino_mapping.txt\' input whether the given DOFs are correct or not." raise IndexError self.effectratio = deepcopy(self.effect) for i in range(self.elenum): for j in range(self.keypnum): if self.toteffect[j] > 0: self.effectratio[i][j] = abs(self.effectratio[i][j]/self.toteffect[j]) else: self.effectratio[i][j] = 0 #print " \'effectratio\' is not used yet" # Sort by effectiveness for i in range(self.keypnum): self.sortedeff[i] = deepcopy(self.effect) # Check sign of the effect for ktemp in range(self.elenum): if self.sortedeff[i][ktemp][i] < 0: for jtemp in range(self.keypnum): self.sortedeff[i][ktemp][jtemp] = abs(self.sortedeff[i][ktemp][jtemp]) self.sortedeff[i][ktemp][self.keypnum +1] = -1 else: self.sortedeff[i][ktemp][self.keypnum +1] = +1 for j in range(self.keypnum): if i != j and j != 0: self.sortedeff[i] = swap_col(sorted(swap_col(self.sortedeff[i], 0, j), reverse=True), 0, j) if i != 0: self.sortedeff[i] = swap_col(sorted(swap_col(self.sortedeff[i], 0, i), reverse=True), 0, i) else: self.sortedeff[i] = sorted(self.sortedeff[i], reverse=True) def difference(self, num_displ, measurement): """ Calculate the difference between the Numerical solution and Real-life measurement. The Real-life measurement should be given the following format: MEASUREMENT: [[13X, -2.154], [16Y, 5.256], ...] """ #Print nodenumber option should be added! <XXX> delta = [] for loc, measured in measurement: try: dof = self.analysis[loc.upper()] except KeyError: print 'The given measurement location cannot be matched with the input data.' print 'The available nodes are: {\'NAMES\': mapping addresses}' print self.analysis SER.close() raise Exception('Watchpoint name error') delta.append(measured - num_displ[dof]) return delta def optimize(self, delta): """ Modell updating - core function """ #modnum = min(10, self.elenum) modnum = self.elenum self.modifications = [0.0]*self.elenum if not _SIMULATION: appendix = "" else: appendix = " - SIMULATED" newdelta = delta j = 0 print "-----" print "Step: 0/"+ str(self.iterationlimit) while (error(newdelta) > self.errorlimit and j <= self.iterationlimit and (self.capable() or j <= 1)): # Optimization loop j += 1 print "Error: " + str(error(newdelta)) print "-----" print "Step: " + str(j) + "/"+ str(self.iterationlimit) ratio = [0.]*modnum unit = 0 prevmodifications = self.modifications for index in range(self.elenum): self.modifications[index] = min(abs(self.modifications[index] - self.unitmodification), self.modificationlimit) *math.copysign(1, self.modifications[index]- self.unitmodification) self.calcmodstiffness(index, self.modifications[index]) self.solvemodstruct(index) self.evaluate() self.calcmodstiffness(self.elenum, 0) self.solvemodstruct(self.elenum) newdelta = self.difference(self.mod_displacements[self.elenum], self.measurement) for i, effect in enumerate(self.toteffect): if effect == 0.0: print "None of the variables has effect on " + str(self.arduino_mapping[i]) print "Model updating has no solution." raise Exception for i in range(self.elenum): modificationnumber = self.sortedeff[0][i][1] ratio[modificationnumber] = abs(self.sortedeff[0][i][0] / self.toteffect[0])*math.copysign(1, self.sortedeff[0][i][2]) unit += abs(ratio[modificationnumber]*self.sortedeff[0][i][0]) scale = newdelta[0]/unit for i in range(self.elenum): modificationnumber = self.sortedeff[0][i][1] self.modifications[modificationnumber] = min(abs(prevmodifications[modificationnumber] - self.unitmodification*ratio[modificationnumber]), self.modificationlimit)\ *math.copysign(1, prevmodifications[modificationnumber] - self.unitmodification*ratio[modificationnumber]) # the last part is already the sign itself without the sign function print "Ratio: " + str(scale) print "Final error: " + str(error(newdelta)) if not self.capable() and j > 1: print "Optimization could not be finished successfully." print "The remaining error is: " + str(error(newdelta)) with open(self.name + ' - UpdateResults'+ appendix +'.txt', 'a') as outfile: if j > 1: if j <= self.iterationlimit and self.capable(): self.numofupdates[0] += 1 outfile.write("Update state: SUCCESSFUL\n") if not j <= self.iterationlimit: self.numofupdates[1] += 1 outfile.write("Update state: Run out of iteration limit\n") if not self.capable() and j > 1: self.numofupdates[2] += 1 outfile.write("Update state: No more possible modification\n") else: outfile.write("Update state: Optimization was skipped\n") outfile.write("Requiered iterations: " + str(j) + "\n") outfile.write("Measurement: " + str(self.measurement) + "\n") outfile.write("Original delta: " + str(delta) + "\n") outfile.write("New delta: " + str(newdelta) + " (limit: " + str(self.errorlimit) +")\n") outfile.write("Final error: " + str(error(newdelta)) + "\n") outfile.write("Modifications [%]: \n") outfile.write(str(self.modifications) + "\n") outfile.write("Original displacements: \n") outfile.write(str(self.displacement) + "\n") if j > 1: outfile.write("New displacements: \n") outfile.write(str(self.mod_displacements[self.elenum]) + "\n") outfile.write("----------------------\n") def capable(self): """ Function telling whether there are more options to modify """ capable = False for variable in self.modifications: if abs(variable) <= 0.95*self.modificationlimit and abs(variable) > 0.01: capable = True return capable def seterrorlimit(self, errorlimit): """ Setting general stop parameter for model updating """ if errorlimit > 0.0: self.errorlimit = errorlimit else: print "The error limit must be a positive number" raise Exception def setmodificationlimit(self, modificationlimit): """ Setting modification limit for members (model updating) """ if modificationlimit > 0.0 and modificationlimit < 1.0: self.modificationlimit = modificationlimit else: print "The modification limit must be higher than 0.0 and lower than 1.0" raise Exception def setunitmodification(self, unitmodification): """ Setting modification step (model updating) """ if abs(unitmodification) >= 0.01 and abs(unitmodification) < 0.5: self.unitmodification = unitmodification else: print "The absolut value of the unit modification must be minimum 0.01 and maximum 0.5" raise Exception def setiterationlimit(self, iterationlimit): """ Setting maximum number of iterations (model updating) """ if int(iterationlimit) > 1 and int(iterationlimit) <= math.pow(10, 4): self.iterationlimit = int(iterationlimit) else: print "The iterationlimit must be between 2 and 10.000" raise Exception def readarduino(self, base, saveinput): """ Read data from Arduino """ # Read data from Arduino maxdifference = 0.8 # Maximum input difference treshold in mm arduinovalues = [] data = [0.]*len(self.arduino_mapping) newdata = False bigdifference = False readerror = False try: arduinoline = SER.readline() if len(arduinoline) > 0: arduinovalues = arduinoline.split(',') try: if arduinovalues[0][len(arduinovalues)-1] == '.': arduinovalues[0] = arduinovalues[0][:len(arduinovalues[0])-2] else: del arduinovalues[len(arduinovalues)-1] except IndexError: print "Index Error... continuing" if len(arduinovalues) == len(self.arduino_mapping): try: for i in range(len(self.arduino_mapping)): data[i] = float(arduinovalues[i]) - float(base[i][1]) if abs(data[i] - self.processeddata[i]) > maxdifference: bigdifference = True if abs(float(arduinovalues[i])) < 2.0: readerror = True self.processeddata = data newdata = True except ValueError: print "Value error... continuing" SER.flushInput() time.sleep(0.5) except Exception: print "Type error: " + str(arduinovalues) + "... continuing" SER.flushInput() time.sleep(0.5) SER.flushInput() except serial.SerialTimeoutException: print "Data could not be read... continuing" SER.flushInput() time.sleep(0.5) if newdata and not bigdifference and not readerror: self.measurement = zip(self.arduino_mapping, data) saveinput.write(str(data) +', '+ str(time.time()) + "\n") # Calculate differences delta = self.difference(self.displacement, self.measurement) print "Delta: " + str(delta) newdata = False bigdifference = False readerror = False return delta newdata = False bigdifference = False readerror = False def simulatearduino(self, arduinoline, prevline): """ Simulate data, based on previous measurement """ arduinovalues = [] data = [0.]*len(self.arduino_mapping) skip = 0 sleeptime = 0. try: try: prevreadtime = float(str(prevline.split(']')[1]).split(',')[1]) nowreadtime = float(str(arduinoline.split(']')[1]).split(',')[1]) try: if _REALISTICSIMULATION: sleeptime = nowreadtime - prevreadtime except Exception: pass except Exception: skip = 1 sleeptime = 0. if not skip: if not sleeptime > 0: sleeptime = 0. arduinoline = str(arduinoline.split(']')[0])+"]" arduinovalues = eval(arduinoline) try: for i in range(len(self.arduino_mapping)): data[i] = float(arduinovalues[i]) self.processeddata = data except Exception: print "Type error: " + str(arduinovalues) + "... continuing" self.measurement = zip(self.arduino_mapping, data) # Calculate differences delta = self.difference(self.displacement, self.measurement) time.sleep(sleeptime) print delta return delta except IndexError: print "IndexError" #pass except Exception: print "Exception in simulation data" #pass def updatemodel(self): """ General function to manage model updatin procedure. """ self.processeddata = [0.]*len(self.arduino_mapping) if not _SIMULATION: base = self.calibrate() filemode = 'a' else: base = ['SIMULATION'] try: os.remove(self.name + ' - UpdateResults - SIMULATED.txt') except Exception: pass filemode = 'r' with open(self.name + ' - Input Data.txt', filemode) as inputfile: # Saving input data if not _SIMULATION: inputfile.write('Input data of \'' + self.name + '\':\n\n') inputfile.write('Start Time: ' + str(datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) + "\n") inputfile.write('Base: ' + str(base) + '\n') inputline = "[],0.0" for i in range(1000): if not _SIMULATION: delta = self.readarduino(base, inputfile) self.optimize(delta) else: try: delta = None previnputline = inputline inputline = inputfile.readline() if not inputline == '': delta = self.simulatearduino(inputline, previnputline) except Exception: pass if not delta is None: self.optimize(delta) print "Update statistics:" print "Totally updated models: " + str(TRUSS.numofupdates[0] + TRUSS.numofupdates[1]++ TRUSS.numofupdates[2]) print " Successfully updated models: " + str(TRUSS.numofupdates[0]) print " Updates with running out of possibilities: " + str(TRUSS.numofupdates[2]) print " Updates did not finshed: " + str(TRUSS.numofupdates[1]) def calibrate(self): """ Calibration for Arduino measurement. All the measurements will describe the dispalecements from the claibration-state. """ answer_1 = '0' restart = '0' accept = '0' arduinovalues = [] print "Before starting the model updating, the measuring tools must be calibrated." print "The calibration should be done in load-free state." while (answer_1 not in ['Y', 'N']): answer_1 = raw_input('Can we start the calibration? (y/n) ').upper() if answer_1 == 'N': SER.close() raise Exception('Calibration is terminated') else: try: SER.flushInput() #time.sleep(0.2) arduinoline = '' #SER.readline() while len(arduinoline) == 0: time.sleep(0.2) arduinoline = SER.readline() if len(arduinoline) > 0: arduinovalues = arduinoline.split(',') del arduinovalues[len(arduinovalues)-1] # if needed!!! if len(arduinovalues) == len(self.arduino_mapping): measurement = zip(self.arduino_mapping, arduinovalues) print "Calibration result:" print measurement while (accept not in ['Y', 'N']): accept = raw_input('Ok? Can we start the main part? Put on the loads! (y/n) ').upper() if accept == 'N': restart = 'Y' else: print "Data error. Calibartion is restarting." print "Arduino values:" + str(arduinovalues) restart = 'Y' else: print 'The calibration cannot be done: no data' while (restart not in ['Y', 'N']): restart = raw_input('Do you want to restart calibration? (y/n) ').upper() except Exception: print 'The calibration cannot be done: exception was raised' while (restart not in ['Y', 'N']): restart = raw_input('Do you want to restart calibration? (y/n) ').upper() if restart == 'Y': print "Restarting calibration" SER.flushInput() return self.calibrate() elif restart == 'N': SER.close() raise Exception('Calibration is terminated') if accept == 'Y': return measurement def postprocess(self): """ Calculates reaction forces and stresses """ self._reactions() self._stresses() self._postprocessed = 1 def _reactions(self): """ Calculates reaction forces """ for i in self.known_dis_a: self.force[i] = 0 for j, displ in enumerate(self.displacement): self.force[i] += self.stiffness[i][j]*displ def _stresses(self): """ Calculates stress in elements Last part: Coloring elements for graphical output """ self.stress = [0.]*self.elenum for element in range(self.elenum): locstiff = [-self._cx[element], -self._cy[element], -self._cz[element], \ self._cx[element], self._cy[element], self._cz[element]] for i in range(3*2): self.stress[element] += locstiff[i]*self.displacement[self.eledof[element][i]] self.stress[element] = self.stress[element]*self._norm_stiff[element] smax = max([abs(min(self.stress)), max(self.stress), 0.000000001]) self.stresscolor = [float(x)/float(smax) for x in self.stress] def postprocessed(self): """ Tells if the structure's postprocess part is already calcuated """ return self._postprocessed def writeresults(self, fname): """ Writing results to file. """ out_element = '' for i in self.node: out_element += str(i[0] + self._io_origin) + ', ' + str(i[1] + self._io_origin) + ' | ' out_coords = '' for i in self.nodalcoord: out_coords += str(i[0]) + ', ' + str(i[1]) + ', ' + str(i[2]) + ' | ' out_crsect = '' for i in self.area: out_crsect += str(i) + ', ' out_materials = '' for i in self.el_mod: out_materials += str(i) + ', ' out_forces = '' for forcedof in self.known_f_notzero: if self.dof == 3: out_forces += str(forcedof + self._io_origin) + ', ' + str(self.force[forcedof]) + ' | ' elif self.dof == 2 and i % 3 != 2: out_forces += str(forcedof - forcedof//3 + self._io_origin) + ', ' + str(self.force[forcedof]) + ' | ' out_supports = '' for i in self.constraint: if self.dof == 3: out_supports += str(i[0] + self._io_origin) + ', ' + str(i[1]) + ' | ' elif i[0] % 3 != 2: out_supports += str(i[0] - i[0]//3 + self._io_origin) + ', ' + str(i[1]) + ' | ' # Not elegant solution out_specdofs = self.specdof_inputstring with open(fname, 'w') as outfile: # Writing data outfile.write('Calculation of \'' + self.name + '\':\n\n') outfile.write('Reactions\n') #for i in range(len(self.force)//3): prev = -1 for i in self.known_dis_a: if self.dof == 3 or i%3 != 2: if i//3 != prev: if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') nodalforce = '' if (i//3)*3+0 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+0]) + ', ' else: nodalforce += ' ' if (i//3)*3+1 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+1]) + ', ' else: nodalforce += ' ' if self.dof != 2 and (i//3)*3+2 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+2]) + '\n' else: nodalforce += ' \n' if nodalforce != ' \n': outfile.write(str(i//3 + self._io_origin) + ', ' + nodalforce) prev = i//3 outfile.write('\n') outfile.write('Displacements\n') for i in range(len(self.displacement)//3): if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') outfile.write(str(i + self._io_origin) + ', ' + "{:10.3f}".format(self.displacement[i*3 +0]) + ', ' \ + "{:10.3f}".format(self.displacement[i*3 +1]) + ', ' + "{:10.3f}".format(self.displacement[i*3 +2]) + ', ' + '\n') outfile.write('\n') outfile.write('Stresses\n') for i, stress in enumerate(self.stress): if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') outfile.write(str(i + self._io_origin) + ', ' + "{:10.3f}".format(stress) + '\n') outfile.write('\n') # Saving original input outfile.write('----- Original input: -----\n\n') outfile.write('_ORIGIN\n') outfile.write(str(self._io_origin) + '\n\n') outfile.write('DOF\n') outfile.write(str(self.dof) + '\n\n') outfile.write('ELEMENTS\n') outfile.write(out_element + '\n\n') outfile.write('COORDINATES\n') outfile.write(out_coords + '\n\n') outfile.write('CROSS-SECTIONS\n') outfile.write(out_crsect + '\n\n') outfile.write('MATERIALS\n') outfile.write(out_materials + '\n\n') outfile.write('FORCES\n') outfile.write(out_forces + '\n\n') outfile.write('SUPPORTS\n') outfile.write(out_supports + '\n\n') outfile.write('SPECDOF\n') outfile.write(out_specdofs + '\n\n') outfile.write('EOF\n') ################################## # BEGINNING OF THE MAIN PART # ################################## PARTTIME = logtime(TIC, "Initialization") # Define new truss TRUSS = Truss('bridge') if not _DEBUG: TRUSS.name = raw_input('Test name: ') else: print "*** Debug mode ***" print "*** The following file will be opened: " + TRUSS.name + ".str" # Read input file #TRUSS.read('lab_01.txt') try: TRUSS.read(TRUSS.name + ".str") except IOError: print "The following file could not be opened: " + TRUSS.name + ".str" print "Please make sure that the structural data is available for the program in the running directory." raise IOError #if _ARDUINO or _SIMULATION: # deprecated # TRUSS.setspecdofs(arduino_mapping) PARTTIME = logtime(PARTTIME, "Setting up structure") # Calculate stiffness-matrix TRUSS.calcstiffness() #TRUSS.calcstiffness_plate() PARTTIME = logtime(PARTTIME, "Calculating Stiffness Matrix") #Solve structure TRUSS.solve() #TRUSS.solve_plate() PARTTIME = logtime(PARTTIME, "Solving") if _UPDATING: TRUSS.setunitmodification(0.05) TRUSS.seterrorlimit(1.2) TRUSS.setmodificationlimit(0.7) TRUSS.setiterationlimit(100) TRUSS.updatemodel() PARTTIME = logtime(PARTTIME, "Updating numerical model") if _GRAPHICS: # Plot settings: # O: Original D: Deformed S: Supports F: Forces R: Reactions # ScD: Scale displacments (Z-axis) (def:1.0) ScF: Scale forces (def:1.0) # ScS: Scale Support signs (Z-axis) (def:1.0) # Save: Save plot to file # plot(O, D, S, F, R, ScD, ScF, ScS, Save) TRUSS.plot(1, 0, 1, 1, 0, 1.0, 0.0, 0.0, True) TRUSS.plot(1, 1, 1, 0, 0, 1.0, 0.0, 0.0, True) TRUSS.plot(0, 1, 1, 1, 1, 2.0, 0.0, 0.0, True) #pass PARTTIME = logtime(PARTTIME, "Plotting") # Write results to file TRUSS.writeresults(TRUSS.name + ' - Results.txt') PARTTIME = logtime(PARTTIME, "Writing results to the output file") if _ARDUINO: # Closing Arduino port SER.close() if _LOG: TAC = time.time() TOTALTIME = TAC-TIC if _UPDATING: print "Update statistics:" print "Totacully updated models: " + str(TRUSS.numofupdates[0]) print " Updates with running out of possibilities: " + str(TRUSS.numofupdates[2]) print " Updates did not finshed: " + str(TRUSS.numofupdates[1]) print 'Total time: ' + str("{:10.3f}".format(TOTALTIME)) if _REALISTICSIMULATION: sleeptime = nowreadtime - prevreadtime except Exception: pass except Exception: skip = 1 sleeptime = 0. if not skip: if not sleeptime > 0: sleeptime = 0. arduinoline = str(arduinoline.split(']')[0])+"]" arduinovalues = eval(arduinoline) try: for i in range(len(self.arduino_mapping)): data[i] = float(arduinovalues[i]) self.processeddata = data except Exception: print "Type error: " + str(arduinovalues) + "... continuing" self.measurement = zip(self.arduino_mapping, data) # Calculate differences delta = self.difference(self.displacement, self.measurement) time.sleep(sleeptime) print delta return delta except IndexError: print "IndexError" #pass except Exception: print "Exception in simulation data" #pass def updatemodel(self): """ General function to manage model updatin procedure. """ self.processeddata = [0.]*len(self.arduino_mapping) if not _SIMULATION: base = self.calibrate() filemode = 'a' else: base = ['SIMULATION'] try: os.remove(self.name + ' - UpdateResults - SIMULATED.txt') except Exception: pass filemode = 'r' with open(self.name + ' - Input Data.txt', filemode) as inputfile: # Saving input data if not _SIMULATION: inputfile.write('Input data of \'' + self.name + '\':\n\n') inputfile.write('Start Time: ' + str(datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')) + "\n") inputfile.write('Base: ' + str(base) + '\n') inputline = "[],0.0" for i in range(1000): if not _SIMULATION: delta = self.readarduino(base, inputfile) self.optimize(delta) else: try: delta = None previnputline = inputline inputline = inputfile.readline() if not inputline == '': delta = self.simulatearduino(inputline, previnputline) except Exception: pass if not delta is None: self.optimize(delta) print "Update statistics:" print "Totally updated models: " + str(TRUSS.numofupdates[0] + TRUSS.numofupdates[1]++ TRUSS.numofupdates[2]) print " Successfully updated models: " + str(TRUSS.numofupdates[0]) print " Updates with running out of possibilities: " + str(TRUSS.numofupdates[2]) print " Updates did not finshed: " + str(TRUSS.numofupdates[1]) def calibrate(self): """ Calibration for Arduino measurement. All the measurements will describe the dispalecements from the claibration-state. """ answer_1 = '0' restart = '0' accept = '0' arduinovalues = [] print "Before starting the model updating, the measuring tools must be calibrated." print "The calibration should be done in load-free state." while (answer_1 not in ['Y', 'N']): answer_1 = raw_input('Can we start the calibration? (y/n) ').upper() if answer_1 == 'N': SER.close() raise Exception('Calibration is terminated') else: try: SER.flushInput() #time.sleep(0.2) arduinoline = '' #SER.readline() while len(arduinoline) == 0: time.sleep(0.2) arduinoline = SER.readline() if len(arduinoline) > 0: arduinovalues = arduinoline.split(',') del arduinovalues[len(arduinovalues)-1] # if needed!!! if len(arduinovalues) == len(self.arduino_mapping): measurement = zip(self.arduino_mapping, arduinovalues) print "Calibration result:" print measurement while (accept not in ['Y', 'N']): accept = raw_input('Ok? Can we start the main part? Put on the loads! (y/n) ').upper() if accept == 'N': restart = 'Y' else: print "Data error. Calibartion is restarting." print "Arduino values:" + str(arduinovalues) restart = 'Y' else: print 'The calibration cannot be done: no data' while (restart not in ['Y', 'N']): restart = raw_input('Do you want to restart calibration? (y/n) ').upper() except Exception: print 'The calibration cannot be done: exception was raised' while (restart not in ['Y', 'N']): restart = raw_input('Do you want to restart calibration? (y/n) ').upper() if restart == 'Y': print "Restarting calibration" SER.flushInput() return self.calibrate() elif restart == 'N': SER.close() raise Exception('Calibration is terminated') if accept == 'Y': return measurement def postprocess(self): """ Calculates reaction forces and stresses """ self._reactions() self._stresses() self._postprocessed = 1 def _reactions(self): """ Calculates reaction forces """ for i in self.known_dis_a: self.force[i] = 0 for j, displ in enumerate(self.displacement): self.force[i] += self.stiffness[i][j]*displ def _stresses(self): """ Calculates stress in elements Last part: Coloring elements for graphical output """ self.stress = [0.]*self.elenum for element in range(self.elenum): locstiff = [-self._cx[element], -self._cy[element], -self._cz[element], \ self._cx[element], self._cy[element], self._cz[element]] for i in range(3*2): self.stress[element] += locstiff[i]*self.displacement[self.eledof[element][i]] self.stress[element] = self.stress[element]*self._norm_stiff[element] smax = max([abs(min(self.stress)), max(self.stress), 0.000000001]) self.stresscolor = [float(x)/float(smax) for x in self.stress] def postprocessed(self): """ Tells if the structure's postprocess part is already calcuated """ return self._postprocessed def writeresults(self, fname): """ Writing results to file. """ out_element = '' for i in self.node: out_element += str(i[0] + self._io_origin) + ', ' + str(i[1] + self._io_origin) + ' | ' out_coords = '' for i in self.nodalcoord: out_coords += str(i[0]) + ', ' + str(i[1]) + ', ' + str(i[2]) + ' | ' out_crsect = '' for i in self.area: out_crsect += str(i) + ', ' out_materials = '' for i in self.el_mod: out_materials += str(i) + ', ' out_forces = '' for forcedof in self.known_f_notzero: if self.dof == 3: out_forces += str(forcedof + self._io_origin) + ', ' + str(self.force[forcedof]) + ' | ' elif self.dof == 2 and i % 3 != 2: out_forces += str(forcedof - forcedof//3 + self._io_origin) + ', ' + str(self.force[forcedof]) + ' | ' out_supports = '' for i in self.constraint: if self.dof == 3: out_supports += str(i[0] + self._io_origin) + ', ' + str(i[1]) + ' | ' elif i[0] % 3 != 2: out_supports += str(i[0] - i[0]//3 + self._io_origin) + ', ' + str(i[1]) + ' | ' # Not elegant solution out_specdofs = self.specdof_inputstring with open(fname, 'w') as outfile: # Writing data outfile.write('Calculation of \'' + self.name + '\':\n\n') outfile.write('Reactions\n') #for i in range(len(self.force)//3): prev = -1 for i in self.known_dis_a: if self.dof == 3 or i%3 != 2: if i//3 != prev: if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') nodalforce = '' if (i//3)*3+0 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+0]) + ', ' else: nodalforce += ' ' if (i//3)*3+1 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+1]) + ', ' else: nodalforce += ' ' if self.dof != 2 and (i//3)*3+2 in self.known_dis_a: nodalforce += "{:10.2f}".format(self.force[(i//3)*3+2]) + '\n' else: nodalforce += ' \n' if nodalforce != ' \n': outfile.write(str(i//3 + self._io_origin) + ', ' + nodalforce) prev = i//3 outfile.write('\n') outfile.write('Displacements\n') for i in range(len(self.displacement)//3): if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') outfile.write(str(i + self._io_origin) + ', ' + "{:10.3f}".format(self.displacement[i*3 +0]) + ', ' \ + "{:10.3f}".format(self.displacement[i*3 +1]) + ', ' + "{:10.3f}".format(self.displacement[i*3 +2]) + ', ' + '\n') outfile.write('\n') outfile.write('Stresses\n') for i, stress in enumerate(self.stress): if i < 100: outfile.write(' ') if i < 9: outfile.write(' ') outfile.write(str(i + self._io_origin) + ', ' + "{:10.3f}".format(stress) + '\n') outfile.write('\n') # Saving original input outfile.write('----- Original input: -----\n\n') outfile.write('_ORIGIN\n') outfile.write(str(self._io_origin) + '\n\n') outfile.write('DOF\n') outfile.write(str(self.dof) + '\n\n') outfile.write('ELEMENTS\n') outfile.write(out_element + '\n\n') outfile.write('COORDINATES\n') outfile.write(out_coords + '\n\n') outfile.write('CROSS-SECTIONS\n') outfile.write(out_crsect + '\n\n') outfile.write('MATERIALS\n') outfile.write(out_materials + '\n\n') outfile.write('FORCES\n') outfile.write(out_forces + '\n\n') outfile.write('SUPPORTS\n') outfile.write(out_supports + '\n\n') outfile.write('SPECDOF\n') outfile.write(out_specdofs + '\n\n') outfile.write('EOF\n') ################################## # BEGINNING OF THE MAIN PART # ################################## PARTTIME = logtime(TIC, "Initialization") # Define new truss TRUSS = Truss('bridge') if not _DEBUG: TRUSS.name = raw_input('Test name: ') else: print "*** Debug mode ***" print "*** The following file will be opened: " + TRUSS.name + ".str" # Read input file #TRUSS.read('lab_01.txt') try: TRUSS.read(TRUSS.name + ".str") except IOError: print "The following file could not be opened: " + TRUSS.name + ".str" print "Please make sure that the structural data is available for the program in the running directory." raise IOError #if _ARDUINO or _SIMULATION: # deprecated # TRUSS.setspecdofs(arduino_mapping) PARTTIME = logtime(PARTTIME, "Setting up structure") # Calculate stiffness-matrix TRUSS.calcstiffness() #TRUSS.calcstiffness_plate() PARTTIME = logtime(PARTTIME, "Calculating Stiffness Matrix") #Solve structure TRUSS.solve() #TRUSS.solve_plate() PARTTIME = logtime(PARTTIME, "Solving") if _UPDATING: TRUSS.setunitmodification(0.05) TRUSS.seterrorlimit(1.2) TRUSS.setmodificationlimit(0.7) TRUSS.setiterationlimit(100) TRUSS.updatemodel() PARTTIME = logtime(PARTTIME, "Updating numerical model") if _GRAPHICS: # Plot settings: # O: Original D: Deformed S: Supports F: Forces R: Reactions # ScD: Scale displacments (Z-axis) (def:1.0) ScF: Scale forces (def:1.0) # ScS: Scale Support signs (Z-axis) (def:1.0) # Save: Save plot to file # plot(O, D, S, F, R, ScD, ScF, ScS, Save) TRUSS.plot(1, 0, 1, 1, 0, 1.0, 0.0, 0.0, True) TRUSS.plot(1, 1, 1, 0, 0, 1.0, 0.0, 0.0, True) TRUSS.plot(0, 1, 1, 1, 1, 2.0, 0.0, 0.0, True) #pass PARTTIME = logtime(PARTTIME, "Plotting") # Write results to file TRUSS.writeresults(TRUSS.name + ' - Results.txt') PARTTIME = logtime(PARTTIME, "Writing results to the output file") if _ARDUINO: # Closing Arduino port SER.close() if _LOG: TAC = time.time() TOTALTIME = TAC-TIC if _UPDATING: print "Update statistics:" print "Totally updated models: " + str(TRUSS.numofupdates[0] + TRUSS.numofupdates[1]++ TRUSS.numofupdates[2]) print " Successfully updated models: " + str(TRUSS.numofupdates[0]) print " Updates with running out of possibilities: " + str(TRUSS.numofupdates[2]) print " Updates did not finshed: " + str(TRUSS.numofupdates[1]) print 'Total time: ' + str("{:10.3f}".format(TOTALTIME))
gpl-3.0
meduz/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
xiaoh/sediFoam
cases/development-testing/multiParticles/particlePosition.py
2
1084
#!/usr/bin/python import sys, os, os.path import matplotlib.pyplot as plt p = []; for i in [1,2,3]: cmd = 'grep "^' + str(i) +' 0.00" snapshot.bubblemd > data/p' + str(i) + '.dat'; os.system(cmd); x_p = []; y_p = []; x_p_bench = []; y_p_bench = []; pData='data/p' + str(i) + '.dat'; fData = open(pData, 'r'); for line in fData.readlines(): data = [x.strip() for x in line.split(None)] if (not data): continue x_p.append(data[4]); y_p.append(data[5]); p.append(plt.plot(x_p,y_p,'k-o',markersize = 5)) pData='data/origin/p' + str(i) + '.dat'; fData = open(pData, 'r'); for line in fData.readlines(): data = [x.strip() for x in line.split(None)] if (not data): continue x_p_bench.append(data[4]); y_p_bench.append(data[5]); p.append(plt.plot(x_p_bench,y_p_bench,'r-o',markersize = 3)) lg = plt.legend([p[0],p[1]],["current result","benchmark"],loc=4) lg.draw_frame(False) plt.savefig('data/multiParticlesPositionDia.pdf');
gpl-2.0
IndraVikas/scikit-learn
examples/model_selection/plot_validation_curve.py
229
1823
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.learning_curve import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) plt.semilogx(param_range, train_scores_mean, label="Training score", color="r") plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="g") plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") plt.legend(loc="best") plt.show()
bsd-3-clause
RobertABT/heightmap
build/matplotlib/examples/pylab_examples/barchart_demo2.py
6
4284
""" Thanks Josh Hemann for the example This examples comes from an application in which grade school gym teachers wanted to be able to show parents how their child did across a handful of fitness tests, and importantly, relative to how other children did. To extract the plotting code for demo purposes, we'll just make up some data for little Johnny Doe... """ import numpy as np import matplotlib.pyplot as plt import pylab from matplotlib.ticker import MaxNLocator student = 'Johnny Doe' grade = 2 gender = 'boy' cohortSize = 62 # The number of other 2nd grade boys numTests = 5 testNames = ['Pacer Test', 'Flexed Arm\n Hang', 'Mile Run', 'Agility', 'Push Ups'] testMeta = ['laps', 'sec', 'min:sec', 'sec', ''] scores = ['7', '48', '12:52', '17', '14'] rankings = np.round(np.random.uniform(0, 1, numTests)*100, 0) fig, ax1 = plt.subplots(figsize=(9, 7)) plt.subplots_adjust(left=0.115, right=0.88) fig.canvas.set_window_title('Eldorado K-8 Fitness Chart') pos = np.arange(numTests)+0.5 # Center bars on the Y-axis ticks rects = ax1.barh(pos, rankings, align='center', height=0.5, color='m') ax1.axis([0, 100, 0, 5]) pylab.yticks(pos, testNames) ax1.set_title('Johnny Doe') plt.text(50, -0.5, 'Cohort Size: ' + str(cohortSize), horizontalalignment='center', size='small') # Set the right-hand Y-axis ticks and labels and set X-axis tick marks at the # deciles ax2 = ax1.twinx() ax2.plot([100, 100], [0, 5], 'white', alpha=0.1) ax2.xaxis.set_major_locator(MaxNLocator(11)) xticks = pylab.setp(ax2, xticklabels=['0', '10', '20', '30', '40', '50', '60', '70', '80', '90', '100']) ax2.xaxis.grid(True, linestyle='--', which='major', color='grey', alpha=0.25) #Plot a solid vertical gridline to highlight the median position plt.plot([50, 50], [0, 5], 'grey', alpha=0.25) # Build up the score labels for the right Y-axis by first appending a carriage # return to each string and then tacking on the appropriate meta information # (i.e., 'laps' vs 'seconds'). We want the labels centered on the ticks, so if # there is no meta info (like for pushups) then don't add the carriage return to # the string def withnew(i, scr): if testMeta[i] != '': return '%s\n' % scr else: return scr scoreLabels = [withnew(i, scr) for i, scr in enumerate(scores)] scoreLabels = [i+j for i, j in zip(scoreLabels, testMeta)] # set the tick locations ax2.set_yticks(pos) # set the tick labels ax2.set_yticklabels(scoreLabels) # make sure that the limits are set equally on both yaxis so the ticks line up ax2.set_ylim(ax1.get_ylim()) ax2.set_ylabel('Test Scores') #Make list of numerical suffixes corresponding to position in a list # 0 1 2 3 4 5 6 7 8 9 suffixes = ['th', 'st', 'nd', 'rd', 'th', 'th', 'th', 'th', 'th', 'th'] ax2.set_xlabel('Percentile Ranking Across ' + str(grade) + suffixes[grade] + ' Grade ' + gender.title() + 's') # Lastly, write in the ranking inside each bar to aid in interpretation for rect in rects: # Rectangle widths are already integer-valued but are floating # type, so it helps to remove the trailing decimal point and 0 by # converting width to int type width = int(rect.get_width()) # Figure out what the last digit (width modulo 10) so we can add # the appropriate numerical suffix (e.g., 1st, 2nd, 3rd, etc) lastDigit = width % 10 # Note that 11, 12, and 13 are special cases if (width == 11) or (width == 12) or (width == 13): suffix = 'th' else: suffix = suffixes[lastDigit] rankStr = str(width) + suffix if (width < 5): # The bars aren't wide enough to print the ranking inside xloc = width + 1 # Shift the text to the right side of the right edge clr = 'black' # Black against white background align = 'left' else: xloc = 0.98*width # Shift the text to the left side of the right edge clr = 'white' # White on magenta align = 'right' # Center the text vertically in the bar yloc = rect.get_y()+rect.get_height()/2.0 ax1.text(xloc, yloc, rankStr, horizontalalignment=align, verticalalignment='center', color=clr, weight='bold') plt.show()
mit
cavestruz/L500analysis
fitting/ICM_profiles/training_io/training_steps.py
1
4868
from sklearn import linear_model from sklearn.cross_validation import train_test_split import numpy as np class TrainModel : ''' | Parameters | ---------- | data_X : numpy array or sparse matrix of shape [n_samples,n_features] | ( Feature data ) | data_y : numpy array of shape [n_samples, n_targets] | ( Target values ) | | train_size : Fraction of sample for training vs. testing. Default is 0.9. | | Attributes | ---------- | trained_model : Trained linear regression model that will output a target | value on other values that are not necessarily in the | training data | coefficients : Coefficients of the regression | residual : Residual of the fit | variance : Variance score on the regression | train_test_samples : dictionary of the train/test split features and targets | ''' def __init__( self, features, targets, train_size=0.9 ) : '''This expects data_X, data_y, optional kw for train_size''' self.features = features self.targets = targets self.train_size = train_size self._test_split() self._train_model() def _test_split( self ) : ''' Saves a subset for tesing.''' assert( self.train_size > 0.0 and self.train_size < 1.0 ) self.train_test_samples = dict(zip(['data_X_train', 'data_X_test', 'data_y_train', 'data_y_test'], train_test_split(self.features, self.targets, train_size=self.train_size))) def _train_model( self ) : # Create the linear regression object regr = linear_model.LinearRegression() # Train the model using the training set self.trained_model = regr.fit(self.train_test_samples['data_X_train'], self.train_test_samples['data_y_train']) # The coefficients self.coefficients = regr.coef_ # The mean square error self.residual_sum_of_sq = \ np.mean((regr.predict(self.train_test_samples['data_X_test']) - \ self.train_test_samples['data_y_test']) ** 2) # Explained variance score: 1 is perfect prediction self.variance_score = regr.score(self.train_test_samples['data_X_test'], self.train_test_samples['data_y_test']) def get_trained_model(collected_samples, ibin_radial=None) : ''' Return a TrainModel instance that has been trained on collected samples. This can be a model for integrated quantities or radial quantities. ''' cs = collected_samples if ibin_radial != None : cs.set_radial_bin(ibin_radial) cs.get_targets() cs.get_features() return TrainModel(features=cs.features, targets=cs.targets) def get_trained_model_profile( collected_samples, rbins ) : ''' Return a list of trained models for every radial point in the profiles ''' return [ get_trained_model(collected_samples, ibin_radial=i).trained_model for i in range(len(rbins)) ]
mit
lewismc/climate
RCMES/run_RCMES.py
3
13922
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import os import sys import ssl import yaml import operator from datetime import datetime from glob import glob from getpass import getpass import numpy as np # Need these lines to run RCMES through SSH without X11 import matplotlib matplotlib.use('Agg') import ocw.utils as utils import ocw.dataset_processor as dsp from ocw.dataset import Bounds from ocw.dataset_loader import DatasetLoader from metrics_and_plots import * def load_datasets_from_config(extra_opts, *loader_opts): ''' Generic dataset loading function. ''' for opt in loader_opts: loader_name = opt['loader_name'] if loader_name == 'esgf': if extra_opts['password'] is None: extra_opts['username'] = raw_input('Enter your ESGF OpenID:\n') extra_opts['password'] = getpass( prompt='Enter your ESGF password:\n') opt['esgf_username'] = extra_opts['username'] opt['esgf_password'] = extra_opts['password'] elif loader_name == 'rcmed': opt['min_lat'] = extra_opts['min_lat'] opt['max_lat'] = extra_opts['max_lat'] opt['min_lon'] = extra_opts['min_lon'] opt['max_lon'] = extra_opts['max_lon'] opt['start_time'] = extra_opts['start_time'] opt['end_time'] = extra_opts['end_time'] loader = DatasetLoader(*loader_opts) loader.load_datasets() return loader.datasets if hasattr(ssl, '_create_unverified_context'): ssl._create_default_https_context = ssl._create_unverified_context config_file = str(sys.argv[1]) print('Reading the configuration file {}'.format(config_file)) config = yaml.load(open(config_file)) time_info = config['time'] temporal_resolution = time_info['temporal_resolution'] # Read time info maximum_overlap_period = time_info.get('maximum_overlap_period', False) if not maximum_overlap_period: start_time = datetime.strptime(time_info['start_time'].strftime('%Y%m%d'),'%Y%m%d') end_time = datetime.strptime(time_info['end_time'].strftime('%Y%m%d'),'%Y%m%d') else: # These values will be determined after datasets are loaded start_time, end_time = None, None # Read space info space_info = config['space'] if not 'boundary_type' in space_info: min_lat = space_info['min_lat'] max_lat = space_info['max_lat'] min_lon = space_info['min_lon'] max_lon = space_info['max_lon'] else: domain = space_info['boundary_type'] if 'CORDEX' in domain: domain = domain.replace('CORDEX', '').lower() domain = domain.strip() min_lat, max_lat, min_lon, max_lon = utils.CORDEX_boundary(domain) # Additional arguments for the DatasetLoader extra_opts = {'min_lat': min_lat, 'max_lat': max_lat, 'min_lon': min_lon, 'max_lon': max_lon, 'start_time': start_time, 'end_time': end_time, 'username': None, 'password': None} # Get the dataset loader options data_info = config['datasets'] # Extract info we don't want to put into the loader config # Multiplying Factor to scale obs by. Currently only supported for reference # (first) dataset. We should instead make this a parameter for each # loader and Dataset objects. fact = data_info[0].pop('multiplying_factor', 1) """ Step 1: Load the datasets """ print('Loading datasets:\n{}'.format(data_info)) datasets = load_datasets_from_config(extra_opts, *data_info) multiplying_factor = np.ones(len(datasets)) multiplying_factor[0] = fact names = [dataset.name for dataset in datasets] for i, dataset in enumerate(datasets): res = dataset.temporal_resolution() if res == 'daily' or res == 'monthly': datasets[i] = dsp.normalize_dataset_datetimes(dataset, res) if multiplying_factor[i] != 1: datasets[i].values *= multiplying_factor[i] """ Step 2: Subset the data for temporal and spatial domain """ # Create a Bounds object to use for subsetting if maximum_overlap_period: start_time, end_time = utils.get_temporal_overlap(datasets) print('Maximum overlap period') print('start_time: {}'.format(start_time)) print('end_time: {}'.format(end_time)) if temporal_resolution == 'monthly' and end_time.day !=1: end_time = end_time.replace(day=1) for i, dataset in enumerate(datasets): min_lat = np.max([min_lat, dataset.lats.min()]) max_lat = np.min([max_lat, dataset.lats.max()]) min_lon = np.max([min_lon, dataset.lons.min()]) max_lon = np.min([max_lon, dataset.lons.max()]) if not 'boundary_type' in space_info: bounds = Bounds(lat_min=min_lat, lat_max=max_lat, lon_min=min_lon, lon_max=max_lon, start=start_time, end=end_time) else: bounds = Bounds(boundary_type=space_info['boundary_type'], start=start_time, end=end_time) for i, dataset in enumerate(datasets): datasets[i] = dsp.subset(dataset, bounds) if dataset.temporal_resolution() != temporal_resolution: datasets[i] = dsp.temporal_rebin(datasets[i], temporal_resolution) # Temporally subset both observation and model datasets # for the user specified season month_start = time_info['month_start'] month_end = time_info['month_end'] average_each_year = time_info['average_each_year'] # For now we will treat the first listed dataset as the reference dataset for # evaluation purposes. for i, dataset in enumerate(datasets): datasets[i] = dsp.temporal_subset(dataset, month_start, month_end, average_each_year) reference_dataset = datasets[0] target_datasets = datasets[1:] reference_name = names[0] target_names = names[1:] # generate grid points for regridding if config['regrid']['regrid_on_reference']: new_lat = reference_dataset.lats new_lon = reference_dataset.lons else: delta_lat = config['regrid']['regrid_dlat'] delta_lon = config['regrid']['regrid_dlon'] nlat = (max_lat - min_lat)/delta_lat+1 nlon = (max_lon - min_lon)/delta_lon+1 new_lat = np.linspace(min_lat, max_lat, nlat) new_lon = np.linspace(min_lon, max_lon, nlon) # Get flag for boundary checking for regridding. By default, this is set to True # since the main intent of this program is to evaluate RCMs. However, it can be # used for GCMs in which case it should be set to False to save time. boundary_check = config['regrid'].get('boundary_check', True) # number of target datasets (usually models, but can also be obs / reanalysis) ntarget = len(target_datasets) print('Dataset loading completed') print('Reference data: {}'.format(reference_name)) print('Number of target datasets: {}'.format(ntarget)) for target_name in target_names: print(target_name) """ Step 3: Spatial regriding of the datasets """ print('Regridding datasets: {}'.format(config['regrid'])) if not config['regrid']['regrid_on_reference']: reference_dataset = dsp.spatial_regrid(reference_dataset, new_lat, new_lon) print('Reference dataset has been regridded') for i, dataset in enumerate(target_datasets): target_datasets[i] = dsp.spatial_regrid(dataset, new_lat, new_lon, boundary_check=boundary_check) print('{} has been regridded'.format(target_names[i])) print('Propagating missing data information') datasets = dsp.mask_missing_data([reference_dataset]+target_datasets) reference_dataset = datasets[0] target_datasets = datasets[1:] """ Step 4: Checking and converting variable units """ print('Checking and converting variable units') reference_dataset = dsp.variable_unit_conversion(reference_dataset) for i, dataset in enumerate(target_datasets): target_datasets[i] = dsp.variable_unit_conversion(dataset) print('Generating multi-model ensemble') if len(target_datasets) >= 2.: target_datasets.append(dsp.ensemble(target_datasets)) target_names.append('ENS') """ Step 5: Generate subregion average and standard deviation """ if config['use_subregions']: # sort the subregion by region names and make a list subregions= sorted(config['subregions'].items(),key=operator.itemgetter(0)) # number of subregions nsubregion = len(subregions) print('Calculating spatial averages and standard deviations of {} subregions' .format(nsubregion)) reference_subregion_mean, reference_subregion_std, subregion_array = ( utils.calc_subregion_area_mean_and_std([reference_dataset], subregions)) target_subregion_mean, target_subregion_std, subregion_array = ( utils.calc_subregion_area_mean_and_std(target_datasets, subregions)) """ Step 6: Write a netCDF file """ workdir = config['workdir'] if workdir[-1] != '/': workdir = workdir+'/' print('Writing a netcdf file: ',workdir+config['output_netcdf_filename']) if not os.path.exists(workdir): os.system("mkdir -p "+workdir) if config['use_subregions']: dsp.write_netcdf_multiple_datasets_with_subregions( reference_dataset, reference_name, target_datasets, target_names, path=workdir+config['output_netcdf_filename'], subregions=subregions, subregion_array=subregion_array, ref_subregion_mean=reference_subregion_mean, ref_subregion_std=reference_subregion_std, model_subregion_mean=target_subregion_mean, model_subregion_std=target_subregion_std) else: dsp.write_netcdf_multiple_datasets_with_subregions( reference_dataset, reference_name, target_datasets, target_names, path=workdir+config['output_netcdf_filename']) """ Step 7: Calculate metrics and draw plots """ nmetrics = config['number_of_metrics_and_plots'] if config['use_subregions']: Map_plot_subregion(subregions, reference_dataset, workdir) if nmetrics > 0: print('Calculating metrics and generating plots') for imetric in np.arange(nmetrics)+1: metrics_name = config['metrics'+'%1d' %imetric] plot_info = config['plots'+'%1d' %imetric] file_name = workdir+plot_info['file_name'] print('metrics {0}/{1}: {2}'.format(imetric, nmetrics, metrics_name)) default_shape = (int(np.ceil(np.sqrt(ntarget + 2))), int(np.ceil(np.sqrt(ntarget + 2)))) if metrics_name == 'Map_plot_bias_of_multiyear_climatology': row, column = plot_info.get('subplots_array', default_shape) if 'map_projection' in plot_info.keys(): Map_plot_bias_of_multiyear_climatology( reference_dataset, reference_name, target_datasets, target_names, file_name, row, column, map_projection=plot_info['map_projection']) else: Map_plot_bias_of_multiyear_climatology( reference_dataset, reference_name, target_datasets, target_names, file_name, row, column) elif metrics_name == 'Taylor_diagram_spatial_pattern_of_multiyear_climatology': Taylor_diagram_spatial_pattern_of_multiyear_climatology( reference_dataset, reference_name, target_datasets, target_names, file_name) elif config['use_subregions']: if (metrics_name == 'Timeseries_plot_subregion_interannual_variability' and average_each_year): row, column = plot_info.get('subplots_array', default_shape) Time_series_subregion( reference_subregion_mean, reference_name, target_subregion_mean, target_names, False, file_name, row, column, x_tick=['Y'+str(i+1) for i in np.arange(target_subregion_mean.shape[1])]) if (metrics_name == 'Timeseries_plot_subregion_annual_cycle' and not average_each_year and month_start==1 and month_end==12): row, column = plot_info.get('subplots_array', (1, 1)) Time_series_subregion( reference_subregion_mean, reference_name, target_subregion_mean, target_names, True, file_name, row, column, x_tick=['J','F','M','A','M','J','J','A','S','O','N','D']) if (metrics_name == 'Portrait_diagram_subregion_interannual_variability' and average_each_year): Portrait_diagram_subregion(reference_subregion_mean, reference_name, target_subregion_mean, target_names, False, file_name) if (metrics_name == 'Portrait_diagram_subregion_annual_cycle' and not average_each_year and month_start==1 and month_end==12): Portrait_diagram_subregion(reference_subregion_mean, reference_name, target_subregion_mean, target_names, True, file_name) else: print('please check the currently supported metrics')
apache-2.0
TomAugspurger/pandas
pandas/tests/series/test_combine_concat.py
1
4030
import numpy as np import pytest import pandas as pd from pandas import Series class TestSeriesConcat: @pytest.mark.parametrize( "dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"] ) def test_concat_empty_series_dtypes_match_roundtrips(self, dtype): dtype = np.dtype(dtype) result = pd.concat([Series(dtype=dtype)]) assert result.dtype == dtype result = pd.concat([Series(dtype=dtype), Series(dtype=dtype)]) assert result.dtype == dtype def test_concat_empty_series_dtypes_roundtrips(self): # round-tripping with self & like self dtypes = map(np.dtype, ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]) def int_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"i", "u", "b"}) and ( dtype.kind == "i" or dtype2.kind == "i" ): return "i" elif not len(typs - {"u", "b"}) and ( dtype.kind == "u" or dtype2.kind == "u" ): return "u" return None def float_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"f", "i", "u"}) and ( dtype.kind == "f" or dtype2.kind == "f" ): return "f" return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return "O" for dtype in dtypes: for dtype2 in dtypes: if dtype == dtype2: continue expected = get_result_type(dtype, dtype2) result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype assert result.kind == expected @pytest.mark.parametrize( "left,right,expected", [ # booleans (np.bool_, np.int32, np.int32), (np.bool_, np.float32, np.object_), # datetime-like ("m8[ns]", np.bool, np.object_), ("m8[ns]", np.int64, np.object_), ("M8[ns]", np.bool, np.object_), ("M8[ns]", np.int64, np.object_), # categorical ("category", "category", "category"), ("category", "object", "object"), ], ) def test_concat_empty_series_dtypes(self, left, right, expected): result = pd.concat([Series(dtype=left), Series(dtype=right)]) assert result.dtype == expected def test_concat_empty_series_dtypes_triple(self): assert ( pd.concat( [Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)] ).dtype == np.object_ ) def test_concat_empty_series_dtype_category_with_array(self): # GH 18515 assert ( pd.concat( [Series(np.array([]), dtype="category"), Series(dtype="float64")] ).dtype == "float64" ) def test_concat_empty_series_dtypes_sparse(self): result = pd.concat( [ Series(dtype="float64").astype("Sparse"), Series(dtype="float64").astype("Sparse"), ] ) assert result.dtype == "Sparse[float64]" result = pd.concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="float64")] ) # TODO: release-note: concat sparse dtype expected = pd.SparseDtype(np.float64) assert result.dtype == expected result = pd.concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="object")] ) # TODO: release-note: concat sparse dtype expected = pd.SparseDtype("object") assert result.dtype == expected
bsd-3-clause
lkilcommons/atmodweb
atmodweb/atmodweb.py
1
86988
import cherrypy #Python web server #Main imports import numpy as np import sys, pdb, textwrap, datetime,os,time, glob, traceback, time, shutil, subprocess, gc import socket #to figure out our hostname import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as pp from mpl_toolkits.basemap import Basemap from matplotlib import ticker from matplotlib.colors import LogNorm, Normalize from collections import OrderedDict import random import logging logging.basicConfig(level=logging.DEBUG) from cherrypy.lib import auth_digest from cherrypy._cpdispatch import Dispatcher import copy #Dicts must be deepcopied. #Import the model running code from atmodbackend import ModelRunner, MsisRun, ModelRun, PlotDataHandler # create logger log = logging.getLogger('atmodweb_root') log.setLevel(logging.DEBUG) # create file handler which logs everything except debug messages #fh = logging.FileHandler('atmodweb_root_%s.log' % (datetime.datetime.now().strftime("%c"))) #fh.setLevel(logging.INFO) # create console handler with a lower log level ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') #fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger #log.addHandler(fh) log.addHandler(ch) def strongly_expire(func): """Decorator that sends headers that instruct browsers and proxies not to cache. """ def newfunc(*args, **kwargs): cherrypy.response.headers['Expires'] = 'Sun, 19 Nov 1978 05:00:00 GMT' cherrypy.response.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0' cherrypy.response.headers['Pragma'] = 'no-cache' return func(*args, **kwargs) return newfunc class ansicolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class ControlState(dict): """ Subclass dict to make a dictionary that handles synchronizing with the cherrypy session before getting and after setting TODO Document Controlstate """ def __init__(self, *args): self._sync = False #Add a flag to determine whether or not we sync with the session on set/get self.log = logging.getLogger(self.__class__.__name__) dict.__init__(self, args) @property def sync(self): return self._sync @sync.setter def sync(self, value): oldval = self._sync self._sync = value if value and not oldval: #If we've switched to syncing self.push() #Force an update of the session def __setitem__(self, key, value): dict.__setitem__(self, key, value) if self.sync: cherrypy.session[key]=value def __getitem__(self, key): if self.sync: value = cherrypy.session.get(key) if value is not None: dict.__setitem__(self,key,value) #Make sure local copy is up to date else: return dict.__getitem__(self,key) else: value = dict.__getitem__(self, key) return value def push(self): """ Update the session with the dictionary contents """ self.log.debug("Now pushing controlstate contents to cherrypy.session") for key in self: if key in cherrypy.session: logging.warn('Overwriting already-existing key %s in session.' % (key)) cherrypy.session[key] = dict.__getitem__(self,key) def sanized_set(self,key,new_val,subkey=None): """ Examines a new value that is going to be put into the controlstate to see if it passes basic sanity checks, like being the same type as the old value, and, if it's a list, having the same number of elements, or if a dict, having the same keys """ if subkey is None: oldval = dict.__getitem__(self,key) else: olddict = dict.__getitem__(self,key) oldval = olddict[key] if isinstance(oldval,list): if not isinstance(newval,list): self.log.debug("At key %s, attempted to replace %s with %s, which is not a list!" % (str(oldval),str(newval))) return False def ashtml(self,key): """ Returns value at key as html to the best of it's ability """ htmllines = [] typestr = lambda x: str(type(x)).replace('<','(').replace('>',')') if key in self: item = self[key] if isinstance(item,dict): #It's a dictionary, render it as a ul htmllines.append('<ul ID="controlstate_%s">' % (key)) for ikey in item: htmllines.append('<li ID="controlstate_%s_%s"> %s (%s) </li>' % (str(key),str(ikey),str(item[ikey]),typestr(item[ikey]))) htmllines.append('</ul>') elif isinstance(item,list): #Array or similar, render as ol htmllines.append('<ol ID="controlstate_%s">' % (key)) for iind in range(len(item)): htmllines.append('<li ID="controlstate_%s_%s"> %s (%s) </li>' % (str(key),str(iind),str(item[iind]),typestr(item[iind]))) htmllines.append('</ol>') else: #Render as a p htmllines.append('<p ID="controlstate_%s">%s %s </p>' % (str(key),str(item),typestr(item))) else: raise ValueError('No such key in controlstate %s' % (key)) return "".join(htmllines) def copyasdict(self): """ Returns a copy ControlState as a normal dictionary """ newdict = dict() for key in self: item = dict.__getitem__(self,key) if hasattr(item,'__deepcopy__'): #Make sure that we're not getting references newitem = item.deepcopy() elif hasattr(item,'__copy__') or isinstance(item,dict): newitem = copy.deepcopy(item) else: newitem = item newdict[key] = newitem return newdict class ControlStateManager(object): """ Contains and manages controlstate objects Since controlstates and the model runs they create are intrinsically linked, this class is a 'peer' of ModelRunner. What that means in practice is that ControlStateManager.states and ModelRunner.runs should be 1 to 1, i.e. the n-th index of ModelRunner.runs should be the model run created by the n-th index of ControlStateManager.states """ def __init__(self): self.log = logging.getLogger(self.__class__.__name__) self.states = [] #List of controlstates self.default_controlstate = {'model_index':-1,'datetime':{'year':2000,'month':6,'day':21,'hour':12,'minute':0,'second':0},\ 'lat':40.0274,'lon':105.2519,'alt':200.,\ 'plottype':'map',\ 'descstr':'intial plot','gif_mode':False,\ 'xvar':'Longitude','xbounds':[-180.,180.],'xnpts':50,'xlog':False,'xmulti':False,'xunits':'deg','xdesc':'Longitude',\ 'yvar':'Latitude','ybounds':[-90.,90.],'ynpts':50,'ylog':False,'ymulti':False,'yunits':'deg','ydesc':'Geodetic Latitude',\ 'zvar':'Temperature','zbounds':[0.,1000.],'zlog':False,'zmulti':False,'zunits':'K','zdesc':'Atmospheric Temperature',\ 'modelname':'msis','differencemode':False,'run_model_on_refresh':True,'controlstate_is_sane':None, 'thisplot':None,'thiscaption':None,'mapproj':'moll', 'drivers':{'dt':datetime.datetime(2000,6,21,12,0,0)}, 'drivers_units':{'dt':None}, 'drivers_ranges':{'dt':[datetime.datetime(1970,1,1),datetime.datetime(2012,12,31,23,59,59)]}, 'drivers_descriptions':{'dt':'date and time of model run'}, 'driver_lookup':True} self._bound_meth = dict() # Methods which are bound to certain controlstate keys, such that when those keys are changed, #the methods are called. Sort of an ad-hoc slots and signals a'la QT self.errors = [] #If the Synchronizer produces an error during refresh, it will pass a message to controlstatemangager #to tell it the controlstate is bad self.controlstate = None self.special_keys = ['lasterror'] #Keys that can be 'get'ed or 'set' which aren't in the current controlstate #They all get some individual ControlState instance independant variable #'lasterror' gets self.errors[-1], and is a way for the front end to get an #error message that was created with self.error self.n_max_states = 10. self.n_total_states = 0. self._lastind = -1 #Add our first controlstate self.set_default_state() @property def lastind(self): return self._lastind @lastind.setter def lastind(self, value): value = int(value) if value >= 0: self.log.warn("Attempted to set control state history index to %s, Only negative indicies allowed!" % ( str(value) )) value = -1 elif value < -1*len(self.states): self.log.warn("Attempted to set control state history index to %s, but only %s plots in history!" % ( str(value),str(len(self.states)))) value = -1*len(self.states) self._lastind = value self.restore(self.lastind) #Restore that controlstate def __contains__(self, key): """Make sure we can use 'in' with this, by passing all in calls through to the current controlstate, or, if it's an exception key which has special behaviour when used in getting and setting, it will be in self.special_keys""" if key not in self.special_keys: return key in self.controlstate else: return True def __call__(self): #If we've gotten here, it's because we successfully refreshed, so this is an okay set of controlstate settings self.controlstate['controlstate_is_sane']=True self._lastind = -1 # Fix it so that the previous and next are always referenced to the plot that is displaying (i.e #If we've gotten here then we've just plotted something, and this controlstate is getting appended to self.states, #so the previous plot should be at -2, one before this one) #Add to the history on call self.n_total_states += 1 self.log.debug("Now adding controlstate %d to history." %(self.n_total_states)) self.log.debug("--Drivers dictionary is %s" %(str(self.controlstate['drivers']))) if len(self.states) > 0: changeddict = self.changed() for key in changeddict: self.log.debug("--Key %s changed from self.states[-1]\n %s \nto current\n %s" % (key,str(self.states[-1][key]),str(self.controlstate[key]))) self.states.append(self.controlstate.copyasdict()) if len(self.states)>self.n_max_states: del self.states[0] self.log.info( "Exceeded total number of stored controlstates %d. Removed %dth controlstate." %(self.n_max_states,self.n_total_states)) def __setitem__(self, key, value): """Setting on the ControlStateManager sets on the current ControlState and triggers bound methods""" if key not in self.special_keys: self.controlstate[key] = value if key in self._bound_meth: for meth in self._bound_meth[key]: self.log.debug("ControlStateManager TRIGGERING BOUND METHOD %s of key %s new value %s" % (meth.__name__,str(key),str(self[key]))) meth() def __getitem__(self, key): """Getting on the ControlStateManager gets on the current ControlState, unless the key is 'lasterror' in which case it gets the last bad controlstate""" if key not in self.special_keys: return self.controlstate[key] elif key == 'lasterror': #Extra behaviors if len(self.errors) > 0: self.log.info("Returning error %s to controlstate caller" % (self.errors[-1])) return self.errors[-1] else: return "No Error" def set_default_state(self): # change the working ControlState to the default one self.controlstate = ControlState() # Overwrite anything already there #Fill up the controlstate instance self.log.debug("Overwriting working controlstate with default values.") for key in self.default_controlstate: self.controlstate[key]=self.default_controlstate[key] self.controlstate.sync = True def changed(self,key=None): """ Is the current value assigned to key changed since last updatelast call? """ if key is None and len(self.states)>=1: ch = dict() for key in self.states[-1]: if self.changed(key): ch[key]=self.controlstate[key] return ch elif len(self.states)>=1: if key in self.states[-1]: #Typecheck if isinstance(self.controlstate[key],list) and isinstance(self.states[-1][key],list): if len(self.controlstate[key]) != len(self.states[-1][key]): return False if isinstance(self.controlstate[key],dict) != isinstance(self.states[-1][key],dict): return False try: oldeqnew = self.states[-1][key] != self.controlstate[key] except: self.log.error("Unable to compare this controlstate key %s with last, because compare statement errored" % (key)) self.log.error("self.states[-1][%s]=i\n%s\nself.controlstate[%s]=\n%s" % (key,str(self.states[-1][key]),key,str(self.controlstate[key]))) return False return oldeqnew else: self.log.warn("Key %s not in controlstate memory\n" % (key)) return True else: self.log.warn("No historical controlstates are available (key %s) \n" % (key)) return True def bind_changed(self,key,meth): """ Binds a method with no inputs to call when the controlstate item corresponding to key is called """ if key in self._bound_meth: self._bound_meth[key].append(meth) self.log.debug("Method %s added to bound methods for key %s" % (meth.__name__,key)) else: self._bound_meth[key] = [meth] self.log.debug("Key %s got it's first bound method %s" % (key,meth.__name__)) def trigger_changed(self,key,**kwargs): """ Triggers a bound on changed method corresponding to key Allows specification of keyword arguments (as oppssed to setting the value, which doens't) Specifically this gets used when setting subelements of dictionarys in this dictionary because that doesn't trigger a '__set__' """ self.log.debug("MANUALLY triggering bound methods for key %s" % (key)) for meth in self._bound_meth[key]: meth(**kwargs) def restore(self,ind): """Copies all values from controlstate at states[ind] to current controlstate""" self.log.debug("Restoring controlstate from history at index[%d]" % (ind)) for key in self.states[ind]: self.controlstate[key]=self.states[ind][key] try: if self.controlstate[key] != self.states[ind][key]: self.log.debug("--On restore: differing values:\n--current controlstate %s value:\n ---%s \n with self.states[%s][%s], value:\n ---%s" % (key, str(self.controlstate[key]),str(ind),str(key),str(self.controlstate[key]))) except: #This should not be a breaking error pass def restore_last_good(self): """ Tries to find a model run with model_run_success = True and then restores those settings to the current controlstate. """ found = False tobedeleted = [] for i in range(len(self.states)): #Work backwards ind = -1-i if self.states[ind]['controlstate_is_sane']: found = True self.restore(ind) self.log.info("Restoring last controlstate from history for which model run succeeded. Index %d is known good" % (ind)) break # else: # tobedeleted.append(ind) # self.log.info("Controlstate at index %d was unsuccessful in running model and will be removed from the history" % (ind) ) #for ind in tobedeleted: # del self.states[ind] if not found: self.set_default_state() def error(self,message,roll_back=True): """This method is called when we want to throw an error back to the front end because something in the control state is incorrect, or badly formatted. Stores a custom error message which can be recalled with a GET from the UiHandler/Frontend. The roll_back keyword argument, when true, will restore the controlstate to the last known good value""" #If we got here, the controlstate settings are bad. We will set the appropriate flag self.controlstate['controlstate_is_sane']=False #Add the message to the errors list self.errors.append(message) if roll_back: self.restore_last_good() class Synchronizer(object): """ Reacts to UiHandler PUT changes in the controlstate via the bound methods Also has methods which are called by UiHandler POST Prepares Model Runs and Refreshes the FakeCanvas figure via PlotDataHandler """ def __init__(self,canvas,uihand): #mr is the ModelRunner instance #csm is the ControlStateManager instance self.log = logging.getLogger(self.__class__.__name__) self.mr = None #Placeholder for ModelRunner instance self.canvas = canvas #The FakeCanvas instance we will plot on self.uihand = uihand self.controlstate = self.uihand.controlstate #The UI Handler has to spin up the controlstate b self.pdh = PlotDataHandler(self.canvas,controlstate=self.controlstate) #PDH needs canvas, obviously since it needs to plot self.initModelRunner() #Bind on changed methods self.log.info("Binding execute on change controlstate methods") self.controlstate.bind_changed('plottype',self.refreshSelectOptions) self.controlstate.bind_changed('xbounds',self.xbounds_changed) self.controlstate.bind_changed('ybounds',self.ybounds_changed) self.controlstate.bind_changed('xvar',self.xvar_changed) self.controlstate.bind_changed('yvar',self.yvar_changed) self.controlstate.bind_changed('zvar',self.zvar_changed) self.controlstate.bind_changed('datetime',self.datetime_changed) self.controlstate.bind_changed('drivers',self.drivers_changed) self.controlstate.bind_changed('mapproj',self.mapproj_changed) self.controlstate.bind_changed('modelname',self.modelname_changed) def initModelRunner(self): """Does a first run of the model specified in the controlstate to make sure that there's a reference run. A lot of code looks to the previously run model (i.e. to populate the selects for x, y and z)""" if self.mr is None: self.mr = ModelRunner(firstmodel=self.controlstate['modelname']) else: #Don't create a new modelrunner if we changed models, just #use the same one...a heterogeneous collection of ModelRun #objects in mr.runs doens't really matter much unless #we're trying to use peering, which AtModWeb doesn't self.mr.model = self.controlstate['modelname'] self.mr.init_nextrun() #Make sure the default selection is sane and set the appropriate things in the next model run instance self.prepare_model_run() #Now run the model self.mr.nextrun.populate() #Append the model run to the runs database self.mr() def refreshModelRunOptions(self): """To be called whenever a new model run is instantiated. Updates all controlstate options which change with model run""" #Update the drivers dictionary in self.log.info("refreshModelRunOptions called...copying drivers dictionary and clearing plot data handler data") self.pdh.clear_data() self.log.debug(self.mr.runs[-1].drivers.__class__.__name__+':'+str(self.mr.runs[-1].drivers)) self.controlstate['drivers']=self.mr.runs[-1].drivers.copyasdict() for key in self.controlstate['datetime']: self.controlstate['datetime'][key] = getattr(self.mr.runs[-1].drivers['dt'],key) self.controlstate['drivers_units']=copy.deepcopy(self.mr.runs[-1].drivers.units) self.controlstate['drivers_ranges']=copy.deepcopy(self.mr.runs[-1].drivers.allowed_range) self.controlstate['drivers_descriptions']=copy.deepcopy(self.mr.runs[-1].drivers.descriptions) def autoscale(self): """Updates the xbounds,ybounds and zbounds in the controlstate from the lims dictionary in last model run""" self.mr.runs[-1].autoscale_all_lims() #Sets all lims to their min and max in the model data xdata,xlims,xunits,xdesc = self.mr[self.controlstate['xvar']] #returns data,lims ydata,ylims,yunits,ydesc = self.mr[self.controlstate['yvar']] #returns data,lims zdata,zlims,zunits,zdesc = self.mr[self.controlstate['zvar']] #returns data,lims self.controlstate['xbounds']=xlims self.controlstate['ybounds']=ylims self.controlstate['zbounds']=zlims def drivers_changed(self,subfield=None): """On changed to controlstate['drivers'], update the next model run drivers""" #Currently done in referesh? if subfield is None: #Nothing calls this without a subfield right now #Do Nothing pass else: old_driver_val = str(self.mr.nextrun.drivers[subfield]) if subfield in self.mr.nextrun.drivers else "no previous value" self.log.debug("drivers_changed: next model run driver %s changed from %s to %s" % (subfield,old_driver_val, str(self.controlstate['drivers'][subfield]))) self.mr.nextrun.drivers[subfield] = self.controlstate['drivers'][subfield] if subfield == 'dt': for f in self.controlstate['datetime']: self.controlstate['datetime'][f] = getattr(self.controlstate['drivers']['dt'],f) def datetime_changed(self,subfield=None): """Process a change in controlstate['datetime'] dict by setting controlstate['drivers']['dt']""" #Needs subfield kwarg #Convert the dict to an actual datetime dt = datetime.datetime(**self.controlstate['datetime']) self.controlstate['drivers']['dt'] = dt #Have to explicitly trigger changed since we aren't explicitly #setting controlstate['drivers'] TODO find a better way self.controlstate.trigger_changed('drivers',subfield='dt') def xvar_changed(self): """Updates the xbounds in the controlstate when a new xvar is selected""" xdata,xlims,xunits,xdesc = self.mr[self.controlstate['xvar']] #returns data,lims, works for multi self.controlstate['xbounds']=xlims self.controlstate['xunits']=xunits self.controlstate['xdesc']=xdesc def yvar_changed(self): """Updates the ybounds in the controlstate when a new yvar is selected""" ydata,ylims,yunits,ydesc = self.mr[self.controlstate['yvar']] #returns data,lims, works for multi self.controlstate['ybounds']=ylims self.controlstate['yunits']=yunits self.controlstate['ydesc']=ydesc def zvar_changed(self): """Updates the zbounds in the controlstate when a new zvar is selected""" zdata,zlims,zunits,zdesc = self.mr[self.controlstate['zvar']] #returns data,lims, works for multi self.controlstate['zbounds']=zlims self.controlstate['zunits']=zunits self.controlstate['zdesc']=zdesc def xbounds_changed(self): """Function which is called whenever the xbounds are changed in the controlstate. Changes limits for next model run""" if not self.is_multi('x') and self.is_position('x'): self.mr.nextrun.vars.lims[self.controlstate['xvar']] = self.controlstate['xbounds'] elif self.is_multi('x') and not isinstance(self.controlstate['xbounds'][0],list): nvars = len(self.controlstate['xvar']) newlst = [] for k in range(nvars): newlst.append(self.controlstate['xbounds']) self.controlstate['xbounds'] = newlst def ybounds_changed(self): """Function which is called whenever the ybounds are changed in the controlstate. Changes limits for next model run""" if not self.is_multi('y') and self.is_position('y'): self.mr.nextrun.vars.lims[self.controlstate['yvar']] = self.controlstate['ybounds'] elif self.is_multi('y') and not isinstance(self.controlstate['ybounds'][0],list): nvars = len(self.controlstate['yvar']) newlst = [] for k in range(nvars): newlst.append(self.controlstate['ybounds']) self.controlstate['ybounds'] = newlst def mapproj_changed(self): """Map projection type changed""" if self.controlstate['mapproj'] in self.pdh.supported_projections: self.pdh.mapproj = self.controlstate['mapproj'] def modelname_changed(self): """Model name is changed, big reinit""" if self.controlstate['modelname'] in ['msis','iri']: self.initModelRunner() self.refreshSelectOptions() self.refreshModelRunOptions() #Set what we are allowed to plot def refreshSelectOptions(self): """ Creates the (x,y,z)var_options JSON-style dictionaries used to populate the variable select elements. Relies on the PlotDataHandler plot properies settings to figure out what are allowed variables for x, y and z axes for a particular type of plot (i.e. a 'map' type plot can only have 'Longitude' as 'xvar' 'Latitude' as 'yvar' and anything as 'zvar'). Get the current plottype from the controlstate, instead of using the PlotDataHandler setting, because the plotDataHandler setting is only updated when the 'refresh' method is called, and front end needs to know what the available variables are to populate the HTML select element for picking variables. """ allowed = dict() allowed['x'] = self.plotProperty('x_allowed') allowed['y'] = self.plotProperty('y_allowed') allowed['z'] = self.plotProperty('z_allowed') all_options_dict = dict() for k in self.mr.runs[-1].vars: all_options_dict[k]=k for var in ['x','y','z']: options_dict = dict() #Short circuting options if 'all' in allowed[var]: options_dict=copy.deepcopy(all_options_dict) elif 'none' in allowed[var]: pass #Return an empty #Iterate through list of allowed values else: for value in allowed[var]: if value == 'position': for k in all_options_dict: if all_options_dict[k] in self.mr.nextrun.vars: #Only position (input) variables are in a run before execution options_dict[k] = all_options_dict[k] elif value == 'notposition': for k in all_options_dict: if all_options_dict[k] not in self.mr.nextrun.vars: #Only position (input) variables are in a run before execution options_dict[k] = all_options_dict[k] elif value in all_options_dict: options_dict[value]=value self.controlstate[var+'var_options']=options_dict def plotProperty(self,prop): """Simple convenience function to retrieve a property of the current type of plot""" #Current plottype cpt = self.controlstate['plottype'] return self.pdh.plottypes[cpt][prop] def is_multi(self,coord): """ Convenience function for testing whether the currently selected x or y variables (controlstate['xvar'],etc) are multiple vars i.e. stored as lists internally. """ return isinstance(self.controlstate[coord+'var'],(list,tuple)) #just tests if the controlstate is a list/tuple def is_position(self,coord): """ Convenience function for testing whether the currently selected x or y variables are positions. i.e do they have names 'Latitude','Longitude' or 'Altitude'. Handles the possibility of the variables being multiple variables on the same axes, so this is preferred way of checking instead of .. code-block :: <python> self.controlstate['xvar'] in ['Latitude','Longitude','Altitude'] """ if not self.is_multi(coord): return self.controlstate[coord+'var'] in self.mr.nextrun.vars else: return any(v in self.mr.nextrun.vars for v in self.controlstate[coord+'var']) def prepare_model_run(self): """ Determines which position variables (lat,lon, or alt) are constant, given the current settings of the xvar, yvar and zvar. Tells the ModelRun instance that is about to be populated with data, i.e. the model is going to run, what shape that data will be. If it's a line we are plotting we only need 1-d data in the model and can save some time, but if we will be plotting a pcolor or map, we'll need 2-d data. Also tells that ModelRun which position variables will be constant, and which independant: i.e. if we are plotting a 'Temperature' vs. 'Altitude' plot, then we want to determine which latitude and longitude values the user wants the model to calculate the altitude profile for from the controlstate (and lat and lon will be constant for the model run). """ #Begin by assigning all of the position variables their approprate output #from the controls structure. These are all single (scalar) values set by #the frontend HTML elements for Lat, Lon and Alt. #Everything is GEODETIC, not GEOCENTRIC, because that's what MSIS expects. #Some of these position variables will be ignored #since one must be on a plot axes if line plot, #or two if a colored plot (pcolor or map) #These values will be the values for their associated #position variable if it is not one of the axes of the plot self.mr.nextrun.vars['Latitude'] = self.controlstate['lat'] self.mr.nextrun.vars['Longitude'] = self.controlstate['lon'] self.mr.nextrun.vars['Altitude'] = self.controlstate['alt'] #Handle the case of two variables being set to the same thing: if self.controlstate['xvar'] == self.controlstate['yvar']: raise RuntimeError('X and Y both are %s, cannot make sensible plot!' % (self.controlstate['xvar'])) #Make sure all position variables have their limits set correctly #before model run so that we end up with the right generated #grid if not self.is_multi('x') and self.is_position('x'): self.mr.nextrun.vars.lims[self.controlstate['xvar']] = self.controlstate['xbounds'] if not self.is_multi('y') and self.is_position('y'): self.mr.nextrun.vars.lims[self.controlstate['yvar']] = self.controlstate['ybounds'] #Copy out the drivers from the controlstate (only copy those that are exposed via the model's __init__) self.mr.nextrun.drivers['dt'] = self.controlstate['drivers']['dt'] #Now we determine from the plottype if we need to grid x and y if self.plotProperty('gridxy'): #Fault checks if not self.is_position('x'): #vars dict starts only with position and time raise RuntimeError('xvar %s is not a valid position variable!' % (self.controlstate['xvar'])) else: #self.mr.nextrun.lims[self.controlstate['xvar']] = self.controlstate['xbounds'] self.mr.nextrun.vars.npts[self.controlstate['xvar']] = self.controlstate['xnpts'] self.mr.nextrun.set_x(self.controlstate['xvar']) if not self.is_position('y'): raise RuntimeError('yvar %s is not a valid position variable!' % (self.controlstate['yvar'])) else: #self.mr.nextrun.lims[self.controlstate['yvar']] = self.controlstate['ybounds'] self.mr.nextrun.vars.npts[self.controlstate['yvar']] = self.controlstate['ynpts'] self.mr.nextrun.set_y(self.controlstate['yvar']) else: #We do not need to grid data #Check that at least one selected variable is a location #Handle multiple variables on an axis if self.is_multi('x') and self.is_position('x'): self.controlstate['xvar']=self.controlstate['xvar'][0] raise RuntimeError('Multiple plotting of position variables is not allowed!') elif self.is_multi('y') and self.is_position('y'): self.controlstate['yvar']=self.controlstate['yvar'][0] raise RuntimeError('Multiple plotting of position variables is not allowed!') elif not self.is_position('x') and not self.is_position('y'): raise RuntimeError('%s and %s are both not valid position variables!' % (str(self.controlstate['xvar']),str(self.controlstate['yvar']))) elif not self.is_multi('x') and self.is_position('x'): #It's scalar, so check if it's a position #self.mr.nextrun.lims[self.controlstate['xvar']] = self.controlstate['xbounds'] self.mr.nextrun.vars.npts[self.controlstate['xvar']] = self.controlstate['xnpts'] self.mr.nextrun.set_x(self.controlstate['xvar']) elif not self.is_multi('y') and self.is_position('y'): #It's scalar, so check if it's a position #self.mr.nextrun.lims[self.controlstate['yvar']] = self.controlstate['ybounds'] self.mr.nextrun.vars.npts[self.controlstate['yvar']] = self.controlstate['ynpts'] self.mr.nextrun.set_y(self.controlstate['yvar']) else: raise RuntimeError('Nonsensical variables: xvar:%s\n yvar:%s\n' % (repr(self.controlstate['xvar']),repr(self.controlstate['yvar']))) def refresh(self,force_full_refresh=False, force_autoscale=False): """ Redraws what is on the plot. Trigged on 'refreshnow' POST request. This is the big method of this class. The basic outline is that check what controlstate values have changed since the last time it was called, and determines based on that how to tell the PlotDataHandler how to plot the user's desired image. Does not neccessarily create a new model run. Tries to determine if one is needed by the controlstate differences since last referesh. """ ffr = force_full_refresh fauto = force_autoscale if self.controlstate['plottype'] == 'pcolor' and self.controlstate.changed("xvar") or self.controlstate.changed("yvar"): self.controlstate['run_model_on_refresh']=True self.log.info("We are plotting a pcolor type plot, and x or y was changed, so we will need to re-run the model, since what is held constant has changed") if self.controlstate.changed('plottype') or ffr: #Determine if we need to rerun the model oldplottype = self.pdh.plottypes[self.pdh.plottype] newplottype = self.pdh.plottypes[self.controlstate['plottype']] self.log.info("Plottype was changed since last refresh, from %s to %s." % (oldplottype,newplottype)) if oldplottype['gridxy'] != newplottype['gridxy']: #we are going from vectors to grids or visa-versa self.controlstate['run_model_on_refresh']=True #Must force re-run self.log.info("This change requires a %s re-run, since gridding scheme has changed" % (self.controlstate['modelname'])) self.pdh.plottype=self.controlstate['plottype'] self.refreshSelectOptions() if self.controlstate.changed('datetime') or self.controlstate.changed('drivers') or ffr: #Force model rerun self.controlstate['run_model_on_refresh']=True try: self.mr.nextrun.drivers['dt'] = datetime.datetime(**self.controlstate['datetime']) except: #Capture the error for retrieval by the frontend failure callback self.log.error("Badly formed time! Calling controlstate error function") self.log.error( traceback.format_exc() ) self.controlstate.error("Badly formed time!: "+str(sys.exc_info())) self.controlstate.restore_last_good() raise #continue erroring self.log.info("Datetime was changed since last refresh. Will rerun %s with datetime %s" % (self.controlstate['modelname'], self.mr.nextrun.drivers['dt'].strftime('%c'))) if self.controlstate.changed('lat') or ffr: if 'Latitude' not in [self.controlstate['xvar'],self.controlstate['yvar']]: self.log.info("Now holding Latiude constant") self.mr.nextrun.hold_constant('Latitude') #We are holding latitude constant, so we will have to rerun the model self.controlstate['run_model_on_refresh'] = True if self.controlstate.changed('lon') or ffr: if 'Longitude' not in [self.controlstate['xvar'],self.controlstate['yvar']]: self.log.info("Now holding Longitude constant") self.mr.nextrun.hold_constant('Longitude') #We are holding longitude constant, so we will have to rerun the model self.controlstate['run_model_on_refresh'] = True if self.controlstate.changed('alt') or ffr: if 'Altitude' not in [self.controlstate['xvar'],self.controlstate['yvar']]: self.log.info("Now holding Altitude constant") self.mr.nextrun.hold_constant('Altitude') #We are holding altitude constant, so we will have to rerun the model self.controlstate['run_model_on_refresh'] = True #If position boundaries were changed if any([self.is_position(coord) and self.controlstate.changed(coord+'bounds') for coord in ['x','y']]): self.log.info("Position boundaries changed, will rerun model") self.controlstate['run_model_on_refresh'] = True if self.controlstate.changed('differencemode'): self.controlstate['run_model_on_refresh'] = True #--------------------------------------------------------------------------------------------------------------------------------------- #Actually prepare for a new run of the model if self.controlstate['run_model_on_refresh'] or ffr: self.log.info("Now preparing next model run, because controlstate variable run_model_on_refresh==True") try: #Attempt to run the model self.prepare_model_run() except RuntimeError as e: #Prepare model run can throw quite a few possible runtime errors based on incorrect variables selection self.log.error("Model preperation FAILED. Calling controlstate error function") self.log.error( traceback.format_exc() ) self.controlstate.error("Prep for model call FAILED: "+str(e)) #Continue erroring raise #If we succeeded in preparing the model try to actually run it try: self.mr.nextrun.populate() #Trigger next model run except: #Capture the error for retrieval by the frontend failure callback self.log.error("Model call FAILED. Calling controlstate error function") self.log.error( traceback.format_exc() ) self.controlstate.error("Model Call FAILED: "+str(sys.exc_info())) self.controlstate.restore_last_good() #Continue erroring raise #Then maybe we will want to not look up drivers and just keep using the same ones propagate = False if self.controlstate['driver_lookup'] else True self.mr(propagate_drivers=propagate) #Trigger storing just created model run as mr.runs[-1] self.refreshModelRunOptions() #Reset the plotDataHandler, make sure all controlstate options that change with model run are set self.refreshSelectOptions() #--------------------------------------------------------------------------------------------------------------------------------------- if fauto: self.log.info("Autoscaling because forced") self.mr.runs[-1].autoscale_all_lims() #Always grab the most current data self.log.info("Now getting data for X=%s Y=%s and Z=%s via ModelRunner __getitem__" % (self.controlstate['xvar'], self.controlstate['yvar'],self.controlstate['zvar'])) latlims = self.mr.runs[-1].vars.lims['Latitude'] lonlims = self.mr.runs[-1].vars.lims['Longitude'] altlims = self.mr.runs[-1].vars.lims['Altitude'] xdata,xlims,xunits,xdesc = self.mr[self.controlstate['xvar']] #returns data,lims, correctly handles list xvar ydata,ylims,yunits,ydesc = self.mr[self.controlstate['yvar']] #returns data,lims, correctly handles list yvar zdata,zlims,zunits,zdesc = self.mr[self.controlstate['zvar']] #returns data,lims, correctly handles list zvar #Reset the bounds, multiplotting and turn of log scaling if we have changed any variables or switched on or off of difference mode if self.controlstate.changed('xvar') or self.controlstate.changed('yvar') or \ self.controlstate.changed('zvar') or self.controlstate.changed('differencemode') or \ self.controlstate.changed('alt') or self.controlstate.changed('lat') or self.controlstate.changed('lon') or ffr: self.log.info("A variable or position was changed since last refresh") self.controlstate['xbounds'] = xlims self.controlstate['ybounds'] = ylims self.controlstate['zbounds'] = zlims self.controlstate['xunits'] = xunits self.controlstate['yunits'] = yunits self.controlstate['zunits'] = zunits self.controlstate['xdesc'] = xdesc self.controlstate['ydesc'] = ydesc self.controlstate['zdesc'] = zdesc #Associate data in the data handler based on what variables are desired if self.controlstate.changed('modelname') or self.controlstate.changed('xvar') or self.controlstate.changed('xbounds') or self.controlstate.changed('xlog') or self.controlstate['run_model_on_refresh'] or ffr: xname = self.controlstate['xvar'] self.log.info("Associating x variable %s with plot data handler bounds %s, log %s" % (str(xname), str(self.controlstate['xbounds']),str(self.controlstate['xlog']))) self.pdh.associate_data('x',xdata,xname,self.controlstate['xbounds'],self.controlstate['xlog'], multi=self.controlstate['xmulti'],units=xunits,description=xdesc) if self.controlstate.changed('modelname') or self.controlstate.changed('yvar') or self.controlstate.changed('ybounds') or self.controlstate.changed('ylog') or self.controlstate['run_model_on_refresh'] or ffr: yname = self.controlstate['yvar'] self.log.info("Associating y variable %s with plot data handler bounds %s, log %s" % (str(yname), str(self.controlstate['ybounds']),str(self.controlstate['ylog']))) self.pdh.associate_data('y',ydata,yname,self.controlstate['ybounds'],self.controlstate['ylog'], multi=self.controlstate['ymulti'],units=yunits,description=ydesc) if self.controlstate.changed('modelname') or self.controlstate.changed('zvar') or self.controlstate.changed('zbounds') or self.controlstate.changed('zlog') or self.controlstate['run_model_on_refresh'] or ffr: zname = self.controlstate['zvar'] self.log.info("Associating z variable %s with plot data handler bounds %s, log %s" % (str(zname), str(self.controlstate['zbounds']),str(self.controlstate['zlog']))) self.pdh.associate_data('z',zdata,zname,self.controlstate['zbounds'],self.controlstate['zlog'],units=zunits,description=zdesc) self.controlstate['descstr']=self.make_descstr() #Actually make the plot try: self.pdh.plot() except: #Capture the error for retrieval by the frontend failure callback self.log.error("PlotDataHandler Plotting FAILED. Calling controlstate error function") self.log.error( traceback.format_exc() ) self.controlstate.error("Data plotting FAILED: "+str(sys.exc_info())) #Continue erroring raise self.caption = self.make_caption() #Make the description string showing what changed since the last plot #Reinitialize the run_on_refresh setting self.controlstate['run_model_on_refresh'] = False def make_descstr(self): """Makes a string which shows how the this controlstate differs from the previous one""" thestr = '' thestr += datetime.datetime(**self.controlstate['datetime']).strftime('%m-%d-%Y %H:%M UT') thestr += '\n' for driver in self.controlstate['drivers']: val = self.controlstate['drivers'][driver] if not isinstance(val,list) and not isinstance(val,dict) and driver is not 'dt': thestr += "%s: %s\n" % (driver,str(self.controlstate['drivers'][driver])) held_positionvars = ['Altitude','Latitude','Longitude'] controlstate_positions = ['alt','lat','lon'] for coord in ['x','y']: if self.is_position(coord): i = held_positionvars.index(self.controlstate[coord+'var']) held_positionvars.pop(i) controlstate_positions.pop(i) for i in range(len(held_positionvars)): thestr+='%s: %.2f\n' % (held_positionvars[i],self.controlstate[controlstate_positions[i]]) thestr = thestr[:-1] # remove trailing newline return thestr def make_caption(self): """ Writes a caption fully describing the latest graph """ #Build a description of the plot return self.pdh.caption()+'|'+str(self.mr.runs[-1]) def data_as_csv(self): """ Render the current plot's data as a CSV string """ coords = ['x','y'] if self.controlstate['plottype']=='line' else ['x','y','z'] vs = [self.controlstate[coord+'var'] for coord in coords] data,header = self.mr.runs[-1].as_csv(vs) return data,header class UiHandler(object): """ A class to hold the state of the UI controls and settings. The UiHandler processes requests from the browser (i.e. GET, SET, POST) """ #exposed = True def __init__(self,amwo): self.log = logging.getLogger(self.__class__.__name__) self.amwo = amwo #Parent atmodweb object self.controlstate = ControlStateManager() def output_sanitize(self,indata): """ Turns output into something serializable Cherrypy is pretty good about doing this itself. Basically all I handle right now is datetime """ if isinstance(indata,dict): outdata = copy.deepcopy(indata) for k in outdata: outdata[k] = self.output_sanitize(outdata[k]) elif isinstance(indata,list): outdata = copy.deepcopy(indata) for k in range(len(outdata)): outdata[k] = self.output_sanitize(outdata[k]) elif isinstance(indata,datetime.datetime): outdata = indata.strftime('%Y-%m-%d %H:%M:%S') else: outdata = indata return outdata #@cherrypy.tools.accept(media='text/plain') #@cherrypy.tools.json_out() def GET(self, statevar, subfield=None): """ ReST GET request handler (i.e. browser asks backend for information and backend returns informations) Returns JSONified dictionary. The RESTful API here is all based on setting and getting values from the ControlState dictionary subclass. INPUTS ------ statevar - string Which key of self.controlstate will be retrieved with this request subfield - string,optional If self.controlstate[statevar] is a dictionary, then the value at self.controlstate[statevar][subfield] will be retrieved if subfield is not None RETURNS ------- retjson - dict A dictionary response to the request. Has a key of the input statevar, the value of which is the desired data. Does NOT ever have a key of subfield. """ retjson = dict() #Direct getting from ControlState if statevar in self.controlstate and subfield is None: retval = self.controlstate[statevar] self.log.info('GET for statevar:%s returning %s' % (statevar,str(retval))) elif statevar in self.controlstate and subfield is not None: if hasattr(self.controlstate[statevar],'__getitem__'): #Must be some kind of dict like thing retval = self.controlstate[statevar][subfield] self.log.info('GET for statevar:%s, key:%s returning %s' % (statevar,subfield,str(retval))) else: #Just try to do the thing UNSAFE if hasattr(self.controlstate[statevar],subfield): mymeth = getattr(self.controlstate[statevar],subfield) retval = mymeth self.log.warn("UNSAFE GET Eval %s = self.controlstate[%s].%s()" % (str(retval),statevar,str(subfield))) elif statevar == 'modeldesc': #Get the description of the last run model retval = {'modeldesc':self.mr.runs[-1].modeldesc} elif statevar == 'controlstate': #Get the controlstate as an html table retval=dict() for key in self.controlstate: if self.controlstate.changed(key): retval[key]=self.controlstate.ashtml(key) elif statevar == 'vars': #Get all of the information about the variables as one package retval = dict() for prefix in ['x','y','z']: for suffix in ['var','bounds','units','desc','log']: retval[prefix+suffix] = dict.__getitem__(self.controlstate,prefix+suffix) elif statevar == 'chartdata': #Get all the data about the drivers needed for the d3 chart retval = dict() for driver in self.controlstate['drivers']: retval[driver] = dict() retval[driver]['data'] = self.controlstate['drivers'][driver] #Now loop on all for metadata_key in ['drivers_descriptions','drivers_units','drivers_ranges']: if driver in self.controlstate[metadata_key]: retval[driver][metadata_key.split('_')[-1]]=self.controlstate[metadata_key][driver] else: retval[driver][metadata_key.split('_')[-1]]=None self.log.info("Chartdata is %s" % (str(retval))) retjson[statevar]=self.output_sanitize(retval) return retjson #@cherrypy.tools.accept(media='text/plain') #@cherrypy.tools.json_out() def POST(self, posttype=None): """ ReST POST request handler (i.e. browser tells backend information and backend does something based on that information) Returns JSONified dictionary. INPUTS ------ posttype - string Which POST request to evaluate RETURNS ------- retjson - dict A dictionary response to the request. Gets converted to json by cherrypy. For POST requests this is kind of a dummy response, because jQuery assumes that a PUT that doesn't respond has failed. All it is is a dictionary with one field, keyed to the input statevar, and valued to True 'uiready' - Starts controlstate syncing with CherryPy session 'refreshnow' - Calls the FakeCanvas method 'refresh' to process any enqued changes to the plot 'replotnow' - Calls the AtModWebObj method 'replot' to write the FakeCanvas matplotlib figure to a file and update the 'lastplot' key in controlstate 'refreshselect' - Calls the FakeCanvas method refreshSelectOptions, which checks the controlstate x, y and z vars, and the plottype and sets the appropriate possible choices of variables to plot for x, y and z 'refreshmodeloptions' - Updates the controlstate 'drivers' key from the last model run (ModelRun instance) 'debugreinit' - A 'panic'. Reinits the controlstate to its default values, and does all of the above as well. """ if posttype in self.controlstate: retval = self.controlstate[posttype] self.log.info(ansicolors.HEADER+'POST for posttype:%s returning %s' % (posttype,str(retval))+ansicolors.ENDC) return {posttype:retval} elif posttype == 'restart': self.log.info(ansicolors.HEADER+"POST for posttype: restart THE BACKEND WILL NOW RESTART" +ansicolors.ENDC) self.amwo.restart() return {'restart':True} elif posttype == 'nextplot': self.controlstate.lastind = self.controlstate.lastind + 1 #lastind is a property. the setter will cause the controlstate to re-sync self.log.info(ansicolors.HEADER+"POST for posttype: nextplot get plot at index %d" % (self.controlstate.lastind)+ansicolors.ENDC) return {'nextplot':True,'plot':self.controlstate['thisplot'],'caption':self.controlstate['thiscaption'], 'ind':self.controlstate.lastind+len(self.controlstate.states)+1,'maxind':len(self.controlstate.states)} elif posttype == 'prevplot': self.controlstate.lastind = self.controlstate.lastind - 1 #lastind is a property. the setter will cause the controlstate to re-sync self.log.info(ansicolors.HEADER+"POST for posttype: prevplot get plot at index %d" % (self.controlstate.lastind)+ansicolors.ENDC) return {'prevplot':True,'plot':self.controlstate['thisplot'],'caption':self.controlstate['thiscaption'], 'ind':self.controlstate.lastind+len(self.controlstate.states)+1,'maxind':len(self.controlstate.states)} elif posttype == 'uiready': #Begin syncing the local controlstate with the session self.log.info(ansicolors.HEADER+'POST for posttype:%s beginning controlstate sync' % (posttype)+ansicolors.ENDC) self.controlstate.controlstate.sync = True return {"uiready":True} elif posttype == 'refreshnow': self.amwo.syncher.refresh() self.log.info(ansicolors.HEADER+'POST for posttype:%s successful refresh' % (posttype)+ansicolors.ENDC) return {"refresh":True} elif posttype == 'replotnow': newfn,newcap = self.amwo.replot() self.log.info(ansicolors.HEADER+'POST for posttype:%s successful replot: new file=%s ' % (posttype,newfn)+ansicolors.ENDC) return {"src":newfn,"cap":newcap} elif posttype == 'refreshselect': self.amwo.syncher.refreshSelectOptions() self.log.info(ansicolors.HEADER+'POST for posttype:%s successful refresh select options' % (posttype)+ansicolors.ENDC) return {"refreshselect":True} elif posttype == 'autoscale': self.amwo.syncher.autoscale() self.log.info(ansicolors.HEADER+'POST for posttype:%s successful refresh variable limits' % (posttype)+ansicolors.ENDC) return {"autoscale":True} elif posttype == 'refreshmodeloptions': newfn = self.amwo.canvas.refreshModelRunOptions() self.log.info(ansicolors.HEADER+'POST for posttype:%s successful refresh model run options' % (posttype)+ansicolors.ENDC) return {"refreshmodeloptions":True} elif posttype == 'gifmode': self.controlstate['gif_mode'] = False if self.controlstate['gif_mode'] else True f = None if not self.controlstate['gif_mode']: f = self.amwo.make_gif() return {"gifmode":self.controlstate['gif_mode'],"file":f} elif posttype == 'debugreinit': #This is extreme measures. Expires the CherryPy session and tries to resync it with a good version of the controlstate self.log.info("Reinitializing controlstate") cherrypy.lib.sessions.expire() self.controlstate.restore_last_good() self.controlstate.controlstate.sync = True self.log.info(ansicolors.HEADER+'POST for posttype:%s successfully reintialized local controlstate' % (posttype)+ansicolors.ENDC) return {"debugreinit":True} def input_sanitize(self,inval): """ Sanitize data that came from a browser PUT request. This method handles inputs that are lists (i.e passed as JS arrays), and inpus that are dicts (i.e. passed as JS objects) It calls input_sanitize_single to process individual values. """ self.log.debug("Sanitizing %s" % (str(inval))) #Sanitize input if isinstance(inval,list): outval = [] for v in inval: #Recursion FTW outval.append(self.input_sanitize(v)) elif isinstance(inval,dict): outval = dict() for key in inval: #More recursion outval[key] = self.input_sanitize(inval[key]) elif ',' in inval: #Maybe its a string trying to represent a list inval = inval.split(',') #Now recurse with list of strings and no commas self.input_sanitize(inval) else: outval = self.input_sanitize_single(inval) return outval def input_sanitize_single(self,val): """ Turns request data from PUT requests into something python knows what to do with. First it converts the strings from unicode to ASCII, and then trys to guess what the string is intended to be by trying to turn into an int, float, bool, or datetime.datetime using the format: Y-m-d H:M:S. If it fails all these, it just returns the string. """ #Convert a unicode string returned with a put into a python #datatype in a sensible way #Check if it's a bool #First try to turn the unicode into a normal string # try: # val = val.encode('ascii','ignore') # except: # pass val = val.strip() #Remove any leading or trailing whitespace #Make sure there's no spaces, parens, brackets or other nonsense nonsense = ['(',')','[',']','{','}',';','/'] if any([ns in val for ns in nonsense]): for char in nonsense: val = val.replace(char,'') #Check if it's just an integer if val.isdigit(): #isdigit returns false if theres a . val = int(val) #Check if it's able to be turned into a float elif '.' in val: floatable=True try: val = float(val) except ValueError: floatable=False #Check for bool if val in ['true','True','on']: val=True elif val in ['false','False','off']: val=False #Try to convert it to a datetime try: val = datetime.datetime.strptime(val,'%Y-%m-%d %H:%M:%S') except: self.log.debug("Sanitizing: %s failed to convert %s to datetime\n" % (val,val)) pass return val #@cherrypy.tools.json_out() #@cherrypy.tools.accept(media='text/plain') def PUT(self,statevar=None,newval=None,subfield=None): """ ReST PUT request handler. Returns JSONified dictionary. The RESTful API here is all based on setting and getting values from the ControlState dictionary subclass. INPUTS ------ statevar - string Which key of self.controlstate will be set with this request newval - anything What will be stored at self.controlstate[statevar] subfield - string,optional If self.controlstate[statevar] is a dictionary, then newval will be stored at self.controlstate[statevar][subfield] if subfield is not None RETURNS ------- retjson - dict A dictionary response to the request. Gets converted to json by cherrypy. For PUT requests this is kind of a dummy response, because jQuery assumes that a PUT that doesn't respond has failed. All it is is a dictionary with one field, keyed to the input statevar, and valued to "True" """ if newval is not None: newval = self.input_sanitize(newval) if subfield is None: #Top level put self.log.info(ansicolors.OKBLUE+'PUT request for statevar:%s old value: %s, new value %s, type: %s ' % (str(statevar), str(self.controlstate[statevar]),str(newval),str(type(newval)))+ansicolors.ENDC) if statevar in self.controlstate: self.controlstate[statevar] = newval else: raise RuntimeError('PUT request with invalid controlstate addressee %s, data: %s' % (str(statevar),str(newval))) else: self.log.info(ansicolors.OKBLUE+'PUT request for statevar:%s, subfield:%s, old value %s, new value %s, type: %s ' % (str(statevar), str(subfield),str(self.controlstate[statevar][subfield]),str(newval),str(type(newval)))+ansicolors.ENDC) if hasattr(self.controlstate[statevar],'__setitem__'): #Must be some kind of dict like thing self.controlstate[statevar][subfield] = newval #Have to explicitly trigger changed since we aren't explicitly #setting controlstate['drivers'] TODO find a better way self.controlstate.trigger_changed(statevar,subfield=subfield) elif hasattr(self.controlstate[statevar],subfield): myattr = getattr(self.controlstate[statevar],subfield) myattr = newval self.log.warn("UNSAFE PUT Eval setattr(self.controlstate[%s],%s,%s)" % (statevar,str(subfield),str(newval))) else: raise RuntimeError('PUT request with invalid controlstate addressee %s.%s, data: %s' % (str(statevar),str(subfield),str(newval))) #self.amwo.canvas.refresh() #Return something to make jquery happy (a request that returns nothing has state "rejected") return {statevar:"True"} #def DELETE(self): # cherrypy.session.pop('mystring', None) class FakeCanvas(object): """ The FakeCanvas is the workhorse of the backend of AtModWeb. It's called a FakeCanvas because of the project this was based off of, the AtModExplorer. This takes the place of the matplotlib canvas subclass, that preformed a similar function in atmodexplorer. It is a matplotlib canvas in the sense that it has one matplotlib figure at self.fig, and an axes at self.ax. But otherwise it's just a convenient way of organizing the code and has nothing to do with Matplotlib. It's important parameters are the PlotDataHandler instance as self.pdh, and the ControlState instance at self.controlstate It's parent, the AtModWebObj that ties the application together is at self.atmo. It shares it's controlstate with the UiHandler, which handles requests. """ def __init__(self,atmo): self.atmo = atmo #"parent" atmodwebobject self.fig = pp.figure(figsize=(6,4),dpi=200) self.caption = 'caption' # Caption for the figure, created by make_caption self.ax = self.fig.add_subplot(111) self.textobj = None def apply_lipstick(self): """Called on each replot, allows cosmetic adjustment""" #self.fig.subplots_adjust(left=0.05,bottom=0.05,top=.95,right=.95) fs = 9 w = .5 lw = .3 lp = 0 pd = .5 if self.atmo.syncher.pdh.plottype=='pcolor': mpl.artist.setp(self.ax.get_xmajorticklabels(),size=fs,rotation=30) mpl.artist.setp(self.ax.get_ymajorticklabels(),size=fs) #mpl.artist.setp(self.atmo.syncher.pdh.cb.ax.get_xmajorticklabels(),size=fs,rotation=45) #Label is a text object self.ax.xaxis.label.set_fontsize(fs) self.ax.yaxis.label.set_fontsize(fs) self.ax.xaxis.labelpad=lp self.ax.yaxis.labelpad=lp #Adjust tick size self.ax.xaxis.set_tick_params(width=w,pad=pd) self.ax.yaxis.set_tick_params(width=w,pad=pd) #Colorbar Ticks self.atmo.syncher.pdh.cb.ax.xaxis.set_tick_params(width=w,pad=pd+.5) self.atmo.syncher.pdh.cb.ax.xaxis.label.set_fontsize(fs) self.atmo.syncher.pdh.cb.ax.yaxis.set_tick_params(width=w,pad=pd+.5) self.atmo.syncher.pdh.cb.outline.set_linewidth(w) self.ax.grid(True,linewidth=.1) #Adjust axes border size for axis in ['top','bottom','left','right']: self.ax.spines[axis].set_linewidth(lw) #self.pdh.cb.spines[axis].set_linewidth(lw) self.ax.title.set_fontsize(fs) self.ax.title.set_fontweight('bold') elif self.atmo.syncher.pdh.plottype=='map': #Colorbar Ticks self.ax.title.set_fontsize(fs) self.ax.title.set_fontweight('bold') mpl.artist.setp(self.atmo.syncher.pdh.cb.ax.get_xmajorticklabels(),size=fs,rotation=35) self.atmo.syncher.pdh.cb.ax.xaxis.set_tick_params(width=w,pad=pd) self.atmo.syncher.pdh.cb.ax.yaxis.set_tick_params(width=w,pad=pd) self.atmo.syncher.pdh.cb.ax.xaxis.label.set_fontsize(fs) self.atmo.syncher.pdh.cb.outline.set_linewidth(w) #Adjust axes border size for axis in ['top','bottom','left','right']: self.ax.spines[axis].set_linewidth(lw) elif self.atmo.syncher.pdh.plottype=='line': self.ax.title.set_fontsize(fs) self.ax.title.set_fontweight('bold') if self.atmo.syncher.pdh.ax.get_legend() is not None: mpl.artist.setp(self.atmo.syncher.pdh.ax.get_legend().get_texts(),size=fs) mpl.artist.setp(self.atmo.syncher.pdh.ax.get_xmajorticklabels(),size=fs,rotation=35) #Adjust axes border size for axis in ['top','bottom','left','right']: self.ax.spines[axis].set_linewidth(lw) def text(self,*args,**kwargs): """Displays text on the figure in figure coordinates (0,0) is bottom left, (1,1) is top right""" if self.textobj is not None: self.textobj.remove() self.textobj = self.fig.text(*args,**kwargs) class AtModWebObj(object): """ The AtModWebObj class is a representation of a single user session of AtModWeb. It includes all of the pieces required for a user with the AtModWeb webpage open in their browser to generate plots and interact with the data. """ def __init__(self,parent,userid=None): self.log = logging.getLogger(self.__class__.__name__) self.parent = parent self.userid = userid self.time_created = datetime.datetime.now() self.last_accessed = datetime.datetime.now() self.gif_frames = [] self.n_max_plots = 20 self.n_total_plots = 0 #Start up the rest of the application self.uihandler = UiHandler(self) self.controlstate = self.uihandler.controlstate self.canvas = FakeCanvas(self) self.syncher = Synchronizer(self.canvas,self.uihandler) self.syncher.refresh(force_full_refresh=True) plots = glob.glob(os.path.join(self.parent.rootdir,self.parent.imgreldir,'amwo_%s_*.png' % (str(self.userid)))) if len(plots) > self.n_max_plots: os.remove(plots) #Clean up after yourself on restart self.plots = [] #List of all plots in the img dir self.replot() def replot(self): """ The last step in the creation of a new plot to be displayed in the frontend. This function, when called, writes the FakeCanvas' matplotlib figure to a file on the disk, the name of which is dependent on the current unix time. The URL for the file (as a relative path) is then recorded in the controlstate, and returned to the caller (usually the UiHandler, which then relays it to the frontend in a HTTP response). Does several other incidental labeling tasks, and also returns a 'caption' for the graphic. """ #self.canvas.refresh(force_full_refresh=True) #Name file with unix epoch and userid relfn = os.path.join(self.parent.imgreldir,'amwo_%s_%d.png' % (str(self.userid), int(time.mktime(datetime.datetime.now().timetuple())))) absfn = os.path.join(self.parent.rootdir,relfn) if self.controlstate['gif_mode']: self.gif_frames.append(absfn) self.canvas.text(.01,.94,self.controlstate['descstr'], fontsize=8,verticalalignment='top',color='blue', bbox=dict(facecolor='white', edgecolor='blue', boxstyle='round',alpha=.8)) self.canvas.fig.savefig(absfn,dpi=200) #self.canvas.fig.clf() #self.canvas.ax = self.canvas.fig.add_subplot(111) #Generate caption cap = self.syncher.caption self.controlstate['thiscaption']=cap self.controlstate['thisplot']=relfn #Deal with the plot and caption history while len(self.plots) > self.n_max_plots: tobedeleted = self.plots.pop(0) os.remove(os.path.join(self.parent.rootdir,tobedeleted)) self.log.info("REMOVED old plot %s" % (tobedeleted)) self.log.info('Replotted to %s' % (absfn)) #Store the controlstate that was used to make the plot self.controlstate() # store the last controlstate as states[-1] self.n_total_plots += 1 return relfn, cap def make_gif(self,gif='out.gif',delay=20,delete_imgs=False): """ Converts a list of pngs, in order, to frames for a gif imgs - list of valid png or jpg paths gif - gif file to write to tempdir - directory where temporary frame pngs will be stored delay - time in milliseconds each frame will display for """ imgs = self.gif_frames tempdir = os.path.join(self.parent.rootdir,self.parent.imgreldir) #if not is_ImageMagick_Installed(): # raise RuntimeError("ImageMagick appears to not be installed! If on Ubuntu, try sudo apt-get install imagemagick\n") self.log.debug("Now beginning to copy files to temporary frames for gif. Temporary directory is %s...\n" % (tempdir)) paddingcode = '%.'+str(len(str(len(imgs))))+'d' #imagemagick needs zero padded frame numbering imgext = os.path.splitext(imgs[0])[-1] tmpimgs = [] for i,img in enumerate(imgs): tmpimg = os.path.join(tempdir,"img2gif_frame_"+paddingcode % (i+1)+imgext) shutil.copy(img,tmpimg) tmpimgs.append(tmpimg) imcall = "convert -delay %d -loop 0 %s %s" % (delay,os.path.join(tempdir,'img2gif_frame_*'+imgext),os.path.join(tempdir,gif)) self.log.debug("Calling ImageMagick to convert frames to gif...") self.log.debug("Call is %s\n" % (imcall)) subprocess.check_call(imcall,shell=True) self.log.debug("Cleaning up temp files...") for tmpimg in tmpimgs: os.remove(tmpimg) self.gif_frames = [] return os.path.join(self.parent.imgreldir,gif) #if open_gif: # subprocess.check_call("xdg-open %s" % (gif)) def restart(self): """ A full 'hard' restart of the backend. Destroys and recreates all of the instances of the AtModWeb components (FakeCanvas, UiHandler, Synchronizer) for this single user. Called if UiHandler receives {posttype:'restart'} as a POST request """ #A full scale panic restart #Just reinitalize all the things self.log.warn("---RESTARTING THE BACKEND---") #cherrypy.lib.sessions.expire() self.uihandler = UiHandler(self) self.controlstate = self.uihandler.controlstate self.canvas = FakeCanvas(self) self.syncher = Synchronizer(self.canvas,self.uihandler) self.syncher.refresh(force_full_refresh=True) self.replot() class UiDispatcher(object): """ Makes sure that requests from a particular user's session get dispatched to the proper instances of UiHandler and AtModWebObj that contains their plot history. Helps make AtModWeb multiuser. a.k.a dispatches requests to the approriate uihandler as specified by the userid cookie. """ exposed = True def __init__(self,muamwo): #This needs to be done here (before the UiDispatcher is created) so that CherryPy #knows that tools.auth is a thing before it's used in UiDispatcher self.muamwo = muamwo def get_uihandler(self): return self.muamwo.get_user_amwo().uihandler def get_amwo(self): return self.muamwo.get_user_amwo() @cherrypy.tools.accept(media='text/plain') @cherrypy.tools.json_out() def GET(self, statevar, subfield=None): if statevar == 'username': uid = self.muamwo.get_userid() if uid is not None: return {'username':self.muamwo._usernames[uid]} else: return {'username':''} else: return self.get_uihandler().GET(statevar=statevar,subfield=subfield) @cherrypy.tools.json_out() @cherrypy.tools.accept(media='text/plain') def PUT(self,statevar=None,newval=None,subfield=None): return self.get_uihandler().PUT(statevar=statevar,newval=newval,subfield=subfield) @cherrypy.tools.accept(media='text/plain') @cherrypy.tools.json_out() def POST(self, posttype=None): if 'authenticate_' in posttype: un = posttype.split('authenticate_')[-1] # Anything after is username userid = self.muamwo.newuserid() self.muamwo._usernames[userid] = un respcookie = cherrypy.response.cookie respcookie['userid'] = userid respcookie['userid']['max-age']=3630 return {posttype:'true'} elif 'kill_' in posttype: uid = posttype.split('kill_')[-1] uid = str(uid) if uid in self.muamwo._usernames: self.muamwo.kill(userids=[uid]) else: self.log.error("Recieved kill POST for nonexistant userid %d" % (uid)) elif 'logout' == 'posttype': self.muamwo.logout() return {'logout':'true'} else: #Push on to appropriate handler return self.get_uihandler().POST(posttype=posttype) class MultiUserAtModWebObj(object): """ Thin class to spin up AtModWebObj instances when a request comes in from a new user""" def __init__(self): self.log = logging.getLogger(self.__class__.__name__) self._amwo = dict() # AtModWeb instances self._usernames = dict() #Application Location self.uihandler = UiDispatcher(self) self.rootdir = os.environ['ATMODWEB_ROOT_DIR'] self.imgreldir = 'www' self.docreldir = 'docs' @cherrypy.expose def restart(self): self.get_user_amwo().restart() return """<html>Restarting done. </html>""" @cherrypy.expose def currentplot(self): """ A link to the currentplot with the proper response headers to trigger a download """ url = self.get_user_amwo().controlstate['thisplot'] return cherrypy.lib.static.serve_download(os.path.join(self.rootdir,url)) @cherrypy.expose def console(self): uid = self.get_userid() #Organize the parameters for each AtModWeb as a table row th = OrderedDict() th['created'] = 'Time Created' th['accessed'] = 'Last Accessed' th['username'] = 'Username' th['userid'] = 'User ID Number' th['nplots'] = 'Number of Plots Created' th['kill'] = 'Kill Session' tr = copy.deepcopy(th) #OrderedDict for table rows retstr = "<html><body>" #Handle the kill buttons retstr += """ <link href="www/atmodweb.css" rel="stylesheet" type="text/css"> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script> <script> $(document).ready(function(){ $('.killer').on("click", function (e) { var id = $(e.target).attr('name'); console.log('Killing '+String(id)) var doingthething = $.ajax({url: "/uihandler",data: {"posttype":"kill_"+String(id)},type: "POST",dataType:"json", success : function (json) { $(e.target).text('KILLED') console.log('Kill success') } }) }); }); </script> """ retstr += '<div ID="locationpanel" class="panel">' retstr += '<h1>Admin Interface for AtModWeb</h1>' retstr += '<p>If you are not the administrator of this application, you should not be here.</p>' if uid is not None and self._usernames[uid].lower() == 'liam': retstr += "<h1> Currently running amwo instances: </h1>" retstr += "<table>" #Add headers to the table retstr += "<tr>" for field in th: retstr += "<th>%s</th>" % (str(th[field])) retstr += "</tr>\n" for key in self._amwo: tr['username'] = str(self._usernames[key]) if key in self._usernames else 'NO-USERNAME' tr['created'] = self._amwo[key].time_created.strftime('%c') tr['accessed'] = self._amwo[key].last_accessed.strftime("%c") tr['userid'] = '<strong>%s</strong>' % str(key) # Make the username stand out tr['nplots'] = str(self._amwo[key].n_total_plots) tr['kill'] = """<button ID='kill_%s' class='killer' name='%s' title="Kill this user's session">KILL</button>""" % (key, key) #Add a row to the table retstr += "<tr>" for field in th: retstr += "<td class='%s'>%s</td>" % (str(key),str(tr[field])) retstr += "</tr>\n" retstr += '</table>' retstr += '</div>' retstr += "</body></html>" return retstr @cherrypy.expose def data(self): cherrypy.response.headers['Content-Type']= 'text/csv' uid = self.get_userid() data,header = self.get_user_amwo().syncher.data_as_csv() return header+'\n'+data def kill(self,userids=None): """Kill all specified instance or if userids is not kills any instances that haven't been touched in an hour""" if userids is None: userids = self._amwo.keys() for userid in userids: if (datetime.datetime.now() - self._amwo[userid].last_accessed).total_seconds() >= 3600: self.log.warn('Session is too old and will be killed for %s: uid %d' % (self._usernames[userid],userid)) del(self._amwo[userid]) del(self._usernames[userid]) gc.collect() else: for userid in userids: self.log.warn('Forced to end session for %s: uid %s' % (self._usernames[userid],str(userid))) del(self._amwo[userid]) del(self._usernames[userid]) gc.collect() #Authorization tool #This is called whenever a request comes in via a CherryPy Tool def check_auth(self,*args, **kwargs): """A tool that looks for a userid cookie, and makes sure that the cookie has an entry in the _usernames""" reqcookie = cherrypy.request.cookie if 'userid' not in reqcookie: #No userid set userid = self.newuserid() #Create a new userid and assign it to the user self._usernames[userid] = '--pending--' respcookie = cherrypy.response.cookie respcookie['userid'] = userid respcookie['userid']['max-age']=3630 raise cherrypy.HTTPRedirect("/login") else: #No username registered to userid userid = reqcookie['userid'].value if userid not in self._usernames: self._usernames[userid] = '--pending--' raise cherrypy.HTTPRedirect("/login") def logout(self): uid = self.muamwo.get_userid() del(self._usernames[uid]) del(self._amwo[uid]) respcookie = cherrypy.response.cookie respcookie['userid']['max-age']=0 respcookie['userid']['expires']=time.strftime("%a, %d-%b-%Y %T GMT", time.gmtime(time.time())) gc.collect() def newuserid(self): return str(random.randint(0,2**31)) def get_userid(self): reqcookie = cherrypy.request.cookie #Safety checks if 'userid' not in reqcookie: return None userid = reqcookie['userid'].value if userid not in self._usernames or self._usernames[userid]=='--pending--': return None #self.log.info("Request sent to AMWO with userid cookie %s, method %s" % (str(userid),str(cherrypy.request.method))) if userid not in self._amwo: self._amwo[userid] = AtModWebObj(parent=self,userid=userid) self.log.info("Spun up new AMWO instance with userid %s, there are now %d instances running" % (str(userid),len(self._amwo.keys()))) #self.log.debug("Username for id %s is %s" % (str(userid),str(self._usernames[userid]))) return userid def get_user_amwo(self): userid = self.get_userid() if userid is not None: #Update the last accessed time self._amwo[userid].last_accessed = datetime.datetime.now() return self._amwo[userid] else: raise cherrypy.HTTPRedirect('/login') if __name__ == '__main__': webapp = MultiUserAtModWebObj() cherrypy.tools.auth = cherrypy.Tool('before_handler',webapp.check_auth) conf = { '/': { 'tools.sessions.on': True, #'tools.sessions.storage_type':"memcached", 'tools.sessions.locking':'implicit', 'tools.auth.on': True }, '/index': { 'tools.staticfile.on':True, 'tools.staticfile.filename': os.path.join(os.path.abspath(webapp.rootdir),'www','atmodweb.html') }, '/login': { 'tools.staticfile.on':True, 'tools.staticfile.filename': os.path.join(os.path.abspath(webapp.rootdir),'www','login.html') }, '/uihandler': { 'request.dispatch': cherrypy.dispatch.MethodDispatcher(), 'tools.response_headers.on': True, 'tools.response_headers.headers': [('Content-Type', 'application/json')], }, '/www': { 'tools.staticdir.on': True, 'tools.staticdir.dir': os.path.join(os.path.abspath(webapp.rootdir),'www'), 'tools.expires.on' : True, 'tools.expires.secs' : 3600 }, '/docs': { 'tools.staticdir.on': True, 'tools.staticdir.dir': os.path.join(os.path.abspath(webapp.rootdir),'doc','build'), 'tools.expires.on' : True, 'tools.expires.secs' : 3600 }, '/favicon.ico': { 'tools.staticfile.on':True, 'tools.staticfile.filename':os.path.join(os.path.abspath(webapp.rootdir),"www","favicon.ico") } } #Optional password protection by setting some environent variables if 'CHERRYPY_USER' in os.environ and 'CHERRYPY_PWD' in os.environ: USERS = {os.environ['CHERRYPY_USER']:os.environ['CHERRYPY_PWD']} conf['/']['tools.auth_digest.on']=True conf['/']['tools.auth_digest.realm']='localhost' conf['/']['tools.auth_digest.get_ha1']=auth_digest.get_ha1_dict_plain(USERS) conf['/']['tools.auth_digest.key']='b565d27146791cfc' cherrypy.config.update({'server.socket_host':os.getenv('CHERRYPY_IP'),'server.socket_port': 8080}) cherrypy.config.update({'log.screen':False}) cherrypy.log.screen = False cherrypy.log.access_log.propagate = False cherrypy.tree.mount(webapp, '/',conf) cherrypy.engine.start() cherrypy.engine.block()
gpl-3.0
iut-ibk/DynaMind-Sewer
scripts/Sewer/clustering.py
1
2985
# -*- coding: utf-8 -*- """ @file @author Chrisitan Urich <[email protected]> @version 1.0 @section LICENSE This file is part of DynaMind Copyright (C) 2012 Christian Urich This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ from pydynamind import * from pydmtoolbox import * import networkx import numpy, matplotlib from scipy.cluster import hierarchy from scipy.spatial import distance class Clustering(Module): def __init__(self): Module.__init__(self) self.conduits = View("CONDUIT", EDGE, READ) viewvector = [] viewvector.append(self.conduits) self.addData("Sewer", viewvector) def run(self): try: g = networkx.Graph() sewer = self.getData("Sewer") CostsTotal = 0 LengthTot = 0 names = sewer.getNamesOfComponentsInView(self.conduits) pointnamelist = [] for nc in names: c = sewer.getEdge(nc) startNode = c.getStartpointName() endNode = c.getEndpointName() if startNode not in pointnamelist: pointnamelist.append(startNode) if endNode not in pointnamelist: pointnamelist.append(endNode) g.add_edge(pointnamelist.index(startNode), pointnamelist.index(endNode)) path_length=networkx.all_pairs_shortest_path_length(g) n = len(g.nodes()) distances=numpy.zeros((n,n)) for u,p in path_length.iteritems(): for v,d in p.iteritems(): distances[int(u)-1][int(v)-1] = d sd = distance.squareform(distances) hier = hierarchy.average(sd) hierarchy.dendrogram(hier) matplotlib.pylab.savefig("tree.png",format="png") partition = community.best_partition(g) print partition for i in set(partition.values()): print "Community", i members = list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == i] print members except Exception, e: print e print "Unexpected error:"
gpl-2.0
udp3f/gemini
docs/conf.py
4
8633
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../')) # from mpld3 def get_version(): """Get the version info from the mpld3 package without importing it""" import ast with open(os.path.join(os.path.abspath('../'), "gemini", "version.py"), "r") as init_file: module = ast.parse(init_file.read()) version = (ast.literal_eval(node.value) for node in ast.walk(module) if isinstance(node, ast.Assign) and node.targets[0].id == "__version__") try: return next(version) except StopIteration: raise ValueError("version could not be located") version = get_version() # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'gemini' copyright = u'2012,2013,2014,2015' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = version # The full version, including alpha/beta/rc tags. release = version print version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'rtd' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ["themes"] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = project + " v" + release # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'gemini.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'gemini.png' html_style = 'labibi.css' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { 'index': ['sidebar-intro.html', 'sourcelink.html', 'searchbox.html'] } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'gemini-docs' # Google analytics # googleanalytics_id = "UA-24167610-15" # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'gemini.tex', u'gemini Documentation', u'Quinlan lab @ UVa', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'gemini', u'gemini Documentation', [u'UVa'], 1) ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} class Mock(object): def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return Mock() @classmethod def __getattr__(cls, name): if name in ('__file__', '__path__'): return '/dev/null' elif name[0] == name[0].upper(): return type(name, (), {}) else: return Mock() MOCK_MODULES = ['numpy', 'matplotlib', 'matplotlib.pyplot', 'inheritance', 'matplotlib.sphinxext', 'matplotlib.sphinxext.plot_directive'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = Mock()
mit
gojira/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimators_test.py
46
6682
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom optimizer tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn.estimators import estimator as estimator_lib from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import train_test_split from tensorflow.python.framework import constant_op from tensorflow.python.ops import string_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.training import momentum as momentum_lib class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "transformed_x": constant_op.constant([9.]) }, { "transformed_y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["transformed_x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) metrics = estimator.evaluate( input_fn=input_fn, steps=1, metrics={ "label": metric_spec.MetricSpec(lambda predictions, labels: labels) }) # labels = transformed_y (99) self.assertEqual(99., metrics["label"]) def testFeatureEngineeringFnWithSameName(self): def input_fn(): return { "x": constant_op.constant(["9."]) }, { "y": constant_op.constant(["99."]) } def feature_engineering_fn(features, labels): # Github #12205: raise a TypeError if called twice. _ = string_ops.string_split(features["x"]) features["x"] = constant_op.constant([9.]) labels["y"] = constant_op.constant([99.]) return features, labels def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) metrics = estimator.evaluate( input_fn=input_fn, steps=1, metrics={ "label": metric_spec.MetricSpec(lambda predictions, labels: labels) }) # labels = transformed_y (99) self.assertEqual(99., metrics["label"]) def testNoneFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "x": constant_op.constant([9.]) }, { "y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator_with_fe_fn = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=1) estimator_without_fe_fn = estimator_lib.Estimator(model_fn=model_fn) estimator_without_fe_fn.fit(input_fn=input_fn, steps=1) # predictions = x prediction_with_fe_fn = next( estimator_with_fe_fn.predict(input_fn=input_fn, as_iterable=True)) self.assertEqual(9., prediction_with_fe_fn) prediction_without_fe_fn = next( estimator_without_fe_fn.predict(input_fn=input_fn, as_iterable=True)) self.assertEqual(1., prediction_without_fe_fn) class CustomOptimizer(test.TestCase): """Custom optimizer tests.""" def testIrisMomentum(self): random.seed(42) iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) def custom_optimizer(): return momentum_lib.MomentumOptimizer(learning_rate=0.01, momentum=0.9) classifier = learn.DNNClassifier( hidden_units=[10, 20, 10], feature_columns=learn.infer_real_valued_columns_from_input(x_train), n_classes=3, optimizer=custom_optimizer, config=learn.RunConfig(tf_random_seed=1)) classifier.fit(x_train, y_train, steps=400) predictions = np.array(list(classifier.predict_classes(x_test))) score = accuracy_score(y_test, predictions) self.assertGreater(score, 0.65, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
apache-2.0
UN-DESA-Modelling/Electricity_Consumption_Surveys
ipc_microsim_tool/ipc_microsim_tool.py
1
32419
# -*- coding: utf-8 -*- """ ------------------------ IPC microsimulation tool for SDG-based planning ------------------------ Version 0 January 2016 Written by Rafael Guerreiro Osorio Instituto de Pesquisa Econômica Aplicada - www.ipea.gov.br International Policy Centre for Inclusive Growth - www.ipc-undp.org """ import matplotlib.pyplot as plt import numpy as np import pandas as pd import patsy import random import statsmodels.formula.api as smf class IPCmicrosimTool(object): """ #TODO: docstring """ class population(object): """ Population projection object On this version, the population projection comes from United Nations Department of Economic and Social Affairs Population Division (2015) World Population Prospects: The 2015 Revision, DVD Edition. (downloaded November 2015) This was imported by read_WPP.py to two CSV files, one with past estimates, and other with the projections WPP-ESTIMATES-1950-2015.tab.txt WPP-PROJECTIONS-2015-2100.tab.txt """ def __init__(self): """ projections is a pandas dataframe indexed by year, with a column named year containing years; second column is the total population, next columns are projections for sex, age, regions, to make simulations by groups (in the future...) """ self.projection = None self.country = None self.description = None def get_WPP_countries(self, begins=None): """ get a list of country or region names as in the WPP dataset initial - first letters """ estimates = pd.read_csv('WPP-ESTIMATES-1950-2015.tab.txt', sep='\t', index_col=None, na_values='') countries = estimates.geoname.values if not begins is None: begins = begins.capitalize() countries = [country for country in countries if country[0:len(begins)] == begins] return countries def get_WPP_projection(self, country, variant): """ country or region name as in the WPP dataset variants available in the WPP dataset: 0 'Low variant' 1 'Medium variant' 2 'High variant' 3 'Constant-fertility' 4 'Instant-replacement' 5 'Zero-migration' 6 'Constant-mortality' 7 'No change' """ variants = ('Low variant' , 'Medium variant', 'High variant' , 'Constant-fertility', 'Instant-replacement', 'Zero-migration', 'Constant-mortality', 'No change') try: int(variant) variant = variants[variant] except: if str(variant).isalnum(): raise IndexError(variant) if not variant in variants: raise ValueError(variant) estimates = pd.read_csv('WPP-ESTIMATES-1950-2015.tab.txt', sep='\t', index_col=None, na_values='') try: res1 = estimates[estimates.geoname == country] except: raise ValueError(country) self.country = country self.description = 'WPP 2015 - {}'.format(variant) projections = pd.read_csv('WPP-PROJECTIONS-2015-2100.tab.txt', sep='\t', index_col=None, na_values='') res2 = projections[projections.geoname == country] \ [projections.variant == variant] del(estimates, projections) todrop = ['index', 'variant', 'geoname', 'geocode'] # TODO: get period from data res1.drop(todrop, axis=1, inplace=True) res1 = res1.T[:-1] res1.columns = [country] res1.index = range(1950, 2015) res2.drop(todrop, axis=1, inplace=True) res2 = res2.T res2.columns = [country] res2.index = range(2015, 2101) res = pd.concat((res1, res2)) self.projection = res return '{} - {}'.format(country, variant) class resource_access(object): """ at the moment this is very basic """ def __init__(self): """ RAM is a pandas dataframe indexed by year, with a column named year containing years; second column is the access rate, next columns are projections for sex, age, regions, to make simulations by groups (in the future...) """ self.RAM = None self.period = None self.description = None class microsim(object): """ Microsimulation object """ def __init__(self, dataframe): if len(dataframe) == 0 and not isinstance(dataframe, pd.DataFrame): raise Exception("Needs a populated pandas dataframe") self.dataset = dataframe[:] self.results = {} self.seedvars = list(dataframe.columns) self.cursim = None def add_results(self, data, name='newvar'): """ add results generated with microsim methods to the results dic - such as: pov = ms.poverty('inc', 'wgt', [1.9, 3.1, 5, 10]) ms.add_results(pov) if result is a Series a name is needed, otherwise will create column with name 'newvar' and overwrite if already a column thus named """ if isinstance(data, pd.Series): self.results[self.cursim]['dataset'][name] = data elif isinstance(data, pd.DataFrame): self.results[self.cursim]['dataset'] = pd.concat( [self.results[self.cursim]['dataset'], data], axis=1) else: raise TypeError(data) def elast_calc(self, key, Y, X, P, stub='', parts=100): """ Add elasticities using log-log quantile regressions number of elasticities will be that of hypothetical delimiters in parts i.e parts-1 key - household key Y - dependent variable - resource consumption X - independent variable - income P - household population weights stub - sufix to name variables containing quantiles and elasticities parts - number of parts """ dt = self.dataset quantstub = 'quant' + stub elaststub = 'elast' + stub print '\nElasticity calculator started - please be patient' # take the logs of Y and X dt['__lnY'] = np.log(dt[Y]) dt['__lnX'] = np.log(dt[X]) # log of 0 is -infinite, replace with missing (NaN) dt['__lnY'][dt[Y] == 0] = np.NaN dt['__lnX'][dt[X] == 0] = np.NaN # rescale and round weights to inform replication dt['__' + P] = dt[P]/dt[P].min() dt['__rdwgt'] = dt['__' + P].round() # define quantiles based on parts and mark dt.sort(Y, inplace=True) dt[quantstub] = (dt['__' + P].cumsum() / dt['__' + P].sum() * parts).astype(int) / float(parts) dt.sort(key, inplace=True) # the quantile of the regression, can't be 0 or 1 # unique() is sorted as dt, get the smallest non zero quantile # and the larger < 1 quantiles = dt[quantstub].unique() quantiles.sort() quantiles = quantiles[1:-1] dt[quantstub][dt[quantstub] == 0] = quantiles[0] dt[quantstub][dt[quantstub] == 1] = quantiles[-1] # dataframe with replications print 'Replicating observations, {} to {}...'.format( dt['__rdwgt'].count(), int(dt['__rdwgt'].sum())) lnY, lnX = pd.Series(), pd.Series() for i in xrange(len(dt)): lnY = lnY.append(pd.Series((dt['__lnY'][i],) * int(dt['__rdwgt'][i]))) lnX = lnX.append(pd.Series((dt['__lnX'][i],) * int(dt['__rdwgt'][i]))) estdt = pd.DataFrame() estdt['lnY'] = lnY estdt['lnX'] = lnX del lnY, lnX # calculate elasticities print 'Fitting models...' model = smf.quantreg('lnY ~ lnX', estdt) elastseries = () #elasterrors = () print 'Quantile\telasticity\tse_elast\tintercept\tse_intercept' for quantile in quantiles: elast = model.fit(quantile) elastseries += (elast.params[1],) print '{}\t{:8.6f}\t{:8.6f}\t{:8.6f}\t{:8.6f}'.format( quantile, elast.params[1], elast.bse[1], elast.params[0], elast.bse[0],) elastdt = pd.DataFrame() elastdt[quantstub] = quantiles elastdt[elaststub] = elastseries # add elasticities and clean dataset todrop = [var for var in dt.keys() if '__' in var] self.dataset = pd.merge(dt, elastdt, on=quantstub) self.dataset.sort(key, inplace=True) self.dataset.reset_index(drop=True, inplace=True) self.dataset.drop(todrop, axis=1, inplace=True) self.seedvars += [quantstub, elaststub] def __reset__(self): """ keep the seed variables and drop all others from the dataset """ todrop = [col for col in list(self.dataset.columns) if col not in self.seedvars] self.dataset.drop(todrop, axis=1, inplace=True) def simulate(self, name, period, X, Y, P, key): """ name - a name for the simulation period - tuple base year, end year eg. (2010,2030) X - income tuple (variable name, stub, 'random'/'order', growth object) Y - [(resourcevar, stub, elasticityvar)] P - weight variable """ # resets the dataset, results of previous simulations will # remain in results self.__reset__() self.cursim = name if name in self.results.keys(): rettext = 'Simulation {} results overwritten'.format(name) del(self.results[name]) else: rettext = 'Simulation {} results written'.format(name) self.results[name] = {'name': name} self.results[name]['period'] = period self.results[name]['income'] = (X[0], X[1]) self.results[name]['growth'] = X[3] for y in range(len(Y)): self.results[name]['resvar{}'.format(y)] = (Y[y][0], Y[y][1]) self.results[name]['reselast{}'.format(y)] = Y[y][2] self.results[name]['dataset'] = pd.DataFrame({'year': range( period[0], period[1] + 1)}, range(period[0], period[1] + 1)) # first year of the period is the base year # a duplicate is generated as stubbaseyear dt = self.dataset dt[X[1] + str(period[0])] = dt[X[0]] for y in Y: dt[y[1] + str(period[0])] = dt[y[0]] # a list to register the growth pattern # 'none' for base year grwtpatt = ['none'] # simulations begin order = 0 for year in xrange(period[0] + 1, period[1] + 1): # previous income distribution - base year prvinc = X[1] + str(year - 1) # sort by previous income distribution # repeating allows income mobility sorted_dt = dt.sort(prvinc) # partition and tag cases by income quantiles # each part will receive a growth rate # TODO: make sure there is no variable named as growth.key # in the microsim dataset sorted_dt[X[3].key] = (sorted_dt[P].cumsum() / sorted_dt[P].sum() * X[3].parts).astype(int) sorted_dt[X[3].key][sorted_dt[X[3].key] == X[3].parts] = X[3].parts - 1 dt[X[3].key] = sorted_dt[X[3].key] del sorted_dt # get and distribute growth rates if X[2] == 'random': # choose a column from growth.dataset, excluding # key from choice grwtrates = random.choice([col for col in X[3].dataset.columns if col != X[3].key]) elif X[2] == 'order': # choose a column as they appear on the dataset # left to right after key; if there are less columns # than periods, start over orlst = [col for col in X[3].dataset.columns if col != X[3].key] grwtrates = orlst[order] order += 1 if order == len(orlst): order = 0 elif X[2] in X[3].dataset.columns: # a column name was passed - this specific # single pattern will be repeated - same as # choosing ordered with just one column grwtrates = X[2] else: raise ValueError(X[2]) # register the name of the growth pattern (column name) # this goes to results.dataset grwtpatt += [grwtrates] # prepare a dataset with the growth pattern and the key # and merge it with the simulation dataset distributing # the growth rates by income quantiles tomerge = X[3].dataset[[X[3].key, grwtrates]] self.dataset = pd.merge(dt, tomerge, on=X[3].key) self.dataset.sort(key, inplace=True) self.dataset.reset_index(drop=True, inplace=True) dt = self.dataset # THIS IS IMPORTANT: the rate should be Xt1/Xt0-1 dt[grwtrates] = dt[grwtrates] + 1.0 # new income variable dt[X[1] + str(year)] = dt[prvinc] * dt[grwtrates] # new resource variables for y in Y: dt[y[1] + str(year)] = dt[y[1] + str(year - 1)] * \ (dt[y[2]] * (dt[grwtrates] - 1.0) + 1.0) self.dataset.drop([X[3].key, grwtrates], axis=1, inplace=True) # simulation is over, besides information about the # simulation, means are stored in results, and also # the name of the growth pattern for income self.results[name]['dataset']['grwtpatt'] = grwtpatt col = self.results[name]['income'][1] self.results[name]['dataset']['mean_{}'.format(col)] = self.mean( X[1], P) for y in range(len(Y)): col = self.results[name]['resvar{}'.format(y)][1] self.results[name]['dataset']['mean_{}'.format(col)] = \ self.mean(Y[y][1], P, nozero=True) return rettext def totaldemand(self, stub, pop, ram, correct=1, unit=1e6): period = self.results[self.cursim]['period'] totdem = pd.Series(0.0, range(period[0], period[1] + 1)) resmean = 'mean_{}'.format(stub) # TODO: improve this # below it is assuming data average is for months # and annualizes; improve indices - why pop is string cmp1 = pop.projection.icol(0).loc[period[0]:period[1]] cmp2 = ram.RAM.icol(0) cmp3 = self.results[self.cursim]['dataset'][resmean] totdem = (cmp1 * cmp2 * cmp3 * 12 * correct) / unit return totdem def mean(self, stub, weight, nozero=False): if nozero: rescale = True else: rescale = False period = self.results[self.cursim]['period'] mean = pd.Series(0.0, range(period[0], period[1] + 1)) for year in xrange(period[0], period[1] + 1): mean[year] = ((self.dataset['{}{}'.format(stub, year)] * self.dataset[weight]).sum() / self.dataset[weight].sum()) if rescale: zeropop = self.dataset[weight][self.dataset[ '{}{}'.format(stub, year)] == 0].sum() poptot = self.dataset[weight].sum() - zeropop mean[year] = (mean[year] * self.dataset[weight].sum() / poptot) return mean def variance(self, stub, weight): period = self.results[self.cursim]['period'] means = self.mean(stub, weight) variance = pd.Series(0.0, range(period[0], period[1] + 1)) for year in xrange(period[0], period[1] + 1): variance[year] = (((self.dataset['{}{}'.format(stub, year)] - means[year]) ** 2 * self.dataset[weight]).sum() / (self.dataset[weight].sum() - 1)) return variance def inequality_ge(self, stub, weight, theta=1.0, nozero=False): period = self.results[self.cursim]['period'] if theta <= 0 or theta == 1: nozero = True means = self.mean(stub, weight, nozero=nozero) ge = pd.Series(0.0, range(period[0], period[1] + 1)) for year in xrange(period[0], period[1] + 1): if nozero: zeropop = self.dataset[weight][self.dataset[ '{}{}'.format(stub, year)] == 0].sum() poptot = self.dataset[weight].sum() - zeropop else: poptot = self.dataset[weight].sum() self.dataset['__ratio'] = ( self.dataset['{}{}'.format(stub, year)] / means[year]) if float(theta) == 0.0: self.dataset['__ratio'] = np.log( self.dataset['__ratio'] ** -1) self.dataset['__ratio'][self.dataset['__ratio'] == np.inf] = 0 ge[year] = (self.dataset['__ratio'] * self.dataset[weight]).sum() / poptot elif float(theta) == 1.0: self.dataset['__ratio'] = self.dataset['__ratio'] * np.log( self.dataset['__ratio']) self.dataset['__ratio'][self.dataset['__ratio'] == np.inf] = 0 ge[year] = (self.dataset['__ratio'] * self.dataset[weight]).sum() / poptot else: self.dataset['__ratio'] = self.dataset['__ratio'] ** theta self.dataset['__ratio'][self.dataset['__ratio'] == np.inf] = 0 ge[year] = (((self.dataset['__ratio'] * self.dataset[weight]).sum() / poptot - 1) / (theta ** 2 - theta)) if 0 in self.dataset['{}{}'.format(stub, year)]: print '\nThere were zeroes in {}xxxx'.format(stub) if nozero: print 'Ge({}) did not consider those obs.'.format(theta) return ge def inequality_gini(self, stub, weight): """ stub - variable stub existent in microsim.dataset weight - weight variable in microsim.dataset """ period = self.results[self.cursim]['period'] gini = pd.Series(0.0, range(period[0], period[1] + 1)) for year in xrange(period[0], period[1] + 1): """ the Gini index is calculated as twice the area between the Lorenz Curve and the diagonal (equality line) """ curvar = '{}{}'.format(stub, year) self.dataset.sort(curvar, inplace=True) self.dataset['__cumpop'] = (self.dataset[weight].cumsum() / self.dataset[weight].sum()) self.dataset['__cumren'] = ((self.dataset[curvar] * self.dataset[weight]).cumsum() / (self.dataset[curvar] * self.dataset[weight]).sum()) self.dataset['__polyarea'] = (self.dataset['__cumpop'] - self.dataset['__cumpop'].shift(1)) * ( self.dataset['__cumren'] + self.dataset['__cumren']).shift(1) gini[year] = 1 - self.dataset['__polyarea'].sum() todrop = [c for c in self.dataset.columns if '__' in c] self.dataset.drop(todrop, axis=1, inplace=True) return gini def poverty(self, stub, weight, plines): """ stub - variable stub existent in microsim.dataset weight - weight variable in microsim.dataset plines - list or tuple with poverty lines """ period = self.results[self.cursim]['period'] perang = range(period[0], period[1] + 1) povind = pd.DataFrame({'__temp': pd.Series(0.0, perang)}) for pline in plines: povind['p0({})'.format(pline)] = 0.0 povind['p1({})'.format(pline)] = 0.0 povind['p2({})'.format(pline)] = 0.0 povind['pgap({})'.format(pline)] = 0.0 povind['pge2({})'.format(pline)] = 0.0 povind.drop('__temp', axis=1, inplace=True) for year in xrange(period[0], period[1] + 1): curvar = '{}{}'.format(stub, year) dt = self.dataset # process a list of poverty lines for pline in plines: povind['p0({})'.format(pline)][year] = ( ((dt[curvar] < pline) * dt[weight]).sum() / dt[weight].sum()) povind['pgap({})'.format(pline)][year] = ( (((dt[curvar] < pline) * (pline - dt[curvar]) / pline) * dt[weight]).sum() / dt[weight][dt[curvar] < pline].sum()) povind['p1({})'.format(pline)][year] = ( povind['p0({})'.format(pline)][year] * povind['pgap({})'.format(pline)][year]) mnge2 = (((dt[curvar] < pline) * dt[curvar] * dt[weight]).sum() / dt[weight][dt[curvar] < pline].sum()) stge2 = (((dt[curvar] < pline) * (dt[curvar] - mnge2) ** 2 * dt[weight]).sum() / dt[weight][dt[curvar] < pline].sum()) ** 0.5 ge2 = (stge2/mnge2) ** 2 / 2 povind['pge2({})'.format(pline)][year] = ge2 povind['p2({})'.format(pline)][year] = ( povind['p0({})'.format(pline)][year] * (povind['pgap({})'.format(pline)][year] ** 2 + (1 - povind['pgap({})'.format(pline)][year]) ** 2 * ge2 * 2)) return povind def visualize(self, data, xcol='year', cols='all', subplotcols=2): if xcol not in data.columns: raise Exception('{} not in dataset'.format(xcol)) if cols == 'all': toplot = [col for col in data.columns if col != xcol and type(data[col].iloc[0]) != str] elif isinstance(cols, tuple) or isinstance(cols, list): for col in cols: if col not in data.columns: raise Exception('{} not in dataset'.format(col)) elif type(data[col].iloc[0]) == str: raise Exception('{} is a string variable'.format(col)) toplot = cols elif isinstance(cols, str): if cols not in data.columns: raise Exception('{} not in dataset'.format(cols)) elif type(data[cols].iloc[0]) == str: raise Exception('{} is a string variable'.format(cols)) toplot = [cols] else: raise TypeError() plt.figure(1) plt.clf() if len(toplot) > subplotcols: gridrows = len(toplot) // subplotcols if len(toplot) % subplotcols > 0: gridrows += 1 gridcols = subplotcols elif len(toplot) < subplotcols: gridrows = 1 gridcols = len(toplot) else: gridrows = 1 gridcols = subplotcols for nplot in range(len(toplot)): plot = toplot[nplot] plt.subplot(gridrows, gridcols, nplot) #plt.subplot.axes.get_xaxis().set_ticks([]) #plt.subplot.axes.get_yaxis().set_ticks([]) plt.title(plot) plt.locator_params(axis='both', tight=True, nbins=7) plt.plot(data[xcol], data[plot]) plt.tight_layout(pad=1.5) plt.show() class growth(object): """ Growt object dataset key column name # of parts this is the growth rate for every partition of the income distribution simulate will partition the income distribution of microsim.dataset based on the growth object # of parts and the identifier is key column name the dataset has the growth rates, if the dataset has more than one growth rate, simulate will need an order instruction (such as random.choice) """ def __init__(self, parts=100, key='key'): self.dataset = pd.DataFrame({key: range(parts)}) self.parts = parts self.key = key self.__logn = 1 self.__pwrn = 1 self.__coln = 1 def add_columns(self, data, stub='newcol'): """ Will get columns from a pandas dataframe same rules that apply to csv files csv reads to pandas dataframe and calls add_columns """ if isinstance(data, pd.Series) or \ isinstance(data, tuple) or \ isinstance(data, list): if not self.__invalid(data): name =stub while name in self.dataset.columns: name = '{}{}'.format(stub, self.__logn) self.__coln += 1 dataframe = pd.DataFrame({name: data}) else: dataframe = data[:] for col in dataframe.columns: if self.__invalid(dataframe[col]): raise TypeError('{} is invalid'.format(col)) if col in self.dataset.columns: raise Exception('{} exists in dataset'.format(col)) self.dataset[col] = dataframe[col] def add_log(self, stub='log', average=0.01, shift=0, flip=False, alpha=1): """ will add a log growth pattern with average = average if flip the log function is mirrored and the growth rate will correlate negatively with income - FLIP for PRO-POOR GROWTH """ self.dataset['__x'] = self.dataset.key + alpha if flip: X = self.dataset['__x'][:] X.sort(ascending=False) X = X.reset_index() self.dataset['__x'] = X['__x'] self.dataset['__lnx'] = np.log(self.dataset['__x']) name = stub while name in self.dataset.columns: name = '{}{}'.format(stub, self.__logn) self.__logn += 1 average = average * self.parts self.dataset[name] = self.dataset['__lnx'] / \ self.dataset['__lnx'].sum() * average + shift self.dataset.drop(['__x', '__lnx'], axis=1, inplace=True) def add_power(self, stub='pwr', power=0.2, average=0.01, shift=0, flip=False, alpha=1): """ will add a power growth pattern with average = average if flip the power function is mirrored and the growth rate will correlate negatively with income - FLIP for PRO-POOR GROWTH """ self.dataset['__x'] = self.dataset.key + alpha if flip: X = self.dataset['__x'][:] X.sort(ascending=False) X = X.reset_index() self.dataset['__x'] = X['__x'] self.dataset['__pwrx'] = self.dataset['__x'] ** float(power) name = stub while name in self.dataset.columns: name = '{}{}'.format(stub, self.__pwrn) self.__pwrn += 1 average = average * self.parts self.dataset[name] = self.dataset['__pwrx'] / \ self.dataset['__pwrx'].sum() * average + shift self.dataset.drop(['__x', '__pwrx'], axis=1, inplace=True) def load_csv(self, csvfile, delimiter='\t'): """ reads to pandas dataframe and calls add_columns csv file has to conform: # lines should be equal to parts column names in first row (valid for pandas) growth rate columns only, in proportions, 0.1 = 10% if one growth rate column per simulation year, first column should be the growth rate from base year to second year """ data = pd.read_csv(csvfile, sep=delimiter, index_col=False, na_values='') self.add_columns(data) def __invalid(self, X): if isinstance(X, pd.Series): if tuple(X.index) != tuple(self.dataset.index): raise Exception('Idxs differ - should be zero to self.parts') return False elif isinstance(X, tuple) or isinstance(X, list): if len(X) != self.parts: raise Exception('Sizes differ: len(X) != self.parts') return False else: return True # if main, runs the example if __name__ == '__main__': pass
gpl-3.0
UNR-AERIAL/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
ClimbsRocks/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
avicennax/jedi
tests/sin_test.py
1
2751
from __future__ import division import jedi.jedi as jedi from jedi.utils import plot, init_tools import matplotlib.pylab as plt import numpy as np # Setting Seeds seeds = np.random.uniform(0,10000,1).astype(int) # sine-wave target target = lambda t0: np.cos(2 * np.pi * t0/.5) #Simulation parameters for FORCE dt = .01 # time step tmax = 10 # simulation length tstart = 0 tstop = 5 # learning stop time rho = 1.25 # spectral radius of J N = 300 # size of stochastic pool lr = 1.0 # learning rate pE = .8 # percent excitatory sparsity = (.1,1,1) # sparsity # Noise matrix noise_mat = np.array([np.random.normal(0,.3,N) for i in range(int(tmax/dt+2))]) errors = [] zs = [] wus = [] for seedling in seeds: J, Wz, _, x0, u, w = init_tools.set_simulation_parameters(seedling, N, 1, pE=pE, p=sparsity, rho=rho) # inp & z are dummy variables def model(t0, x, params): index = params['index'] tanh_x = params['tanh_x'] z = params['z'] noise = params['noise'][index] return (-x + np.dot(J, tanh_x) + Wz*z + noise)/dt x, t, z, _, wu,_ = jedi.force(target, model, lr, dt, tmax, tstart, tstop, x0, w, noise=noise_mat) zs.append(z) wus.append(wu) error = np.abs(z-target(t)) errors.append(error) errors = np.array(errors) # Visualizing activities of first 20 neurons T = 300 plt.figure(figsize=(12,4)) plt.subplot(211) plt.title("Neuron Dynamics"); for i in range(10): plt.plot(t[:T], x[:T, i]); plt.subplot(212) for i in range(10): plt.plot(t[-T:], x[-T:, i]); plt.xlim(t[-T], t[-1]); plt.show() ## -- DFORCE -- ## derrors = [] zs = [] wus = [] for seedling in seeds: J, Wz, _, x0, u, w = init_tools.set_simulation_parameters(seedling, N, 1, pE=pE, p=sparsity, rho=rho) def model(t0, x, params): index = params['index'] tanh_x = params['tanh_x'] z = params['z'] noise = params['noise'][index] return (-x + np.dot(J, tanh_x) + Wz*z + noise)/dt x, t, z, _, wu,_ = jedi.dforce(jedi.step_decode, target, model, lr, dt, tmax, tstart, tstop, x0, w, noise=noise_mat, pE=pE) zs.append(z) wus.append(wu) derror = np.abs(z-target(t)) derrors.append(derror) derrors = np.array(derrors) # Visualizing activities of first 20 neurons T = 300 plt.figure(figsize=(12,4)) plt.subplot(211) plt.title("Neuron Dynamics"); for i in range(10): plt.plot(t[:T], x[:T, i]); plt.subplot(212) for i in range(10): plt.plot(t[-T:], x[-T:, i]); plt.xlim(t[-T], t[-1]); plt.show() plt.figure(figsize=(12,4)) plot.cross_signal_error(errors, derrors, t, tstart, tstop, title="FORCE vs SFORCE (Sin Wave))", burn_in=100) plt.show()
mit
jdvelasq/pytimeseries
pytimeseries/pytimeseries (copia).py
1
15891
""" pytimeseries A library for big data time series forecasting """ import pandas import scipy import numpy import matplotlib import statsmodels import sklearn import tabulate import operator import pyts_functions from tabulate import tabulate from scipy import stats from statsmodels import api from sklearn import linear_model from statsmodels import api from sklearn import datasets class pyforecast(): def __init__(self, model=None, ts=None): self.model = model self.ts = ts """Time series' and model's diagnostics""" class series_viewer(): def __init__(self, ts=None): self.ts = ts def time_plot(self): tp = self.ts.plot() return tp def ACF_plot(self): acf = statsmodels.graphics.tsaplots.plot_acf(self.ts) return acf def PACF_plot(self): pacf = statsmodels.graphics.tsaplots.plot_pacf(self.ts) return pacf def qq_plot(self): qq_plot = statsmodels.graphics.gofplots.qqplot(self.ts) return qq_plot def density_plot(self): den_plot = self.ts.plot(kind='kde') return den_plot """ Histogram of frequencies """ def histogram(self): hist = self.ts.hist() return hist """ Jarque Bera normality test """ def normality(self): jb = scipy.stats.jarque_bera(self.ts) jb_value = jb[0] p_value = jb[1] return (tabulate([['Test statistics value', jb_value], ['p value', p_value]], headers = ['Jarque Bera normality test'])) class base_model(): def __init__(self, ts=None): self.ts = ts self.residuals = None self.trending = None self.seasonality = None self.ts_seasonal = None self.original = None self.estimation = None frq = pandas.infer_freq(self.ts.index) intfrq = len(pandas.date_range(pandas.datetime(2017, 1, 1), pandas.datetime(2017, 12, 31), freq=frq)) self.intfrq = intfrq def __repr__(self): return self.ts.__repr__() def specify(self, trans=None, trend=None, seasonal=None): """Return the transformed series Args: trans (log, log10, sqrt, cbrt, boxcox): Transformation to apply trend (linear, cuadratic, cubic, diff1, diff2): Trend to apply seasonal (poly2, diff): Seasonality to apply >>> ts = pandas.Series.from_csv('champagne_short.csv', index_col = 0, header = 0) >>> transformed_ts = base_model(ts = ts). specify(trans = 'log').residuals >>> transformed_ts Month 1964-01-01 7.942718 1964-02-01 7.890583 1964-03-01 7.921173 1964-04-01 7.908755 1964-05-01 7.988204 1964-06-01 8.018296 1964-07-01 7.732808 1964-08-01 7.701652 1964-09-01 7.980024 1964-10-01 8.366603 1964-11-01 8.659387 1964-12-01 8.897272 Name: Perrin, dtype: float64 >>> ts = pandas.Series.from_csv('champagne_short.csv', index_col = 0, header = 0) >>> transformed_ts = base_model(ts = ts). specify(trans = 'log10').residuals >>> transformed_ts Month 1964-01-01 3.449478 1964-02-01 3.426836 1964-03-01 3.440122 1964-04-01 3.434729 1964-05-01 3.469233 1964-06-01 3.482302 1964-07-01 3.358316 1964-08-01 3.344785 1964-09-01 3.465680 1964-10-01 3.633569 1964-11-01 3.760724 1964-12-01 3.864036 Name: Perrin, dtype: float64 >>> ts = pandas.Series.from_csv('champagne_short.csv', index_col = 0, header = 0) >>> transformed_ts = base_model(ts = ts). specify(trans = 'sqrt').residuals >>> transformed_ts Month 1964-01-01 53.056574 1964-02-01 51.691392 1964-03-01 52.488094 1964-04-01 52.163205 1964-05-01 54.277067 1964-06-01 55.099909 1964-07-01 47.770284 1964-08-01 47.031904 1964-09-01 54.055527 1964-10-01 65.582010 1964-11-01 75.921012 1964-12-01 85.510233 Name: Perrin, dtype: float64 >>> ts = pandas.Series.from_csv('champagne_short.csv', index_col = 0, header = 0) >>> transformed_ts = base_model(ts = ts). specify(trans = 'cbrt').residuals >>> transformed_ts Month 1964-01-01 14.119722 1964-02-01 13.876464 1964-03-01 14.018683 1964-04-01 13.960775 1964-05-01 14.335436 1964-06-01 14.479956 1964-07-01 13.165536 1964-08-01 13.029519 1964-09-01 14.296402 1964-10-01 16.262594 1964-11-01 17.929767 1964-12-01 19.409398 Name: Perrin, dtype: float64 """ """ Transform time series """ if (trans == 'log'): ts_trans = self.ts.apply(numpy.log) elif (trans == 'log10'): ts_trans = self.ts.apply(numpy.log10) elif (trans == 'sqrt'): ts_trans = self.ts.apply(numpy.sqrt) elif (trans == 'cbrt'): ts_trans = self.ts.apply(numpy.cbrt) elif (trans == 'boxcox'): ts_trans = self.ts.apply(pyts_functions.ts_boxcox) elif (trans == None): ts_trans = self.ts else: message_trans = 'Invalid transformation value: ' + trans raise ValueError(message_trans) """ Removing trend """ if (trend == 'linear'): X = ts_trans.index.factorize()[0].reshape(-1,1) y = ts_trans model = sklearn.linear_model.LinearRegression() model.fit(X, y) trend = model.predict(X) detrended = [y[i]-trend[i] for i in range(0, len(ts_trans))] ts_trend = detrended elif (trend == 'cuadratic'): X = ts_trans.index.factorize()[0].reshape(-1,1) y = ts_trans model = sklearn.preprocessing.PolynomialFeatures(degree=2) X_ = model.fit_transform(X) model = linear_model.LinearRegression() fitting = model.fit(X_, y) trend = fitting.predict(X_) detrended = [y[i]-trend[i] for i in range(0, len(ts_trans))] ts_trend = detrended elif (trend == 'cubic'): X = ts_trans.index.factorize()[0].reshape(-1,1) y = ts_trans model = sklearn.preprocessing.PolynomialFeatures(degree=3) X_ = model.fit_transform(X) model = linear_model.LinearRegression() fitting = model.fit(X_, y) trend = fitting.predict(X_) detrended = [y[i]-trend[i] for i in range(0, len(ts_trans))] ts_trend = detrended elif (trend == 'diff1'): y = ts_trans diff = list() diff.append(y[0]) for i in range(1, len(y)): value = y[i] - y[i-1] diff.append(value) trend = diff detrended = diff ts_trend = detrended elif (trend == 'diff2'): y = ts_trans diff = list() diff.append(y[0]) diff.append(y[1]) for i in range(2, len(y)): value = y[i] - y[i - 2] diff.append(value) trend = diff detrended = diff ts_trend = detrended elif (trend == None): ts_trend = ts_trans trend = [0 for i in range(0, len(ts_trans))] else: message_trend = 'Invalid trending value: ' + trend raise ValueError(message_trend) """ Removing seasonality """ if (seasonal == 'poly2'): X = ts_trans.index.factorize()[0].reshape(-1,1) X = X%self.intfrq y = ts_trend model = sklearn.preprocessing.PolynomialFeatures(degree=2) X_ = model.fit_transform(X) model = linear_model.LinearRegression() fitting = model.fit(X_, y) seasonality = fitting.predict(X_) deseasonal = [y[i]-seasonality[i] for i in range(0, len(ts_trans))] ts_seasonal = deseasonal elif (seasonal == 'diff'): y = ts_trend diff = list() for j in range(self.intfrq): diff.append(y[j]) for i in range(self.intfrq, len(y)): value = y[i] - y[i - self.intfrq] diff.append(value) seasonality = diff deseasonal = diff ts_seasonal = deseasonal elif (seasonal == None): ts_seasonal = ts_trend seasonality = [0 for i in range(0, len(ts_trend))] else: message_seasonal = 'Invalid seasonal value: ' + seasonal raise ValueError(message_seasonal) self.seasonality = seasonality self.trending = trend self.residuals = ts_seasonal return self """ Restore series to its original values """ def restore(self, trans=None, trend=None, seasonal=None): if (seasonal == 'poly2'): ts_deseasonal = [self.estimation[i] + self.seasonality[i] for i in range(len(self.estimation))] elif (seasonal == 'diff'): ts_deseasonal = list() for j in range(self.intfrq): ts_deseasonal.append(self.seasonality[j]) for i in range(self.intfrq,len(self.seasonality)): value = self.seasonality[i] + ts_deseasonal[i-self.intfrq] ts_deseasonal.append(value) else: ts_deseasonal = self.estimation if (trend == 'linear' or trend == 'cuadratic' or trend == 'cubic'): ts_detrend = [ts_deseasonal[i] + self.trending[i] for i in range(len(ts_deseasonal))] elif (trend == 'diff1'): ts_detrend = list() ts_detrend.append(self.trending[0]) for i in range(1,len(self.trending)): value = self.trending[i] + ts_detrend[i-1] ts_detrend.append(value) elif (trend == 'diff2'): ts_detrend = list() ts_detrend.append(self.trending[0]) ts_detrend.append(self.trending[1]) for i in range(2,len(self.trending)): value = self.trending[i] + ts_detrend[i-2] ts_detrend.append(value) else: ts_detrend = ts_deseasonal if (trans == 'log'): ts_detrans = numpy.exp(ts_detrend) elif (trans == 'log10'): ts_detrans = scipy.special.exp10(ts_detrend) elif (trans == 'sqrt'): ts_detrans = [ts_detrend[i]**2 for i in range(len(ts_detrend))] elif (trans == 'cbrt'): ts_detrans = [ts_detrend[i]**3 for i in range(len(ts_detrend))] elif (trans == 'boxcox'): lmbda = pyts_functions.ts_boxcox_lmbda(self.ts) ts_detrans = scipy.special.inv_boxcox(ts_detrend, lmbda) else: ts_detrans = ts_detrend self.original = ts_detrans return self def set_residuals(self, residuals): self.residuals = series_viewer(residuals) """ Residuals analysis """ def time_plot(self): self.residuals.time_plot() def ACF_plot(self): self.residuals.ACF_plot() def PACF_plot(self): self.residuals.PACF_plot() def qq_plot(self): self.residuals.qq_plot() def density_plot(self): self.residuals.density_plot() def histogram(self): self.residuals.histogram() def normality(self): self.residuals.normality() class AR_p(base_model): def __init__(self, ts=None, p=None, trans=None, trend=None, seasonal=None): self.p = p self.ts = ts self.trans = trans self.trend = trend self.seasonal = seasonal #super().__init__() self.X = None def __repr__(self): return self.ts.__repr__() def estimate(self): estimation = 0 X = base_model(self.ts).specify(trans = self.trans, trend = self.trend, seasonal = self.seasonal) model = statsmodels.tsa.ar_model.AR(X.residuals) model_fit = model.fit() estimation = model_fit.predict() X.estimation = estimation X.restore(trans = self.trans, trend = self.trend, seasonal = self.seasonal) super().set_residuals(X.residuals) self.X = X return self class AR(base_model): def __init__(self, ts=None, p=None): self.p = p self.ts = ts self.phi0 = numpy.random.rand(1) self.phi = numpy.random.rand(p) def params2vector(self): params = list() params.append(self.phi0) for i in range(len(self.phi)): params.append(self.phi[i]) return params def vector2params(self, vector): self.phi0 = vector[0] self.phi = vector[1:] return self def predict(self): y = self.ts.values prediction = list() for i in range(len(y)): if i <= self.p: if i == 0: prediction.append(self.phi0) else: y_last = y[0:i] result = self.phi0 + numpy.dot(y_last, self.phi[0:i]) prediction.append(result[0]) else: y_last = y[i-self.p:i] result = self.phi0 + numpy.dot(y_last, self.phi) prediction.append(result[0]) prediction = pandas.Series((v for v in prediction), index = self.ts.index) return prediction def calc_error(self): y_estimated = self.predict() y_real = self.ts error = sklearn.metrics.mean_squared_error(y_real, y_estimated) return error def fit(self): def f(x): self.vector2params(x) return self.calc_error() x0 = self.params2vector() optim_params = scipy.optimize.minimize(f, x0) self.vector2params(vector = optim_params.x) return self def forecast(self, periods): def forward(y): y = y.values lon = len(y) if lon <= self.p: y_last = y[0:lon] result = self.phi0 + numpy.dot(y_last, self.phi[0:lon]) else: y_last = y[lon-self.p:lon] result = self.phi0 + numpy.dot(y_last, self.phi) return result def add_next_date(y, value): next_date = pandas.date_range(y.index[-1], periods=2, freq=pandas.infer_freq(y.index)) next_ts = pandas.Series(value, index = next_date) next_ts = next_ts.drop(y.index[-1]) ts_forecast = y.append(next_ts) return ts_forecast for i in range(periods): if i == 0: y = self.ts value = forward(y) value = forward(y) y = add_next_date(y, value) return y[-periods-1:] #def filter_ts(ts, model_class): # def __init__(self, cls): # self.cls = cls
mit
davharris/bbs-forecasting
test/test_benchmarks.py
1
1328
"""Tests of time-series prediction benchmarking functions""" from pandas import DataFrame from pandas.util.testing import assert_frame_equal from bbs_benchmarks import * def test_benchmark_predictions(): time = [1, 2, 3] value = [4, 5, 6] preds = benchmark_predictions(time, value, lag=1) assert preds == [6, 5, 4.5] def test_filter_timeseries_contiguous(): data = pd.DataFrame({'site': [1, 1, 1, 1, 2, 2], 'date': [1, 2, 3, 4, 1, 2]}) filtered = filter_timeseries(data, group_cols='site', date_col='date', min_years=3) assert_frame_equal(filtered, pd.DataFrame({'site': [1, 1, 1, 1], 'date': [1, 2, 3, 4]})) def test_filter_timeseries_noncontiguous_contigtrue(): data = pd.DataFrame({'site': [1, 1, 1, 1, 2, 2, 2], 'date': [1, 2, 3, 4, 1, 2, 4]}) filtered = filter_timeseries(data, group_cols='site', date_col='date', min_years=3) assert_frame_equal(filtered, pd.DataFrame({'site': [1, 1, 1, 1], 'date': [1, 2, 3, 4]})) def test_filter_timeseries_noncontiguous_contigfalse(): data = pd.DataFrame({'site': [1, 1, 1, 1, 2, 2, 2], 'date': [1, 2, 3, 4, 1, 2, 4]}) filtered = filter_timeseries(data, group_cols='site', date_col='date', min_years=3, contiguous=False) assert_frame_equal(filtered, pd.DataFrame({'site': [1, 1, 1, 1, 2, 2, 2], 'date': [1, 2, 3, 4, 1, 2, 4]}))
mit
roxyboy/scikit-learn
benchmarks/bench_multilabel_metrics.py
276
7138
#!/usr/bin/env python """ A comparison of multilabel target formats and metrics over them """ from __future__ import division from __future__ import print_function from timeit import timeit from functools import partial import itertools import argparse import sys import matplotlib.pyplot as plt import scipy.sparse as sp import numpy as np from sklearn.datasets import make_multilabel_classification from sklearn.metrics import (f1_score, accuracy_score, hamming_loss, jaccard_similarity_score) from sklearn.utils.testing import ignore_warnings METRICS = { 'f1': partial(f1_score, average='micro'), 'f1-by-sample': partial(f1_score, average='samples'), 'accuracy': accuracy_score, 'hamming': hamming_loss, 'jaccard': jaccard_similarity_score, } FORMATS = { 'sequences': lambda y: [list(np.flatnonzero(s)) for s in y], 'dense': lambda y: y, 'csr': lambda y: sp.csr_matrix(y), 'csc': lambda y: sp.csc_matrix(y), } @ignore_warnings def benchmark(metrics=tuple(v for k, v in sorted(METRICS.items())), formats=tuple(v for k, v in sorted(FORMATS.items())), samples=1000, classes=4, density=.2, n_times=5): """Times metric calculations for a number of inputs Parameters ---------- metrics : array-like of callables (1d or 0d) The metric functions to time. formats : array-like of callables (1d or 0d) These may transform a dense indicator matrix into multilabel representation. samples : array-like of ints (1d or 0d) The number of samples to generate as input. classes : array-like of ints (1d or 0d) The number of classes in the input. density : array-like of ints (1d or 0d) The density of positive labels in the input. n_times : int Time calling the metric n_times times. Returns ------- array of floats shaped like (metrics, formats, samples, classes, density) Time in seconds. """ metrics = np.atleast_1d(metrics) samples = np.atleast_1d(samples) classes = np.atleast_1d(classes) density = np.atleast_1d(density) formats = np.atleast_1d(formats) out = np.zeros((len(metrics), len(formats), len(samples), len(classes), len(density)), dtype=float) it = itertools.product(samples, classes, density) for i, (s, c, d) in enumerate(it): _, y_true = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, random_state=42) _, y_pred = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, random_state=84) for j, f in enumerate(formats): f_true = f(y_true) f_pred = f(y_pred) for k, metric in enumerate(metrics): t = timeit(partial(metric, f_true, f_pred), number=n_times) out[k, j].flat[i] = t return out def _tabulate(results, metrics, formats): """Prints results by metric and format Uses the last ([-1]) value of other fields """ column_width = max(max(len(k) for k in formats) + 1, 8) first_width = max(len(k) for k in metrics) head_fmt = ('{:<{fw}s}' + '{:>{cw}s}' * len(formats)) row_fmt = ('{:<{fw}s}' + '{:>{cw}.3f}' * len(formats)) print(head_fmt.format('Metric', *formats, cw=column_width, fw=first_width)) for metric, row in zip(metrics, results[:, :, -1, -1, -1]): print(row_fmt.format(metric, *row, cw=column_width, fw=first_width)) def _plot(results, metrics, formats, title, x_ticks, x_label, format_markers=('x', '|', 'o', '+'), metric_colors=('c', 'm', 'y', 'k', 'g', 'r', 'b')): """ Plot the results by metric, format and some other variable given by x_label """ fig = plt.figure('scikit-learn multilabel metrics benchmarks') plt.title(title) ax = fig.add_subplot(111) for i, metric in enumerate(metrics): for j, format in enumerate(formats): ax.plot(x_ticks, results[i, j].flat, label='{}, {}'.format(metric, format), marker=format_markers[j], color=metric_colors[i % len(metric_colors)]) ax.set_xlabel(x_label) ax.set_ylabel('Time (s)') ax.legend() plt.show() if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument('metrics', nargs='*', default=sorted(METRICS), help='Specifies metrics to benchmark, defaults to all. ' 'Choices are: {}'.format(sorted(METRICS))) ap.add_argument('--formats', nargs='+', choices=sorted(FORMATS), help='Specifies multilabel formats to benchmark ' '(defaults to all).') ap.add_argument('--samples', type=int, default=1000, help='The number of samples to generate') ap.add_argument('--classes', type=int, default=10, help='The number of classes') ap.add_argument('--density', type=float, default=.2, help='The average density of labels per sample') ap.add_argument('--plot', choices=['classes', 'density', 'samples'], default=None, help='Plot time with respect to this parameter varying ' 'up to the specified value') ap.add_argument('--n-steps', default=10, type=int, help='Plot this many points for each metric') ap.add_argument('--n-times', default=5, type=int, help="Time performance over n_times trials") args = ap.parse_args() if args.plot is not None: max_val = getattr(args, args.plot) if args.plot in ('classes', 'samples'): min_val = 2 else: min_val = 0 steps = np.linspace(min_val, max_val, num=args.n_steps + 1)[1:] if args.plot in ('classes', 'samples'): steps = np.unique(np.round(steps).astype(int)) setattr(args, args.plot, steps) if args.metrics is None: args.metrics = sorted(METRICS) if args.formats is None: args.formats = sorted(FORMATS) results = benchmark([METRICS[k] for k in args.metrics], [FORMATS[k] for k in args.formats], args.samples, args.classes, args.density, args.n_times) _tabulate(results, args.metrics, args.formats) if args.plot is not None: print('Displaying plot', file=sys.stderr) title = ('Multilabel metrics with %s' % ', '.join('{0}={1}'.format(field, getattr(args, field)) for field in ['samples', 'classes', 'density'] if args.plot != field)) _plot(results, args.metrics, args.formats, title, steps, args.plot)
bsd-3-clause
poryfly/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
206
7643
import numpy as np from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import v_measure_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.utils.testing import assert_raise_message from nose.tools import assert_almost_equal from nose.tools import assert_equal from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information C = contingency_matrix(labels_a, labels_b) n_samples = np.sum(C) emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = np.ones(i, dtype=np.int),\ np.arange(i, dtype=np.int) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = random_state.random_integers(0, 10, i),\ random_state.random_integers(0, 10, i) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0)
bsd-3-clause
zycdragonball/tensorflow
tensorflow/contrib/factorization/python/ops/gmm.py
47
5877
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of Gaussian mixture model (GMM) clustering using tf.Learn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import framework from tensorflow.contrib.factorization.python.ops import gmm_ops from tensorflow.contrib.framework.python.framework import checkpoint_utils from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops.control_flow_ops import with_dependencies def _streaming_sum(scalar_tensor): """Create a sum metric and update op.""" sum_metric = framework.local_variable(constant_op.constant(0.0)) sum_update = sum_metric.assign_add(scalar_tensor) return sum_metric, sum_update class GMM(estimator.Estimator): """An estimator for GMM clustering.""" SCORES = 'scores' ASSIGNMENTS = 'assignments' ALL_SCORES = 'all_scores' def __init__(self, num_clusters, model_dir=None, random_seed=0, params='wmc', initial_clusters='random', covariance_type='full', config=None): """Creates a model for running GMM training and inference. Args: num_clusters: number of clusters to train. model_dir: the directory to save the model results and log files. random_seed: Python integer. Seed for PRNG used to initialize centers. params: Controls which parameters are updated in the training process. Can contain any combination of "w" for weights, "m" for means, and "c" for covars. initial_clusters: specifies how to initialize the clusters for training. See gmm_ops.gmm for the possible values. covariance_type: one of "full", "diag". config: See Estimator """ self._num_clusters = num_clusters self._params = params self._training_initial_clusters = initial_clusters self._covariance_type = covariance_type self._training_graph = None self._random_seed = random_seed super(GMM, self).__init__( model_fn=self._model_builder(), model_dir=model_dir, config=config) def predict_assignments(self, input_fn=None, batch_size=None, outputs=None): """See BaseEstimator.predict.""" results = self.predict(input_fn=input_fn, batch_size=batch_size, outputs=outputs) for result in results: yield result[GMM.ASSIGNMENTS] def score(self, input_fn=None, batch_size=None, steps=None): """Predict total sum of distances to nearest clusters. Note that this function is different from the corresponding one in sklearn which returns the negative of the sum of distances. Args: input_fn: see predict. batch_size: see predict. steps: see predict. Returns: Total sum of distances to nearest clusters. """ results = self.evaluate(input_fn=input_fn, batch_size=batch_size, steps=steps) return np.sum(results[GMM.SCORES]) def weights(self): """Returns the cluster weights.""" return checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_WEIGHT) def clusters(self): """Returns cluster centers.""" clusters = checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_VARIABLE) return np.squeeze(clusters, 1) def covariances(self): """Returns the covariances.""" return checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_COVS_VARIABLE) def _parse_tensor_or_dict(self, features): if isinstance(features, dict): return array_ops.concat([features[k] for k in sorted(features.keys())], 1) return features def _model_builder(self): """Creates a model function.""" def _model_fn(features, labels, mode): """Model function.""" assert labels is None, labels (all_scores, model_predictions, losses, training_op) = gmm_ops.gmm( self._parse_tensor_or_dict(features), self._training_initial_clusters, self._num_clusters, self._random_seed, self._covariance_type, self._params) incr_step = state_ops.assign_add(variables.get_global_step(), 1) loss = math_ops.reduce_sum(losses) training_op = with_dependencies([training_op, incr_step], loss) predictions = { GMM.ALL_SCORES: all_scores[0], GMM.ASSIGNMENTS: model_predictions[0][0], } eval_metric_ops = { GMM.SCORES: _streaming_sum(loss), } return model_fn_lib.ModelFnOps(mode=mode, predictions=predictions, eval_metric_ops=eval_metric_ops, loss=loss, train_op=training_op) return _model_fn
apache-2.0
catalla/AYDABTU
visualization/legacy/model.py
1
4094
from collections import defaultdict import urllib from operator import itemgetter def parseData(fname): for l in urllib.urlopen(fname): yield eval(l) def feature(elem): return [elem['date'], elem['primary_type'], elem['longitude'], elem['latitude'], elem['arrest'], elem['location_description']] def buildData(filename): print "Exec buildData\n" return [feature(d) for d in parseData(filename)] def aggragateData(inData,s,e): print "Exec AggragateData\n" timeList = [] for elem in inData: year = (elem[0])[0:4] month = (elem[0])[5:7] day = (elem[0])[8:10] hour = (elem[0])[11:13] minute = (elem[0])[14:16] second = (elem[0])[17:19] crime = elem[1] try: longi = float(elem[2]) lati = float(elem[3]) except ValueError: longi = 0 lati = 0 arrest = elem[4] locat = elem[5] time = [year,month,day,hour,minute,second, crime, longi,lati,locat, arrest] timeList.append(time) outDict = defaultdict(lambda:defaultdict(int)) crimeSet = set() timeSet = set() locList = [] for time in timeList: timeVar = str() for i in range(s,e+1): timeVar += time[i] outDict[str(int(timeVar))][time[6]] += 1 locList.append([time[7],time[8],time[9],time[6]]) crimeSet.add(time[6]) timeSet.add(int(timeVar)) crimeDict = defaultdict(int) for c in crimeSet: crimeDict[c]=sum([outDict[str(t)][c] for t in timeSet]) tL = sorted(list(timeSet),key=int) cL = sorted( [[c,crimeDict[c]] for c in crimeSet], key=itemgetter(1), reverse=True) cL = [c[0] for c in cL] out = [tL,cL,outDict,locList,crimeSet ] return out import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt import matplotlib as mpl ########################################################################## # Generate sample data #colors_ = list(six.iteritems(colors.cnames)) inFile = "out_train.txt" imdata = buildData(inFile) data = aggragateData(imdata,3,3) #locCrime = defaultdict(list) #X = np.array(data[3]).T #lon = X[0] #lat = X[1] #loc = X[2] #crime = X[3] #crimeColor = defaultdict(int) #i = 0 #for c in data[4]: crimeColor[c] = i i += 1 #color = [ float(crimeColor[c])/255 for c in crime ] #plt.scatter(lon, lat, c=color, s=500, cmap=mpl.cm.gray) #plt.show() dataScrub = [] prev = defaultdict(int) for crime in data[1]: sub = [data[2][str(time)][crime] for time in data[0]] dataScrub.append(sub) base = [0]*len(dataScrub[0]) for i in range(0,len(dataScrub)): base += dataScrub[len(dataScrub)-i-1] plt.plot(base) #X = (np.array(dataScrub[0])).T #y = np.array(data[0]) #w,v = np.linalg.eig(np.cov(dataScrub)) #print v #for scrub in dataScrub: plt.plot(scrub) plt.ylabel('Crime Count') #plt.legend(data[1], loc='upper left') #l=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] #ax.set_xticklabels(l) plt.show() def svrRBF(cVar,gamVar): print "Exec svrRBF\n" svr_rbf = SVR(kernel='rbf', C=cVar, gamma=gamVar) y_rbf = svr_rbf.fit(X, y).predict(X) plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_rbf, c='g', label='RBF model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show() def svrPoly(cVar,degVar): print "Exec svrPoly\n" svr_poly = SVR(kernel='poly', C=cVar, degree=degVar) y_poly = svr_poly.fit(X, y).predict(X) plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_poly, c='b', label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show() def svrLin(cVar): print "Exec svrLin\n" svr_lin = SVR(kernel='linear', C=cVar) y_lin = svr_lin.fit(X, y).predict(X) plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_lin, c='r', label='Linear model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show() #svrLin(1e3) #svrPoly(1e3,2) svrRBF(1e3,0.1)
mit
MrChristophRivera/jupyter-tips-and-tricks
notebooks/04-More_basics.py
4
4958
# coding: utf-8 # # Jupyter Notebook Basics # In[1]: names = ['alice', 'jonathan', 'bobby'] ages = [24, 32, 45] ranks = ['kinda cool', 'really cool', 'insanely cool'] # In[3]: for (name, age, rank) in zip(names, ages, ranks): print name, age, rank # In[4]: for index, (name, age, rank) in enumerate(zip(names, ages, ranks)): print index, name, age, rank # In[5]: # return, esc, shift+enter, ctrl+enter # text keyboard shortcuts -- cmd > (right), < left, # option delete (deletes words) # type "h" for help # tab # shift-tab # keyboard shortcuts # - a, b, y, m, dd, h, ctrl+shift+- # In[14]: get_ipython().magic(u'matplotlib inline') get_ipython().magic(u"config InlineBackend.figure_format='retina'") import matplotlib.pyplot as plt # no pylab import seaborn as sns sns.set_context('talk') sns.set_style('darkgrid') plt.rcParams['figure.figsize'] = 12, 8 # plotsize import numpy as np # don't do `from numpy import *` import pandas as pd # In[9]: # If you have a specific function that you'd like to import from numpy.random import randn # In[10]: x = np.arange(100) y = np.sin(x) plt.plot(x, y)#; # In[12]: get_ipython().magic(u'matplotlib notebook') # In[13]: x = np.arange(10) y = np.sin(x) plt.plot(x, y)#; # ## Magics! # # - % and %% magics # - interact # - embed image # - embed links, youtube # - link notebooks # Check out http://matplotlib.org/gallery.html select your favorite. # In[15]: get_ipython().run_cell_magic(u'bash', u'', u'for num in {1..5}\ndo\n for infile in *;\n do\n echo $num $infile\n done\n wc $infile\ndone') # In[20]: print "hi" get_ipython().system(u'pwd') # In[17]: get_ipython().system(u'ping google.com') # In[18]: this_is_magic = "Can you believe you can pass variables and strings like this?" # In[22]: hey = get_ipython().getoutput(u'echo $this_is_magic') # In[23]: hey # # Numpy # # If you have arrays of numbers, use `numpy` or `pandas` (built on `numpy`) to represent the data. Tons of very fast underlying code. # In[24]: x = np.arange(10000) print x # smart printing # In[25]: print x[0] # first element print x[-1] # last element print x[0:5] # first 5 elements (also x[:5]) print x[:] # "Everything" # In[26]: print x[-5:] # last five elements # In[27]: print x[-5:-2] # In[28]: print x[-5:-1] # not final value -- not inclusive on right # In[ ]: # In[29]: x = np.random.randint(5, 5000, (3, 5)) # In[30]: x # In[31]: np.sum(x) # In[32]: x.sum() # In[42]: np.sum(x) # In[41]: np.sum(x, axis=0) # In[43]: np.sum(x, axis=1) # In[44]: x.sum(axis=1) # In[45]: # Multi dimension array slice with a comma x[:, 2] # In[ ]: # In[46]: y = np.linspace(10, 20, 11) y # In[47]: get_ipython().magic(u'pinfo np.linspace') # In[ ]: np.linspace() # shift-tab; shift-tab-tab np. # In[48]: def does_it(first=x, second=y): """This is my doc""" pass # In[49]: y[[3, 5, 7]] # In[ ]: does_it() # In[51]: num = 3000 x = np.linspace(1.0, 300.0, num) y = np.random.rand(num) z = np.sin(x) np.savetxt("example.txt", np.transpose((x, y, z))) # In[52]: get_ipython().magic(u'less example.txt') # In[53]: get_ipython().system(u'wc example.txt') # In[54]: get_ipython().system(u'head example.txt') # In[55]: #Not a good idea a = [] b = [] for line in open("example.txt", 'r'): a.append(line[0]) b.append(line[2]) a[:10] # Whoops! # In[56]: a = [] b = [] for line in open("example.txt", 'r'): line = line.split() a.append(line[0]) b.append(line[2]) a[:10] # Strings! # In[57]: a = [] b = [] for line in open("example.txt", 'r'): line = line.split() a.append(float(line[0])) b.append(float(line[2])) a[:10] # Lists! # In[58]: # Do this! a, b = np.loadtxt("example.txt", unpack=True, usecols=(0,2)) # In[59]: a # ## Matplotlib and Numpy # # In[60]: from numpy.random import randn # In[61]: num = 50 x = np.linspace(2.5, 300, num) y = randn(num) plt.scatter(x, y) # In[64]: y > 1 # In[65]: y[y > 1] # In[66]: y[(y < 1) & (y > -1)] # In[67]: plt.scatter(x, y, c='b', s=50) plt.scatter(x[(y < 1) & (y > -1)], y[(y < 1) & (y > -1)], c='r', s=50) # In[68]: y[~((y < 1) & (y > -1))] = 1.0 plt.scatter(x, y, c='b') plt.scatter(x, np.clip(y, -0.5, 0.5), color='red') # In[71]: num = 350 slope = 0.3 x = randn(num) * 50. + 150.0 y = randn(num) * 5 + x * slope plt.scatter(x, y, c='b') # In[72]: # plt.scatter(x[(y < 1) & (y > -1)], y[(y < 1) & (y > -1)], c='r') # np.argsort, np.sort, complicated index slicing dframe = pd.DataFrame({'x': x, 'y': y}) g = sns.jointplot('x', 'y', data=dframe, kind="reg") # ## Grab Python version of ggplot http://ggplot.yhathq.com/ # In[73]: from ggplot import ggplot, aes, geom_line, stat_smooth, geom_dotplot, geom_point # In[74]: ggplot(aes(x='x', y='y'), data=dframe) + geom_point() + stat_smooth(colour='blue', span=0.2) # In[ ]:
mit
CaptainBriot/prosperpy
ltc.py
1
6882
import sys import logging import argparse import decimal import collections import prosperpy import prosperpy.traders LOGGER = logging.getLogger(__name__) def get_candles(granularity, filename='data.json', reverse=False): import json with open(filename, 'r') as data_file: candles = [] raw = json.load(data_file) data = [] aux = [] timestamp = raw[0][0] for item in raw: aux.append(item) if aux[-1][0] > timestamp + granularity: timestamp = timestamp + granularity data.append([aux[0][0], aux[0][1], aux[-1][2], min([i[3] for i in aux]), max([i[4] for i in aux]), aux[0][5]]) aux = [] if reverse: data = reversed(data) for index, item in enumerate(data): kwargs = dict( timestamp=item[0], low=decimal.Decimal(item[1]), high=decimal.Decimal(item[2]), open=decimal.Decimal(item[3]), close=decimal.Decimal(item[4]), volume=decimal.Decimal(item[5])) candle = prosperpy.Candle(**kwargs) try: candle.previous = candles[index - 1] if candle.open.is_nan(): candle.open = candle.previous.close except IndexError: if candle.open.is_nan(): candle.open = candle.close candles.append(candle) return candles def init_logging(options): handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) fmt = '%(asctime)s|%(levelname)s|%(name)s|%(message)s|%(filename)s|%(lineno)s' handler.setFormatter(logging.Formatter(fmt=fmt)) if options.verbosity: level = logging.DEBUG prosperpy.engine.set_debug(True) elif options.quiet: level = logging.ERROR else: level = logging.INFO logging.root.setLevel(level) logging.root.addHandler(handler) def plotme(curves, actions): import matplotlib.pyplot import matplotlib.ticker fig = matplotlib.pyplot.figure() plot = fig.add_subplot(111) for x, y, color in curves: plot.plot(x, y, color=color) formatter = matplotlib.ticker.FormatStrFormatter('$%1.2f') plot.yaxis.set_major_formatter(formatter) for tick in plot.yaxis.get_major_ticks(): tick.label1On = False tick.label2On = True tick.label2.set_color('green') for counter, side, price in actions: bbox = dict(boxstyle="round", fc="0.8") arrowprops = dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=90,rad=10") offset = 64 plot.annotate('{} ({:.2f})'.format(side, price), (counter, price), xytext=(-2 * offset, offset), textcoords='offset points', bbox=bbox, arrowprops=arrowprops) matplotlib.pyplot.show() def the_past(period, granularity, feed, product, reverse): # factor = 365 * (3600 * 24) / (granularity * period) factor = 10 #candles = prosperpy.gdax.api.get_candles(period * factor, options.granularity, product) ltc_candles = get_candles(granularity, filename='ltc-usd.json', reverse=reverse) btc_candles = get_candles(granularity, filename='btc-usd.json', reverse=reverse) feed.candles = collections.deque(iterable=ltc_candles[1:feed.period+1], maxlen=feed.period*factor) ltc_x = [candle.timestamp for candle in ltc_candles[1:feed.period+1]] ltc_y = [candle.close for candle in ltc_candles[1:feed.period + 1]] btc_x = [candle.timestamp for candle in btc_candles[1:feed.period+1]] btc_y = [candle.close * decimal.Decimal('0.01') for candle in btc_candles[1:feed.period+1]] for candle in btc_candles[feed.period+1:]: btc_x.append(candle.timestamp) btc_y.append(candle.close * decimal.Decimal('0.01')) for candle in ltc_candles[feed.period + 1:]: ltc_x.append(candle.timestamp) ltc_y.append(candle.close) plotme([(ltc_x, ltc_y, 'blue'), (btc_x, btc_y, 'orange')], []) def main(): parser = argparse.ArgumentParser() parser.add_argument('--granularity', type=int, dest='granularity', required=True) parser.add_argument('--period', type=int, dest='period', required=True) parser.add_argument('--reverse', action='store_true', dest='reverse', default=False) parser.add_argument('-v', '--verbose', action='count', dest='verbosity', default=0) parser.add_argument('-q', '--quiet', action='store_true', dest='quiet', default=False) options = parser.parse_args() init_logging(options) product = 'BTC-USD' auth = prosperpy.gdax.auth.GDAXAuth( '727677e8492b36cd13b3b9325d20a5b7', 'G/EGnZRm5MG+gxZCgw1CIOlLBQcViib78486kJhsvAYkiyojJTI5EsLTEVc0UGw/W1Ko5xhqwmFOUIQGzigJwQ==', 'hus9I7src8U2') api = prosperpy.gdax.api.GDAXAPI(auth) run(product, options.period, options.granularity, api, options.reverse) return feeds = {} for period in [10, 50, 100, 200, 500, 1000, 2000]: for granularity in [60, 120, 300, 600, 1800, 3600, 7200, 21400, 43200, 86400]: feeds[str(period) + '-' + str(granularity)] = run(product, period, granularity, api, False) for key, feed in feeds.items(): LOGGER.info('-' * 40 + key + '-' * 40) for trader in feed.traders: trader.summary() def run(product, period, granularity, api, reverse): feed = prosperpy.gdax.GDAXFeed(product, period, granularity) #feed.traders.append(prosperpy.traders.ADXTrader(product, feed, api)) #feed.traders.append(prosperpy.traders.RSITrader(product, feed, api)) feed.traders.append(prosperpy.traders.HMATrader(product, feed, api)) #feed.traders.append(prosperpy.traders.SMATrader(product, feed, api)) #feed.traders.append(prosperpy.traders.PercentageTrader(decimal.Decimal('0.8'), product, feed, api)) #feed.traders.append(prosperpy.traders.RegressorTrader(sklearn.ensemble.RandomForestRegressor, product, feed, api)) #feed.traders.append(prosperpy.traders.RegressorTrader(sklearn.ensemble.ExtraTreesRegressor, product, feed, api)) #feed.traders.append(prosperpy.traders.RegressorTrader(sklearn.ensemble.AdaBoostRegressor, product, feed, api)) #feed.traders.append(prosperpy.traders.RegressorTrader(sklearn.ensemble.BaggingRegressor, product, feed, api)) #feed.traders.append(prosperpy.traders.RegressorTrader(sklearn.ensemble.GradientBoostingRegressor, product, feed, api)) feed.traders.append(prosperpy.traders.HODLTrader(product, feed, api)) feed.traders.append(prosperpy.traders.PerfectTrader(product, feed, api)) #real_time(feed) the_past(period, granularity, feed, product, reverse) return feed if __name__ == '__main__': main()
mit
franzpl/sweep
dut_test/dut_test.py
2
1294
#!/usr/bin/env python3 """Software-Test with a known IR. h[k] = dirac[k] + dirac[k-1050] Please note: For Frequency Response is scaling to 2 / len(signal) before FFT invalid """ import sys sys.path.append('..') import matplotlib.pyplot as plt import numpy as np import generation import plotting import calculation import measurement_chain import ir_imitation # Parameters of the measuring system fs = 44100 fstart = 1 fstop = 22050 pad = 7 # Excitation signal excitation = np.zeros(44100) excitation[0] = 1 excitation_zeropadded = generation.zero_padding(excitation, pad, fs) system_response = measurement_chain.convolution(ir_imitation.diracs([0, 1050]))(excitation_zeropadded) h = calculation.deconv_process(excitation, system_response, fs)[:len(excitation)] # Plot impulse response plotting.plot_time(h) plt.xlim(-500, 10000) plt.xticks([0, 1050, 2000, 4000, 6000, 8000, 10000]) plt.savefig('impulse_response.png') plt.close() # Plot frequency response plotting.plot_freq(h, fs, scale='db', title=' ') plt.xscale('log') plt.xlim(1, 23000) plt.savefig('frequency_response.png') plt.close() # Plot phase response plotting.plot_freq(h, fs, mode='phase', title=' ') plt.xscale('log') plt.savefig('phase_response.png') plt.close()
mit
EachenKuang/PythonRepository
MedicineTool/Perplexity.py
1
3242
# -*- encoding: utf-8 -*- """ Author: Eachen Kuang Date: 2017.7.11 Goal: Perplexity 困惑度画图计算 Other: """ import logging from gensim import models from gensim import corpora from gensim.models.coherencemodel import CoherenceModel import numpy as np import os import pandas as pd import matplotlib.pyplot as plt logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) # calculating the log perplexity per word as obtained by gensim code # https://radimrehurek.com/gensim/models/atmodel.html # parameters: pass in trained corpus # return: graph of perplexity per word for varying number of topics # 初始化数据 # 如果已经保存,就可不运行 # data_path_in_folds = "D:\\Kuangyichen\\JavaRepository\\LDAGibbsSampling-master\\data\\LdaOriginalDocs\\" # data_in_folds_filenames = os.listdir(data_path_in_folds) # # data_in_folds_filenames.sort() # texts = [] # # for date_in_file in data_in_folds_filenames: # with open(data_path_in_folds+date_in_file, 'r') as doc: # text = [] # for line in doc: # text.append(line.strip()) # texts.append(text) # # dictionary = corpora.Dictionary(texts) # dictionary.save('./tmp/all_doucment.dict.txt') # corpus = [dictionary.doc2bow(text) for text in texts] # corpora.BleiCorpus.serialize('./tmp/corpus.blei', corpus) # 如果已经有数据,运行以下语句即可 # dictionary = corpora.Dictionary.load('./tmp/all_doucment.dict.txt') # corpus = corpora.BleiCorpus('./tmp/corpus.blei') parameter_list = range(5, 40) grid = {} grid1 = {} corpus = corpora.BleiCorpus("./timewindow_in3/corpus_2008-2009-2010.blei") dictionary = corpora.Dictionary.load("./dictionary/dict.dict") # lda1 = models.LdaModel.load('./timewindow_in3/_2000-2001-2002lda_model') for parameter_value in parameter_list: ldaModel = models.LdaModel(corpus=corpus, id2word=dictionary, alpha='auto', eta='auto', num_topics=parameter_value, iterations=10) ldaModel1 = models.LdaModel(corpus=corpus, id2word=dictionary, num_topics=parameter_value, iterations=10) coherenceModel = CoherenceModel(model=ldaModel, corpus=corpus, dictionary=dictionary, coherence='u_mass') coherenceModel1 = CoherenceModel(model=ldaModel1, corpus=corpus, dictionary=dictionary, coherence='u_mass') grid[parameter_value] = [] coherence = coherenceModel.get_coherence() grid[parameter_value].append(coherence) grid1[parameter_value] = [] coherence1 = coherenceModel1.get_coherence() grid1[parameter_value].append(coherence1) print parameter_value, coherence, coherence1 df = pd.DataFrame(grid) ax = plt.figure(figsize=(5, 3), dpi=300).add_subplot(111) df.iloc[0].transpose().plot(ax=ax, color="#254F09") plt.xlim(parameter_list[0], parameter_list[-1]) plt.ylabel('Perplexity') plt.xlabel('topics') plt.show() df = pd.DataFrame(grid1) ax = plt.figure(figsize=(5, 3), dpi=300).add_subplot(111) df.iloc[0].transpose().plot(ax=ax, color="#254F09") plt.xlim(parameter_list[0], parameter_list[-1]) plt.ylabel('Perplexity') plt.xlabel('topics') plt.show() for topic_num, perplex_tn in grid.iteritems(): print topic_num, perplex_tn for topic_num, perplex_tn in grid1.iteritems(): print topic_num, perplex_tn
apache-2.0
joshloyal/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
69
6473
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. Journal of American Statistical Ass., 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. The distribution of robust distances. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])).astype(np.int) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) lw = 2 plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", lw=lw, color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", lw=lw, color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", lw=lw, color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size // 5 + 1)], err_cov_emp_full.mean(1)[:(x_size // 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size // 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size // 5):(x_size // 2 - 1)], err_cov_emp_full.mean(1)[(x_size // 5):(x_size // 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
FluVigilanciaBR/seasonality
methods/data_filter/sinan_convert2mem.py
1
12750
# coding:utf8 __author__ = 'Marcelo Ferreira da Costa Gomes' import pandas as pd import numpy as np import argparse import logging from .episem import lastepiweek from argparse import RawDescriptionHelpFormatter module_logger = logging.getLogger('update_system.sinan_convert2mem') age_cols = ['Idade desconhecida', '0-4 anos', '5-9 anos', '10-19 anos', '20-29 anos', '30-39 anos', '40-49 anos', '50-59 anos', '60+ anos'] vir_cols = ['FLU_A', 'FLU_B', 'SARS2', 'VSR', 'PARA1', 'PARA2', 'PARA3', 'PARA4', 'ADNO', 'METAP', 'BOCA', 'RINO', 'OTHERS'] lab_cols_in = vir_cols + ['POSITIVE', 'NEGATIVE', 'INCONCLUSIVE', 'TESTING_IGNORED', 'NOTTESTED', 'DELAYED'] lab_cols_out = vir_cols + ['POSITIVE_CASES', 'NEGATIVE', 'INCONCLUSIVE', 'TESTING_IGNORED', 'NOTTESTED', 'DELAYED'] def readtable(fname, sep=','): target_col = ['SG_UF_NOT', 'DT_SIN_PRI_epiyearweek', 'DT_SIN_PRI_epiyear', 'DT_SIN_PRI_epiweek', 'CS_SEXO', 'idade_em_anos'] + lab_cols_in df = pd.read_csv(fname, sep=sep, low_memory=False, encoding='utf-8')[target_col].rename(columns={'CS_SEXO': 'sexo', 'DT_SIN_PRI_epiyearweek': 'epiyearweek', 'DT_SIN_PRI_epiyear': 'epiyear', 'DT_SIN_PRI_epiweek': 'epiweek'}) df['Idade desconhecida'] = pd.isnull(df.idade_em_anos).astype(int) df['< 2 anos'] = (df.idade_em_anos < 2).astype(int) df['2-4 anos'] = ((df.idade_em_anos >= 2) & (df.idade_em_anos < 5)).astype(int) df['0-4 anos'] = (df.idade_em_anos < 5).astype(int) df['5-9 anos'] = ((df.idade_em_anos >= 5) & (df.idade_em_anos < 10)).astype(int) df['10-19 anos'] = ((df.idade_em_anos >= 10) & (df.idade_em_anos < 20)).astype(int) df['20-29 anos'] = ((df.idade_em_anos >= 20) & (df.idade_em_anos < 30)).astype(int) df['30-39 anos'] = ((df.idade_em_anos >= 30) & (df.idade_em_anos < 40)).astype(int) df['40-49 anos'] = ((df.idade_em_anos >= 40) & (df.idade_em_anos < 50)).astype(int) df['50-59 anos'] = ((df.idade_em_anos >= 50) & (df.idade_em_anos < 60)).astype(int) df['60+ anos'] = (df.idade_em_anos >= 60).astype(int) tgt_cols = {'Agentes infecciosos detectados': vir_cols, 'Exames laboratoriais': ['POSITIVE_CASES', 'NEGATIVE', 'INCONCLUSIVE', 'TESTING_IGNORED', 'NOTTESTED', 'DELAYED']} # df['POSITIVE_CASES'] = np.logical_not(df['NOTTESTED'] | df['TESTING_IGNORED'] | df['NEGATIVE'] | # df['DELAYED'] | df['INCONCLUSIVE']).astype(int) df['POSITIVE_CASES'] = (df.POSITIVE == 1).astype(int) df.rename(columns={'SG_UF_NOT': 'UF'}, inplace=True) grp_cols = ['UF', 'epiyearweek', 'epiyear', 'epiweek', '< 2 anos', '2-4 anos'] + age_cols + \ tgt_cols['Agentes infecciosos detectados'] + tgt_cols['Exames laboratoriais'] # Aggregate independent of sex: dftmp = df[grp_cols].groupby(['UF', 'epiyearweek', 'epiyear', 'epiweek'], as_index=False).agg(sum) dftmp['SRAG'] = dftmp[age_cols].apply(sum, axis=1) dftmp['sexo'] = 'Total' # Aggregate separating by sex: grp_cols = ['UF', 'epiyearweek','epiyear', 'epiweek', 'sexo', '< 2 anos', '2-4 anos'] + age_cols + \ tgt_cols['Agentes infecciosos detectados'] + tgt_cols['Exames laboratoriais'] df = df[grp_cols].groupby(['UF', 'epiyearweek', 'epiyear', 'epiweek', 'sexo'], as_index=False).agg(sum) df['SRAG'] = df[age_cols].apply(sum, axis=1) df = df.append(dftmp, ignore_index=True, sort=True) df.UF = df.UF.astype('int64') yearlist = sorted(list(df.epiyear.unique())) module_logger.info('Year list: %s', yearlist) lastweek = df.epiweek[df.epiyear == max(yearlist)].max() uflist = list(df.UF.unique()) sexlist = ['M', 'F', 'I', 'Total'] tmpdict = [] for year in yearlist[:-1]: for week in range(1, (int(lastepiweek(year))+1)): for uf in uflist: tmpdict.extend([{'UF': uf, 'epiyearweek': '%sW%02d' % (year, week), 'epiyear': year, 'epiweek': week, 'sexo': sex} for sex in sexlist]) tmpdict.extend([{'UF': uf, 'epiyearweek': '%sW%02d' % (yearlist[-1], week), 'epiyear': yearlist[-1], 'epiweek': week, 'sexo': sex} for sex in sexlist for week in range(1, (lastweek+1)) for uf in uflist]) dftmp = pd.DataFrame(tmpdict) dffull = pd.merge(dftmp, df, how='left').fillna(0) # Load Federal Units aggregation: dfreg = pd.read_csv('../data/regioesclimaticas.csv', encoding='utf-8') dffull = pd.merge(dffull, dfreg[['Código', 'Região', 'Região oficial']].rename(columns={'Código': 'UF'}), how='left') dffull_reg = dffull.drop(['UF', 'Região oficial'], axis=1).groupby(['Região', 'epiyearweek', 'epiyear', 'epiweek', 'sexo'], as_index=False).sum() dffull_reg_ofi = dffull.drop(['UF', 'Região'], axis=1).groupby(['Região oficial', 'epiyearweek', 'epiyear', 'epiweek', 'sexo'], as_index=False).sum() dfBR = dffull.drop(['UF', 'Região', 'Região oficial'], axis=1).groupby(['epiyearweek', 'epiyear', 'epiweek', 'sexo'], as_index=False).sum() dfBR['Região'] = 'BR' dffull_reg.rename(columns={'Região': 'UF'}, inplace=True) dfBR.rename(columns={'Região': 'UF'}, inplace=True) dffull_reg_ofi.rename(columns={'Região oficial': 'UF'}, inplace=True) dffull_reg = dffull_reg.append(dffull_reg_ofi, ignore_index=True, sort=True) dffull_reg = dffull_reg.append(dfBR, ignore_index=True, sort=True) dffull = dffull.drop(['Região', 'Região oficial'], axis=1).append(dffull_reg, ignore_index=True, sort=True) dffull = dffull[['UF', 'epiyearweek', 'epiyear', 'epiweek', 'sexo', 'SRAG', '< 2 anos', '2-4 anos'] + age_cols + tgt_cols['Agentes infecciosos detectados'] + tgt_cols['Exames laboratoriais']] dffull = dffull.sort_values(by=['UF', 'epiyearweek', 'epiyear', 'epiweek', 'sexo'], axis=0).reset_index().drop('index', axis=1) return(dffull) def uf4mem(dfin=pd.DataFrame()): df = dfin.copy() # Load Population file: dfpop = pd.read_csv('../data/PROJECOES_2013_POPULACAO-simples_v3_agebracket.csv', encoding='utf-8') dfpop.rename(columns={'UF': 'Unidade da Federação'}, inplace=True) dfpop.rename(columns={'Código': 'UF'}, inplace=True) # Calculate incidence: yearlist = sorted(list(df.epiyear.unique())) uflist = list(df.UF.unique()) dfinc = df[~(df.sexo == 'I')].rename(columns={'SRAG': 'Total'}).drop(['Idade desconhecida', '< 2 anos', '2-4 anos'], axis=1) tgt_cols = ['Total'] + age_cols tgt_cols.remove('Idade desconhecida') dfpop.set_index('Ano', inplace=True) # Incidence from lab results: lab_cols = lab_cols_out for uf in uflist: for year in yearlist: for sex in ['M', 'F', 'Total']: tgt_rows = (dfinc.UF == uf) & (dfinc.epiyear == year) & (dfinc.sexo == sex) dfpop_tgt_rows = (dfpop.UF == str(uf)) & (dfpop.Sexo == sex) & (dfpop.index == year) # Cases by age: dfinc.loc[tgt_rows, tgt_cols] = 100000*dfinc.loc[tgt_rows, tgt_cols].\ div(dfpop.loc[dfpop_tgt_rows, tgt_cols].ix[year], axis='columns') # Lab results: dfinc.loc[tgt_rows, lab_cols] = (100000*dfinc.loc[tgt_rows, lab_cols] / dfpop.loc[dfpop_tgt_rows, 'Total'].ix[year]) dfinc.rename(columns={'Total': 'SRAG'}, inplace=True) # Structure data in the format accepted by MEM algorithm: lastweek = df.epiweek[(df.epiyear == max(yearlist)) & (df.epiweek != 53)].max() tmpdict = [{'UF': uf, 'epiweek': week} for week in range(1, 53) for uf in uflist] dftmp = pd.DataFrame(tmpdict) dftmpinc = dftmp.copy() for year in yearlist: lbl = 'SRAG' + str(year) dftmp = pd.merge(dftmp, df[(df.epiyear == year) & (df.sexo == 'Total')][['UF', 'epiweek', 'SRAG']].rename( columns={'SRAG': lbl}), on=['UF', 'epiweek'], how='left') dftmpinc = pd.merge(dftmpinc, dfinc[(dfinc.epiyear == year) & (dfinc.sexo == 'Total')][['UF', 'epiweek', 'SRAG']].rename(columns={'SRAG': lbl}), on=['UF', 'epiweek'], how='left') if year != yearlist[-1]: dftmp[lbl] = dftmp[lbl].fillna(0) dftmpinc[lbl] = dftmpinc[lbl].fillna(0) else: dftmp.loc[dftmp.epiweek <= lastweek, lbl] = dftmp.loc[dftmp.epiweek <= lastweek, lbl].fillna(0) dftmpinc.loc[dftmpinc.epiweek <= lastweek, lbl] = dftmpinc.loc[dftmpinc.epiweek <= lastweek, lbl].fillna(0) df4mem = dftmp.sort_values(by=['UF', 'epiweek'], axis=0).reset_index().drop('index', axis=1) dfinc4mem = dftmpinc.sort_values(by=['UF', 'epiweek'], axis=0).reset_index().drop('index', axis=1) df.UF = df.UF.astype('str') dfinc.UF = dfinc.UF.astype('str') df = df.merge(dfpop[['UF', 'Unidade da Federação']].drop_duplicates(), how='left') dfinc = dfinc.merge(dfpop[['UF', 'Unidade da Federação']].drop_duplicates(), how='left') return df, dfinc, df4mem, dfinc4mem def main(fname, sep=','): # Reads and process data: df = readtable(fname, sep) # Structure data: df, dfinc, df4mem, dfinc4mem = uf4mem(df) # Write population table to be used for thresholds: last_year = int(df.epiyear.max()) # Load population size time series: dfpop = pd.read_csv('../data/PROJECOES_2013_POPULACAO-simples_agebracket.csv', encoding='utf-8') dfpopcurrent = dfpop[dfpop.Ano == last_year] dfpopcurrent.to_csv('../data/populacao_uf_regional_atual.csv', index=False, encoding='utf-8') # Write output to file: fnameout = '.'.join(fname.split('.')[:-1]) + '4mem-incidence.csv' dfinc4mem.to_csv(fnameout, index=False, encoding='utf-8') fnameout = '.'.join(fname.split('.')[:-1]) + '4mem.csv' df4mem.to_csv(fnameout, index=False, encoding='utf-8') fnameout = '.'.join(fname.split('.')[:-1]) + '-weekly-incidence.csv' dfinc['Tipo'] = 'Estado' dfinc.loc[dfinc['UF'].isin(['RegN', 'RegL', 'RegC', 'RegS']) ,'Tipo'] = 'Regional' dfinc.loc[dfinc['UF'].isin(['N', 'S', 'NE', 'SE', 'CO']), 'Tipo'] = 'Região' dfinc.loc[dfinc['UF'] == 'BR' ,'Tipo'] = 'País' dfinc = dfinc.sort_values(by=['UF', 'epiyearweek', 'epiyear', 'epiweek', 'sexo'], axis=0).reset_index().drop('index', axis=1) dfinc.to_csv(fnameout, index=False, encoding='utf-8') fnameout = '.'.join(fname.split('.')[:-1]) + '-weekly.csv' df['Tipo'] = 'Estado' df.loc[df['UF'].isin(['RegN', 'RegL', 'RegC', 'RegS']) ,'Tipo'] = 'Regional' df.loc[df['UF'].isin(['N', 'S', 'NE', 'SE', 'CO']), 'Tipo'] = 'Região' df.loc[df['UF'] == 'BR' ,'Tipo'] = 'País' df = df.sort_values(by=['UF', 'epiyearweek', 'epiyear', 'epiweek', 'sexo'], axis=0).reset_index().drop(['index', '0-4 anos'], axis=1) df.to_csv(fnameout, index=False, encoding='utf-8') if __name__ == '__main__': parser = argparse.ArgumentParser(description="Place each year in a corresponding column, with weeks in [1,52].\n" + "Aggregate data by regional subdivision given in file regioesclimaticas.csv.\n" + "Exemple usage:\n" + "python3 sinan-convert2mem-fmt-regiao.py --path clean_data.csv", formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--path', help='Path to data file') parser.add_argument('--sep', help='Column separator', default=',') args = parser.parse_args() main(args.path, args.sep)
gpl-3.0
liupfskygre/qiime
qiime/quality_scores_plot.py
9
6918
#!/usr/bin/env python # File created Sept 29, 2010 from __future__ import division __author__ = "William Walters" __copyright__ = "Copyright 2011, The QIIME Project" __credits__ = ["William Walters", "Greg Caporaso"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "William Walters" __email__ = "[email protected]" from matplotlib import use use('Agg', warn=False) from skbio.parse.sequences import parse_fasta from numpy import arange, std, average from pylab import plot, savefig, xlabel, ylabel, text, \ hist, figure, legend, title, show, xlim, ylim, xticks, yticks,\ scatter, subplot from matplotlib.font_manager import fontManager, FontProperties from qiime.util import gzip_open from qiime.parse import parse_qual_score def bin_qual_scores(qual_scores): """ Bins qual score according to nucleotide position qual_scores: Dict of label: numpy array of base scores """ qual_bins = [] qual_lens = [] for l in qual_scores.values(): qual_lens.append(len(l)) max_seq_size = max(qual_lens) for base_position in range(max_seq_size): qual_bins.append([]) for scores in qual_scores.values(): # Add score if exists in base position, otherwise skip try: qual_bins[base_position].append(scores[base_position]) except IndexError: continue return qual_bins def get_qual_stats(qual_bins, score_min): """ Generates bins of averages, std devs, total NT from quality bins""" ave_bins = [] std_dev_bins = [] total_bases_bins = [] found_first_poor_qual_pos = False suggested_trunc_pos = None for base_position in qual_bins: total_bases_bins.append(len(base_position)) std_dev_bins.append(std(base_position)) ave_bins.append(average(base_position)) if not found_first_poor_qual_pos: if average(base_position) < score_min: suggested_trunc_pos = qual_bins.index(base_position) found_first_poor_qual_pos = True return ave_bins, std_dev_bins, total_bases_bins, suggested_trunc_pos def plot_qual_report(ave_bins, std_dev_bins, total_bases_bins, score_min, output_dir): """ Plots, saves graph showing quality score averages, stddev. Additionally, the total nucleotide count for each position is shown on a second subplot ave_bins: list with average quality score for each base position std_dev_bins: list with standard deviation for each base position total_bases_bins: list with total counts of bases for each position score_min: lowest value that a given base call can be and still be acceptable. Used to generate a dotted line on the graph for easy assay of the poor scoring positions. output_dir: output directory """ t = arange(0, len(ave_bins), 1) std_dev_plus = [] std_dev_minus = [] for n in range(len(ave_bins)): std_dev_plus.append(ave_bins[n] + std_dev_bins[n]) std_dev_minus.append(ave_bins[n] - std_dev_bins[n]) figure_num = 0 f = figure(figure_num, figsize=(8, 10)) figure_title = "Quality Scores Report" f.text(.5, .93, figure_title, horizontalalignment='center', size="large") subplot(2, 1, 1) plot(t, ave_bins, linewidth=2.0, color="black") plot(t, std_dev_plus, linewidth=0.5, color="red") dashed_line = [score_min] * len(ave_bins) l, = plot(dashed_line, '--', color='gray') plot(t, std_dev_minus, linewidth=0.5, color="red") legend( ('Quality Score Average', 'Std Dev', 'Score Threshold'), loc='lower left') xlabel("Nucleotide Position") ylabel("Quality Score") subplot(2, 1, 2) plot(t, total_bases_bins, linewidth=2.0, color="blue") xlabel("Nucleotide Position") ylabel("Nucleotide Counts") outfile_name = output_dir + "/quality_scores_plot.pdf" savefig(outfile_name) def write_qual_report(ave_bins, std_dev_bins, total_bases_bins, output_dir, suggested_trunc_pos): """ Writes data in bins to output text file ave_bins: list with average quality score for each base position std_dev_bins: list with standard deviation for each base position total_bases_bins: list with total counts of bases for each position output_dir: output directory suggested_trunc_pos: Position where average quality score dropped below the score minimum (25 by default) """ outfile_name = output_dir + "/quality_bins.txt" outfile = open(outfile_name, "w") outfile.write("# Suggested nucleotide truncation position (None if " + "quality score average did not drop below the score minimum threshold)" + ": %s\n" % suggested_trunc_pos) outfile.write("# Average quality score bins\n") outfile.write(",".join(str("%2.3f" % ave) for ave in ave_bins) + "\n") outfile.write("# Standard deviation bins\n") outfile.write(",".join(str("%2.3f" % std) for std in std_dev_bins) + "\n") outfile.write("# Total bases per nucleotide position bins\n") outfile.write(",".join(str("%d" % total_bases) for total_bases in total_bases_bins)) def generate_histogram(qual_fp, output_dir, score_min=25, verbose=True, qual_parser=parse_qual_score): """ Main program function for generating quality score histogram qual_fp: quality score filepath output_dir: output directory score_min: minimum score to be considered a reliable base call, used to generate dotted line on histogram for easy visualization of poor quality scores. qual_parser : function to apply to extract quality scores """ if qual_fp.endswith('.gz'): qual_lines = gzip_open(qual_fp) else: qual_lines = open(qual_fp, "U") qual_scores = qual_parser(qual_lines) # Sort bins according to base position qual_bins = bin_qual_scores(qual_scores) # Get average, std dev, and total nucleotide counts for each base position ave_bins, std_dev_bins, total_bases_bins, suggested_trunc_pos =\ get_qual_stats(qual_bins, score_min) plot_qual_report(ave_bins, std_dev_bins, total_bases_bins, score_min, output_dir) # Save values to output text file write_qual_report(ave_bins, std_dev_bins, total_bases_bins, output_dir, suggested_trunc_pos) if verbose: print "Suggested nucleotide truncation position (None if quality " +\ "score average did not fall below the minimum score parameter): %s\n" %\ suggested_trunc_pos
gpl-2.0
alvarofierroclavero/scikit-learn
sklearn/ensemble/__init__.py
217
1307
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from .voting_classifier import VotingClassifier from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
jereze/scikit-learn
sklearn/cross_decomposition/pls_.py
187
28507
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <[email protected]> # License: BSD 3 clause from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: X_pinv = linalg.pinv(X) # compute once pinv(X) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv(Y) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\ = _center_scale_xy(X, Y, self.scale) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv(np.dot(self.x_loadings_.T, self.x_weights_))) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv(np.dot(self.y_loadings_.T, self.y_weights_))) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\ _center_scale_xy(X, Y, self.scale) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
simon-pepin/scikit-learn
examples/mixture/plot_gmm_classifier.py
250
3918
""" ================== GMM classification ================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ print(__doc__) # Author: Ron Weiss <[email protected]>, Gael Varoquaux # License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from sklearn import datasets from sklearn.cross_validation import StratifiedKFold from sklearn.externals.six.moves import xrange from sklearn.mixture import GMM def make_ellipses(gmm, ax): for n, color in enumerate('rgb'): v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v *= 9 ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(iris.target, n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf)) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. classifiers = dict((covar_type, GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)) for covar_type in ['spherical', 'diag', 'tied', 'full']) n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)]) # Train the other parameters using the EM algorithm. classifier.fit(X_train) h = plt.subplot(2, n_classifiers / 2, index + 1) make_ellipses(classifier, h) for n, color in enumerate('rgb'): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], 0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate('rgb'): data = X_test[y_test == n] plt.plot(data[:, 0], data[:, 1], 'x', color=color) y_train_pred = classifier.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = classifier.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
brodoll/sms-tools
lectures/03-Fourier-properties/plots-code/symmetry-real-even.py
26
1150
import matplotlib.pyplot as plt import numpy as np import sys import math from scipy.signal import triang from scipy.fftpack import fft, fftshift M = 127 N = 128 hM1 = int(math.floor((M+1)/2)) hM2 = int(math.floor(M/2)) x = triang(M) fftbuffer = np.zeros(N) fftbuffer[:hM1] = x[hM2:] fftbuffer[N-hM2:] = x[:hM2] X = fftshift(fft(fftbuffer)) mX = abs(X) pX = np.unwrap(np.angle(X)) plt.figure(1, figsize=(9.5, 4)) plt.subplot(311) plt.title('x[n]') plt.plot(np.arange(-hM2, hM1, 1.0), x, 'b', lw=1.5) plt.axis([-hM2, hM1, 0, 1]) plt.subplot(323) plt.title('real(X)') plt.plot(np.arange(-N/2, N/2, 1.0), np.real(X), 'r', lw=1.5) plt.axis([-N/2, N/2, min(np.real(X)), max(np.real(X))]) plt.subplot(324) plt.title('im(X)') plt.plot(np.arange(-N/2, N/2, 1.0), np.imag(X), 'c', lw=1.5) plt.axis([-N/2, N/2, -1, 1]) plt.subplot(325) plt.title('abs(X)') plt.plot(np.arange(-N/2, N/2, 1.0), mX, 'r', lw=1.5) plt.axis([-N/2,N/2,min(mX),max(mX)]) plt.subplot(326) plt.title('angle(X)') plt.plot(np.arange(-N/2, N/2, 1.0), pX, 'c', lw=1.5) plt.axis([-N/2, N/2, -1, 1]) plt.tight_layout() plt.savefig('symmetry-real-even.png') plt.show()
agpl-3.0
yunfeilu/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
barentsen/dave
lpp/calcLPPoctave.py
1
2160
# -*- coding: utf-8 -*- """ Created on Mon Oct 5 21:03:09 2015 @author: sthomp """ import numpy as np import matplotlib.pyplot as plt from oct2py import Oct2Py import os #import time as timer #t0=timer.time() #mapfile='/home/sthomp/DAVE/origLPP/maps/mapQ1Q17DR24-DVMed6084.mat' def calcLPPone(time,flux,mapFile,period,duration,phase): """ Calculate the LPP transit metric given a time, flux (detrended) inputs ---------- time : Time array in days array period : in days float duration : in hours float phase : in days .float This runs octave code. outputs ------- Tlpp : LPP transit metric value binnedFlux : The sorted, folded, binned flux values input to LPP """ octave = Oct2Py() octave.addpath('/home/sthomp/DAVE/dave/lpp/octave/transitLike') octave.addpath('/home/sthomp/DAVE/dave/lpp/octave/createLightCurves/') octave.addpath('/home/sthomp/DAVE/dave/lpp/octave/drtoolbox/') octave.addpath('/home/sthomp/DAVE/dave/lpp/octave/drtoolbox/techniques/') #octave.addpath('/home/sthomp/DAVE/dave/lpp/octave/drtoolbox') Tlpp, Y, binnedFlux = octave.calcLPPMetricLCarray(time,flux,period,duration,phase,mapFile) return Tlpp , binnedFlux def fergalVersion(time, flux, mapFile, period, duration, phase): path = getLppDir() #Create a new instance for each time we run LPP. The #oct2py.octave is not threadsafe and will crash when run in #parallel. Oct2Py() won't with Oct2Py() as octave: octave.addpath(path) octave.addpath(path + "/octave/transitLike") octave.addpath(path + "/octave/createLightCurves/") octave.addpath(path + "/octave/drtoolbox/") octave.addpath(path + "/octave/drtoolbox/techniques") Tlpp, Y, binnedFlux = octave.calcLPPMetricLCarray(\ time,flux,period,duration,phase,mapFile) return Tlpp.copy(), Y.copy(), binnedFlux.copy() def getLppDir(): """Get the path where LPP stores its .m files""" pathSep = "/" path = os.path.realpath(__file__) path = pathSep.join(path.split(pathSep)[:-1]) return path
mit
openhealthalgorithms/openhealthalgorithms
OHA/SgFramingham.py
1
9372
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import os import pandas as pd from OHA.Defaults import Defaults from OHA.helpers.converters.CholesterolConverter import CholesterolConverter from OHA.helpers.formatters.ParamFormatter import ParamFormatter from OHA.param_builders.framingham_param_builder import FraminghamParamsBuilder __author__ = 'fredhersch' __email__ = '[email protected]' class SgFramingham(object): """ Modified FRE based on the SG MoH CVD Guidelines """ __default_cholesterol_unit = 'mmol/l' # co-efficients used in the calculation. See relevant paper @staticmethod def __get_co_efficient(key, gender): return Defaults.co_efficients[key][gender] # TODO: needs refactoring @staticmethod def __find_age_index(age, age_brackets): age_index = '20-34' for age_range in age_brackets: min, max = age_range.split('-') if int(min) <= age <= int(max): age_index = age_range return age_index @staticmethod def age_modifier_fre_points(age, gender): age_brackets = ['20-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79'] age_points = { "m": [-9, -4, 0, 3, 6, 8, 10, 11, 12, 13], "f": [-7, -3, 0, 3, 6, 8, 10, 12, 14, 16] } value = None bracket = SgFramingham.__find_age_index(age, age_brackets) index = age_brackets.index(bracket) gender = gender.lower() if index >= 0: value = age_points[gender][index] return value @staticmethod def calculate_smoking_points(age, gender): age_brackets = ['20-39', '40-49', '50-59', '60-69', '70-79'] smoking_points = { "m": [8, 5, 3, 1, 0], "f": [9, 7, 4, 2, 1] } # Based on the age, look up the index # For the given index in the points array return the value index = 0 value = None gender = gender.lower() bracket = SgFramingham.__find_age_index(age, age_brackets) index = age_brackets.index(bracket) # should check we have a valid index if index >= 0: value = smoking_points[gender.lower()][index] return value @staticmethod def calculate_cholesterol_points(age, gender, total_cholesterol, hdl_cholesterol): age_brackets = ['20-39', '40-49', '50-59', '60-69', '70-79'] if gender.lower() == 'm': chol_points = np.array( [[0, 0, 0, 0, 0], [4, 3, 2, 1, 0], [7, 5, 3, 1, 0], [9, 6, 4, 2, 1], [11, 8, 5, 3, 1]]) elif gender.lower() == 'f': chol_points = np.array( [[0, 0, 0, 0, 0], [4, 3, 2, 1, 1], [8, 6, 4, 2, 1], [11, 8, 5, 3, 2], [13, 10, 7, 4, 2]]) row_names = ['<4.1', '4.1-5.1', '5.2-6.1', '6.2-7.2', '>=7.3'] tchol_points_df = pd.DataFrame(chol_points, index=row_names, columns=age_brackets) # first check the cholesterol range and get the row_index if total_cholesterol < 4.1: chol_range = '<4.1' elif total_cholesterol <= 5.1: chol_range = '4.1-5.1' elif total_cholesterol <= 6.1: chol_range = '5.2-6.1' elif total_cholesterol <= 7.2: chol_range = '6.2-7.2' elif total_cholesterol >= 7.3: chol_range = '>=7.3' else: chol_range = '>=7.3' # then return the column index based on age range age_index = SgFramingham.__find_age_index(age, age_brackets) # look up the value from the df # looking up with keys cholesterol_points = tchol_points_df[age_index][chol_range] if hdl_cholesterol < 1.0: hdl_points = +2 elif hdl_cholesterol <= 1.2: hdl_points = 1 elif hdl_cholesterol <= 1.5: hdl_points = 0 elif hdl_cholesterol >= 1.6: hdl_points = -1 cholesterol_points = cholesterol_points + hdl_points return cholesterol_points @staticmethod def calculate_bp_points(gender, sbp, sbp_rx): row_names = ['<120', '120-129', '130-139', '140-159', '>=160'] col_names = ['treated', 'untreated'] if gender == 'm': sbp_points = np.array([[0, 0], [0, 1], [1, 2], [1, 2], [2, 3]]) elif gender == 'f': sbp_points = np.array([[0, 0], [1, 3], [2, 4], [3, 5], [4, 6]]) else: sbp_points = np.array([[0, 0], [1, 3], [2, 4], [3, 5], [4, 6]]) bp_df = pd.DataFrame(sbp_points, index=row_names, columns=col_names) if sbp < 120: sbp_index = '<120' elif sbp < 130: sbp_index = '120-129' elif sbp < 140: sbp_index = '130-139' elif sbp < 160: sbp_index = '140-159' elif sbp >= 160: sbp_index = '>=160' else: sbp_index = '>=160' if sbp_rx: col_index = 'treated' else: col_index = 'untreated' bp_points = bp_df[col_index][sbp_index] return bp_points @staticmethod def calculate_fre_score(params): # Unpack the parameters gender = params.get('gender') age = params.get('age') ethnicity = params.get('ethnicity') total_cholesterol = CholesterolConverter(params.get('total_cholesterol')) \ .from_unit(params.get('cholesterol_unit')) \ .to_unit(SgFramingham.__default_cholesterol_unit) \ .converted hdl_cholesterol = CholesterolConverter(params.get('hdl_cholesterol')) \ .from_unit(params.get('cholesterol_unit')) \ .to_unit(SgFramingham.__default_cholesterol_unit) \ .converted on_bp_medication = params.get('bp_medication') systolic = params.get('systolic') is_smoker = params.get('is_smoker') # has_diabetes = params.get('has_diabetes') age_points = SgFramingham().age_modifier_fre_points(age, gender) if is_smoker: smoking_points = SgFramingham().calculate_smoking_points(age, gender) else: smoking_points = 0 cholesterol_points = SgFramingham().calculate_cholesterol_points( age, gender, total_cholesterol, hdl_cholesterol, ) sbp_points = SgFramingham().calculate_bp_points(gender, systolic, on_bp_medication) fre_points = int(age_points) + int(smoking_points) + int(cholesterol_points) + int(sbp_points) # convert the points to a score based col_names = ['chinese', 'malay', 'indian'] if gender == 'm': filename = ('%s/sg_risk/%s' % ( os.path.dirname(os.path.realpath(__file__)), 'sg_10year_risk_male.csv', )) else: filename = ('%s/sg_risk/%s' % ( os.path.dirname(os.path.realpath(__file__)), 'sg_10year_risk_female.csv', )) fre_pd = pd.read_csv(filename, header=0, index_col=0) fre_risk = fre_pd[col_names] # look up the risk score based on the dataframe fre_risk_score = fre_risk[ethnicity][fre_points] return fre_risk_score @staticmethod def cvd_risk_level(cvd_risk): if cvd_risk < 10: return 'Low' elif cvd_risk < 15: return 'Medium' elif cvd_risk >= 15: return 'High' @staticmethod def calculate(params): """ Parameters ---------- params: dict Dictionary includes 'gender', 'ethnicity', age', 'total_cholesterol', 'hdl_cholesterol', 'systolic', 'on_bp_medication', 'is_smoker', 'has_diabetes'. Example ------- >>> params = { ... 'gender': 'M', ... 'age': 40, ... 'ethnicity': 'malay', ... 'total_cholesterol': 180, ... 'cholesterol_unit': 'mg/dl', ... 'hdl_cholesterol': 45, ... 'systolic': 125, ... 'on_bp_medication': False, ... 'is_smoker': False, ... 'has_diabetes': False, ... } >>> SgFramingham().calculate(params) Returns ------- dict Framingham risk score and heart age and risk_range """ params = ParamFormatter(params).formatted print(params) cvd_risk = int(SgFramingham().calculate_fre_score(params)) heart_age = None # heart_age = SgFramingham.__calculate_heart_age(cvd_risk, params['gender']) risk_range = SgFramingham().cvd_risk_level(cvd_risk) return { 'raw_risk': float('%.4f' % (round(cvd_risk, 4))), 'risk': cvd_risk, 'heart_age': heart_age, 'risk_range': risk_range, } @staticmethod def get_sample_params(): return FraminghamParamsBuilder() \ .gender('F') \ .age(40) \ .ethnicity('malay') \ .t_chol(170, 'mg/dl') \ .hdl_chol(45, 'mg/dl') \ .sbp(125) \ .build()
apache-2.0
anirudhjayaraman/scikit-learn
sklearn/linear_model/tests/test_omp.py
272
7752
# Author: Vlad Niculae # Licence: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
navrasio/mxnet
example/ssd/dataset/pycocotools/coco.py
21
18778
__author__ = 'tylin' __version__ = '2.0' # Interface for accessing the Microsoft COCO dataset. # Microsoft COCO is a large image dataset designed for object detection, # segmentation, and caption generation. pycocotools is a Python API that # assists in loading, parsing and visualizing the annotations in COCO. # Please visit http://mscoco.org/ for more information on COCO, including # for the data, paper, and tutorials. The exact format of the annotations # is also described on the COCO website. For example usage of the pycocotools # please see pycocotools_demo.ipynb. In addition to this API, please download both # the COCO images and annotations in order to run the demo. # An alternative to using the API is to load the annotations directly # into Python dictionary # Using the API provides additional utility functions. Note that this API # supports both *instance* and *caption* annotations. In the case of # captions not all functions are defined (e.g. categories are undefined). # The following API functions are defined: # COCO - COCO api class that loads COCO annotation file and prepare data structures. # decodeMask - Decode binary mask M encoded via run-length encoding. # encodeMask - Encode binary mask M using run-length encoding. # getAnnIds - Get ann ids that satisfy given filter conditions. # getCatIds - Get cat ids that satisfy given filter conditions. # getImgIds - Get img ids that satisfy given filter conditions. # loadAnns - Load anns with the specified ids. # loadCats - Load cats with the specified ids. # loadImgs - Load imgs with the specified ids. # annToMask - Convert segmentation in an annotation to binary mask. # showAnns - Display the specified annotations. # loadRes - Load algorithm results and create API for accessing them. # download - Download COCO images from mscoco.org server. # Throughout the API "ann"=annotation, "cat"=category, and "img"=image. # Help on each functions can be accessed by: "help COCO>function". # See also COCO>decodeMask, # COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, # COCO>getImgIds, COCO>loadAnns, COCO>loadCats, # COCO>loadImgs, COCO>annToMask, COCO>showAnns # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2014. # Licensed under the Simplified BSD License [see bsd.txt] import json import time import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon import numpy as np import copy import itertools # from . import mask as maskUtils import os from collections import defaultdict import sys PYTHON_VERSION = sys.version_info[0] if PYTHON_VERSION == 2: from urllib import urlretrieve elif PYTHON_VERSION == 3: from urllib.request import urlretrieve class COCO: def __init__(self, annotation_file=None): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ # load dataset self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) if not annotation_file == None: print('loading annotations into memory...') tic = time.time() dataset = json.load(open(annotation_file, 'r')) assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) print('Done (t={:0.2f}s)'.format(time.time()- tic)) self.dataset = dataset self.createIndex() def createIndex(self): # create index print('creating index...') anns, cats, imgs = {}, {}, {} imgToAnns,catToImgs = defaultdict(list),defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats def info(self): """ Print information about the annotation file. :return: """ for key, value in self.dataset['info'].items(): print('{}: {}'.format(key, value)) def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): """ Get ann ids that satisfy given filter conditions. default skips that filter :param imgIds (int array) : get anns for given imgs catIds (int array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) iscrowd (boolean) : get anns for given crowd label (False or True) :return: ids (int array) : integer array of ann ids """ imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == len(areaRng) == 0: anns = self.dataset['annotations'] else: if not len(imgIds) == 0: lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] anns = list(itertools.chain.from_iterable(lists)) else: anns = self.dataset['annotations'] anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] if not iscrowd == None: ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] else: ids = [ann['id'] for ann in anns] return ids def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if type(catNms) == list else [catNms] supNms = supNms if type(supNms) == list else [supNms] catIds = catIds if type(catIds) == list else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids def getImgIds(self, imgIds=[], catIds=[]): ''' Get img ids that satisfy given filter conditions. :param imgIds (int array) : get imgs for given ids :param catIds (int array) : get imgs with all given cats :return: ids (int array) : integer array of img ids ''' imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == 0: ids = self.imgs.keys() else: ids = set(imgIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToImgs[catId]) else: ids &= set(self.catToImgs[catId]) return list(ids) def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ if type(ids) == list: return [self.anns[id] for id in ids] elif type(ids) == int: return [self.anns[ids]] def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ if type(ids) == list: return [self.cats[id] for id in ids] elif type(ids) == int: return [self.cats[ids]] def loadImgs(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects """ if type(ids) == list: return [self.imgs[id] for id in ids] elif type(ids) == int: return [self.imgs[ids]] def showAnns(self, anns): """ Display the specified annotations. :param anns (array of object): annotations to display :return: None """ if len(anns) == 0: return 0 if 'segmentation' in anns[0] or 'keypoints' in anns[0]: datasetType = 'instances' elif 'caption' in anns[0]: datasetType = 'captions' else: raise Exception('datasetType not supported') if datasetType == 'instances': ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in anns: c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] if 'segmentation' in ann: if type(ann['segmentation']) == list: # polygon for seg in ann['segmentation']: poly = np.array(seg).reshape((int(len(seg)/2), 2)) polygons.append(Polygon(poly)) color.append(c) else: # mask t = self.imgs[ann['image_id']] if type(ann['segmentation']['counts']) == list: # rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width']) raise NotImplementedError("maskUtils disabled!") else: rle = [ann['segmentation']] # m = maskUtils.decode(rle) raise NotImplementedError("maskUtils disabled!") img = np.ones( (m.shape[0], m.shape[1], 3) ) if ann['iscrowd'] == 1: color_mask = np.array([2.0,166.0,101.0])/255 if ann['iscrowd'] == 0: color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:,:,i] = color_mask[i] ax.imshow(np.dstack( (img, m*0.5) )) if 'keypoints' in ann and type(ann['keypoints']) == list: # turn skeleton into zero-based index sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 kp = np.array(ann['keypoints']) x = kp[0::3] y = kp[1::3] v = kp[2::3] for sk in sks: if np.all(v[sk]>0): plt.plot(x[sk],y[sk], linewidth=3, color=c) plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) ax.add_collection(p) p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) ax.add_collection(p) elif datasetType == 'captions': for ann in anns: print(ann['caption']) def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] print('Loading and preparing results...') tic = time.time() if type(resFile) == str or type(resFile) == unicode: anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id+1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2]*bb[3] ann['id'] = id+1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results # ann['area'] = maskUtils.area(ann['segmentation']) raise NotImplementedError("maskUtils disabled!") if not 'bbox' in ann: # ann['bbox'] = maskUtils.toBbox(ann['segmentation']) raise NotImplementedError("maskUtils disabled!") ann['id'] = id+1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1-x0)*(y1-y0) ann['id'] = id + 1 ann['bbox'] = [x0,y0,x1-x0,y1-y0] print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset['annotations'] = anns res.createIndex() return res def download(self, tarDir = None, imgIds = [] ): ''' Download COCO images from mscoco.org server. :param tarDir (str): COCO results directory name imgIds (list): images to be downloaded :return: ''' if tarDir is None: print('Please specify target directory') return -1 if len(imgIds) == 0: imgs = self.imgs.values() else: imgs = self.loadImgs(imgIds) N = len(imgs) if not os.path.exists(tarDir): os.makedirs(tarDir) for i, img in enumerate(imgs): tic = time.time() fname = os.path.join(tarDir, img['file_name']) if not os.path.exists(fname): urlretrieve(img['coco_url'], fname) print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic)) def loadNumpyAnnotations(self, data): """ Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list) """ print('Converting ndarray to lists...') assert(type(data) == np.ndarray) print(data.shape) assert(data.shape[1] == 7) N = data.shape[0] ann = [] for i in range(N): if i % 1000000 == 0: print('{}/{}'.format(i,N)) ann += [{ 'image_id' : int(data[i, 0]), 'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], 'score' : data[i, 5], 'category_id': int(data[i, 6]), }] return ann def annToRLE(self, ann): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ t = self.imgs[ann['image_id']] h, w = t['height'], t['width'] segm = ann['segmentation'] if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code # rles = maskUtils.frPyObjects(segm, h, w) # rle = maskUtils.merge(rles) raise NotImplementedError("maskUtils disabled!") elif type(segm['counts']) == list: # uncompressed RLE # rle = maskUtils.frPyObjects(segm, h, w) raise NotImplementedError("maskUtils disabled!") else: # rle rle = ann['segmentation'] return rle def annToMask(self, ann): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann) # m = maskUtils.decode(rle) raise NotImplementedError("maskUtils disabled!") return m
apache-2.0
shanqing-cai/MRI_analysis
gen_bips_aparc12_time_series.py
1
16144
#!/usr/bin/python import os import sys import glob import pickle import argparse import numpy as np import scipy.stats as stats from subprocess import Popen, PIPE from scai_utils import read_ctab #import matplotlib.pyplot as plt DATA_dir = '/users/cais/STUT/DATA' FSDATA_dir = '/users/cais/STUT/FSDATA' ANALYSIS_DIR = '/users/cais/STUT/analysis' bips_resting_dir = '/users/cais/STUT/analysis' bips_resting_dir_2 = "/users/cais/STUT/analysis/resting_bips_2" #ASAP_TABLE = '/software/atlas/ASAP_labels.txt' APARC12_TABLE = '/users/cais/STUT/slFRS17.ctab' ASAP_SC_TABLE = '/software/atlas/ASAP_subcortical_labels.txt' HEMIS = ['lh', 'rh'] def saydo(cmd): print('\n%s\n'%cmd) os.system(cmd) def get_roi_ids(asap_table, sc_table): #=== Cortical ROIs ===# tablef = open(asap_table, 'r') txt = tablef.read() tablef.close() txt = txt.split('\n') t_rois = [] t_ids = [] for t in txt: if len(t) == 0: continue tt = t.split(' ') while tt.count('') > 0: tt.remove('') if len(tt) == 0: continue if tt[1] == 'None' or tt[1] == 'White' or tt[1] == 'Gray' \ or tt[1] == 'CN' or tt[1].startswith('None') \ or tt[1] == 'Unknown': continue t_rois.append(tt[1]) t_ids.append(tt[0]) s_rois = t_rois s_ids = t_ids b_rois = [] b_ids = [] #=== Subcortical ROIs ===# tablef = open(sc_table, 'r') txt = tablef.read() tablef.close() txt = txt.split('\n') t_rois = [] t_ids = [] for t in txt: if len(t) == 0: continue t = t.replace('\t', ' ') tt = t.split(' ') while tt.count('') > 0: tt.remove('') if len(tt) == 0: continue if tt[1] == 'Unknown' or tt[1].count("Vent") == 1 \ or tt[1].count("White-Matter") == 1 \ or tt[1] == "Brain-Stem" \ or tt[1].count("Accumbens") == 1: continue if tt[1].count("Left-") == 1: b_rois.append(tt[1].replace('Left-', 'lh_')) elif tt[1].count("Right-") == 1: b_rois.append(tt[1].replace('Right-', 'rh_')) b_ids.append(int(tt[0])) return (s_rois, s_ids, b_rois, b_ids) if __name__ == '__main__': ''' if len(sys.argv) < 3: print('Usage: gen_bips_aparc12_time_series.py sID imgMode [opts]') print(' imgMode = {fullspectrum | z_no_outliers_bandpassed}') print(' opts = {-altaparc}') print(' -altaparc: specify an alternative aparc file, other than DATA/aparc12.nii.gz') sys.exit(0) ''' parser = argparse.ArgumentParser(description= "Generate resting-state fMRI ROI time series based on the aparc12 parcellation") parser.add_argument("sID", type=str, help="Subject ID") parser.add_argument("imgMode", type=str, help="Image mode: {fullspectrum, z_no_outliers_bandpassed, z_no_outliers_bandpassed2, bpnrm, bpnrm2, bp2}") parser.add_argument("--altaparc", dest="altaparc", default="", \ help="Alternative aparc12 file name") parser.add_argument("--cuthead", dest="cuthead", default="", \ help="Remove the first specified number of runs") parser.add_argument("--rebinarize", dest="rebinarize", action="store_true",\ help="Force re-generation of ROI masks with mri_binarize") if len(sys.argv) == 1: parser.print_help() sys.exit(0) args = parser.parse_args() sID = args.sID imgMode = args.imgMode altaparc = args.altaparc cuthead = args.cuthead rebinarize = args.rebinarize if len(cuthead) == 0: cuthead = 0 else: cuthead = int(cuthead) if cuthead < 0: raise ValueError, "cuthead must be a positive integer." #sID = sys.argv[1] #imgMode = sys.argv[2] # ctabfn = os.path.join(FSDATA_dir, sID, 'label', 'aparc.annot.ctab') ctabfn = APARC12_TABLE ''' [ids, rois] = read_ctab(ctabfn) sys.exit(0) # Expand the cortical rois into both hemispheres c_rois = [] c_ids = [] for (i0, hemi) in enumerate(HEMIS): for (i1, roi) in enumerate(rois): c_rois.append('%s_%s'%(hemi, roi)) c_ids.append(1000 + 1000 * i0 + ids[i1]) ''' #hemi = sys.argv[2] print('sID = %s\n'%sID) #print('hemi = %s'%hemi) print("altaparc = %s\n"%altaparc) if len(altaparc) == 0: aparc_fn = os.path.join(DATA_dir, sID, 'aparc12.nii.gz') else: aparc_fn = altaparc print("INFO: Using altaparc = %s"%aparc_fn) if not os.path.isfile(aparc_fn): raise IOError, 'aparc file not found: %s'%aparc_fn print('aparc_fn = %s'%aparc_fn) if imgMode == 'z_no_outliers_bandpassed': resting_4d_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'output', 'zscored', 'fwhm_5.0', \ '%s_r00_z_no_outliers_bandpassed.nii.gz'%sID) elif imgMode == "z_no_outliers_bandpassed2": bips_resting_dir = bips_resting_dir_2 resting_4d_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'output', 'zscored', 'fwhm_0.0', \ '%s_r00_z_no_outliers_bandpassed.nii.gz'%sID) elif imgMode == 'fullspectrum': resting_4d_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'output', 'fullspectrum', 'fwhm_5.0', \ '%s_r00_fullspectrum.nii'%sID) elif imgMode == "bpnrm": resting_4d_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'output', 'bandpassed', \ 'fwhm_0.0', "%s_r00_bandpassed.nii"%(sID)) elif imgMode == "bpnrm2": bips_resting_dir = bips_resting_dir_2 resting_4d_fn = os.path.join(bips_resting_dir, sID, \ "preproc", "output", "bandpassed", \ "fwhm_0.0", "%s_r00_bandpassed.nii.gz"%(sID)) elif imgMode == "bp2": bips_resting_dir = bips_resting_dir_2 resting_4d_fn = os.path.join(bips_resting_dir, sID, \ "preproc", "output", "bandpassed", \ "fwhm_0.0", "%s_r00_bandpassed.nii.gz"%(sID)) else: raise ValueError, 'Invalid imgMode: %s'%imgMode if not os.path.isfile(resting_4d_fn): raise IOError, '4D resting func file not found: %s'%resting_4d_fn print('resting_4d_fn = %s'%resting_4d_fn) if imgMode.endswith('2'): resting_mean_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'mean', '%s_mean.nii.gz'%sID) else: resting_mean_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'mean', '%s_mean.nii'%sID) if not os.path.isfile(resting_mean_fn): raise IOError, 'mean resting func file not found: %s'%resting_mean_fn print('resting_mean_fn = %s'%resting_mean_fn) bbreg_fsl_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'bbreg', '%s_register.mat'%sID) if not os.path.isfile(bbreg_fsl_fn): raise IOError, 'FSL-format bbreg file not found: %s'%bbreg_fsl_fn print('bbreg_fsl_fn = %s'%bbreg_fsl_fn) bbreg_inv_fsl_fn = os.path.join(bips_resting_dir, sID, \ 'preproc', 'bbreg', '%s_register_struct2func.mat'%sID) inv_xfm_cmd = 'convert_xfm -omat %s -inverse %s'%(bbreg_inv_fsl_fn, bbreg_fsl_fn) saydo(inv_xfm_cmd) #sys.exit(0) # Transform the aparc file to the resting-func space tmp_dir = os.path.join(ANALYSIS_DIR, sID, 'masks12') if not os.path.isdir(tmp_dir): os.system('mkdir -p %s'%tmp_dir) print('Created directory %s'%tmp_dir) else: #os.system('rm -r %s/*'%tmp_dir) #print('Cleaned directory %s'%tmp_dir) print("Directory already exists: %s"%tmp_dir) aparc_func_fn = os.path.join(tmp_dir, 'aparc_func.nii.gz') xfm_cmd = 'flirt -in %s -ref %s -applyxfm -init %s -out %s -interp nearestneighbour'\ %(aparc_fn, resting_mean_fn, bbreg_inv_fsl_fn, aparc_func_fn) saydo(xfm_cmd) # Generate the list of cortical and subcortical ROIs (rois, ids, sc_rois, sc_ids) = get_roi_ids(APARC12_TABLE, ASAP_SC_TABLE) c_rois = [] c_ids = [] for (i0, hemi) in enumerate(HEMIS): for (i1, roi) in enumerate(rois): c_rois.append('%s_%s'%(hemi, roi)) c_ids.append(1000 + 1000 * i0 + int(ids[i1])) # b_rois = c_rois + sc_rois b_ids = c_ids + sc_ids nc = len(c_rois) # Number of cortical ROIs # Determine the number of frames in the 4D resting fMRI file (stdout, stderr) = Popen(['mri_info', resting_4d_fn, '-P', '100'], \ stdout=PIPE).communicate() stdout = stdout.split('\n') bFound = False for t_line in stdout: if t_line.count('dimensions:') == 1: bFound = True nFrames = int(t_line.split(' ')[-1]) if not bFound: raise ValueError, 'Unable to get fMRI series number of frames.' # Determine the outliers, if bpnrm mode is used if imgMode == "bpnrm": art_fn = os.path.join(bips_resting_dir, sID, 'preproc', 'art', \ 'art._restingunwarped_outliers.txt') else: art_fn = os.path.join(bips_resting_dir, sID, 'preproc', 'art', \ 'art._restingunwarped.nii_outliers.txt') if not os.path.isfile(art_fn): raise IOError, "Cannot find art outliers file: %s"%art_fn print("art_fn = %s"%art_fn) art_f = open(art_fn, 'r') art_txt = art_f.read().split('\n') art_f.close() outliers = [] for t_line in art_txt: if len(t_line) > 0: outliers.append(int(t_line)) if imgMode == "bpnrm" or imgMode == "bpnrm2": print("%d outliers found."%(len(outliers))) nFrames = nFrames - len(outliers) if len(outliers) > 0: print("nFrames --> %s"%(nFrames)) # Process cut-head frames if cuthead > 0: if imgMode == "bpnrm" or imgMode == "bpnrm2": raise Exception, "Current, cuthead mode is not supported under bpnrm or bpnrm2 mode" chframes = [] if cuthead >= nFrames: raise ValueError, "cuthead = %d >= nFrames = %d"%(cuthead, nFrames) for i0 in range(cuthead): chframes.append(i0) # Remove outlier time points that have already been removed by bips for olr in outliers: if chframes.count(olr) == 1: chframes.remove(olr) print("Removing outlier %d from chframes"%(olr)) chframes0 = chframes chframes = [] for i0 in range(len(chframes0)): chframes.append(i0) nFrames = nFrames - len(chframes) print("cuthead = %d: nFreames: %d --> %d"%(cuthead, nFrames + len(chframes), nFrames)) else: chframes = [] # Calculate the frame-by-frame in-brain mean intensity, for normalization if imgMode == "bpnrm" or imgMode == "bpnrm2": brainmean = np.zeros([nFrames]) brainmask = os.path.join(bips_resting_dir, sID, 'preproc', 'mask', \ "%s_brainmask.nii"%(sID)) if not os.path.isfile(brainmask): raise IOError, "Canont find brain mask: %s"%(brainmask) masked_mean_cmd = "fslstats -t %s -k %s -m"%(resting_4d_fn, brainmask) (stdout, stderr) = Popen(masked_mean_cmd.split(' '), \ stdout=PIPE, stderr=PIPE).communicate() meantxt = stdout.split('\n') cnt = 0 for j0 in range(nFrames + len(outliers)): if outliers.count(j0) == 1: print("Skipping frame j0 = %d"%(j0)) continue else: brainmean[cnt] = float(meantxt[j0]) cnt = cnt + 1 if len(np.nonzero(brainmean == 0)[0]) > 0: raise Exception, "Failed to calculate brain-wise intensity mean for all frames." nROIs = len(b_rois) bold_tab = np.array([[np.nan] * nFrames] * nROIs) for (i1, t_roi) in enumerate(b_rois): t_mask_fn = os.path.join(tmp_dir, 'mask_%s_rf.nii.gz'%t_roi) t_id = b_ids[i1] if os.path.isfile(t_mask_fn) and (not rebinarize): print('INFO: mask file already exists: %s'%t_mask_fn) else: binarize_cmd = 'mri_binarize --i %s --min %d --max %d --o %s'\ %(aparc_func_fn, t_id, t_id, t_mask_fn) saydo(binarize_cmd) #if t_id < 100: # sys.exit(0) tmp_4d_fn = os.path.join(tmp_dir, 'tmp_4d_%s.nii.gz'%imgMode) multiply_cmd = 'fslmaths %s -mul %s %s'\ %(resting_4d_fn, t_mask_fn, tmp_4d_fn) saydo(multiply_cmd) #mean_cmd = 'fslstats -t %s -M' print('Extrating ROI-mean time course from ROI %s (%d) (%d / %d = %f%%)... \n' %(t_roi, t_id, i1, nROIs, float(i1) / float(nROIs) * 1e2)) (stdout, stderr) = Popen(['fslstats', '-t', tmp_4d_fn, '-M'], stdout=PIPE).communicate() t_bold_sig = stdout.split('\n') if (imgMode == "bpnrm" or imgMode == "bpnrm2") and len(outliers) > 0: t_bold_sig_0 = t_bold_sig t_bold_sig = [] for (j0, t_val) in enumerate(t_bold_sig_0): if outliers.count(j0) == 1: continue else: t_bold_sig.append(t_val) elif len(chframes) > 0: t_bold_sig_0 = t_bold_sig t_bold_sig = [] for (j0, t_val) in enumerate(t_bold_sig_0): if chframes.count(j0) == 1: print("Cut head: skipping frame %d"%(j0)) continue else: t_bold_sig.append(t_val) if imgMode == "bpnrm" or imgMode == "bpnrm2" : # Do intensity normalization t_sig = [] for (j0, t_val) in enumerate(t_bold_sig): if len(t_val) > 0: t_sig.append(float(t_val)) t_sig = np.array(t_sig) t_sig = t_sig / brainmean - 1 t_sig = t_sig - np.mean(t_sig) for j1 in range(nFrames): bold_tab[i1][j1] = t_sig[j1] else: for j1 in range(nFrames): bold_tab[i1][j1] = float(t_bold_sig[j1]) # Write immediate result to disk bold_tab_tmp_fn = os.path.join(tmp_dir, 'bold_tab_aparc12_tmp.pkl') fout = open(bold_tab_tmp_fn, 'wb') pickle.dump(bold_tab, fout) fout.close() print('bold_tab saved to (pickle) %s\n'%bold_tab_tmp_fn) # Compute the pairwise correlations corr_tab = np.array([[np.nan] * nROIs] * nROIs) for i0 in range(nROIs): for i1 in range(nROIs): if (i1 <= i0): continue t_x = bold_tab[i0] t_y = bold_tab[i1] cc = np.corrcoef(t_x, t_y) corr_tab[i0][i1] = cc[0][1] #sys.exit(0) # Save final results to disk bips_resting_roi_corr = {'b_rois': b_rois, \ 'b_ids': b_ids, \ 'bold_tab': bold_tab, \ 'corr_tab': corr_tab} out_fn = os.path.join(ANALYSIS_DIR, sID, 'roi_corr_aparc12.csc.%s.pkl'%imgMode) if cuthead > 0: out_fn = out_fn.replace(".pkl", ".ch%d.pkl"%(cuthead)) fout = open(out_fn, 'wb') pickle.dump(bips_resting_roi_corr, fout) fout.close() print('Final results saved to (pickle) %s\n'%out_fn)
bsd-3-clause
aerler/GeoPy
src/datasets/ERA5.py
1
20429
''' Created on Nov. 07, 2020 A module to read ERA5 data; this includes converting GRIB files to NetCDF-4, as well as functions to load the converted and aggregated data. @author: Andre R. Erler, GPL v3 ''' # external imports import os.path as osp import pandas as pd import numpy as np import netCDF4 as nc # netCDF4-python module import xarray as xr from collections import namedtuple # internal imports from datasets.common import getRootFolder from geodata.gdal import GridDefinition from datasets.misc import loadXRDataset, getFolderFileName from geospatial.netcdf_tools import autoChunk ## Meta-vardata dataset_name = 'ERA5' root_folder = getRootFolder(dataset_name=dataset_name, fallback_name='NRCan') # get dataset root folder based on environment variables # SnoDAS grid definition projdict = dict(proj='longlat',lon_0=0,lat_0=0,x_0=0,y_0=0) # wraps at dateline proj4_string = '+proj=longlat +ellps=WGS84 +datum=WGS84 +lon_0=0 +lat_0=0 +x_0=0 +y_0=0 +name={} +no_defs'.format(dataset_name) # ERA5-Land ERA5Land_geotransform = (-180, 0.1, 0, -90, 0, 0.1) ERA5Land_size = (3600,1800) # (x,y) map size of grid ERA5Land_grid = GridDefinition(name=dataset_name, projection=None, geotransform=ERA5Land_geotransform, size=ERA5Land_size) # southern Ontario SON10_geotransform = (-85, 0.1, 0, 41, 0, 0.1) SON10_size = (111,61) # (x,y) map size of grid SON10_grid = GridDefinition(name=dataset_name, projection=None, geotransform=ERA5Land_geotransform, size=ERA5Land_size) varatts_list = dict() # attributes of variables in ERA5-Land varatts_list['ERA5L'] = dict(# forcing/flux variables tp = dict(name='precip', units='kg/m^2/s',scalefactor=1000./86400., long_name='Total Precipitation'), # units of meters water equiv. / day pev = dict(name='pet_era5', units='kg/m^2/s',scalefactor=-1000./86400., long_name='Potential Evapotranspiration'), # units of meters water equiv. / day; negative values # state variables sd = dict(name='snow', units='kg/m^2', scalefactor=1.e3, long_name='Snow Water Equivalent'), # units of meters water equivalent # axes (don't have their own file) time_stamp = dict(name='time_stamp', units='', long_name='Time Stamp'), # readable time stamp (string) time = dict(name='time', units='days', long_name='Days'), # time coordinate lon = dict(name='lon', units='deg', long_name='Longitude'), # geographic longitude lat = dict(name='lat', units='deg', long_name='Latitude'), # geographic latitude # derived variables dswe = dict(name='dswe',units='kg/m^2/s', long_name='SWE Changes'), liqwatflx = dict(name='liqwatflx', units='kg/m^2/s', long_name='Liquid Water Flux'), ) # list of variables to load default_varlists = {name:[atts['name'] for atts in varatts.values()] for name,varatts in varatts_list.items()} # list of sub-datasets/subsets with titles DSNT = namedtuple(typename='Dataset', field_names=['name','interval','resolution','title',]) dataset_attributes = dict(ERA5L = DSNT(name='ERA5L',interval='1h', resolution=0.1, title='ERA5-Land',), # downscaled land reanalysis ERA5S = DSNT(name='ERA5S',interval='1h', resolution=0.3, title='ERA5-Sfc',), # regular surface; not verified ERA5A = DSNT(name='ERA5A',interval='6h', resolution=0.3, title='ERA5-Atm',),) # regular 3D; not verified # settings for NetCDF-4 files avgfolder = root_folder + dataset_name.lower()+'avg/' avgfile = 'era5{0:s}_clim{1:s}.nc' # the filename needs to be extended: biascorrection, grid and period tsfile = 'era5_{0:s}{1:s}{2:s}_monthly.nc' # extend with biascorrection, variable and grid type daily_folder = root_folder + dataset_name.lower()+'_daily/' netcdf_filename = 'era5_{:s}_daily.nc' # extend with variable name netcdf_dtype = np.dtype('<f4') # little-endian 32-bit float netcdf_settings = dict(chunksizes=(8,ERA5Land_size[0]/16,ERA5Land_size[1]/32)) ## functions to load NetCDF datasets (using xarray) def loadERA5_Daily(varname=None, varlist=None, dataset=None, subset=None, grid=None, resolution=None, shape=None, station=None, resampling=None, varatts=None, varmap=None, lgeoref=True, geoargs=None, lfliplat=False, aggregation='daily', mode='daily', chunks=True, multi_chunks=None, lxarray=True, lgeospatial=True, **kwargs): ''' function to load daily ERA5 data from NetCDF-4 files using xarray and add some projection information ''' if not ( lxarray and lgeospatial ): raise NotImplementedError("Only loading via geospatial.xarray_tools is currently implemented.") if dataset and subset: if dataset != subset: raise ValueError((dataset,subset)) elif dataset and not subset: subset = dataset if resolution is None: if grid and grid[:3] in ('son','snw',): resolution = 'SON60' else: resolution = 'NA10' # default if varatts is None: if grid is None and station is None and shape is None: varatts = varatts_list[subset] # original files default_varlist = default_varlists.get(dataset, None) xds = loadXRDataset(varname=varname, varlist=varlist, dataset='ERA5', subset=subset, grid=grid, resolution=resolution, shape=shape, station=station, default_varlist=default_varlist, resampling=resampling, varatts=varatts, varmap=varmap, mode=mode, aggregation=aggregation, lgeoref=lgeoref, geoargs=geoargs, chunks=chunks, multi_chunks=multi_chunks, **kwargs) # flip latitude dimension if lfliplat and 'latitude' in xds.coords: xds = xds.reindex(latitude=xds.latitude[::-1]) # update name and title with sub-dataset xds.attrs['name'] = subset xds.attrs['title'] = dataset_attributes[subset].title + xds.attrs['title'][len(subset)-1:] return xds ## Dataset API dataset_name # dataset name root_folder # root folder of the dataset orig_file_pattern = netcdf_filename # filename pattern: variable name (daily) ts_file_pattern = tsfile # filename pattern: variable name and grid clim_file_pattern = avgfile # filename pattern: grid and period data_folder = avgfolder # folder for user data grid_def = {'':ERA5Land_grid} # no special name, since there is only one... LTM_grids = [] # grids that have long-term mean data TS_grids = ['',] # grids that have time-series data grid_res = {res:0.25 for res in TS_grids} # no special name, since there is only one... default_grid = ERA5Land_grid # functions to access specific datasets loadLongTermMean = None # climatology provided by publisher loadDailyTimeSeries = loadERA5_Daily # daily time-series data # monthly time-series data for batch processing def loadTimeSeries(lxarray=False, **kwargs): raise NotImplementedError(lxarray=lxarray, **kwargs) loadClimatology = None # pre-processed, standardized climatology loadStationClimatology = None # climatologies without associated grid (e.g. stations) loadStationTimeSeries = None # time-series without associated grid (e.g. stations) loadShapeClimatology = None # climatologies without associated grid (e.g. provinces or basins) loadShapeTimeSeries = None # time-series without associated grid (e.g. provinces or basins) ## abuse for testing if __name__ == '__main__': import time, gc, os #print('xarray version: '+xr.__version__+'\n') xr.set_options(keep_attrs=True) # import dask # from dask.distributed import Client, LocalCluster # # force multiprocessing (4 cores) # cluster = LocalCluster(n_workers=2, memory_limit='1GB') # cluster = LocalCluster(n_workers=4, memory_limit='6GB') # cluster = LocalCluster(n_workers=1) # client = Client(cluster) modes = [] # modes += ['load_Point_Climatology'] # modes += ['load_Point_Timeseries'] modes += ['derived_variables' ] # modes += ['load_Daily' ] # modes += ['monthly_mean' ] # modes += ['load_TimeSeries' ] # modes += ['monthly_normal' ] # modes += ['load_Climatology' ] grid = None; resampling = None dataset = 'ERA5L' # resolution = 'SON10' resolution = 'NA10' # resolution = 'AU10' # variable list # varlist = ['snow'] varlist = ['snow','dswe','precip','pet_era5','liqwatflx'] # period = (2010,2019) # period = (1997,2018) # period = (1980,2018) # loop over modes for mode in modes: if mode == 'load_Climatology': pass # lxarray = False # ds = loadERA5(varlist=varlist, period=period, grid=grid, # lxarray=lxarray) # load regular GeoPy dataset # print(ds) # print('') # varname = list(ds.variables.keys())[0] # var = ds[varname] # print(var) # # if lxarray: # print(('Size in Memory: {:6.1f} MB'.format(var.nbytes/1024./1024.))) elif mode == 'load_Point_Climatology': pass # # load point climatology # print('') # if pntset in ('shpavg','glbshp'): dataset = loadERA5_Shp(shape=pntset, period=(2009,2018)) # elif pntset in ('oncat'): dataset = loadERA5_Shp(shape=pntset, grid=grid, period=(2011,2019)) # else: raise NotImplementedError(pntset) # print(dataset) # print('') # print((dataset.time)) # print((dataset.time.coord)) elif mode == 'load_Point_Timeseries': pass # # load point climatology # print('') # if pntset in ('oncat'): dataset = loadERA5_ShpTS(shape=pntset, grid=grid, ) # else: raise NotImplementedError(pntset) # print(dataset) # print('') # print((dataset.time)) # print((dataset.time.coord)) elif mode == 'monthly_normal': pass elif mode == 'load_TimeSeries': pass # lxarray = False # varname = varlist[0] # xds = loadERA5_TS(varlist=varlist, # grid=grid, lxarray=lxarray, geoargs=geoargs) # 32 time chunks may be possible # print(xds) # print('') # xv = xds[varname] # print(xv) # if lxarray: # print(('Size in Memory: {:6.1f} MB'.format(xv.nbytes/1024./1024.))) elif mode == 'monthly_mean': pass elif mode == 'load_Daily': varlist = ['snow','dswe'] xds = loadERA5_Daily(varlist=varlist, resolution=resolution, dataset=None, subset='ERA5L', grid=grid, chunks=True, lgeoref=True) print(xds) # print('') xv = xds.data_vars['snow'] # # xv = list(xds.data_vars.values())[0] xv = xv.loc['2011-06-01':'2012-06-01',:,:] # # xv = xv.loc['2011-01-01',:,:] print(xv) print(xv.mean()) print(('Size in Memory: {:6.1f} MB'.format(xv.nbytes/1024./1024.))) elif mode == 'derived_variables': start = time.time() lexec = True lappend_master = False ts_name = 'time_stamp' dataset = 'ERA5L' load_chunks = True # load variables # derived_varlist = ['dswe',]; load_list = ['snow'] derived_varlist = ['liqwatflx',]; load_list = ['dswe', 'precip'] varatts = varatts_list[dataset] xds = loadERA5_Daily(varlist=load_list, subset=dataset, resolution=resolution, grid=grid, chunks=load_chunks, lfliplat=False) # N.B.: need to avoid loading derived variables, because they may not have been extended yet (time length) print(xds) # optional slicing (time slicing completed below) start_date = None; end_date = None # auto-detect available data # start_date = '2011-01-01'; end_date = '2011-01-08' # slice and load time coordinate xds = xds.loc[{'time':slice(start_date,end_date),}] if ts_name in xds: tsvar = xds[ts_name].load() else: tax = xds.coords['time'] ts_data = [pd.to_datetime(dt).strftime('%Y-%m-%d_%H:%M:%S') for dt in tax.data] tsvar = xr.DataArray(data=ts_data, coords=(tax,), name='time_stamp', attrs=varatts['time_stamp']) # loop over variables for varname in derived_varlist: # target dataset lskip = False folder,filename = getFolderFileName(varname=varname, dataset='ERA5', subset=dataset, resolution=resolution, grid=grid, resampling=resampling, mode='daily', lcreateFolder=True) nc_filepath = '{}/{}'.format(folder,filename) if lappend_master and osp.exists(nc_filepath): ncds = nc.Dataset(nc_filepath, mode='a') ncvar3 = ncds[varname] ncts = ncds[ts_name] nctc = ncds['time'] # time coordinate # update start date for after present data start_date = pd.to_datetime(ncts[-1]) + pd.to_timedelta(1,unit='D') if end_date is None: end_date = tsvar.data[-1] end_date = pd.to_datetime(end_date) if start_date > end_date: print(("\nNothing to do - timeseries complete:\n {} > {}".format(start_date,end_date))) ncds.close() lskip = True else: lappend = True # update slicing (should not do anything if sliced before) print(("\n Appending data from {} to {}.\n".format(start_date.strftime("%Y-%m-%d"),end_date.strftime("%Y-%m-%d")))) xds = xds.loc[{'time':slice(start_date,end_date),}] tsvar = tsvar.loc[{'time':slice(start_date,end_date),}] else: lappend = False if not lskip: print('\n') default_varatts = varatts[varname] # need to ensure netCDF compatibility ## define actual computation if varname == 'liqwatflx': ref_var = xds['precip']; note = "masked/missing values have been replaced by zero" xvar = ref_var.fillna(0) - xds['dswe'].fillna(0) # fill missing values with zero # N.B.: missing values are NaN in xarray; we need to fill with 0, or masked/missing values # in snowmelt will mask/invalidate valid values in precip elif varname == 'dswe': ref_var = xds['snow']; note = "Rate of Daily SWE Changes" assert ref_var.attrs['units'] == 'kg/m^2', ref_var.attrs['units'] #xvar = ref_var.differentiate('time', datetime_unit='s') xvar = ref_var.diff('time', n=1) / 86400 # per second # shift time axis time_axis = xvar.coords['time'].data - np.timedelta64(1,'D') xvar = xvar.assign_coords(time=time_axis).broadcast_like(ref_var) # define/copy metadata xvar.attrs = ref_var.attrs.copy() xvar = xvar.rename(varname) for att in ('name','units','long_name',): # don't copy scale factors etc... if att in default_varatts: xvar.attrs[att] = default_varatts[att] assert xvar.attrs['name'] == xvar.name, xvar.attrs for att in list(xvar.attrs.keys()): if att.startswith('old_') or att in ('original_name','standard_name'): del xvar.attrs[att] # does not apply anymore xvar.attrs['note'] = note # set chunking for operation chunks = ref_var.encoding['chunksizes'] if load_chunks is True else load_chunks.copy() if chunks: if isinstance(chunks,dict): chunks = tuple(chunks[dim] for dim in xvar.dims) xvar = xvar.chunk(chunks=chunks) print('Chunks:',xvar.chunks) # # visualize task graph # viz_file = daily_folder+'dask_sum.svg' # xvar3.data.visualize(filename=viz_file) # print(viz_file) ## now save data, according to destination/append mode if lappend: # append results to an existing file print('\n') # define chunking offset = ncts.shape[0]; t_max = offset + tsvar.shape[0] tc,yc,xc = xvar.chunks # starting points of all blocks... tc = np.concatenate([[0],np.cumsum(tc[:-1], dtype=np.int)]) yc = np.concatenate([[0],np.cumsum(yc[:-1], dtype=np.int)]) xc = np.concatenate([[0],np.cumsum(xc[:-1], dtype=np.int)]) # xvar3 = xvar3.chunk(chunks=(tc,xvar3.shape[1],xvar3.shape[2])) # function to save each block individually (not sure if this works in parallel) dummy = np.zeros((1,1,1), dtype=np.int8) def save_chunk(block, block_id=None): ts = offset + tc[block_id[0]]; te = ts + block.shape[0] ys = yc[block_id[1]]; ye = ys + block.shape[1] xs = xc[block_id[2]]; xe = xs + block.shape[2] #print(((ts,te),(ys,ye),(xs,xe))) #print(block.shape) ncvar3[ts:te,ys:ye,xs:xe] = block return dummy # append to NC variable xvar.data.map_blocks(save_chunk, chunks=dummy.shape, dtype=dummy.dtype).compute() # drop_axis=(0,1,2), # update time stamps and time axis nctc[offset:t_max] = np.arange(offset,t_max) for i in range(tsvar.shape[0]): ncts[i+offset] = tsvar.data[i] ncds.sync() print('\n') print(ncds) ncds.close() del xvar, ncds else: # save results in new file nds = xr.Dataset({ts_name:tsvar, varname:xvar,}, attrs=xds.attrs.copy()) nds.coords['time'].attrs.pop('units',None) # needs to be free for use by xarray print('\n') print(nds) print(nc_filepath) # write to NetCDF tmp_filepath = nc_filepath + '.tmp' # use temporary file during creation var_enc = dict(chunksizes=chunks, zlib=True, complevel=1, _FillValue=np.NaN, dtype=netcdf_dtype) task = nds.to_netcdf(tmp_filepath, mode='w', format='NETCDF4', unlimited_dims=['time'], engine='netcdf4', encoding={varname:var_enc,}, compute=False) if lexec: task.compute() else: print(var_enc) print(task) task.visualize(filename=folder+'netcdf.svg') # This file is never produced del nds, xvar # replace original file if os.path.exists(nc_filepath): os.remove(nc_filepath) os.rename(tmp_filepath, nc_filepath) # clean up gc.collect() # print timing end = time.time() print(('\n Required time: {:.0f} seconds\n'.format(end-start)))
gpl-3.0
tdhopper/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
ogaway/WillowProject
BinaryOption/binaryoption.py
1
7138
# coding: UTF-8 from willow.willow import * from wifunc import * import numpy as np from pandas import * import matplotlib.pyplot as plt def session(me): # 為替レートの推移を何回するか変更可能 ts = 50 if me == 0: add("<h1>バイナリーオプション モニター</h1>") numset() take({"client": me}) plnum = get_num() numset_end(plnum) wiput(plnum, {"tag": "a"}) wait(1) witake(plnum, {"tag": "b"}) waithide(1) start() take({"client": me}) hide("#start") wiput(plnum, {"tag": "c"}) data = [100] time = [0] def ping(): put({"client": me}) wiput(plnum, {"tag": "d", "data": data[0], "time": time}) plt.plot(time, data) plt.ylim( 90, 110) plt.xlim(0, 50) plt.savefig("img/image.png") add("<p id='info%s'>%s回目 : %s円</p>" % (0, 1, data[0])) add("<img id='img%s' src='img/image.png'>" % 0) background(ping, 4) take({"client": me}) for i in range(ts-1): data.append(np.random.randn()+data[i]) time.append(i+1) wiput(plnum, {"tag": "d", "data": data[i+1], "time": time}) plt.plot(time, data, color="k") plt.savefig("img/image.png") hide("#info%s" % (i)) hide("#img%s" % (i)) add("<p id='info%s'>%s回目 : %s円</p>" % (i+1, i+2, data[i+1])) add("<img id='img%s' src='img/image.png'>" % (i+1)) background(ping, 4) take({"client": me}) add("<p>これで実験を終了します。</p>") else: add("<h1>バイナリーオプション クライアントNo.%s</h1>" % me) wait(1) # 実験説明開始(a) take({"tag": "a"}) add(open("binary.html")) add(ts, "#ts1") add(ts-6, "#ts2") waithide(1) ready() # 実験内容把握(b) take({"client": me}) put({"tag": "b"}) hide("#ready") wait(2) # 実験開始(c) take({"tag": "c"}) waithide(2) show("#start") # 関数,変数の準備 def set_input(a): add("<p id='input%s'>賭金<input type='text' id='bet%s' >円<br />" "<input type='submit' value='円安(上方向)' id='0'>" "<input type='submit' value='円高(下方向)' id='1'></p>" % (a, a), "#info") def hide_input(a): hide("#input%s" % a) def ping(): put({"id": 2, "client": me}) def win(i, bet, all, profit): add("<p id='counter%s'>おめでとうございます!あなたは勝ちました。<br />" "掛け金の2倍の額が手元に入りました。</p>" % i, "#info") let(all, "#all") let(profit, "#profit") def lose(i, bet, all, profit): add("<p id='counter%s'>残念でした。あなたの負けです。<br />" "掛け金は全て没収されました。</p>" % i, "#info") let(all, "#all") let(profit, "#profit") data = [] time = [] all = 100000 profit = 0 counter = 0 counter_input = 0 bet = 0 type = 0 # 画面生成 set_input(0) add(100000, "#all") add(0, "#profit") for i in range(ts): # レート情報受け取り(d) msg = take({"tag": "d"}) data.append(msg["data"]) time.append(msg["time"]) # レート情報更新 let(data[i], "#rate") let(i+1, "#number") hide("#img%s" % (i-1)) add("<img id='img%s' src='img/image.png'>" % i) # 推移数が45を超えたら賭けは終了。 if i == ts-5: hide_input(counter_input) add("<p>賭けの受付を終了しました。%s回目の推移が終わるまでお待ちください。</p>" % ts, "#info") # 賭けをするかどうか待機(既に賭けている場合は4秒待機) background(ping, 4) msg = take({"client": me}) # 既に賭けている場合(if1_1) if counter >= 1 and counter <=5: hide("#counter%s" % (i-1)) add("<p id='counter%s'>あと%s回目の推移で決定します。</p>" % (i, 6-counter), "#info") counter += 1 # 賭けが勝ったか負けたか(if1_2) elif counter == 6: # 円安に賭けていた場合 if type == 0: if data[i-6] <= data[i]: all += bet profit += bet win(i, bet, all, profit) else: all -= bet profit -= bet lose(i, bet, all, profit) # 円高に賭けていた場合 elif type == 1: if data[i-6] >= data[i]: all += bet profit += bet win(i, bet, all, profit) else: all -= bet profit -= bet lose(i, bet, all, profit) counter = -1 counter_input += 1 hide("#counter%s" % (i-1)) if i <= ts -6: set_input(counter_input) # 賭けの次の推移でinfoからwin,loseを消す(if1_3) elif counter == -1: hide("#counter%s" % (i-1)) hide("#betinfo%s" % (counter_input-1)) counter = 0 # 円安のボタンが押された場合(if2_1) if msg["id"] == "0": hide_input(counter_input) bet = int(peek("#bet%s" % counter_input)) add("<p id='betinfo%s'>あなたは6回の推移後に為替レートが%s円の状態よりも" "円安(グラフで上方向)になるということに%s円賭けました。</p>" % (counter_input, data[i], bet), "#info") add("<p id='counter%s'>あと%s回目の推移で決定します。</p>" % (i, 6-counter), "#info") counter = 1 type = 0 # 円高のボタンが押された場合(if2_2) elif msg["id"] == "1": hide_input(counter_input) bet = int(peek("#bet%s" % counter_input)) add("<p id='betinfo%s'>あなたは6回の推移後に為替レートが%s円の状態よりも" "円高(グラフで下方向)になるということに%s円賭けました。</p>" % (counter_input, data[i], bet), "#info") add("<p id='counter%s'>あと%s回目の推移で決定します。</p>" % (i, 6-counter), "#info") counter = 1 type = 1 add("<p>これで実験を終了します。</p>", "#info") run(session)
gpl-3.0
rbiswas4/Cadence
gedankenLSST/sninLSST.py
1
4355
import numpy as np import pandas as pd from lsst.sims.catUtils.supernovae import SNObject from opsimsummary import summarize_opsim as oss from astropy.table import Table __all__ = ['SNObs'] class SNObs(oss.SummaryOpsim): def __init__(self, t0, fieldID=None, raCol=None, decCol=None, ra=0., dec=0., peakabsmagBessellB=-19.3, summarydf=None, snState={'z':0.5}, lsst_bp=None): oss.SummaryOpsim.__init__(self, summarydf=summarydf) self.fieldID = fieldID self.raCol = raCol self.decCol = decCol self._ra = np.radians(ra) self._dec = np.radians(dec) self.summary = summarydf self._peakabsmagBessellB = peakabsmagBessellB self.t0 = t0 self._lc = None self._numDropped = None self._snState = snState self.lsst_bp = lsst_bp self.lowrange = -30. self.highrange = 50. @property def radeg(self): if self._ra != 0. and self._dec != 0.: return np.degrees(self._ra) if self.fieldID is not None: ra = self.ra(self.fieldID) elif self.raCol is not None: ra = self.summary[self.raCol].iloc[0] else: ra = self._ra return np.degrees(ra) @property def decdeg(self): if self._dec != 0. and self._dec != 0.: return np.degrees(self._dec) if self.fieldID is not None: dec = self.dec(self.fieldID) elif self.decCol is not None: dec = self.summary[self.decCol].iloc[0] else: dec = self._dec return np.degrees(dec) @property def snState(self): if self.SN.SNstate is None: SNstate = self._snState else: SNstate = self.SN.SNstate return SNstate @snState.setter def snState(self, value): self._snState = value return self._snState @property def SN(self): """ `lsst.sims.catsim.SNObject` instance with peakMJD set to t0 """ #if self.snState is not None: # return SNObject.fromSNState(self.snState) sn = SNObject(ra=self.radeg, dec=self.decdeg) sn.set(t0=self.t0) sn.set(**self._snState) sn.set_source_peakabsmag(self._peakabsmagBessellB, 'bessellB', 'ab') return sn def SNCosmoLC(self, scattered=False, seed=0): lc = self.lightcurve lc['modelFlux'] = lc['flux'] # add scatter if desired np.random.seed(seed) lc['deviation'] = np.random.normal(size=len(lc['flux'])) if scattered: lc['flux'] = lc['flux'] + lc['deviation'] * lc['fluxerr'] return Table(lc.to_records()) @property def lightcurve(self, lowrange=-30., highrange=50. ): sn = self.SN # dataframe.set_index('obsHistID') # timewindowlow timelow = sn.get('t0') + lowrange timehigh = sn.get('t0') + highrange # Model range modellow = sn.mintime() modelhigh = sn.maxtime() if modellow > timelow: timelow = modellow if modelhigh < timehigh: timehigh = modelhigh if self.fieldID is None: dataframe = self.summary else: dataframe = self.simlib(fieldID=self.fieldID) x = dataframe.query('expMJD > @timelow and expMJD < @timehigh') df = x.copy(deep=True) colnames = ['time', 'band', 'flux', 'fluxerr', 'zp', 'zpsys', 'SNR', 'finSeeing', 'airmass', 'filtSkyBrightness','fiveSigmaDepth', 'propID', 'night', 'DetectionEfficiency'] df['band'] = df['filter'].apply(lambda x: x.lower()) df['flux'] = df.apply(lambda row: sn.catsimBandFlux(row['expMJD'], self.lsst_bp[row['band']]), axis=1) df['fluxerr'] = df.apply(lambda row: sn.catsimBandFluxError(row['expMJD'], self.lsst_bp[row['band']], m5=row['fiveSigmaDepth']), axis=1) df['zp'] = 0. df['zpsys'] = 'ab' df.rename(columns={'expMJD':'time'}, inplace=True) os = len(df) df = df.query('flux > 0. and fluxerr > 0.') s = len(df) df['SNR'] = df['flux'] / df['fluxerr'] return df
mit
jimcunderwood/MissionPlanner
Lib/site-packages/numpy/core/function_base.py
82
5474
__all__ = ['logspace', 'linspace'] import numeric as _nx from numeric import array def linspace(start, stop, num=50, endpoint=True, retstep=False): """ Return evenly spaced numbers over a specified interval. Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop` ]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether `endpoint` is True or False). step : float (only if `retstep` is True) Size of spacing between samples. See Also -------- arange : Similiar to `linspace`, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ num = int(num) if num <= 0: return array([], float) if endpoint: if num == 1: return array([float(start)]) step = (stop-start)/float((num-1)) y = _nx.arange(0, num) * step + start y[-1] = stop else: step = (stop-start)/float(num) y = _nx.arange(0, num) * step + start if retstep: return y, step else: return y def logspace(start,stop,num=50,endpoint=True,base=10.0): """ Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Parameters ---------- start : float ``base ** start`` is the starting value of the sequence. stop : float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length ``num``) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similiar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y) ... # doctest: +SKIP Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ y = linspace(start,stop,num=num,endpoint=endpoint) return _nx.power(base,y)
gpl-3.0
zfrenchee/pandas
pandas/core/indexes/frozen.py
20
4619
""" frozen (immutable) data structures to support MultiIndexing These are used for: - .names (FrozenList) - .levels & .labels (FrozenNDArray) """ import numpy as np from pandas.core.base import PandasObject from pandas.core.dtypes.cast import coerce_indexer_dtype from pandas.io.formats.printing import pprint_thing class FrozenList(PandasObject, list): """ Container that doesn't allow setting item *but* because it's technically non-hashable, will be used for lookups, appropriately, etc. """ # Sidenote: This has to be of type list, otherwise it messes up PyTables # typechecks def __add__(self, other): if isinstance(other, tuple): other = list(other) return self.__class__(super(FrozenList, self).__add__(other)) __iadd__ = __add__ # Python 2 compat def __getslice__(self, i, j): return self.__class__(super(FrozenList, self).__getslice__(i, j)) def __getitem__(self, n): # Python 3 compat if isinstance(n, slice): return self.__class__(super(FrozenList, self).__getitem__(n)) return super(FrozenList, self).__getitem__(n) def __radd__(self, other): if isinstance(other, tuple): other = list(other) return self.__class__(other + list(self)) def __eq__(self, other): if isinstance(other, (tuple, FrozenList)): other = list(other) return super(FrozenList, self).__eq__(other) __req__ = __eq__ def __mul__(self, other): return self.__class__(super(FrozenList, self).__mul__(other)) __imul__ = __mul__ def __reduce__(self): return self.__class__, (list(self),) def __hash__(self): return hash(tuple(self)) def _disabled(self, *args, **kwargs): """This method will not function because object is immutable.""" raise TypeError("'%s' does not support mutable operations." % self.__class__.__name__) def __unicode__(self): return pprint_thing(self, quote_strings=True, escape_chars=('\t', '\r', '\n')) def __repr__(self): return "%s(%s)" % (self.__class__.__name__, str(self)) __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled pop = append = extend = remove = sort = insert = _disabled class FrozenNDArray(PandasObject, np.ndarray): # no __array_finalize__ for now because no metadata def __new__(cls, data, dtype=None, copy=False): if copy is None: copy = not isinstance(data, FrozenNDArray) res = np.array(data, dtype=dtype, copy=copy).view(cls) return res def _disabled(self, *args, **kwargs): """This method will not function because object is immutable.""" raise TypeError("'%s' does not support mutable operations." % self.__class__) __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled put = itemset = fill = _disabled def _shallow_copy(self): return self.view() def values(self): """returns *copy* of underlying array""" arr = self.view(np.ndarray).copy() return arr def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ prepr = pprint_thing(self, escape_chars=('\t', '\r', '\n'), quote_strings=True) return "%s(%s, dtype='%s')" % (type(self).__name__, prepr, self.dtype) def searchsorted(self, v, side='left', sorter=None): """ Find indices where elements of v should be inserted in a to maintain order. For full documentation, see `numpy.searchsorted` See Also -------- numpy.searchsorted : equivalent function """ # we are much more performant if the searched # indexer is the same type as the array # this doesn't matter for int64, but DOES # matter for smaller int dtypes # https://github.com/numpy/numpy/issues/5370 try: v = self.dtype.type(v) except: pass return super(FrozenNDArray, self).searchsorted( v, side=side, sorter=sorter) def _ensure_frozen(array_like, categories, copy=False): array_like = coerce_indexer_dtype(array_like, categories) array_like = array_like.view(FrozenNDArray) if copy: array_like = array_like.copy() return array_like
bsd-3-clause
AzamYahya/shogun
examples/undocumented/python_modular/graphical/util.py
26
2670
""" Utilities for matplotlib examples """ import pylab from numpy import ones, array, double, meshgrid, reshape, linspace, \ concatenate, ravel, pi, sinc from numpy.random import randn, rand from modshogun import BinaryLabels, RegressionLabels, RealFeatures, SparseRealFeatures QUITKEY='q' NUM_EXAMPLES=100 DISTANCE=2 def quit (event): if event.key==QUITKEY or event.key==QUITKEY.upper(): pylab.close() def set_title (title): quitmsg=" (press '"+QUITKEY+"' to quit)" complete=title+quitmsg manager=pylab.get_current_fig_manager() # now we have to wrap the toolkit if hasattr(manager, 'window'): if hasattr(manager.window, 'setCaption'): # QT manager.window.setCaption(complete) if hasattr(manager.window, 'set_title'): # GTK manager.window.set_title(complete) elif hasattr(manager.window, 'title'): # TK manager.window.title(complete) def get_realdata(positive=True): if positive: return randn(2, NUM_EXAMPLES)+DISTANCE else: return randn(2, NUM_EXAMPLES)-DISTANCE def get_realfeatures(pos, neg): arr=array((pos, neg)) features = concatenate(arr, axis=1) return RealFeatures(features) def get_labels(raw=False, type='binary'): data = concatenate(array( (-ones(NUM_EXAMPLES, dtype=double), ones(NUM_EXAMPLES, dtype=double)) )) if raw: return data else: if type == 'binary': return BinaryLabels(data) if type == 'regression': return RegressionLabels(data) return None def compute_output_plot_isolines(classifier, kernel=None, train=None, sparse=False, pos=None, neg=None, regression=False): size=100 if pos is not None and neg is not None: x1_max=max(1.2*pos[0,:]) x1_min=min(1.2*neg[0,:]) x2_min=min(1.2*neg[1,:]) x2_max=max(1.2*pos[1,:]) x1=linspace(x1_min, x1_max, size) x2=linspace(x2_min, x2_max, size) else: x1=linspace(-5, 5, size) x2=linspace(-5, 5, size) x, y=meshgrid(x1, x2) dense=RealFeatures(array((ravel(x), ravel(y)))) if sparse: test=SparseRealFeatures() test.obtain_from_simple(dense) else: test=dense if kernel and train: kernel.init(train, test) else: classifier.set_features(test) labels = None if regression: labels=classifier.apply().get_labels() else: labels=classifier.apply().get_values() z=labels.reshape((size, size)) return x, y, z def get_sinedata(): x=4*rand(1, NUM_EXAMPLES)-DISTANCE x.sort() y=sinc(pi*x)+0.1*randn(1, NUM_EXAMPLES) return x, y def compute_output_plot_isolines_sine(classifier, kernel, train, regression=False): x=4*rand(1, 500)-2 x.sort() test=RealFeatures(x) kernel.init(train, test) if regression: y=classifier.apply().get_labels() else: y=classifier.apply().get_values() return x, y
gpl-3.0
waterponey/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
110
3768
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
HeraclesHX/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
254
2005
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
schets/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
DmitryYurov/BornAgain
Examples/python/fitting/ex03_ExtendedExamples/specular/RealLifeReflectometryFitting.py
1
9258
""" Real life example: Fitting data from an X-ray reflectometer The sample is composed of a thin silver nano-particle layer on a silicon substrate. The substrate is covered with SiO2 layer. The nano-particle layer has negligible density and does not considerably affect the observed reflectometry picture. The following parameters of the experiment are fitted: 1. beam intensity 2. footprint correction factor 3. beam angular divergence 4. Material concentration in the SiO2 layer 5. Thickness of SiO2 layer 6. Sample roughness Fitting is done in two steps: First the whole range of experimental data is fitted, then the data related to the instrument is fixed and on the second step only the right-hand part of experimental data (i.e. the part of the reflectometry curve associated with bigger incident angles) is concerned for fitting. At the second stage only the sample parameters are fitted, since only they affect the shape of the reflectometry curve at bigger incident angles. """ from matplotlib import pyplot as plt import numpy as np from os import path import bornagain as ba from scipy.optimize import differential_evolution def get_real_data(filename="mg6a_Merged.txt.gz"): """ Loads real data files and merges them once. Returns a Nx3 array (N - the number of experimental data entries) with first column being coordinates, second one being values, and the third one being weights to restore intensity values from experiment """ if not hasattr(get_real_data, "data"): filepath = path.join(path.dirname(path.realpath(__file__)), filename) real_data = np.loadtxt(filepath, usecols=(0, 1, 3), skiprows=1) # translating axis values from double incident angle (degrees) # to incident angle (radians) real_data[:, 0] *= np.pi / 360 get_real_data.data = real_data return get_real_data.data.copy() def get_real_data_axis(start, end): """ Get axis coordinates of the experimental data :param start: first bin to extract :param end: last bin to extract :return: 1D array with axis coordinates """ return get_real_data()[start:end, 0] def get_real_data_values(start, end): """ Get experimental data values as a 1D array :param start: first bin to extract :param end: last bin to extract :return: 1D array with experimental data values """ return get_real_data()[start:end, 1] def get_weights(start, end): """ Get weights to restore genuine intensity of experimental instrument :param start: first bin to extract :param end: last bin to extract :return: 1D array with weights to restore beam intensity """ return get_real_data()[start:end, 2] def create_simulation(arg_dict, bin_start, bin_end): """ Creates and returns specular simulation """ wavelength = 1.54 * ba.angstrom alpha_distr = ba.RangedDistributionGaussian(30, 3) footprint = ba.FootprintFactorGaussian(arg_dict["footprint_factor"]) scan = ba.AngularSpecScan(wavelength, get_real_data_axis(bin_start, bin_end)) scan.setAbsoluteAngularResolution(alpha_distr, arg_dict["divergence"]) scan.setFootprintFactor(footprint) simulation = ba.SpecularSimulation() simulation.setScan(scan) simulation.setBeamIntensity(arg_dict["intensity"]) return simulation def buildSample(arg_dict): """ Creates sample and returns it """ # defining materials m_air = ba.HomogeneousMaterial("Air", 0.0, 0.0) m_si_o2 = ba.HomogeneousMaterial("SiO2", 8.57040868e-06 * arg_dict["concentration"], 1.11016654e-07 * arg_dict["concentration"]) m_si = ba.HomogeneousMaterial("Si", 7.57211137e-06, 1.72728178e-07) # roughness r_si = ba.LayerRoughness(arg_dict["roughness"], 0, 0) # layers air_layer = ba.Layer(m_air) oxide_layer = ba.Layer(m_si_o2, arg_dict["thickness"]) substrate_layer = ba.Layer(m_si) # assembling multilayer multi_layer = ba.MultiLayer() multi_layer.addLayer(air_layer) multi_layer.addLayerWithTopRoughness(oxide_layer, r_si) multi_layer.addLayerWithTopRoughness(substrate_layer, r_si) return multi_layer def run_simulation(arg_dict, bin_start=0, bin_end=-1): """ Runs simulation and returns its result """ simulation = create_simulation(arg_dict, bin_start, bin_end) simulation.setSample(buildSample(arg_dict)) simulation.runSimulation() return simulation.result() def chi_2(real_data, sim_data, weights): """ Computes chi_2 metrics and returns its value """ sim_data_upsc = np.multiply(weights, sim_data) sim_data_upsc[sim_data_upsc is 0] = 1e-30 real_data_upsc = np.multiply(weights, real_data) diff = real_data_upsc - sim_data_upsc return np.sum(np.divide(np.multiply(diff,diff), sim_data_upsc)) def create_par_dict(*arg): """ Creates a dictionary with parameter names and values and returns it """ return {'intensity': arg[0], 'footprint_factor': arg[1], 'divergence':arg[2], 'concentration': arg[3], 'thickness': arg[4], 'roughness': arg[5] } def objective_primary(args): """ Objective function for preliminary stage of optimization """ bin_start = 15 # first bin in the experimental data to calculate bin_end = -1 # last bin in the experimental data to calculate arg_dict = create_par_dict(*args) sim_result = run_simulation(arg_dict, bin_start, bin_end) sim_data = sim_result.array() return chi_2(get_real_data_values(bin_start, bin_end), sim_data, get_weights(bin_start, bin_end)) def objective_fine(args, intensity, footprint_factor, divergence): """ Objective function for tuning the right-hand side of experimental data """ bin_start = 404 # first bin in the experimental data to calculate bin_end = -1 # last bin in the experimental data to calculate arg_dict = create_par_dict(intensity, footprint_factor, divergence, *args) sim_result = run_simulation(arg_dict, bin_start, bin_end) sim_data = sim_result.array() return chi_2(get_real_data_values(bin_start, bin_end), sim_data, get_weights(bin_start, bin_end)) def run_fitting(): """ Runs fitting and returns its result """ # running preliminary optimization on the total range of experimental data. bounds = [(1e6, 1e8), # beam intensity (0.0, 0.1), # beam-to-sample width ratio (0.0, 0.08 * ba.deg), # beam_divergence (0.0, 1.0), # oxide_concentration (0.0, 2.0 * ba.nm), # oxide_thickness (0.0, 2.0 * ba.nm)] # roughness print("Start preliminary fitting of experimental data:\n") preliminary_result = differential_evolution(objective_primary, bounds, maxiter=20, popsize=60, mutation=(0.5, 1.5), disp=True, tol=1e-5) bounds = [(0.0, 1.0), # oxide_concentration (0.0, 2.0 * ba.nm), # oxide_thickness (0.0, 2.0 * ba.nm)] # roughness fixed_args = (preliminary_result.x[0], # beam intensity preliminary_result.x[1], # beam-to-sample width ratio preliminary_result.x[2] # beam divergence ) print("\nStart fitting big incident angle part of experimental data:\n") fine_tuning_result = differential_evolution(objective_fine, bounds, fixed_args, maxiter=20, popsize=40, mutation=(0.5, 1.5), disp=True, tol=1e-5) result = create_par_dict(*fixed_args, *fine_tuning_result.x) print("\nFitting result:") print(result,"\n") return result def plot_result(sim_result, ref_result, bin_start=0, bin_end=-1): """ Plots the graphs of obtained simulation data """ sim_data = sim_result.array() ref_data = ref_result.array() plt.semilogy(get_real_data_axis(bin_start, bin_end) * 180 / np.pi, get_real_data_values(bin_start, bin_end), sim_result.axis(), sim_data, ref_result.axis(), ref_data) xlabel = ba.get_axes_labels(sim_result, ba.AxesUnits.DEFAULT)[0] ylabel = "Intensity" plt.xlabel(xlabel, fontsize=16) plt.ylabel(ylabel, fontsize=16) plt.legend(['Experimental data', 'Simulation', 'Reference'], loc='upper right', fontsize=16) plt.show() if __name__ == '__main__': fit_data = run_fitting() ref_data = create_par_dict(3.78271438e+06, # beam intensity 9.58009763e-04, # beam-to-sample width ratio 2.30471294e-04, # beam angular divergence 0.58721753, # oxide concentration 1.25559347, # oxide thickness 0.19281863) # roughness plot_result(run_simulation(fit_data), run_simulation(ref_data))
gpl-3.0
cactusbin/nyt
matplotlib/examples/pylab_examples/clippedline.py
12
1422
""" Clip a line according to the current xlimits, and change the marker style when zoomed in. It is not clear this example is still needed or valid; clipping is now automatic for Line2D objects when x is sorted in ascending order. """ from matplotlib.lines import Line2D import numpy as np from pylab import figure, show class ClippedLine(Line2D): """ Clip the xlimits to the axes view limits -- this example assumes x is sorted """ def __init__(self, ax, *args, **kwargs): Line2D.__init__(self, *args, **kwargs) self.ax = ax def set_data(self, *args, **kwargs): Line2D.set_data(self, *args, **kwargs) self.recache() self.xorig = np.array(self._x) self.yorig = np.array(self._y) def draw(self, renderer): xlim = self.ax.get_xlim() ind0, ind1 = np.searchsorted(self.xorig, xlim) self._x = self.xorig[ind0:ind1] self._y = self.yorig[ind0:ind1] N = len(self._x) if N<1000: self._marker = 's' self._linestyle = '-' else: self._marker = None self._linestyle = '-' Line2D.draw(self, renderer) fig = figure() ax = fig.add_subplot(111, autoscale_on=False) t = np.arange(0.0, 100.0, 0.01) s = np.sin(2*np.pi*t) line = ClippedLine(ax, t, s, color='g', ls='-', lw=2) ax.add_line(line) ax.set_xlim(10,30) ax.set_ylim(-1.1,1.1) show()
unlicense
igobrilhante/random-trajectory-generator
plots/plot_degree_networks.py
1
1669
from utils import db_utils __author__ = 'igobrilhante' import matplotlib.pyplot as plt import numpy as np from mpltools import style import brewer2mpl import utils from mpltools import layout style.use('ggplot') figsize = layout.figaspect(scale=0.8) fig, axes = plt.subplots(figsize=figsize) axes.xaxis.label.set_color('#000000') axes.yaxis.label.set_size(18) axes.xaxis.label.set_size(18) axes.yaxis.label.set_color('#000000') axes.xaxis.major.formatter._useMathText = True axes.yaxis.major.formatter._useMathText = True axes.set_yscale('log') axes.set_xscale('log') for spine in axes.spines: axes.spines[spine].set_color('#aeaeae') axes.set_axis_bgcolor('white') markers = ['o', '^', 's', 'D', 'o', "p", '8', '*'] marker_size = 10 line_width = 0.0 alpha = 0.8 hours = ["5", "6", "6"] dow = "wd" colors = brewer2mpl.get_map('YlGnBu', 'sequential', 9).mpl_colors colors = [colors[3], colors[5], colors[8]] i = 0 cities = ["Pisa", "Firenze", "Milan"] labels = ["Pisa", "Florence", "Milan"] for city in cities: table = "network."+city+"_fs_poiclusterf_traj_" + dow + "_" + hours[i] + "h_trajs_node$" agg = utils.agg_degree(db_utils.load_degree(table)) plt.plot(agg.degree, agg.total/float(np.sum(agg.total)), color=colors[i], label=labels[i], marker=markers[i], markersize=marker_size, linewidth=line_width, markeredgewidth=0.0, alpha=alpha) i += 1 plt.tick_params(axis='both', which='major', labelsize=16, colors="#000000") # plt.xlim([0, 1000]) # plt.ylim([-100, 100]) plt.xlabel('Degree') plt.ylabel('Probability') fig.tight_layout() # leg = plt.legend(loc=1, prop={'size': 16}) leg.get_frame().set_facecolor("white") plt.show()
mit
zhreshold/mxnet
python/mxnet/numpy/multiarray.py
2
394970
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=too-many-lines, unused-argument """numpy ndarray and util functions.""" try: from __builtin__ import all as py_all from __builtin__ import slice as py_slice except ImportError: from builtins import all as py_all from builtins import slice as py_slice from array import array as native_array import functools import ctypes import warnings import numpy as _np from .. import _deferred_compute as dc from ..autograd import is_recording from ..ndarray import NDArray, _DTYPE_NP_TO_MX, _GRAD_REQ_MAP from ..ndarray import indexing_key_expand_implicit_axes, get_indexing_dispatch_code,\ get_oshape_of_gather_nd_op from ..ndarray._internal import _set_np_ndarray_class from . import _op as _mx_np_op from ..base import check_call, _LIB, NDArrayHandle, c_array from ..base import mx_real_t, c_array_buf, mx_uint, numeric_types, integer_types from ..context import Context from ..util import set_module, wrap_np_unary_func, wrap_np_binary_func,\ is_np_default_dtype from ..context import current_context from ..ndarray import numpy as _mx_nd_np from ..ndarray.numpy import _internal as _npi from ..ndarray.ndarray import _storage_type, from_numpy from .utils import _get_np_op from .fallback import * # pylint: disable=wildcard-import,unused-wildcard-import from . import fallback __all__ = ['ndarray', 'empty', 'empty_like', 'array', 'shape', 'median', 'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'all', 'any', 'broadcast_to', 'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod', 'power', 'bitwise_not', 'delete', 'trace', 'transpose', 'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'invert', 'sqrt', 'cbrt', 'abs', 'absolute', 'fabs', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'histogram', 'fix', 'ceil', 'floor', 'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'append', 'argsort', 'sort', 'tensordot', 'eye', 'linspace', 'logspace', 'expand_dims', 'tile', 'arange', 'array_split', 'split', 'hsplit', 'vsplit', 'dsplit', 'flatnonzero', 'tril_indices', 'concatenate', 'stack', 'vstack', 'row_stack', 'column_stack', 'hstack', 'dstack', 'average', 'mean', 'maximum', 'fmax', 'minimum', 'fmin', 'amax', 'amin', 'max', 'min', 'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'insert', 'indices', 'copysign', 'ravel', 'unravel_index', 'diag_indices_from', 'hanning', 'hamming', 'blackman', 'logical_and', 'logical_or', 'logical_xor', 'flip', 'flipud', 'fliplr', 'around', 'round', 'round_', 'arctan2', 'hypot', 'triu_indices_from', 'triu_indices', 'tri', 'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad', 'unique', 'lcm', 'tril', 'triu', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer', 'cross', 'kron', 'equal', 'not_equal', 'interp', 'greater', 'less', 'greater_equal', 'less_equal', 'roll', 'rot90', 'einsum', 'true_divide', 'nonzero', 'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff', 'ediff1d', 'resize', 'matmul', 'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite', 'polyval', 'where', 'bincount', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'fill_diagonal', 'squeeze', 'diagflat', 'repeat', 'prod', 'pad', 'cumsum', 'sum', 'rollaxis', 'diag', 'diagonal'] __all__ += fallback.__all__ # Return code for dispatching indexing function call _NDARRAY_UNSUPPORTED_INDEXING = -1 _NDARRAY_BASIC_INDEXING = 0 _NDARRAY_ADVANCED_INDEXING = 1 _NDARRAY_EMPTY_TUPLE_INDEXING = 2 # Return code for 0-d boolean array handler _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY = -1 _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE = 0 _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE = 1 # This function is copied from ndarray.py since pylint # keeps giving false alarm error of undefined-all-variable def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): # pylint: disable=redefined-outer-name """Return a new handle with specified shape and context. Empty handle is only used to hold results. Returns ------- handle A new empty `ndarray` handle. """ hdl = NDArrayHandle() check_call(_LIB.MXNDArrayCreateEx( c_array_buf(mx_uint, native_array('I', shape)), mx_uint(len(shape)), ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), ctypes.c_int(int(delay_alloc)), ctypes.c_int(int(_DTYPE_NP_TO_MX[_np.dtype(dtype).type])), ctypes.byref(hdl))) return hdl def _reshape_view(a, *shape): # pylint: disable=redefined-outer-name """Returns a **view** of this array with a new shape without altering any data. Parameters ---------- shape : tuple of int, or n ints The new shape should not change the array size, namely ``np.prod(new_shape)`` should be equal to ``np.prod(a.shape)``. Some dimensions of the shape can take special value -1, which infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1. Returns ------- ndarray An array with desired shape that shares data with this array. """ if len(shape) == 1 and isinstance(shape[0], (list, tuple)): shape = shape[0] handle = NDArrayHandle() check_call(_LIB.MXNDArrayReshape64(a.handle, len(shape), c_array(ctypes.c_int64, shape), False, ctypes.byref(handle))) return ndarray(handle=handle, writable=a.writable) def _as_mx_np_array(object, ctx=None): """Convert object to mxnet.numpy.ndarray.""" if isinstance(object, _np.ndarray): if not object.flags['C_CONTIGUOUS']: object = _np.ascontiguousarray(object, dtype=object.dtype) ret = from_numpy(object, array_cls=ndarray) return ret if ctx is None else ret.as_in_ctx(ctx=ctx) elif isinstance(object, (integer_types, numeric_types)): return object elif isinstance(object, (list, tuple)): tmp = [_as_mx_np_array(arr) for arr in object] return object.__class__(tmp) elif isinstance(object, (_np.bool_, _np.bool)): return array(object, dtype=_np.bool_, ctx=ctx) else: raise TypeError('Does not support converting {} to mx.np.ndarray.'.format(str(type(object)))) def _as_onp_array(object): """Convert object to mxnet.numpy.ndarray.""" cur_ctx = None if isinstance(object, ndarray): return object.asnumpy(), object.ctx elif isinstance(object, (list, tuple)): tmp = [] for arr in object: arr, tmp_ctx = _as_onp_array(arr) # if isinstance(arr, (list, tuple)): # raise TypeError('type {} not supported'.format(str(type(arr)))) tmp.append(arr) if cur_ctx is None: cur_ctx = tmp_ctx elif tmp_ctx is not None and cur_ctx != tmp_ctx: raise ValueError('Ambiguous to set the context for the output ndarray since' # pylint: disable=too-few-format-args ' input ndarrays are allocated on different devices: {} and {}' .format(str(cur_ctx, tmp_ctx))) return object.__class__(tmp), cur_ctx else: return object, cur_ctx # Have to use 0 as default value for stype since pylint does not allow # importing _STORAGE_TYPE_DEFAULT from ndarray.py. def _np_ndarray_cls(handle, writable=True, stype=0): if stype == -1: stype = _storage_type(handle) if stype != 0: raise ValueError('_np_ndarray_cls currently only supports default storage ' 'type, while received stype = {}'.format(stype)) return ndarray(handle, writable=writable) _set_np_ndarray_class(_np_ndarray_cls) _NUMPY_ARRAY_FUNCTION_DICT = {} _NUMPY_ARRAY_UFUNC_DICT = {} _FALLBACK_ARRAY_FUNCTION_WARNED_RECORD = {} _FALLBACK_ARRAY_UFUNC_WARNED_RECORD = {} def wrap_mxnp_np_ufunc(func): """ A convenience decorator for wrapping for python overload-able ops to provide type casting for mixed use of mx_np and onp inputs. Parameters ---------- func : a python overload-able binary function to be wrapped for type casting. Returns ------- Function A function wrapped with type casted. """ @functools.wraps(func) def _wrap_mxnp_np_ufunc(x1, x2): if isinstance(x2, _np.ndarray): x2 = _as_mx_np_array(x2, ctx=x1.ctx) return func(x1, x2) return _wrap_mxnp_np_ufunc @set_module('mxnet.numpy') # pylint: disable=invalid-name class ndarray(NDArray): """ ndarray(handle, writable=True): An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.). Arrays should be constructed using `array`, `zeros` or `empty`. Currently, only c-contiguous arrays are supported. Arrays should be constructed using `array`, `zeros` or `empty` (refer to the See Also section below). The parameters given here refer to a low-level method (`ndarray(...)`) for instantiating an array. For more information, refer to the `mxnet.numpy` module and examine the methods and attributes of an array. Parameters ---------- handle: int The ndarray handle in backend (C++). writable: bool Indicates whether inplace-assignment is allowed for the array. Attributes ---------- T : ndarray Transpose of the array. dtype : dtype object Describes the format of the elements in the array. size : int Number of elements in the array. ndim : int The array's number of dimensions. shape : tuple of ints Shape of the array. See Also -------- array : Construct an array. zeros : Create an array, each element of which is zero. empty : Create an array, but leave its allocated memory unchanged (i.e., it contains "garbage"). """ @staticmethod def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # pylint: disable=bad-staticmethod-argument """ Dispatch official NumPy unary/binary operator calls on mxnet.numpy.ndarray to this function. The operators must comply with the ufunc definition in NumPy. The following code is adapted from CuPy. Casting rules for operator with mx_np and onp (inplace op will keep its type) | Expression | a type | b type | out type| | --- | --- | --- | --- | | `a += b` | onp | mx_np | onp | | `a += b` | mx_np | onp | mx_np | | `c = a + b` | onp | mx_np | mx_np | | `c = a + b` | mx_np | onp | mx_np | """ ufunc_list = ["add", "subtract", "multiply", "divide", "true_divide", "floor_divide", "power", "remainder", "bitwise_and", "bitwise_or", "bitwise_xor", "left_shift", "right_shift", "greater", "greater_equal", "less", "less_equal", "not_equal", "equal", "matmul"] if 'out' in kwargs: # need to unfold tuple argument in kwargs out = kwargs['out'] if len(out) != 1: raise ValueError('The `out` parameter must have exactly one ndarray') kwargs['out'] = out[0] if method == '__call__': name = ufunc.__name__ mx_ufunc = _NUMPY_ARRAY_UFUNC_DICT.get(name, None) onp_op = _get_np_op(name) if mx_ufunc is None: # try to fallback to official NumPy op if is_recording(): raise ValueError("Falling back to NumPy operator {} with autograd active is not supported." "Please consider moving the operator to the outside of the autograd scope.")\ .format(name) new_inputs = [arg.asnumpy() if isinstance(arg, ndarray) else arg for arg in inputs] if onp_op not in _FALLBACK_ARRAY_UFUNC_WARNED_RECORD: import logging logging.warning("np.%s is a fallback operator, " "which is actually using official numpy's implementation", name) _FALLBACK_ARRAY_UFUNC_WARNED_RECORD[onp_op] = True out = onp_op(*new_inputs, **kwargs) return _as_mx_np_array(out, ctx=inputs[0].ctx) # ops with np mx_np elif name in ufunc_list and isinstance(inputs[0], _np.ndarray): # inplace if 'out' in kwargs: new_inputs = [arg.asnumpy() if isinstance(arg, ndarray) else arg for arg in inputs] return onp_op(*new_inputs, **kwargs) else: new_inputs = [_as_mx_np_array(arg, ctx=inputs[1].ctx) if isinstance(arg, _np.ndarray) else arg for arg in inputs] return mx_ufunc(*new_inputs, **kwargs) else: return mx_ufunc(*inputs, **kwargs) else: return NotImplemented @staticmethod def __array_function__(self, func, types, args, kwargs): # pylint: disable=bad-staticmethod-argument """ Dispatch official NumPy operators that comply with the array function protocol to this function. """ mx_np_func = _NUMPY_ARRAY_FUNCTION_DICT.get(func, None) func_name = func.__name__ if mx_np_func is None: # try to fallback to official NumPy op if is_recording(): raise ValueError("Falling back to NumPy operator {} with autograd active is not supported." "Please consider moving the operator to the outside of the autograd scope.")\ .format(func) new_args, cur_ctx = _as_onp_array(args) if cur_ctx is None: raise ValueError('Unknown context for the input ndarrays. It is probably a bug. Please' ' create an issue on GitHub.') new_kwargs = {} for k, v in kwargs.items(): new_kwargs[k] = v.asnumpy() if isinstance(v, ndarray) else v if func not in _FALLBACK_ARRAY_FUNCTION_WARNED_RECORD: import logging logging.warning("np.%s is a fallback operator, " "which is actually using official numpy's implementation.", func_name) _FALLBACK_ARRAY_FUNCTION_WARNED_RECORD[func] = True out = func(*new_args, **new_kwargs) return _as_mx_np_array(out, ctx=cur_ctx) else: # Note: this allows subclasses that don't override # __array_function__ to handle mxnet.numpy.ndarray objects if not py_all(issubclass(t, ndarray) for t in types): return NotImplemented return mx_np_func(*args, **kwargs) def _get_np_basic_indexing(self, key): """ This function indexes ``self`` with a tuple of `slice` objects only. """ key_nd = tuple(idx for idx in key if idx is not None) if len(key_nd) < self.ndim: raise RuntimeError( 'too few indices after normalization: expected `ndim` ({}) ' 'but got {}. This is a bug, please report it!' ''.format(self.ndim, len(key_nd)) ) if len(key_nd) > self.ndim: raise IndexError( 'too many indices ({}) for array with {} dimensions' ''.format(len(key_nd), self.ndim) ) none_axes = [ax for ax in range(len(key)) if key[ax] is None] # pylint: disable=invalid-name slc_key, int_axes = self._basic_indexing_key_int_to_slice(key_nd) new_axes = self._new_axes_after_basic_indexing(none_axes, key) # Check bounds for integer axes for ax in int_axes: # pylint: disable=invalid-name if not -self.shape[ax] <= key_nd[ax] < self.shape[ax]: raise IndexError( 'index {} is out of bounds for axis {} with size {}' ''.format(key_nd[ax], ax, self.shape[ax])) if self._basic_indexing_slice_is_contiguous(slc_key, self.shape): # Create a shared-memory view by using low-level flat slicing flat_begin, flat_end = self._basic_indexing_contiguous_flat_begin_end( slc_key, self.shape ) handle = NDArrayHandle() flat_self = self.reshape_view(-1) check_call( _LIB.MXNDArraySlice( flat_self.handle, mx_uint(flat_begin), mx_uint(flat_end), ctypes.byref(handle), ) ) sliced_shape = self._basic_indexing_sliced_shape(slc_key, self.shape) sliced = self.__class__(handle=handle, writable=self.writable) if 0 in sliced_shape: sliced = sliced.reshape(sliced_shape) else: sliced = sliced.reshape_view(sliced_shape) else: begin, end, step = self._basic_indexing_key_to_begin_end_step( slc_key, self.shape, keep_none=True ) sliced = _npi.slice(self, begin, end, step) # Reshape to final shape due to integer and `None` entries in `key`. final_shape = [sliced.shape[i] for i in range(sliced.ndim) if i not in int_axes] for ax in new_axes: # pylint: disable=invalid-name final_shape.insert(ax, 1) if sliced.size == 0: return sliced.reshape(tuple(final_shape)) else: return sliced.reshape_view(tuple(final_shape)) def _get_np_empty_tuple_indexing(self, key): new_shape = [] num_none = 0 for i, idx in enumerate(key): if idx is None: new_shape.append(1) # expand dimension num_none += 1 elif idx == (): new_shape.append(0) # 0 shape elif idx == slice(None, None, None): new_shape.append(self.shape[i - num_none]) return empty(new_shape, dtype=self.dtype) def _get_np_advanced_indexing(self, key): idcs, new_axes = self._get_index_nd(key) if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck idcs = idcs.as_np_ndarray() else: idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) sliced = _npi.gather_nd(self, idcs) # Reshape due to `None` entries in `key`. if new_axes: final_shape = [sliced.shape[i] for i in range(sliced.ndim)] for ax in new_axes: # pylint: disable=invalid-name final_shape.insert(ax, 1) return sliced.reshape(tuple(final_shape)) else: return sliced def _set_np_advanced_indexing(self, key, value): """This function is called by __setitem__ when key is an advanced index.""" idcs, new_axes = self._get_index_nd(key) if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck idcs = idcs.as_np_ndarray() else: idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) vshape = get_oshape_of_gather_nd_op(self.shape, idcs.shape) value_nd = self._prepare_value_nd(value, bcast_shape=vshape, squeeze_axes=new_axes) self._scatter_set_nd(value_nd, idcs) # pylint: disable=redefined-outer-name def _get_np_boolean_indexing(self, key, ndim, shape): """ There are two types of boolean indices (which are equivalent, for the most part though). This function will handle single boolean indexing for higher speed. If this is not the case, it is instead expanded into (multiple) integer array indices and will be handled by advanced indexing. """ key_shape = key.shape key_ndim = len(key_shape) if ndim < key_ndim: raise IndexError('too many indices, whose ndim = {}, for array with ndim = {}' .format(key_ndim, ndim)) for i in range(key_ndim): if key_shape[i] != shape[i]: raise IndexError('boolean index did not match indexed array along dimension {};' ' dimension is {} but corresponding boolean dimension is {}' .format(i, shape[i], key_shape[i])) remaining_dims = shape[key_ndim:] data = _reshape_view(self, -1, *remaining_dims) key = _reshape_view(key, -1) return _reshape_view(_npi.boolean_mask(data, key), -1, *remaining_dims) def _set_np_boolean_indexing(self, key, value): """ There are two types of boolean indices (which are equivalent, for the most part though). This function will handle single boolean assign for higher speed. If this is not the case, it is instead expanded into (multiple) integer array indices and will be handled by advanced assign. """ if isinstance(value, numeric_types): _npi.boolean_mask_assign_scalar(data=self, mask=key, value=int(value) if isinstance(value, bool) else value, start_axis=0, out=self) elif isinstance(value, ndarray): _npi.boolean_mask_assign_tensor(data=self, mask=key, value=value, start_axis=0, out=self) else: raise NotImplementedError('type %s is not supported.'%(type(value))) # pylint: disable=too-many-return-statements def __getitem__(self, key): """Return self[key]. Returns a sliced view of this array if the elements fetched are contiguous in memory; otherwise, returns a newly created NDArray. This functions supports advanced indexing defined in the following reference with some restrictions. Boolean indexing is supported only for a single boolean ndarray as a key. Mixing boolean ndarray with other index types is not supported in ``advanced`` indexing. For basic indexing, i.e., if ``key`` consists only of integers, ``slice``, ``Ellipsis`` (``...``) and ``None``, a mutable view is returned that shares memory with this array if the accessed portion is contiguous in memory. Otherwise, a newly created ``ndarray`` is returned. This functions supports advanced indexing as defined in `the NumPy advanced indexing documentation <https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing>`_. Parameters ---------- key : int, slice, list, np.ndarray, mx.np.ndarray, or tuple of all previous types Indexing key. Examples -------- The default is to give explicit indices for all axes: >>> x = np.arange(6).reshape(2, 3) >>> x array([[0., 1., 2.], [3., 4., 5.]]) >>> x[0, :2] array([0., 1.]) >>> x[:, :-1] array([[0., 1.], [3., 4.]]) If fewer indices are given, they are automatically supplemented by an appropriate number of ``slice(None)`` ("``:``") to the right. For instance, a single integer indexes along the first axis: >>> x[0] array([0., 1., 2.]) >>> x[1:] array([[3., 4., 5.]]) To omit a range of axes that should be kept as-is, an `Ellipsis` ("``...``") can be used: >>> x = np.arange(16).reshape(2, 2, 2, 2) >>> x[0, ..., 1] array([[1., 3.], [5., 7.]]) >>> x[0, :, :, 1] # equivalent array([[1., 3.], [5., 7.]]) New axes of length 1 can be created by inserting ``None`` (`numpy.newaxis`) in the index: >>> x = np.arange(6).reshape(2, 3) >>> x[None, :, :] array([[[0., 1., 2.], [3., 4., 5.]]]) >>> x[None, :, :].shape (1, 2, 3) If the indexed portion of the array is contiguous in memory, no data is copied. Instead, a shared-memory view of the original array is returned, and changes to that view affect the original array: >>> x = np.arange(8).reshape(2, 2, 2) >>> y = x[0] # contiguous >>> y array([[0., 1.], [2., 3.]]) >>> y[:] = -1 >>> x array([[[-1., -1.], [-1., -1.]], [[ 4., 5.], [ 6., 7.]]]) >>> x = np.arange(8).reshape(2, 2, 2) >>> y = x[1, :1, :] # contiguous >>> y array([[4., 5.]]) >>> y[:] = -1 >>> x array([[[ 0., 1.], [ 2., 3.]], [[-1., -1.], [ 6., 7.]]]) >>> x = np.arange(0, 8).reshape(2, 2, 2) >>> y = x[:, :, 1] # not contiguous >>> y array([[1., 3.], [5., 7.]]) >>> y[:] = -1 >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) If the indexing key contains `list`, `numpy.ndarray` or `NDArray` objects, advanced indexing is triggered, which always returns a copy: >>> x = np.arange(8).reshape(2, 2, 2) >>> x[[0, 1]] array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> x[[0, 1], :] # equivalent array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> y = np.array([0, 1], dtype='int32') >>> x[1:, y] array([[[4., 5.], [6., 7.]]]) >>> y = np.array([0, 1], dtype='int32') >>> x[1:, y] array([[[4., 5.], [6., 7.]]]) Get negative elements in an ndarray through boolean array indexing >>> x = np.array([1., -1., -2., 3]) >>> x[x < 0] array([-1., -2.]) For more imformation related to boolean indexing, please refer to https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html. """ ndim = self.ndim # pylint: disable=redefined-outer-name shape = self.shape # pylint: disable=redefined-outer-name if isinstance(key, bool): # otherwise will be treated as 0 and 1 key = array(key, dtype=_np.bool, ctx=self.ctx) if isinstance(key, list): try: new_key = _np.array(key) if new_key.dtype == _np.bool_: key = new_key except Exception as err: raise TypeError('{}'.format(str(err))) if isinstance(key, _np.ndarray): if dc.is_deferred_compute(): raise TypeError('Indexing with a numpy array is not supported in HybridBlock.') if key.dtype == _np.bool_: key = array(key, dtype='bool', ctx=self.ctx) # Handle single boolean index of matching dimensionality and size first for higher speed # If the boolean array is mixed with other idices, it is instead expanded into (multiple) # integer array indices and will be handled by advanced indexing. # Come before the check self.dim == 0 as it also handle the 0-dim case. if isinstance(key, ndarray) and key.dtype == _np.bool_: return self._get_np_boolean_indexing(key, ndim, shape) if ndim == 0 and key != (): raise IndexError('scalar tensor can only accept `()` as index') # Handle simple cases for higher speed if isinstance(key, tuple) and len(key) == 0: return self if isinstance(key, tuple) and len(key) == ndim\ and py_all(isinstance(idx, integer_types) for idx in key): out = self for idx in key: out = out[idx] return out if isinstance(key, integer_types): if key > shape[0] - 1: raise IndexError( 'index {} is out of bounds for axis 0 with size {}'.format( key, shape[0])) return self._at(key) elif isinstance(key, py_slice): if key.step is None or key.step == 1: if key.start is not None or key.stop is not None: return self._slice(key.start, key.stop) else: return self elif key.step == 0: raise ValueError("slice step cannot be zero") # For 0-d boolean indices: A new axis is added, # but at the same time no axis is "used". So if we have True, # we add a new axis (a bit like with np.newaxis). If it is # False, we add a new axis, but this axis has 0 entries. # prepend is defined to handle this case. # prepend = _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY/-1 means there is no 0-d boolean scalar # prepend = _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE/0 means an zero dim must be expanded # prepend = _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE/1 means a new axis must be prepended key, prepend = indexing_key_expand_implicit_axes(key, self.shape) indexing_dispatch_code = get_indexing_dispatch_code(key) if indexing_dispatch_code == _NDARRAY_EMPTY_TUPLE_INDEXING: # won't be affected by zero-dim boolean indices return self._get_np_empty_tuple_indexing(key) elif indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE: return empty((0,) + self._get_np_basic_indexing(key).shape, dtype=self.dtype, ctx=self.ctx) if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE: key = (_np.newaxis,) + key return self._get_np_basic_indexing(key) elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: if dc.is_deferred_compute(): raise TypeError('Advanced indexing is not supported in HybridBlock.') if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE: return empty((0,) + self._get_np_adanced_indexing(key).shape, dtype=self.dtype, ctx=self.ctx) if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE: key = (_np.newaxis,) + key return self._get_np_advanced_indexing(key) else: raise RuntimeError # pylint: disable=inconsistent-return-statements def __setitem__(self, key, value): """Sets ``self[key]`` to ``value``. This functions supports advanced indexing as defined in `the NumPy advanced indexing documentation <https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing>`_, with the restriction that boolean array indexing is not supported. Parameters ---------- key : int, slice, list, np.ndarray, mx.np.ndarray, or tuple of all previous types The indexing key. value : scalar or array-like object that can be broadcast to the shape of self[key] The value to set. Examples -------- >>> x = np.zeros((2, 3)) >>> x[:] = 1 >>> x array([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> x[:, 1:2] = 2 >>> x array([[ 1., 2., 1.], [ 1., 2., 1.]]) >>> x[1:2, 1:] = 3 >>> x array([[ 1., 2., 1.], [ 1., 3., 3.]]) >>> x[1:, 0:2] = np.zeros((1, 2)) >>> x array([[ 1., 2., 1.], [ 0., 0., 3.]]) >>> x[1, 2] = 4 >>> x array([[ 1., 2., 1.], [ 0., 0., 4.]]) >>> x[[0], [1, 2]] = 5 >>> x array([[ 1., 5., 5.], [ 0., 0., 4.]]) >>> x[::-1, 0:2:2] = [6] >>> x array([[ 6., 5., 5.], [ 6., 0., 4.]]) For imformation related to boolean indexing, please refer to https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html. """ if isinstance(value, NDArray) and not isinstance(value, ndarray): raise TypeError('Cannot assign mx.nd.NDArray to mxnet.numpy.ndarray') if isinstance(key, bool): # otherwise will be treated as 0 and 1 key = array(key, dtype=_np.bool) # Handle single boolean assign of matching dimensionality and size first for higher speed # If the boolean array is mixed with other idices, it is instead expanded into (multiple) # integer array indices and will be handled by advanced assign. # Come before the check self.dim == 0 as it also handle the 0-dim case. if isinstance(key, ndarray) and key.dtype == _np.bool: return self._set_np_boolean_indexing(key, value) # handle basic and advanced indexing if self.ndim == 0: if not isinstance(key, tuple) or len(key) != 0: raise IndexError('scalar tensor can only accept `()` as index') if isinstance(value, numeric_types): self._full(value) elif isinstance(value, ndarray) and value.size == 1: if value.shape != self.shape: value = value.reshape(self.shape) value.copyto(self) elif isinstance(value, (_np.ndarray, _np.generic)) and value.size == 1: if isinstance(value, _np.generic) or value.shape != self.shape: value = value.reshape(self.shape) self._sync_copyfrom(value) else: raise ValueError('setting an array element with a sequence.') else: # For 0-d boolean indices: A new axis is added, # but at the same time no axis is "used". So if we have True, # we add a new axis (a bit like with np.newaxis). If it is # False, we add a new axis, but this axis has 0 entries. # prepend is defined to handle this case. # prepend == _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY/-1 means there is no 0-d boolean scalar # prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE/0 means an zero dim must be expanded # prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE/1 means a new axis must be expanded # prepend actually has no influence on __setitem__ key, prepend = indexing_key_expand_implicit_axes(key, self.shape) if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE: return # no action is needed slc_key = tuple(idx for idx in key if idx is not None) if len(slc_key) < self.ndim: raise RuntimeError( 'too few indices after normalization: expected `ndim` ({}) ' 'but got {}. This is a bug, please report it!' ''.format(self.ndim, len(slc_key)) ) if len(slc_key) > self.ndim and self.ndim != 0: raise IndexError( 'too many indices ({}) for array with {} dimensions' ''.format(len(slc_key), self.ndim) ) indexing_dispatch_code = get_indexing_dispatch_code(slc_key) if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: self._set_nd_basic_indexing(key, value) # function is inheritated from NDArray class elif indexing_dispatch_code == _NDARRAY_EMPTY_TUPLE_INDEXING: pass # no action needed elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: self._set_np_advanced_indexing(key, value) else: raise ValueError( 'Indexing NDArray with index {} of type {} is not supported' ''.format(key, type(key)) ) def _prepare_value_nd(self, value, bcast_shape, squeeze_axes=None): """Return a broadcast `ndarray` with same context and dtype as ``self``. For setting item, The returned `ndarray` is squeezed according to squeeze_axes since the value_nd is assigned to not yet expanded space in original array. `value`: numeric types or array like. `bcast_shape`: a shape tuple. `squeeze_axes`: a sequence of axes to squeeze in the value array. Note: mxnet.numpy.ndarray not support NDArray as assigned value. """ if isinstance(value, numeric_types): value_nd = full(bcast_shape, value, ctx=self.ctx, dtype=self.dtype) elif isinstance(value, self.__class__): value_nd = value.as_in_ctx(self.ctx) if value_nd.dtype != self.dtype: value_nd = value_nd.astype(self.dtype) else: try: value_nd = array(value, ctx=self.ctx, dtype=self.dtype) except: raise TypeError('mxnet.np.ndarray does not support assignment with non-array-like ' 'object {} of type {}'.format(value, type(value))) # For advanced indexing setitem, if there is None in indices, we need to squeeze the # assigned value_nd since None is also ignored in slicing the original array. if squeeze_axes and value_nd.ndim > len(bcast_shape): squeeze_axes = tuple([ax for ax in squeeze_axes if ax < len(value_nd.shape)]) value_nd = value_nd.squeeze(axis=tuple(squeeze_axes)) # handle the cases like the following # a = np.zeros((3, 3)), b = np.ones((1, 1, 1, 1, 3)), a[0] = b # b cannot broadcast directly to a[0].shape unless its leading 1-size axes are trimmed if value_nd.ndim > len(bcast_shape): squeeze_axes = [] for i in range(value_nd.ndim - len(bcast_shape)): if value_nd.shape[i] == 1: squeeze_axes.append(i) else: break if squeeze_axes: value_nd = value_nd.squeeze(squeeze_axes) if value_nd.shape != bcast_shape: if value_nd.size == 0: value_nd = value_nd.reshape(bcast_shape) else: value_nd = value_nd.broadcast_to(bcast_shape) return value_nd @wrap_mxnp_np_ufunc def __add__(self, other): """x.__add__(y) <=> x + y""" return add(self, other) @wrap_mxnp_np_ufunc def __iadd__(self, other): """x.__iadd__(y) <=> x += y""" if not self.writable: raise ValueError('trying to add to a readonly ndarray') return add(self, other, out=self) def __invert__(self): """x.__invert__() <=> ~x""" return invert(self) @wrap_mxnp_np_ufunc def __and__(self, other): """x.__and__(y) <=> x & y""" return bitwise_and(self, other) @wrap_mxnp_np_ufunc def __or__(self, other): """x.__or__(y) <=> x | y""" return bitwise_or(self, other) @wrap_mxnp_np_ufunc def __xor__(self, other): """x.__xor__(y) <=> x ^ y""" return bitwise_xor(self, other) @wrap_mxnp_np_ufunc def __iand__(self, other): """x.__iand__(y) <=> x &= y""" return bitwise_and(self, other, out=self) @wrap_mxnp_np_ufunc def __ior__(self, other): """x.__ior__(y) <=> x |= y""" return bitwise_or(self, other, out=self) @wrap_mxnp_np_ufunc def __ixor__(self, other): """x.__ixor__(y) <=> x ^= y""" return bitwise_xor(self, other, out=self) def __round__(self, n=0): """x.__round__(n)""" return round(self, decimals=n) def __abs__(self): """x.__abs__()""" return absolute(self) def __ceil__(self): """x.__ceil__()""" return ceil(self) def __floor__(self): """x.__floor__()""" return floor(self) def __trunc__(self): """x.__trunc__()""" return trunc(self) @wrap_mxnp_np_ufunc def __sub__(self, other): """x.__sub__(y) <=> x - y""" return subtract(self, other) @wrap_mxnp_np_ufunc def __isub__(self, other): """x.__isub__(y) <=> x -= y""" if not self.writable: raise ValueError('trying to subtract from a readonly ndarray') return subtract(self, other, out=self) @wrap_mxnp_np_ufunc def __rsub__(self, other): """x.__rsub__(y) <=> y - x""" return subtract(other, self) @wrap_mxnp_np_ufunc def __mul__(self, other): """x.__mul__(y) <=> x * y""" return multiply(self, other) def __neg__(self): return negative(self) @wrap_mxnp_np_ufunc def __imul__(self, other): """x.__imul__(y) <=> x *= y""" if not self.writable: raise ValueError('trying to add to a readonly ndarray') return multiply(self, other, out=self) @wrap_mxnp_np_ufunc def __rmul__(self, other): """x.__rmul__(y) <=> y * x""" return self.__mul__(other) @wrap_mxnp_np_ufunc def __div__(self, other): """x.__div__(y) <=> x / y""" return divide(self, other) @wrap_mxnp_np_ufunc def __rdiv__(self, other): """x.__rdiv__(y) <=> y / x""" return divide(other, self) @wrap_mxnp_np_ufunc def __idiv__(self, other): """x.__idiv__(y) <=> x /= y""" return divide(self, other, out=self) @wrap_mxnp_np_ufunc def __truediv__(self, other): """x.__truediv__(y) <=> x / y""" return divide(self, other) @wrap_mxnp_np_ufunc def __rtruediv__(self, other): """x.__rtruediv__(y) <=> y / x""" return divide(other, self) @wrap_mxnp_np_ufunc def __itruediv__(self, other): """x.__itruediv__(y) <=> x /= y""" return divide(self, other, out=self) @wrap_mxnp_np_ufunc def __mod__(self, other): """x.__mod__(y) <=> x % y""" return mod(self, other) @wrap_mxnp_np_ufunc def __rmod__(self, other): """x.__rmod__(y) <=> y % x""" return mod(other, self) @wrap_mxnp_np_ufunc def __imod__(self, other): """x.__imod__(y) <=> x %= y""" return mod(self, other, out=self) @wrap_mxnp_np_ufunc def __pow__(self, other): """x.__pow__(y) <=> x ** y""" return power(self, other) @wrap_mxnp_np_ufunc def __rpow__(self, other): """x.__rpow__(y) <=> y ** x""" return power(other, self) @wrap_mxnp_np_ufunc def __eq__(self, other): """x.__eq__(y) <=> x == y""" return equal(self, other) def __hash__(self): raise NotImplementedError @wrap_mxnp_np_ufunc def __ne__(self, other): """x.__ne__(y) <=> x != y""" return not_equal(self, other) @wrap_mxnp_np_ufunc def __gt__(self, other): """x.__gt__(y) <=> x > y""" return greater(self, other) @wrap_mxnp_np_ufunc def __ge__(self, other): """x.__ge__(y) <=> x >= y""" return greater_equal(self, other) @wrap_mxnp_np_ufunc def __lt__(self, other): """x.__lt__(y) <=> x < y""" return less(self, other) @wrap_mxnp_np_ufunc def __le__(self, other): """x.__le__(y) <=> x <= y""" return less_equal(self, other) @wrap_mxnp_np_ufunc def __matmul__(self, other): """x.__matmul__(y) <=> x @ y""" return matmul(self, other) @wrap_mxnp_np_ufunc def __rmatmul__(self, other): """x.__rmatmul__(y) <=> y @ x""" return matmul(other, self) @wrap_mxnp_np_ufunc def __imatmul__(self, other): """x.__imatmul__(y) <=> x @= y""" return matmul(self, other, out=self) def __bool__(self): num_elements = self.size if num_elements == 0: warnings.simplefilter('default') warnings.warn('The truth value of an empty array is ambiguous. Returning False, but in' ' future this will result in an error.', DeprecationWarning) return False elif num_elements == 1: return bool(self.item()) else: raise ValueError("The truth value of an ndarray with multiple elements is ambiguous.") __nonzero__ = __bool__ def __float__(self): num_elements = self.size if num_elements != 1: raise TypeError('only size-1 arrays can be converted to Python scalars') return float(self.item()) def __int__(self): num_elements = self.size if num_elements != 1: raise TypeError('only size-1 arrays can be converted to Python scalars') return int(self.item()) def __len__(self): """Number of elements along the first axis.""" shape = self.shape # pylint: disable=redefined-outer-name if len(shape) == 0: raise TypeError('len() of unsized object') return self.shape[0] def __reduce__(self): return ndarray, (None,), self.__getstate__() def item(self, *args): """Copy an element of an array to a standard Python scalar and return it. Parameters ---------- *args : Arguments (variable number and type) none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned. int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return. tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array. Returns ------- z : Standard Python scalar object A copy of the specified element of the array as a suitable Python scalar. """ # TODO(junwu): no need to call asnumpy() on the whole array. return self.asnumpy().item(*args) def nonzero(self): """Return the indices of the elements that are non-zero. Refer to `numpy.nonzero` for full documentation. See Also -------- numpy.nonzero : equivalent function """ return nonzero(self) @property # pylint: disable= invalid-name, undefined-variable def T(self): """Same as self.transpose(). This always returns a copy of self.""" return self.transpose() # pylint: enable= invalid-name, undefined-variable def all(self, axis=None, out=None, keepdims=False): return _mx_nd_np.all(self, axis=axis, out=out, keepdims=keepdims) def any(self, axis=None, out=None, keepdims=False): return _mx_nd_np.any(self, axis=axis, out=out, keepdims=keepdims) def as_nd_ndarray(self): """Convert mxnet.numpy.ndarray to mxnet.ndarray.NDArray to use its fluent methods.""" hdl = NDArrayHandle() check_call(_LIB.MXShallowCopyNDArray(self.handle, ctypes.byref(hdl))) return NDArray(handle=hdl, writable=self.writable) def as_np_ndarray(self): """A convenience function for creating a numpy ndarray from the current ndarray with zero copy. For this class, it just returns itself since it's already a numpy ndarray.""" return self def __repr__(self): """ Returns a string representation of the array. The dtype of the ndarray will be appended if it's inconsistent with current dtype. The context of the ndarray will be appended for devices other than CPU. Examples -------- >>> from mxnet import np, npx >>> a = np.random.uniform(size=(2, 3)) >>> a array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]]) >>> print(a) [[0.5488135 0.5928446 0.71518934] [0.84426576 0.60276335 0.8579456 ]] >>> a.dtype dtype('float32') >>> npx.set_np_float64() >>> a array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]], dtype=float32) >>> npx.set_np_float64(default_float64=False) >>> a array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]]) >>> b = a.astype(np.float64) >>> b array([[0.54881352, 0.59284461, 0.71518934], [0.84426576, 0.60276335, 0.85794562]], dtype=float64) >>> print(b) [[0.54881352 0.59284461 0.71518934] [0.84426576 0.60276335 0.85794562]] >>> b.dtype dtype('float64') >>> c = a.copyto(npx.gpu(0)) >>> c array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]], ctx=gpu(0)) >>> print(c) [[0.5488135 0.5928446 0.71518934] [0.84426576 0.60276335 0.8579456 ]] @gpu(0) >>> d = b.copyto(npx.gpu(0)) >>> d array([[0.54881352, 0.59284461, 0.71518934], [0.84426576, 0.60276335, 0.85794562]], dtype=float64, ctx=gpu(0)) >>> print(d) [[0.54881352 0.59284461 0.71518934] [0.84426576 0.60276335 0.85794562]] @gpu(0) """ array_str = self.asnumpy().__repr__() dtype = self.dtype default_dtype = _np.float64 if is_np_default_dtype() else _np.float32 if 'dtype=' in array_str: if dtype == default_dtype: array_str = array_str[:array_str.rindex(',')] + ')' elif dtype not in (default_dtype, _np.bool_): array_str = array_str[:-1] + ', dtype={})'.format(dtype) context = self.ctx if context.device_type == 'cpu': return array_str return array_str[:-1] + ', ctx={})'.format(str(context)) def __str__(self): """Returns a string representation of the array.""" array_str = self.asnumpy().__str__() context = self.ctx if context.device_type == 'cpu' or self.ndim == 0: return array_str return '{array} @{ctx}'.format(array=array_str, ctx=context) def __format__(self, fmt): """Return value.__format__(format_spec). Overwrite to include 0-d array""" if self.ndim == 0: return self.item().__format__(fmt) elif len(fmt) == 0: return self.__str__().__format__(fmt) else: raise TypeError("Cannot format mxnet.numpy.ndarray with format_spec") def attach_grad(self, grad_req='write'): # pylint: disable=arguments-differ """Attach a gradient buffer to this ndarray, so that `backward` can compute gradient with respect to it. Parameters ---------- grad_req : {'write', 'add', 'null'} How gradient will be accumulated. - 'write': gradient will be overwritten on every backward. - 'add': gradient will be added to existing value on every backward. - 'null': do not compute gradient for this NDArray. """ grad = _mx_nd_np.zeros_like(self) # pylint: disable=undefined-variable grad_req = _GRAD_REQ_MAP[grad_req] check_call(_LIB.MXAutogradMarkVariables( 1, ctypes.pointer(self.handle), ctypes.pointer(mx_uint(grad_req)), ctypes.pointer(grad.handle))) @property def grad(self): """Returns gradient buffer attached to this ndarray.""" hdl = NDArrayHandle() check_call(_LIB.MXNDArrayGetGrad(self.handle, ctypes.byref(hdl))) if hdl.value is None: return None return _np_ndarray_cls(hdl) def detach(self): """Returns a new ndarray, detached from the current graph.""" hdl = NDArrayHandle() check_call(_LIB.MXNDArrayDetach(self.handle, ctypes.byref(hdl))) return _np_ndarray_cls(hdl) def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): # pylint: disable=arguments-differ,unused-argument, too-many-arguments """ Copy of the array, cast to a specified type. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout order of the result. 'C' means C order, 'F' means Fortran order, 'A' means 'F' order if all the arrays are Fortran contiguous, 'C' order otherwise, and 'K' means as close to the order the array elements appear in memory as possible. Default is 'K'. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. * 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. subok : bool, optional If True, then sub-classes will be passed-through (default), otherwise the returned array will be forced to be a base-class array. copy : bool, optional Default `True`. By default, astype always returns a newly allocated ndarray on the same context. If this is set to `False`, and the dtype requested is the same as the ndarray's dtype, the ndarray is returned instead of a copy. Returns ------- arr_t : ndarray Unless `copy` is False and the other conditions for returning the input array are satisfied (see description for `copy` input parameter), `arr_t` is a new array of the same shape as the input array with `dtype`. Notes ----- This function differs from the official `ndarray`'s ``astype`` function in the following aspects: - `order` only supports 'C' and 'K'. - `casting` only supports 'unsafe'. - `subok` only supports ``True``. """ if order is not None and order != 'K' and order != 'C': raise ValueError('order must be either \'K\' or \'C\'') if casting != 'unsafe': raise ValueError('casting must be equal to \'unsafe\'') if not subok: raise ValueError('subok must be equal to True') if dtype is None: dtype = _np.float32 if not copy and _np.dtype(dtype) == self.dtype: return self return _npi.cast(self, dtype=dtype) def copyto(self, other): """Copies the value of this array to another array. If ``other`` is a ``ndarray`` object, then ``other.shape`` and ``self.shape`` should be the same. This function copies the value from ``self`` to ``other``. If ``other`` is a context, a new ``np.ndarray`` will be first created on the target context, and the value of ``self`` is copied. Parameters ---------- other : ndarray or Context The destination array or context. Returns ------- out: ndarray The copied array. If ``other`` is an ``ndarray``, then the return value and ``other`` will point to the same ``ndarray``. Examples -------- >>> x = np.ones((2, 3)) >>> y = np.zeros((2, 3), ctx=npx.gpu(0)) >>> z = x.copyto(y) >>> z is y True >>> y array([[ 1., 1., 1.], [ 1., 1., 1.]]) """ if isinstance(other, ndarray): if other.handle is self.handle: warnings.warn('You are attempting to copy an array to itself', RuntimeWarning) return False return _npi.copyto(self, out=other) elif isinstance(other, Context): hret = ndarray(_new_alloc_handle(self.shape, other, True, self.dtype)) return _npi.copyto(self, out=hret) else: raise TypeError('copyto does not support type ' + str(type(other))) def asscalar(self): raise AttributeError('mxnet.numpy.ndarray object has no attribute asscalar') def argmax(self, axis=None, out=None): # pylint: disable=arguments-differ """Return indices of the maximum values along the given axis. Refer to `mxnet.numpy.argmax` for full documentation.""" return argmax(self, axis, out) def as_in_context(self, context): """This function has been deprecated. Please refer to ``ndarray.as_in_ctx``.""" warnings.warn('ndarray.as_in_context has been renamed to' ' ndarray.as_in_ctx', DeprecationWarning) return self.as_nd_ndarray().as_in_context(context).as_np_ndarray() def as_in_ctx(self, ctx): """Returns an array on the target device with the same value as this array. If the target context is the same as ``self.context``, then ``self`` is returned. Otherwise, a copy is made. Parameters ---------- context : Context The target context. Returns ------- ndarray The target array. """ if self.ctx == ctx: return self return self.copyto(ctx) @property def ctx(self): """Device context of the array. Examples -------- >>> x = np.array([1, 2, 3, 4]) >>> x.ctx cpu(0) >>> type(x.ctx) <class 'mxnet.context.Context'> >>> y = np.zeros((2, 3), npx.gpu(0)) >>> y.ctx gpu(0) """ dev_typeid = ctypes.c_int() dev_id = ctypes.c_int() check_call(_LIB.MXNDArrayGetContext( self.handle, ctypes.byref(dev_typeid), ctypes.byref(dev_id))) return Context(Context.devtype2str[dev_typeid.value], dev_id.value) @property def context(self): """This function has been deprecated. Please refer to ``ndarray.ctx``.""" warnings.warn('ndarray.context has been renamed to ndarray.ctx', DeprecationWarning) return self.as_nd_ndarray().context def copy(self, order='C'): # pylint: disable=arguments-differ """Return a coyp of the array, keeping the same context. Parameters ---------- order : str The memory layout of the copy. Currently, only c-contiguous memory layout is supported. Examples -------- >>> x = np.ones((2, 3)) >>> y = x.copy() >>> y array([[ 1., 1., 1.], [ 1., 1., 1.]]) """ if order != 'C': raise NotImplementedError('ndarray.copy only supports order=\'C\', while ' 'received {}'.format(str(order))) return self.copyto(self.ctx) def dot(self, b, out=None): """Dot product of two arrays. Refer to ``numpy.dot`` for full documentation.""" return _mx_np_op.dot(self, b, out=out) def reshape(self, *args, **kwargs): # pylint: disable=arguments-differ """Returns a copy of the array with a new shape. Notes ----- Unlike the free function `numpy.reshape`, this method on `ndarray` allows the elements of the shape parameter to be passed in as separate arguments. For example, ``a.reshape(10, 11)`` is equivalent to ``a.reshape((10, 11))``. """ order = 'C' if len(kwargs) > 1: raise TypeError('function takes at most 1 keyword argument') if len(kwargs) == 1: if 'order' not in kwargs: raise TypeError("'{}' is an invalid keyword argument for this function" .format(list(kwargs.keys())[0])) order = kwargs.pop('order', 'C') if order != 'C': raise NotImplementedError('only supports C-order,' ' while received {}'.format(order)) if len(args) == 0: raise TypeError('reshape() takes exactly 1 argument (0 given)') if len(args) == 1 and isinstance(args[0], tuple): return _mx_np_op.reshape(self, newshape=args[0], order=order) else: return _mx_np_op.reshape(self, newshape=args, order=order) def reshape_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`reshape_like`. The arguments are the same as for :py:func:`reshape_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reshape_like') def reshape_view(self, *shape, **kwargs): # pylint: disable=redefined-outer-name """Returns a **view** of this array with a new shape without altering any data. Inheritated from NDArray.reshape. """ return super(ndarray, self).reshape(*shape, **kwargs) def zeros_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`zeros_like`. The arguments are the same as for :py:func:`zeros_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute zeros_like') def ones_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`ones_like`. The arguments are the same as for :py:func:`ones_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute ones_like') def broadcast_axes(self, *args, **kwargs): """Convenience fluent method for :py:func:`broadcast_axes`. The arguments are the same as for :py:func:`broadcast_axes`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_like') def repeat(self, repeats, axis=None): # pylint: disable=arguments-differ """Repeat elements of an array.""" return repeat(self, repeats=repeats, axis=axis) def pad(self, *args, **kwargs): """Convenience fluent method for :py:func:`pad`. The arguments are the same as for :py:func:`pad`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute pad') def swapaxes(self, axis1, axis2): # pylint: disable=arguments-differ """Return a copy of the array with axis1 and axis2 interchanged. Refer to `mxnet.numpy.swapaxes` for full documentation. """ return swapaxes(self, axis1, axis2) def split(self, *args, **kwargs): """Convenience fluent method for :py:func:`split`. The arguments are the same as for :py:func:`split`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute split') def split_v2(self, *args, **kwargs): """Convenience fluent method for :py:func:`split_v2`. The arguments are the same as for :py:func:`split_v2`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute split_v2') def slice(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice`. The arguments are the same as for :py:func:`slice`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice') def slice_axis(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_axis`. The arguments are the same as for :py:func:`slice_axis`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice_axis') def slice_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_like`. The arguments are the same as for :py:func:`slice_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice_like') def slice_assign_scalar(self, value, begin, end, step): """ Assign the scalar to a cropped subset of this ndarray. Value will broadcast to the shape of the cropped shape and will be cast to the same dtype of the ndarray. Parameters ---------- value: numeric value Value and this ndarray should be of the same data type. The shape of rhs should be the same as the cropped shape of this ndarray. begin: tuple of begin indices end: tuple of end indices step: tuple of step lenghths Returns ------- This ndarray. Examples -------- >>> x = np.ones((2, 2, 2)) >>> y = x.slice_assign_scalar(0, (0, 0, None), (1, 1, None), (None, None, None)) >>> y array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) >>> x array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) """ return _npi.slice_assign_scalar(self, value, begin=begin, end=end, step=step, out=self) def slice_assign(self, rhs, begin, end, step): """ Assign the rhs to a cropped subset of this ndarray in place. Returns the view of this ndarray. Parameters ---------- rhs: ndarray. rhs and this NDArray should be of the same data type, and on the same device. The shape of rhs should be the same as the cropped shape of this ndarray. begin: tuple of begin indices end: tuple of end indices step: tuple of step lenghths Returns ------- out : ndarray This ndarray. Examples -------- >>> x = np.ones((2, 2, 2)) >>> assigned = np.zeros((1, 1, 2)) >>> y = x.slice_assign(assigned, (0, 0, None), (1, 1, None), (None, None, None)) >>> y array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) >>> x array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) """ return _npi.slice_assign(self, rhs, begin=begin, end=end, step=step, out=self) def take(self, indices, axis=None, mode='raise'): # pylint: disable=arguments-differ, redefined-outer-name """Convenience fluent method for :py:func:`take`. The arguments are the same as for :py:func:`take`, with this array as data. """ return take(self, indices, axis, mode=mode) def one_hot(self, *args, **kwargs): """Convenience fluent method for :py:func:`one_hot`. The arguments are the same as for :py:func:`one_hot`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute one_hot') def pick(self, *args, **kwargs): """Convenience fluent method for :py:func:`pick`. The arguments are the same as for :py:func:`pick`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute pick') def sort(self, axis=-1, kind=None, order=None): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`sort`. The arguments are the same as for :py:func:`sort`, with this array as data. """ raise sort(self, axis=axis, kind=kind, order=order) def topk(self, *args, **kwargs): """Convenience fluent method for :py:func:`topk`. The arguments are the same as for :py:func:`topk`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute topk') def argsort(self, axis=-1, kind=None, order=None): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`argsort`. The arguments are the same as for :py:func:`argsort`, with this array as data. """ return argsort(self, axis=axis, kind=kind, order=order) def argmax_channel(self, *args, **kwargs): """Convenience fluent method for :py:func:`argmax_channel`. The arguments are the same as for :py:func:`argmax_channel`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute argmax_channel') def argmin(self, axis=None, out=None): # pylint: disable=arguments-differ """Return indices of the minium values along the given axis. Refer to `mxnet.numpy.argmin` for full documentation.""" return argmin(self, axis, out) def clip(self, min=None, max=None, out=None): # pylint: disable=arguments-differ """Return an array whose values are limited to [min, max]. One of max or min must be given. """ return clip(self, min, max, out=out) def abs(self, *args, **kwargs): """Convenience fluent method for :py:func:`abs`. The arguments are the same as for :py:func:`abs`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute abs') def sign(self, *args, **kwargs): """Convenience fluent method for :py:func:`sign`. The arguments are the same as for :py:func:`sign`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sign') def flatten(self, order='C'): # pylint: disable=arguments-differ """Return a copy of the array collapsed into one dimension.""" return self.reshape(-1, order=order) def shape_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`shape_array`. The arguments are the same as for :py:func:`shape_array`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute shape_array') def size_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`size_array`. The arguments are the same as for :py:func:`size_array`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute size_array') def expand_dims(self, *args, **kwargs): # pylint: disable=arguments-differ,unused-argument """Convenience fluent method for :py:func:`expand_dims`. The arguments are the same as for :py:func:`expand_dims`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute expand_dims') def tile(self, reps): # pylint: disable=arguments-differ """Construct an array by repeating A the number of times given by reps. Refer to `mxnet.numpy.tile` for full documentation.""" return tile(self, reps=reps) def transpose(self, *axes): # pylint: disable=arguments-differ """Permute the dimensions of an array.""" if len(axes) == 0: axes = None elif len(axes) == 1: if isinstance(axes[0], (tuple, list)): axes = axes[0] elif axes[0] is None: axes = None return transpose(self, axes=axes) def flip(self, *args, **kwargs): """Convenience fluent method for :py:func:`flip`. The arguments are the same as for :py:func:`flip`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute flip') def depth_to_space(self, *args, **kwargs): """Convenience fluent method for :py:func:`depth_to_space`. The arguments are the same as for :py:func:`depth_to_space`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute depth_to_space') def space_to_depth(self, *args, **kwargs): """Convenience fluent method for :py:func:`space_to_depth`. The arguments are the same as for :py:func:`space_to_depth`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute space_to_depth') def diag(self, k=0, **kwargs): """Convenience fluent method for :py:func:`diag`. The arguments are the same as for :py:func:`diag`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute diag') def sum(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the sum of the array elements over the given axis.""" return sum(self, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def nansum(self, *args, **kwargs): """Convenience fluent method for :py:func:`nansum`. The arguments are the same as for :py:func:`nansum`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute nansum') def prod(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the product of the array elements over the given axis.""" return _mx_np_op.prod(self, axis=axis, dtype=dtype, keepdims=keepdims, out=out) def nanprod(self, *args, **kwargs): """Convenience fluent method for :py:func:`nanprod`. The arguments are the same as for :py:func:`nanprod`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute nanprod') def mean(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Returns the average of the array elements along given axis.""" return mean(self, axis=axis, dtype=dtype, out=out, keepdims=keepdims) # pylint: disable=too-many-arguments, arguments-differ def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """Returns the standard deviation of the array elements along given axis.""" return std(self, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """Returns the variance of the array elements, along given axis.""" return var(self, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) # pylint: enable=too-many-arguments, arguments-differ def cumsum(self, axis=None, dtype=None, out=None): """Return the cumulative sum of the elements along the given axis.""" return _mx_nd_np.cumsum(self, axis=axis, dtype=dtype, out=out) def tolist(self): return self.asnumpy().tolist() def max(self, axis=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the maximum along a given axis.""" return _mx_nd_np.max(self, axis=axis, out=out, keepdims=keepdims) def min(self, axis=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`min`. The arguments are the same as for :py:func:`min`, with this array as data. """ return _mx_nd_np.min(self, axis=axis, out=out, keepdims=keepdims) def norm(self, *args, **kwargs): """Convenience fluent method for :py:func:`norm`. The arguments are the same as for :py:func:`norm`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute norm') def round(self, decimals=0, out=None, **kwargs): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`round`. The arguments are the same as for :py:func:`round`, with this array as data. """ return round(self, decimals=decimals, out=out, **kwargs) def rint(self, *args, **kwargs): """Convenience fluent method for :py:func:`rint`. The arguments are the same as for :py:func:`rint`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rint') def fix(self, *args, **kwargs): """Convenience fluent method for :py:func:`fix`. The arguments are the same as for :py:func:`fix`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute fix') def floor(self, *args, **kwargs): """Convenience fluent method for :py:func:`floor`. The arguments are the same as for :py:func:`floor`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute floor') def ceil(self, *args, **kwargs): """Convenience fluent method for :py:func:`ceil`. The arguments are the same as for :py:func:`ceil`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute ceil') def trunc(self, *args, **kwargs): """Convenience fluent method for :py:func:`trunc`. The arguments are the same as for :py:func:`trunc`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute trunc') def sin(self, *args, **kwargs): """Convenience fluent method for :py:func:`sin`. The arguments are the same as for :py:func:`sin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sin') def cos(self, *args, **kwargs): """Convenience fluent method for :py:func:`cos`. The arguments are the same as for :py:func:`cos`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cos') def tan(self, *args, **kwargs): """Convenience fluent method for :py:func:`tan`. The arguments are the same as for :py:func:`tan`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute tan') def arcsin(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsin`. The arguments are the same as for :py:func:`arcsin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arcsin') def arccos(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccos`. The arguments are the same as for :py:func:`arccos`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arccos') def arctan(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctan`. The arguments are the same as for :py:func:`arctan`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arctan') def degrees(self, *args, **kwargs): """Convenience fluent method for :py:func:`degrees`. The arguments are the same as for :py:func:`degrees`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute degrees') def radians(self, *args, **kwargs): """Convenience fluent method for :py:func:`radians`. The arguments are the same as for :py:func:`radians`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute radians') def sinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`sinh`. The arguments are the same as for :py:func:`sinh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sinh') def cosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`cosh`. The arguments are the same as for :py:func:`cosh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cosh') def tanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`tanh`. The arguments are the same as for :py:func:`tanh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute tanh') def arcsinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsinh`. The arguments are the same as for :py:func:`arcsinh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arcsinh') def arccosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccosh`. The arguments are the same as for :py:func:`arccosh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arccosh') def arctanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctanh`. The arguments are the same as for :py:func:`arctanh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arctanh') def exp(self, *args, **kwargs): """Convenience fluent method for :py:func:`exp`. The arguments are the same as for :py:func:`exp`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute exp') def expm1(self, *args, **kwargs): """Convenience fluent method for :py:func:`expm1`. The arguments are the same as for :py:func:`expm1`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute expm1') def log(self, *args, **kwargs): """Convenience fluent method for :py:func:`log`. The arguments are the same as for :py:func:`log`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log') def log10(self, *args, **kwargs): """Convenience fluent method for :py:func:`log10`. The arguments are the same as for :py:func:`log10`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log10') def log2(self, *args, **kwargs): """Convenience fluent method for :py:func:`log2`. The arguments are the same as for :py:func:`log2`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log2') def log1p(self, *args, **kwargs): """Convenience fluent method for :py:func:`log1p`. The arguments are the same as for :py:func:`log1p`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log1p') def sqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`sqrt`. The arguments are the same as for :py:func:`sqrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sqrt') def rsqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rsqrt`. The arguments are the same as for :py:func:`rsqrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rsqrt') def cbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`cbrt`. The arguments are the same as for :py:func:`cbrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cqrt') def rcbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rcbrt`. The arguments are the same as for :py:func:`rcbrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rcqrt') def square(self, *args, **kwargs): """Convenience fluent method for :py:func:`square`. The arguments are the same as for :py:func:`square`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute square') def reciprocal(self, *args, **kwargs): """Convenience fluent method for :py:func:`reciprocal`. The arguments are the same as for :py:func:`reciprocal`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reciprocal') def relu(self, *args, **kwargs): """Convenience fluent method for :py:func:`relu`. The arguments are the same as for :py:func:`relu`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute relu') def sigmoid(self, *args, **kwargs): """Convenience fluent method for :py:func:`sigmoid`. The arguments are the same as for :py:func:`sigmoid`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sigmoid') def softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmax`. The arguments are the same as for :py:func:`softmax`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute softmax') def log_softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`log_softmax`. The arguments are the same as for :py:func:`log_softmax`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log_softmax') def softmin(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmin`. The arguments are the same as for :py:func:`softmin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute softmin') def squeeze(self, axis=None): # pylint: disable=arguments-differ """Remove single-dimensional entries from the shape of a.""" return squeeze(self, axis=axis) def broadcast_to(self, shape): # pylint: disable=redefined-outer-name return _mx_nd_np.broadcast_to(self, shape) def broadcast_like(self, other): raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_like') def _full(self, value): """ Currently for internal use only. Implemented for __setitem__. Assign to self an array of self's same shape and type, filled with value. """ return _mx_nd_np.full(self.shape, value, ctx=self.ctx, dtype=self.dtype, out=self) # pylint: disable=redefined-outer-name def _scatter_set_nd(self, value_nd, indices): """ This is added as an ndarray class method in order to support polymorphism in NDArray and numpy.ndarray indexing """ return _npi.scatter_set_nd( lhs=self, rhs=value_nd, indices=indices, shape=self.shape, out=self ) # pylint: enable=redefined-outer-name @property def shape(self): return super(ndarray, self).shape @property def ndim(self): """Number of array dimensions.""" return len(self.shape) @property def size(self): """Number of elements in the array.""" return super(ndarray, self).size @property def dtype(self): """Data-type of the array's elements. Returns ------- numpy.dtype This NDArray's data type. Examples -------- >>> x = np.zeros((2,3)) >>> x.dtype dtype('float32') >>> y = np.zeros((2,3), dtype='int32') >>> y.dtype dtype('int32') """ return _np.dtype(super(ndarray, self).dtype) def tostype(self, stype): raise AttributeError('mxnet.numpy.ndarray object has no attribute tostype') @set_module('mxnet.numpy') def empty(shape, dtype=float, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, without initializing entries. Parameters ---------- shape : int or tuple of int Shape of the empty array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional Desired output data-type for the array, e.g, `numpy.int8`. Note that this behavior is different from NumPy's `empty` function where `float64` is the default value, here you can set your default dtype as 'float32' or 'float64' because `float32` is considered as the default data type in deep learning. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- out : ndarray Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Examples -------- >>> np.empty([2, 2]) array([[ 0.000000e+00, -2.524355e-29], [ nan, -8.592023e+09]]) # uninitialized >>> np.empty([2, 2], dtype=int) array([[8751743591039004782, 3196766424264760104], [7583328881310196768, 562950123910254]], dtype=int64) # uninitialized """ if order != 'C': raise NotImplementedError('`empty` only supports order equal to `C`, while received {}' .format(str(order))) if ctx is None: ctx = current_context() if dtype is None or dtype is float: dtype = _np.float64 if is_np_default_dtype() else _np.float32 if isinstance(shape, int): shape = (shape,) return ndarray(handle=_new_alloc_handle(shape, ctx, False, dtype)) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def array(object, dtype=None, ctx=None): """ Create an array. Parameters ---------- object : array_like or `numpy.ndarray` or `mxnet.numpy.ndarray` An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. dtype : data-type, optional The desired data-type for the array. The default dtype is ``object.dtype`` if `object` is an `ndarray`, `float32` otherwise. Default dtype can be set to be consistent with offical numpy by `npx.set_np(dtype=True)`. - When npx.is_np_default_dtype() returns False, default dtype is float32; - When npx.is_np_default_dtype() returns True, default dtype is float64. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- out : ndarray An array object satisfying the specified requirements. Examples -------- >>> np.array([1, 2, 3]) array([1., 2., 3.]) >>> np.array([[1, 2], [3, 4]]) array([[1., 2.], [3., 4.]]) >>> np.array([[1, 0], [0, 1]], dtype=bool) array([[ True, False], [False, True]]) >>> np.array([1, 2, 3]).dtype dtype('float32') >>> npx.set_np(dtype=True) >>> np.array([1, 2, 3]).dtype dtype('float64') """ if ctx is None: ctx = current_context() if isinstance(object, _np.ndarray): if is_np_default_dtype(): dtype = object.dtype if dtype is None else dtype else: dtype = _np.float32 if dtype is None or object.dtype is _np.float64 else dtype if isinstance(object, ndarray): dtype = object.dtype if dtype is None else dtype elif isinstance(object, NDArray): raise ValueError("If you're trying to create a mxnet.numpy.ndarray " "from mx.nd.NDArray, please use the zero-copy as_np_ndarray function.") else: if dtype is None: default_dtype = _np.float64 if is_np_default_dtype() else _np.float32 dtype = object.dtype if hasattr(object, "dtype") else default_dtype try: object = _np.array(object, dtype=dtype) except Exception as e: # printing out the error raised by official NumPy's array function # for transparency on users' side raise TypeError('{}'.format(str(e))) ret = empty(object.shape, dtype=dtype, ctx=ctx) if len(object.shape) == 0: ret[()] = object else: ret[:] = object return ret # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () """ return _mx_nd_np.shape(a) @set_module('mxnet.numpy') def zeros(shape, dtype=None, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with zeros. This function currently only supports storing multi-dimensional data in row-major (C-style). Parameters ---------- shape : int or tuple of int The shape of the empty array. dtype : str or numpy.dtype, optional An optional value type, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64. Note that this behavior is different from NumPy's `zeros` function where `float64` is the default value, here we can set 'float32' or 'float64' as your default dtype, because `float32` is considered as the default data type in deep learning. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray Array of zeros with the given shape, dtype, and ctx. Examples -------- >>> np.zeros(5) array([0., 0., 0., 0., 0.]) >>> np.zeros((5,), dtype=int) array([0, 0, 0, 0, 0], dtype=int64) >>> np.zeros((2, 1)) array([[0.], [0.]]) """ return _mx_nd_np.zeros(shape, dtype, order, ctx) @set_module('mxnet.numpy') def ones(shape, dtype=None, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with ones. This function currently only supports storing multi-dimensional data in row-major (C-style). Parameters ---------- shape : int or tuple of int The shape of the empty array. dtype : str or numpy.dtype, optional An optional value type. Default is depend on your current default dtype. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that this behavior is different from NumPy's `ones` function where `float64` is the default value. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray Array of ones with the given shape, dtype, and ctx. Examples -------- >>> np.ones(5) array([1., 1., 1., 1., 1.]) >>> np.ones((5,), dtype=int) array([1, 1, 1, 1, 1], dtype=int64) >>> np.ones((2, 1)) array([[1.], [1.]]) >>> s = (2,2) >>> np.ones(s) array([[1., 1.], [1., 1.]]) """ return _mx_nd_np.ones(shape, dtype, order, ctx) @set_module('mxnet.numpy') def broadcast_to(array, shape): # pylint: disable=redefined-outer-name """ Broadcast an array to a new shape. Parameters ---------- array : ndarray or scalar The array to broadcast. shape : tuple The shape of the desired array. Returns ------- broadcast : array A readonly view on the original array with the given shape. It is typically not contiguous. Furthermore, more than one element of a broadcasted array may refer to a single memory location. Raises ------ MXNetError If the array is not compatible with the new shape according to NumPy's broadcasting rules. """ return _mx_nd_np.broadcast_to(array, shape) # pylint: disable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): """ Return a new array of given shape and type, filled with `fill_value`. Parameters ---------- shape : int or sequence of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. fill_value : scalar or ndarray Fill value. dtype : data-type, optional The desired data-type for the array. The default, `None`, means `np.array(fill_value).dtype`. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of `fill_value` with the given shape, dtype, and order. If `fill_value` is an ndarray, out will have the same context as `fill_value` regardless of the provided `ctx`. Notes ----- This function differs from the original `numpy.full https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html`_ in the following way(s): - Has an additional `ctx` argument to specify the device - Has an additional `out` argument - Currently does not support `order` selection See Also -------- empty : Return a new uninitialized array. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. Examples -------- >>> np.full((2, 2), 10) array([[10., 10.], [10., 10.]]) >>> np.full((2, 2), 2, dtype=np.int32, ctx=mx.cpu(0)) array([[2, 2], [2, 2]], dtype=int32) """ return _mx_nd_np.full(shape, fill_value, order=order, ctx=ctx, dtype=dtype, out=out) # pylint: enable=too-many-arguments, redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def empty_like(prototype, dtype=None, order='C', subok=False, shape=None): # pylint: disable=W0621 """ Return a new array with the same shape and type as a given array. Parameters ---------- prototype : ndarray The shape and data-type of `prototype` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. subok : {False}, optional If True, then the newly created array will use the sub-class type of 'a', otherwise it will be a base-class array. Defaults to False. (Only support False at this moment) shape : int or sequence of ints, optional. Overrides the shape of the result. If order='K' and the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is implied. (Not supported at this moment) Returns ------- out : ndarray Array of uninitialized (arbitrary) data with the same shape and type as `prototype`. See Also -------- ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. Notes ----- This function does *not* initialize the returned array; to do that use `zeros_like` or `ones_like` instead. It may be marginally faster than the functions that do set the array values. Examples -------- >>> a = np.array([[1,2,3], [4,5,6]]) >>> np.empty_like(a) array([[-5764607523034234880, -2305834244544065442, 4563075075], # uninitialized [ 4567052944, -5764607523034234880, 844424930131968]]) >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) array([[4.9e-324, 9.9e-324, 1.5e-323], # uninitialized [2.0e-323, 2.5e-323, 3.0e-323]]) """ return _mx_nd_np.empty_like(prototype, dtype=dtype, order=order, subok=subok, shape=shape) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def all(a, axis=None, out=None, keepdims=False): """ Test whether all array elements along a given axis evaluate to True. Parameters ---------- a : ndarray Input array or object that can be converted to an array. axis : None or int or tuple of ints, optional Axis or axes along which a logical AND reduction is performed. The default (axis = None) is to perform a logical AND over all the dimensions of the input array. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output and its type is preserved Returns -------- all : ndarray, bool A new boolean or array is returned unless out is specified, in which case a reference to out is returned. Examples: --------- >>> np.all([[True,False],[True,True]]) False >>> np.all([[True,False],[True,True]], axis=0) array([ True, False]) >>> np.all([-1, 4, 5]) True >>> np.all([1.0, np.nan]) True >>> o=np.array(False) >>> z=np.all([-1, 4, 5], out=o) >>> id(z), id(o), z (28293632, 28293632, array(True)) # may vary """ return _mx_nd_np.all(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def any(a, axis=None, out=None, keepdims=False): """ Test whether any array element along a given axis evaluates to True. Returns single boolean unless axis is not None Parameters ---------- a : ndarray Input array or object that can be converted to an array. axis : None or int or tuple of ints, optional Axis or axes along which a logical AND reduction is performed. The default (axis = None) is to perform a logical AND over all the dimensions of the input array. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output and its type is preserved Returns -------- any : bool or ndarray A new boolean or ndarray is returned unless out is specified, in which case a reference to out is returned. Examples: --------- >>> np.any([[True, False], [True, True]]) True >>> np.any([[True, False], [False, False]], axis=0) array([ True, False]) >>> np.any([-1, 0, 5]) True >>> np.any(np.nan) True >>> o=np.array(False) >>> z=np.any([-1, 4, 5], out=o) >>> z, o (array(True), array(True)) >>> # Check now that z is a reference to o >>> z is o True >>> id(z), id(o) # identity of z and o # doctest: +SKIP (191614240, 191614240) """ return _mx_nd_np.any(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def identity(n, dtype=None, ctx=None): """ Return the identity array. The identity array is a square array with ones on the main diagonal. Parameters ---------- n : int Number of rows (and columns) in `n` x `n` output. dtype : data-type, optional Data-type of the output. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray `n` x `n` array with its main diagonal set to one, and all other elements 0. Examples -------- >>> np.identity(3) >>> np.identity(3) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) """ return _mx_nd_np.identity(n, dtype, ctx) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def take(a, indices, axis=None, mode='raise', out=None): r""" Take elements from an array along an axis. When axis is not None, this function does the same thing as "fancy" indexing (indexing arrays using arrays); however, it can be easier to use if you need elements along a given axis. A call such as ``np.take(arr, indices, axis=3)`` is equivalent to ``arr[:,:,:,indices,...]``. Explained without fancy indexing, this is equivalent to the following use of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices:: Ni, Nk = a.shape[:axis], a.shape[axis+1:] Nj = indices.shape for ii in ndindex(Ni): for jj in ndindex(Nj): for kk in ndindex(Nk): out[ii + jj + kk] = a[ii + (indices[jj],) + kk] Parameters ---------- a : ndarray The source array. indices : ndarray The indices of the values to extract. Also allow scalars for indices. axis : int, optional The axis over which to select values. By default, the flattened input array is used. out : ndarray, optional If provided, the result will be placed in this array. It should be of the appropriate shape and dtype. mode : {'clip', 'wrap'}, optional Specifies how out-of-bounds indices will behave. * 'clip' -- clip to the range (default) * 'wrap' -- wrap around 'clip' mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. Returns ------- out : ndarray The returned array has the same type as `a`. Notes ----- This function differs from the original `numpy.take <https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html>`_ in the following way(s): - Only ndarray or scalar ndarray is accepted as valid input. Examples -------- >>> a = np.array([4, 3, 5, 7, 6, 8]) >>> indices = np.array([0, 1, 4]) >>> np.take(a, indices) array([4., 3., 6.]) In this example for `a` is an ndarray, "fancy" indexing can be used. >>> a[indices] array([4., 3., 6.]) If `indices` is not one dimensional, the output also has these dimensions. >>> np.take(a, np.array([[0, 1], [2, 3]])) array([[4., 3.], [5., 7.]]) """ return _mx_nd_np.take(a, indices, axis, mode, out) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None): """ Find the unique elements of an array. Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements: * the indices of the input array that give the unique values * the indices of the unique array that reconstruct the input array * the number of times each unique value comes up in the input array Parameters ---------- ar : ndarray Input array. Unless `axis` is specified, this will be flattened if it is not already 1-D. return_index : bool, optional If True, also return the indices of `ar` (along the specified axis, if provided, or in the flattened array) that result in the unique array. return_inverse : bool, optional If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct `ar`. return_counts : bool, optional If True, also return the number of times each unique item appears in `ar`. axis : int or None, optional The axis to operate on. If None, `ar` will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. The default is None. Returns ------- unique : ndarray The sorted unique values. unique_indices : ndarray, optional The indices of the first occurrences of the unique values in the original array. Only provided if `return_index` is True. unique_inverse : ndarray, optional The indices to reconstruct the original array from the unique array. Only provided if `return_inverse` is True. unique_counts : ndarray, optional The number of times each of the unique values comes up in the original array. Only provided if `return_counts` is True. Notes ----- When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element. This function differs from the original `numpy.unique <https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html>`_ in the following aspects: - Only support ndarray as input. - Object arrays or structured arrays are not supported. Examples -------- >>> np.unique(np.array([1, 1, 2, 2, 3, 3])) array([1., 2., 3.]) >>> a = np.array([[1, 1], [2, 3]]) >>> np.unique(a) array([1., 2., 3.]) Return the unique rows of a 2D array >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) >>> np.unique(a, axis=0) array([[1., 0., 0.], [2., 3., 4.]]) Return the indices of the original array that give the unique values: >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) >>> u, indices = np.unique(a, return_index=True) >>> u array([1., 2., 3., 4., 6.]) >>> indices array([0, 1, 5, 3, 2], dtype=int64) >>> a[indices] array([1., 2., 3., 4., 6.]) Reconstruct the input array from the unique values: >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) >>> u, indices = np.unique(a, return_inverse=True) >>> u array([1., 2., 3., 4., 6.]) >>> indices array([0, 1, 4, 3, 1, 2, 1], dtype=int64) >>> u[indices] array([1., 2., 6., 4., 2., 3., 2.]) """ return _mx_nd_np.unique(ar, return_index, return_inverse, return_counts, axis) @set_module('mxnet.numpy') @wrap_np_binary_func def add(x1, x2, out=None, **kwargs): """ Add arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be added. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- add : ndarray or scalar The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), not supported yet. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) """ return _mx_nd_np.add(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def subtract(x1, x2, out=None, **kwargs): """ Subtract arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be subtracted from each other. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- subtract : ndarray or scalar The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), not supported yet. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[0., 0., 0.], [3., 3., 3.], [6., 6., 6.]]) """ return _mx_nd_np.subtract(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def multiply(x1, x2, out=None, **kwargs): """ Multiply arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be multiplied. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), not supported yet. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) """ return _mx_nd_np.multiply(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def divide(x1, x2, out=None, **kwargs): """ Returns a true division of the inputs, element-wise. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), the output is of float32 or float64 type, which depends on your current default dtype. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Examples -------- >>> np.true_divide(x, 4) array([0. , 0.25, 0.5 , 0.75, 1. ]) """ return _mx_nd_np.divide(x1, x2, out=out) @set_module('mxnet.numpy') def true_divide(x1, x2, out=None): """Returns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), the output is of float32 or float64 type, which depends on your current default dtype. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([0. , 0.25, 0.5 , 0.75, 1. ]) """ return _mx_nd_np.true_divide(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def mod(x1, x2, out=None, **kwargs): """ Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.mod(np.arange(7), 5) array([0., 1., 2., 3., 4., 0., 1.]) """ return _mx_nd_np.mod(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def fmod(x1, x2, out=None, **kwargs): """ Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.fmod(np.arange(7), 5) array([0., 1., 2., 3., 4., 0., 1.]) """ return _mx_nd_np.fmod(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def matmul(a, b, out=None, **kwargs): """ Matrix product of two arrays. Parameters ---------- a, b : ndarray Input arrays, scalars not allowed. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d vectors. Raises ------ MXNetError If the last dimension of a is not the same size as the second-to-last dimension of b. If a scalar value is passed in. See Also -------- tensordot : Sum products over arbitrary axes. dot : alternative matrix product with different broadcasting rules. einsum : Einstein summation convention. Notes ----- The behavior depends on the arguments in the following way. - If both arguments are 2-D they are multiplied like conventional matrices. - If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly. - If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed. - If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed. matmul differs from dot in two important ways: - Multiplication by scalars is not allowed, use multiply instead. - Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature (n,k),(k,m)->(n,m): >>> a = np.ones([9, 5, 7, 4]) >>> c = np.ones([9, 5, 4, 3]) >>> np.dot(a, c).shape (9, 5, 7, 9, 5, 3) >>> np.matmul(a, c).shape (9, 5, 7, 3) >>> # n is 7, k is 4, m is 3 Examples -------- For 2-D arrays it is the matrix product: >>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([[4, 1], ... [2, 2]]) >>> np.matmul(a, b) array([[4., 1.], [2., 2.]]) For 2-D mixed with 1-D, the result is the usual. >>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([1, 2]) >>> np.matmul(a, b) array([1., 2.]) >>> np.matmul(b, a) array([1., 2.]) Broadcasting is conventional for stacks of arrays >>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4)) >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2)) >>> np.matmul(a, b).shape (2, 2, 2) >>> np.matmul(a, b)[0, 1, 1] array(98.) >>> sum(a[0, 1, :] * b[0, :, 1]) array(98.) Scalar multiplication raises an error. >>> np.matmul([1, 2], 3) Traceback (most recent call last): ... mxnet.base.MXNetError: ... : Multiplication by scalars is not allowed. """ return _mx_nd_np.matmul(a, b, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def remainder(x1, x2, out=None, **kwargs): """ Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.remainder(np.arange(7), 5) array([0., 1., 2., 3., 4., 0., 1.]) """ return _mx_nd_np.remainder(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def power(x1, x2, out=None, **kwargs): """ First array elements raised to powers from second array, element-wise. Parameters ---------- x1 : ndarray or scalar The bases. x2 : ndarray or scalar The exponent. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> x1 = np.arange(6) >>> np.power(x1, 3) array([ 0., 1., 8., 27., 64., 125.]) Raise the bases to different exponents. >>> x2 = np.array([1.0, 2.0, 3.0, 3.0, 2.0, 1.0]) >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1., 2., 3., 3., 2., 1.], [1., 2., 3., 3., 2., 1.]]) >>> np.power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]]) """ return _mx_nd_np.power(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def lcm(x1, x2, out=None, **kwargs): """ Returns the lowest common multiple of ``|x1|`` and ``|x2|`` Parameters ---------- x1, x2 : ndarrays or scalar values The arrays for computing lowest common multiple. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The lowest common multiple of the absolute value of the inputs This is a scalar if both `x1` and `x2` are scalars. See Also -------- gcd : The greatest common divisor Examples -------- >>> np.lcm(12, 20) 60 >>> np.lcm(np.arange(6, dtype=int), 20) array([ 0, 20, 20, 60, 20, 20], dtype=int64) """ return _mx_nd_np.lcm(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def sin(x, out=None, **kwargs): r""" Trigonometric sine, element-wise. Parameters ---------- x : ndarray or scalar Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The sine of each element of x. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.sin(np.pi/2.) 1.0 >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.) array([0. , 0.5 , 0.70710677, 0.86602545, 1. ]) """ return _mx_nd_np.sin(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def cos(x, out=None, **kwargs): r""" Cosine, element-wise. Parameters ---------- x : ndarray or scalar Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding cosine values. This is a scalar if x is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.000000e+00, -4.371139e-08, -1.000000e+00]) >>> # Example of providing the optional output parameter >>> out1 = np.array([0], dtype='f') >>> out2 = np.cos(np.array([0.1]), out1) >>> out2 is out1 True """ return _mx_nd_np.cos(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def sinh(x, out=None, **kwargs): """ Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding hyperbolic sine values. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.sinh(0) 0.0 >>> # Example of providing the optional output parameter >>> out1 = np.array([0], dtype='f') >>> out2 = np.sinh(np.array([0.1]), out1) >>> out2 is out1 True """ return _mx_nd_np.sinh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def cosh(x, out=None, **kwargs): """ Hyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding hyperbolic cosine values. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.cosh(0) 1.0 """ return _mx_nd_np.cosh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def tanh(x, out=None, **kwargs): """ Compute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)``. Parameters ---------- x : ndarray or scalar. Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ---------- y : ndarray or scalar The corresponding hyperbolic tangent values. Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) - input x does not support complex computation (like imaginary number) >>> np.tanh(np.pi*1j) TypeError: type <type 'complex'> not supported Examples -------- >>> np.tanh(np.array[0, np.pi])) array([0. , 0.9962721]) >>> np.tanh(np.pi) 0.99627207622075 >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out1 = np.array(1) >>> out2 = np.tanh(np.array(0.1), out1) >>> out2 is out1 True """ return _mx_nd_np.tanh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def log10(x, out=None, **kwargs): """ Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.log10(np.array([1e-15, -3.])) array([-15., nan]) """ return _mx_nd_np.log10(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def sqrt(x, out=None, **kwargs): """ Return the non-negative square-root of an array, element-wise. Parameters ---------- x : ndarray or scalar The values whose square-roots are required. out : ndarray, or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar An array of the same shape as `x`, containing the positive square-root of each element in `x`. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.sqrt(np.array([1,4,9])) array([1., 2., 3.]) >>> np.sqrt(np.array([4, -1, _np.inf])) array([ 2., nan, inf]) """ return _mx_nd_np.sqrt(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def cbrt(x, out=None, **kwargs): """ Return the cube-root of an array, element-wise. Parameters ---------- x : ndarray The values whose cube-roots are required. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- y : ndarray An array of the same shape as x, containing the cube cube-root of each element in x. If out was provided, y is a reference to it. This is a scalar if x is a scalar. Examples ---------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.]) """ return _mx_nd_np.cbrt(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def abs(x, out=None, **kwargs): r""" Calculate the absolute value element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. This is a scalar if `x` is a scalar. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.abs(x) array([1.2, 1.2]) """ return _mx_nd_np.abs(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def fabs(x, out=None, **kwargs): r""" Calculate the absolute value element-wise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. This is a scalar if `x` is a scalar. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs(np.array([-1.2, 1.2]))s array([ 1.2, 1.2]) """ return _mx_nd_np.fabs(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def absolute(x, out=None, **kwargs): """ Calculate the absolute value element-wise. np.abs is a shorthand for this function. Parameters ---------- x : ndarray Input array. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- absolute : ndarray An ndarray containing the absolute value of each element in x. Examples ---------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) """ return _mx_nd_np.absolute(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def exp(x, out=None, **kwargs): r""" Calculate the exponential of all elements in the input array. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array, element-wise exponential of `x`. This is a scalar if `x` is a scalar. Examples -------- >>> np.exp(1) 2.718281828459045 >>> x = np.array([-1, 1, -2, 2]) >>> np.exp(x) array([0.36787945, 2.7182817 , 0.13533528, 7.389056 ]) """ return _mx_nd_np.exp(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def expm1(x, out=None, **kwargs): r""" Calculate `exp(x) - 1` for all elements in the array. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array, element-wise exponential minus one: `out = exp(x) - 1`. This is a scalar if `x` is a scalar. Examples -------- >>> np.expm1(1) 1.718281828459045 >>> x = np.array([-1, 1, -2, 2]) >>> np.exp(x) array([-0.63212056, 1.71828183, -0.86466472, 6.3890561]) """ return _mx_nd_np.expm1(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arcsin(x, out=None, **kwargs): r""" Inverse sine, element-wise. Parameters ---------- x : ndarray or scalar `y`-coordinate on the unit circle. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- angle : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0 Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. The inverse sine is also known as `asin` or sin^{-1}. The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.arcsin <https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html>`_ in the following aspects: - Only support ndarray or scalar now. - `where` argument is not supported. - Complex input is not supported. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ """ return _mx_nd_np.arcsin(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arccos(x, out=None, **kwargs): """ Trigonometric inverse cosine, element-wise. The inverse of cos so that, if y = cos(x), then x = arccos(y). Parameters ---------- x : ndarray x-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- angle : ndarray The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0, pi]. This is a scalar if x is a scalar. Notes ---------- arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The convention is to return the angle z whose real part lies in [0, pi]. For real-valued input data types, arccos always returns real output. For each value that cannot be expressed as a real number or infinity, it yields nan and sets the invalid floating point error flag. The inverse cos is also known as acos or cos^-1. Examples ---------- >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) """ return _mx_nd_np.arccos(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arctan(x, out=None, **kwargs): r""" Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Out has the same shape as `x`. It lies is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). This is a scalar if `x` is a scalar. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, we do not have support for them yet. The inverse tangent is also known as `atan` or tan^{-1}. Examples -------- >>> x = np.array([0, 1]) >>> np.arctan(x) array([0. , 0.7853982]) >>> np.pi/4 0.7853981633974483 """ return _mx_nd_np.arctan(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def sign(x, out=None, **kwargs): """ Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. Only supports real number. Parameters ---------- x : ndarray or a scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The sign of `x`. This is a scalar if `x` is a scalar. Note ------- - Only supports real number as input elements. - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.array([-5., 4.5]) >>> np.sign(a) array([-1., 1.]) Scalars as input: >>> np.sign(4.0) 1.0 >>> np.sign(0) 0 Use ``out`` parameter: >>> b = np.zeros((2, )) >>> np.sign(a, out=b) array([-1., 1.]) >>> b array([-1., 1.]) """ return _mx_nd_np.sign(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def log(x, out=None, **kwargs): """ Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : ndarray Input value. Elements must be of real value. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. This is a scalar if `x` is a scalar. Notes ----- Currently only supports data of real values and ``inf`` as input. Returns data of real value, ``inf``, ``-inf`` and ``nan`` according to the input. This function differs from the original `numpy.log <https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html>`_ in the following aspects: - Does not support complex number for now - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.array([1, np.exp(1), np.exp(2), 0], dtype=np.float64) >>> np.log(a) array([ 0., 1., 2., -inf], dtype=float64) >>> # Using the default float32 dtype leads to slightly different behavior >>> a = np.array([1, np.exp(1), np.exp(2), 0]) >>> np.log(a) array([ 0., 0.99999994, 2., -inf]) >>> np.log(1) 0.0 """ return _mx_nd_np.log(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def rint(x, out=None, **kwargs): """ Round elements of the array to the nearest integer. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Notes ----- This function differs from the original `numpy.rint <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 1., 2., 2.]) """ return _mx_nd_np.rint(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def log2(x, out=None, **kwargs): """ Base-2 logarithm of x. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The logarithm base two of `x`, element-wise. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original `numpy.log2 <https://www.google.com/search?q=numpy+log2>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-inf, 0., 1., 4.]) """ return _mx_nd_np.log2(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def log1p(x, out=None, **kwargs): """ Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar Natural logarithm of 1 + x, element-wise. This is a scalar if x is a scalar. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. cannot support complex-valued input. Examples -------- >>> np.log1p(1e-99) 1e-99 >>> a = np.array([3, 4, 5]) >>> np.log1p(a) array([1.3862944, 1.609438 , 1.7917595]) """ return _mx_nd_np.log1p(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def degrees(x, out=None, **kwargs): """ Convert angles from radians to degrees. Parameters ---------- x : ndarray Input value. Elements must be of real value. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The corresponding degree values; if `out` was supplied this is a reference to it. This is a scalar if `x` is a scalar. Notes ------- This function differs from the original `numpy.degrees <https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). Only ndarray is supported. - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> rad = np.arange(12.) * np.pi / 6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> # Use specified ``out`` ndarray: >>> out = np.zeros((rad.shape)) >>> np.degrees(rad, out) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) """ return _mx_nd_np.degrees(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def rad2deg(x, out=None, **kwargs): r""" Convert angles from radians to degrees. Parameters ---------- x : ndarray or scalar Angles in degrees. out : ndarray or None, optional A location into which the result is stored. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The corresponding angle in radians. This is a scalar if `x` is a scalar. Notes ----- "rad2deg(x)" is "x * 180 / pi". This function differs from the original numpy.arange in the following aspects: - Only support float32 and float64. - `out` must be in the same size of input. Examples -------- >>> np.rad2deg(np.pi/2) 90.0 """ return _mx_nd_np.rad2deg(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def radians(x, out=None, **kwargs): """ Convert angles from degrees to radians. Parameters ---------- x : ndarray or scalar Input array in degrees. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The corresponding radian values. This is a scalar if x is a scalar. Notes ----- This function differs from the original `numpy.radians <https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([0. , 0.5235988, 1.0471976, 1.5707964, 2.0943952, 2.6179938, 3.1415927, 3.6651914, 4.1887903, 4.712389 , 5.2359877, 5.7595863], dtype=float32) """ return _mx_nd_np.radians(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def deg2rad(x, out=None, **kwargs): r""" Convert angles from degrees to radians. Parameters ---------- x : ndarray or scalar Angles in degrees. out : ndarray or None, optional A location into which the result is stored. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The corresponding angle in radians. This is a scalar if `x` is a scalar. Notes ----- "deg2rad(x)" is "x * pi / 180". This function differs from the original numpy.arange in the following aspects: - Only support float32 and float64. - `out` must be in the same size of input. Examples -------- >>> np.deg2rad(180) 3.1415927 """ return _mx_nd_np.deg2rad(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def reciprocal(x, out=None, **kwargs): r""" Return the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : ndarray or scalar The values whose reciprocals are required. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Examples -------- >>> np.reciprocal(2.) 0.5 >>> x = np.array([1, 2., 3.33]) >>> np.reciprocal(x) array([1. , 0.5 , 0.3003003]) Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.reciprocal <https://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html>`_ in the following aspects: - Only support ndarray and scalar now. - `where` argument is not supported. """ return _mx_nd_np.reciprocal(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def square(x, out=None, **kwargs): r""" Return the element-wise square of the input. Parameters ---------- x : ndarray or scalar The values whose squares are required. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Examples -------- >>> np.square(2.) 4.0 >>> x = np.array([1, 2., -1]) >>> np.square(x) array([1., 4., 1.]) Notes ----- The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.square <https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html>`_ in the following aspects: - Only support ndarray and scalar now. - `where` argument is not supported. - Complex input is not supported. """ return _mx_nd_np.square(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def negative(x, out=None, **kwargs): r""" Numerical negative, element-wise. Parameters: ------------ x : ndarray or scalar Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns: ------- y : ndarray or scalar Returned array or scalar: y = -x. This is a scalar if x is a scalar. Examples -------- >>> np.negative(1) -1 """ return _mx_nd_np.negative(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def fix(x, out=None, **kwargs): """ Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats. Parameters: ---------- x : ndarray An array of floats to be rounded out : ndarray, optional Output array Returns: ------- y : ndarray or scalar Returned array or scalar: y = -x. This is a scalar if x is a scalar.ndarray of floats Examples --------- >>> np.fix(3.14) 3 """ return _mx_nd_np.fix(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def tan(x, out=None, **kwargs): r""" Compute tangent element-wise. Equivalent to np.sin(x)/np.cos(x) element-wise. Parameters: ---------- x : ndarray Input array. out : ndarray or none, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns: ------- y : ndarray The corresponding tangent values. This is a scalar if x is a scalar. Examples --------- >>> np.tan(np.array([-np.pi, np.pi/2, np.pi])) array([-8.7422777e-08, -2.2877332e+07, 8.7422777e-08]) """ return _mx_nd_np.tan(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def ceil(x, out=None, **kwargs): r""" Return the ceiling of the input, element-wise. The ceil of the ndarray `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\lceil x \rceil`. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. This is a scalar if `x` is a scalar. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) >>> # if you use parameter out, x and out must be ndarray. >>> a = np.array(1) >>> np.ceil(np.array(3.5), a) array(4.) >>> a array(4.) """ return _mx_nd_np.ceil(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def floor(x, out=None, **kwargs): r""" Return the floor of the input, element-wise. The ceil of the ndarray `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\lfloor x \rfloor`. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar The floor of each element in `x`, with `float` dtype. This is a scalar if `x` is a scalar. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.]) >>> # if you use parameter out, x and out must be ndarray. >>> a = np.array(1) >>> np.floor(np.array(3.5), a) array(3.) >>> a array(3.) """ return _mx_nd_np.floor(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def invert(x, out=None, **kwargs): r""" Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. Parameters ---------- x : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- out : ndarray or scalar Result. This is a scalar if `x` is a scalar. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> x = np.invert(np.array(13, dtype=np.uint8)) >>> x 242 >>> np.binary_repr(x, width=8) '11110010' Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True """ return _mx_nd_np.bitwise_not(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def bitwise_not(x, out=None, **kwargs): r""" Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. Parameters ---------- x : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- out : ndarray or scalar Result. This is a scalar if `x` is a scalar. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> x = np.invert(np.array(13, dtype=np.uint8)) >>> x 242 >>> np.binary_repr(x, width=8) '11110010' Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True """ return _mx_nd_np.bitwise_not(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def trunc(x, out=None, **kwargs): r""" Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : ndarray or scalar Input data. out : ndarray or None, optional A location into which the result is stored. Returns ------- y : ndarray or scalar The truncated value of each element in `x`. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original numpy.trunc in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.]) """ return _mx_nd_np.trunc(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def logical_not(x, out=None, **kwargs): r""" Compute the truth value of NOT x element-wise. Parameters ---------- x : ndarray or scalar Logical NOT is applied to the elements of `x`. out : ndarray or None, optional A location into which the result is stored. Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original numpy.logical_not in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> x= np.array([True, False, 0, 1]) >>> np.logical_not(x) array([False, True, True, False]) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True]) """ return _mx_nd_np.logical_not(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arcsinh(x, out=None, **kwargs): r""" Inverse hyperbolic cosine, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arcsinh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arcsinh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. DType of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([3.2, 5.0]) >>> np.arcsinh(a) array([1.8309381, 2.2924316]) >>> np.arcsinh(1) 0.0 """ return _mx_nd_np.arcsinh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arccosh(x, out=None, **kwargs): r""" Inverse hyperbolic cosine, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arccosh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arccosh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([3.2, 5.0]) >>> np.arccosh(a) array([1.8309381, 2.2924316]) >>> np.arccosh(1) 0.0 """ return _mx_nd_np.arccosh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arctanh(x, out=None, **kwargs): r""" Inverse hyperbolic tangent, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arctanh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arctanh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([0.0, -0.5]) >>> np.arctanh(a) array([0., -0.54930615]) >>> np.arctanh(1) 0.0 """ return _mx_nd_np.arctanh(x, out=out, **kwargs) @set_module('mxnet.numpy') def argsort(a, axis=-1, kind=None, order=None): """ Returns the indices that would sort an array. Perform an indirect sort along the given axis using the algorithm specified by the `kind` keyword. It returns an array of indices of the same shape as `a` that index data along the given axis in sorted order. Parameters ---------- a : ndarray Array to sort. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : string, optional This argument can take any string, but it does not have any effect on the final result. order : str or list of str, optional Not supported yet, will raise NotImplementedError if not None. Returns ------- index_array : ndarray, int Array of indices that sort `a` along the specified `axis`. If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`. More generally, ``np.take_along_axis(a, index_array, axis=axis)`` always yields the sorted `a`, irrespective of dimensionality. Notes ----- This operator does not support different sorting algorithms. Examples -------- One dimensional array: >>> x = np.array([3, 1, 2]) >>> np.argsort(x) array([1, 2, 0]) Two-dimensional array: >>> x = np.array([[0, 3], [2, 2]]) >>> x array([[0, 3], [2, 2]]) >>> ind = np.argsort(x, axis=0) # sorts along first axis (down) >>> ind array([[0, 1], [1, 0]]) >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0) array([[0, 2], [2, 3]]) >>> ind = np.argsort(x, axis=1) # sorts along last axis (across) >>> ind array([[0, 1], [0, 1]]) >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1) array([[0, 3], [2, 2]]) Indices of the sorted elements of a N-dimensional array: >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) >>> x[ind] # same as np.sort(x, axis=None) array([0, 2, 2, 3]) """ return _mx_nd_np.argsort(a, axis=axis, kind=kind, order=order) @set_module('mxnet.numpy') def sort(a, axis=-1, kind=None, order=None): """ Return a sorted copy of an array. Parameters ---------- a : ndarray Array to be sorted. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : string, optional This argument can take any string, but it does not have any effect on the final result. order : str or list of str, optional Not supported yet, will raise NotImplementedError if not None. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. Notes ----- This operator does not support different sorting algorithms. Examples -------- >>> a = np.array([[1,4],[3,1]]) >>> np.sort(a) # sort along the last axis array([[1, 4], [1, 3]]) >>> np.sort(a, axis=None) # sort the flattened array array([1, 1, 3, 4]) >>> np.sort(a, axis=0) # sort along the first axis array([[1, 1], [3, 4]]) """ return _mx_nd_np.sort(a, axis=axis, kind=kind, order=order) @set_module('mxnet.numpy') def tensordot(a, b, axes=2): r""" tensordot(a, b, axes=2) Compute tensor dot product along specified axes for arrays >= 1-D. Given two tensors (arrays of dimension greater than or equal to one), `a` and `b`, and an ndarray object containing two ndarray objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s elements (components) over the axes specified by ``a_axes`` and ``b_axes``. The third argument can be a single non-negative integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions of `a` and the first ``N`` dimensions of `b` are summed over. Parameters ---------- a, b : ndarray, len(shape) >= 1 Tensors to "dot". axes : int or (2,) ndarray * integer_like If an int N, sum over the last N axes of `a` and the first N axes of `b` in order. The sizes of the corresponding axes must match. * (2,) ndarray Or, a list of axes to be summed over, first sequence applying to `a`, second to `b`. Both elements ndarray must be of the same length. See Also -------- dot, einsum Notes ----- Three common use cases are: * ``axes = 0`` : tensor product :math:`a\otimes b` * ``axes = 1`` : tensor dot product :math:`a\cdot b` * ``axes = 2`` : (default) tensor double contraction :math:`a:b` When `axes` is integer_like, the sequence for evaluation will be: first the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and Nth axis in `b` last. When there is more than one axis to sum over - and they are not the last (first) axes of `a` (`b`) - the argument `axes` should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the second axis second, and so forth. Examples -------- >>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> c = np.tensordot(a,b, axes=([1,0],[0,1])) >>> c.shape (5, 2) >>> c array([[ 4400., 4730.], [ 4532., 4874.], [ 4664., 5018.], [ 4796., 5162.], [ 4928., 5306.]]) """ return _mx_nd_np.tensordot(a, b, axes) @set_module('mxnet.numpy') def histogram(a, bins=10, range=None, normed=None, weights=None, density=None): # pylint: disable=too-many-arguments """ Compute the histogram of a set of data. Parameters ---------- a : ndarray Input data. The histogram is computed over the flattened array. bins : int or ndarray If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines a monotonically increasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths. .. versionadded:: 1.11.0 If `bins` is a string, it defines the method used to calculate the optimal bin width, as defined by `histogram_bin_edges`. range : (float, float) The lower and upper range of the bins. Required when `bins` is an integer. Values outside the range are ignored. The first element of the range must be less than or equal to the second. normed : bool, optional Not supported yet, coming soon. weights : array_like, optional Not supported yet, coming soon. density : bool, optional Not supported yet, coming soon. Examples -------- >>> np.histogram(np.arange(4), bins=np.arange(5)) [array([1, 1, 1, 1], dtype=int64), array([0., 1., 2., 3., 4.])] """ return _mx_nd_np.histogram(a, bins=bins, range=range, normed=normed, weights=weights, density=density) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def eye(N, M=None, k=0, dtype=float, **kwargs): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to N. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the k-th diagonal, whose values are equal to one. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]], dtype=int64) >>> np.eye(3, k=1) array([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]]) """ return _mx_nd_np.eye(N, M, k, dtype, **kwargs) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, ctx=None): # pylint: disable=too-many-arguments r""" Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : real number The starting value of the sequence. stop : real number The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (samples, step), where step is the spacing between samples. dtype : dtype, optional The type of the output array. If dtype is not given, infer the data type from the other input arguments. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. Returns ------- samples : ndarray There are num equally spaced samples in the closed interval `[start, stop]` or the half-open interval `[start, stop)` (depending on whether endpoint is True or False). step : float, optional Only returned if retstep is True Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1.asnumpy(), y.asnumpy(), 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2.asnumpy(), (y + 0.5).asnumpy(), 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() Notes ----- This function differs from the original `numpy.linspace <https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html>`_ in the following aspects: - `start` and `stop` do not support list, numpy ndarray and mxnet ndarray - axis could only be 0 - There could be an additional `ctx` argument to specify the device, e.g. the i-th GPU. """ return _mx_nd_np.linspace(start, stop, num, endpoint, retstep, dtype, axis, ctx) # pylint: enable=redefined-outer-name # pylint: disable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0, ctx=None): r"""Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Non-scalar `start` and `stop` are now supported. Parameters ---------- start : int or float ``base ** start`` is the starting value of the sequence. stop : int or float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length `num`) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. dtype : dtype The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Now, axis only support axis = 0. ctx : Context, optional An optional device context (default is the current default context). Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... >>> power(base, y).astype(dtype) ... Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.44347, 464.15887, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([100. , 177.82794, 316.22775, 562.3413 ]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([4. , 5.0396843, 6.349604 , 8. ]) >>> np.logspace(2.0, 3.0, num=4, base=2.0, dtype=np.int32) array([4, 5, 6, 8], dtype=int32) >>> np.logspace(2.0, 3.0, num=4, ctx=npx.gpu(0)) array([ 100. , 215.44347, 464.15887, 1000. ], ctx=gpu(0)) """ return _mx_nd_np.logspace(start, stop, num, endpoint, base, dtype, axis, ctx=ctx) # pylint: enable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') def expand_dims(a, axis): """Expand the shape of an array. Insert a new axis that will appear at the `axis` position in the expanded array shape. Parameters ---------- a : ndarray Input array. axis : int Position in the expanded axes where the new axis is placed. Returns ------- res : ndarray Output array. The number of dimensions is one greater than that of the input array. See Also -------- squeeze : The inverse operation, removing singleton dimensions reshape : Insert, remove, and combine dimensions, and resize existing ones Examples -------- >>> x = np.array([1,2]) >>> x.shape (2,) >>> y = np.expand_dims(x, axis=0) >>> y array([[1., 2.]]) >>> y.shape (1, 2) >>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,np.newaxis] >>> y array([[1.], [2.]]) >>> y.shape (2, 1) Note that some examples may use None instead of np.newaxis. These are the same objects: >>> np.newaxis is None True """ return _npi.expand_dims(a, axis) @set_module('mxnet.numpy') def tile(A, reps): r""" Construct an array by repeating A the number of times given by reps. If `reps` has length ``d``, the result will have dimension of ``max(d, A.ndim)``. If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote `A` to d-dimensions manually before calling this function. If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it. Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as (1, 1, 2, 2). Parameters ---------- A : ndarray or scalar An input array or a scalar to repeat. reps : a single integer or tuple of integers The number of repetitions of `A` along each axis. Returns ------- c : ndarray The tiled output array. Examples -------- >>> a = np.array([0, 1, 2]) >>> np.tile(a, 2) array([0., 1., 2., 0., 1., 2.]) >>> np.tile(a, (2, 2)) array([[0., 1., 2., 0., 1., 2.], [0., 1., 2., 0., 1., 2.]]) >>> np.tile(a, (2, 1, 2)) array([[[0., 1., 2., 0., 1., 2.]], [[0., 1., 2., 0., 1., 2.]]]) >>> b = np.array([[1, 2], [3, 4]]) >>> np.tile(b, 2) array([[1., 2., 1., 2.], [3., 4., 3., 4.]]) >>> np.tile(b, (2, 1)) array([[1., 2.], [3., 4.], [1., 2.], [3., 4.]]) >>> c = np.array([1,2,3,4]) >>> np.tile(c,(4,1)) array([[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]]) Scalar as input: >>> np.tile(2, 3) array([2, 2, 2]) # repeating integer `2` """ return _mx_nd_np.tile(A, reps) @set_module('mxnet.numpy') def trace(a, offset=0, axis1=0, axis2=1, out=None): """ Return the sum along diagonals of the array. If `a` is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i. If `a` has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of `a` with `axis1` and `axis2` removed. Parameters ---------- a : ndarray Input array, from which the diagonals are taken. offset : int, optional Offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0. axis1, axis2 : int, optional Axes to be used as the first and second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults are the first two axes of `a`. out : ndarray, optional Array into which the output is placed. It must be of the right shape and right type to hold the output. Returns ------- sum_along_diagonals : ndarray If `a` is 2-D, the sum along the diagonal is returned. If `a` has larger dimensions, then an array of sums along diagonals is returned. Examples -------- >>> a = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> np.trace(a) array(3.) >>> a = np.arange(8).reshape((2, 2, 2)) >>> np.trace(a) array([6., 8.]) >>> a = np.arange(24).reshape((2, 2, 2, 3)) >>> np.trace(a).shape (2, 3) """ return _mx_nd_np.trace(a, offset, axis1, axis2, out) @set_module('mxnet.numpy') def transpose(a, axes=None): """ Permute the dimensions of an array. Parameters ---------- a : ndarray Input array. axes : list of ints, optional By default, reverse the dimensions, otherwise permute the axes according to the values given. Returns ------- p : ndarray a with its axes permuted. Notes ----- This function differs from the original `numpy.transpose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html>`_ in the following way(s): - only ndarray is accepted as valid input, python iterables are not supported - the operator always returns an `ndarray` that does not share the memory with the input Examples -------- >>> x = np.arange(4).reshape((2,2)) >>> x array([[0., 1.], [2., 3.]]) >>> np.transpose(x) array([[0., 2.], [1., 3.]]) >>> x = np.ones((1, 2, 3)) >>> np.transpose(x, (1, 0, 2)).shape (2, 1, 3) """ return _mx_nd_np.transpose(a, axes) @set_module('mxnet.numpy') def repeat(a, repeats, axis=None): """ Repeat elements of an array. Parameters ---------- a : array_like Input array. repeats : int The number of repetitions for each element. axis : int, optional The axis along which to repeat values. By default, use the flattened input array, and return a flat output array. Returns ------- repeated_array : ndarray Output array which has the same shape as `a`, except along the given axis. See Also -------- tile : Tile an array. Examples -------- >>> np.repeat(3, 4) array([3, 3, 3, 3]) >>> x = np.array([[1,2],[3,4]]) >>> np.repeat(x, 2) array([1, 1, 2, 2, 3, 3, 4, 4]) >>> np.repeat(x, 3, axis=1) array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> np.repeat(x, [1, 2], axis=0) array([[1, 2], [3, 4], [3, 4]]) """ return _mx_nd_np.repeat(a, repeats, axis) @set_module('mxnet.numpy') def tril(m, k=0): r""" Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : ndarray, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> a = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) >>> np.tril(a, -1) array([[ 0., 0., 0.], [ 4., 0., 0.], [ 7., 8., 0.], [10., 11., 12.]]) """ return _mx_nd_np.tril(m, k) @set_module('mxnet.numpy') def tri(N, M=None, k=0, dtype=None, ctx=None): # pylint: disable=redefined-outer-name r""" An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [1., 1., 0., 0., 0.]]) """ return _mx_nd_np.tri(N, M, k, dtype, ctx) @set_module('mxnet.numpy') def triu_indices(n, k=0, m=None, ctx=None): # pylint: disable=redefined-outer-name r""" Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, ..., 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return _mx_nd_np.triu_indices(n, k, m, ctx) @set_module('mxnet.numpy') def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu """ return _mx_nd_np.triu_indices_from(arr, k) @set_module('mxnet.numpy') def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ if m is None: m = n return tuple(_mx_nd_np.tril_indices(n, k, m)) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def triu(m, k=0): r""" Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu(np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]), -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ return _mx_nd_np.triu(m, k) @set_module('mxnet.numpy') def arange(start, stop=None, step=1, dtype=None, ctx=None): """Return evenly spaced values within a given interval. Values are generated within the half-open interval ``[start, stop)`` (in other words, the interval including `start` but excluding `stop`). For integer arguments the function is equivalent to the Python built-in `range` function, but returns an ndarray rather than a list. Parameters ---------- start : number, optional Start of interval. The interval includes this value. The default start value is 0. stop : number End of interval. The interval does not include this value, except in some cases where `step` is not an integer and floating point round-off affects the length of `out`. step : number, optional Spacing between values. For any output `out`, this is the distance between two adjacent values, ``out[i+1] - out[i]``. The default step size is 1. If `step` is specified as a position argument, `start` must also be given. dtype : dtype The type of the output array. Default dtype can be set to be consistent with offical numpy by `npx.set_np(dtype=True)`. - When npx.is_np_default_dtype() returns False, default dtype is float32; - When npx.is_np_default_dtype() returns True, default dtype is int64. Returns ------- arange : ndarray Array of evenly spaced values. For floating point arguments, the length of the result is ``ceil((stop - start)/step)``. Because of floating point overflow, this rule may result in the last element of `out` being greater than `stop`. Examples -------- >>> np.arange(3) array([0., 1., 2.]) >>> np.arange(3.0) array([0., 1., 2.]) >>> np.arange(3,7) array([3., 4., 5., 6.]) >>> np.arange(3,7,2) array([3., 5.]) >>> np.arange(3).dtype dtype('float32') >>> npx.set_np(dtype=True) >>> np.arange(3).dtype dtype('int64') """ return _mx_nd_np.arange(start, stop, step, dtype, ctx) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def split(ary, indices_or_sections, axis=0): """Split an array into multiple sub-arrays. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1-D Python tuple, list or set. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example, ``[2, 3]`` would, for ``axis=0``, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along `axis`, an empty sub-array is returned correspondingly. axis : int, optional The axis along which to split, default is 0. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Raises ------ ValueError If `indices_or_sections` is given as an integer, but a split does not result in equal division. See Also -------- hsplit : Split array into multiple sub-arrays horizontally (column-wise). vsplit : Split array into multiple sub-arrays vertically (row wise). dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). concatenate : Join a sequence of arrays along an existing axis. stack : Join a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise). vstack : Stack arrays in sequence vertically (row wise). dstack : Stack arrays in sequence depth wise (along third dimension). Examples -------- >>> x = np.arange(9.0) >>> np.split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])] >>> np.split(x, [3, 5, 6, 8]) [array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([])] """ return _mx_nd_np.split(ary, indices_or_sections, axis=axis) @set_module('mxnet.numpy') def array_split(ary, indices_or_sections, axis=0): """Split an array into multiple sub-arrays. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an array of length l that should be split into n sections, it returns l % n sub-arrays of size l//n + 1 and the rest of size l//n. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example, ``[2, 3]`` would, for ``axis=0``, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along `axis`, an empty sub-array is returned correspondingly. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1-D Python tuple, list or set. Param used to determine the number and size of the subarray. axis : int, optional The axis along which to split, default is 0. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Examples -------- >>> x = np.arange(9.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])] >>> np.array_split(x, [3, 5, 6, 8]) [array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([])] >>> x = np.arange(8.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])] >>> x = np.arange(7.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4.]), array([5., 6.])] """ return _mx_nd_np.array_split(ary, indices_or_sections, axis=axis) @set_module('mxnet.numpy') def vsplit(ary, indices_or_sections): r""" vsplit(ary, indices_or_sections) Split an array into multiple sub-arrays vertically (row-wise). ``vsplit`` is equivalent to ``split`` with `axis=0` (default): the array is always split along the first axis regardless of the array dimension. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1 - D Python tuple, list or set. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along axis 0. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along axis 0 the array is split. For example, ``[2, 3]`` would result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along axis 0, an error will be thrown. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. See Also -------- split : Split an array into multiple sub-arrays of equal size. Notes ------- This function differs from the original `numpy.vsplit <https://docs.scipy.org/doc/numpy/reference/generated/numpy.vsplit.html>`_ in the following aspects: - Currently parameter ``indices_or_sections`` does not support ndarray, but supports scalar, tuple and list. - In ``indices_or_sections``, if an index exceeds the dimension of the array along axis 0, an error will be thrown. Examples -------- >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) >>> np.vsplit(x, 2) [array([[0., 1., 2., 3.], [4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.], [12., 13., 14., 15.]])] >>> # With a higher dimensional array the split is still along the first axis. >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[ 0., 1.], [ 2., 3.]], [[ 4., 5.], [ 6., 7.]]]) >>> np.vsplit(x, 2) [array([[[0., 1.], [2., 3.]]]), array([[[4., 5.], [6., 7.]]])] """ return _mx_nd_np.vsplit(ary, indices_or_sections) @set_module('mxnet.numpy') def dsplit(ary, indices_or_sections): r""" Split array into multiple sub-arrays along the 3rd axis (depth). Please refer to the `split` documentation. `dsplit` is equivalent to `split` with ``axis=2``, the array is always split along the third axis provided the array dimension is greater than or equal to 3. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1 - D Python tuple, list or set. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along axis 2. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along axis 2 the array is split. For example, ``[2, 3]`` would result in - ary[:, :, :2] - ary[:, :, 2:3] - ary[:, :, 3:] If an index exceeds the dimension of the array along axis 2, an error will be thrown. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. See Also -------- split : Split an array into multiple sub-arrays of equal size. Notes ------- This function differs from the original `numpy.dsplit <https://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html>`_ in the following aspects: - Currently parameter ``indices_or_sections`` does not support ndarray, but supports scalar, tuple and list. - In ``indices_or_sections``, if an index exceeds the dimension of the array along axis 2, an error will be thrown. Examples -------- >>> x = np.arange(16.0).reshape(2, 2, 4) >>> x array([[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [12., 13., 14., 15.]]]) >>> np.dsplit(x, 2) [array([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [12., 13.]]]), array([[[ 2., 3.], [ 6., 7.]], [[10., 11.], [14., 15.]]])] >>> np.dsplit(x, np.array([3, 6])) [array([[[ 0., 1., 2.], [ 4., 5., 6.]], [[ 8., 9., 10.], [12., 13., 14.]]]), array([[[ 3.], [ 7.]], [[11.], [15.]]]), array([], shape=(2, 2, 0), dtype=float64)] """ return _mx_nd_np.dsplit(ary, indices_or_sections) @set_module('mxnet.numpy') def concatenate(seq, axis=0, out=None): """Join a sequence of arrays along an existing axis. Parameters ---------- a1, a2, ... : sequence of array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int, optional The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified. Returns ------- res : ndarray The concatenated array. See Also -------- split : Split array into a list of multiple sub-arrays of equal size. hsplit : Split array into multiple sub-arrays horizontally (column wise) vsplit : Split array into multiple sub-arrays vertically (row wise) dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). stack : Stack a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise) vstack : Stack arrays in sequence vertically (row wise) dstack : Stack arrays in sequence depth wise (along third dimension) Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1., 2.], [3., 4.], [5., 6.]]) >>> np.concatenate((a, b.T), axis=1) array([[1., 2., 5.], [3., 4., 6.]]) >>> np.concatenate((a, b), axis=None) array([1., 2., 3., 4., 5., 6.]) """ return _mx_nd_np.concatenate(seq, axis=axis, out=out) @set_module('mxnet.numpy') def append(arr, values, axis=None): # pylint: disable=redefined-outer-name """ Append values to the end of an array. Parameters ---------- arr : ndarray Values are appended to a copy of this array. values : ndarray These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. Examples -------- >>> np.append(np.array([1, 2, 3]), np.array([[4, 5, 6],[7, 8, 9]])) array([1., 2., 3., 4., 5., 6., 7., 8., 9.]) When `axis` is specified, `values` must have the correct shape. >>> np.append(np.array([[1, 2, 3], [4, 5, 6]]), np.array([[7, 8, 9]]), axis=0) array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) """ return _mx_nd_np.append(arr, values, axis=axis) @set_module('mxnet.numpy') def stack(arrays, axis=0, out=None): """Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if `axis=0` it will be the first dimension and if `axis=-1` it will be the last dimension. Parameters ---------- arrays : sequence of array_like Each array must have the same shape. axis : int, optional The axis in the result array along which the input arrays are stacked. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what stack would have returned if no out argument were specified. Returns ------- stacked : ndarray The stacked array has one more dimension than the input arrays. See Also -------- concatenate : Join a sequence of arrays along an existing axis. split : Split array into a list of multiple sub-arrays of equal size. Examples -------- >>> arrays = [np.random.rand(3, 4) for _ in range(10)] >>> np.stack(arrays, axis=0).shape (10, 3, 4) >>> np.stack(arrays, axis=1).shape (3, 10, 4) >>> np.stack(arrays, axis=2).shape (3, 4, 10) >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.stack((a, b)) array([[1., 2., 3.], [2., 3., 4.]]) >>> np.stack((a, b), axis=-1) array([[1., 2.], [2., 3.], [3., 4.]]) """ return _mx_nd_np.stack(arrays, axis=axis, out=out) @set_module('mxnet.numpy') def vstack(arrays, out=None): r"""Stack arrays in sequence vertically (row wise). This is equivalent to concatenation along the first axis after 1-D arrays of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by `vsplit`. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions `concatenate` and `stack` provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of ndarrays The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length. Returns ------- stacked : ndarray The array formed by stacking the given arrays, will be at least 2-D. Examples -------- >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a, b)) array([[1., 2., 3.], [2., 3., 4.]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a, b)) array([[1.], [2.], [3.], [2.], [3.], [4.]]) """ return _mx_nd_np.vstack(arrays) @set_module('mxnet.numpy') def row_stack(arrays): r"""Stack arrays in sequence vertically (row wise). This is equivalent to concatenation along the first axis after 1-D arrays of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by `vsplit`. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions `concatenate` and `stack` provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of ndarrays The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length. Returns ------- stacked : ndarray The array formed by stacking the given arrays, will be at least 2-D. Examples -------- >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a, b)) array([[1., 2., 3.], [2., 3., 4.]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a, b)) array([[1.], [2.], [3.], [2.], [3.], [4.]]) """ return _mx_nd_np.row_stack(arrays) @set_module('mxnet.numpy') def column_stack(tup): """ Stack 1-D arrays as columns into a 2-D array. Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is, just like with `hstack`. 1-D arrays are turned into 2-D columns first. Parameters ---------- tup : sequence of 1-D or 2-D arrays. Arrays to stack. All of them must have the same first dimension. Returns -------- stacked : 2-D array The array formed by stacking the given arrays. See Also -------- stack, hstack, vstack, concatenate Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.column_stack((a,b)) array([[1., 2.], [2., 3.], [3., 4.]]) """ return _mx_nd_np.column_stack(tup) @set_module('mxnet.numpy') def hstack(arrays): """ Stack arrays in sequence horizontally (column wise). This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis. Rebuilds arrays divided by hsplit. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of ndarrays The arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length. Returns ------- stacked : ndarray The array formed by stacking the given arrays. Examples -------- >>> from mxnet import np,npx >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.hstack((a,b)) array([1., 2., 3., 2., 3., 4.]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.hstack((a,b)) array([[1., 2.], [2., 3.], [3., 4.]]) """ return _mx_nd_np.hstack(arrays) @set_module('mxnet.numpy') def dstack(arrays): """ Stack arrays in sequence depth wise (along third axis). This is equivalent to concatenation along the third axis after 2-D arrays of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by `dsplit`. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions `concatenate`, `stack` and `block` provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of arrays The arrays must have the same shape along all but the third axis. 1-D or 2-D arrays must have the same shape. Returns ------- stacked : ndarray The array formed by stacking the given arrays, will be at least 3-D. Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.dstack((a,b)) array([[[1, 2], [2, 3], [3, 4]]]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.dstack((a,b)) array([[[1, 2]], [[2, 3]], [[3, 4]]]) """ return _npi.dstack(*arrays) @set_module('mxnet.numpy') @wrap_np_binary_func def maximum(x1, x2, out=None, **kwargs): """ Returns element-wise maximum of the input arrays with broadcasting. Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The maximum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.maximum(np.array([2, 3, 4]), np.array([1, 5, 2])) array([2., 5., 4.]) >>> np.maximum(np.eye(2), np.array([0.5, 2])) # broadcasting array([[1. , 2. ], [0.5, 2. ]]) """ return _mx_nd_np.maximum(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def fmax(x1, x2, out=None, **kwargs): """ Returns element-wise maximum of the input arrays with broadcasting. (Ignores NaNs) Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The maximum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.fmax(np.array([2, 3, 4]), np.array([1, 5, 2])) array([2., 5., 4.]) >>> np.fmax(np.eye(2), np.array([0.5, 2])) # broadcasting array([[1. , 2. ], [0.5, 2. ]]) """ return _mx_nd_np.fmax(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def minimum(x1, x2, out=None, **kwargs): """ Returns element-wise minimum of the input arrays with broadcasting. Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The minimum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.minimum(np.array([2, 3, 4]), np.array([1, 5, 2])) array([1., 3., 2.]) >>> np.minimum(np.eye(2), np.array([0.5, 2])) # broadcasting array([[0.5, 0. ], [0. , 1. ]]) """ return _mx_nd_np.minimum(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def fmin(x1, x2, out=None, **kwargs): """ Returns element-wise minimum of the input arrays with broadcasting. (Ignores NaNs) Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The fmin of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.fmin(np.array([2, 3, 4]), np.array([1, 5, 2])) array([1., 3., 2.]) >>> np.fmin(np.eye(2), np.array([0.5, 2])) # broadcasting array([[0.5, 0. ], [0. , 1. ]]) """ return _mx_nd_np.fmin(x1, x2, out=out) @set_module('mxnet.numpy') def max(a, axis=None, out=None, keepdims=False): """ Return the maximum of an array or maximum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- max : ndarray Maximum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- min : The minimum value of an array along a given axis, ignoring any nan. maximum : Element-wise maximum of two arrays, ignoring any nan. argmax : Return the indices of the maximum values. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `max` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than ``max(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.max(a) # Maximum of the flattened array array(3.) >>> np.max(a, axis=0) # Maxima along the first axis array([2., 3.]) >>> np.max(a, axis=1) # Maxima along the second axis array([1., 3.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.max(b) array(4.) """ return _mx_nd_np.max(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def min(a, axis=None, out=None, keepdims=False): """ Return the minimum of an array or minimum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- min : ndarray Minimum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- max : The maximum value of an array along a given axis, ignoring any nan. minimum : Element-wise minimum of two arrays, ignoring any nan. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `min` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than ``min(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.min(a) # Minimum of the flattened array array(0.) >>> np.min(a, axis=0) # Minima along the first axis array([0., 1.]) >>> np.min(a, axis=1) # Minima along the second axis array([0., 2.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.min(b) array(0.) # nan will be ignored """ return _mx_nd_np.min(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def swapaxes(a, axis1, axis2): """Interchange two axes of an array. Parameters ---------- a : ndarray Input array. axis1 : int First axis. axis2 : int Second axis. Returns ------- a_swapped : ndarray Swapped array. This is always a copy of the input array. Examples -------- >>> x = np.array([[1,2,3]]) >>> np.swapaxes(x,0,1) array([[1.], [2.], [3.]]) >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> np.swapaxes(x,0,2) array([[[0., 4.], [2., 6.]], [[1., 5.], [3., 7.]]]) """ return _npi.swapaxes(a, dim1=axis1, dim2=axis2) @set_module('mxnet.numpy') def clip(a, a_min, a_max, out=None): """clip(a, a_min, a_max, out=None) Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Parameters ---------- a : ndarray Array containing elements to clip. a_min : scalar or `None` Minimum value. If `None`, clipping is not performed on lower interval edge. Not more than one of `a_min` and `a_max` may be `None`. a_max : scalar or `None` Maximum value. If `None`, clipping is not performed on upper interval edge. Not more than one of `a_min` and `a_max` may be `None`. out : ndarray, optional The results will be placed in this array. It may be the input array for in-place clipping. `out` must be of the right shape to hold the output. Its type is preserved. Returns ------- clipped_array : ndarray An array with the elements of `a`, but where values < `a_min` are replaced with `a_min`, and those > `a_max` with `a_max`. Notes ----- array_like `a_min` and `a_max` are not supported. Examples -------- >>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]) >>> a array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.clip(a, 3, 6, out=a) array([3., 3., 3., 3., 4., 5., 6., 6., 6., 6.]) """ from numbers import Number if isinstance(a, Number): # In case input is a scalar, the computation would fall back to native numpy. # The value returned would be a python scalar. return _np.clip(a, a_min, a_max, out=None) return _mx_nd_np.clip(a, a_min, a_max, out=out) @set_module('mxnet.numpy') def argmax(a, axis=None, out=None): r""" Returns the indices of the maximum values along an axis. Parameters ---------- a : ndarray Input array. Only support ndarrays of dtype `float16`, `float32`, and `float64`. axis : int, optional By default, the index is into the flattened array, otherwise along the specified axis. out : ndarray or None, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- index_array : ndarray of indices whose dtype is same as the input ndarray. Array of indices into the array. It has the same shape as `a.shape` with the dimension along `axis` removed. Notes ----- In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned. This function differs from the original `numpy.argmax <https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10., 11., 12.], [13., 14., 15.]]) >>> np.argmax(a) array(5.) >>> np.argmax(a, axis=0) array([1., 1., 1.]) >>> np.argmax(a, axis=1) array([2., 2.]) >>> b = np.arange(6) >>> b[1] = 5 >>> b array([0., 5., 2., 3., 4., 5.]) >>> np.argmax(b) # Only the first occurrence is returned. array(1.) Specify ``out`` ndarray: >>> a = np.arange(6).reshape(2,3) + 10 >>> b = np.zeros((2,)) >>> np.argmax(a, axis=1, out=b) array([2., 2.]) >>> b array([2., 2.]) """ return _mx_nd_np.argmax(a, axis, out) @set_module('mxnet.numpy') def argmin(a, axis=None, out=None): r""" Returns the indices of the minimum values along an axis. Parameters ---------- a : ndarray Input array. Only support ndarrays of dtype `float16`, `float32`, and `float64`. axis : int, optional By default, the index is into the flattened array, otherwise along the specified axis. out : ndarray or None, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- index_array : ndarray of indices whose dtype is same as the input ndarray. Array of indices into the array. It has the same shape as `a.shape` with the dimension along `axis` removed. Notes ----- In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned. This function differs from the original `numpy.argmin <https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10., 11., 12.], [13., 14., 15.]]) >>> np.argmin(a) array(0.) >>> np.argmin(a, axis=0) array([0., 0., 0.]) >>> np.argmin(a, axis=1) array([0., 0.]) >>> b = np.arange(6) >>> b[2] = 0 >>> b array([0., 1., 0., 3., 4., 5.]) >>> np.argmax(b) # Only the first occurrence is returned. array(0.) Specify ``out`` ndarray: >>> a = np.arange(6).reshape(2,3) + 10 >>> b = np.zeros((2,)) >>> np.argmin(a, axis=1, out=b) array([0., 0.]) >>> b array([0., 0.]) """ return _mx_nd_np.argmin(a, axis, out) @set_module('mxnet.numpy') def amax(a, axis=None, out=None, keepdims=False): """ Return the maximum of an array or maximum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- max : ndarray Maximum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- min : The minimum value of an array along a given axis, ignoring any nan. maximum : Element-wise maximum of two arrays, ignoring any nan. argmax : Return the indices of the maximum values. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `max` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than ``max(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.max(a) # Maximum of the flattened array array(3.) >>> np.max(a, axis=0) # Maxima along the first axis array([2., 3.]) >>> np.max(a, axis=1) # Maxima along the second axis array([1., 3.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.max(b) array(4.) """ return _mx_nd_np.amax(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def amin(a, axis=None, out=None, keepdims=False): """ Return the minimum of an array or minimum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- min : ndarray Minimum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- max : The maximum value of an array along a given axis, ignoring any nan. minimum : Element-wise minimum of two arrays, ignoring any nan. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `min` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than ``min(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.min(a) # Minimum of the flattened array array(0.) >>> np.min(a, axis=0) # Minima along the first axis array([0., 1.]) >>> np.min(a, axis=1) # Minima along the second axis array([0., 2.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.min(b) array(0.) # nan will be ignored """ return _mx_nd_np.amin(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def average(a, axis=None, weights=None, returned=False, out=None): """ Compute the weighted average along the specified axis. Parameters -------- a : ndarray Array containing data to be averaged. axis : None or int or tuple of ints, optional Axis or axes along which to average a. The default, axis=None, will average over all of the elements of the input array. If axis is negative it counts from the last to the first axis. New in version 1.7.0. If axis is a tuple of ints, averaging is performed on all of the axes specified in the tuple instead of a single axis or all the axes as before. weights : ndarray, optional An array of weights associated with the values in a, must be the same dtype with a. Each value in a contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of a along the given axis) or of the same shape as a. If weights=None, then all data in a are assumed to have a weight equal to one. The 1-D calculation is: avg = sum(a * weights) / sum(weights) The only constraint on weights is that sum(weights) must not be 0. returned : bool, optional Default is False. If True, the tuple (average, sum_of_weights) is returned, otherwise only the average is returned. If weights=None, sum_of_weights is equivalent to the number of elements over which the average is taken. out : ndarray, optional If provided, the calculation is done into this array. Returns -------- retval, [sum_of_weights] : ndarray Return the average along the specified axis. When returned is True, return a tuple with the average as the first element and the sum of the weights as the second element. sum_of_weights is of the same type as retval. If a is integral, the result dtype will be current default dtype, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64; otherwise it will be the same as dtype of a. Raises -------- MXNetError - When all weights along axis sum to zero. - When the length of 1D weights is not the same as the shape of a along axis. - When given 1D weights, the axis is not specified or is not int. - When the shape of weights and a differ, but weights are not 1D. See also -------- mean Notes -------- This function differs from the original `numpy.average` <https://numpy.org/devdocs/reference/generated/numpy.average.html>`_ in the following way(s): - Does not guarantee the same behavior with numpy when given float16 dtype and overflow happens - Does not support complex dtype - The dtypes of a and weights must be the same - Integral a results in float32 or float64 returned dtype: When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64; Examples -------- >>> data = np.arange(1, 5) >>> data array([1., 2., 3., 4.]) >>> np.average(data) array(2.5) >>> np.average(np.arange(1, 11), weights=np.arange(10, 0, -1)) array(4.) >>> data = np.arange(6).reshape((3,2)) >>> data array([[0., 1.], [2., 3.], [4., 5.]]) >>> weights = np.array([0.25, 0.75]) array([0.25, 0.75]) >>> np.average(data, axis=1, weights=weights) array([0.75, 2.75, 4.75]) """ return _mx_nd_np.average(a, axis=axis, weights=weights, returned=returned, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def mean(a, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """ Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. Parameters ---------- a : ndarray ndarray containing numbers whose mean is desired. axis : None or int or tuple of ints, optional Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the mean. For integer inputs, the default is of your current default dtype, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64; For floating point inputs, it is the same as the input dtype. out : ndarray, optional Alternate output array in which to place the result. The default is None; if provided, it must have the same shape and type as the expected output. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then keepdims will not be passed through to the mean method of sub-classes of ndarray, however any non-default value will be. If the sub-class method does not implement keepdims any exceptions will be raised. Returns ------- m : ndarray, see dtype parameter above If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned. Notes ----- This function differs from the original `numpy.mean <https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html>`_ in the following way(s): - only ndarray is accepted as valid input, python iterables or scalar is not supported - default data type for integer input is float32 or float64, which depends on your current default dtype Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) array(2.5) >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0,:] = 1.0 >>> a[1,:] = 0.1 >>> np.mean(a) array(0.55) >>> np.mean(a, dtype=np.float64) array(0.55, dtype=float64) """ return _npi.mean(a, axis=axis, dtype=dtype, keepdims=keepdims, out=out) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=too-many-arguments """ Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Calculate the standard deviation of these values. axis : None or int or tuple of ints, optional Axis or axes along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional Type to use in computing the standard deviation. For arrays of integer type the default is float64, for arrays of float types it is the same as the array type. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output but the type (of the calculated values) will be cast if necessary. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `std` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. Returns ------- standard_deviation : ndarray, see dtype parameter above. If `out` is None, return a new array containing the standard deviation, otherwise return a reference to the output array. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) 1.1180339887498949 # may vary >>> np.std(a, axis=0) array([1., 1.]) >>> np.std(a, axis=1) array([0.5, 0.5]) In single precision, std() can be inaccurate: >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.std(a) array(0.45) >>> np.std(a, dtype=np.float64) array(0.45, dtype=float64) """ return _mx_nd_np.std(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by `arr[obj]`. Parameters ---------- arr : ndarray Input array. obj : slice, int or ndarray of ints Indicate indices of sub-arrays to remove along the specified axis. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]]) >>> np.delete(arr, 1, 0) array([[ 1., 2., 3., 4.], [ 9., 10., 11., 12.]]) >>> np.delete(arr, slice(None, None, 2), 1) array([[ 2., 4.], [ 6., 8.], [10., 12.]]) >>> np.delete(arr, np.array([1,3,5]), None) array([ 1., 3., 5., 7., 8., 9., 10., 11., 12.]) >>> np.delete(arr, np.array([1,1,5]), None) array([ 1., 3., 4., 5., 7., 8., 9., 10., 11., 12.]) """ return _mx_nd_np.delete(arr, obj, axis=axis) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=too-many-arguments """ Compute the variance along the specified axis. Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Array containing numbers whose variance is desired. If `a` is not an array, a conversion is attempted. axis : None or int or tuple of ints, optional Axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the variance. For arrays of integer type, the default is of your current default dtype, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64. For arrays of float types it is the same as the array type. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output, but the type is cast if necessary. ddof : int, optional "Delta Degrees of Freedom": the divisor used in the calculation is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `var` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. Returns ------- variance : ndarray, see dtype parameter above If ``out=None``, returns a new array containing the variance; otherwise, a reference to the output array is returned. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.var(a) array(1.25) >>> np.var(a, axis=0) array([1., 1.]) >>> np.var(a, axis=1) array([0.25, 0.25]) >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.var(a) array(0.2025) >>> np.var(a, dtype=np.float64) array(0.2025, dtype=float64) >>> ((1-0.55)**2 + (0.1-0.55)**2)/2 0.2025 """ return _mx_nd_np.var(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def indices(dimensions, dtype=None, ctx=None): """Return an array representing the indices of a grid. Compute an array where the subarrays contain index values 0,1,... varying only along the corresponding axis. Parameters ---------- dimensions : sequence of ints The shape of the grid. dtype : data-type, optional The desired data-type for the array. Default is `int64`. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- grid : ndarray The array of grid indices, ``grid.shape = (len(dimensions),) + tuple(dimensions)``. Notes ----- The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if `dimensions` is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is ``(N,r0,...,rN-1)``. The subarrays ``grid[k]`` contains the N-D array of indices along the ``k-th`` axis. Explicitly:: grid[k,i0,i1,...,iN-1] = ik Examples -------- >>> grid = np.indices((2, 3)) >>> grid.shape (2, 2, 3) >>> grid[0] # row indices array([[0, 0, 0], [1, 1, 1]], dtype=int64) >>> grid[1] # column indices array([[0, 0, 0], [1, 1, 1]], dtype=int64) The indices can be used as an index into an array. >>> x = np.arange(20).reshape(5, 4) >>> row, col = np.indices((2, 3)) >>> x[row, col] array([[0., 1., 2.], [4., 5., 6.]]) Note that it would be more straightforward in the above example to extract the required elements directly with ``x[:2, :3]``. """ return _mx_nd_np.indices(dimensions=dimensions, dtype=dtype, ctx=ctx) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') @wrap_np_binary_func def copysign(x1, x2, out=None, **kwargs): r""" Change the sign of x1 to that of x2, element-wise. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : ndarray or scalar Values to change the sign of. x2 : ndarray or scalar The sign of `x2` is copied to `x1`. out : ndarray or None, optional A location into which the result is stored. It must be of the right shape and right type to hold the output. If not provided or `None`,a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The values of `x1` with the sign of `x2`. This is a scalar if both `x1` and `x2` are scalars. Notes ------- This function differs from the original `numpy.copysign <https://docs.scipy.org/doc/numpy/reference/generated/numpy.copysign.html>`_ in the following aspects: - ``where`` param is not supported. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> a = np.array([-1, 0, 1]) >>> np.copysign(a, -1.1) array([-1., -0., -1.]) >>> np.copysign(a, np.arange(3)-1) array([-1., 0., 1.]) """ return _mx_nd_np.copysign(x1, x2, out=out) @set_module('mxnet.numpy') def ravel(x, order='C'): r""" ravel(x) Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed. Parameters ---------- x : ndarray Input array. The elements in `x` are read in row-major, C-style order and packed as a 1-D array. order : `C`, optional Only support row-major, C-style order. Returns ------- y : ndarray y is an array of the same subtype as `x`, with shape ``(x.size,)``. Note that matrices are special cased for backward compatibility, if `x` is a matrix, then y is a 1-D ndarray. Notes ----- This function differs from the original numpy.arange in the following aspects: - Only support row-major, C-style order. Examples -------- It is equivalent to ``reshape(x, -1)``. >>> x = np.array([[1, 2, 3], [4, 5, 6]]) >>> print(np.ravel(x)) [1. 2. 3. 4. 5. 6.] >>> print(x.reshape(-1)) [1. 2. 3. 4. 5. 6.] >>> print(np.ravel(x.T)) [1. 4. 2. 5. 3. 6.] """ return _mx_nd_np.ravel(x, order) @set_module('mxnet.numpy') def unravel_index(indices, shape, order='C'): # pylint: disable=redefined-outer-name """ Converts a flat index or array of flat indices into a tuple of coordinate arrays. Parameters: ------------- indices : array_like An integer array whose elements are indices into the flattened version of an array of dimensions shape. Before version 1.6.0, this function accepted just one index value. shape : tuple of ints The shape of the array to use for unraveling indices. order : Only row-major is supported currently. Returns: ------------- unraveled_coords : ndarray Each row in the ndarray has the same shape as the indices array. Each column in the ndarray represents the unravelled index Examples: ------------- >>> np.unravel_index([22, 41, 37], (7,6)) [[3. 6. 6.] [4. 5. 1.]] >>> np.unravel_index(1621, (6,7,8,9)) [3, 1, 4, 1] """ return _mx_nd_np.unravel_index(indices, shape, order=order) @set_module('mxnet.numpy') def flatnonzero(a): r""" Return indices that are non-zero in the flattened version of a. This is equivalent to np.nonzero(np.ravel(a))[0]. Parameters ---------- a : array_like Input data. Returns ------- res : ndarray Output array, containing the indices of the elements of `a.ravel()` that are non-zero. See Also -------- nonzero : Return the indices of the non-zero elements of the input array. ravel : Return a 1-D array containing the elements of the input array. Examples -------- >>> x = np.arange(-2, 3) >>> x array([-2, -1, 0, 1, 2]) >>> np.flatnonzero(x) array([0, 1, 3, 4]) Use the indices of the non-zero elements as an index array to extract these elements: >>> x.ravel()[np.flatnonzero(x)] array([-2, -1, 1, 2]) """ return _mx_nd_np.flatnonzero(a) @set_module('mxnet.numpy') def diag_indices_from(arr): """ This returns a tuple of indices that can be used to access the main diagonal of an array a with a.ndim >= 2 dimensions and shape (n, n, ..., n). For a.ndim = 2 this is the usual diagonal, for a.ndim > 2 this is the set of indices to access a[i, i, ..., i] for i = [0..n-1]. Parameters: ------------- arr : ndarray Input array for acessing the main diagonal. All dimensions should have equal length. Return: ------------- diag: tuple of ndarray indices of the main diagonal. Examples: ------------- >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> idx = np.diag_indices_from(a) >>> idx (array([0, 1, 2, 3]), array([0, 1, 2, 3])) >>> a[idx] = 100 >>> a array([[100, 1, 2, 3], [ 4, 100, 6, 7], [ 8, 9, 100, 11], [ 12, 13, 14, 100]]) """ return _mx_nd_np.diag_indices_from(arr) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def hanning(M, dtype=None, ctx=None): r"""Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that you need select numpy.float32 or float64 in this operator. See Also -------- blackman, hamming Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1 The Hanning was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([0. , 0.07937324, 0.29229254, 0.5711574 , 0.8274304 , 0.9797465 , 0.97974646, 0.82743025, 0.5711573 , 0.29229245, 0.07937312, 0. ]) Plot the window and its frequency response: >>> import matplotlib.pyplot as plt >>> window = np.hanning(51) >>> plt.plot(window.asnumpy()) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") Text(0.5, 1.0, 'Hann window') >>> plt.ylabel("Amplitude") Text(0, 0.5, 'Amplitude') >>> plt.xlabel("Sample") Text(0.5, 0, 'Sample') >>> plt.show() """ return _mx_nd_np.hanning(M, dtype=dtype, ctx=ctx) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def hamming(M, dtype=None, ctx=None): r"""Return the hamming window. The hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that you need select numpy.float32 or float64 in this operator. See Also -------- blackman, hanning Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", https://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([0.08000001, 0.15302339, 0.34890914, 0.6054648 , 0.841236 , 0.9813669 , 0.9813668 , 0.8412359 , 0.6054647 , 0.34890908, 0.15302327, 0.08000001]) Plot the window and its frequency response: >>> import matplotlib.pyplot as plt >>> window = np.hamming(51) >>> plt.plot(window.asnumpy()) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("hamming window") Text(0.5, 1.0, 'hamming window') >>> plt.ylabel("Amplitude") Text(0, 0.5, 'Amplitude') >>> plt.xlabel("Sample") Text(0.5, 0, 'Sample') >>> plt.show() """ return _mx_nd_np.hamming(M, dtype=dtype, ctx=ctx) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def blackman(M, dtype=None, ctx=None): r"""Return the Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that you need select numpy.float32 or float64 in this operator. See Also -------- hamming, hanning Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \cos(2\pi n/{M-1}) + 0.08 \cos(4\pi n/{M-1}) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([-1.4901161e-08, 3.2606423e-02, 1.5990365e-01, 4.1439798e-01, 7.3604530e-01, 9.6704686e-01, 9.6704674e-01, 7.3604506e-01, 4.1439781e-01, 1.5990359e-01, 3.2606363e-02, -1.4901161e-08]) Plot the window and its frequency response: >>> import matplotlib.pyplot as plt >>> window = np.blackman(51) >>> plt.plot(window.asnumpy()) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("blackman window") Text(0.5, 1.0, 'blackman window') >>> plt.ylabel("Amplitude") Text(0, 0.5, 'Amplitude') >>> plt.xlabel("Sample") Text(0.5, 0, 'Sample') >>> plt.show() """ return _mx_nd_np.blackman(M, dtype=dtype, ctx=ctx) @set_module('mxnet.numpy') def flip(m, axis=None, out=None): r""" flip(m, axis=None, out=None) Reverse the order of elements in an array along the given axis. The shape of the array is preserved, but the elements are reordered. Parameters ---------- m : ndarray or scalar Input array. axis : None or int or tuple of ints, optional Axis or axes along which to flip over. The default, axis=None, will flip over all of the axes of the input array. If axis is negative it counts from the last to the first axis. If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple. out : ndarray or scalar, optional Alternative output array in which to place the result. It must have the same shape and type as the expected output. Returns ------- out : ndarray or scalar A view of `m` with the entries of axis reversed. Since a view is returned, this operation is done in constant time. Examples -------- >>> A = np.arange(8).reshape((2,2,2)) >>> A array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> np.flip(A, 0) array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) >>> np.flip(A, 1) array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) >>> np.flip(A) array([[[7, 6], [5, 4]], [[3, 2], [1, 0]]]) >>> np.flip(A, (0, 2)) array([[[5, 4], [7, 6]], [[1, 0], [3, 2]]]) """ return _mx_nd_np.flip(m, axis, out=out) @set_module('mxnet.numpy') def flipud(m): r""" flipud(*args, **kwargs) Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag(np.array([1.0, 2, 3])) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.flipud(A) array([[0., 0., 3.], [0., 2., 0.], [1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) array(True) >>> np.flipud(np.array([1,2])) array([2., 1.]) """ return flip(m, 0) @set_module('mxnet.numpy') def fliplr(m): r""" fliplr(*args, **kwargs) Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.fliplr(A) array([[0., 0., 1.], [0., 2., 0.], [3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) array(True) """ return flip(m, 1) @set_module('mxnet.numpy') def around(x, decimals=0, out=None, **kwargs): r""" around(x, decimals=0, out=None) Evenly round to the given number of decimals. Parameters ---------- x : ndarray or scalar Input data. decimals : int, optional Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and type as the expected output. Returns ------- rounded_array : ndarray or scalar An array of the same type as `x`, containing the rounded values. A reference to the result is returned. Notes ----- For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. This function differs from the original numpy.prod in the following aspects: - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot support complex-valued number. Examples -------- >>> np.around([0.37, 1.64]) array([ 0., 2.]) >>> np.around([0.37, 1.64], decimals=1) array([ 0.4, 1.6]) >>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value array([ 0., 2., 2., 4., 4.]) >>> np.around([1, 2, 3, 11], decimals=1) # ndarray of ints is returned array([ 1, 2, 3, 11]) >>> np.around([1, 2, 3, 11], decimals=-1) array([ 0, 0, 0, 10]) """ return _mx_nd_np.around(x, decimals, out=out, **kwargs) @set_module('mxnet.numpy') def round(x, decimals=0, out=None, **kwargs): r""" round(a, decimals=0, out=None) Round an array to the given number of decimals. See Also -------- around : equivalent function; see for details. """ return _mx_nd_np.round(x, decimals, out=out, **kwargs) @set_module('mxnet.numpy') def round_(x, decimals=0, out=None, **kwargs): r""" round_(a, decimals=0, out=None) Round an array to the given number of decimals. See Also -------- around : equivalent function; see for details. """ return _mx_nd_np.round_(x, decimals, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_binary_func def arctan2(x1, x2, out=None, **kwargs): r""" Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (`x2`, `x1`). (Note the role reversal: the "`y`-coordinate" is the first function parameter, the "`x`-coordinate" is the second.) By IEEE convention, this function is defined for `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see Notes for specific values). This function is not defined for complex-valued arguments; for the so-called argument of complex values, use `angle`. Parameters ---------- x1 : ndarray or scalar `y`-coordinates. x2 : ndarray or scalar `x`-coordinates. `x2` must be broadcastable to match the shape of `x1` or vice versa. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Array of angles in radians, in the range ``[-pi, pi]``. This is a scalar if `x1` and `x2` are scalars. Notes ----- *arctan2* is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard: [1]_ ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf. This function differs from the original numpy.arange in the following aspects: - Only support float16, float32 and float64. References ---------- .. [1] ISO/IEC standard 9899:1999, "Programming language C." Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> x = np.array([1, -1]) >>> y = np.array([0, 0]) >>> np.arctan2(x, y) array([ 1.5707964, -1.5707964]) """ return _mx_nd_np.arctan2(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def hypot(x1, x2, out=None, **kwargs): r""" Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- z : ndarray The hypotenuse of the triangle(s). This is a scalar if both `x1` and `x2` are scalars. Notes ----- This function differs from the original numpy.arange in the following aspects: - Only support float16, float32 and float64. Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) """ return _mx_nd_np.hypot(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def bitwise_and(x1, x2, out=None, **kwargs): r""" Compute the bit-wise XOR of two arrays element-wise. Parameters ---------- x1, x2 : ndarray or scalar Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray Result. Examples -------- >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.bitwise_and(np.array([14,3], dtype='int32'), 13) array([26, 5], dtype=int32) >>> np.bitwise_and(np.array([11,7], dtype='int32'), np.array([4,25], dtype='int32')) array([0, 1], dtype=int32) >>> np.bitwise_and(np.array([2,5,255], dtype='int32'), np.array([3,14,16], dtype='int32')) array([ 2, 4, 16], dtype=int32) >>> np.bitwise_and(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([False, True]) """ return _mx_nd_np.bitwise_and(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def bitwise_xor(x1, x2, out=None, **kwargs): r""" Compute the bit-wise XOR of two arrays element-wise. Parameters ---------- x1, x2 : ndarray or scalar Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray Result. Examples -------- >>> np.bitwise_xor(13, 17) 28 >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor(np.array([31,3], dtype=np.int32), 5) array([26, 6], dtype=int32) >>> np.bitwise_xor(np.array([31,3], dtype='int32'), np.array([5,6], dtype='int32')) array([26, 5], dtype=int32) >>> np.bitwise_xor(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([ True, False]) """ return _mx_nd_np.bitwise_xor(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def bitwise_or(x1, x2, out=None, **kwargs): r""" Compute the bit-wise OR of two arrays element-wise. Parameters ---------- x1, x2 : ndarray or scalar Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray Result. Examples -------- >>> np.bitwise_or(13, 17) 29 >>> np.bitwise_or(31, 5) 31 >>> np.bitwise_or(np.array([31,3], dtype=np.int32), 5) array([31, 7]) >>> np.bitwise_or(np.array([31,3], dtype='int32'), np.array([5,6], dtype='int32')) array([31, 7]) >>> np.bitwise_or(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([ True, True]) """ return _mx_nd_np.bitwise_or(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def ldexp(x1, x2, out=None, **kwargs): """ Returns x1 * 2**x2, element-wise. The mantissas `x1` and twos exponents `x2` are used to construct floating point numbers ``x1 * 2**x2``. Parameters ---------- x1 : ndarray or scalar Array of multipliers. x2 : ndarray or scalar, int Array of twos exponents. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The result of ``x1 * 2**x2``. This is a scalar if both `x1` and `x2` are scalars. Notes ----- Complex dtypes are not supported, they will raise a TypeError. Different from numpy, we allow x2 to be float besides int. `ldexp` is useful as the inverse of `frexp`, if used by itself it is more clear to simply use the expression ``x1 * 2**x2``. Examples -------- >>> np.ldexp(5, np.arange(4)) array([ 5., 10., 20., 40.]) """ return _mx_nd_np.ldexp(x1, x2, out) @set_module('mxnet.numpy') def vdot(a, b): r""" Return the dot product of two vectors. Note that `vdot` handles multidimensional arrays differently than `dot`: it does *not* perform a matrix product, but flattens input arguments to 1-D vectors first. Consequently, it should only be used for vectors. Parameters ---------- a : ndarray First argument to the dot product. b : ndarray Second argument to the dot product. Returns ------- output : ndarray Dot product of `a` and `b`. See Also -------- dot : Return the dot product without using the complex conjugate of the first argument. Examples -------- Note that higher-dimensional arrays are flattened! >>> a = np.array([[1, 4], [5, 6]]) >>> b = np.array([[4, 1], [2, 2]]) >>> np.vdot(a, b) array(30.) >>> np.vdot(b, a) array(30.) >>> 1*4 + 4*1 + 5*2 + 6*2 30 """ return tensordot(a.flatten(), b.flatten(), 1) @set_module('mxnet.numpy') def inner(a, b): r"""Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. Parameters ---------- a, b : ndarray If `a` and `b` are nonscalar, their last dimensions must match. Returns ------- out : ndarray `out.shape = a.shape[:-1] + b.shape[:-1]` Raises ------ ValueError If the last dimension of `a` and `b` has different size. See Also -------- tensordot : Sum products over arbitrary axes. dot : Generalised matrix product, using second last dimension of `b`. einsum : Einstein summation convention. Notes ----- For vectors (1-D arrays) it computes the ordinary inner-product:: np.inner(a, b) = sum(a[:]*b[:]) More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`:: np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) or explicitly:: np.inner(a, b)[i0,...,ir-1,j0,...,js-1] = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) In addition `a` or `b` may be scalars, in which case:: np.inner(a,b) = a*b Examples -------- Ordinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) array(2.) A multidimensional example: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14., 38., 62.], [ 86., 110., 134.]]) """ return tensordot(a, b, [-1, -1]) @set_module('mxnet.numpy') def outer(a, b): r"""Compute the outer product of two vectors. Given two vectors, ``a = [a0, a1, ..., aM]`` and ``b = [b0, b1, ..., bN]``, the outer product [1]_ is:: [[a0*b0 a0*b1 ... a0*bN ] [a1*b0 . [ ... . [aM*b0 aM*bN ]] Parameters ---------- a : (M,) ndarray First input vector. Input is flattened if not already 1-dimensional. b : (N,) ndarray Second input vector. Input is flattened if not already 1-dimensional. Returns ------- out : (M, N) ndarray ``out[i, j] = a[i] * b[j]`` See also -------- inner einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent. ufunc.outer : A generalization to N dimensions and other operations. ``np.multiply.outer(a.ravel(), b.ravel())`` is the equivalent. References ---------- .. [1] : G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd ed., Baltimore, MD, Johns Hopkins University Press, 1996, pg. 8. Examples -------- Make a (*very* coarse) grid for computing a Mandelbrot set: >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) >>> rl array([[-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.]]) """ return tensordot(a.flatten(), b.flatten(), 0) @set_module('mxnet.numpy') def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None): # pylint: disable=too-many-arguments """ Return the cross product of two (arrays of) vectors. The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors are defined by the last axis of `a` and `b` by default, and these axes can have dimensions 2 or 3. Where the dimension of either `a` or `b` is 2, the third component of the input vector is assumed to be zero and the cross product calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the cross product is returned. Parameters ---------- a : ndarray Components of the first vector(s). b : ndarray Components of the second vector(s). axisa : int, optional Axis of `a` that defines the vector(s). By default, the last axis. axisb : int, optional Axis of `b` that defines the vector(s). By default, the last axis. axisc : int, optional Axis of `c` containing the cross product vector(s). Ignored if both input vectors have dimension 2, as the return is scalar. By default, the last axis. axis : int, optional If defined, the axis of `a`, `b` and `c` that defines the vector(s) and cross product(s). Overrides `axisa`, `axisb` and `axisc`. Returns ------- c : ndarray Vector cross product(s). Raises ------ ValueError When the dimension of the vector(s) in `a` and/or `b` does not equal 2 or 3. Notes ----- Supports full broadcasting of the inputs. Examples -------- Vector cross-product. >>> x = np.array([1., 2., 3.]) >>> y = np.array([4., 5., 6.]) >>> np.cross(x, y) array([-3., 6., -3.]) One vector with dimension 2. >>> x = np.array([1., 2.]) >>> y = np.array([4., 5., 6.]) >>> np.cross(x, y) array([12., -6., -3.]) Equivalently: >>> x = np.array([1., 2., 0.]) >>> y = np.array([4., 5., 6.]) >>> np.cross(x, y) array([12., -6., -3.]) Both vectors with dimension 2. >>> x = np.array([1., 2.]) >>> y = np.array([4., 5.]) >>> np.cross(x, y) array(-3.) Multiple vector cross-products. Note that the direction of the cross product vector is defined by the `right-hand rule`. >>> x = np.array([[1., 2., 3.], [4., 5., 6.]]) >>> y = np.array([[4., 5., 6.], [1., 2., 3.]]) >>> np.cross(x, y) array([[-3., 6., -3.], [ 3., -6., 3.]]) The orientation of `c` can be changed using the `axisc` keyword. >>> np.cross(x, y, axisc=0) array([[-3., 3.], [ 6., -6.], [-3., 3.]]) Change the vector definition of `x` and `y` using `axisa` and `axisb`. >>> x = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) >>> y = np.array([[7., 8., 9.], [4., 5., 6.], [1., 2., 3.]]) >>> np.cross(x, y) array([[ -6., 12., -6.], [ 0., 0., 0.], [ 6., -12., 6.]]) >>> np.cross(x, y, axisa=0, axisb=0) array([[-24., 48., -24.], [-30., 60., -30.], [-36., 72., -36.]]) """ return _mx_nd_np.cross(a, b, axisa=axisa, axisb=axisb, axisc=axisc, axis=axis) @set_module('mxnet.numpy') def kron(a, b): r""" Kronecker product of two arrays. Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first. Parameters ---------- a, b : ndarray Returns ------- out : ndarray See Also -------- outer : The outer product Notes ----- The function assumes that the number of dimensions of `a` and `b` are the same, if necessary prepending the smallest with ones. If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`, the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`. The elements are products of elements from `a` and `b`, organized explicitly by:: kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] where:: kt = it * st + jt, t = 0,...,N In the common 2-D case (N=1), the block structure can be visualized:: [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] Examples -------- >>> np.kron([1,10,100], [5,6,7]) array([ 5, 6, 7, 50, 60, 70, 500, 600, 700]) >>> np.kron([5,6,7], [1,10,100]) array([ 5, 50, 500, 6, 60, 600, 7, 70, 700]) """ return _mx_nd_np.kron(a, b) @set_module('mxnet.numpy') def equal(x1, x2, out=None): """ Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal(np.ones(2, 1)), np.zeros(1, 3)) array([[False, False, False], [False, False, False]]) >>> np.equal(1, np.ones(1)) array([ True]) """ return _mx_nd_np.equal(x1, x2, out) @set_module('mxnet.numpy') def not_equal(x1, x2, out=None): """ Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.not_equal(1, np.ones(1)) array([False]) """ return _mx_nd_np.not_equal(x1, x2, out) @set_module('mxnet.numpy') def greater(x1, x2, out=None): """ Return the truth value of (x1 > x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.greater(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.greater(1, np.ones(1)) array([False]) """ return _mx_nd_np.greater(x1, x2, out) @set_module('mxnet.numpy') def less(x1, x2, out=None): """ Return the truth value of (x1 < x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.less(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.less(1, np.ones(1)) array([False]) """ return _mx_nd_np.less(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def logical_and(x1, x2, out=None): r""" Compute the truth value of x1 AND x2 element-wise. Parameters ---------- x1, x2 : array_like Logical AND is applied to the elements of `x1` and `x2`. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- y : ndarray or bool Boolean result of the logical AND operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. This is a scalar if both `x1` and `x2` are scalars. See Also -------- logical_or, logical_not, logical_xor, bitwise_or Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([False, True]) """ return _mx_nd_np.logical_and(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def logical_or(x1, x2, out=None): r""" Compute the truth value of x1 OR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- y : ndarray or bool Boolean result of the logical OR operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. This is a scalar if both `x1` and `x2` are scalars. See Also -------- logical_and, logical_not, logical_xor, bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([True, True]) """ return _mx_nd_np.logical_or(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def logical_xor(x1, x2, out=None): r""" Compute the truth value of x1 XOR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- y : ndarray or bool Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. This is a scalar if both `x1` and `x2` are scalars. See Also -------- logical_and, logical_not, logical_or, bitwise_or Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([ True, False]) """ return _mx_nd_np.logical_xor(x1, x2, out) @set_module('mxnet.numpy') def greater_equal(x1, x2, out=None): """ Return the truth value of (x1 >= x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.greater_equal(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.greater_equal(1, np.ones(1)) array([True]) """ return _mx_nd_np.greater_equal(x1, x2, out) @set_module('mxnet.numpy') def less_equal(x1, x2, out=None): """ Return the truth value of (x1 <= x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.less_equal(np.ones(2, 1)), np.zeros(1, 3)) array([[False, False, False], [False, False, False]]) >>> np.less_equal(1, np.ones(1)) array([True]) """ return _mx_nd_np.less_equal(x1, x2, out) @set_module('mxnet.numpy') def roll(a, shift, axis=None): """ Roll array elements along a given axis. Elements that roll beyond the last position are re-introduced at the first. Parameters ---------- a : ndarray Input array. shift : int or tuple of ints The number of places by which elements are shifted. If a tuple, then `axis` must be a tuple of the same size, and each of the given axes is shifted by the corresponding number. If an int while `axis` is a tuple of ints, then the same value is used for all given axes. axis : int or tuple of ints, optional Axis or axes along which elements are shifted. By default, the array is flattened before shifting, after which the original shape is restored. Returns ------- res : ndarray Output array, with the same shape as `a`. Notes ----- Supports rolling over multiple dimensions simultaneously. Examples -------- >>> x = np.arange(10) >>> np.roll(x, 2) array([8., 9., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> np.roll(x, -2) array([2., 3., 4., 5., 6., 7., 8., 9., 0., 1.]) >>> x2 = np.reshape(x, (2,5)) >>> x2 array([[0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.]]) >>> np.roll(x2, 1) array([[9., 0., 1., 2., 3.], [4., 5., 6., 7., 8.]]) >>> np.roll(x2, -1) array([[1., 2., 3., 4., 5.], [6., 7., 8., 9., 0.]]) >>> np.roll(x2, 1, axis=0) array([[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]) >>> np.roll(x2, -1, axis=0) array([[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]) >>> np.roll(x2, 1, axis=1) array([[4., 0., 1., 2., 3.], [9., 5., 6., 7., 8.]]) >>> np.roll(x2, -1, axis=1) array([[1., 2., 3., 4., 0.], [6., 7., 8., 9., 5.]]) """ return _mx_nd_np.roll(a, shift, axis=axis) @set_module('mxnet.numpy') def rot90(m, k=1, axes=(0, 1)): """ Rotate an array by 90 degrees in the plane specified by axes. Rotation direction is from the first towards the second axis. Parameters ---------- m : ndarray Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. axes: (2,) array_like The array is rotated in the plane defined by the axes. Axes must be different. Returns ------- y : ndarray A rotated view of `m`. Notes ----- rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1)) rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1)) Examples -------- >>> m = np.array([[1,2],[3,4]], 'int') >>> m array([[1, 2], [3, 4]], dtype=int64) >>> np.rot90(m) array([[2, 4], [1, 3]], dtype=int64) >>> np.rot90(m, 2) array([[4, 3], [2, 1]], dtype=int64) >>> m = np.arange(8).reshape((2,2,2)) >>> np.rot90(m, 1, (1,2)) array([[[1., 3.], [0., 2.]], [[5., 7.], [4., 6.]]]) """ return _mx_nd_np.rot90(m, k=k, axes=axes) @set_module('mxnet.numpy') def hsplit(ary, indices_or_sections): """Split an array into multiple sub-arrays horizontally (column-wise). This is equivalent to ``split`` with ``axis=0`` if ``ary`` has one dimension, and otherwise that with ``axis=1``. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int, list of ints or tuple of ints. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an error is raised. If `indices_or_sections` is a list of sorted integers, the entries indicate where along `axis` the array is split. If an index exceeds the dimension of the array along `axis`, it will raises errors. so index must less than or euqal to the dimension of the array along axis. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Notes ------ - If `indices_or_sections` is given as an integer, but a split does not result in equal division.It will raises ValueErrors. - If indices_or_sections is an integer, and the number is 1, it will raises an error. Because single output from split is not supported yet... See Also -------- split : Split an array into multiple sub-arrays of equal size. Examples -------- >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> np.hsplit(x, 2) [array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), array([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])] >>> np.hsplit(x, [3, 6]) [array([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), array([[ 3.], [ 7.], [11.], [15.]]), array([], shape=(4, 0), dtype=float32)] With a higher dimensional array the split is still along the second axis. >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[ 0., 1.], [ 2., 3.]], [[ 4., 5.], [ 6., 7.]]]) >>> np.hsplit(x, 2) [array([[[ 0., 1.]], [[ 4., 5.]]]), array([[[ 2., 3.]], [[ 6., 7.]]])] If ``ary`` has one dimension, 'axis' = 0. >>> x = np.arange(4) array([0., 1., 2., 3.]) >>> np.hsplit(x, 2) [array([0., 1.]), array([2., 3.])] If you want to produce an empty sub-array, you can see an example. >>> np.hsplit(x, [2, 2]) [array([0., 1.]), array([], dtype=float32), array([2., 3.])] """ return _mx_nd_np.hsplit(ary, indices_or_sections) @set_module('mxnet.numpy') def einsum(*operands, **kwargs): r""" einsum(subscripts, *operands, out=None, optimize=False) Evaluates the Einstein summation convention on the operands. Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations can be represented in a simple fashion. In *implicit* mode `einsum` computes these values. In *explicit* mode, `einsum` provides further flexibility to compute other array operations that might not be considered classical Einstein summation operations, by disabling, or forcing summation over specified subscript labels. See the notes and examples for clarification. Parameters ---------- subscripts : str Specifies the subscripts for summation as comma separated list of subscript labels. An implicit (classical Einstein summation) calculation is performed unless the explicit indicator '->' is included as well as subscript labels of the precise output form. operands : list of ndarray These are the arrays for the operation. out : ndarray, optional If provided, the calculation is done into this array. optimize : {False, True}, optional Controls if intermediate optimization should occur. No optimization will occur if False. Defaults to False. Returns ------- output : ndarray The calculation based on the Einstein summation convention. Notes ----- The Einstein summation convention can be used to compute many multi-dimensional, linear algebraic array operations. `einsum` provides a succinct way of representing these. A non-exhaustive list of these operations, which can be computed by `einsum`, is shown below along with examples: * Trace of an array, :py:func:`np.trace`. * Return a diagonal, :py:func:`np.diag`. * Array axis summations, :py:func:`np.sum`. * Transpositions and permutations, :py:func:`np.transpose`. * Matrix multiplication and dot product, :py:func:`np.matmul` :py:func:`np.dot`. * Vector inner and outer products, :py:func:`np.inner` :py:func:`np.outer`. * Broadcasting, element-wise and scalar multiplication, :py:func:`np.multiply`. * Tensor contractions, :py:func:`np.tensordot`. The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the corresponding operand. Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` is equivalent to :py:func:`np.inner(a,b) <np.inner>`. If a label appears only once, it is not summed, so ``np.einsum('i', a)`` produces a view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` describes traditional matrix multiplication and is equivalent to :py:func:`np.matmul(a,b) <np.matmul>`. Repeated subscript labels in one operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent to :py:func:`np.trace(a) <np.trace>`. In *implicit mode*, the chosen subscripts are important since the axes of the output are reordered alphabetically. This means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while ``np.einsum('ji', a)`` takes its transpose. Additionally, ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, ``np.einsum('ij,jh', a, b)`` returns the transpose of the multiplication since subscript 'h' precedes subscript 'i'. In *explicit mode* the output can be directly controlled by specifying output subscript labels. This requires the identifier '->' as well as the list of output subscript labels. This feature increases the flexibility of the function since summing can be disabled or forced when required. The call ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <np.sum>`, and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <np.diag>`. The difference is that `einsum` does not allow broadcasting by default. Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike the example above in implicit mode. To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an ellipsis to the left of each term, like ``np.einsum('...ii->...i', a)``. To take the trace along the first and last axes, you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix product with the left-most indices instead of rightmost, one can do ``np.einsum('ij...,jk...->ik...', a, b)``. When there is only one operand, no axes are summed, and no output parameter is provided, a view into the operand is returned instead of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` produces a view. The ``optimize`` argument which will optimize the contraction order of an einsum expression. For a contraction with three or more operands this can greatly increase the computational efficiency at the cost of a larger memory footprint during computation. Typically a 'greedy' algorithm is applied which empirical tests have shown returns the optimal path in the majority of cases. 'optimal' is not supported for now. This function differs from the original `numpy.einsum <https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html>`_ in the following way(s): - Does not support 'optimal' strategy - Does not support the alternative subscript like `einsum(op0, sublist0, op1, sublist1, ..., [sublistout])` - Does not produce view in any cases Examples -------- >>> a = np.arange(25).reshape(5,5) >>> b = np.arange(5) >>> c = np.arange(6).reshape(2,3) Trace of a matrix: >>> np.einsum('ii', a) array(60.) Extract the diagonal (requires explicit form): >>> np.einsum('ii->i', a) array([ 0., 6., 12., 18., 24.]) Sum over an axis (requires explicit form): >>> np.einsum('ij->i', a) array([ 10., 35., 60., 85., 110.]) >>> np.sum(a, axis=1) array([ 10., 35., 60., 85., 110.]) For higher dimensional arrays summing a single axis can be done with ellipsis: >>> np.einsum('...j->...', a) array([ 10., 35., 60., 85., 110.]) Compute a matrix transpose, or reorder any number of axes: >>> np.einsum('ji', c) array([[0., 3.], [1., 4.], [2., 5.]]) >>> np.einsum('ij->ji', c) array([[0., 3.], [1., 4.], [2., 5.]]) >>> np.transpose(c) array([[0., 3.], [1., 4.], [2., 5.]]) Vector inner products: >>> np.einsum('i,i', b, b) array(30.) Matrix vector multiplication: >>> np.einsum('ij,j', a, b) array([ 30., 80., 130., 180., 230.]) >>> np.dot(a, b) array([ 30., 80., 130., 180., 230.]) >>> np.einsum('...j,j', a, b) array([ 30., 80., 130., 180., 230.]) Broadcasting and scalar multiplication: >>> np.einsum('..., ...', np.array(3), c) array([[ 0., 3., 6.], [ 9., 12., 15.]]) >>> np.einsum(',ij', np.array(3), c) array([[ 0., 3., 6.], [ 9., 12., 15.]]) >>> np.multiply(3, c) array([[ 0., 3., 6.], [ 9., 12., 15.]]) Vector outer product: >>> np.einsum('i,j', np.arange(2)+1, b) array([[0., 1., 2., 3., 4.], [0., 2., 4., 6., 8.]]) Tensor contraction: >>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> np.einsum('ijk,jil->kl', a, b) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) Example of ellipsis use: >>> a = np.arange(6).reshape((3,2)) >>> b = np.arange(12).reshape((4,3)) >>> np.einsum('ki,jk->ij', a, b) array([[10., 28., 46., 64.], [13., 40., 67., 94.]]) >>> np.einsum('ki,...k->i...', a, b) array([[10., 28., 46., 64.], [13., 40., 67., 94.]]) >>> np.einsum('k...,jk', a, b) array([[10., 28., 46., 64.], [13., 40., 67., 94.]]) Chained array operations. For more complicated contractions, speed ups might be achieved by repeatedly computing a 'greedy' path. Performance improvements can be particularly significant with larger arrays: >>> a = np.ones(64).reshape(2,4,8) # Basic `einsum`: ~42.22ms (benchmarked on 3.4GHz Intel Xeon.) >>> for iteration in range(500): ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a) # Greedy `einsum` (faster optimal path approximation): ~0.117ms >>> for iteration in range(500): ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=True) """ return _mx_nd_np.einsum(*operands, **kwargs) @set_module('mxnet.numpy') def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : ndarray Input array. obj : int, slice or ndarray of int64 Object that defines the index or indices before which `values` is inserted. Support for multiple insertions when `obj` is a single scalar or a sequence with one element (only support int32 and int64 element). values : ndarray Values to insert into `arr`. If the type of values is different from that of arr, values is converted to the type of arr. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. Notes ----- - Note that for higher dimensional inserts `obj=0` behaves very different from `obj=[0]` just like `arr[:,0,:] = values` is different from `arr[:,[0],:] = values`. - If obj is a ndarray, it's dtype only supports int64 Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1., 1.], [2., 2.], [3., 3.]]) >>> np.insert(a, 1, np.array(5)) array([1., 5., 1., 2., 2., 3., 3.]) >>> np.insert(a, 1, np.array(5), axis=1) array([[1., 5., 1.], [2., 5., 2.], [3., 5., 3.]]) Difference between sequence and scalars: >>> np.insert(a, np.array([1], dtype=np.int64), np.array([[1],[2],[3]]), axis=1) array([[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]) >>> np.insert(a, 1, np.array([1, 2, 3]), axis=1) array([[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]) >>> b = a.flatten() >>> b array([1., 1., 2., 2., 3., 3.]) >>> np.insert(b, np.array([2, 2], dtype=np.int64), np.array([5, 6])) array([1., 1., 5., 6., 2., 2., 3., 3.]) >>> np.insert(b, slice(2, 4), np.array([5, 6])) array([1., 1., 5., 2., 6., 2., 3., 3.]) # type casting >>> np.insert(b.astype(np.int32), np.array([2, 2],dtype='int64'), np.array([7.13, False])) array([1, 1, 7, 0, 2, 2, 3, 3], dtype=int32) >>> x = np.arange(8).reshape(2, 4) >>> idx = np.array([1, 3], dtype=np.int64) >>> np.insert(x, idx, np.array([999]), axis=1) array([[ 0., 999., 1., 2., 999., 3.], [ 4., 999., 5., 6., 999., 7.]]) """ return _mx_nd_np.insert(arr, obj, values, axis=axis) @set_module('mxnet.numpy') def nonzero(a): """ Return the indices of the elements that are non-zero. Returns a tuple of arrays, one for each dimension of `a`, containing the indices of the non-zero elements in that dimension. The values in `a` are always returned in row-major, C-style order. To group the indices by element, rather than dimension, use `argwhere`, which returns a row for each non-zero element. Parameters ---------- a : ndarray Input array. Returns ------- tuple_of_arrays : tuple Indices of elements that are non-zero. See Also -------- ndarray.nonzero : Equivalent ndarray method. Notes ----- While the nonzero values can be obtained with ``a[nonzero(a)]``, it is recommended to use ``x[x.astype(bool)]`` or ``x[x != 0]`` instead, which will correctly handle 0-d arrays. Examples -------- >>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) >>> x array([[3, 0, 0], [0, 4, 0], [5, 6, 0]], dtype=int32) >>> np.nonzero(x) (array([0, 1, 2, 2], dtype=int64), array([0, 1, 0, 1], dtype=int64)) >>> x[np.nonzero(x)] array([3, 4, 5, 6]) >>> np.transpose(np.stack(np.nonzero(x))) array([[0, 0], [1, 1], [2, 0], [2, 1]], dtype=int64) A common use for ``nonzero`` is to find the indices of an array, where a condition is True. Given an array `a`, the condition `a` > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the `a` where the condition is true. >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) >>> a > 3 array([[False, False, False], [ True, True, True], [ True, True, True]]) >>> np.nonzero(a > 3) (array([1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64)) Using this result to index `a` is equivalent to using the mask directly: >>> a[np.nonzero(a > 3)] array([4, 5, 6, 7, 8, 9], dtype=int32) >>> a[a > 3] array([4, 5, 6, 7, 8, 9], dtype=int32) ``nonzero`` can also be called as a method of the array. >>> (a > 3).nonzero() (array([1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64)) """ return _mx_nd_np.nonzero(a) @set_module('mxnet.numpy') def percentile(a, q, axis=None, out=None, overwrite_input=None, interpolation='linear', keepdims=False): # pylint: disable=too-many-arguments """ Compute the q-th percentile of the data along the specified axis. Returns the q-th percentile(s) of the array elements. Parameters ---------- a : array_like Input array q : array_like Percentile or sequence of percentiles to compute. axis : {int, tuple of int, None}, optional Axis or axes along which the percentiles are computed. The default is to compute the percentile(s) along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional (Not supported yet) If True, then allow the input array a to be modified by intermediate calculations, to save memory. In this case, the contents of the input a after this function completes is undefined. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired percentile lies between two data points i < j: 'linear': i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. 'lower': i. 'higher': j. 'nearest': i or j, whichever is nearest. 'midpoint': (i + j) / 2. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a. Returns ------- percentile : scalar or ndarray Output array. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, np.array(50)) array(3.5) >>> np.percentile(a, np.array(50), axis=0) array([6.5, 4.5, 2.5]) >>> np.percentile(a, np.array(50), axis=1) array([7., 2.]) >>> np.percentile(a, np.array(50), axis=1, keepdims=True) array([[7.], [2.]]) >>> m = np.percentile(a, np.array(50), axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, np.array(50), axis=0, out=out) array([6.5, 4.5, 2.5]) >>> m array([6.5, 4.5, 2.5]) """ return _mx_nd_np.percentile(a, q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation, keepdims=keepdims) @set_module('mxnet.numpy') def median(a, axis=None, out=None, overwrite_input=None, keepdims=False): r""" Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : {int, sequence of int, None}, optional Axis or axes along which the medians are computed. The default is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- median : ndarray A new array holding the result. If the input contains integers or floats smaller than ``float32``, then the output data-type is ``np.float32``. Otherwise, the data-type of the output is the same as that of the input. If `out` is specified, that array is returned instead. See Also -------- mean, percentile Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([7., 2.]) """ return _mx_nd_np.median(a, axis=axis, overwrite_input=overwrite_input, keepdims=keepdims, out=out) @set_module('mxnet.numpy') def quantile(a, q, axis=None, out=None, overwrite_input=None, interpolation='linear', keepdims=False): # pylint: disable=too-many-arguments """ Compute the q-th quantile of the data along the specified axis. New in version 1.15.0. Parameters ---------- a : ndarray Input array or object that can be converted to an array. q : ndarray Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive. axis : {int, tuple of int, None}, optional Axis or axes along which the quantiles are computed. The default is to compute the quantile(s) along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points i < j: linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. lower: i. higher: j. nearest: i or j, whichever is nearest. midpoint: (i + j) / 2. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a. Returns ------- quantile : ndarray If q is a single quantile and axis=None, then the result is a scalar. If multiple quantiles are given, first axis of the result corresponds to the quantiles. The other axes are the axes that remain after the reduction of a. If out is specified, that array is returned instead. See also -------- mean Notes ----- Given a vector V of length N, the q-th quantile of V is the value q of the way from the minimum to the maximum in a sorted copy of V. The values and distances of the two nearest neighbors as well as the interpolation parameter will determine the quantile if the normalized ranking does not match the location of q exactly. This function is the same as the median if q=0.5, the same as the minimum if q=0.0 and the same as the maximum if q=1.0. This function differs from the original `numpy.quantile <https://numpy.org/devdocs/reference/generated/numpy.quantile.html>`_ in the following aspects: - q must be ndarray type even if it is a scalar - do not support overwrite_input Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10., 7., 4.], [3., 2., 1.]]) >>> q = np.array(0.5) >>> q array(0.5) >>> np.quantile(a, q) array(3.5) >>> np.quantile(a, q, axis=0) array([6.5, 4.5, 2.5]) >>> np.quantile(a, q, axis=1) array([7., 2.]) >>> np.quantile(a, q, axis=1, keepdims=True) array([[7.], [2.]]) >>> m = np.quantile(a, q, axis=0) >>> out = np.zeros_like(m) >>> np.quantile(a, q, axis=0, out=out) array([6.5, 4.5, 2.5]) >>> out array([6.5, 4.5, 2.5]) """ return _mx_nd_np.quantile(a, q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation, keepdims=keepdims) @set_module('mxnet.numpy') def shares_memory(a, b, max_work=None): """ Determine if two arrays share memory Parameters ---------- a, b : ndarray Input arrays Returns ------- out : bool See Also -------- may_share_memory Examples -------- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) False This function differs from the original `numpy.shares_memory <https://docs.scipy.org/doc/numpy/reference/generated/numpy.shares_memory.html>`_ in the following way(s): - Does not support `max_work`, it is a dummy argument - Actually it is same as `may_share_memory` in MXNet DeepNumPy """ return _mx_nd_np.shares_memory(a, b, max_work) @set_module('mxnet.numpy') def may_share_memory(a, b, max_work=None): """ Determine if two arrays might share memory A return of True does not necessarily mean that the two arrays share any element. It just means that they *might*. Only the memory bounds of a and b are checked by default. Parameters ---------- a, b : ndarray Input arrays Returns ------- out : bool See Also -------- shares_memory Examples -------- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) False >>> x = np.zeros([3, 4]) >>> np.may_share_memory(x[:,0], x[:,1]) True This function differs from the original `numpy.may_share_memory <https://docs.scipy.org/doc/numpy/reference/generated/numpy.may_share_memory.html>`_ in the following way(s): - Does not support `max_work`, it is a dummy argument - Actually it is same as `shares_memory` in MXNet DeepNumPy """ return _mx_nd_np.may_share_memory(a, b, max_work) @set_module('mxnet.numpy') def diff(a, n=1, axis=-1, prepend=None, append=None): # pylint: disable=redefined-outer-name r""" Calculate the n-th discrete difference along the given axis. Parameters ---------- a : ndarray Input array n : int, optional The number of times values are differenced. If zero, the input is returned as-is. axis : int, optional The axis along which the difference is taken, default is the last axis. prepend, append : ndarray, optional Not supported yet Returns ------- diff : ndarray The n-th differences. The shape of the output is the same as a except along axis where the dimension is smaller by n. The type of the output is the same as the type of the difference between any two elements of a. This is the same as the type of a in most cases. Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) Notes ----- Optional inputs `prepend` and `append` are not supported yet """ if (prepend or append): raise NotImplementedError('prepend and append options are not supported yet') return _mx_nd_np.diff(a, n=n, axis=axis) @set_module('mxnet.numpy') def ediff1d(ary, to_end=None, to_begin=None): """ The differences between consecutive elements of an array. Parameters ---------- ary : ndarray If necessary, will be flattened before the differences are taken. to_end : ndarray or scalar, optional Number(s) to append at the end of the returned differences. to_begin : ndarray or scalar, optional Number(s) to prepend at the beginning of the returned differences. Returns ------- ediff1d : ndarray The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.ediff1d(x) array([ 1., 2., 3., -7.]) >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) rray([-99., 1., 2., 3., -7., 88., 99.]) The returned array is always 1D. >>> y = np.array([[1, 2, 4], [1, 6, 24]]) >>> np.ediff1d(y) array([ 1., 2., -3., 5., 18.]) >>> np.ediff1d(x, to_begin=y) array([ 1., 2., 4., 1., 6., 24., 1., 2., 3., -7.]) """ return _mx_nd_np.ediff1d(ary, to_end=to_end, to_begin=to_begin) @set_module('mxnet.numpy') def resize(a, new_shape): """ Return a new array with the specified shape. If the new array is larger than the original array, then the new array is filled with repeated copies of `a`. Note that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of `a`. Parameters ---------- a : ndarray Array to be resized. new_shape : int or tuple of int Shape of resized array. Returns ------- reshaped_array : ndarray The new array is formed from the data in the old array, repeated if necessary to fill out the required number of elements. The data are repeated in the order that they are stored in memory. See Also -------- ndarray.resize : resize an array in-place. Notes ----- Warning: This functionality does **not** consider axes separately, i.e. it does not apply interpolation/extrapolation. It fills the return array with the required number of elements, taken from `a` as they are laid out in memory, disregarding strides and axes. (This is in case the new shape is smaller. For larger, see above.) This functionality is therefore not suitable to resize images, or data where each axis represents a separate and distinct entity. Examples -------- >>> a = np.array([[0, 1], [2, 3]]) >>> np.resize(a, (2, 3)) array([[0., 1., 2.], [3., 0., 1.]]) >>> np.resize(a, (1, 4)) array([[0., 1., 2., 3.]]) >>> np.resize(a,(2, 4)) array([[0., 1., 2., 3.], [0., 1., 2., 3.]]) """ return _mx_nd_np.resize(a, new_shape) @set_module('mxnet.numpy') def interp(x, xp, fp, left=None, right=None, period=None): # pylint: disable=too-many-arguments """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : ndarray The x-coordinates of the interpolated values. xp : 1-D array of floats The x-coordinates of the data points, must be increasing if argument `period` is not specified. Otherwise, `xp` is internally sorted after normalizing the periodic boundaries with ``xp = xp % period``. fp : 1-D array of floats The y-coordinates of the data points, same length as `xp`. left : optional float corresponding to fp Value to return for `x < xp[0]`, default is `fp[0]`. right : optional float corresponding to fp Value to return for `x > xp[-1]`, default is `fp[-1]`. period : None or float, optional A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters `left` and `right` are ignored if `period` is specified. .. versionadded:: 1.10.0 Returns ------- y : float (corresponding to fp) or ndarray The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length If `xp` or `fp` are not 1-D sequences If `period == 0` Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasing is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() Interpolation with periodic x-coordinates: >>> x = [-180, -170, -185, 185, -10, -5, 0, 365] >>> xp = [190, -190, 350, -350] >>> fp = [5, 10, 3, 4] >>> np.interp(x, xp, fp, period=360) array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75]) """ return _mx_nd_np.interp(x, xp, fp, left=left, right=right, period=period) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def full_like(a, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments """ Return a full array with the same shape and type as a given array. Parameters ---------- a : ndarray The shape and data-type of `a` define these same attributes of the returned array. fill_value : scalar Fill value. dtype : data-type, optional Overrides the data type of the result. Temporarily do not support boolean type. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of `fill_value` with the same shape and type as `a`. See Also -------- empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full : Return a new array of given shape filled with value. Examples -------- >>> x = np.arange(6, dtype=int) >>> np.full_like(x, 1) array([1, 1, 1, 1, 1, 1], dtype=int64) >>> np.full_like(x, 0.1) array([0, 0, 0, 0, 0, 0], dtype=int64) >>> np.full_like(x, 0.1, dtype=np.float64) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1], dtype=float64) >>> np.full_like(x, np.nan, dtype=np.float64) array([nan, nan, nan, nan, nan, nan], dtype=float64) >>> y = np.arange(6, dtype=np.float32) >>> np.full_like(y, 0.1) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) """ return _mx_nd_np.full_like(a, fill_value=fill_value, dtype=dtype, order=order, ctx=ctx, out=out) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def zeros_like(a, dtype=None, order='C', ctx=None, out=None): """ Return an array of zeros with the same shape and type as a given array. Parameters ---------- a : ndarray The shape and data-type of `a` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. Temporarily do not support boolean type. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of zeros with the same shape and type as a. See Also -------- empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full : Return a new array of given shape filled with value. Examples -------- >>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0., 1., 2.], [3., 4., 5.]]) >>> np.zeros_like(x) array([[0., 0., 0.], [0., 0., 0.]]) >>> np.zeros_like(x, int) array([[0, 0, 0], [0, 0, 0]], dtype=int64) >>> y = np.arange(3, dtype=float) >>> y array([0., 1., 2.], dtype=float64) >>> np.zeros_like(y) array([0., 0., 0.], dtype=float64) """ return _mx_nd_np.full_like(a, fill_value=0, dtype=dtype, order=order, ctx=ctx, out=ctx) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def ones_like(a, dtype=None, order='C', ctx=None, out=None): """ Return an array of ones with the same shape and type as a given array. Parameters ---------- a : ndarray The shape and data-type of `a` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. Temporarily do not support boolean type. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of ones with the same shape and type as a. See Also -------- empty_like : Return an empty array with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. ones : Return a new array setting values to one. Examples -------- >>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0., 1., 2.], [3., 4., 5.]]) >>> np.ones_like(x) array([[1., 1., 1.], [1., 1., 1.]]) >>> np.ones_like(x, int) array([[1, 1, 1], [1, 1, 1]], dtype=int64) >>> y = np.arange(3, dtype=float) >>> y array([0., 1., 2.], dtype=float64) >>> np.ones_like(y) array([1., 1., 1.], dtype=float64) """ return _mx_nd_np.full_like(a, fill_value=1, dtype=dtype, order=order, ctx=ctx, out=out) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def fill_diagonal(a, val, wrap=False): """ Fill the main diagonal of the given array of any dimensionality. For an array `a` with ``a.ndim >= 2``, the diagonal is the list of locations with indices ``a[i, ..., i]`` all identical. This function modifies the input array in-place, it does not return a value. Parameters ---------- a : array, at least 2-D. Array whose diagonal is to be filled, it gets modified in-place. val : scalar Value to be written on the diagonal, its type must be compatible with that of the array a. wrap : bool For tall matrices in NumPy version up to 1.6.2, the diagonal "wrapped" after N columns. You can have this behavior with this option. This affects only tall matrices. Examples -------- >>> a = np.zeros((3, 3), int) >>> np.fill_diagonal(a, 5) >>> a array([[5, 0, 0], [0, 5, 0], [0, 0, 5]]) The same function can operate on a 4-D array: >>> a = np.zeros((3, 3, 3, 3), int) >>> np.fill_diagonal(a, 4) We only show a few blocks for clarity: >>> a[0, 0] array([[4, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> a[1, 1] array([[0, 0, 0], [0, 4, 0], [0, 0, 0]]) >>> a[2, 2] array([[0, 0, 0], [0, 0, 0], [0, 0, 4]]) The wrap option affects only tall matrices: >>> # tall matrices no wrap >>> a = np.zeros((5, 3), int) >>> np.fill_diagonal(a, 4) >>> a array([[4, 0, 0], [0, 4, 0], [0, 0, 4], [0, 0, 0], [0, 0, 0]]) >>> # tall matrices wrap >>> a = np.zeros((5, 3), int) >>> np.fill_diagonal(a, 4, wrap=True) >>> a array([[4, 0, 0], [0, 4, 0], [0, 0, 4], [0, 0, 0], [4, 0, 0]]) >>> # wide matrices >>> a = np.zeros((3, 5), int) >>> np.fill_diagonal(a, 4, wrap=True) >>> a array([[4, 0, 0, 0, 0], [0, 4, 0, 0, 0], [0, 0, 4, 0, 0]]) The anti-diagonal can be filled by reversing the order of elements using either `numpy.flipud` or `numpy.fliplr`. >>> a = np.zeros((3, 3), int); >>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip >>> a array([[0, 0, 1], [0, 2, 0], [3, 0, 0]]) >>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip >>> a array([[0, 0, 3], [0, 2, 0], [1, 0, 0]]) Note that the order in which the diagonal is filled varies depending on the flip function. """ _mx_nd_np.fill_diagonal(a, val=val, wrap=wrap) @set_module('mxnet.numpy') def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None, **kwargs): """ Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by the user using the `nan`, `posinf` and/or `neginf` keywords. If `x` is inexact, NaN is replaced by zero or by the user defined value in `nan` keyword, infinity is replaced by the largest finite floating point values representable by ``x.dtype`` or by the user defined value in `posinf` keyword and -infinity is replaced by the most negative finite floating point values representable by ``x.dtype`` or by the user defined value in `neginf` keyword. For complex dtypes, the above is applied to each of the real and imaginary components of `x` separately. If `x` is not inexact, then no replacements are made. Parameters ---------- x : scalar ndarray Input data. copy : bool, optional Whether to create a copy of `x` (True) or to replace values in-place (False). The in-place operation only occurs if casting to an array does not require a copy. Default is True. Gluon does not support copy = False. nan : int, float, optional Value to be used to fill NaN values. If no value is passed then NaN values will be replaced with 0.0. posinf : int, float, optional Value to be used to fill positive infinity values. If no value is passed then positive infinity values will be replaced with a very large number. neginf : int, float, optional Value to be used to fill negative infinity values. If no value is passed then negative infinity values will be replaced with a very small (or negative) number. .. versionadded:: 1.13 Returns ------- out : ndarray `x`, with the non-finite values replaced. If `copy` is False, this may be `x` itself. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.nan_to_num(np.inf) 1.7976931348623157e+308 >>> np.nan_to_num(-np.inf) -1.7976931348623157e+308 >>> np.nan_to_num(np.nan) 0.0 >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) >>> np.nan_to_num(x) array([ 3.4028235e+38, -3.4028235e+38, 0.0000000e+00, -1.2800000e+02, 1.2800000e+02]) >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333) array([ 3.3333332e+07, 3.3333332e+07, -9.9990000e+03, -1.2800000e+02, 1.2800000e+02]) >>> y = np.array([[-1, 0, 1],[9999,234,-14222]],dtype="float64")/0 array([[-inf, nan, inf], [ inf, inf, -inf]], dtype=float64) >>> np.nan_to_num(y) array([[-1.79769313e+308, 0.00000000e+000, 1.79769313e+308], [ 1.79769313e+308, 1.79769313e+308, -1.79769313e+308]], dtype=float64) >>> np.nan_to_num(y, nan=111111, posinf=222222) array([[-1.79769313e+308, 1.11111000e+005, 2.22222000e+005], [ 2.22222000e+005, 2.22222000e+005, -1.79769313e+308]], dtype=float64) >>> y array([[-inf, nan, inf], [ inf, inf, -inf]], dtype=float64) >>> np.nan_to_num(y, copy=False, nan=111111, posinf=222222) array([[-1.79769313e+308, 1.11111000e+005, 2.22222000e+005], [ 2.22222000e+005, 2.22222000e+005, -1.79769313e+308]], dtype=float64) >>> y array([[-1.79769313e+308, 1.11111000e+005, 2.22222000e+005], [ 2.22222000e+005, 2.22222000e+005, -1.79769313e+308]], dtype=float64) """ return _mx_nd_np.nan_to_num(x, copy=copy, nan=nan, posinf=posinf, neginf=neginf) @set_module('mxnet.numpy') def squeeze(x, axis=None): """ Remove single-dimensional entries from the shape of an array. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional .. versionadded:: 1.7.0 Selects a subset of the single-dimensional entries in the shape. If an axis is selected with shape entry greater than one, an error is raised. Returns ------- squeezed : ndarray The input array, but with all or a subset of the dimensions of length 1 removed. This is always `a` itself or a view into `a`. Raises ------ ValueError If `axis` is not `None`, and an axis being squeezed is not of length 1 See Also -------- expand_dims : The inverse operation, adding singleton dimensions reshape : Insert, remove, and combine dimensions, and resize existing ones Examples -------- >>> x = np.array([[[0], [1], [2]]]) >>> x.shape (1, 3, 1) >>> np.squeeze(x).shape (3,) >>> np.squeeze(x, axis=0).shape (3, 1) >>> np.squeeze(x, axis=1).shape Traceback (most recent call last): ... ValueError: cannot select an axis to squeeze out which has size not equal to one >>> np.squeeze(x, axis=2).shape (1, 3) """ return _mx_nd_np.squeeze(x, axis=axis) @set_module('mxnet.numpy') @wrap_np_unary_func def isnan(x, out=None, **kwargs): """ Test element-wise for NaN and return result as a boolean array. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is NaN, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This function differs from the original `numpy.isinf <https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in the following aspects: - Does not support complex number for now - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan(np.array([np.log(-1.),1.,np.log(0)])) array([ True, False, False]) """ return _mx_nd_np.isnan(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def isinf(x, out=None, **kwargs): """ Test element-wise for positive or negative infinity. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is positive or negative infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. This function differs from the original `numpy.isnan <https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in the following aspects: - Does not support complex number for now - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.array([np.inf, -np.inf, 1.0, np.nan])) array([ True, True, False, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool_) >>> np.isinf(x, y) array([ True, False, True]) >>> y array([ True, False, True]) """ return _mx_nd_np.isinf(x, out=out, **kwargs) @set_module('mxnet.ndarray.numpy') @wrap_np_unary_func def isposinf(x, out=None, **kwargs): """ Test element-wise for positive infinity, return result as bool array. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is positive infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isposinf(np.inf) True >>> np.isposinf(-np.inf) False >>> np.isposinf(np.nan) False >>> np.isposinf(np.array([-np.inf, 0., np.inf])) array([False, False, True]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool) >>> np.isposinf(x, y) array([False, False, True]) >>> y array([False, False, True]) """ return _mx_nd_np.isposinf(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def isneginf(x, out=None, **kwargs): """ Test element-wise for negative infinity, return result as bool array. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is negative infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isneginf(-np.inf) True >>> np.isneginf(np.inf) False >>> np.isneginf(float('-inf')) True >>> np.isneginf(np.array([-np.inf, 0., np.inf])) array([ True, False, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool) >>> np.isneginf(x, y) array([ True, False, False]) >>> y array([ True, False, False]) """ return _mx_nd_np.isneginf(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def isfinite(x, out=None, **kwargs): """ Test element-wise for finiteness (not infinity or not Not a Number). Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is negative infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(-np.inf) False >>> np.isfinite(np.array([np.log(-1.),1.,np.log(0)])) array([False, True, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool) >>> np.isfinite(x, y) array([False, True, False]) >>> y array([False, True, False]) """ return _mx_nd_np.isfinite(x, out=out, **kwargs) @set_module('mxnet.numpy') def where(condition, x=None, y=None): """where(condition, [x, y]) Return elements chosen from `x` or `y` depending on `condition`. .. note:: When only `condition` is provided, this function is a shorthand for ``np.asarray(condition).nonzero()``. The rest of this documentation covers only the case where all three arguments are provided. Parameters ---------- condition : ndarray Where True, yield `x`, otherwise yield `y`. x, y : ndarray Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. `x` and `y` must have the same dtype. Returns ------- out : ndarray An array with elements from `x` where `condition` is True, and elements from `y` elsewhere. Notes ----- If all the arrays are 1-D, `where` is equivalent to:: [xv if c else yv for c, xv, yv in zip(condition, x, y)] Examples -------- >>> a = np.arange(10) >>> a array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.where(a < 5, a, 10*a) array([ 0., 1., 2., 3., 4., 50., 60., 70., 80., 90.]) This can be used on multidimensional arrays too: >>> cond = np.array([[True, False], [True, True]]) >>> x = np.array([[1, 2], [3, 4]]) >>> y = np.array([[9, 8], [7, 6]]) >>> np.where(cond, x, y) array([[1., 8.], [3., 4.]]) The shapes of x, y, and the condition are broadcast together: >>> x, y = onp.ogrid[:3, :4] >>> x = np.array(x) >>> y = np.array(y) >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast array([[10, 0, 0, 0], [10, 11, 1, 1], [10, 11, 12, 2]], dtype=int64) >>> a = np.array([[0, 1, 2], ... [0, 2, 4], ... [0, 3, 6]]) >>> np.where(a < 4, a, -1) # -1 is broadcast array([[ 0., 1., 2.], [ 0., 2., -1.], [ 0., 3., -1.]]) """ return _mx_nd_np.where(condition, x, y) @set_module('mxnet.numpy') def polyval(p, x): """ Evaluate a polynomial at specific values. If p is of length N, this function returns the value: p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite polynomial p(x(t)) is returned. Parameters ---------- p : ndarray 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term. x : ndarray An array of numbers, at which to evaluate p. Returns ------- values : ndarray Result array of polynomials Notes ----- This function differs from the original `numpy.polyval <https://numpy.org/devdocs/reference/generated/numpy.polyval.html>`_ in the following way(s): - Does not support poly1d. - X should be ndarray type even if it contains only one element. Examples -------- >>> p = np.array([3, 0, 1]) array([3., 0., 1.]) >>> x = np.array([5]) array([5.]) >>> np.polyval(p, x) # 3 * 5**2 + 0 * 5**1 + 1 array([76.]) >>> x = np.array([5, 4]) array([5., 4.]) >>> np.polyval(p, x) array([76., 49.]) """ return _mx_nd_np.polyval(p, x) @set_module('mxnet.numpy') def bincount(x, weights=None, minlength=0): """ Count number of occurrences of each value in array of non-negative ints. Parameters ---------- x : ndarray input array, 1 dimension, nonnegative ints. weights: ndarray input weigths same shape as x. (Optional) minlength: int A minimum number of bins for the output. (Optional) Returns -------- out : ndarray the result of binning the input array. The length of out is equal to amax(x)+1. Raises -------- Value Error If the input is not 1-dimensional, or contains elements with negative values, or if minlength is negative TypeError If the type of the input is float or complex. Examples -------- >>> np.bincount(np.arange(5)) array([1, 1, 1, 1, 1]) >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) array([1, 3, 1, 1, 0, 0, 0, 1]) >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) >>> np.bincount(x).size == np.amax(x)+1 True >>> np.bincount(np.arange(5, dtype=float)) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: array cannot be safely cast to required type >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights >>> x = np.array([0, 1, 1, 2, 2, 2]) >>> np.bincount(x, weights=w) array([ 0.3, 0.7, 1.1]) """ return _mx_nd_np.bincount(x, weights=weights, minlength=minlength) @set_module('mxnet.numpy') def atleast_1d(*arys): """ Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Parameters ---------- arys1, arys2, ... : ndarray One or more input arrays. Returns ------- ret : ndarray An array, or list of arrays, each with a.ndim >= 1. Copies are made only if necessary. See also -------- atleast_2d, atleast_3d Examples -------- >>> np.atleast_1d(1.0) array([1.]) >>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]) >>> np.atleast_1d(np.array(1), np.array([3, 4])) [array([1.]), array([3., 4.])] """ return _mx_nd_np.atleast_1d(*arys) @set_module('mxnet.numpy') def atleast_2d(*arys): """ Convert inputs to arrays with at least two dimensions. Parameters ---------- arys1, arys2, ... : ndarray One or more input arrays. Returns ------- ret : ndarray An array, or list of arrays, each with a.ndim >= 2. Copies are made only if necessary. See also -------- atleast_1d, atleast_3d Examples -------- >>> np.atleast_2d(3.0) array([[3.]]) >>> x = np.arange(3.0) >>> np.atleast_2d(x) array([[0., 1., 2.]]) >>> np.atleast_2d(np.array(1), np.array([1, 2]), np.array([[1, 2]])) [array([[1.]]), array([[1., 2.]]), array([[1., 2.]])] """ return _mx_nd_np.atleast_2d(*arys) @set_module('mxnet.numpy') def atleast_3d(*arys): """ Convert inputs to arrays with at least three dimension. Parameters ---------- arys1, arys2, ... : ndarray One or more input arrays. Returns ------- ret : ndarray An array, or list of arrays, each with a.ndim >= 3. For example, a 1-D array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape (M, N) becomes a view of shape (M, N, 1). See also -------- atleast_1d, atleast_2d Examples -------- >>> np.atleast_3d(3.0) array([[[3.]]]) >>> x = np.arange(3.0) >>> np.atleast_3d(x).shape (1, 3, 1) >>> x = np.arange(12.0).reshape(4,3) >>> np.atleast_3d(x).shape (4, 3, 1) >>> for arr in np.atleast_3d(np.array([1, 2]), np.array([[1, 2]]), np.array([[[1, 2]]])): ... print(arr, arr.shape) ... [[[1.] [2.]]] (1, 2, 1) [[[1.] [2.]]] (1, 2, 1) [[[1. 2.]]] (1, 1, 2) """ return _mx_nd_np.atleast_3d(*arys) @set_module('mxnet.numpy') def pad(x, pad_width=None, mode="constant", **kwargs): # pylint: disable=too-many-arguments # pylint: disable=too-many-return-statements """ Pad an array. Parameters ---------- array : array_like of rank N The array to pad. pad_width : {sequence, array_like, int} Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. mode : str or function, optional One of the following string values or a user supplied function. 'constant' (default) Pads with a constant value. 'edge' Pads with the edge values of array. 'linear_ramp' not supported yet 'maximum' Pads with the maximum value of all of the vector along each axis. 'mean' not supported yet 'median' not supported yet 'minimum' Pads with the minimum value of all of the vector along each axis. 'reflect' Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. 'symmetric' Pads with the reflection of the vector mirrored along the edge of the array. 'wrap' not supported yet. 'empty' not supported yet. <function> not supported yet. stat_length : not supported yet constant_values : scalar, optional Used in 'constant'. The values to set the padded values for each axis. Default is 0. end_values : not supported yet reflect_type : {'even', 'odd'}, optional only support even now Returns ------- pad : ndarray Padded array of rank equal to `array` with shape increased according to `pad_width`. Examples -------- >>> a = [1, 2, 3, 4, 5] >>> np.pad(a, (2, 3), 'edge') array([1, 1, 1, ..., 5, 5, 5]) >>> np.pad(a, (2, 2), 'maximum') array([5, 5, 1, 2, 3, 4, 5, 5, 5]) >>> np.pad(a, (2, 2), 'mean') array([3, 3, 1, 2, 3, 4, 5, 3, 3]) >>> a = [[1, 2], [3, 4]] >>> np.pad(a, ((3, 2), (2, 3)), 'minimum') array([[1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [3, 3, 3, 4, 3, 3, 3], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1]]) >>> a = [1, 2, 3, 4, 5] >>> np.pad(a, (2, 3), 'reflect') array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) >>> np.pad(a, (2, 3), 'symmetric') array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) >>> a = np.arange(6) >>> a = a.reshape((2, 3)) >>> np.pad(a, ((2, 2), (2, 2)), pad_with) array([[10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 0, 1, 2, 10, 10], [10, 10, 3, 4, 5, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10]]) """ return _mx_nd_np.pad(x, pad_width=pad_width, mode=mode, **kwargs) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def prod(a, axis=None, dtype=None, out=None, keepdims=False, initial=None): # pylint: disable=too-many-arguments """ Return the product of array elements over a given axis. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional Axis or axes along which a product is performed. The default, axis=None, will calculate the product of all the elements in the input array. If axis is negative it counts from the last to the first axis. .. versionadded:: 1.7.0 If axis is a tuple of ints, a product is performed on all of the axes specified in the tuple instead of a single axis or all the axes as before. dtype : dtype, optional The type of the returned array, as well as of the accumulator in which the elements are multiplied. The dtype of `a` is used by default unless `a` has an integer dtype of less precision than the default platform integer. In that case, if `a` is signed then the platform integer is used while if `a` is unsigned then an unsigned integer of the same precision as the platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `prod` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. initial : scalar, optional The starting value for this product. See `~numpy.ufunc.reduce` for details. where : not supported Returns ------- product_along_axis : ndarray, see `dtype` parameter above. An array shaped as `a` but with the specified axis removed. Returns a reference to `out` if specified. Examples -------- By default, calculate the product of all elements: >>> np.prod([1.,2.]) 2.0 Even when the input array is two-dimensional: >>> np.prod([[1.,2.],[3.,4.]]) 24.0 But we can also specify the axis over which to multiply: >>> np.prod([[1.,2.],[3.,4.]], axis=1) array([ 2., 12.]) Or select specific elements to include: >>> np.prod([1., np.nan, 3.], where=[True, False, True]) 3.0 If the type of `x` is unsigned, then the output type is the unsigned platform integer: >>> x = np.array([1, 2, 3], dtype=np.uint8) >>> np.prod(x).dtype == np.uint True If `x` is of a signed integer type, then the output type is the default platform integer: >>> x = np.array([1, 2, 3], dtype=np.int8) >>> np.prod(x).dtype == int True You can also start the product with a value other than one: >>> np.prod([1, 2], initial=5) 10 """ return _mx_nd_np.prod(a, axis=axis, dtype=dtype, keepdims=keepdims, initial=initial, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def cumsum(a, axis=None, dtype=None, out=None): """ Return the cumulative sum of the elements along a given axis. Parameters ---------- a : array_like Input array. axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- cumsum_along_axis : ndarray. A new array holding the result is returned unless `out` is specified, in which case a reference to `out` is returned. The result has the same size as `a`, and the same shape as `a` if `axis` is not None or `a` is a 1-d array. Examples -------- >>> a = np.array([[1,2,3], [4,5,6]]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> np.cumsum(a) array([ 1, 3, 6, 10, 15, 21]) >>> np.cumsum(a, dtype=float) # specifies type of output value(s) array([ 1., 3., 6., 10., 15., 21.]) >>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns array([[1, 2, 3], [5, 7, 9]]) >>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows array([[ 1, 3, 6], [ 4, 9, 15]]) """ return _mx_nd_np.cumsum(a, axis=axis, dtype=dtype, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def rollaxis(a, axis, start=0): """ Roll the specified axis backwards, until it lies in a given position. Parameters ---------- a : ndarray Input array. axis : integer The axis to roll backwards. The positions of the other axes do not change relative to one another. start: int, optional The axis is rolled until it lies before this position. The default, 0, results in a “complete” roll. Returns ------- res : ndarray A view after applying rollaxis to `a` is returned. ----- Examples -------- >>> a = np.ones((3,4,5,6)) >>> np.rollaxis(a, 3, 1).shape (3, 6, 4, 5) >>> np.rollaxis(a, 2).shape (5, 3, 4, 6) >>> np.rollaxis(a, 1, 4).shape (3, 5, 6, 4) """ return _mx_nd_np.rollaxis(a, axis, start) @set_module('mxnet.numpy') def diag(v, k=0): """ Extracts a diagonal or constructs a diagonal array. - 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero. - 2-D arrays: extracts the k-th Diagonal Parameters ---------- array : ndarray The array to apply diag method. k : offset extracts or constructs kth diagonal given input array Returns ---------- out : ndarray The extracted diagonal or constructed diagonal array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ return _mx_nd_np.diag(v, k=k) @set_module('mxnet.numpy') def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ return _mx_nd_np.diagflat(v, k=k) @set_module('mxnet.numpy') def diagonal(a, offset=0, axis1=0, axis2=1): """ If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i, i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals. Parameters ---------- a : ndarray Input data from which diagonal are taken. offset: int, Optional Offset of the diagonal from the main diagonal axis1: int, Optional Axis to be used as the first axis of the 2-D sub-arrays axis2: int, Optional Axis to be used as the second axis of the 2-D sub-arrays Returns ------- out : ndarray Output result Raises ------- ValueError: If the dimension of a is less than 2. Examples -------- >>> a = np.arange(4).reshape(2,2) >>> a array([[0, 1], [2, 3]]) >>> np.diagonal(a) array([0, 3]) >>> np.diagonal(a, 1) array([1]) >>> a = np.arange(8).reshape(2,2,2) >>>a array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> np.diagonal(a, 0, 0, 1) array([[0, 6], [1, 7]]) """ return _mx_nd_np.diagonal(a, offset=offset, axis1=axis1, axis2=axis2) # pylint: disable=redefined-outer-name, too-many-arguments @set_module('mxnet.numpy') def sum(a, axis=None, dtype=None, out=None, keepdims=None, initial=None, where=None): r""" Sum of array elements over a given axis. Parameters ---------- a : ndarray Input data. axis : None or int, optional Axis or axes along which a sum is performed. The default, axis=None, will sum all of the elements of the input array. If axis is negative it counts from the last to the first axis. dtype : dtype, optional The type of the returned array and of the accumulator in which the elements are summed. The default type is float32. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `sum` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-classes `sum` method does not implement `keepdims` any exceptions will be raised. initial: Currently only supports None as input, optional Starting value for the sum. Currently not implemented. Please use ``None`` as input or skip this argument. out : ndarray or None, optional Alternative output array in which to place the result. It must have the same shape and dtype as the expected output. Returns ------- sum_along_axis : ndarray An ndarray with the same shape as `a`, with the specified axis removed. If an output array is specified, a reference to `out` is returned. Notes ----- - Input type does not support Python native iterables. - "out" param: cannot perform auto type change. out ndarray's dtype must be the same as the expected output. - "initial" param is not supported yet. Please use None as input. - Arithmetic is modular when using integer types, and no error is raised on overflow. - The sum of an empty array is the neutral element 0: >>> a = np.empty(1) >>> np.sum(a) array(0.) This function differs from the original `numpy.sum <https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - "out" param: cannot perform auto type cast. out ndarray's dtype must be the same as the expected output. - "initial" param is not supported yet. Please use ``None`` as input or skip it. - The default type is float32. Examples -------- >>> a = np.array([0.5, 1.5]) >>> np.sum(a) array(2.) >>> a = np.array([0.5, 0.7, 0.2, 1.5]) >>> np.sum(a, dtype=np.int32) array(2, dtype=int32) >>> a = np.array([[0, 1], [0, 5]]) >>> np.sum(a) array(6.) >>> np.sum(a, axis=0) array([0., 6.]) >>> np.sum(a, axis=1) array([1., 5.]) With output ndarray: >>> a = np.array([[0, 1], [0, 5]]) >>> b = np.ones((2,), dtype=np.float32) >>> np.sum(a, axis = 0, out=b) array([0., 6.]) >>> b array([0., 6.]) If the accumulator is too small, overflow occurs: >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) array(-128, dtype=int8) """ return _mx_nd_np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims, initial=initial, where=where) # pylint: enable=redefined-outer-name, too-many-arguments
apache-2.0
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/io/parsers.py
3
119039
""" Module contains tools for processing files into DataFrames or other objects """ from __future__ import print_function from collections import defaultdict import re import csv import sys import warnings import datetime from textwrap import fill import numpy as np from pandas import compat from pandas.compat import (range, lrange, PY3, StringIO, lzip, zip, string_types, map, u) from pandas.core.dtypes.common import ( is_integer, _ensure_object, is_list_like, is_integer_dtype, is_float, is_dtype_equal, is_object_dtype, is_string_dtype, is_scalar, is_categorical_dtype) from pandas.core.dtypes.missing import isnull from pandas.core.dtypes.cast import astype_nansafe from pandas.core.index import Index, MultiIndex, RangeIndex from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.categorical import Categorical from pandas.core import algorithms from pandas.core.common import AbstractMethodError from pandas.io.date_converters import generic_parser from pandas.errors import ParserWarning, ParserError, EmptyDataError from pandas.io.common import (get_filepath_or_buffer, is_file_like, _validate_header_arg, _get_handle, UnicodeReader, UTF8Recoder, _NA_VALUES, BaseIterator, _infer_compression) from pandas.core.tools import datetimes as tools from pandas.util._decorators import Appender import pandas._libs.lib as lib import pandas._libs.parsers as parsers # BOM character (byte order mark) # This exists at the beginning of a file to indicate endianness # of a file (stream). Unfortunately, this marker screws up parsing, # so we need to remove it if we see it. _BOM = u('\ufeff') _parser_params = """Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <http://pandas.pydata.org/pandas-docs/stable/io.html>`_. Parameters ---------- filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any \ object with a read() method (such as a file handle or StringIO) The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file ://localhost/path/to/table.csv %s delimiter : str, default ``None`` Alternative argument name for sep. delim_whitespace : boolean, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the sep. Equivalent to setting ``sep='\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. .. versionadded:: 0.18.1 support for the Python parser. header : int or list of ints, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no ``names`` passed, otherwise ``None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so header=0 denotes the first line of data rather than the first line of the file. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default. index_col : int or sequence or False, default None Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names) usecols : array-like or callable, default None Return a subset of the columns. If array-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header row(s). For example, a valid array-like `usecols` parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. as_recarray : boolean, default False DEPRECATED: this argument will be removed in a future version. Please call `pd.read_csv(...).to_records()` instead. Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the `squeeze` parameter. In addition, as row indices are not available in such a format, the `index_col` parameter will be ignored. squeeze : boolean, default False If the parsed data only contains one column then return a Series prefix : str, default None Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ... mangle_dupe_cols : boolean, default True Duplicate columns will be specified as 'X.0'...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `str` or `object` to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. %s converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels true_values : list, default None Values to consider as True false_values : list, default None Values to consider as False skipinitialspace : boolean, default False Skip spaces after delimiter. skiprows : list-like or integer or callable, default None Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c') skip_footer : int, default 0 DEPRECATED: use the `skipfooter` parameter instead, as they are identical nrows : int, default None Number of rows of file to read. Useful for reading pieces of large files na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(_NA_VALUES)), 70, subsequent_indent=" ") + """'`. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. na_filter : boolean, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file verbose : boolean, default False Indicate number of NA values placed in non-numeric columns skip_blank_lines : boolean, default True If True, skip over blank lines rather than interpreting as NaN values parse_dates : boolean or list of ints or names or list of lists or dict, \ default False * boolean. If True -> try parsing the index. * list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo' If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv`` Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : boolean, default False If True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : boolean, default False If True and parse_dates specifies combining multiple columns then keep the original columns. date_parser : function, default None Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments. dayfirst : boolean, default False DD/MM format dates, international and European format iterator : boolean, default False Return TextFileReader object for iteration or getting chunks with ``get_chunk()``. chunksize : int, default None Return TextFileReader object for iteration. See the `IO Tools docs <http://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_ for more information on ``iterator`` and ``chunksize``. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip or xz if filepath_or_buffer is a string ending in '.gz', '.bz2', '.zip', or 'xz', respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. .. versionadded:: 0.18.1 support for 'zip' and 'xz' compression. thousands : str, default None Thousands separator decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). float_precision : string, default None Specifies which converter the C engine should use for floating-point values. The options are `None` for the ordinary converter, `high` for the high-precision converter, and `round_trip` for the round-trip converter. lineterminator : str (length 1), default None Character to break file into lines. Only valid with C parser. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : boolean, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (length 1), default None One-character string used to escape delimiter when quoting is QUOTE_NONE. comment : str, default None Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if comment='#', parsing '#empty\\na,b,c\\n1,2,3' with `header=0` will result in 'a,b,c' being treated as the header. encoding : str, default None Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ dialect : str or csv.Dialect instance, default None If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. tupleize_cols : boolean, default False Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns) error_bad_lines : boolean, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these "bad lines" will dropped from the DataFrame that is returned. warn_bad_lines : boolean, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. low_memory : boolean, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser) buffer_lines : int, default None DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser compact_ints : boolean, default False DEPRECATED: this argument will be removed in a future version If compact_ints is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the `use_unsigned` parameter. use_unsigned : boolean, default False DEPRECATED: this argument will be removed in a future version If integer columns are being compacted (i.e. `compact_ints=True`), specify whether the column should be compacted to the smallest signed or unsigned integer dtype. memory_map : boolean, default False If a filepath is provided for `filepath_or_buffer`, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. Returns ------- result : DataFrame or TextParser """ # engine is not used in read_fwf() so is factored out of the shared docstring _engine_doc = """engine : {'c', 'python'}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.""" _sep_doc = r"""sep : str, default {default} Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used automatically. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``""" _read_csv_doc = """ Read CSV (comma-separated) file into DataFrame %s """ % (_parser_params % (_sep_doc.format(default="','"), _engine_doc)) _read_table_doc = """ Read general delimited file into DataFrame %s """ % (_parser_params % (_sep_doc.format(default="\\t (tab-stop)"), _engine_doc)) _fwf_widths = """\ colspecs : list of pairs (int, int) or 'infer'. optional A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of ints. optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. """ _read_fwf_doc = """ Read a table of fixed-width formatted lines into DataFrame %s Also, 'delimiter' is used to specify the filler character of the fields if it is not spaces (e.g., '~'). """ % (_parser_params % (_fwf_widths, '')) def _validate_integer(name, val, min_val=0): """ Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : string Parameter name (used for error reporting) val : int or float The value to check min_val : int Minimum allowed value (val < min_val will result in a ValueError) """ msg = "'{name:s}' must be an integer >={min_val:d}".format(name=name, min_val=min_val) if val is not None: if is_float(val): if int(val) != val: raise ValueError(msg) val = int(val) elif not (is_integer(val) and val >= min_val): raise ValueError(msg) return val def _read(filepath_or_buffer, kwds): """Generic reader of line files.""" encoding = kwds.get('encoding', None) if encoding is not None: encoding = re.sub('_', '-', encoding).lower() kwds['encoding'] = encoding compression = kwds.get('compression') compression = _infer_compression(filepath_or_buffer, compression) filepath_or_buffer, _, compression = get_filepath_or_buffer( filepath_or_buffer, encoding, compression) kwds['compression'] = compression if kwds.get('date_parser', None) is not None: if isinstance(kwds['parse_dates'], bool): kwds['parse_dates'] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.get('iterator', False) chunksize = _validate_integer('chunksize', kwds.get('chunksize', None), 1) nrows = _validate_integer('nrows', kwds.get('nrows', None)) # Create the parser. parser = TextFileReader(filepath_or_buffer, **kwds) if chunksize or iterator: return parser try: data = parser.read(nrows) finally: parser.close() return data _parser_defaults = { 'delimiter': None, 'doublequote': True, 'escapechar': None, 'quotechar': '"', 'quoting': csv.QUOTE_MINIMAL, 'skipinitialspace': False, 'lineterminator': None, 'header': 'infer', 'index_col': None, 'names': None, 'prefix': None, 'skiprows': None, 'na_values': None, 'true_values': None, 'false_values': None, 'converters': None, 'dtype': None, 'skipfooter': 0, 'keep_default_na': True, 'thousands': None, 'comment': None, 'decimal': b'.', # 'engine': 'c', 'parse_dates': False, 'keep_date_col': False, 'dayfirst': False, 'date_parser': None, 'usecols': None, 'nrows': None, # 'iterator': False, 'chunksize': None, 'verbose': False, 'encoding': None, 'squeeze': False, 'compression': None, 'mangle_dupe_cols': True, 'tupleize_cols': False, 'infer_datetime_format': False, 'skip_blank_lines': True } _c_parser_defaults = { 'delim_whitespace': False, 'as_recarray': False, 'na_filter': True, 'compact_ints': False, 'use_unsigned': False, 'low_memory': True, 'memory_map': False, 'buffer_lines': None, 'error_bad_lines': True, 'warn_bad_lines': True, 'float_precision': None } _fwf_defaults = { 'colspecs': 'infer', 'widths': None, } _c_unsupported = set(['skipfooter']) _python_unsupported = set([ 'low_memory', 'buffer_lines', 'float_precision', ]) _deprecated_args = set([ 'as_recarray', 'buffer_lines', 'compact_ints', 'use_unsigned', ]) def _make_parser_function(name, sep=','): default_sep = sep def parser_f(filepath_or_buffer, sep=sep, delimiter=None, # Column and Index Locations and Names header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, # Error Handling error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, # deprecated # Internal doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=_c_parser_defaults['low_memory'], buffer_lines=None, memory_map=False, float_precision=None): # Alias sep -> delimiter. if delimiter is None: delimiter = sep if delim_whitespace and delimiter is not default_sep: raise ValueError("Specified a delimiter with both sep and" " delim_whitespace=True; you can only" " specify one.") if engine is not None: engine_specified = True else: engine = 'c' engine_specified = False if skip_footer != 0: warnings.warn("The 'skip_footer' argument has " "been deprecated and will be removed " "in a future version. Please use the " "'skipfooter' argument instead.", FutureWarning, stacklevel=2) kwds = dict(delimiter=delimiter, engine=engine, dialect=dialect, compression=compression, engine_specified=engine_specified, doublequote=doublequote, escapechar=escapechar, quotechar=quotechar, quoting=quoting, skipinitialspace=skipinitialspace, lineterminator=lineterminator, header=header, index_col=index_col, names=names, prefix=prefix, skiprows=skiprows, na_values=na_values, true_values=true_values, false_values=false_values, keep_default_na=keep_default_na, thousands=thousands, comment=comment, decimal=decimal, parse_dates=parse_dates, keep_date_col=keep_date_col, dayfirst=dayfirst, date_parser=date_parser, nrows=nrows, iterator=iterator, chunksize=chunksize, skipfooter=skipfooter or skip_footer, converters=converters, dtype=dtype, usecols=usecols, verbose=verbose, encoding=encoding, squeeze=squeeze, memory_map=memory_map, float_precision=float_precision, na_filter=na_filter, compact_ints=compact_ints, use_unsigned=use_unsigned, delim_whitespace=delim_whitespace, as_recarray=as_recarray, warn_bad_lines=warn_bad_lines, error_bad_lines=error_bad_lines, low_memory=low_memory, buffer_lines=buffer_lines, mangle_dupe_cols=mangle_dupe_cols, tupleize_cols=tupleize_cols, infer_datetime_format=infer_datetime_format, skip_blank_lines=skip_blank_lines) return _read(filepath_or_buffer, kwds) parser_f.__name__ = name return parser_f read_csv = _make_parser_function('read_csv', sep=',') read_csv = Appender(_read_csv_doc)(read_csv) read_table = _make_parser_function('read_table', sep='\t') read_table = Appender(_read_table_doc)(read_table) @Appender(_read_fwf_doc) def read_fwf(filepath_or_buffer, colspecs='infer', widths=None, **kwds): # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, 'infer') and widths is not None: raise ValueError("You must specify only one of 'widths' and " "'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.append((col, col + w)) col += w kwds['colspecs'] = colspecs kwds['engine'] = 'python-fwf' return _read(filepath_or_buffer, kwds) class TextFileReader(BaseIterator): """ Passed dialect overrides any of the related parser options """ def __init__(self, f, engine=None, **kwds): self.f = f if engine is not None: engine_specified = True else: engine = 'python' engine_specified = False self._engine_specified = kwds.get('engine_specified', engine_specified) if kwds.get('dialect') is not None: dialect = kwds['dialect'] if dialect in csv.list_dialects(): dialect = csv.get_dialect(dialect) # Any valid dialect should have these attributes. # If any are missing, we will raise automatically. for param in ('delimiter', 'doublequote', 'escapechar', 'skipinitialspace', 'quotechar', 'quoting'): try: dialect_val = getattr(dialect, param) except AttributeError: raise ValueError("Invalid dialect '{dialect}' provided" .format(dialect=kwds['dialect'])) provided = kwds.get(param, _parser_defaults[param]) # Messages for conflicting values between the dialect instance # and the actual parameters provided. conflict_msgs = [] if dialect_val != provided: conflict_msgs.append(( "Conflicting values for '{param}': '{val}' was " "provided, but the dialect specifies '{diaval}'. " "Using the dialect-specified value.".format( param=param, val=provided, diaval=dialect_val))) if conflict_msgs: warnings.warn('\n\n'.join(conflict_msgs), ParserWarning, stacklevel=2) kwds[param] = dialect_val if kwds.get('header', 'infer') == 'infer': kwds['header'] = 0 if kwds.get('names') is None else None self.orig_options = kwds # miscellanea self.engine = engine self._engine = None self._currow = 0 options = self._get_options_with_defaults(engine) self.chunksize = options.pop('chunksize', None) self.nrows = options.pop('nrows', None) self.squeeze = options.pop('squeeze', False) # might mutate self.engine self.engine = self._check_file_or_buffer(f, engine) self.options, self.engine = self._clean_options(options, engine) if 'has_index_names' in kwds: self.options['has_index_names'] = kwds['has_index_names'] self._make_engine(self.engine) def close(self): self._engine.close() def _get_options_with_defaults(self, engine): kwds = self.orig_options options = {} for argname, default in compat.iteritems(_parser_defaults): value = kwds.get(argname, default) # see gh-12935 if argname == 'mangle_dupe_cols' and not value: raise ValueError('Setting mangle_dupe_cols=False is ' 'not supported yet') else: options[argname] = value for argname, default in compat.iteritems(_c_parser_defaults): if argname in kwds: value = kwds[argname] if engine != 'c' and value != default: if ('python' in engine and argname not in _python_unsupported): pass else: raise ValueError( 'The %r option is not supported with the' ' %r engine' % (argname, engine)) else: value = default options[argname] = value if engine == 'python-fwf': for argname, default in compat.iteritems(_fwf_defaults): options[argname] = kwds.get(argname, default) return options def _check_file_or_buffer(self, f, engine): # see gh-16530 if is_file_like(f): next_attr = "__next__" if PY3 else "next" # The C engine doesn't need the file-like to have the "next" or # "__next__" attribute. However, the Python engine explicitly calls # "next(...)" when iterating through such an object, meaning it # needs to have that attribute ("next" for Python 2.x, "__next__" # for Python 3.x) if engine != "c" and not hasattr(f, next_attr): msg = ("The 'python' engine cannot iterate " "through this file buffer.") raise ValueError(msg) return engine def _clean_options(self, options, engine): result = options.copy() engine_specified = self._engine_specified fallback_reason = None sep = options['delimiter'] delim_whitespace = options['delim_whitespace'] # C engine not supported yet if engine == 'c': if options['skipfooter'] > 0: fallback_reason = "the 'c' engine does not support"\ " skipfooter" engine = 'python' encoding = sys.getfilesystemencoding() or 'utf-8' if sep is None and not delim_whitespace: if engine == 'c': fallback_reason = "the 'c' engine does not support"\ " sep=None with delim_whitespace=False" engine = 'python' elif sep is not None and len(sep) > 1: if engine == 'c' and sep == '\s+': result['delim_whitespace'] = True del result['delimiter'] elif engine not in ('python', 'python-fwf'): # wait until regex engine integrated fallback_reason = "the 'c' engine does not support"\ " regex separators (separators > 1 char and"\ " different from '\s+' are"\ " interpreted as regex)" engine = 'python' elif delim_whitespace: if 'python' in engine: result['delimiter'] = '\s+' elif sep is not None: encodeable = True try: if len(sep.encode(encoding)) > 1: encodeable = False except UnicodeDecodeError: encodeable = False if not encodeable and engine not in ('python', 'python-fwf'): fallback_reason = "the separator encoded in {encoding}" \ " is > 1 char long, and the 'c' engine" \ " does not support such separators".format( encoding=encoding) engine = 'python' quotechar = options['quotechar'] if (quotechar is not None and isinstance(quotechar, (str, compat.text_type, bytes))): if (len(quotechar) == 1 and ord(quotechar) > 127 and engine not in ('python', 'python-fwf')): fallback_reason = ("ord(quotechar) > 127, meaning the " "quotechar is larger than one byte, " "and the 'c' engine does not support " "such quotechars") engine = 'python' if fallback_reason and engine_specified: raise ValueError(fallback_reason) if engine == 'c': for arg in _c_unsupported: del result[arg] if 'python' in engine: for arg in _python_unsupported: if fallback_reason and result[arg] != _c_parser_defaults[arg]: msg = ("Falling back to the 'python' engine because" " {reason}, but this causes {option!r} to be" " ignored as it is not supported by the 'python'" " engine.").format(reason=fallback_reason, option=arg) raise ValueError(msg) del result[arg] if fallback_reason: warnings.warn(("Falling back to the 'python' engine because" " {0}; you can avoid this warning by specifying" " engine='python'.").format(fallback_reason), ParserWarning, stacklevel=5) index_col = options['index_col'] names = options['names'] converters = options['converters'] na_values = options['na_values'] skiprows = options['skiprows'] # really delete this one keep_default_na = result.pop('keep_default_na') _validate_header_arg(options['header']) depr_warning = '' for arg in _deprecated_args: parser_default = _c_parser_defaults[arg] msg = ("The '{arg}' argument has been deprecated " "and will be removed in a future version." .format(arg=arg)) if arg == 'as_recarray': msg += ' Please call pd.to_csv(...).to_records() instead.' if result.get(arg, parser_default) != parser_default: depr_warning += msg + '\n\n' if depr_warning != '': warnings.warn(depr_warning, FutureWarning, stacklevel=2) if index_col is True: raise ValueError("The value of index_col couldn't be 'True'") if _is_index_col(index_col): if not isinstance(index_col, (list, tuple, np.ndarray)): index_col = [index_col] result['index_col'] = index_col names = list(names) if names is not None else names # type conversion-related if converters is not None: if not isinstance(converters, dict): raise TypeError('Type converters must be a dict or' ' subclass, input was ' 'a {0!r}'.format(type(converters).__name__)) else: converters = {} # Converting values to NA na_values, na_fvalues = _clean_na_values(na_values, keep_default_na) # handle skiprows; this is internally handled by the # c-engine, so only need for python parsers if engine != 'c': if is_integer(skiprows): skiprows = lrange(skiprows) if skiprows is None: skiprows = set() elif not callable(skiprows): skiprows = set(skiprows) # put stuff back result['names'] = names result['converters'] = converters result['na_values'] = na_values result['na_fvalues'] = na_fvalues result['skiprows'] = skiprows return result, engine def __next__(self): try: return self.get_chunk() except StopIteration: self.close() raise def _make_engine(self, engine='c'): if engine == 'c': self._engine = CParserWrapper(self.f, **self.options) else: if engine == 'python': klass = PythonParser elif engine == 'python-fwf': klass = FixedWidthFieldParser else: raise ValueError('Unknown engine: {engine} (valid options are' ' "c", "python", or' ' "python-fwf")'.format( engine=engine)) self._engine = klass(self.f, **self.options) def _failover_to_python(self): raise AbstractMethodError(self) def read(self, nrows=None): if nrows is not None: if self.options.get('skipfooter'): raise ValueError('skipfooter not supported for iteration') ret = self._engine.read(nrows) if self.options.get('as_recarray'): return ret # May alter columns / col_dict index, columns, col_dict = self._create_index(ret) if index is None: if col_dict: # Any column is actually fine: new_rows = len(compat.next(compat.itervalues(col_dict))) index = RangeIndex(self._currow, self._currow + new_rows) else: new_rows = 0 else: new_rows = len(index) df = DataFrame(col_dict, columns=columns, index=index) self._currow += new_rows if self.squeeze and len(df.columns) == 1: return df[df.columns[0]].copy() return df def _create_index(self, ret): index, columns, col_dict = ret return index, columns, col_dict def get_chunk(self, size=None): if size is None: size = self.chunksize if self.nrows is not None: if self._currow >= self.nrows: raise StopIteration size = min(size, self.nrows - self._currow) return self.read(nrows=size) def _is_index_col(col): return col is not None and col is not False def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a callable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a callable, returns 'usecols'. """ if callable(usecols): return set([i for i, name in enumerate(names) if usecols(name)]) return usecols def _validate_skipfooter_arg(skipfooter): """ Validate the 'skipfooter' parameter. Checks whether 'skipfooter' is a non-negative integer. Raises a ValueError if that is not the case. Parameters ---------- skipfooter : non-negative integer The number of rows to skip at the end of the file. Returns ------- validated_skipfooter : non-negative integer The original input if the validation succeeds. Raises ------ ValueError : 'skipfooter' was not a non-negative integer. """ if not is_integer(skipfooter): raise ValueError("skipfooter must be an integer") if skipfooter < 0: raise ValueError("skipfooter cannot be negative") return skipfooter def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains all integers (column selection by index), strings (column by name) or is a callable. Raises a ValueError if that is not the case. Parameters ---------- usecols : array-like, callable, or None List of columns to use when parsing or a callable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a callable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a callable or None is passed in. """ msg = ("'usecols' must either be all strings, all unicode, " "all integers or a callable") if usecols is not None: if callable(usecols): return usecols, None usecols_dtype = lib.infer_dtype(usecols) if usecols_dtype not in ('empty', 'integer', 'string', 'unicode'): raise ValueError(msg) return set(usecols), usecols_dtype return usecols, None def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ("Only booleans, lists, and " "dictionaries are accepted " "for the 'parse_dates' parameter") if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not isinstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates class ParserBase(object): def __init__(self, kwds): self.names = kwds.get('names') self.orig_names = None self.prefix = kwds.pop('prefix', None) self.index_col = kwds.get('index_col', None) self.index_names = None self.col_names = None self.parse_dates = _validate_parse_dates_arg( kwds.pop('parse_dates', False)) self.date_parser = kwds.pop('date_parser', None) self.dayfirst = kwds.pop('dayfirst', False) self.keep_date_col = kwds.pop('keep_date_col', False) self.na_values = kwds.get('na_values') self.na_fvalues = kwds.get('na_fvalues') self.true_values = kwds.get('true_values') self.false_values = kwds.get('false_values') self.as_recarray = kwds.get('as_recarray', False) self.tupleize_cols = kwds.get('tupleize_cols', False) self.mangle_dupe_cols = kwds.get('mangle_dupe_cols', True) self.infer_datetime_format = kwds.pop('infer_datetime_format', False) self._date_conv = _make_date_converter( date_parser=self.date_parser, dayfirst=self.dayfirst, infer_datetime_format=self.infer_datetime_format ) # validate header options for mi self.header = kwds.get('header') if isinstance(self.header, (list, tuple, np.ndarray)): if kwds.get('as_recarray'): raise ValueError("cannot specify as_recarray when " "specifying a multi-index header") if kwds.get('usecols'): raise ValueError("cannot specify usecols when " "specifying a multi-index header") if kwds.get('names'): raise ValueError("cannot specify names when " "specifying a multi-index header") # validate index_col that only contains integers if self.index_col is not None: is_sequence = isinstance(self.index_col, (list, tuple, np.ndarray)) if not (is_sequence and all(map(is_integer, self.index_col)) or is_integer(self.index_col)): raise ValueError("index_col must only contain row numbers " "when specifying a multi-index header") self._name_processed = False self._first_chunk = True # GH 13932 # keep references to file handles opened by the parser itself self.handles = [] def close(self): for f in self.handles: f.close() @property def _has_complex_date_col(self): return (isinstance(self.parse_dates, dict) or (isinstance(self.parse_dates, list) and len(self.parse_dates) > 0 and isinstance(self.parse_dates[0], list))) def _should_parse_dates(self, i): if isinstance(self.parse_dates, bool): return self.parse_dates else: if self.index_names is not None: name = self.index_names[i] else: name = None j = self.index_col[i] if is_scalar(self.parse_dates): return ((j == self.parse_dates) or (name is not None and name == self.parse_dates)) else: return ((j in self.parse_dates) or (name is not None and name in self.parse_dates)) def _extract_multi_indexer_columns(self, header, index_names, col_names, passed_names=False): """ extract and return the names, index_names, col_names header is a list-of-lists returned from the parsers """ if len(header) < 2: return header[0], index_names, col_names, passed_names # the names are the tuples of the header that are not the index cols # 0 is the name of the index, assuming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not isinstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header.pop(-1) index_names, names, index_col = _clean_index_names(index_names, self.index_col) # extract the columns field_count = len(header[0]) def extract(r): return tuple([r[i] for i in range(field_count) if i not in sic]) columns = lzip(*[extract(r) for r in header]) names = ic + columns def tostr(x): return str(x) if not isinstance(x, compat.string_types) else x # if we find 'Unnamed' all of a single level, then our header was too # long for n in range(len(columns[0])): if all(['Unnamed' in tostr(c[n]) for c in columns]): raise ParserError( "Passed header=[%s] are too many rows for this " "multi_index of columns" % ','.join([str(x) for x in self.header]) ) # clean the column names (if we have an index_col) if len(ic): col_names = [r[0] if len(r[0]) and 'Unnamed' not in r[0] else None for r in header] else: col_names = [None] * len(header) passed_names = True return names, index_names, col_names, passed_names def _maybe_dedup_names(self, names): # see gh-7160 and gh-9424: this helps to provide # immediate alleviation of the duplicate names # issue and appears to be satisfactory to users, # but ultimately, not needing to butcher the names # would be nice! if self.mangle_dupe_cols: names = list(names) # so we can index counts = {} for i, col in enumerate(names): cur_count = counts.get(col, 0) if cur_count > 0: names[i] = '%s.%d' % (col, cur_count) counts[col] = cur_count + 1 return names def _maybe_make_multi_index_columns(self, columns, col_names=None): # possibly create a column mi here if (not self.tupleize_cols and len(columns) and not isinstance(columns, MultiIndex) and all([isinstance(c, tuple) for c in columns])): columns = MultiIndex.from_tuples(columns, names=col_names) return columns def _make_index(self, data, alldata, columns, indexnamerow=False): if not _is_index_col(self.index_col) or not self.index_col: index = None elif not self._has_complex_date_col: index = self._get_simple_index(alldata, columns) index = self._agg_index(index) elif self._has_complex_date_col: if not self._name_processed: (self.index_names, _, self.index_col) = _clean_index_names(list(columns), self.index_col) self._name_processed = True index = self._get_complex_date_index(data, columns) index = self._agg_index(index, try_parse_dates=False) # add names for the index if indexnamerow: coffset = len(indexnamerow) - len(columns) index = index.set_names(indexnamerow[:coffset]) # maybe create a mi on the columns columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns _implicit_index = False def _get_simple_index(self, data, columns): def ix(col): if not isinstance(col, compat.string_types): return col raise ValueError('Index %s invalid' % col) index = None to_remove = [] index = [] for idx in self.index_col: i = ix(idx) to_remove.append(i) index.append(data[i]) # remove index items from content and columns, don't pop in # loop for i in reversed(sorted(to_remove)): data.pop(i) if not self._implicit_index: columns.pop(i) return index def _get_complex_date_index(self, data, col_names): def _get_name(icol): if isinstance(icol, compat.string_types): return icol if col_names is None: raise ValueError(('Must supply column order to use %s as ' 'index') % str(icol)) for i, c in enumerate(col_names): if i == icol: return c index = None to_remove = [] index = [] for idx in self.index_col: name = _get_name(idx) to_remove.append(name) index.append(data[name]) # remove index items from content and columns, don't pop in # loop for c in reversed(sorted(to_remove)): data.pop(c) col_names.remove(c) return index def _agg_index(self, index, try_parse_dates=True): arrays = [] for i, arr in enumerate(index): if (try_parse_dates and self._should_parse_dates(i)): arr = self._date_conv(arr) col_na_values = self.na_values col_na_fvalues = self.na_fvalues if isinstance(self.na_values, dict): col_name = self.index_names[i] if col_name is not None: col_na_values, col_na_fvalues = _get_na_values( col_name, self.na_values, self.na_fvalues) arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) arrays.append(arr) index = MultiIndex.from_arrays(arrays, names=self.index_names) return index def _convert_to_ndarrays(self, dct, na_values, na_fvalues, verbose=False, converters=None, dtypes=None): result = {} for c, values in compat.iteritems(dct): conv_f = None if converters is None else converters.get(c, None) if isinstance(dtypes, dict): cast_type = dtypes.get(c, None) else: # single dtype or None cast_type = dtypes if self.na_filter: col_na_values, col_na_fvalues = _get_na_values( c, na_values, na_fvalues) else: col_na_values, col_na_fvalues = set(), set() if conv_f is not None: # conv_f applied to data before inference if cast_type is not None: warnings.warn(("Both a converter and dtype were specified " "for column {0} - only the converter will " "be used").format(c), ParserWarning, stacklevel=7) try: values = lib.map_infer(values, conv_f) except ValueError: mask = algorithms.isin( values, list(na_values)).view(np.uint8) values = lib.map_infer_mask(values, conv_f, mask) cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool=False) else: # skip inference if specified dtype is object try_num_bool = not (cast_type and is_string_dtype(cast_type)) # general type inference and conversion cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool) # type specificed in dtype param if cast_type and not is_dtype_equal(cvals, cast_type): cvals = self._cast_types(cvals, cast_type, c) if issubclass(cvals.dtype.type, np.integer) and self.compact_ints: cvals = lib.downcast_int64( cvals, parsers.na_values, self.use_unsigned) result[c] = cvals if verbose and na_count: print('Filled %d NA values in column %s' % (na_count, str(c))) return result def _infer_types(self, values, na_values, try_num_bool=True): """ Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns: -------- converted : ndarray na_count : int """ na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.isin(values, list(na_values)) na_count = mask.sum() if na_count > 0: if is_integer_dtype(values): values = values.astype(np.float64) np.putmask(values, mask, np.nan) return values, na_count if try_num_bool: try: result = lib.maybe_convert_numeric(values, na_values, False) na_count = isnull(result).sum() except Exception: result = values if values.dtype == np.object_: na_count = lib.sanitize_objects(result, na_values, False) else: result = values if values.dtype == np.object_: na_count = lib.sanitize_objects(values, na_values, False) if result.dtype == np.object_ and try_num_bool: result = lib.maybe_convert_bool(values, true_values=self.true_values, false_values=self.false_values) return result, na_count def _cast_types(self, values, cast_type, column): """ Cast values to specified type Parameters ---------- values : ndarray cast_type : string or np.dtype dtype to cast values to column : string column name - used only for error reporting Returns ------- converted : ndarray """ if is_categorical_dtype(cast_type): # XXX this is for consistency with # c-parser which parses all categories # as strings if not is_object_dtype(values): values = astype_nansafe(values, str) values = Categorical(values) else: try: values = astype_nansafe(values, cast_type, copy=True) except ValueError: raise ValueError("Unable to convert column %s to " "type %s" % (column, cast_type)) return values def _do_date_conversions(self, names, data): # returns data, columns if self.parse_dates is not None: data, names = _process_date_conversion( data, self._date_conv, self.parse_dates, self.index_col, self.index_names, names, keep_date_col=self.keep_date_col) return names, data class CParserWrapper(ParserBase): """ """ def __init__(self, src, **kwds): self.kwds = kwds kwds = kwds.copy() ParserBase.__init__(self, kwds) if 'utf-16' in (kwds.get('encoding') or ''): if isinstance(src, compat.string_types): src = open(src, 'rb') self.handles.append(src) src = UTF8Recoder(src, kwds['encoding']) kwds['encoding'] = 'utf-8' # #2442 kwds['allow_leading_cols'] = self.index_col is not False self._reader = parsers.TextReader(src, **kwds) # XXX self.usecols, self.usecols_dtype = _validate_usecols_arg( self._reader.usecols) passed_names = self.names is None if self._reader.header is None: self.names = None else: if len(self._reader.header) > 1: # we have a multi index in the columns self.names, self.index_names, self.col_names, passed_names = ( self._extract_multi_indexer_columns( self._reader.header, self.index_names, self.col_names, passed_names ) ) else: self.names = list(self._reader.header[0]) if self.names is None: if self.prefix: self.names = ['%s%d' % (self.prefix, i) for i in range(self._reader.table_width)] else: self.names = lrange(self._reader.table_width) # gh-9755 # # need to set orig_names here first # so that proper indexing can be done # with _set_noconvert_columns # # once names has been filtered, we will # then set orig_names again to names self.orig_names = self.names[:] if self.usecols: usecols = _evaluate_usecols(self.usecols, self.orig_names) # GH 14671 if (self.usecols_dtype == 'string' and not set(usecols).issubset(self.orig_names)): raise ValueError("Usecols do not match names.") if len(self.names) > len(usecols): self.names = [n for i, n in enumerate(self.names) if (i in usecols or n in usecols)] if len(self.names) < len(usecols): raise ValueError("Usecols do not match names.") self._set_noconvert_columns() self.orig_names = self.names if not self._has_complex_date_col: if (self._reader.leading_cols == 0 and _is_index_col(self.index_col)): self._name_processed = True (index_names, self.names, self.index_col) = _clean_index_names(self.names, self.index_col) if self.index_names is None: self.index_names = index_names if self._reader.header is None and not passed_names: self.index_names = [None] * len(self.index_names) self._implicit_index = self._reader.leading_cols > 0 def close(self): for f in self.handles: f.close() # close additional handles opened by C parser (for compression) try: self._reader.close() except: pass def _set_noconvert_columns(self): """ Set the columns that should not undergo dtype conversions. Currently, any column that is involved with date parsing will not undergo such conversions. """ names = self.orig_names if self.usecols_dtype == 'integer': # A set of integers will be converted to a list in # the correct order every single time. usecols = list(self.usecols) elif (callable(self.usecols) or self.usecols_dtype not in ('empty', None)): # The names attribute should have the correct columns # in the proper order for indexing with parse_dates. usecols = self.names[:] else: # Usecols is empty. usecols = None def _set(x): if usecols is not None and is_integer(x): x = usecols[x] if not is_integer(x): x = names.index(x) self._reader.set_noconvert(x) if isinstance(self.parse_dates, list): for val in self.parse_dates: if isinstance(val, list): for k in val: _set(k) else: _set(val) elif isinstance(self.parse_dates, dict): for val in self.parse_dates.values(): if isinstance(val, list): for k in val: _set(k) else: _set(val) elif self.parse_dates: if isinstance(self.index_col, list): for k in self.index_col: _set(k) elif self.index_col is not None: _set(self.index_col) def set_error_bad_lines(self, status): self._reader.set_error_bad_lines(int(status)) def read(self, nrows=None): try: data = self._reader.read(nrows) except StopIteration: if self._first_chunk: self._first_chunk = False names = self._maybe_dedup_names(self.orig_names) index, columns, col_dict = _get_empty_meta( names, self.index_col, self.index_names, dtype=self.kwds.get('dtype')) columns = self._maybe_make_multi_index_columns( columns, self.col_names) if self.usecols is not None: columns = self._filter_usecols(columns) col_dict = dict(filter(lambda item: item[0] in columns, col_dict.items())) return index, columns, col_dict else: raise # Done with first read, next time raise StopIteration self._first_chunk = False if self.as_recarray: # what to do if there are leading columns? return data names = self.names if self._reader.leading_cols: if self._has_complex_date_col: raise NotImplementedError('file structure not yet supported') # implicit index, no index names arrays = [] for i in range(self._reader.leading_cols): if self.index_col is None: values = data.pop(i) else: values = data.pop(self.index_col[i]) values = self._maybe_parse_dates(values, i, try_parse_dates=True) arrays.append(values) index = MultiIndex.from_arrays(arrays) if self.usecols is not None: names = self._filter_usecols(names) names = self._maybe_dedup_names(names) # rename dict keys data = sorted(data.items()) data = dict((k, v) for k, (i, v) in zip(names, data)) names, data = self._do_date_conversions(names, data) else: # rename dict keys data = sorted(data.items()) # ugh, mutation names = list(self.orig_names) names = self._maybe_dedup_names(names) if self.usecols is not None: names = self._filter_usecols(names) # columns as list alldata = [x[1] for x in data] data = dict((k, v) for k, (i, v) in zip(names, data)) names, data = self._do_date_conversions(names, data) index, names = self._make_index(data, alldata, names) # maybe create a mi on the columns names = self._maybe_make_multi_index_columns(names, self.col_names) return index, names, data def _filter_usecols(self, names): # hackish usecols = _evaluate_usecols(self.usecols, names) if usecols is not None and len(names) != len(usecols): names = [name for i, name in enumerate(names) if i in usecols or name in usecols] return names def _get_index_names(self): names = list(self._reader.header[0]) idx_names = None if self._reader.leading_cols == 0 and self.index_col is not None: (idx_names, names, self.index_col) = _clean_index_names(names, self.index_col) return names, idx_names def _maybe_parse_dates(self, values, index, try_parse_dates=True): if try_parse_dates and self._should_parse_dates(index): values = self._date_conv(values) return values def TextParser(*args, **kwds): """ Converts lists of lists/tuples into DataFrames with proper type inference and optional (e.g. string to datetime) conversion. Also enables iterating lazily over chunks of large files Parameters ---------- data : file-like object or list delimiter : separator character to use dialect : str or csv.Dialect instance, default None Ignored if delimiter is longer than 1 character names : sequence, default header : int, default 0 Row to use to parse column labels. Defaults to the first row. Prior rows will be discarded index_col : int or list, default None Column or columns to use as the (possibly hierarchical) index has_index_names: boolean, default False True if the cols defined in index_col have an index name and are not in the header na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. keep_default_na : bool, default True thousands : str, default None Thousands separator comment : str, default None Comment out remainder of line parse_dates : boolean, default False keep_date_col : boolean, default False date_parser : function, default None skiprows : list of integers Row numbers to skip skipfooter : int Number of line at bottom of file to skip converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the cell (not column) content, and return the transformed content. encoding : string, default None Encoding to use for UTF when reading/writing (ex. 'utf-8') squeeze : boolean, default False returns Series if only one column infer_datetime_format: boolean, default False If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. float_precision : string, default None Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, 'high' for the high-precision converter, and 'round_trip' for the round-trip converter. """ kwds['engine'] = 'python' return TextFileReader(*args, **kwds) def count_empty_vals(vals): return sum([1 for v in vals if v == '' or v is None]) class PythonParser(ParserBase): def __init__(self, f, **kwds): """ Workhorse function for processing nested list into DataFrame Should be replaced by np.genfromtxt eventually? """ ParserBase.__init__(self, kwds) self.data = None self.buf = [] self.pos = 0 self.line_pos = 0 self.encoding = kwds['encoding'] self.compression = kwds['compression'] self.memory_map = kwds['memory_map'] self.skiprows = kwds['skiprows'] if callable(self.skiprows): self.skipfunc = self.skiprows else: self.skipfunc = lambda x: x in self.skiprows self.skipfooter = _validate_skipfooter_arg(kwds['skipfooter']) self.delimiter = kwds['delimiter'] self.quotechar = kwds['quotechar'] if isinstance(self.quotechar, compat.text_type): self.quotechar = str(self.quotechar) self.escapechar = kwds['escapechar'] self.doublequote = kwds['doublequote'] self.skipinitialspace = kwds['skipinitialspace'] self.lineterminator = kwds['lineterminator'] self.quoting = kwds['quoting'] self.usecols, _ = _validate_usecols_arg(kwds['usecols']) self.skip_blank_lines = kwds['skip_blank_lines'] self.warn_bad_lines = kwds['warn_bad_lines'] self.error_bad_lines = kwds['error_bad_lines'] self.names_passed = kwds['names'] or None self.na_filter = kwds['na_filter'] self.has_index_names = False if 'has_index_names' in kwds: self.has_index_names = kwds['has_index_names'] self.verbose = kwds['verbose'] self.converters = kwds['converters'] self.dtype = kwds['dtype'] self.compact_ints = kwds['compact_ints'] self.use_unsigned = kwds['use_unsigned'] self.thousands = kwds['thousands'] self.decimal = kwds['decimal'] self.comment = kwds['comment'] self._comment_lines = [] mode = 'r' if PY3 else 'rb' f, handles = _get_handle(f, mode, encoding=self.encoding, compression=self.compression, memory_map=self.memory_map) self.handles.extend(handles) # Set self.data to something that can read lines. if hasattr(f, 'readline'): self._make_reader(f) else: self.data = f # Get columns in two steps: infer from data, then # infer column indices from self.usecols if is is specified. self._col_indices = None self.columns, self.num_original_columns = self._infer_columns() # Now self.columns has the set of columns that we will process. # The original set is stored in self.original_columns. if len(self.columns) > 1: # we are processing a multi index column self.columns, self.index_names, self.col_names, _ = ( self._extract_multi_indexer_columns( self.columns, self.index_names, self.col_names ) ) # Update list of original names to include all indices. self.num_original_columns = len(self.columns) else: self.columns = self.columns[0] # get popped off for index self.orig_names = list(self.columns) # needs to be cleaned/refactored # multiple date column thing turning into a real spaghetti factory if not self._has_complex_date_col: (index_names, self.orig_names, self.columns) = ( self._get_index_name(self.columns)) self._name_processed = True if self.index_names is None: self.index_names = index_names if self.parse_dates: self._no_thousands_columns = self._set_no_thousands_columns() else: self._no_thousands_columns = None if len(self.decimal) != 1: raise ValueError('Only length-1 decimal markers supported') if self.thousands is None: self.nonnum = re.compile('[^-^0-9^%s]+' % self.decimal) else: self.nonnum = re.compile('[^-^0-9^%s^%s]+' % (self.thousands, self.decimal)) def _set_no_thousands_columns(self): # Create a set of column ids that are not to be stripped of thousands # operators. noconvert_columns = set() def _set(x): if is_integer(x): noconvert_columns.add(x) else: noconvert_columns.add(self.columns.index(x)) if isinstance(self.parse_dates, list): for val in self.parse_dates: if isinstance(val, list): for k in val: _set(k) else: _set(val) elif isinstance(self.parse_dates, dict): for val in self.parse_dates.values(): if isinstance(val, list): for k in val: _set(k) else: _set(val) elif self.parse_dates: if isinstance(self.index_col, list): for k in self.index_col: _set(k) elif self.index_col is not None: _set(self.index_col) return noconvert_columns def _make_reader(self, f): sep = self.delimiter if sep is None or len(sep) == 1: if self.lineterminator: raise ValueError('Custom line terminators not supported in ' 'python parser (yet)') class MyDialect(csv.Dialect): delimiter = self.delimiter quotechar = self.quotechar escapechar = self.escapechar doublequote = self.doublequote skipinitialspace = self.skipinitialspace quoting = self.quoting lineterminator = '\n' dia = MyDialect sniff_sep = True if sep is not None: sniff_sep = False dia.delimiter = sep # attempt to sniff the delimiter if sniff_sep: line = f.readline() while self.skipfunc(self.pos): self.pos += 1 line = f.readline() line = self._check_comments([line])[0] self.pos += 1 self.line_pos += 1 sniffed = csv.Sniffer().sniff(line) dia.delimiter = sniffed.delimiter if self.encoding is not None: self.buf.extend(list( UnicodeReader(StringIO(line), dialect=dia, encoding=self.encoding))) else: self.buf.extend(list(csv.reader(StringIO(line), dialect=dia))) if self.encoding is not None: reader = UnicodeReader(f, dialect=dia, encoding=self.encoding, strict=True) else: reader = csv.reader(f, dialect=dia, strict=True) else: def _read(): line = f.readline() if compat.PY2 and self.encoding: line = line.decode(self.encoding) pat = re.compile(sep) yield pat.split(line.strip()) for line in f: yield pat.split(line.strip()) reader = _read() self.data = reader def read(self, rows=None): try: content = self._get_lines(rows) except StopIteration: if self._first_chunk: content = [] else: raise # done with first read, next time raise StopIteration self._first_chunk = False columns = list(self.orig_names) if not len(content): # pragma: no cover # DataFrame with the right metadata, even though it's length 0 names = self._maybe_dedup_names(self.orig_names) index, columns, col_dict = _get_empty_meta( names, self.index_col, self.index_names, self.dtype) columns = self._maybe_make_multi_index_columns( columns, self.col_names) return index, columns, col_dict # handle new style for names in index count_empty_content_vals = count_empty_vals(content[0]) indexnamerow = None if self.has_index_names and count_empty_content_vals == len(columns): indexnamerow = content[0] content = content[1:] alldata = self._rows_to_cols(content) data = self._exclude_implicit_index(alldata) columns = self._maybe_dedup_names(self.columns) columns, data = self._do_date_conversions(columns, data) data = self._convert_data(data) if self.as_recarray: return self._to_recarray(data, columns) index, columns = self._make_index(data, alldata, columns, indexnamerow) return index, columns, data def _exclude_implicit_index(self, alldata): names = self._maybe_dedup_names(self.orig_names) if self._implicit_index: excl_indices = self.index_col data = {} offset = 0 for i, col in enumerate(names): while i + offset in excl_indices: offset += 1 data[col] = alldata[i + offset] else: data = dict((k, v) for k, v in zip(names, alldata)) return data # legacy def get_chunk(self, size=None): if size is None: size = self.chunksize return self.read(nrows=size) def _convert_data(self, data): # apply converters def _clean_mapping(mapping): "converts col numbers to names" clean = {} for col, v in compat.iteritems(mapping): if isinstance(col, int) and col not in self.orig_names: col = self.orig_names[col] clean[col] = v return clean clean_conv = _clean_mapping(self.converters) if not isinstance(self.dtype, dict): # handles single dtype applied to all columns clean_dtypes = self.dtype else: clean_dtypes = _clean_mapping(self.dtype) # Apply NA values. clean_na_values = {} clean_na_fvalues = {} if isinstance(self.na_values, dict): for col in self.na_values: na_value = self.na_values[col] na_fvalue = self.na_fvalues[col] if isinstance(col, int) and col not in self.orig_names: col = self.orig_names[col] clean_na_values[col] = na_value clean_na_fvalues[col] = na_fvalue else: clean_na_values = self.na_values clean_na_fvalues = self.na_fvalues return self._convert_to_ndarrays(data, clean_na_values, clean_na_fvalues, self.verbose, clean_conv, clean_dtypes) def _to_recarray(self, data, columns): dtypes = [] o = compat.OrderedDict() # use the columns to "order" the keys # in the unordered 'data' dictionary for col in columns: dtypes.append((str(col), data[col].dtype)) o[col] = data[col] tuples = lzip(*o.values()) return np.array(tuples, dtypes) def _infer_columns(self): names = self.names num_original_columns = 0 clear_buffer = True if self.header is not None: header = self.header # we have a mi columns, so read an extra line if isinstance(header, (list, tuple, np.ndarray)): have_mi_columns = True header = list(header) + [header[-1] + 1] else: have_mi_columns = False header = [header] columns = [] for level, hr in enumerate(header): try: line = self._buffered_line() while self.line_pos <= hr: line = self._next_line() except StopIteration: if self.line_pos < hr: raise ValueError( 'Passed header=%s but only %d lines in file' % (hr, self.line_pos + 1)) # We have an empty file, so check # if columns are provided. That will # serve as the 'line' for parsing if have_mi_columns and hr > 0: if clear_buffer: self._clear_buffer() columns.append([None] * len(columns[-1])) return columns, num_original_columns if not self.names: raise EmptyDataError( "No columns to parse from file") line = self.names[:] unnamed_count = 0 this_columns = [] for i, c in enumerate(line): if c == '': if have_mi_columns: this_columns.append('Unnamed: %d_level_%d' % (i, level)) else: this_columns.append('Unnamed: %d' % i) unnamed_count += 1 else: this_columns.append(c) if not have_mi_columns and self.mangle_dupe_cols: counts = {} for i, col in enumerate(this_columns): cur_count = counts.get(col, 0) if cur_count > 0: this_columns[i] = '%s.%d' % (col, cur_count) counts[col] = cur_count + 1 elif have_mi_columns: # if we have grabbed an extra line, but its not in our # format so save in the buffer, and create an blank extra # line for the rest of the parsing code if hr == header[-1]: lc = len(this_columns) ic = (len(self.index_col) if self.index_col is not None else 0) if lc != unnamed_count and lc - ic > unnamed_count: clear_buffer = False this_columns = [None] * lc self.buf = [self.buf[-1]] columns.append(this_columns) if len(columns) == 1: num_original_columns = len(this_columns) if clear_buffer: self._clear_buffer() if names is not None: if ((self.usecols is not None and len(names) != len(self.usecols)) or (self.usecols is None and len(names) != len(columns[0]))): raise ValueError('Number of passed names did not match ' 'number of header fields in the file') if len(columns) > 1: raise TypeError('Cannot pass names with multi-index ' 'columns') if self.usecols is not None: # Set _use_cols. We don't store columns because they are # overwritten. self._handle_usecols(columns, names) else: self._col_indices = None num_original_columns = len(names) columns = [names] else: columns = self._handle_usecols(columns, columns[0]) else: try: line = self._buffered_line() except StopIteration: if not names: raise EmptyDataError( "No columns to parse from file") line = names[:] ncols = len(line) num_original_columns = ncols if not names: if self.prefix: columns = [['%s%d' % (self.prefix, i) for i in range(ncols)]] else: columns = [lrange(ncols)] columns = self._handle_usecols(columns, columns[0]) else: if self.usecols is None or len(names) >= num_original_columns: columns = self._handle_usecols([names], names) num_original_columns = len(names) else: if (not callable(self.usecols) and len(names) != len(self.usecols)): raise ValueError( 'Number of passed names did not match number of ' 'header fields in the file' ) # Ignore output but set used columns. self._handle_usecols([names], names) columns = [names] num_original_columns = ncols return columns, num_original_columns def _handle_usecols(self, columns, usecols_key): """ Sets self._col_indices usecols_key is used if there are string usecols. """ if self.usecols is not None: if callable(self.usecols): col_indices = _evaluate_usecols(self.usecols, usecols_key) elif any([isinstance(u, string_types) for u in self.usecols]): if len(columns) > 1: raise ValueError("If using multiple headers, usecols must " "be integers.") col_indices = [] for col in self.usecols: if isinstance(col, string_types): col_indices.append(usecols_key.index(col)) else: col_indices.append(col) else: col_indices = self.usecols columns = [[n for i, n in enumerate(column) if i in col_indices] for column in columns] self._col_indices = col_indices return columns def _buffered_line(self): """ Return a line from buffer, filling buffer if required. """ if len(self.buf) > 0: return self.buf[0] else: return self._next_line() def _check_for_bom(self, first_row): """ Checks whether the file begins with the BOM character. If it does, remove it. In addition, if there is quoting in the field subsequent to the BOM, remove it as well because it technically takes place at the beginning of the name, not the middle of it. """ # first_row will be a list, so we need to check # that that list is not empty before proceeding. if not first_row: return first_row # The first element of this row is the one that could have the # BOM that we want to remove. Check that the first element is a # string before proceeding. if not isinstance(first_row[0], compat.string_types): return first_row # Check that the string is not empty, as that would # obviously not have a BOM at the start of it. if not first_row[0]: return first_row # Since the string is non-empty, check that it does # in fact begin with a BOM. first_elt = first_row[0][0] # This is to avoid warnings we get in Python 2.x if # we find ourselves comparing with non-Unicode if compat.PY2 and not isinstance(first_elt, unicode): # noqa try: first_elt = u(first_elt) except UnicodeDecodeError: return first_row if first_elt != _BOM: return first_row first_row = first_row[0] if len(first_row) > 1 and first_row[1] == self.quotechar: start = 2 quote = first_row[1] end = first_row[2:].index(quote) + 2 # Extract the data between the quotation marks new_row = first_row[start:end] # Extract any remaining data after the second # quotation mark. if len(first_row) > end + 1: new_row += first_row[end + 1:] return [new_row] elif len(first_row) > 1: return [first_row[1:]] else: # First row is just the BOM, so we # return an empty string. return [""] def _is_line_empty(self, line): """ Check if a line is empty or not. Parameters ---------- line : str, array-like The line of data to check. Returns ------- boolean : Whether or not the line is empty. """ return not line or all(not x for x in line) def _next_line(self): if isinstance(self.data, list): while self.skipfunc(self.pos): self.pos += 1 while True: try: line = self._check_comments([self.data[self.pos]])[0] self.pos += 1 # either uncommented or blank to begin with if (not self.skip_blank_lines and (self._is_line_empty( self.data[self.pos - 1]) or line)): break elif self.skip_blank_lines: ret = self._remove_empty_lines([line]) if ret: line = ret[0] break except IndexError: raise StopIteration else: while self.skipfunc(self.pos): self.pos += 1 next(self.data) while True: orig_line = self._next_iter_line(row_num=self.pos + 1) self.pos += 1 if orig_line is not None: line = self._check_comments([orig_line])[0] if self.skip_blank_lines: ret = self._remove_empty_lines([line]) if ret: line = ret[0] break elif self._is_line_empty(orig_line) or line: break # This was the first line of the file, # which could contain the BOM at the # beginning of it. if self.pos == 1: line = self._check_for_bom(line) self.line_pos += 1 self.buf.append(line) return line def _alert_malformed(self, msg, row_num): """ Alert a user about a malformed row. If `self.error_bad_lines` is True, the alert will be `ParserError`. If `self.warn_bad_lines` is True, the alert will be printed out. Parameters ---------- msg : The error message to display. row_num : The row number where the parsing error occurred. Because this row number is displayed, we 1-index, even though we 0-index internally. """ if self.error_bad_lines: raise ParserError(msg) elif self.warn_bad_lines: base = 'Skipping line {row_num}: '.format(row_num=row_num) sys.stderr.write(base + msg + '\n') def _next_iter_line(self, row_num): """ Wrapper around iterating through `self.data` (CSV source). When a CSV error is raised, we check for specific error messages that allow us to customize the error message displayed to the user. Parameters ---------- row_num : The row number of the line being parsed. """ try: return next(self.data) except csv.Error as e: if self.warn_bad_lines or self.error_bad_lines: msg = str(e) if 'NULL byte' in msg: msg = ('NULL byte detected. This byte ' 'cannot be processed in Python\'s ' 'native csv library at the moment, ' 'so please pass in engine=\'c\' instead') elif 'newline inside string' in msg: msg = ('EOF inside string starting with ' 'line ' + str(row_num)) if self.skipfooter > 0: reason = ('Error could possibly be due to ' 'parsing errors in the skipped footer rows ' '(the skipfooter keyword is only applied ' 'after Python\'s csv library has parsed ' 'all rows).') msg += '. ' + reason self._alert_malformed(msg, row_num) return None def _check_comments(self, lines): if self.comment is None: return lines ret = [] for l in lines: rl = [] for x in l: if (not isinstance(x, compat.string_types) or self.comment not in x): rl.append(x) else: x = x[:x.find(self.comment)] if len(x) > 0: rl.append(x) break ret.append(rl) return ret def _remove_empty_lines(self, lines): """ Iterate through the lines and remove any that are either empty or contain only one whitespace value Parameters ---------- lines : array-like The array of lines that we are to filter. Returns ------- filtered_lines : array-like The same array of lines with the "empty" ones removed. """ ret = [] for l in lines: # Remove empty lines and lines with only one whitespace value if (len(l) > 1 or len(l) == 1 and (not isinstance(l[0], compat.string_types) or l[0].strip())): ret.append(l) return ret def _check_thousands(self, lines): if self.thousands is None: return lines return self._search_replace_num_columns(lines=lines, search=self.thousands, replace='') def _search_replace_num_columns(self, lines, search, replace): ret = [] for l in lines: rl = [] for i, x in enumerate(l): if (not isinstance(x, compat.string_types) or search not in x or (self._no_thousands_columns and i in self._no_thousands_columns) or self.nonnum.search(x.strip())): rl.append(x) else: rl.append(x.replace(search, replace)) ret.append(rl) return ret def _check_decimal(self, lines): if self.decimal == _parser_defaults['decimal']: return lines return self._search_replace_num_columns(lines=lines, search=self.decimal, replace='.') def _clear_buffer(self): self.buf = [] _implicit_index = False def _get_index_name(self, columns): """ Try several cases to get lines: 0) There are headers on row 0 and row 1 and their total summed lengths equals the length of the next line. Treat row 0 as columns and row 1 as indices 1) Look for implicit index: there are more columns on row 1 than row 0. If this is true, assume that row 1 lists index columns and row 0 lists normal columns. 2) Get index from the columns if it was listed. """ orig_names = list(columns) columns = list(columns) try: line = self._next_line() except StopIteration: line = None try: next_line = self._next_line() except StopIteration: next_line = None # implicitly index_col=0 b/c 1 fewer column names implicit_first_cols = 0 if line is not None: # leave it 0, #2442 # Case 1 if self.index_col is not False: implicit_first_cols = len(line) - self.num_original_columns # Case 0 if next_line is not None: if len(next_line) == len(line) + self.num_original_columns: # column and index names on diff rows self.index_col = lrange(len(line)) self.buf = self.buf[1:] for c in reversed(line): columns.insert(0, c) # Update list of original names to include all indices. orig_names = list(columns) self.num_original_columns = len(columns) return line, orig_names, columns if implicit_first_cols > 0: # Case 1 self._implicit_index = True if self.index_col is None: self.index_col = lrange(implicit_first_cols) index_name = None else: # Case 2 (index_name, columns_, self.index_col) = _clean_index_names(columns, self.index_col) return index_name, orig_names, columns def _rows_to_cols(self, content): col_len = self.num_original_columns if self._implicit_index: col_len += len(self.index_col) max_len = max([len(row) for row in content]) # Check that there are no rows with too many # elements in their row (rows with too few # elements are padded with NaN). if (max_len > col_len and self.index_col is not False and self.usecols is None): footers = self.skipfooter if self.skipfooter else 0 bad_lines = [] iter_content = enumerate(content) content_len = len(content) content = [] for (i, l) in iter_content: actual_len = len(l) if actual_len > col_len: if self.error_bad_lines or self.warn_bad_lines: row_num = self.pos - (content_len - i + footers) bad_lines.append((row_num, actual_len)) if self.error_bad_lines: break else: content.append(l) for row_num, actual_len in bad_lines: msg = ('Expected %d fields in line %d, saw %d' % (col_len, row_num + 1, actual_len)) if len(self.delimiter) > 1 and self.quoting != csv.QUOTE_NONE: # see gh-13374 reason = ('Error could possibly be due to quotes being ' 'ignored when a multi-char delimiter is used.') msg += '. ' + reason self._alert_malformed(msg, row_num + 1) # see gh-13320 zipped_content = list(lib.to_object_array( content, min_width=col_len).T) if self.usecols: if self._implicit_index: zipped_content = [ a for i, a in enumerate(zipped_content) if (i < len(self.index_col) or i - len(self.index_col) in self._col_indices)] else: zipped_content = [a for i, a in enumerate(zipped_content) if i in self._col_indices] return zipped_content def _get_lines(self, rows=None): lines = self.buf new_rows = None # already fetched some number if rows is not None: # we already have the lines in the buffer if len(self.buf) >= rows: new_rows, self.buf = self.buf[:rows], self.buf[rows:] # need some lines else: rows -= len(self.buf) if new_rows is None: if isinstance(self.data, list): if self.pos > len(self.data): raise StopIteration if rows is None: new_rows = self.data[self.pos:] new_pos = len(self.data) else: new_rows = self.data[self.pos:self.pos + rows] new_pos = self.pos + rows # Check for stop rows. n.b.: self.skiprows is a set. if self.skiprows: new_rows = [row for i, row in enumerate(new_rows) if not self.skipfunc(i + self.pos)] lines.extend(new_rows) self.pos = new_pos else: new_rows = [] try: if rows is not None: for _ in range(rows): new_rows.append(next(self.data)) lines.extend(new_rows) else: rows = 0 while True: new_row = self._next_iter_line( row_num=self.pos + rows + 1) rows += 1 if new_row is not None: new_rows.append(new_row) except StopIteration: if self.skiprows: new_rows = [row for i, row in enumerate(new_rows) if not self.skipfunc(i + self.pos)] lines.extend(new_rows) if len(lines) == 0: raise self.pos += len(new_rows) self.buf = [] else: lines = new_rows if self.skipfooter: lines = lines[:-self.skipfooter] lines = self._check_comments(lines) if self.skip_blank_lines: lines = self._remove_empty_lines(lines) lines = self._check_thousands(lines) return self._check_decimal(lines) def _make_date_converter(date_parser=None, dayfirst=False, infer_datetime_format=False): def converter(*date_cols): if date_parser is None: strs = _concat_date_cols(date_cols) try: return tools.to_datetime( _ensure_object(strs), utc=None, box=False, dayfirst=dayfirst, errors='ignore', infer_datetime_format=infer_datetime_format ) except: return tools.to_datetime( lib.try_parse_dates(strs, dayfirst=dayfirst)) else: try: result = tools.to_datetime( date_parser(*date_cols), errors='ignore') if isinstance(result, datetime.datetime): raise Exception('scalar parser') return result except Exception: try: return tools.to_datetime( lib.try_parse_dates(_concat_date_cols(date_cols), parser=date_parser, dayfirst=dayfirst), errors='ignore') except Exception: return generic_parser(date_parser, *date_cols) return converter def _process_date_conversion(data_dict, converter, parse_spec, index_col, index_names, columns, keep_date_col=False): def _isindex(colspec): return ((isinstance(index_col, list) and colspec in index_col) or (isinstance(index_names, list) and colspec in index_names)) new_cols = [] new_data = {} orig_names = columns columns = list(columns) date_cols = set() if parse_spec is None or isinstance(parse_spec, bool): return data_dict, columns if isinstance(parse_spec, list): # list of column lists for colspec in parse_spec: if is_scalar(colspec): if isinstance(colspec, int) and colspec not in data_dict: colspec = orig_names[colspec] if _isindex(colspec): continue data_dict[colspec] = converter(data_dict[colspec]) else: new_name, col, old_names = _try_convert_dates( converter, colspec, data_dict, orig_names) if new_name in data_dict: raise ValueError('New date column already in dict %s' % new_name) new_data[new_name] = col new_cols.append(new_name) date_cols.update(old_names) elif isinstance(parse_spec, dict): # dict of new name to column list for new_name, colspec in compat.iteritems(parse_spec): if new_name in data_dict: raise ValueError('Date column %s already in dict' % new_name) _, col, old_names = _try_convert_dates(converter, colspec, data_dict, orig_names) new_data[new_name] = col new_cols.append(new_name) date_cols.update(old_names) data_dict.update(new_data) new_cols.extend(columns) if not keep_date_col: for c in list(date_cols): data_dict.pop(c) new_cols.remove(c) return data_dict, new_cols def _try_convert_dates(parser, colspec, data_dict, columns): colset = set(columns) colnames = [] for c in colspec: if c in colset: colnames.append(c) elif isinstance(c, int) and c not in columns: colnames.append(columns[c]) else: colnames.append(c) new_name = '_'.join([str(x) for x in colnames]) to_parse = [data_dict[c] for c in colnames if c in data_dict] new_col = parser(*to_parse) return new_name, new_col, colnames def _clean_na_values(na_values, keep_default_na=True): if na_values is None: if keep_default_na: na_values = _NA_VALUES else: na_values = set() na_fvalues = set() elif isinstance(na_values, dict): na_values = na_values.copy() # Prevent aliasing. if keep_default_na: for k, v in compat.iteritems(na_values): if not is_list_like(v): v = [v] v = set(v) | _NA_VALUES na_values[k] = v na_fvalues = dict([ (k, _floatify_na_values(v)) for k, v in na_values.items() # noqa ]) else: if not is_list_like(na_values): na_values = [na_values] na_values = _stringify_na_values(na_values) if keep_default_na: na_values = na_values | _NA_VALUES na_fvalues = _floatify_na_values(na_values) return na_values, na_fvalues def _clean_index_names(columns, index_col): if not _is_index_col(index_col): return None, columns, index_col columns = list(columns) cp_cols = list(columns) index_names = [] # don't mutate index_col = list(index_col) for i, c in enumerate(index_col): if isinstance(c, compat.string_types): index_names.append(c) for j, name in enumerate(cp_cols): if name == c: index_col[i] = j columns.remove(name) break else: name = cp_cols[c] columns.remove(name) index_names.append(name) # hack if isinstance(index_names[0], compat.string_types)\ and 'Unnamed' in index_names[0]: index_names[0] = None return index_names, columns, index_col def _get_empty_meta(columns, index_col, index_names, dtype=None): columns = list(columns) # Convert `dtype` to a defaultdict of some kind. # This will enable us to write `dtype[col_name]` # without worrying about KeyError issues later on. if not isinstance(dtype, dict): # if dtype == None, default will be np.object. default_dtype = dtype or np.object dtype = defaultdict(lambda: default_dtype) else: # Save a copy of the dictionary. _dtype = dtype.copy() dtype = defaultdict(lambda: np.object) # Convert column indexes to column names. for k, v in compat.iteritems(_dtype): col = columns[k] if is_integer(k) else k dtype[col] = v if index_col is None or index_col is False: index = Index([]) else: index = [Series([], dtype=dtype[index_name]) for index_name in index_names] index = MultiIndex.from_arrays(index, names=index_names) index_col.sort() for i, n in enumerate(index_col): columns.pop(n - i) col_dict = dict((col_name, Series([], dtype=dtype[col_name])) for col_name in columns) return index, columns, col_dict def _floatify_na_values(na_values): # create float versions of the na_values result = set() for v in na_values: try: v = float(v) if not np.isnan(v): result.add(v) except: pass return result def _stringify_na_values(na_values): """ return a stringified and numeric for these values """ result = [] for x in na_values: result.append(str(x)) result.append(x) try: v = float(x) # we are like 999 here if v == int(v): v = int(v) result.append("%s.0" % v) result.append(str(v)) result.append(v) except: pass try: result.append(int(x)) except: pass return set(result) def _get_na_values(col, na_values, na_fvalues): if isinstance(na_values, dict): if col in na_values: return na_values[col], na_fvalues[col] else: return _NA_VALUES, set() else: return na_values, na_fvalues def _get_col_names(colspec, columns): colset = set(columns) colnames = [] for c in colspec: if c in colset: colnames.append(c) elif isinstance(c, int): colnames.append(columns[c]) return colnames def _concat_date_cols(date_cols): if len(date_cols) == 1: if compat.PY3: return np.array([compat.text_type(x) for x in date_cols[0]], dtype=object) else: return np.array([ str(x) if not isinstance(x, compat.string_types) else x for x in date_cols[0] ], dtype=object) rs = np.array([' '.join([compat.text_type(y) for y in x]) for x in zip(*date_cols)], dtype=object) return rs class FixedWidthReader(BaseIterator): """ A reader of fixed-width lines. """ def __init__(self, f, colspecs, delimiter, comment, skiprows=None): self.f = f self.buffer = None self.delimiter = '\r\n' + delimiter if delimiter else '\n\r\t ' self.comment = comment if colspecs == 'infer': self.colspecs = self.detect_colspecs(skiprows=skiprows) else: self.colspecs = colspecs if not isinstance(self.colspecs, (tuple, list)): raise TypeError("column specifications must be a list or tuple, " "input was a %r" % type(colspecs).__name__) for colspec in self.colspecs: if not (isinstance(colspec, (tuple, list)) and len(colspec) == 2 and isinstance(colspec[0], (int, np.integer, type(None))) and isinstance(colspec[1], (int, np.integer, type(None)))): raise TypeError('Each column specification must be ' '2 element tuple or list of integers') def get_rows(self, n, skiprows=None): """ Read rows from self.f, skipping as specified. We distinguish buffer_rows (the first <= n lines) from the rows returned to detect_colspecs because it's simpler to leave the other locations with skiprows logic alone than to modify them to deal with the fact we skipped some rows here as well. Parameters ---------- n : int Number of rows to read from self.f, not counting rows that are skipped. skiprows: set, optional Indices of rows to skip. Returns ------- detect_rows : list of str A list containing the rows to read. """ if skiprows is None: skiprows = set() buffer_rows = [] detect_rows = [] for i, row in enumerate(self.f): if i not in skiprows: detect_rows.append(row) buffer_rows.append(row) if len(detect_rows) >= n: break self.buffer = iter(buffer_rows) return detect_rows def detect_colspecs(self, n=100, skiprows=None): # Regex escape the delimiters delimiters = ''.join([r'\%s' % x for x in self.delimiter]) pattern = re.compile('([^%s]+)' % delimiters) rows = self.get_rows(n, skiprows) if not rows: raise EmptyDataError("No rows from which to infer column width") max_len = max(map(len, rows)) mask = np.zeros(max_len + 1, dtype=int) if self.comment is not None: rows = [row.partition(self.comment)[0] for row in rows] for row in rows: for m in pattern.finditer(row): mask[m.start():m.end()] = 1 shifted = np.roll(mask, 1) shifted[0] = 0 edges = np.where((mask ^ shifted) == 1)[0] edge_pairs = list(zip(edges[::2], edges[1::2])) return edge_pairs def __next__(self): if self.buffer is not None: try: line = next(self.buffer) except StopIteration: self.buffer = None line = next(self.f) else: line = next(self.f) # Note: 'colspecs' is a sequence of half-open intervals. return [line[fromm:to].strip(self.delimiter) for (fromm, to) in self.colspecs] class FixedWidthFieldParser(PythonParser): """ Specialization that Converts fixed-width fields into DataFrames. See PythonParser for details. """ def __init__(self, f, **kwds): # Support iterators, convert to a list. self.colspecs = kwds.pop('colspecs') PythonParser.__init__(self, f, **kwds) def _make_reader(self, f): self.data = FixedWidthReader(f, self.colspecs, self.delimiter, self.comment, self.skiprows)
mit
crichardson17/starburst_atlas
SFH_comparison/SFH_plotter_UV.py
1
11651
############################################################ ########## Plotting File for SFH comparison Plots ########## ################## Data read from Cloudy ################### ################ Helen Meskhidze, Fall 2015 ################ #################### Elon University ####################### #------------------------------------------------------------------------------------------------------ ''' The inputs this code takes are the peaks files exported by my peaksreader.py This code outputs UV SFH comparison plots, saved to the working directory ''' #------------------------------------------------------------------------------------------------------ #Packages importing import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # --------------------------------------------------- #red for Padova; black for Geneva color1 = "#e50000" #red color2 = "#000000" #black plt.subplots_adjust(wspace=0, hspace=1) #remove space between plots #subplot routine def add_sub_plot(sub_num, desiredline): plt.subplot(4,4,sub_num) plt.scatter(xvals, peakspadcont[desiredline], c =color1, s = 8) plt.plot(xvals, peakspadcont[desiredline], c =color1, label="Padova Continuous") plt.scatter(xvals, peakspadinst[desiredline], c =color1, s = 8) plt.plot(xvals, peakspadinst[desiredline], c =color1, linestyle='dotted', label="Padova Instantaneous") plt.scatter(xvals, peaksgencont[desiredline], c =color2, s = 8) plt.plot(xvals, peaksgencont[desiredline], c =color2, label="Geneva Continuous") plt.scatter(xvals, peaksgeninst[desiredline], c =color2, s = 8) plt.plot(xvals, peaksgeninst[desiredline], c =color2, linestyle='dotted', label = "Geneva Instantaneous") #to label plot if sub_num == 2: figtext(.5,.95,'UV Emission Lines', fontsize=8, ha='center') #set axis limits plt.xlim(min(xvals),max(xvals)) plt.ylim(0,4.5) plt.xticks(arange(0,8,1),fontsize=6) plt.yticks(arange(0,4.5,.5),fontsize=6) #some labels if sub_num in [1,2,3,4]: plt.tick_params(labelleft = 'off') plt.tick_params(labelbottom = 'on') plt.xlabel('Age (Myr)', fontsize=6) plt.annotate(headers[desiredline], xy=(0.1,0.05), xytext=(0.1,0.05), fontsize = 6) if sub_num in [5,6,7,8]: plt.tick_params(labelleft = 'off') plt.xlabel('Age (Myr)', fontsize=6) plt.annotate(headers[desiredline], xy=(0.1,0.05), xytext=(0.1,0.05), fontsize = 6) if sub_num == 1: plt.ylabel('log($W _{\lambda}$)', fontsize=6) plt.tick_params(labelleft = 'on') if sub_num == 5: plt.xlabel('Age (Myr)', fontsize=6) plt.ylabel('log($W _{\lambda}$)', fontsize=6) plt.tick_params(labelleft = 'on') if sub_num in [4,8]: plt.xticks(arange(0,9,1),fontsize=6) if sub_num == 1: plt.legend(bbox_to_anchor=(0., 1.2, 4., 0), loc=1, ncol=4, mode="expand", prop={'size':6}, borderaxespad=0.) if sub_num == 5: plt.legend(bbox_to_anchor=(0., 1.2, 4., 0), loc=1, ncol=4, mode="expand", prop={'size':6}, borderaxespad=0.) # --------------------------------------------------- numFiles = 5 gridFiles = [None]*numFiles emissionFiles = [None]*numFiles os.chdir("./data") #input files for file in os.listdir('./'): if file.endswith("peaks_Geneva_cont_0"): inputfile0 = file print file for file in os.listdir('./'): if file.endswith("peaks_Geneva_cont_2"): inputfile1 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_cont_4"): inputfile2 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_cont_5"): inputfile3 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_cont_6"): inputfile4 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_cont_8"): inputfile20 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_inst_0"): inputfile5 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_inst_2"): inputfile6 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_inst_4"): inputfile7 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_inst_5"): inputfile8 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_inst_6"): inputfile9 = file for file in os.listdir('./'): if file.endswith("peaks_Geneva_inst_8"): inputfile21 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_inst_0"): inputfile10 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_inst_2"): inputfile11 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_inst_4"): inputfile12 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_inst_5"): inputfile13 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_inst_6"): inputfile14 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_inst_8"): inputfile22 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_cont_0"): inputfile15 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_cont_2"): inputfile16 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_cont_4"): inputfile17 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_cont_5"): inputfile18 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_cont_6"): inputfile19 = file for file in os.listdir('./'): if file.endswith("peaks_Padova_cont_8"): inputfile23 = file # importing headers file for file in os.listdir('../'): if file.endswith(".txt"): headers = file # --------------------------------------------------- lines0 = []; with open(inputfile0, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines0.append(row); lines0 = asarray(lines0) lines1 = []; with open(inputfile1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines1.append(row); lines1 = asarray(lines1) lines2 = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines2.append(row); lines2 = asarray(lines2) lines3 = []; with open(inputfile3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines3.append(row); lines3 = asarray(lines3) lines4 = []; with open(inputfile4, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines4.append(row); lines4 = asarray(lines4) lines5 = []; with open(inputfile5, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines5.append(row); lines5 = asarray(lines5) lines6 = []; with open(inputfile6, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines6.append(row); lines6 = asarray(lines6) lines7 = []; with open(inputfile7, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines7.append(row); lines7 = asarray(lines7) lines8 = []; with open(inputfile8, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines8.append(row); lines8 = asarray(lines8) lines9 = []; with open(inputfile9, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines9.append(row); lines9 = asarray(lines9) lines10 = []; with open(inputfile10, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines10.append(row); lines10 = asarray(lines10) lines11 = []; with open(inputfile11, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines11.append(row); lines11 = asarray(lines11) lines12 = []; with open(inputfile12, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines12.append(row); lines12 = asarray(lines12) lines13 = []; with open(inputfile13, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines13.append(row); lines13 = asarray(lines13) lines14 = []; with open(inputfile14, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines14.append(row); lines14 = asarray(lines14) lines15 = []; with open(inputfile15, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines15.append(row); lines15 = asarray(lines15) lines16 = []; with open(inputfile16, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines16.append(row); lines16 = asarray(lines16) lines17 = []; with open(inputfile17, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines17.append(row); lines17 = asarray(lines17) lines18 = []; with open(inputfile18, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines18.append(row); lines18 = asarray(lines18) lines19 = []; with open(inputfile19, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines19.append(row); lines19 = asarray(lines19) lines20 = []; with open(inputfile20, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines20.append(row); lines20 = asarray(lines20) lines21 = []; with open(inputfile21, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines21.append(row); lines21 = asarray(lines21) lines22 = []; with open(inputfile22, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines22.append(row); lines22 = asarray(lines22) lines23 = []; with open(inputfile23, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: lines23.append(row); lines23 = asarray(lines23) dataEmissionlines = []; os.chdir("../") with open(headers, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #create an array full of the peak values. the columns represent the times (0,2,4,5,6) peakspadcont = zeros((len(lines6),6)) peakspadinst = zeros((len(lines6),6)) peaksgencont = zeros((len(lines6),6)) peaksgeninst = zeros((len(lines6),6)) peaksgencont[:,0] = lines0[:,0] peaksgencont[:,1] = lines1[:,0] peaksgencont[:,2] = lines2[:,0] peaksgencont[:,3] = lines3[:,0] peaksgencont[:,4] = lines4[:,0] peaksgencont[:,5] = lines20[:,0] peaksgeninst[:,0] = lines5[:,0] peaksgeninst[:,1] = lines6[:,0] peaksgeninst[:,2] = lines7[:,0] peaksgeninst[:,3] = lines8[:,0] peaksgeninst[:,4] = lines9[:,0] peaksgeninst[:,5] = lines21[:,0] peakspadinst[:,0] = lines10[:,0] peakspadinst[:,1] = lines11[:,0] peakspadinst[:,2] = lines12[:,0] peakspadinst[:,3] = lines13[:,0] peakspadinst[:,4] = lines14[:,0] peakspadinst[:,5] = lines22[:,0] peakspadcont[:,0] = lines15[:,0] peakspadcont[:,1] = lines16[:,0] peakspadcont[:,2] = lines17[:,0] peakspadcont[:,3] = lines18[:,0] peakspadcont[:,4] = lines19[:,0] peakspadcont[:,5] = lines23[:,0] headers = headers[1:] #the first is #linelist so let's make sure this will work # --------------------------------------------------- #xvals for age xvals = [0,2,4,5,6,8] print "data arraged" #below is where you should specify which lines you'd like to plot desired = [0,2,19,28,5,18,27,34] # --------------------------------------------------- plt.clf() for i in range(8): add_sub_plot(i+1,desired[i]) plt.savefig('SFH_Comp_UV.pdf') print "plot saved and complete"
gpl-2.0
BigDataforYou/movie_recommendation_workshop_1
big_data_4_you_demo_1/venv/lib/python2.7/site-packages/pandas/tests/test_lib.py
1
14027
# -*- coding: utf-8 -*- from datetime import datetime, timedelta, date, time import numpy as np import pandas as pd import pandas.lib as lib import pandas.util.testing as tm from pandas.compat import long, u, PY2 def _assert_same_values_and_dtype(res, exp): tm.assert_equal(res.dtype, exp.dtype) tm.assert_almost_equal(res, exp) class TestMisc(tm.TestCase): def test_max_len_string_array(self): arr = a = np.array(['foo', 'b', np.nan], dtype='object') self.assertTrue(lib.max_len_string_array(arr), 3) # unicode arr = a.astype('U').astype(object) self.assertTrue(lib.max_len_string_array(arr), 3) # bytes for python3 arr = a.astype('S').astype(object) self.assertTrue(lib.max_len_string_array(arr), 3) # raises tm.assertRaises(TypeError, lambda: lib.max_len_string_array(arr.astype('U'))) def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') self.assertEqual(pd.lib.infer_dtype(arr), compare) # object array of bytes arr = arr.astype(object) self.assertEqual(pd.lib.infer_dtype(arr), compare) def test_maybe_indices_to_slice_left_edge(self): target = np.arange(100) # slice indices = np.array([], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) for end in [1, 2, 5, 20, 99]: for step in [1, 2, 4]: indices = np.arange(0, end, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[2, 1, 2, 0], [2, 2, 1, 0], [0, 1, 2, 1], [-2, 0, 2], [2, 0, -2]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertFalse(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(maybe_slice, indices) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_right_edge(self): target = np.arange(100) # slice for start in [0, 2, 5, 20, 97, 98]: for step in [1, 2, 4]: indices = np.arange(start, 99, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice indices = np.array([97, 98, 99, 100], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertFalse(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(maybe_slice, indices) with self.assertRaises(IndexError): target[indices] with self.assertRaises(IndexError): target[maybe_slice] indices = np.array([100, 99, 98, 97], dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertFalse(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(maybe_slice, indices) with self.assertRaises(IndexError): target[indices] with self.assertRaises(IndexError): target[maybe_slice] for case in [[99, 97, 99, 96], [99, 99, 98, 97], [98, 98, 97, 96]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertFalse(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(maybe_slice, indices) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_both_edges(self): target = np.arange(10) # slice for step in [1, 2, 4, 5, 8, 9]: indices = np.arange(0, 9, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[4, 2, 0, -2], [2, 2, 1, 0], [0, 1, 2, 1]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertFalse(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(maybe_slice, indices) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_maybe_indices_to_slice_middle(self): target = np.arange(100) # slice for start, end in [(2, 10), (5, 25), (65, 97)]: for step in [1, 2, 4, 20]: indices = np.arange(start, end, step, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # reverse indices = indices[::-1] maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertTrue(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) # not slice for case in [[14, 12, 10, 12], [12, 12, 11, 10], [10, 11, 12, 11]]: indices = np.array(case, dtype=np.int64) maybe_slice = lib.maybe_indices_to_slice(indices, len(target)) self.assertFalse(isinstance(maybe_slice, slice)) self.assert_numpy_array_equal(maybe_slice, indices) self.assert_numpy_array_equal(target[indices], target[maybe_slice]) def test_isinf_scalar(self): # GH 11352 self.assertTrue(lib.isposinf_scalar(float('inf'))) self.assertTrue(lib.isposinf_scalar(np.inf)) self.assertFalse(lib.isposinf_scalar(-np.inf)) self.assertFalse(lib.isposinf_scalar(1)) self.assertFalse(lib.isposinf_scalar('a')) self.assertTrue(lib.isneginf_scalar(float('-inf'))) self.assertTrue(lib.isneginf_scalar(-np.inf)) self.assertFalse(lib.isneginf_scalar(np.inf)) self.assertFalse(lib.isneginf_scalar(1)) self.assertFalse(lib.isneginf_scalar('a')) class Testisscalar(tm.TestCase): def test_isscalar_builtin_scalars(self): self.assertTrue(lib.isscalar(None)) self.assertTrue(lib.isscalar(True)) self.assertTrue(lib.isscalar(False)) self.assertTrue(lib.isscalar(0.)) self.assertTrue(lib.isscalar(np.nan)) self.assertTrue(lib.isscalar('foobar')) self.assertTrue(lib.isscalar(b'foobar')) self.assertTrue(lib.isscalar(u('efoobar'))) self.assertTrue(lib.isscalar(datetime(2014, 1, 1))) self.assertTrue(lib.isscalar(date(2014, 1, 1))) self.assertTrue(lib.isscalar(time(12, 0))) self.assertTrue(lib.isscalar(timedelta(hours=1))) self.assertTrue(lib.isscalar(pd.NaT)) def test_isscalar_builtin_nonscalars(self): self.assertFalse(lib.isscalar({})) self.assertFalse(lib.isscalar([])) self.assertFalse(lib.isscalar([1])) self.assertFalse(lib.isscalar(())) self.assertFalse(lib.isscalar((1, ))) self.assertFalse(lib.isscalar(slice(None))) self.assertFalse(lib.isscalar(Ellipsis)) def test_isscalar_numpy_array_scalars(self): self.assertTrue(lib.isscalar(np.int64(1))) self.assertTrue(lib.isscalar(np.float64(1.))) self.assertTrue(lib.isscalar(np.int32(1))) self.assertTrue(lib.isscalar(np.object_('foobar'))) self.assertTrue(lib.isscalar(np.str_('foobar'))) self.assertTrue(lib.isscalar(np.unicode_(u('foobar')))) self.assertTrue(lib.isscalar(np.bytes_(b'foobar'))) self.assertTrue(lib.isscalar(np.datetime64('2014-01-01'))) self.assertTrue(lib.isscalar(np.timedelta64(1, 'h'))) def test_isscalar_numpy_zerodim_arrays(self): for zerodim in [np.array(1), np.array('foobar'), np.array(np.datetime64('2014-01-01')), np.array(np.timedelta64(1, 'h')), np.array(np.datetime64('NaT'))]: self.assertFalse(lib.isscalar(zerodim)) self.assertTrue(lib.isscalar(lib.item_from_zerodim(zerodim))) def test_isscalar_numpy_arrays(self): self.assertFalse(lib.isscalar(np.array([]))) self.assertFalse(lib.isscalar(np.array([[]]))) self.assertFalse(lib.isscalar(np.matrix('1; 2'))) def test_isscalar_pandas_scalars(self): self.assertTrue(lib.isscalar(pd.Timestamp('2014-01-01'))) self.assertTrue(lib.isscalar(pd.Timedelta(hours=1))) self.assertTrue(lib.isscalar(pd.Period('2014-01-01'))) def test_lisscalar_pandas_containers(self): self.assertFalse(lib.isscalar(pd.Series())) self.assertFalse(lib.isscalar(pd.Series([1]))) self.assertFalse(lib.isscalar(pd.DataFrame())) self.assertFalse(lib.isscalar(pd.DataFrame([[1]]))) self.assertFalse(lib.isscalar(pd.Panel())) self.assertFalse(lib.isscalar(pd.Panel([[[1]]]))) self.assertFalse(lib.isscalar(pd.Index([]))) self.assertFalse(lib.isscalar(pd.Index([1]))) class TestParseSQL(tm.TestCase): def test_convert_sql_column_floats(self): arr = np.array([1.5, None, 3, 4.2], dtype=object) result = lib.convert_sql_column(arr) expected = np.array([1.5, np.nan, 3, 4.2], dtype='f8') _assert_same_values_and_dtype(result, expected) def test_convert_sql_column_strings(self): arr = np.array(['1.5', None, '3', '4.2'], dtype=object) result = lib.convert_sql_column(arr) expected = np.array(['1.5', np.nan, '3', '4.2'], dtype=object) _assert_same_values_and_dtype(result, expected) def test_convert_sql_column_unicode(self): arr = np.array([u('1.5'), None, u('3'), u('4.2')], dtype=object) result = lib.convert_sql_column(arr) expected = np.array([u('1.5'), np.nan, u('3'), u('4.2')], dtype=object) _assert_same_values_and_dtype(result, expected) def test_convert_sql_column_ints(self): arr = np.array([1, 2, 3, 4], dtype='O') arr2 = np.array([1, 2, 3, 4], dtype='i4').astype('O') result = lib.convert_sql_column(arr) result2 = lib.convert_sql_column(arr2) expected = np.array([1, 2, 3, 4], dtype='i8') _assert_same_values_and_dtype(result, expected) _assert_same_values_and_dtype(result2, expected) arr = np.array([1, 2, 3, None, 4], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([1, 2, 3, np.nan, 4], dtype='f8') _assert_same_values_and_dtype(result, expected) def test_convert_sql_column_longs(self): arr = np.array([long(1), long(2), long(3), long(4)], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([1, 2, 3, 4], dtype='i8') _assert_same_values_and_dtype(result, expected) arr = np.array([long(1), long(2), long(3), None, long(4)], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([1, 2, 3, np.nan, 4], dtype='f8') _assert_same_values_and_dtype(result, expected) def test_convert_sql_column_bools(self): arr = np.array([True, False, True, False], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([True, False, True, False], dtype=bool) _assert_same_values_and_dtype(result, expected) arr = np.array([True, False, None, False], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([True, False, np.nan, False], dtype=object) _assert_same_values_and_dtype(result, expected) def test_convert_sql_column_decimals(self): from decimal import Decimal arr = np.array([Decimal('1.5'), None, Decimal('3'), Decimal('4.2')]) result = lib.convert_sql_column(arr) expected = np.array([1.5, np.nan, 3, 4.2], dtype='f8') _assert_same_values_and_dtype(result, expected) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
njwilson23/scipy
scipy/stats/_stats_mstats_common.py
1
7903
from collections import namedtuple import numpy as np from . import distributions __all__ = ['_find_repeats', 'linregress', 'theilslopes'] def linregress(x, y=None): """ Calculate a regression line This computes a least-squares regression for two sets of measurements. Parameters ---------- x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line rvalue : float correlation coefficient pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. stderr : float Standard error of the estimate Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) # To get coefficient of determination (r_squared) >>> print("r-squared:", r_value**2) ('r-squared:', 0.080402268539028335) """ TINY = 1.0e-20 if y is None: # x is a (2, N) or (N, 2) shaped array_like x = np.asarray(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = np.asarray(x) y = np.asarray(y) n = len(x) xmean = np.mean(x, None) ymean = np.mean(y, None) # average sum of squares: ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat r_num = ssxym r_den = np.sqrt(ssxm * ssym) if r_den == 0.0: r = 0.0 else: r = r_num / r_den # test for numerical error propagation if r > 1.0: r = 1.0 elif r < -1.0: r = -1.0 df = n - 2 t = r * np.sqrt(df / ((1.0 - r + TINY)*(1.0 + r + TINY))) prob = 2 * distributions.t.sf(np.abs(t), df) slope = r_num / ssxm intercept = ymean - slope*xmean sterrest = np.sqrt((1 - r**2) * ssym / ssxm / df) LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) return LinregressResult(slope, intercept, r, prob, sterrest) def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- The implementation of `theilslopes` follows [1]_. The intercept is not defined in [1]_, and here it is defined as ``median(y) - medslope*median(x)``, which is given in [3]_. Other definitions of the intercept exist in the literature. A confidence interval for the intercept is not given as this question is not addressed in [1]_. References ---------- .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968. .. [2] H. Theil, "A rank-invariant method of linear and polynomial regression analysis I, II and III", Nederl. Akad. Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950. .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed., John Wiley and Sons, New York, pp. 493. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, num=150) >>> y = x + np.random.normal(size=x.size) >>> y[11:15] += 10 # add outliers >>> y[-5:] -= 7 Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`: >>> res = stats.theilslopes(y, x, 0.90) >>> lsq_res = stats.linregress(x, y) Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, 'b.') >>> ax.plot(x, res[1] + res[0] * x, 'r-') >>> ax.plot(x, res[1] + res[2] * x, 'r--') >>> ax.plot(x, res[1] + res[3] * x, 'r--') >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-') >>> plt.show() """ # We copy both x and y so we can use _find_repeats. y = np.array(y).flatten() if x is None: x = np.arange(len(y), dtype=float) else: x = np.array(x, dtype=float).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y), len(x))) # Compute sorted slopes only when deltax > 0 deltax = x[:, np.newaxis] - x deltay = y[:, np.newaxis] - y slopes = deltay[deltax > 0] / deltax[deltax > 0] slopes.sort() medslope = np.median(slopes) medinter = np.median(y) - medslope * np.median(x) # Now compute confidence intervals if alpha > 0.5: alpha = 1. - alpha z = distributions.norm.ppf(alpha / 2.) # This implements (2.6) from Sen (1968) _, nxreps = _find_repeats(x) _, nyreps = _find_repeats(y) nt = len(slopes) # N in Sen (1968) ny = len(y) # n in Sen (1968) # Equation 2.6 in Sen (1968): sigsq = 1/18. * (ny * (ny-1) * (2*ny+5) - np.sum(k * (k-1) * (2*k + 5) for k in nxreps) - np.sum(k * (k-1) * (2*k + 5) for k in nyreps)) # Find the confidence interval indices in `slopes` sigma = np.sqrt(sigsq) Ru = min(int(np.round((nt - z*sigma)/2.)), len(slopes)-1) Rl = max(int(np.round((nt + z*sigma)/2.)) - 1, 0) delta = slopes[[Rl, Ru]] return medslope, medinter, delta[0], delta[1] def _find_repeats(arr): # This function assumes it may clobber its input. if len(arr) == 0: return np.array(0, np.float64), np.array(0, np.intp) # XXX This cast was previously needed for the Fortran implementation, # should we ditch it? arr = np.asarray(arr, np.float64).ravel() arr.sort() # Taken from NumPy 1.9's np.unique. change = np.concatenate(([True], arr[1:] != arr[:-1])) unique = arr[change] change_idx = np.concatenate(np.nonzero(change) + ([arr.size],)) freq = np.diff(change_idx) atleast2 = freq > 1 return unique[atleast2], freq[atleast2]
bsd-3-clause
jseabold/scipy
scipy/interpolate/tests/test_rbf.py
41
4367
#!/usr/bin/env python # Created by John Travers, Robert Hetland, 2007 """ Test functions for rbf module """ from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (assert_, assert_array_almost_equal, assert_almost_equal, run_module_suite) from numpy import linspace, sin, random, exp, allclose from scipy.interpolate.rbf import Rbf FUNCTIONS = ('multiquadric', 'inverse multiquadric', 'gaussian', 'cubic', 'quintic', 'thin-plate', 'linear') def check_rbf1d_interpolation(function): # Check that the Rbf function interpolates through the nodes (1D) x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y, function=function) yi = rbf(x) assert_array_almost_equal(y, yi) assert_almost_equal(rbf(float(x[0])), y[0]) def check_rbf2d_interpolation(function): # Check that the Rbf function interpolates through the nodes (2D). x = random.rand(50,1)*4-2 y = random.rand(50,1)*4-2 z = x*exp(-x**2-1j*y**2) rbf = Rbf(x, y, z, epsilon=2, function=function) zi = rbf(x, y) zi.shape = x.shape assert_array_almost_equal(z, zi) def check_rbf3d_interpolation(function): # Check that the Rbf function interpolates through the nodes (3D). x = random.rand(50, 1)*4 - 2 y = random.rand(50, 1)*4 - 2 z = random.rand(50, 1)*4 - 2 d = x*exp(-x**2 - y**2) rbf = Rbf(x, y, z, d, epsilon=2, function=function) di = rbf(x, y, z) di.shape = x.shape assert_array_almost_equal(di, d) def test_rbf_interpolation(): for function in FUNCTIONS: yield check_rbf1d_interpolation, function yield check_rbf2d_interpolation, function yield check_rbf3d_interpolation, function def check_rbf1d_regularity(function, atol): # Check that the Rbf function approximates a smooth function well away # from the nodes. x = linspace(0, 10, 9) y = sin(x) rbf = Rbf(x, y, function=function) xi = linspace(0, 10, 100) yi = rbf(xi) # import matplotlib.pyplot as plt # plt.figure() # plt.plot(x, y, 'o', xi, sin(xi), ':', xi, yi, '-') # plt.plot(x, y, 'o', xi, yi-sin(xi), ':') # plt.title(function) # plt.show() msg = "abs-diff: %f" % abs(yi - sin(xi)).max() assert_(allclose(yi, sin(xi), atol=atol), msg) def test_rbf_regularity(): tolerances = { 'multiquadric': 0.1, 'inverse multiquadric': 0.15, 'gaussian': 0.15, 'cubic': 0.15, 'quintic': 0.1, 'thin-plate': 0.1, 'linear': 0.2 } for function in FUNCTIONS: yield check_rbf1d_regularity, function, tolerances.get(function, 1e-2) def check_rbf1d_stability(function): # Check that the Rbf function with default epsilon is not subject # to overshoot. Regression for issue #4523. # # Generate some data (fixed random seed hence deterministic) np.random.seed(1234) x = np.linspace(0, 10, 50) z = x + 4.0 * np.random.randn(len(x)) rbf = Rbf(x, z, function=function) xi = np.linspace(0, 10, 1000) yi = rbf(xi) # subtract the linear trend and make sure there no spikes assert_(np.abs(yi-xi).max() / np.abs(z-x).max() < 1.1) def test_rbf_stability(): for function in FUNCTIONS: yield check_rbf1d_stability, function def test_default_construction(): # Check that the Rbf class can be constructed with the default # multiquadric basis function. Regression test for ticket #1228. x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y) yi = rbf(x) assert_array_almost_equal(y, yi) def test_function_is_callable(): # Check that the Rbf class can be constructed with function=callable. x = linspace(0,10,9) y = sin(x) linfunc = lambda x:x rbf = Rbf(x, y, function=linfunc) yi = rbf(x) assert_array_almost_equal(y, yi) def test_two_arg_function_is_callable(): # Check that the Rbf class can be constructed with a two argument # function=callable. def _func(self, r): return self.epsilon + r x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y, function=_func) yi = rbf(x) assert_array_almost_equal(y, yi) def test_rbf_epsilon_none(): x = linspace(0, 10, 9) y = sin(x) rbf = Rbf(x, y, epsilon=None) if __name__ == "__main__": run_module_suite()
bsd-3-clause
ahoyosid/scikit-learn
sklearn/datasets/__init__.py
74
3616
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/sklearn/linear_model/tests/test_ransac.py
52
17482
from scipy import sparse import numpy as np from scipy import sparse from numpy.testing import assert_equal, assert_raises from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from sklearn.utils import check_random_state from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_almost_equal from sklearn.linear_model import LinearRegression, RANSACRegressor, Lasso from sklearn.linear_model.ransac import _dynamic_max_trials # Generate coordinates of line X = np.arange(-200, 200) y = 0.2 * X + 20 data = np.column_stack([X, y]) # Add some faulty data outliers = np.array((10, 30, 200)) data[outliers[0], :] = (1000, 1000) data[outliers[1], :] = (-1000, -1000) data[outliers[2], :] = (-100, -50) X = data[:, 0][:, np.newaxis] y = data[:, 1] def test_ransac_inliers_outliers(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_is_data_valid(): def is_data_valid(X, y): assert_equal(X.shape[0], 2) assert_equal(y.shape[0], 2) return False X = np.random.rand(10, 2) y = np.random.rand(10, 1) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, is_data_valid=is_data_valid, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) def test_ransac_is_model_valid(): def is_model_valid(estimator, X, y): assert_equal(X.shape[0], 2) assert_equal(y.shape[0], 2) return False base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, is_model_valid=is_model_valid, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) def test_ransac_max_trials(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, max_trials=0, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, max_trials=11, random_state=0) assert getattr(ransac_estimator, 'n_trials_', None) is None ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 2) def test_ransac_stop_n_inliers(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, stop_n_inliers=2, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 1) def test_ransac_stop_score(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, stop_score=0, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 1) def test_ransac_score(): X = np.arange(100)[:, None] y = np.zeros((100, )) y[0] = 1 y[1] = 100 base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.5, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.score(X[2:], y[2:]), 1) assert_less(ransac_estimator.score(X[:2], y[:2]), 1) def test_ransac_predict(): X = np.arange(100)[:, None] y = np.zeros((100, )) y[0] = 1 y[1] = 100 base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.5, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.predict(X), np.zeros(100)) def test_ransac_resid_thresh_no_inliers(): # When residual_threshold=0.0 there are no inliers and a # ValueError with a message should be raised base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.0, random_state=0) assert_raises_regexp(ValueError, "No inliers.*residual_threshold.*0\.0", ransac_estimator.fit, X, y) def test_ransac_sparse_coo(): X_sparse = sparse.coo_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csr(): X_sparse = sparse.csr_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csc(): X_sparse = sparse.csc_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_none_estimator(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_none_estimator = RANSACRegressor(None, 2, 5, random_state=0) ransac_estimator.fit(X, y) ransac_none_estimator.fit(X, y) assert_array_almost_equal(ransac_estimator.predict(X), ransac_none_estimator.predict(X)) def test_ransac_min_n_samples(): base_estimator = LinearRegression() ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2. / X.shape[0], residual_threshold=5, random_state=0) ransac_estimator3 = RANSACRegressor(base_estimator, min_samples=-1, residual_threshold=5, random_state=0) ransac_estimator4 = RANSACRegressor(base_estimator, min_samples=5.2, residual_threshold=5, random_state=0) ransac_estimator5 = RANSACRegressor(base_estimator, min_samples=2.0, residual_threshold=5, random_state=0) ransac_estimator6 = RANSACRegressor(base_estimator, residual_threshold=5, random_state=0) ransac_estimator7 = RANSACRegressor(base_estimator, min_samples=X.shape[0] + 1, residual_threshold=5, random_state=0) ransac_estimator1.fit(X, y) ransac_estimator2.fit(X, y) ransac_estimator5.fit(X, y) ransac_estimator6.fit(X, y) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator2.predict(X)) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator5.predict(X)) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator6.predict(X)) assert_raises(ValueError, ransac_estimator3.fit, X, y) assert_raises(ValueError, ransac_estimator4.fit, X, y) assert_raises(ValueError, ransac_estimator7.fit, X, y) def test_ransac_multi_dimensional_targets(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) # 3-D target values yyy = np.column_stack([y, y, y]) # Estimate parameters of corrupted data ransac_estimator.fit(X, yyy) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) # XXX: Remove in 0.20 def test_ransac_residual_metric(): residual_metric1 = lambda dy: np.sum(np.abs(dy), axis=1) residual_metric2 = lambda dy: np.sum(dy ** 2, axis=1) yyy = np.column_stack([y, y, y]) base_estimator = LinearRegression() ransac_estimator0 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, residual_metric=residual_metric1) ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, residual_metric=residual_metric2) # multi-dimensional ransac_estimator0.fit(X, yyy) assert_warns(DeprecationWarning, ransac_estimator1.fit, X, yyy) assert_warns(DeprecationWarning, ransac_estimator2.fit, X, yyy) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator1.predict(X)) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) # one-dimensional ransac_estimator0.fit(X, y) assert_warns(DeprecationWarning, ransac_estimator2.fit, X, y) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) def test_ransac_residual_loss(): loss_multi1 = lambda y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1) loss_multi2 = lambda y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1) loss_mono = lambda y_true, y_pred : np.abs(y_true - y_pred) yyy = np.column_stack([y, y, y]) base_estimator = LinearRegression() ransac_estimator0 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, loss=loss_multi1) ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, loss=loss_multi2) # multi-dimensional ransac_estimator0.fit(X, yyy) ransac_estimator1.fit(X, yyy) ransac_estimator2.fit(X, yyy) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator1.predict(X)) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) # one-dimensional ransac_estimator0.fit(X, y) ransac_estimator2.loss = loss_mono ransac_estimator2.fit(X, y) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) ransac_estimator3 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, loss="squared_loss") ransac_estimator3.fit(X, y) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) def test_ransac_default_residual_threshold(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, random_state=0) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_dynamic_max_trials(): # Numbers hand-calculated and confirmed on page 119 (Table 4.3) in # Hartley, R.~I. and Zisserman, A., 2004, # Multiple View Geometry in Computer Vision, Second Edition, # Cambridge University Press, ISBN: 0521540518 # e = 0%, min_samples = X assert_equal(_dynamic_max_trials(100, 100, 2, 0.99), 1) # e = 5%, min_samples = 2 assert_equal(_dynamic_max_trials(95, 100, 2, 0.99), 2) # e = 10%, min_samples = 2 assert_equal(_dynamic_max_trials(90, 100, 2, 0.99), 3) # e = 30%, min_samples = 2 assert_equal(_dynamic_max_trials(70, 100, 2, 0.99), 7) # e = 50%, min_samples = 2 assert_equal(_dynamic_max_trials(50, 100, 2, 0.99), 17) # e = 5%, min_samples = 8 assert_equal(_dynamic_max_trials(95, 100, 8, 0.99), 5) # e = 10%, min_samples = 8 assert_equal(_dynamic_max_trials(90, 100, 8, 0.99), 9) # e = 30%, min_samples = 8 assert_equal(_dynamic_max_trials(70, 100, 8, 0.99), 78) # e = 50%, min_samples = 8 assert_equal(_dynamic_max_trials(50, 100, 8, 0.99), 1177) # e = 0%, min_samples = 10 assert_equal(_dynamic_max_trials(1, 100, 10, 0), 0) assert_equal(_dynamic_max_trials(1, 100, 10, 1), float('inf')) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, stop_probability=-0.1) assert_raises(ValueError, ransac_estimator.fit, X, y) ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, stop_probability=1.1) assert_raises(ValueError, ransac_estimator.fit, X, y) def test_ransac_fit_sample_weight(): ransac_estimator = RANSACRegressor(random_state=0) n_samples = y.shape[0] weights = np.ones(n_samples) ransac_estimator.fit(X, y, weights) # sanity check assert_equal(ransac_estimator.inlier_mask_.shape[0], n_samples) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False # check that mask is correct assert_array_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) # check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where # X = X1 repeated n1 times, X2 repeated n2 times and so forth random_state = check_random_state(0) X_ = random_state.randint(0, 200, [10, 1]) y_ = np.ndarray.flatten(0.2 * X_ + 2) sample_weight = random_state.randint(0, 10, 10) outlier_X = random_state.randint(0, 1000, [1, 1]) outlier_weight = random_state.randint(0, 10, 1) outlier_y = random_state.randint(-1000, 0, 1) X_flat = np.append(np.repeat(X_, sample_weight, axis=0), np.repeat(outlier_X, outlier_weight, axis=0), axis=0) y_flat = np.ndarray.flatten(np.append(np.repeat(y_, sample_weight, axis=0), np.repeat(outlier_y, outlier_weight, axis=0), axis=0)) ransac_estimator.fit(X_flat, y_flat) ref_coef_ = ransac_estimator.estimator_.coef_ sample_weight = np.append(sample_weight, outlier_weight) X_ = np.append(X_, outlier_X, axis=0) y_ = np.append(y_, outlier_y) ransac_estimator.fit(X_, y_, sample_weight) assert_almost_equal(ransac_estimator.estimator_.coef_, ref_coef_) # check that if base_estimator.fit doesn't support # sample_weight, raises error base_estimator = Lasso() ransac_estimator = RANSACRegressor(base_estimator) assert_raises(ValueError, ransac_estimator.fit, X, y, weights)
mit
newville/scikit-image
skimage/viewer/plugins/overlayplugin.py
40
3615
from warnings import warn from ...util.dtype import dtype_range from .base import Plugin from ..utils import ClearColormap, update_axes_image import six from ..._shared.version_requirements import is_installed __all__ = ['OverlayPlugin'] class OverlayPlugin(Plugin): """Plugin for ImageViewer that displays an overlay on top of main image. The base Plugin class displays the filtered image directly on the viewer. OverlayPlugin will instead overlay an image with a transparent colormap. See base Plugin class for additional details. Attributes ---------- overlay : array Overlay displayed on top of image. This overlay defaults to a color map with alpha values varying linearly from 0 to 1. color : int Color of overlay. """ colors = {'red': (1, 0, 0), 'yellow': (1, 1, 0), 'green': (0, 1, 0), 'cyan': (0, 1, 1)} def __init__(self, **kwargs): if not is_installed('matplotlib', '>=1.2'): msg = "Matplotlib >= 1.2 required for OverlayPlugin." warn(RuntimeWarning(msg)) super(OverlayPlugin, self).__init__(**kwargs) self._overlay_plot = None self._overlay = None self.cmap = None self.color_names = sorted(list(self.colors.keys())) def attach(self, image_viewer): super(OverlayPlugin, self).attach(image_viewer) #TODO: `color` doesn't update GUI widget when set manually. self.color = 0 @property def overlay(self): return self._overlay @overlay.setter def overlay(self, image): self._overlay = image ax = self.image_viewer.ax if image is None: ax.images.remove(self._overlay_plot) self._overlay_plot = None elif self._overlay_plot is None: vmin, vmax = dtype_range[image.dtype.type] self._overlay_plot = ax.imshow(image, cmap=self.cmap, vmin=vmin, vmax=vmax) else: update_axes_image(self._overlay_plot, image) if self.image_viewer.useblit: self.image_viewer._blit_manager.background = None self.image_viewer.redraw() @property def color(self): return self._color @color.setter def color(self, index): # Update colormap whenever color is changed. if isinstance(index, six.string_types) and \ index not in self.color_names: raise ValueError("%s not defined in OverlayPlugin.colors" % index) else: name = self.color_names[index] self._color = name rgb = self.colors[name] self.cmap = ClearColormap(rgb) if self._overlay_plot is not None: self._overlay_plot.set_cmap(self.cmap) self.image_viewer.redraw() @property def filtered_image(self): """Return filtered image. This "filtered image" is used when saving from the plugin. """ return self.overlay def display_filtered_image(self, image): """Display filtered image as an overlay on top of image in viewer.""" self.overlay = image def closeEvent(self, event): # clear overlay from ImageViewer on close self.overlay = None super(OverlayPlugin, self).closeEvent(event) def output(self): """Return the overlaid image. Returns ------- overlay : array, same shape as image The overlay currently displayed. data : None """ return (self.overlay, None)
bsd-3-clause
amagoon/Neural-Network-Tools
Backpropagator.py
1
15483
# Copyright (c) 2015 Ephraim Rothschild # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. __author__ = 'Ephraim Rothschild' import Generic_OVA import random import numpy as np from sklearn.svm import NuSVC # Class used for storing the data to input for the neural network class Input: def __init__(self, x, y=None): # x is the input vector to be sent to the Neural Network. y is the label for that input vector. self.x = np.array(x) self.y = y # The class that uses backpropagation to predict a result based on an input vector class BP: def __init__(self, k, d, maxitter=10, bias=None, v=None, W=None): # Parameters: # k: the number of hidden units to use for the Neural Network # d: The dimensionality of the input vectors to be used # v: (Optional) The v vector weight. Only necessary if you are loading a saved set of weights. # W: (Optional) The W weight matrix. Only necessary if you are loading a saved set of weights. # maxitter: The number of times the train() method will loop when training the Neural Network. # (100-1000 is recommended) self.maxitter = maxitter self.d = d self.k = k self.bias = bias # Initializes weights with random values between -1 and 1 if W is None: self.W = (np.random.rand(k, d)*2 - 1)/10 else: self.W = W if v is None: self.v = (np.random.rand(k)*2 - 1)/10 else: self.v = v # Method for training the Neural Network def train(self, inputs, nu=0.01): # Parameters: # inputs: An array of Input objects containing input vectors along with their corresponding labels. # nu: The error rate. This will be multiplied by the gradient of the error function when subtracted from # the weights. Value should be a very small number between 0 and 1 (ex: 0.01 or 0.001) for _ in range(0, self.maxitter): random.shuffle(inputs) # Loops through each of the inputs for input in inputs: # Append Bias if one is specified if self.bias: wb = np.append(input.x, self.bias) else: wb = input.x # Normalize input vectors for training x = wb/np.linalg.norm(wb) # a is equal to the weight matrix W multiplied by the input vector x a = self.W.dot(x) # h is equal to the vector containing hyperbolic tangent of each value in a h = np.tanh(a) # Find the error rate y_hat = np.tanh(np.dot(self.v, np.array(h))) error = input.y - y_hat # Update v with the error*h proportional to nu self.v = self.v+nu*error*np.array(h) for i in range(0, self.k): # Update the weight vectors by subtracting the gradient of the error function self.W[i] = self.W[i] + nu*((error*self.v[i])*(1 - (np.tanh(a[i])**2)))*x # Method for predicting a label given an Input containing an input vector def predict(self, input): # Parameters: # input: An Input object containing an input vector to be used for predicting a label. if isinstance(input, Input): # Append a bias onto the input if one exists for the Neural Network if self.bias: wb = np.append(input.x, self.bias) else: wb = input.x # Normalize the input vector x = wb/np.linalg.norm(wb) h = np.tanh(self.W.dot(x)) else: # Append a bias onto the input if one exists for the Neural Network if self.bias: wb = np.append(input, self.bias) else: wb = input # Normalize the input vector x = wb/np.linalg.norm(wb) h = np.tanh(self.W.dot(x)) return np.tanh(np.dot(np.array(h), self.v)) # Class that uses Scikit-Learn's implementation of SVM to predict labels class svm(): def __init__(self): # self.clf = SVC(kernel='rbf') self.clf = NuSVC() def train(self, inputs): # Parameters: # inputs: An array of Input objects containing input vectors along with their corresponding labels. # Creates lists to use for fitting model X = [] Y = [] for data in inputs: X.append((data.x/np.linalg.norm(data.x))) Y.append(data.y) # Fit model self.clf.fit(X, Y) def predict(self, input): # Parameters: # input: An Input object containing an input vector to be used for predicting a label. x = input.x/np.linalg.norm(input.x) if isinstance(input, Input): return self.clf.predict(x) else: x = input/np.linalg.norm(input) return self.clf.predict(x) # Classifier that uses a 'One vs All' classification method. # Can store any kind of predictor as long as that predictor has a predict(x) method class OVAClassifier: def __init__(self, k, d, maxitter, nu=0.001): # Parameters: # k: the number of hidden units to use for the Neural Networks # d: The dimensionality of the input vectors to be used # maxitter: The number of times the train() method will loop when training the Neural Network. # (100-1000 is recommended) self.k = k self.d = d self.maxitter = maxitter self.classes = Generic_OVA.OVA() self.nu = nu def add_class_from_inputs(self, inputs, label_to_classify): # Parameters: # inputs: an array of Input objects each containing an input vector and label # label_to_classify: The label representing the "true" value for the given inputs. (ex: if you are # trying to classify what a car looks like for the given input vectors, the value of this parameter # should be something like "car". backprop_class = BP(self.k, self.d, self.maxitter) backprop_class.train(inputs, self.nu) self.classes.add_predictor(backprop_class, label_to_classify) def add_class_from_predictor(self, predictor, label_to_classify): # Parameters: # predictor: The BP object to be used for training and prediction # label_to_classify: The label representing the "true" value for the given inputs. (ex: if you are # trying to classify what a car looks like for the given input vectors, the value of this parameter # should be something like "car". self.classes.add_predictor(predictor, label_to_classify) def add_svm_class_from_inputs(self, inputs, label_to_classify): # Parameters: # inputs: an array of Input objects each containing an input vector and label # label_to_classify: The label representing the "true" value for the given inputs. (ex: if you are # trying to classify what a car looks like for the given input vectors, the value of this parameter # should be something like "car". support_vector = svm() support_vector.train(inputs) self.classes.add_predictor(inputs, label_to_classify) def predict(self, input): # Parameters: # input: This can either be an Input object containing an input vector of size k, or just a numpy array # of size k to be used as the input vector. # # Returns: # The predicted label given the input vector. if isinstance(input, Input): return self.classes.predict(input.x) else: return self.classes.predict(input) def get_ova_result(self, x): # Parameters: # x: the input that you would like to predict on # # Returns: # An array representing the probabilities of the input vector being labeled for each of the labels. # This is sorted in using the default sorting method on the labels as keys prob = self.classes.getProbabilities(x) return [value for (key, value) in sorted(prob.items())] class MultiLayerClassifier: def __init__(self, k, d, maxitter, nu=0.01, layers=1): print("Number of layers: ", layers) # Parameters: # k: the number of hidden units to use for the Neural Networks # d: The dimensionality of the input vectors to be used # maxitter: The number of times the train() method will loop when training the Neural Network. # (100-1000 is recommended) # nu: The error rate. This will be multiplied by the gradient of the error function when subtracted from # the weights. Value should be a very small number between 0 and 1 (ex: 0.01 or 0.001) # layers: The number of layer you want the neural network to use. The more layers, the more accurate the # neural network will be, but the slower it will be to train. Since each layer is using a 2-layer # backpropagation algorithm as its classifier, the number of true layers is actually the number of # layers passed in for this parameter multiplied by 2. The default is 2, which is 4 true layers. self.k = k self.d = d self.maxitter = maxitter self.layers = layers self.inputs = {} self.nu = nu self.classifier = OVAClassifier(k, d, maxitter) def retrain(self): print("Retraining layer", self.layers) # Reset class's classifier self.classifier = OVAClassifier(self.k, self.d, self.maxitter, self.nu) # Create sub-layer's classifier using recursion if self.layers > 0: # Sets sub-layer to have the same k value, but d is equal to the number of classes, and the number of # layers is one less then the current layer's value. self.nextLayer = MultiLayerClassifier(self.k, len(self.inputs), self.maxitter, layers=self.layers-1) else: self.nextLayer = None if self.nextLayer: # Reset the inputs of the next layer self.nextLayer.inputs = {} # go through each of the inputs' keys for key in self.inputs.keys(): # Create an array for positive inputs positive_inputs_for_class = [] # Create an array for negative inputs negative_inputs_for_class = [] # Create array that will hold both types of inputs inputs_for_class = [] # Go through each of the various labels for our input vectors for other_key in self.inputs.keys(): # Find out if this label is the same is the outer loop above if other_key == key: # If it is, go through each of the input vectors with that label, and # append it to positive_inputs_for_class. for inner_value in self.inputs[other_key]: positive_inputs_for_class.append(Input(inner_value, 1)) else: # If it isn't, go through each of the input vectors with that label, and # append it to negative_inputs_for_class. for inner_value in self.inputs[other_key]: negative_inputs_for_class.append(Input(inner_value, -1)) # Shuffle our arrays containing the positive and negative input vectors random.shuffle(positive_inputs_for_class) random.shuffle(negative_inputs_for_class) # From 0 to the length of the smallest array between positive_inputs_for_class, # and negative_inputs_for_class for i in range(0, min(len(positive_inputs_for_class), len(negative_inputs_for_class))): # Append one positive and one negative input vector to inputs_for_class inputs_for_class.append(positive_inputs_for_class[i]) inputs_for_class.append(negative_inputs_for_class[i]) # Train a neural net using the input vectors we just collected, to find the label from the outer loop above. print("Adding class " + str(key) + " to layer", self.layers) self.classifier.add_class_from_inputs(inputs_for_class, key) # If there is a next layer: if self.nextLayer: # Go through of our input vectors for key, value in self.inputs.items(): for inner_value in value: # Add the ova-result from predicting the given input vector - as an input vector itself to the # next layer, with the label given by the above input vector's correct label. self.nextLayer.add_input_for_class(np.array(self.classifier.get_ova_result(inner_value)), key) # Recurse self.nextLayer.retrain() def add_input_for_class(self, x, label): # Parameters: # x: The input vector to be added as training data # label: The label that you want to give to your training data if not (label in self.inputs): self.inputs[label] = [] if isinstance(x, Input): self.inputs[label].append(x.x) else: self.inputs[label].append(x) def add_inputs_for_class(self, inputs, label): for input in inputs: self.add_input_for_class(input, label) def train(self, inputs): # Parameters: # inputs: An array of Input objects containing input vectors along with their corresponding labels. for input in inputs: self.add_input_for_class(input.x, input.y) self.retrain() def predict(self, input): # Parameters: # x: This can either be an Input object containing an input vector of size k, or just a numpy array # of size k to be used as the input vector. if isinstance(input, Input): x = input.x else: x = input if self.nextLayer: prop = self.classifier.get_ova_result(x) return self.nextLayer.predict(np.array(prop)) else: return self.classifier.predict(x)
mit
pythonvietnam/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
crosenth/csvpandas
csvpandas/subcommands/grep.py
1
2001
# This file is part of csvpandas # # csvpandas is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # csvpandas is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with csvpandas. If not, see <http://www.gnu.org/licenses/>. """Search for regex patterns """ import logging import re log = logging.getLogger(__name__) def build_parser(parser): # required inputs parser.add_argument( 'pattern', help=('search for pattern in column(s)')) parser.add_argument( '--columns', metavar='COLS', help=('Comma delimited list of column ' 'names or indices if --no-header')) parser.add_argument( '--all', action='store_true', help='pattern must exist in any column(s) [any]') parser.add_argument( '-i', '--ignore-case', action='store_true', help=('Ignore case distinctions in both ' 'the PATTERN and the input files.')) def action(args): if args.columns: columns = args.columns.split(',') else: columns = args.csv.columns.tolist() if args.ignore_case: pattern = re.compile(args.pattern, re.IGNORECASE) else: pattern = re.compile(args.pattern) def search(string): return bool(re.search(pattern, string)) df = args.csv if args.all: df = df[df[columns].apply(lambda x: x.map(search).all(), axis=1)] else: df = df[df[columns].apply(lambda x: x.map(search).any(), axis=1)] df.to_csv(args.out, index=False)
gpl-3.0
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/fontconfig_pattern.py
8
6538
""" A module for parsing and generating fontconfig patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ # This class is defined here because it must be available in: # - The old-style config framework (:file:`rcsetup.py`) # - The traits-based config framework (:file:`mpltraits.py`) # - The font manager (:file:`font_manager.py`) # It probably logically belongs in :file:`font_manager.py`, but # placing it in any of these places would have created cyclical # dependency problems, or an undesired dependency on traits even # when the traits-based config framework is not used. from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import re, sys from pyparsing import Literal, ZeroOrMore, \ Optional, Regex, StringEnd, ParseException, Suppress family_punc = r'\\\-:,' family_unescape = re.compile(r'\\([%s])' % family_punc).sub family_escape = re.compile(r'([%s])' % family_punc).sub value_punc = r'\\=_:,' value_unescape = re.compile(r'\\([%s])' % value_punc).sub value_escape = re.compile(r'([%s])' % value_punc).sub class FontconfigPatternParser(object): """A simple pyparsing-based parser for fontconfig-style patterns. See the `fontconfig pattern specification <http://www.fontconfig.org/fontconfig-user.html>`_ for more information. """ _constants = { 'thin' : ('weight', 'light'), 'extralight' : ('weight', 'light'), 'ultralight' : ('weight', 'light'), 'light' : ('weight', 'light'), 'book' : ('weight', 'book'), 'regular' : ('weight', 'regular'), 'normal' : ('weight', 'normal'), 'medium' : ('weight', 'medium'), 'demibold' : ('weight', 'demibold'), 'semibold' : ('weight', 'semibold'), 'bold' : ('weight', 'bold'), 'extrabold' : ('weight', 'extra bold'), 'black' : ('weight', 'black'), 'heavy' : ('weight', 'heavy'), 'roman' : ('slant', 'normal'), 'italic' : ('slant', 'italic'), 'oblique' : ('slant', 'oblique'), 'ultracondensed' : ('width', 'ultra-condensed'), 'extracondensed' : ('width', 'extra-condensed'), 'condensed' : ('width', 'condensed'), 'semicondensed' : ('width', 'semi-condensed'), 'expanded' : ('width', 'expanded'), 'extraexpanded' : ('width', 'extra-expanded'), 'ultraexpanded' : ('width', 'ultra-expanded') } def __init__(self): family = Regex(r'([^%s]|(\\[%s]))*' % (family_punc, family_punc)) \ .setParseAction(self._family) size = Regex(r"([0-9]+\.?[0-9]*|\.[0-9]+)") \ .setParseAction(self._size) name = Regex(r'[a-z]+') \ .setParseAction(self._name) value = Regex(r'([^%s]|(\\[%s]))*' % (value_punc, value_punc)) \ .setParseAction(self._value) families =(family + ZeroOrMore( Literal(',') + family) ).setParseAction(self._families) point_sizes =(size + ZeroOrMore( Literal(',') + size) ).setParseAction(self._point_sizes) property =( (name + Suppress(Literal('=')) + value + ZeroOrMore( Suppress(Literal(',')) + value) ) | name ).setParseAction(self._property) pattern =(Optional( families) + Optional( Literal('-') + point_sizes) + ZeroOrMore( Literal(':') + property) + StringEnd() ) self._parser = pattern self.ParseException = ParseException def parse(self, pattern): """ Parse the given fontconfig *pattern* and return a dictionary of key/value pairs useful for initializing a :class:`font_manager.FontProperties` object. """ props = self._properties = {} try: self._parser.parseString(pattern) except self.ParseException as e: raise ValueError( "Could not parse font string: '%s'\n%s" % (pattern, e)) self._properties = None self._parser.resetCache() return props def _family(self, s, loc, tokens): return [family_unescape(r'\1', str(tokens[0]))] def _size(self, s, loc, tokens): return [float(tokens[0])] def _name(self, s, loc, tokens): return [str(tokens[0])] def _value(self, s, loc, tokens): return [value_unescape(r'\1', str(tokens[0]))] def _families(self, s, loc, tokens): self._properties['family'] = [str(x) for x in tokens] return [] def _point_sizes(self, s, loc, tokens): self._properties['size'] = [str(x) for x in tokens] return [] def _property(self, s, loc, tokens): if len(tokens) == 1: if tokens[0] in self._constants: key, val = self._constants[tokens[0]] self._properties.setdefault(key, []).append(val) else: key = tokens[0] val = tokens[1:] self._properties.setdefault(key, []).extend(val) return [] parse_fontconfig_pattern = FontconfigPatternParser().parse def generate_fontconfig_pattern(d): """ Given a dictionary of key/value pairs, generates a fontconfig pattern string. """ props = [] families = '' size = '' for key in 'family style variant weight stretch file size'.split(): val = getattr(d, 'get_' + key)() if val is not None and val != []: if type(val) == list: val = [value_escape(r'\\\1', str(x)) for x in val if x is not None] if val != []: val = ','.join(val) props.append(":%s=%s" % (key, val)) return ''.join(props)
mit
alexsavio/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
70
4523
""" =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV print(__doc__) ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA(svd_solver='full') fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(svd_solver='full', n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
q1ang/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
breedlun/clearplot
setup.py
1
4942
from setuptools import setup #from pkg_resources import require, DistributionNotFound from setuptools.command.install import install import warnings #Define the version of clearplot cp_version = '1.2.1' #Comment out this code in case we switch back to the Qt4Agg backend. ##For now we are using the Qt4Agg backend, which requires PyQt4 or PySide, but ##PyQt4 is prefered #try: # require('PyQt4') # Qt_pkg = 'PyQt4' #except DistributionNotFound: # Qt_pkg = 'PySide' #Set up the machinery to install custom fonts. #Note: I originally tried to use the data_files keyword in distutil.setup() to #install the font files, but this turned into a mess. Wheels do not support #absolute file paths, and the pip project is basically forcing people to use #wheels. Also, in order to find where matplotlib stores its true type fonts #and fontList.cache, I had to import matplotlib before setup() had a chance to #install matplotlib first. For more information see this stackoverflow post #http://stackoverflow.com/questions/34193900/how-do-i-distribute-fonts-with-my-python-package/34204582 #and the contained links. Fortunately, we can subclass the setuptools install #class in order to run custom commands during installation. See #http://blog.niteoweb.com/setuptools-run-custom-code-in-setup-py/ for more #information. class move_ttf(install): def run(self): """ Performs the usual install process and then copies the True Type fonts that come with clearplot into matplotlib's True Type font directory, and deletes the matplotlib fontList.cache """ #Perform the usual install process install.run(self) #Try to install custom fonts try: import os, shutil import matplotlib as mpl import clearplot as cp #Find where matplotlib stores its True Type fonts mpl_data_dir = os.path.dirname(mpl.matplotlib_fname()) mpl_ttf_dir = os.path.join(mpl_data_dir, 'fonts', 'ttf') #Copy the font files to matplotlib's True Type font directory #(I originally tried to move the font files instead of copy them, #but it did not seem to work, so I gave up.) cp_ttf_dir = os.path.join(os.path.dirname(cp.__file__), 'true_type_fonts') for file_name in os.listdir(cp_ttf_dir): if file_name[-4:] == '.ttf': old_path = os.path.join(cp_ttf_dir, file_name) new_path = os.path.join(mpl_ttf_dir, file_name) shutil.copyfile(old_path, new_path) print("Copying " + old_path + " -> " + new_path) #Try to delete matplotlib's fontList cache mpl_cache_dir = mpl.get_cachedir() mpl_cache_dir_ls = os.listdir(mpl_cache_dir) font_list_cache_names = ["fontList.cache", "fontList.py3k.cache"] for font_list_cache_name in font_list_cache_names: if font_list_cache_name in mpl_cache_dir_ls: fontList_path = os.path.join(mpl_cache_dir, font_list_cache_name) os.remove(fontList_path) print("Deleted the matplotlib " + font_list_cache_name) except: warnings.warn("WARNING: An issue occured while installing the custom fonts for clearplot.") setup( name = 'clearplot', packages = ['clearplot'], # this must be the same as the name above version = cp_version, description = 'Clearplot creates publication quality plots using matplotlib', author = 'Benjamin Reedlunn', author_email = '[email protected]', license = 'MIT', url = 'http://clearplot.readthedocs.org', download_url = 'https://github.com/breedlun/clearplot/tarball/' + cp_version, keywords = ['matplotlib', 'plotting'], classifiers = [ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', # Indicate who your project is intended for 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Visualization'], #Specify the dependencies and versions install_requires = ['matplotlib >= 3.3.0', 'numpy >= 1.6'], #Specify any non-python files to be distributed with the package package_data = {'' : ['color_maps/*.csv', 'true_type_fonts/*.ttf']}, #Specify the custom install class cmdclass={'install' : move_ttf} )
mit
tomsilver/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/mlab.py
69
104273
""" Numerical python functions written for compatability with matlab(TM) commands with the same names. Matlab(TM) compatible functions ------------------------------- :func:`cohere` Coherence (normalized cross spectral density) :func:`csd` Cross spectral density uing Welch's average periodogram :func:`detrend` Remove the mean or best fit line from an array :func:`find` Return the indices where some condition is true; numpy.nonzero is similar but more general. :func:`griddata` interpolate irregularly distributed data to a regular grid. :func:`prctile` find the percentiles of a sequence :func:`prepca` Principal Component Analysis :func:`psd` Power spectral density uing Welch's average periodogram :func:`rk4` A 4th order runge kutta integrator for 1D or ND systems :func:`specgram` Spectrogram (power spectral density over segments of time) Miscellaneous functions ------------------------- Functions that don't exist in matlab(TM), but are useful anyway: :meth:`cohere_pairs` Coherence over all pairs. This is not a matlab function, but we compute coherence a lot in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently by caching the direct FFTs. :meth:`rk4` A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and the far superior scipy.integrate tools) record array helper functions ------------------------------- A collection of helper methods for numpyrecord arrays .. _htmlonly:: See :ref:`misc-examples-index` :meth:`rec2txt` pretty print a record array :meth:`rec2csv` store record array in CSV file :meth:`csv2rec` import record array from CSV file with type inspection :meth:`rec_append_fields` adds field(s)/array(s) to record array :meth:`rec_drop_fields` drop fields from record array :meth:`rec_join` join two record arrays on sequence of fields :meth:`rec_groupby` summarize data by groups (similar to SQL GROUP BY) :meth:`rec_summarize` helper code to filter rec array fields into new fields For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions that will do things like color negative values red, set percent formatting and scaling, etc. Example usage:: r = csv2rec('somefile.csv', checkrows=0) formatd = dict( weight = FormatFloat(2), change = FormatPercent(2), cost = FormatThousands(2), ) rec2excel(r, 'test.xls', formatd=formatd) rec2csv(r, 'test.csv', formatd=formatd) scroll = rec2gtk(r, formatd=formatd) win = gtk.Window() win.set_size_request(600,800) win.add(scroll) win.show_all() gtk.main() Deprecated functions --------------------- The following are deprecated; please import directly from numpy (with care--function signatures may differ): :meth:`conv` convolution (numpy.convolve) :meth:`corrcoef` The matrix of correlation coefficients :meth:`hist` Histogram (numpy.histogram) :meth:`linspace` Linear spaced array from min to max :meth:`load` load ASCII file - use numpy.loadtxt :meth:`meshgrid` Make a 2D grid from 2 1 arrays (numpy.meshgrid) :meth:`polyfit` least squares best polynomial fit of x to y (numpy.polyfit) :meth:`polyval` evaluate a vector for a vector of polynomial coeffs (numpy.polyval) :meth:`save` save ASCII file - use numpy.savetxt :meth:`trapz` trapeziodal integration (trapz(x,y) -> numpy.trapz(y,x)) :meth:`vander` the Vandermonde matrix (numpy.vander) """ from __future__ import division import csv, warnings, copy, os import numpy as np ma = np.ma from matplotlib import verbose import matplotlib.nxutils as nxutils import matplotlib.cbook as cbook # set is a new builtin function in 2.4; delete the following when # support for 2.3 is dropped. try: set except NameError: from sets import Set as set def linspace(*args, **kw): warnings.warn("use numpy.linspace", DeprecationWarning) return np.linspace(*args, **kw) def meshgrid(x,y): warnings.warn("use numpy.meshgrid", DeprecationWarning) return np.meshgrid(x,y) def mean(x, dim=None): warnings.warn("Use numpy.mean(x) or x.mean()", DeprecationWarning) if len(x)==0: return None return np.mean(x, axis=dim) def logspace(xmin,xmax,N): return np.exp(np.linspace(np.log(xmin), np.log(xmax), N)) def _norm(x): "return sqrt(x dot x)" return np.sqrt(np.dot(x,x)) def window_hanning(x): "return x times the hanning window of len(x)" return np.hanning(len(x))*x def window_none(x): "No window function; simply return x" return x #from numpy import convolve as conv def conv(x, y, mode=2): 'convolve x with y' warnings.warn("Use numpy.convolve(x, y, mode='full')", DeprecationWarning) return np.convolve(x,y,mode) def detrend(x, key=None): if key is None or key=='constant': return detrend_mean(x) elif key=='linear': return detrend_linear(x) def demean(x, axis=0): "Return x minus its mean along the specified axis" x = np.asarray(x) if axis: ind = [slice(None)] * axis ind.append(np.newaxis) return x - x.mean(axis)[ind] return x - x.mean(axis) def detrend_mean(x): "Return x minus the mean(x)" return x - x.mean() def detrend_none(x): "Return x: no detrending" return x def detrend_linear(y): "Return y minus best fit line; 'linear' detrending " # This is faster than an algorithm based on linalg.lstsq. x = np.arange(len(y), dtype=np.float_) C = np.cov(x, y, bias=1) b = C[0,1]/C[0,0] a = y.mean() - b*x.mean() return y - (b*x + a) #This is a helper function that implements the commonality between the #psd, csd, and spectrogram. It is *NOT* meant to be used outside of mlab def _spectral_helper(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): #The checks for if y is x are so that we can use the same function to #implement the core of psd(), csd(), and spectrogram() without doing #extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x #Make sure we're dealing with a numpy array. If y and x were the same #object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x)<NFFT: n = len(x) x = np.resize(x, (NFFT,)) x[n:] = 0 if not same_data and len(y)<NFFT: n = len(y) y = np.resize(y, (NFFT,)) y[n:] = 0 if pad_to is None: pad_to = NFFT if scale_by_freq is None: warnings.warn("psd, csd, and specgram have changed to scale their " "densities by the sampling frequency for better MatLab " "compatibility. You can pass scale_by_freq=False to disable " "this behavior. Also, one-sided densities are scaled by a " "factor of 2.") scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if (sides == 'default' and np.iscomplexobj(x)) or sides == 'twosided': numFreqs = pad_to scaling_factor = 1. elif sides in ('default', 'onesided'): numFreqs = pad_to//2 + 1 scaling_factor = 2. else: raise ValueError("sides must be one of: 'default', 'onesided', or " "'twosided'") # Matlab divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: scaling_factor /= Fs if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), x.dtype)) step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) Pxy = np.zeros((numFreqs,n), np.complex_) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals * detrend(thisX) fx = np.fft.fft(thisX, n=pad_to) if same_data: fy = fx else: thisY = y[ind[i]:ind[i]+NFFT] thisY = windowVals * detrend(thisY) fy = np.fft.fft(thisY, n=pad_to) Pxy[:,i] = np.conjugate(fx[:numFreqs]) * fy[:numFreqs] # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. Also include # scaling factors for one-sided densities and dividing by the sampling # frequency, if desired. Pxy *= scaling_factor / (np.abs(windowVals)**2).sum() t = 1./Fs * (ind + NFFT / 2.) freqs = float(Fs) / pad_to * np.arange(numFreqs) return Pxy, freqs, t #Split out these keyword docs so that they can be used elsewhere kwdocd = dict() kwdocd['PSD'] =""" Keyword arguments: *NFFT*: integer The number of data points used in each block for the FFT. Must be even; a power 2 is most efficient. The default value is 256. *Fs*: scalar The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. The default value is 2. *detrend*: callable The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in matlab, where the *detrend* parameter is a vector, in matplotlib is it a function. The :mod:`~matplotlib.pylab` module defines :func:`~matplotlib.pylab.detrend_none`, :func:`~matplotlib.pylab.detrend_mean`, and :func:`~matplotlib.pylab.detrend_linear`, but you can use a custom function as well. *window*: callable or ndarray A function or a vector of length *NFFT*. To create window vectors see :func:`window_hanning`, :func:`window_none`, :func:`numpy.blackman`, :func:`numpy.hamming`, :func:`numpy.bartlett`, :func:`scipy.signal`, :func:`scipy.signal.get_window`, etc. The default is :func:`window_hanning`. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *pad_to*: integer The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the psd (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* *sides*: [ 'default' | 'onesided' | 'twosided' ] Specifies which sides of the PSD to return. Default gives the default behavior, which returns one-sided for real data and both for complex data. 'onesided' forces the return of a one-sided PSD, while 'twosided' forces two-sided. *scale_by_freq*: boolean Specifies whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MatLab compatibility. """ def psd(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The absolute(fft(block))**2 of each segment are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. *x* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxx*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxx,freqs = csd(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) return Pxx.real,freqs psd.__doc__ = psd.__doc__ % kwdocd def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The cross power spectral density by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute *Pxy*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. *x*, *y* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxy*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxy, freqs, t = _spectral_helper(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) if len(Pxy.shape) == 2 and Pxy.shape[1]>1: Pxy = Pxy.mean(axis=1) return Pxy, freqs csd.__doc__ = csd.__doc__ % kwdocd def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=128, pad_to=None, sides='default', scale_by_freq=None): """ Compute a spectrogram of data in *x*. Data are split into *NFFT* length segements and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. If *x* is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If *x* is complex then the complete spectrum is returned. %(PSD)s Returns a tuple (*Pxx*, *freqs*, *t*): - *Pxx*: 2-D array, columns are the periodograms of successive segments - *freqs*: 1-D array of frequencies corresponding to the rows in Pxx - *t*: 1-D array of times corresponding to midpoints of segments. .. seealso:: :func:`psd`: :func:`psd` differs in the default overlap; in returning the mean of the segment periodograms; and in not returning times. """ assert(NFFT > noverlap) Pxx, freqs, t = _spectral_helper(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxx = Pxx.real #Needed since helper implements generically if (np.iscomplexobj(x) and sides == 'default') or sides == 'twosided': # center the frequency range at zero freqs = np.concatenate((freqs[NFFT/2:]-Fs,freqs[:NFFT/2])) Pxx = np.concatenate((Pxx[NFFT/2:,:],Pxx[:NFFT/2,:]),0) return Pxx, freqs, t specgram.__doc__ = specgram.__doc__ % kwdocd _coh_error = """Coherence is calculated by averaging over *NFFT* length segments. Your signal is too short for your choice of *NFFT*. """ def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} *x*, *y* Array or sequence containing the data %(PSD)s The return value is the tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. For cohere, scaling the individual densities by the sampling frequency has no effect, since the factors cancel out. .. seealso:: :func:`psd` and :func:`csd`: For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x)<2*NFFT: raise ValueError(_coh_error) Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.divide(np.absolute(Pxy)**2, Pxx*Pyy) Cxy.shape = (len(f),) return Cxy, f cohere.__doc__ = cohere.__doc__ % kwdocd def corrcoef(*args): """ corrcoef(*X*) where *X* is a matrix returns a matrix of correlation coefficients for the columns of *X* corrcoef(*x*, *y*) where *x* and *y* are vectors returns the matrix of correlation coefficients for *x* and *y*. Numpy arrays can be real or complex. The correlation matrix is defined from the covariance matrix *C* as .. math:: r_{ij} = \\frac{C_{ij}}{\\sqrt{C_{ii}C_{jj}}} """ warnings.warn("Use numpy.corrcoef", DeprecationWarning) kw = dict(rowvar=False) return np.corrcoef(*args, **kw) def polyfit(*args, **kwargs): u""" polyfit(*x*, *y*, *N*) Do a best fit polynomial of order *N* of *y* to *x*. Return value is a vector of polynomial coefficients [pk ... p1 p0]. Eg, for *N*=2:: p2*x0^2 + p1*x0 + p0 = y1 p2*x1^2 + p1*x1 + p0 = y1 p2*x2^2 + p1*x2 + p0 = y2 ..... p2*xk^2 + p1*xk + p0 = yk Method: if *X* is a the Vandermonde Matrix computed from *x* (see `vandermonds <http://mathworld.wolfram.com/VandermondeMatrix.html>`_), then the polynomial least squares solution is given by the '*p*' in X*p = y where *X* is a (len(*x*) \N{MULTIPLICATION SIGN} *N* + 1) matrix, *p* is a *N*+1 length vector, and *y* is a (len(*x*) \N{MULTIPLICATION SIGN} 1) vector. This equation can be solved as .. math:: p = (X_t X)^-1 X_t y where :math:`X_t` is the transpose of *X* and -1 denotes the inverse. Numerically, however, this is not a good method, so we use :func:`numpy.linalg.lstsq`. For more info, see `least squares fitting <http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html>`_, but note that the *k*'s and *n*'s in the superscripts and subscripts on that page. The linear algebra is correct, however. .. seealso:: :func:`polyval` """ warnings.warn("use numpy.poyfit", DeprecationWarning) return np.polyfit(*args, **kwargs) def polyval(*args, **kwargs): """ *y* = polyval(*p*, *x*) *p* is a vector of polynomial coeffients and *y* is the polynomial evaluated at *x*. Example code to remove a polynomial (quadratic) trend from y:: p = polyfit(x, y, 2) trend = polyval(p, x) resid = y - trend .. seealso:: :func:`polyfit` """ warnings.warn("use numpy.polyval", DeprecationWarning) return np.polyval(*args, **kwargs) def vander(*args, **kwargs): """ *X* = vander(*x*, *N* = *None*) The Vandermonde matrix of vector *x*. The *i*-th column of *X* is the the *i*-th power of *x*. *N* is the maximum power to compute; if *N* is *None* it defaults to len(*x*). """ warnings.warn("Use numpy.vander()", DeprecationWarning) return np.vander(*args, **kwargs) def donothing_callback(*args): pass def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): u""" Cxy, Phase, freqs = cohere_pairs(X, ij, ...) Compute the coherence for all pairs in *ij*. *X* is a (*numSamples*, *numCols*) numpy array. *ij* is a list of tuples (*i*, *j*). Each tuple is a pair of indexes into the columns of *X* for which you want to compute coherence. For example, if *X* has 64 columns, and you want to compute all nonredundant pairs, define *ij* as:: ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i, j) ) The other function arguments, except for *preferSpeedOverMemory* (see below), are explained in the help string of :func:`psd`. Return value is a tuple (*Cxy*, *Phase*, *freqs*). - *Cxy*: a dictionary of (*i*, *j*) tuples -> coherence vector for that pair. I.e., ``Cxy[(i,j)] = cohere(X[:,i], X[:,j])``. Number of dictionary keys is ``len(ij)``. - *Phase*: a dictionary of phases of the cross spectral density at each frequency for each pair. The keys are ``(i,j)``. - *freqs*: a vector of frequencies, equal in length to either the coherence or phase vectors for any (*i*, *j*) key.. Eg, to make a coherence Bode plot:: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, :func:`cohere_pairs` can be much more efficient than just calling :func:`cohere` for each pair, because it caches most of the intensive computations. If *N* is the number of pairs, this function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N\N{SUPERSCRIPT TWO}). However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as *X*. The parameter *preferSpeedOverMemory*, if *False*, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when *preferSpeedOverMemory* is *False*, :func:`cohere_pairs` will still give significant performace gains over calling :func:`cohere` for each pair, and will use subtantially less memory than if *preferSpeedOverMemory* is *True*. In my tests with a (43000, 64) array over all non-redundant pairs, *preferSpeedOverMemory* = *True* delivered a 33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared with *preferSpeedOverMemory* = *False*. But both solutions were more than 10x faster than naievly crunching all possible pairs through cohere. .. seealso:: :file:`test/cohere_pairs_test.py` in the src tree: For an example script that shows that this :func:`cohere_pairs` and :func:`cohere` give the same results for a given pair. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = np.zeros( (NFFT, numCols), X.dtype) X[:numRows,:] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples seen = {} for i,j in ij: seen[i]=1; seen[j] = 1 allColumns = seen.keys() Ncols = len(allColumns) del seen # for real X, ignore the negative frequencies if np.iscomplexobj(X): numFreqs = NFFT else: numFreqs = NFFT//2+1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), typecode(X))) ind = range(0, numRows-NFFT+1, NFFT-noverlap) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = norm(windowVals)**2 for iCol in allColumns: progressCallback(i/Ncols, 'Cacheing FFTs') Slices = np.zeros( (numSlices,numFreqs), dtype=np.complex_) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol] thisSlice = windowVals*detrend(thisSlice) Slices[iSlice,:] = fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = conjugate(Slices) Pxx[iCol] = np.divide(np.mean(absolute(Slices)**2), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i,j in ij: count +=1 if count%10==0: progressCallback(count/N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * np.conjugate(FFTSlices[j]) if numSlices>1: Pxy = np.mean(Pxy) Pxy = np.divide(Pxy, normVal) Cxy[(i,j)] = np.divide(np.absolute(Pxy)**2, Pxx[i]*Pxx[j]) Phase[(i,j)] = np.arctan2(Pxy.imag, Pxy.real) freqs = Fs/NFFT*np.arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs def entropy(y, bins): r""" Return the entropy of the data in *y*. .. math:: \sum p_i \log_2(p_i) where :math:`p_i` is the probability of observing *y* in the :math:`i^{th}` bin of *bins*. *bins* can be a number of bins or a range of bins; see :func:`numpy.histogram`. Compare *S* with analytic calculation for a Gaussian:: x = mu + sigma * randn(200000) Sanalytic = 0.5 * ( 1.0 + log(2*pi*sigma**2.0) ) """ n,bins = np.histogram(y, bins) n = n.astype(np.float_) n = np.take(n, np.nonzero(n)[0]) # get the positive p = np.divide(n, len(y)) delta = bins[1]-bins[0] S = -1.0*np.sum(p*log(p)) + log(delta) #S = -1.0*np.sum(p*log(p)) return S def hist(y, bins=10, normed=0): """ Return the histogram of *y* with *bins* equally sized bins. If bins is an array, use those bins. Return value is (*n*, *x*) where *n* is the count for each bin in *x*. If *normed* is *False*, return the counts in the first element of the returned tuple. If *normed* is *True*, return the probability density :math:`\\frac{n}{(len(y)\mathrm{dbin}}`. If *y* has rank > 1, it will be raveled. If *y* is masked, only the unmasked values will be used. Credits: the Numeric 22 documentation """ warnings.warn("Use numpy.histogram()", DeprecationWarning) return np.histogram(y, bins=bins, range=None, normed=normed) def normpdf(x, *args): "Return the normal pdf evaluated at *x*; args provides *mu*, *sigma*" mu, sigma = args return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2) def levypdf(x, gamma, alpha): "Returm the levy pdf evaluated at *x* for params *gamma*, *alpha*" N = len(x) if N%2 != 0: raise ValueError, 'x must be an event length array; try\n' + \ 'x = np.linspace(minx, maxx, N), where N is even' dx = x[1]-x[0] f = 1/(N*dx)*np.arange(-N/2, N/2, np.float_) ind = np.concatenate([np.arange(N/2, N, int), np.arange(0, N/2, int)]) df = f[1]-f[0] cfl = exp(-gamma*np.absolute(2*pi*f)**alpha) px = np.fft.fft(np.take(cfl,ind)*df).astype(np.float_) return np.take(px, ind) def find(condition): "Return the indices where ravel(condition) is true" res, = np.nonzero(np.ravel(condition)) return res def trapz(x, y): """ Trapezoidal integral of *y*(*x*). """ warnings.warn("Use numpy.trapz(y,x) instead of trapz(x,y)", DeprecationWarning) return np.trapz(y, x) #if len(x)!=len(y): # raise ValueError, 'x and y must have the same length' #if len(x)<2: # raise ValueError, 'x and y must have > 1 element' #return np.sum(0.5*np.diff(x)*(y[1:]+y[:-1])) def longest_contiguous_ones(x): """ Return the indices of the longest stretch of contiguous ones in *x*, assuming *x* is a vector of zeros and ones. If there are two equally long stretches, pick the first. """ x = np.ravel(x) if len(x)==0: return np.array([]) ind = (x==0).nonzero()[0] if len(ind)==0: return np.arange(len(x)) if len(ind)==len(x): return np.array([]) y = np.zeros( (len(x)+2,), x.dtype) y[1:-1] = x dif = np.diff(y) up = (dif == 1).nonzero()[0]; dn = (dif == -1).nonzero()[0]; i = (dn-up == max(dn - up)).nonzero()[0][0] ind = np.arange(up[i], dn[i]) return ind def longest_ones(x): '''alias for longest_contiguous_ones''' return longest_contiguous_ones(x) def prepca(P, frac=0): """ Compute the principal components of *P*. *P* is a (*numVars*, *numObs*) array. *frac* is the minimum fraction of variance that a component must contain to be included. Return value is a tuple of the form (*Pcomponents*, *Trans*, *fracVar*) where: - *Pcomponents* : a (numVars, numObs) array - *Trans* : the weights matrix, ie, *Pcomponents* = *Trans* * *P* - *fracVar* : the fraction of the variance accounted for by each component returned A similar function of the same name was in the Matlab (TM) R13 Neural Network Toolbox but is not found in later versions; its successor seems to be called "processpcs". """ U,s,v = np.linalg.svd(P) varEach = s**2/P.shape[1] totVar = varEach.sum() fracVar = varEach/totVar ind = slice((fracVar>=frac).sum()) # select the components that are greater Trans = U[:,ind].transpose() # The transformed data Pcomponents = np.dot(Trans,P) return Pcomponents, Trans, fracVar[ind] def prctile(x, p = (0.0, 25.0, 50.0, 75.0, 100.0)): """ Return the percentiles of *x*. *p* can either be a sequence of percentile values or a scalar. If *p* is a sequence, the ith element of the return sequence is the *p*(i)-th percentile of *x*. If *p* is a scalar, the largest value of *x* less than or equal to the *p* percentage point in the sequence is returned. """ x = np.array(x).ravel() # we need a copy x.sort() Nx = len(x) if not cbook.iterable(p): return x[int(p*Nx/100.0)] p = np.asarray(p)* Nx/100.0 ind = p.astype(int) ind = np.where(ind>=Nx, Nx-1, ind) return x.take(ind) def prctile_rank(x, p): """ Return the rank for each element in *x*, return the rank 0..len(*p*). Eg if *p* = (25, 50, 75), the return value will be a len(*x*) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is above the 75th percentile cutoff. *p* is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data you want ranked. """ if not cbook.iterable(p): p = np.arange(100.0/p, 100.0, 100.0/p) else: p = np.asarray(p) if p.max()<=1 or p.min()<0 or p.max()>100: raise ValueError('percentiles should be in range 0..100, not 0..1') ptiles = prctile(x, p) return np.searchsorted(ptiles, x) def center_matrix(M, dim=0): """ Return the matrix *M* with each row having zero mean and unit std. If *dim* = 1 operate on columns instead of rows. (*dim* is opposite to the numpy axis kwarg.) """ M = np.asarray(M, np.float_) if dim: M = (M - M.mean(axis=0)) / M.std(axis=0) else: M = (M - M.mean(axis=1)[:,np.newaxis]) M = M / M.std(axis=1)[:,np.newaxis] return M def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. *y0* initial state vector *t* sample times *derivs* returns the derivative of the system and has the signature ``dy = derivs(yi, ti)`` Example 1 :: ## 2D system def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2:: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. """ try: Ny = len(y0) except TypeError: yout = np.zeros( (len(t),), np.float_) else: yout = np.zeros( (len(t), Ny), np.float_) yout[0] = y0 i = 0 for i in np.arange(len(t)-1): thist = t[i] dt = t[i+1] - thist dt2 = dt/2.0 y0 = yout[i] k1 = np.asarray(derivs(y0, thist)) k2 = np.asarray(derivs(y0 + dt2*k1, thist+dt2)) k3 = np.asarray(derivs(y0 + dt2*k2, thist+dt2)) k4 = np.asarray(derivs(y0 + dt*k3, thist+dt)) yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4) return yout def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0): """ Bivariate Gaussian distribution for equal shape *X*, *Y*. See `bivariate normal <http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_ at mathworld. """ Xmu = X-mux Ymu = Y-muy rho = sigmaxy/(sigmax*sigmay) z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay) denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2) return np.exp( -z/(2*(1-rho**2))) / denom def get_xyz_where(Z, Cond): """ *Z* and *Cond* are *M* x *N* matrices. *Z* are data and *Cond* is a boolean matrix where some condition is satisfied. Return value is (*x*, *y*, *z*) where *x* and *y* are the indices into *Z* and *z* are the values of *Z* at those indices. *x*, *y*, and *z* are 1D arrays. """ X,Y = np.indices(Z.shape) return X[Cond], Y[Cond], Z[Cond] def get_sparse_matrix(M,N,frac=0.1): """ Return a *M* x *N* sparse matrix with *frac* elements randomly filled. """ data = np.zeros((M,N))*0. for i in range(int(M*N*frac)): x = np.random.randint(0,M-1) y = np.random.randint(0,N-1) data[x,y] = np.random.rand() return data def dist(x,y): """ Return the distance between two points. """ d = x-y return np.sqrt(np.dot(d,d)) def dist_point_to_segment(p, s0, s1): """ Get the distance of a point to a segment. *p*, *s0*, *s1* are *xy* sequences This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment """ p = np.asarray(p, np.float_) s0 = np.asarray(s0, np.float_) s1 = np.asarray(s1, np.float_) v = s1 - s0 w = p - s0 c1 = np.dot(w,v); if ( c1 <= 0 ): return dist(p, s0); c2 = np.dot(v,v) if ( c2 <= c1 ): return dist(p, s1); b = c1 / c2 pb = s0 + b * v; return dist(p, pb) def segments_intersect(s1, s2): """ Return *True* if *s1* and *s2* intersect. *s1* and *s2* are defined as:: s1: (x1, y1), (x2, y2) s2: (x3, y3), (x4, y4) """ (x1, y1), (x2, y2) = s1 (x3, y3), (x4, y4) = s2 den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1)) n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3)) n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3)) if den == 0: # lines parallel return False u1 = n1/den u2 = n2/den return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0 def fftsurr(x, detrend=detrend_none, window=window_none): """ Compute an FFT phase randomized surrogate of *x*. """ if cbook.iterable(window): x=window*detrend(x) else: x = window(detrend(x)) z = np.fft.fft(x) a = 2.*np.pi*1j phase = a * np.random.rand(len(x)) z = z*np.exp(phase) return np.fft.ifft(z).real def liaupunov(x, fprime): """ *x* is a very long trajectory from a map, and *fprime* returns the derivative of *x*. Returns : .. math:: \lambda = \\frac{1}{n}\\sum \\ln|f^'(x_i)| .. seealso:: Sec 10.5 Strogatz (1994) "Nonlinear Dynamics and Chaos". `Wikipedia article on Lyapunov Exponent <http://en.wikipedia.org/wiki/Lyapunov_exponent>`_. .. note:: What the function here calculates may not be what you really want; *caveat emptor*. It also seems that this function's name is badly misspelled. """ return np.mean(np.log(np.absolute(fprime(x)))) class FIFOBuffer: """ A FIFO queue to hold incoming *x*, *y* data in a rotating buffer using numpy arrays under the hood. It is assumed that you will call asarrays much less frequently than you add data to the queue -- otherwise another data structure will be faster. This can be used to support plots where data is added from a real time feed and the plot object wants to grab data from the buffer and plot it to screen less freqeuently than the incoming. If you set the *dataLim* attr to :class:`~matplotlib.transforms.BBox` (eg :attr:`matplotlib.Axes.dataLim`), the *dataLim* will be updated as new data come in. TODO: add a grow method that will extend nmax .. note:: mlab seems like the wrong place for this class. """ def __init__(self, nmax): """ Buffer up to *nmax* points. """ self._xa = np.zeros((nmax,), np.float_) self._ya = np.zeros((nmax,), np.float_) self._xs = np.zeros((nmax,), np.float_) self._ys = np.zeros((nmax,), np.float_) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {} def register(self, func, N): """ Call *func* every time *N* events are passed; *func* signature is ``func(fifo)``. """ self.callbackd.setdefault(N, []).append(func) def add(self, x, y): """ Add scalar *x* and *y* to the queue. """ if self.dataLim is not None: xys = ((x,y),) self.dataLim.update(xys, -1) #-1 means use the default ignore setting ind = self._ind % self._nmax #print 'adding to fifo:', ind, x, y self._xs[ind] = x self._ys[ind] = y for N,funcs in self.callbackd.items(): if (self._ind%N)==0: for func in funcs: func(self) self._ind += 1 def last(self): """ Get the last *x*, *y* or *None*. *None* if no data set. """ if self._ind==0: return None, None ind = (self._ind-1) % self._nmax return self._xs[ind], self._ys[ind] def asarrays(self): """ Return *x* and *y* as arrays; their length will be the len of data added or *nmax*. """ if self._ind<self._nmax: return self._xs[:self._ind], self._ys[:self._ind] ind = self._ind % self._nmax self._xa[:self._nmax-ind] = self._xs[ind:] self._xa[self._nmax-ind:] = self._xs[:ind] self._ya[:self._nmax-ind] = self._ys[ind:] self._ya[self._nmax-ind:] = self._ys[:ind] return self._xa, self._ya def update_datalim_to_current(self): """ Update the *datalim* in the current data in the fifo. """ if self.dataLim is None: raise ValueError('You must first set the dataLim attr') x, y = self.asarrays() self.dataLim.update_numerix(x, y, True) def movavg(x,n): """ Compute the len(*n*) moving average of *x*. """ w = np.empty((n,), dtype=np.float_) w[:] = 1.0/n return np.convolve(x, w, mode='valid') def save(fname, X, fmt='%.18e',delimiter=' '): """ Save the data in *X* to file *fname* using *fmt* string to convert the data to strings. *fname* can be a filename or a file handle. If the filename ends in '.gz', the file is automatically saved in compressed gzip format. The :func:`load` function understands gzipped files transparently. Example usage:: save('test.out', X) # X is an array save('test1.out', (x,y,z)) # x,y,z equal sized 1D arrays save('test2.out', x) # x is 1D save('test3.out', x, fmt='%1.4e') # use exponential notation *delimiter* is used to separate the fields, eg. *delimiter* ',' for comma-separated values. """ if cbook.is_string_like(fname): if fname.endswith('.gz'): import gzip fh = gzip.open(fname,'wb') else: fh = file(fname,'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') X = np.asarray(X) origShape = None if X.ndim == 1: origShape = X.shape X.shape = len(X), 1 for row in X: fh.write(delimiter.join([fmt%val for val in row]) + '\n') if origShape is not None: X.shape = origShape def load(fname,comments='#',delimiter=None, converters=None,skiprows=0, usecols=None, unpack=False, dtype=np.float_): """ Load ASCII data from *fname* into an array and return the array. The data must be regular, same number of values in every row *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz'. matfile data is not supported; for that, use :mod:`scipy.io.mio` module. Example usage:: X = load('test.dat') # data in two columns t = X[:,0] y = X[:,1] Alternatively, you can do the same with "unpack"; see below:: X = load('test.dat') # a matrix of data x = load('test.dat') # a single column of data - *comments*: the character used to indicate the start of a comment in the file - *delimiter* is a string-like character used to seperate values in the file. If *delimiter* is unspecified or *None*, any whitespace string is a separator. - *converters*, if not *None*, is a dictionary mapping column number to a function that will convert that column to a float (or the optional *dtype* if specified). Eg, if column 0 is a date string:: converters = {0:datestr2num} - *skiprows* is the number of rows from the top to skip. - *usecols*, if not *None*, is a sequence of integer column indexes to extract where 0 is the first column, eg ``usecols=[1,4,5]`` to extract just the 2nd, 5th and 6th columns - *unpack*, if *True*, will transpose the matrix allowing you to unpack into named arguments on the left hand side:: t,y = load('test.dat', unpack=True) # for two column data x,y,z = load('somefile.dat', usecols=[3,5,7], unpack=True) - *dtype*: the array will have this dtype. default: ``numpy.float_`` .. seealso:: See :file:`examples/pylab_examples/load_converter.py` in the source tree: Exercises many of these options. """ if converters is None: converters = {} fh = cbook.to_filehandle(fname) X = [] if delimiter==' ': # space splitting is a special case since x.split() is what # you want, not x.split(' ') def splitfunc(x): return x.split() else: def splitfunc(x): return x.split(delimiter) converterseq = None for i,line in enumerate(fh): if i<skiprows: continue line = line.split(comments, 1)[0].strip() if not len(line): continue if converterseq is None: converterseq = [converters.get(j,float) for j,val in enumerate(splitfunc(line))] if usecols is not None: vals = splitfunc(line) row = [converterseq[j](vals[j]) for j in usecols] else: row = [converterseq[j](val) for j,val in enumerate(splitfunc(line))] thisLen = len(row) X.append(row) X = np.array(X, dtype) r,c = X.shape if r==1 or c==1: X.shape = max(r,c), if unpack: return X.transpose() else: return X def slopes(x,y): """ SLOPES calculate the slope y'(x) Given data vectors X and Y SLOPES calculates Y'(X), i.e the slope of a curve Y(X). The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between x- and y-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ STINEMAN_INTERP Well behaved data interpolation. Given data vectors X and Y, the slope vector YP and a new abscissa vector XI the function stineman_interp(xi,x,y,yp) uses Stineman interpolation to calculate a vector YI corresponding to XI. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For yp=None, the routine automatically determines the slopes using the "slopes" routine. X is assumed to be sorted in increasing order For values xi[j] < x[0] or xi[j] > x[-1], the routine tries a extrapolation. The relevance of the data obtained from this, of course, questionable... original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi def inside_poly(points, verts): """ points is a sequence of x,y points verts is a sequence of x,y vertices of a poygon return value is a sequence of indices into points for the points that are inside the polygon """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(ymin, xs, ys): """ given a arrays *xs* and *ys*, return the vertices of a polygon that has a scalar lower bound *ymin* and an upper bound at the *ys*. intended for use with Axes.fill, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ return poly_between(xs, ys, xmin) def poly_between(x, ylower, yupper): """ given a sequence of x, ylower and yupper, return the polygon that fills the regions between them. ylower or yupper can be scalar or iterable. If they are iterable, they must be equal in length to x return value is x, y arrays for use with Axes.fill """ Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*np.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*np.ones(Nx) x = np.concatenate( (x, x[::-1]) ) y = np.concatenate( (yupper, ylower[::-1]) ) return x,y ### the following code was written and submitted by Fernando Perez ### from the ipython numutils package under a BSD license # begin fperez functions """ A set of convenient utilities for numerical work. Most of this module requires numpy or is meant to be used with it. Copyright (c) 2001-2004, Fernando Perez. <[email protected]> All rights reserved. This license was generated from the BSD license template as found in: http://www.opensource.org/licenses/bsd-license.php Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the IPython project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import operator import math #***************************************************************************** # Globals #**************************************************************************** # function definitions exp_safe_MIN = math.log(2.2250738585072014e-308) exp_safe_MAX = 1.7976931348623157e+308 def exp_safe(x): """ Compute exponentials which safely underflow to zero. Slow, but convenient to use. Note that numpy provides proper floating point exception handling with access to the underlying hardware. """ if type(x) is np.ndarray: return exp(np.clip(x,exp_safe_MIN,exp_safe_MAX)) else: return math.exp(x) def amap(fn,*args): """ amap(function, sequence[, sequence, ...]) -> array. Works like :func:`map`, but it returns an array. This is just a convenient shorthand for ``numpy.array(map(...))``. """ return np.array(map(fn,*args)) #from numpy import zeros_like def zeros_like(a): """ Return an array of zeros of the shape and typecode of *a*. """ warnings.warn("Use numpy.zeros_like(a)", DeprecationWarning) return np.zeros_like(a) #from numpy import sum as sum_flat def sum_flat(a): """ Return the sum of all the elements of *a*, flattened out. It uses ``a.flat``, and if *a* is not contiguous, a call to ``ravel(a)`` is made. """ warnings.warn("Use numpy.sum(a) or a.sum()", DeprecationWarning) return np.sum(a) #from numpy import mean as mean_flat def mean_flat(a): """ Return the mean of all the elements of *a*, flattened out. """ warnings.warn("Use numpy.mean(a) or a.mean()", DeprecationWarning) return np.mean(a) def rms_flat(a): """ Return the root mean square of all the elements of *a*, flattened out. """ return np.sqrt(np.mean(np.absolute(a)**2)) def l1norm(a): """ Return the *l1* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sum(np.absolute(a)) def l2norm(a): """ Return the *l2* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sqrt(np.sum(np.absolute(a)**2)) def norm_flat(a,p=2): """ norm(a,p=2) -> l-p norm of a.flat Return the l-p norm of *a*, considered as a flat array. This is NOT a true matrix norm, since arrays of arbitrary rank are always flattened. *p* can be a number or the string 'Infinity' to get the L-infinity norm. """ # This function was being masked by a more general norm later in # the file. We may want to simply delete it. if p=='Infinity': return np.amax(np.absolute(a)) else: return (np.sum(np.absolute(a)**p))**(1.0/p) def frange(xini,xfin=None,delta=None,**kw): """ frange([start,] stop[, step, keywords]) -> array of floats Return a numpy ndarray containing a progression of floats. Similar to :func:`numpy.arange`, but defaults to a closed interval. ``frange(x0, x1)`` returns ``[x0, x0+1, x0+2, ..., x1]``; *start* defaults to 0, and the endpoint *is included*. This behavior is different from that of :func:`range` and :func:`numpy.arange`. This is deliberate, since :func:`frange` will probably be more useful for generating lists of points for function evaluation, and endpoints are often desired in this use. The usual behavior of :func:`range` can be obtained by setting the keyword *closed* = 0, in this case, :func:`frange` basically becomes :func:numpy.arange`. When *step* is given, it specifies the increment (or decrement). All arguments can be floating point numbers. ``frange(x0,x1,d)`` returns ``[x0,x0+d,x0+2d,...,xfin]`` where *xfin* <= *x1*. :func:`frange` can also be called with the keyword *npts*. This sets the number of points the list should contain (and overrides the value *step* might have been given). :func:`numpy.arange` doesn't offer this option. Examples:: >>> frange(3) array([ 0., 1., 2., 3.]) >>> frange(3,closed=0) array([ 0., 1., 2.]) >>> frange(1,6,2) array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries >>> frange(1,6.5,npts=5) array([ 1. , 2.375, 3.75 , 5.125, 6.5 ]) """ #defaults kw.setdefault('closed',1) endpoint = kw['closed'] != 0 # funny logic to allow the *first* argument to be optional (like range()) # This was modified with a simpler version from a similar frange() found # at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66472 if xfin == None: xfin = xini + 0.0 xini = 0.0 if delta == None: delta = 1.0 # compute # of points, spacing and return final list try: npts=kw['npts'] delta=(xfin-xini)/float(npts-endpoint) except KeyError: npts = int(round((xfin-xini)/delta)) + endpoint #npts = int(floor((xfin-xini)/delta)*(1.0+1e-10)) + endpoint # round finds the nearest, so the endpoint can be up to # delta/2 larger than xfin. return np.arange(npts)*delta+xini # end frange() #import numpy.diag as diagonal_matrix def diagonal_matrix(diag): """ Return square diagonal matrix whose non-zero elements are given by the input array. """ warnings.warn("Use numpy.diag(d)", DeprecationWarning) return np.diag(diag) def identity(n, rank=2, dtype='l', typecode=None): """ Returns the identity matrix of shape (*n*, *n*, ..., *n*) (rank *r*). For ranks higher than 2, this object is simply a multi-index Kronecker delta:: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a *dtype* (or typecode) may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only *n* is given) like ``numpy.identity(n)`` -- but surprisingly, it is much faster. """ if typecode is not None: warnings.warn("Use dtype kwarg instead of typecode", DeprecationWarning) dtype = typecode iden = np.zeros((n,)*rank, dtype) for i in range(n): idx = (i,)*rank iden[idx] = 1 return iden def base_repr (number, base = 2, padding = 0): """ Return the representation of a *number* in any given *base*. """ chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' if number < base: \ return (padding - 1) * chars [0] + chars [int (number)] max_exponent = int (math.log (number)/math.log (base)) max_power = long (base) ** max_exponent lead_digit = int (number/max_power) return chars [lead_digit] + \ base_repr (number - max_power * lead_digit, base, \ max (padding - 1, max_exponent)) def binary_repr(number, max_length = 1025): """ Return the binary representation of the input *number* as a string. This is more efficient than using :func:`base_repr` with base 2. Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is the largest integer power of 2 which can be converted to a Python float. """ #assert number < 2L << max_length shifts = map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1)) digits = map (operator.mod, shifts, max_length * [2]) if not digits.count (1): return 0 digits = digits [digits.index (1):] return ''.join (map (repr, digits)).replace('L','') def log2(x,ln2 = math.log(2.0)): """ Return the log(*x*) in base 2. This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an integer exact power of 2. """ try: bin_n = binary_repr(x)[1:] except (AssertionError,TypeError): return math.log(x)/ln2 else: if '1' in bin_n: return math.log(x)/ln2 else: return len(bin_n) def ispower2(n): """ Returns the log base 2 of *n* if *n* is a power of 2, zero otherwise. Note the potential ambiguity if *n* == 1: 2**0 == 1, interpret accordingly. """ bin_n = binary_repr(n)[1:] if '1' in bin_n: return 0 else: return len(bin_n) def isvector(X): """ Like the Matlab (TM) function with the same name, returns *True* if the supplied numpy array or matrix *X* looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all must have length 1, except for one of them). If you just want to see if the array has 1 axis, use X.ndim == 1. """ return np.prod(X.shape)==np.max(X.shape) #from numpy import fromfunction as fromfunction_kw def fromfunction_kw(function, dimensions, **kwargs): """ Drop-in replacement for :func:`numpy.fromfunction`. Allows passing keyword arguments to the desired function. Call it as (keywords are optional):: fromfunction_kw(MyFunction, dimensions, keywords) The function ``MyFunction`` is responsible for handling the dictionary of keywords it will receive. """ warnings.warn("Use numpy.fromfunction()", DeprecationWarning) return np.fromfunction(function, dimensions, **kwargs) ### end fperez numutils code def rem(x,y): """ Deprecated - see :func:`numpy.remainder` """ raise NotImplementedError('Deprecated - see numpy.remainder') def norm(x,y=2): """ Deprecated - see :func:`numpy.linalg.norm` """ raise NotImplementedError('Deprecated - see numpy.linalg.norm') def orth(A): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') def rank(x): """ Deprecated - see :func:`numpy.rank` """ raise NotImplementedError('Deprecated - see numpy.rank') def sqrtm(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - see scipy.linalg.sqrtm') def mfuncC(f, x): """ Deprecated """ raise NotImplementedError('Deprecated - needs clean room implementation') def approx_real(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') #helpers for loading, saving, manipulating and viewing numpy record arrays def safe_isnan(x): ':func:`numpy.isnan` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isnan(x) except NotImplementedError: return False except TypeError: return False else: return b def safe_isinf(x): ':func:`numpy.isinf` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isinf(x) except NotImplementedError: return False except TypeError: return False else: return b def rec_view(rec): """ Return a view of an ndarray as a recarray .. seealso:: http://projects.scipy.org/pipermail/numpy-discussion/2008-August/036429.html """ return rec.view(np.recarray) #return rec.view(dtype=(np.record, rec.dtype), type=np.recarray) def rec_append_field(rec, name, arr, dtype=None): """ Return a new record array with field name populated with data from array *arr*. This function is Deprecated. Please use :func:`rec_append_fields`. """ warnings.warn("use rec_append_fields", DeprecationWarning) return rec_append_fields(rec, name, arr, dtype) def rec_append_fields(rec, names, arrs, dtypes=None): """ Return a new record array with field names populated with data from arrays in *arrs*. If appending a single field, then *names*, *arrs* and *dtypes* do not have to be lists. They can just be the values themselves. """ if (not cbook.is_string_like(names) and cbook.iterable(names) \ and len(names) and cbook.is_string_like(names[0])): if len(names) != len(arrs): raise ValueError, "number of arrays do not match number of names" else: # we have only 1 name and 1 array names = [names] arrs = [arrs] arrs = map(np.asarray, arrs) if dtypes is None: dtypes = [a.dtype for a in arrs] elif not cbook.iterable(dtypes): dtypes = [dtypes] if len(arrs) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(arrs) else: raise ValueError, "dtypes must be None, a single dtype or a list" newdtype = np.dtype(rec.dtype.descr + zip(names, dtypes)) newrec = np.empty(rec.shape, dtype=newdtype) for field in rec.dtype.fields: newrec[field] = rec[field] for name, arr in zip(names, arrs): newrec[name] = arr return rec_view(newrec) def rec_drop_fields(rec, names): """ Return a new numpy record array with fields in *names* dropped. """ names = set(names) Nr = len(rec) newdtype = np.dtype([(name, rec.dtype[name]) for name in rec.dtype.names if name not in names]) newrec = np.empty(Nr, dtype=newdtype) for field in newdtype.names: newrec[field] = rec[field] return rec_view(newrec) def rec_groupby(r, groupby, stats): """ *r* is a numpy record array *groupby* is a sequence of record array attribute names that together form the grouping key. eg ('date', 'productcode') *stats* is a sequence of (*attr*, *func*, *outname*) tuples which will call ``x = func(attr)`` and assign *x* to the record array output with attribute *outname*. For example:: stats = ( ('sales', len, 'numsales'), ('sales', np.mean, 'avgsale') ) Return record array has *dtype* names for each attribute name in the the *groupby* argument, with the associated group values, and for each outname name in the *stats* argument, with the associated stat summary output. """ # build a dictionary from groupby keys-> list of indices into r with # those keys rowd = dict() for i, row in enumerate(r): key = tuple([row[attr] for attr in groupby]) rowd.setdefault(key, []).append(i) # sort the output by groupby keys keys = rowd.keys() keys.sort() rows = [] for key in keys: row = list(key) # get the indices for this groupby key ind = rowd[key] thisr = r[ind] # call each stat function for this groupby slice row.extend([func(thisr[attr]) for attr, func, outname in stats]) rows.append(row) # build the output record array with groupby and outname attributes attrs, funcs, outnames = zip(*stats) names = list(groupby) names.extend(outnames) return np.rec.fromrecords(rows, names=names) def rec_summarize(r, summaryfuncs): """ *r* is a numpy record array *summaryfuncs* is a list of (*attr*, *func*, *outname*) tuples which will apply *func* to the the array *r*[attr] and assign the output to a new attribute name *outname*. The returned record array is identical to *r*, with extra arrays for each element in *summaryfuncs*. """ names = list(r.dtype.names) arrays = [r[name] for name in names] for attr, func, outname in summaryfuncs: names.append(outname) arrays.append(np.asarray(func(r[attr]))) return np.rec.fromarrays(arrays, names=names) def rec_join(key, r1, r2, jointype='inner', defaults=None, r1postfix='1', r2postfix='2'): """ Join record arrays *r1* and *r2* on *key*; *key* is a tuple of field names -- if *key* is a string it is assumed to be a single attribute name. If *r1* and *r2* have equal values on all the keys in the *key* tuple, then their fields will be merged into a new record array containing the intersection of the fields of *r1* and *r2*. *r1* (also *r2*) must not have any duplicate keys. The *jointype* keyword can be 'inner', 'outer', 'leftouter'. To do a rightouter join just reverse *r1* and *r2*. The *defaults* keyword is a dictionary filled with ``{column_name:default_value}`` pairs. The keywords *r1postfix* and *r2postfix* are postfixed to column names (other than keys) that are both in *r1* and *r2*. """ if cbook.is_string_like(key): key = (key, ) for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s'%name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s'%name) def makekey(row): return tuple([row[name] for name in key]) r1d = dict([(makekey(row),i) for i,row in enumerate(r1)]) r2d = dict([(makekey(row),i) for i,row in enumerate(r2)]) r1keys = set(r1d.keys()) r2keys = set(r2d.keys()) common_keys = r1keys & r2keys r1ind = np.array([r1d[k] for k in common_keys]) r2ind = np.array([r2d[k] for k in common_keys]) common_len = len(common_keys) left_len = right_len = 0 if jointype == "outer" or jointype == "leftouter": left_keys = r1keys.difference(r2keys) left_ind = np.array([r1d[k] for k in left_keys]) left_len = len(left_ind) if jointype == "outer": right_keys = r2keys.difference(r1keys) right_ind = np.array([r2d[k] for k in right_keys]) right_len = len(right_ind) def key_desc(name): 'if name is a string key, use the larger size of r1 or r2 before merging' dt1 = r1.dtype[name] if dt1.type != np.string_: return (name, dt1.descr[0][1]) dt2 = r1.dtype[name] assert dt2==dt1 if dt1.num>dt2.num: return (name, dt1.descr[0][1]) else: return (name, dt2.descr[0][1]) keydesc = [key_desc(name) for name in key] def mapped_r1field(name): """ The column name in *newrec* that corresponds to the column in *r1*. """ if name in key or name not in r2.dtype.names: return name else: return name + r1postfix def mapped_r2field(name): """ The column name in *newrec* that corresponds to the column in *r2*. """ if name in key or name not in r1.dtype.names: return name else: return name + r2postfix r1desc = [(mapped_r1field(desc[0]), desc[1]) for desc in r1.dtype.descr if desc[0] not in key] r2desc = [(mapped_r2field(desc[0]), desc[1]) for desc in r2.dtype.descr if desc[0] not in key] newdtype = np.dtype(keydesc + r1desc + r2desc) newrec = np.empty(common_len + left_len + right_len, dtype=newdtype) if jointype != 'inner' and defaults is not None: # fill in the defaults enmasse newrec_fields = newrec.dtype.fields.keys() for k, v in defaults.items(): if k in newrec_fields: newrec[k] = v for field in r1.dtype.names: newfield = mapped_r1field(field) if common_len: newrec[newfield][:common_len] = r1[field][r1ind] if (jointype == "outer" or jointype == "leftouter") and left_len: newrec[newfield][common_len:(common_len+left_len)] = r1[field][left_ind] for field in r2.dtype.names: newfield = mapped_r2field(field) if field not in key and common_len: newrec[newfield][:common_len] = r2[field][r2ind] if jointype == "outer" and right_len: newrec[newfield][-right_len:] = r2[field][right_ind] newrec.sort(order=key) return rec_view(newrec) def csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',', converterd=None, names=None, missing='', missingd=None, use_mrecords=True): """ Load data from comma/space/tab delimited file in *fname* into a numpy record array and return the record array. If *names* is *None*, a header row is required to automatically assign the recarray names. The headers will be lower cased, spaces will be converted to underscores, and illegal attribute name characters removed. If *names* is not *None*, it is a sequence of names to use for the column names. In this case, it is assumed there is no header row. - *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' - *comments*: the character used to indicate the start of a comment in the file - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *converted*: if not *None*, is a dictionary mapping column number or munged column name to a converter function. - *names*: if not None, is a list of header names. In this case, no header will be read from the file - *missingd* is a dictionary mapping munged column names to field values which signify that the field does not contain actual data and should be masked, e.g. '0000-00-00' or 'unused' - *missing*: a string whose value signals a missing field regardless of the column it appears in - *use_mrecords*: if True, return an mrecords.fromrecords record array if any of the data are missing If no rows are found, *None* is returned -- see :file:`examples/loadrec.py` """ if converterd is None: converterd = dict() if missingd is None: missingd = {} import dateutil.parser import datetime parsedate = dateutil.parser.parse fh = cbook.to_filehandle(fname) class FH: """ For space-delimited files, we want different behavior than comma or tab. Generally, we want multiple spaces to be treated as a single separator, whereas with comma and tab we want multiple commas to return multiple (empty) fields. The join/strip trick below effects this. """ def __init__(self, fh): self.fh = fh def close(self): self.fh.close() def seek(self, arg): self.fh.seek(arg) def fix(self, s): return ' '.join(s.split()) def next(self): return self.fix(self.fh.next()) def __iter__(self): for line in self.fh: yield self.fix(line) if delimiter==' ': fh = FH(fh) reader = csv.reader(fh, delimiter=delimiter) def process_skiprows(reader): if skiprows: for i, row in enumerate(reader): if i>=(skiprows-1): break return fh, reader process_skiprows(reader) def ismissing(name, val): "Should the value val in column name be masked?" if val == missing or val == missingd.get(name) or val == '': return True else: return False def with_default_value(func, default): def newfunc(name, val): if ismissing(name, val): return default else: return func(val) return newfunc def mybool(x): if x=='True': return True elif x=='False': return False else: raise ValueError('invalid bool') dateparser = dateutil.parser.parse mydateparser = with_default_value(dateparser, datetime.date(1,1,1)) myfloat = with_default_value(float, np.nan) myint = with_default_value(int, -1) mystr = with_default_value(str, '') mybool = with_default_value(mybool, None) def mydate(x): # try and return a date object d = dateparser(x) if d.hour>0 or d.minute>0 or d.second>0: raise ValueError('not a date') return d.date() mydate = with_default_value(mydate, datetime.date(1,1,1)) def get_func(name, item, func): # promote functions in this order funcmap = {mybool:myint,myint:myfloat, myfloat:mydate, mydate:mydateparser, mydateparser:mystr} try: func(name, item) except: if func==mystr: raise ValueError('Could not find a working conversion function') else: return get_func(name, item, funcmap[func]) # recurse else: return func # map column names that clash with builtins -- TODO - extend this list itemd = { 'return' : 'return_', 'file' : 'file_', 'print' : 'print_', } def get_converters(reader): converters = None for i, row in enumerate(reader): if i==0: converters = [mybool]*len(row) if checkrows and i>checkrows: break #print i, len(names), len(row) #print 'converters', zip(converters, row) for j, (name, item) in enumerate(zip(names, row)): func = converterd.get(j) if func is None: func = converterd.get(name) if func is None: #if not item.strip(): continue func = converters[j] if len(item.strip()): func = get_func(name, item, func) else: # how should we handle custom converters and defaults? func = with_default_value(func, None) converters[j] = func return converters # Get header and remove invalid characters needheader = names is None if needheader: for row in reader: #print 'csv2rec', row if len(row) and row[0].startswith(comments): continue headers = row break # remove these chars delete = set("""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") delete.add('"') names = [] seen = dict() for i, item in enumerate(headers): item = item.strip().lower().replace(' ', '_') item = ''.join([c for c in item if c not in delete]) if not len(item): item = 'column%d'%i item = itemd.get(item, item) cnt = seen.get(item, 0) if cnt>0: names.append(item + '_%d'%cnt) else: names.append(item) seen[item] = cnt+1 else: if cbook.is_string_like(names): names = [n.strip() for n in names.split(',')] # get the converter functions by inspecting checkrows converters = get_converters(reader) if converters is None: raise ValueError('Could not find any valid data in CSV file') # reset the reader and start over fh.seek(0) reader = csv.reader(fh, delimiter=delimiter) process_skiprows(reader) if needheader: skipheader = reader.next() # iterate over the remaining rows and convert the data to date # objects, ints, or floats as approriate rows = [] rowmasks = [] for i, row in enumerate(reader): if not len(row): continue if row[0].startswith(comments): continue rows.append([func(name, val) for func, name, val in zip(converters, names, row)]) rowmasks.append([ismissing(name, val) for name, val in zip(names, row)]) fh.close() if not len(rows): return None if use_mrecords and np.any(rowmasks): try: from numpy.ma import mrecords except ImportError: raise RuntimeError('numpy 1.05 or later is required for masked array support') else: r = mrecords.fromrecords(rows, names=names, mask=rowmasks) else: r = np.rec.fromrecords(rows, names=names) return r # a series of classes for describing the format intentions of various rec views class FormatObj: def tostr(self, x): return self.toval(x) def toval(self, x): return str(x) def fromstr(self, s): return s class FormatString(FormatObj): def tostr(self, x): val = repr(x) return val[1:-1] #class FormatString(FormatObj): # def tostr(self, x): # return '"%r"'%self.toval(x) class FormatFormatStr(FormatObj): def __init__(self, fmt): self.fmt = fmt def tostr(self, x): if x is None: return 'None' return self.fmt%self.toval(x) class FormatFloat(FormatFormatStr): def __init__(self, precision=4, scale=1.): FormatFormatStr.__init__(self, '%%1.%df'%precision) self.precision = precision self.scale = scale def toval(self, x): if x is not None: x = x * self.scale return x def fromstr(self, s): return float(s)/self.scale class FormatInt(FormatObj): def tostr(self, x): return '%d'%int(x) def toval(self, x): return int(x) def fromstr(self, s): return int(s) class FormatBool(FormatObj): def toval(self, x): return str(x) def fromstr(self, s): return bool(s) class FormatPercent(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=100.) class FormatThousands(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-3) class FormatMillions(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-6) class FormatDate(FormatObj): def __init__(self, fmt): self.fmt = fmt def toval(self, x): if x is None: return 'None' return x.strftime(self.fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x).date() class FormatDatetime(FormatDate): def __init__(self, fmt='%Y-%m-%d %H:%M:%S'): FormatDate.__init__(self, fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x) defaultformatd = { np.bool_ : FormatBool(), np.int16 : FormatInt(), np.int32 : FormatInt(), np.int64 : FormatInt(), np.float32 : FormatFloat(), np.float64 : FormatFloat(), np.object_ : FormatObj(), np.string_ : FormatString(), } def get_formatd(r, formatd=None): 'build a formatd guaranteed to have a key for every dtype name' if formatd is None: formatd = dict() for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = defaultformatd.get(dt.type, FormatObj()) formatd[name] = format return formatd def csvformat_factory(format): format = copy.deepcopy(format) if isinstance(format, FormatFloat): format.scale = 1. # override scaling for storage format.fmt = '%r' return format def rec2txt(r, header=None, padding=3, precision=3): """ Returns a textual representation of a record array. *r*: numpy recarray *header*: list of column headers *padding*: space between each column *precision*: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to a list of integers to apply precision individually. Precision for non-floats is simply ignored. Example:: precision=[0,2,3] Output:: ID Price Return ABC 12.54 0.234 XYZ 6.32 -0.076 """ if cbook.is_numlike(precision): precision = [precision]*len(r.dtype) def get_type(item,atype=int): tdict = {None:int, int:float, float:str} try: atype(str(item)) except: return get_type(item,tdict[atype]) return atype def get_justify(colname, column, precision): ntype = type(column[0]) if ntype==np.str or ntype==np.str_ or ntype==np.string0 or ntype==np.string_: length = max(len(colname),column.itemsize) return 0, length+padding, "%s" # left justify if ntype==np.int or ntype==np.int16 or ntype==np.int32 or ntype==np.int64 or ntype==np.int8 or ntype==np.int_: length = max(len(colname),np.max(map(len,map(str,column)))) return 1, length+padding, "%d" # right justify # JDH: my powerbook does not have np.float96 using np 1.3.0 """ In [2]: np.__version__ Out[2]: '1.3.0.dev5948' In [3]: !uname -a Darwin Macintosh-5.local 9.4.0 Darwin Kernel Version 9.4.0: Mon Jun 9 19:30:53 PDT 2008; root:xnu-1228.5.20~1/RELEASE_I386 i386 i386 In [4]: np.float96 --------------------------------------------------------------------------- AttributeError Traceback (most recent call la """ if ntype==np.float or ntype==np.float32 or ntype==np.float64 or (hasattr(np, 'float96') and (ntype==np.float96)) or ntype==np.float_: fmt = "%." + str(precision) + "f" length = max(len(colname),np.max(map(len,map(lambda x:fmt%x,column)))) return 1, length+padding, fmt # right justify return 0, max(len(colname),np.max(map(len,map(str,column))))+padding, "%s" if header is None: header = r.dtype.names justify_pad_prec = [get_justify(header[i],r.__getitem__(colname),precision[i]) for i, colname in enumerate(r.dtype.names)] justify_pad_prec_spacer = [] for i in range(len(justify_pad_prec)): just,pad,prec = justify_pad_prec[i] if i == 0: justify_pad_prec_spacer.append((just,pad,prec,0)) else: pjust,ppad,pprec = justify_pad_prec[i-1] if pjust == 0 and just == 1: justify_pad_prec_spacer.append((just,pad-padding,prec,0)) elif pjust == 1 and just == 0: justify_pad_prec_spacer.append((just,pad,prec,padding)) else: justify_pad_prec_spacer.append((just,pad,prec,0)) def format(item, just_pad_prec_spacer): just, pad, prec, spacer = just_pad_prec_spacer if just == 0: return spacer*' ' + str(item).ljust(pad) else: if get_type(item) == float: item = (prec%float(item)) elif get_type(item) == int: item = (prec%int(item)) return item.rjust(pad) textl = [] textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(header)])) for i, row in enumerate(r): textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(row)])) if i==0: textl[0] = textl[0].rstrip() text = os.linesep.join(textl) return text def rec2csv(r, fname, delimiter=',', formatd=None, missing='', missingd=None): """ Save the data from numpy recarray *r* into a comma-/space-/tab-delimited file. The record array dtype names will be used for column headers. *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' .. seealso:: :func:`csv2rec`: For information about *missing* and *missingd*, which can be used to fill in masked values into your CSV file. """ if missingd is None: missingd = dict() def with_mask(func): def newfunc(val, mask, mval): if mask: return mval else: return func(val) return newfunc formatd = get_formatd(r, formatd) funcs = [] for i, name in enumerate(r.dtype.names): funcs.append(with_mask(csvformat_factory(formatd[name]).tostr)) fh, opened = cbook.to_filehandle(fname, 'w', return_opened=True) writer = csv.writer(fh, delimiter=delimiter) header = r.dtype.names writer.writerow(header) # Our list of specials for missing values mvals = [] for name in header: mvals.append(missingd.get(name, missing)) ismasked = False if len(r): row = r[0] ismasked = hasattr(row, '_fieldmask') for row in r: if ismasked: row, rowmask = row.item(), row._fieldmask.item() else: rowmask = [False] * len(row) writer.writerow([func(val, mask, mval) for func, val, mask, mval in zip(funcs, row, rowmask, mvals)]) if opened: fh.close() def griddata(x,y,z,xi,yi): """ ``zi = griddata(x,y,z,xi,yi)`` fits a surface of the form *z* = *f*(*x*, *y*) to the data in the (usually) nonuniformly spaced vectors (*x*, *y*, *z*). :func:`griddata` interpolates this surface at the points specified by (*xi*, *yi*) to produce *zi*. *xi* and *yi* must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing. A masked array is returned if any grid points are outside convex hull defined by input data (no extrapolation is done). Uses natural neighbor interpolation based on Delaunay triangulation. By default, this algorithm is provided by the :mod:`matplotlib.delaunay` package, written by Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological cases. For this reason, a separate toolkit (:mod:`mpl_tookits.natgrid`) has been created that provides a more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR natgrid library, which contains code that is not redistributable under a BSD-compatible license. When installed, this function will use the :mod:`mpl_toolkits.natgrid` algorithm, otherwise it will use the built-in :mod:`matplotlib.delaunay` package. The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792 """ try: from mpl_toolkits.natgrid import _natgrid, __version__ _use_natgrid = True except ImportError: import matplotlib.delaunay as delaunay from matplotlib.delaunay import __version__ _use_natgrid = False if not griddata._reported: if _use_natgrid: verbose.report('using natgrid version %s' % __version__) else: verbose.report('using delaunay version %s' % __version__) griddata._reported = True if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if not len(x)==len(y)==len(z): raise TypeError("inputs x,y,z must all be 1D arrays of the same length") # remove masked points. if hasattr(z,'mask'): x = x.compress(z.mask == False) y = y.compress(z.mask == False) z = z.compressed() if _use_natgrid: # use natgrid toolkit if available. if xi.ndim == 2: xi = xi[0,:] yi = yi[:,0] # override default natgrid internal parameters. _natgrid.seti('ext',0) _natgrid.setr('nul',np.nan) # cast input arrays to doubles (this makes a copy) x = x.astype(np.float) y = y.astype(np.float) z = z.astype(np.float) xo = xi.astype(np.float) yo = yi.astype(np.float) if min(xo[1:]-xo[0:-1]) < 0 or min(yo[1:]-yo[0:-1]) < 0: raise ValueError, 'output grid defined by xi,yi must be monotone increasing' # allocate array for output (buffer will be overwritten by nagridd) zo = np.empty((yo.shape[0],xo.shape[0]), np.float) _natgrid.natgridd(x,y,z,xo,yo,zo) else: # use Robert Kern's delaunay package from scikits (default) if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if xi.ndim == 1: xi,yi = np.meshgrid(xi,yi) # triangulate data tri = delaunay.Triangulation(x,y) # interpolate data interp = tri.nn_interpolator(z) zo = interp(xi,yi) # mask points on grid outside convex hull of input data. if np.any(np.isnan(zo)): zo = np.ma.masked_where(np.isnan(zo),zo) return zo griddata._reported = False ################################################## # Linear interpolation algorithms ################################################## def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function provides simple (but somewhat less so than :func:`cbook.simple_linear_interpolation`) linear interpolation. :func:`simple_linear_interpolation` will give a list of point between a start and an end, while this does true linear interpolation at an arbitrary set of points. This is very inefficient linear interpolation meant to be used only for a small number of points in relatively non-intensive use cases. For real linear interpolation, use scipy. """ if cbook.is_scalar(xi): xi = [xi] x = np.asarray(x) y = np.asarray(y) xi = np.asarray(xi) s = list(y.shape) s[0] = len(xi) yi = np.tile( np.nan, s ) for ii,xx in enumerate(xi): bb = x == xx if np.any(bb): jj, = np.nonzero(bb) yi[ii] = y[jj[0]] elif xx<x[0]: if extrap: yi[ii] = y[0] elif xx>x[-1]: if extrap: yi[ii] = y[-1] else: jj, = np.nonzero(x<xx) jj = max(jj) yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj]) return yi def slopes(x,y): """ :func:`slopes` calculates the slope *y*'(*x*) The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between *x*- and *y*-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases. Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ Given data vectors *x* and *y*, the slope vector *yp* and a new abscissa vector *xi*, the function :func:`stineman_interp` uses Stineman interpolation to calculate a vector *yi* corresponding to *xi*. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa:: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were: not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For *yp* = *None*, the routine automatically determines the slopes using the :func:`slopes` routine. *x* is assumed to be sorted in increasing order. For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine tries an extrapolation. The relevance of the data obtained from this, of course, is questionable... Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi ################################################## # Code related to things in and around polygons ################################################## def inside_poly(points, verts): """ *points* is a sequence of *x*, *y* points. *verts* is a sequence of *x*, *y* vertices of a polygon. Return value is a sequence of indices into points for the points that are inside the polygon. """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(xmin, xs, ys): """ Given a sequence of *xs* and *ys*, return the vertices of a polygon that has a horizontal base at *xmin* and an upper bound at the *ys*. *xmin* is a scalar. Intended for use with :meth:`matplotlib.axes.Axes.fill`, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ if ma.isMaskedArray(xs) or ma.isMaskedArray(ys): nx = ma else: nx = np xs = nx.asarray(xs) ys = nx.asarray(ys) Nx = len(xs) Ny = len(ys) assert(Nx==Ny) x = xmin*nx.ones(2*Nx) y = nx.ones(2*Nx) x[:Nx] = xs y[:Nx] = ys y[Nx:] = ys[::-1] return x, y def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): nx = ma else: nx = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*nx.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*nx.ones(Nx) x = nx.concatenate( (x, x[::-1]) ) y = nx.concatenate( (yupper, ylower[::-1]) ) return x,y def is_closed_polygon(X): """ Tests whether first and last object in a sequence are the same. These are presumably coordinates on a polygonal curve, in which case this function tests if that curve is closed. """ return np.all(X[0] == X[-1]) def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions TODO: this is a pure python implementation which probably has a much faster numpy impl """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundaries ################################################## # Vector and path length geometry calculations ################################################## def vector_lengths( X, P=2., axis=None ): """ Finds the length of a set of vectors in *n* dimensions. This is like the :func:`numpy.norm` function for vectors, but has the ability to work over a particular axis of the supplied array or matrix. Computes ``(sum((x_i)^P))^(1/P)`` for each ``{x_i}`` being the elements of *X* along the given axis. If *axis* is *None*, compute over all elements of *X*. """ X = np.asarray(X) return (np.sum(X**(P),axis=axis))**(1./P) def distances_along_curve( X ): """ Computes the distance between a set of successive points in *N* dimensions. Where *X* is an *M* x *N* array or matrix. The distances between successive rows is computed. Distance is the standard Euclidean distance. """ X = np.diff( X, axis=0 ) return vector_lengths(X,axis=1) def path_length(X): """ Computes the distance travelled along a polygonal curve in *N* dimensions. Where *X* is an *M* x *N* array or matrix. Returns an array of length *M* consisting of the distance along the curve at each point (i.e., the rows of *X*). """ X = distances_along_curve(X) return np.concatenate( (np.zeros(1), np.cumsum(X)) ) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ Converts a quadratic Bezier curve to a cubic approximation. The inputs are the *x* and *y* coordinates of the three control points of a quadratic curve, and the output is a tuple of *x* and *y* coordinates of the four control points of the cubic curve. """ # c0x, c0y = q0x, q0y c1x, c1y = q0x + 2./3. * (q1x - q0x), q0y + 2./3. * (q1y - q0y) c2x, c2y = c1x + 1./3. * (q2x - q0x), c1y + 1./3. * (q2y - q0y) # c3x, c3y = q2x, q2y return q0x, q0y, c1x, c1y, c2x, c2y, q2x, q2y
gpl-3.0
rjpower/fastnet
fastnet/analysis.py
1
6708
#!/usr/bin/env '''Functions for analyzing the output of fastnet checkpoint files.''' from fastnet import util from matplotlib.pyplot import gcf from math import sqrt import anydbm import cPickle import matplotlib.pyplot as plt import numpy as np import os import pandas import pylab import shelve import sys import zipfile def find_latest(pattern): import glob files = glob.glob(pattern) ftimes = sorted((os.stat(f).st_ctime, f) for f in files) if ftimes: return ftimes[-1][1] return None def select(df, **cond): k, v = cond.items()[0] idx = getattr(df, k) == v for k, v in cond.items()[1:]: idx2 = getattr(df, k) == v idx = idx & idx2 return df[idx] def _load_series(data, scale=1): lp = [t['logprob'] for t,count,elapsed in data] counts = np.array([count for t,count,elapsed in data]).cumsum() examples = counts * scale elapsed = np.array([elapsed for t,count,elapsed in data]) logprob = np.array([t[0] for t in lp]) prec = np.array([t[1] for t in lp]) return pandas.DataFrame({'lp' : logprob, 'pr' : prec, 'elapsed' : elapsed, 'examples' : examples}) def try_load_zip(state_f): try: zf = zipfile.ZipFile(state_f, 'r') train_outputs = cPickle.loads(zf.read('train_outputs')) test_outputs = cPickle.loads(zf.read('test_outputs')) return train_outputs, test_outputs except: print sys.exc_info() return None, None def try_load_pickle(state_f): try: data = cPickle.loads(open(state_f).read()) train_outputs = data['train_outputs'] test_outputs = data['test_outputs'] return train_outputs, test_outputs except: print sys.exc_info() return None, None def try_load_shelf(state_f): try: data = shelve.open(state_f, flag='r') train_outputs = data['train_outputs'] test_outputs = data['test_outputs'] return train_outputs, test_outputs except: print sys.exc_info() return None, None def load_checkpoint(pattern): state_f = find_latest(pattern) assert state_f is not None train_outputs, test_outputs = try_load_zip(state_f) if not train_outputs: train_outputs, test_outputs = try_load_pickle(state_f) if not train_outputs: train_outputs, test_outputs = try_load_shelf(state_f) assert train_outputs is not None train_df = _load_series(train_outputs) train_df['type'] = 'train' test_df = _load_series(test_outputs) test_df['type'] = 'test' #return train_df, test_df out = pandas.concat([train_df, test_df]) return out def plot_df(df, x, y, save_to=None, title=None, merge=False, x_label=None, y_label=None, legend=None, transform_x=lambda k, x: x, transform_y=lambda k, y: y, xlim=None, ylim=None): from itertools import cycle lines = cycle(["-","--","-.",":"]) colors = cycle('bgrcmyk') if merge: f = gcf() else: f = plt.figure() if isinstance(df, dict): for k in sorted(df.keys()): v = df[k] ax = f.add_subplot(111) ax.plot(transform_x(k, v[x]), transform_y(k, v[y]), linestyle=lines.next(), color=colors.next(), label='%s' % k) else: ax = f.add_subplot(111) ax.plot(df[x], df[y], linestyle=lines.next(), color=colors.next()) ax.set_title(title) if legend: ax.legend(title=legend) ax.set_xlabel(x_label) ax.set_ylabel(y_label) if xlim is not None: ax.set_xlim(xlim) if ylim is not None: ax.set_ylim(ylim) #ax.set_yscale('log') f.set_figheight(8) f.set_figwidth(12) if save_to is not None: pylab.savefig(save_to, bbox_inches=0) def plot_series(frame, groupby, x, y, **kw): g = frame.groupby(groupby) df = dict([(k, g.get_group(k)) for k in g.groups.keys()]) kw['x_label'] = x kw['y_label'] = y plot_df(df, x, y, **kw) def build_image(array): if len(array.shape) == 4: filter_size = array.shape[1] else: filter_size = array.shape[0] num_filters = array.shape[-1] num_cols = util.divup(80, filter_size) num_rows = util.divup(num_filters, num_cols) if len(array.shape) == 4: big_pic = np.zeros((3, (filter_size + 1) * num_rows, (filter_size + 1) * num_cols)) else: big_pic = np.zeros((filter_size * num_rows, filter_size * num_cols)) for i in range(num_rows): for j in range(num_cols): idx = i * num_cols + j if idx >= num_filters: break x = i*(filter_size + 1) y = j*(filter_size + 1) if len(array.shape) == 4: big_pic[:, x:x+filter_size, y:y+filter_size] = array[:, :, :, idx] else: big_pic[x:x+filter_size, y:y+filter_size] = array[:, :, idx] if len(array.shape) == 4: return big_pic.transpose(1, 2, 0) return big_pic def load_layer(f, layer_id=1): cp = find_latest(f) try: sf = shelve.open(cp, flag='r') layer = sf['layers'][layer_id] except anydbm.error: zf = zipfile.ZipFile(cp) layer = cPickle.loads(zf.read('layers'))[layer_id] imgs = layer['weight'] filters = layer['numFilter'] filter_size = layer['filterSize'] colors = layer['numColor'] imgs = imgs.reshape(colors, filter_size, filter_size, filters) + layer['bias'].reshape(1, 1, 1, filters) return imgs def load_layers(f): cp = find_latest(f) try: sf = shelve.open(cp, flag='r') layers = sf['layers'] except anydbm.error: zf = zipfile.ZipFile(cp) layers = cPickle.loads(zf.read('layers')) weights = {} for layer in layers: if not 'weight' in layer: continue if not 'numFilter' in layer: continue imgs = layer['weight'] filters = layer['numFilter'] filter_size = layer['filterSize'] colors = layer['numColor'] imgs = imgs.reshape(colors, filter_size, filter_size, filters) bias = layer['bias'].reshape(1, 1, 1, filters) weights[layer['name']] = imgs + bias return weights def plot_filters(imgs, ax=None): imgs = imgs - imgs.min() imgs = imgs / imgs.max() if ax is None: fig = pylab.gcf() fig.set_size_inches(12, 8) ax = fig.add_subplot(111) big_pic = build_image(imgs) ax.imshow(big_pic, interpolation='nearest') def plot_file(f, layer_id=1): return plot_filters(load_layer(f, layer_id)) def diff_files(a, b): f_a = load_layer(a) f_b = load_layer(b) fig = pylab.gcf() fig.set_size_inches(12, 8) ax = fig.add_subplot(111) diff = np.abs(f_a - f_b) print sqrt((diff ** 2).sum()) #diff = diff - diff.min() #diff = diff / diff.max() #big_pic = build_image(diff) #print diff[0, :, :, 0] #print f_a[0, :, :, 0] #print f_b[0, :, :, 0] #diff = diff / max(np.max(f_a), np.max(f_b)) ax.imshow(build_image(diff)) return diff
gpl-3.0
cbenz/openfisca-hackallocs
calculate_ars.py
1
3137
#!/usr/bin/env python # -*- coding: utf-8 -*- # import json import os import numpy as np import pandas as pd from openfisca_core import periods import openfisca_france script_dir = os.path.realpath(os.path.dirname(__file__)) data_dir = os.path.realpath(os.path.join(script_dir, 'data')) def read_data(path): # path_agen = os.path.join(path, 'agen_utile.csv') # agen = pd.read_csv(path_agen, sep=';') path_fil = os.path.join(path, 'fil_utile.csv') fil = pd.read_csv(path_fil, sep=';') ### # données foyer familliales # fam = fil['ARSVERS'] # NUMCOMDO ? # fam2 = agen[['ARSVERS', 'MTARSVER']] # données individuelles # on part de la table par foyer var_ages = ['DTNAIRES', 'DTNAICON'] var_age_enf = [u'ANNNEN1', u'ANNNEN2', u'ANNNEN3', u'ANNNEN4'] ind = fil[['PERSCOUV', 'SEXE'] + var_ages + var_age_enf] nb_adulte = 1 + (ind.DTNAICON != 99) nb_enf = (ind.PERSCOUV - nb_adulte) nb_enf_autres = nb_enf - 4 * (ind.ANNNEN4.notnull()) nb_enf_autres[nb_enf_autres < 0] = 0 for var in var_age_enf: ind[var].replace(0, np.nan, inplace=True) ind[var] = 2013 - ind[var] for var in var_ages: age = ind[var] age[age == 99] = np.nan age = 5 * (age - 2) + 20 + 2 age[age == 17] = 10 ind[var] = age ind['idfam'] = ind.index # quifam = 0 quifam0 = ind[['idfam', 'DTNAIRES']] quifam0.columns = ['idfam', 'age'] quifam0['quifam'] = 0 # quifam = 0 quifam1 = ind.loc[ind['DTNAICON'].notnull(), ['idfam', 'DTNAICON']] quifam1.columns = ['idfam', 'age'] quifam1['quifam'] = 1 list_enf = [] for num_enf in range(4): var_enf_name = 'ANNNEN' + str(num_enf + 1) var_enf = ind[var_enf_name] enf = ind.loc[var_enf.notnull(), ['idfam', var_enf_name]] enf.columns = ['idfam', 'age'] enf['quifam'] = 2 + num_enf + 1 list_enf += [enf] count = 7 while sum(nb_enf_autres > 0) > 0: cond = nb_enf_autres > 0 enf_autre = ind.loc[cond, ['idfam', 'ANNNEN4']] enf_autre.columns = ['idfam', 'age'] enf_autre['age'] += count - 6 enf_autre['quifam'] = count nb_enf_autres -= 1 count += 1 list_enf += [enf_autre] individu = quifam0.append([quifam1] + list_enf) return individu def main(): TaxBenefitSystem = openfisca_france.init_country() tax_benefit_system = TaxBenefitSystem() scenario = tax_benefit_system.new_scenario() scenario.period = periods.period('2014') individu = read_data(data_dir) year_birth = (2014 - individu['age']).astype(int).astype(str) individu['birth'] = year_birth + '-10-02' individu['birth'] = pd.to_datetime(individu['birth']) del individu['age'] scenario.input_variables = { variable_name: {periods.period('2014'): serie.values} for variable_name, serie in individu.iterkv() } simulation = scenario.new_simulation() ars = simulation.calculate('ars') print ars print len(ars) if __name__ == '__main__': main()
agpl-3.0
jeffmkw/DAT210x-Lab
Module5/assignment5.py
1
4696
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib from sklearn import preprocessing from sklearn.decomposition import PCA matplotlib.style.use('ggplot') # Look Pretty def plotDecisionBoundary(model, X, y): fig = plt.figure() ax = fig.add_subplot(111) padding = 0.6 resolution = 0.0025 colors = ['royalblue','forestgreen','ghostwhite'] # Calculate the boundaries x_min, x_max = X[:, 0].min(), X[:, 0].max() y_min, y_max = X[:, 1].min(), X[:, 1].max() x_range = x_max - x_min y_range = y_max - y_min x_min -= x_range * padding y_min -= y_range * padding x_max += x_range * padding y_max += y_range * padding # Create a 2D Grid Matrix. The values stored in the matrix are the predictions of the class at said location xx, yy = np.meshgrid(np.arange(x_min, x_max, resolution), np.arange(y_min, y_max, resolution)) # What class does the classifier say? Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour map plt.contourf(xx, yy, Z, cmap=plt.cm.terrain) plt.axis('tight') # Plot our original points as well... for label in range(len(np.unique(y))): indices = np.where(y == label) plt.scatter(X[indices, 0], X[indices, 1], c=colors[label], label=str(label), alpha=0.8) p = model.get_params() plt.title('K = ' + str(p['n_neighbors'])) # # TODO: Load up the dataset into a variable called X. Check the .head and compare it to the file you loaded in a # text editor. Make sure you're loading your data properly--don't fail on the 1st step! # # .. your code here .. X = pd.read_csv('Datasets/wheat.data') #print X.head() # # TODO: Copy the 'wheat_type' series slice out of X, and into a series called 'y'. Then drop the original 'wheat_type' # column from the X # # .. your code here .. y = X.wheat_type # Also drop the 'id' column, since that is not a relevant feature X.drop(labels = ['id', 'wheat_type'], axis = 1, inplace = True) # TODO: Do a quick, "nominal" conversion of 'y' by encoding it to a SINGLE variable (e.g. 0, 1, 2). This is covered # in the Feature Representation reading as "Method 1)". In actuality the classification isn't nominal, but this is # the fastest way to encode your 3 possible wheat types into a label that you can plot distinctly. More notes about # this on the bottom of the assignment. # # .. your code here .. y = y.astype('category').cat.codes # # TODO: Basic nan munging. Fill each row's nans with the mean of the feature # # .. your code here .. #print X.isnull().sum() # Has a few missing values X.compactness.fillna(X.compactness.mean(), inplace = True) X.width.fillna(X.width.mean(), inplace = True) X.groove.fillna(X.groove.mean(), inplace = True) print (X.isnull().sum()) # No more missing values!) print (y.isnull().sum()) # Has no missing values # # TODO: Use SKLearn's regular "normalize" preprocessor to normalize X's feature data # # .. your code here .. T = preprocessing.normalize(X) # # TODO: Project both your X_train and X_test features into PCA space. This has to be done because the only way to visualize the # decision boundary in 2D, would be if your KNN algo ran in 2D as well # # .. your code here .. pca = PCA(n_components = 2) pca_X = pca.fit_transform(T) # # TODO: Split out your training and testing data. # INFO: Use 0.33 test size, and use random_state=1. This is important so that your answers are verifiable. In the real world, # you wouldn't specify a random_state. # # .. your code here .. from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(pca_X, y, test_size = 0.33, random_state = 14) # # TODO: Run KNeighborsClassifier. Start out with K=7 neighbors. NOTE: Be sure train your classifier against the PCA transformed # feature data above! You do not, however, need to transform your labels. # # .. your code here .. from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors = 9) knn.fit(X_train, y_train) # HINT: Ensure your KNeighbors classifier object from earlier is called 'knn'. # This method plots your TEST points against the boundary learned from your training data: #plotDecisionBoundary(knn, X_test, y_test) # # TODO: Display the accuracy score. # # NOTE: You don't have to run .predict before calling .score, since .score will take care of running your predictions for the # params you provided. # # .. your code here .. print (knn.score(X_test, y_test)) # # BONUS: Instead of the ordinal conversion, try and get this assignment working with a proper Pandas get_dummies for feature encoding. # HINT: You might have to update some of the plotDecisionBoundary code. plt.show()
mit
wateraccounting/wa
Collect/ETmonitor/DataAccess.py
1
7715
# -*- coding: utf-8 -*- """ Authors: Tim Hessels and Gonzalo Espinoza UNESCO-IHE 2016 Contact: [email protected] [email protected] Repository: https://github.com/wateraccounting/wa Module: Collect/ETmonitor Restrictions: The data and this python file may not be distributed to others without permission of the WA+ team due data restriction of the ETmonitor developers. Description: This script collects ETmonitor data from the UNESCO-IHE FTP server. The data has a monthly temporal resolution and a spatial resolution of 0.01 degree. The resulting tiff files are in the WGS84 projection. The data is available between 2008-01-01 till 2012-12-31. Example: from wa.Collect import ETmonitor ETmonitor.ET_monthly(Dir='C:/Temp/', Startdate='2003-02-24', Enddate='2003-03-09', latlim=[50,54], lonlim=[3,7]) """ # General modules import numpy as np import os import pandas as pd from ftplib import FTP # Water Accounting Modules import wa.WebAccounts as WebAccounts import wa.General.raster_conversions as RC def DownloadData(Dir, Startdate, Enddate, latlim, lonlim, Type, Waitbar): """ This scripts downloads ETmonitor ET data from the UNESCO-IHE ftp server. The output files display the total ET in mm for a period of one month. The name of the file corresponds to the first day of the month. Keyword arguments: Dir -- 'C:/file/to/path/' Startdate -- 'yyyy-mm-dd' Enddate -- 'yyyy-mm-dd' lonlim -- [ymin, ymax] (values must be between -90 and 90) latlim -- [xmin, xmax] (values must be between -180 and 180) """ # Check the latitude and longitude and otherwise set lat or lon on greatest extent if latlim[0] < -90 or latlim[1] > 90: print 'Latitude above 90N or below 90S is not possible. Value set to maximum' latlim[0] = np.max(latlim[0], -90) latlim[1] = np.min(latlim[1], 90) if lonlim[0] < -180 or lonlim[1] > 180: print 'Longitude must be between 180E and 180W. Now value is set to maximum' lonlim[0] = np.max(lonlim[0],-180) lonlim[1] = np.min(lonlim[1],180) # Check Startdate and Enddate if not Startdate: Startdate = pd.Timestamp('2008-01-01') if not Enddate: Enddate = pd.Timestamp('2012-12-31') # Creates dates library Dates = pd.date_range(Startdate, Enddate, freq = "MS") # Create Waitbar if Waitbar == 1: import wa.Functions.Start.WaitbarConsole as WaitbarConsole total_amount = len(Dates) amount = 0 WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50) # Define directory and create it if not exists if Type == "act": output_folder = os.path.join(Dir, 'Evaporation', 'ETmonitor', 'Monthly') if Type == "pot": output_folder = os.path.join(Dir, 'ETpot', 'ETmonitor', 'Monthly') if Type == "ei": output_folder = os.path.join(Dir, 'Ei', 'ETmonitor', 'Monthly') if Type == "es": output_folder = os.path.join(Dir, 'Es', 'ETmonitor', 'Monthly') if Type == "ew": output_folder = os.path.join(Dir, 'Ew', 'ETmonitor', 'Monthly') if Type == "tr": output_folder = os.path.join(Dir, 'Transpiration', 'ETmonitor', 'Monthly') if not os.path.exists(output_folder): os.makedirs(output_folder) for Date in Dates: # Define year and month year = Date.year month = Date.month # Define end filename and Date as printed in filename if Type == "act": Filename_in = "ET_ETmonitor_mm-month_%d_%02d_01.tif" %(year, month) Filename_out= os.path.join(output_folder,'ETa_ETmonitor_mm-month-1_monthly_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))) if Type == "pot": Filename_in = "ETpot_ETmonitor_mm-month_%d_%02d_01.tif" %(year, month) Filename_out= os.path.join(output_folder,'ETpot_ETmonitor_mm-month-1_monthly_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))) if Type == "ei": Filename_in = "Ei_ETmonitor_mm-month_%d_%02d_01.tif" %(year, month) Filename_out= os.path.join(output_folder,'Ei_ETmonitor_mm-month-1_monthly_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))) if Type == "es": Filename_in = "Es_ETmonitor_mm-month_%d_%02d_01.tif" %(year, month) Filename_out= os.path.join(output_folder,'Es_ETmonitor_mm-month-1_monthly_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))) if Type == "ew": Filename_in = "Ew_ETmonitor_mm-month_%d_%02d_01.tif" %(year, month) Filename_out= os.path.join(output_folder,'Ew_ETmonitor_mm-month-1_monthly_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))) if Type == "tr": Filename_in = "Tr_ETmonitor_mm-month_%d_%02d_01.tif" %(year, month) Filename_out= os.path.join(output_folder,'Tr_ETmonitor_mm-month-1_monthly_%s.%02s.%02s.tif' %(Date.strftime('%Y'), Date.strftime('%m'), Date.strftime('%d'))) # Temporary filename for the downloaded global file local_filename = os.path.join(output_folder, Filename_in) # Download the data from FTP server if the file not exists if not os.path.exists(Filename_out): try: Download_ETmonitor_from_WA_FTP(local_filename, Filename_in, Type) # Reproject dataset epsg_to ='4326' name_reprojected_ETmonitor = RC.reproject_MODIS(local_filename, epsg_to) # Clip dataset RC.Clip_Dataset_GDAL(name_reprojected_ETmonitor, Filename_out, latlim, lonlim) os.remove(name_reprojected_ETmonitor) os.remove(local_filename) except: print "Was not able to download file with date %s" %Date # Adjust waitbar if Waitbar == 1: amount += 1 WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50) return def Download_ETmonitor_from_WA_FTP(local_filename, Filename_in, Type): """ This function retrieves ETmonitor data for a given date from the ftp.wateraccounting.unesco-ihe.org server. Restrictions: The data and this python file may not be distributed to others without permission of the WA+ team due data restriction of the ETmonitor developers. Keyword arguments: local_filename -- name of the temporary file which contains global ETmonitor data Filename_in -- name of the end file with the weekly ETmonitor data Type = Type of data ("act" or "pot") """ # Collect account and FTP information username, password = WebAccounts.Accounts(Type = 'FTP_WA') ftpserver = "ftp.wateraccounting.unesco-ihe.org" # Download data from FTP ftp=FTP(ftpserver) ftp.login(username,password) if Type == "pot": directory="/WaterAccounting/Data_Satellite/Evaporation/ETmonitor/Potential_Evapotranspiration/" else: directory="/WaterAccounting/Data_Satellite/Evaporation/ETmonitor/Global/" ftp.cwd(directory) lf = open(local_filename, "wb") ftp.retrbinary("RETR " + Filename_in, lf.write) lf.close() return
apache-2.0
samzhang111/scikit-learn
sklearn/feature_selection/rfe.py
3
15630
# Authors: Alexandre Gramfort <[email protected]> # Vincent Michel <[email protected]> # Gilles Louppe <[email protected]> # # License: BSD 3 clause """Recursive feature elimination for feature ranking""" import warnings import numpy as np from ..utils import check_X_y, safe_sqr from ..utils.metaestimators import if_delegate_has_method from ..base import BaseEstimator from ..base import MetaEstimatorMixin from ..base import clone from ..base import is_classifier from ..cross_validation import check_cv from ..cross_validation import _safe_split, _score from ..metrics.scorer import check_scoring from .base import SelectorMixin class RFE(BaseEstimator, MetaEstimatorMixin, SelectorMixin): """Feature ranking with recursive feature elimination. Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and weights are assigned to each one of them. Then, features whose absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. n_features_to_select : int or None (default=None) The number of features to select. If `None`, half of the features are selected. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that ``ranking_[i]`` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. estimator_ : object The external estimator fit on the reduced dataset. Examples -------- The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFE >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFE(estimator, 5, step=1) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0): self.estimator = estimator self.n_features_to_select = n_features_to_select self.step = step self.verbose = verbose @property def _estimator_type(self): return self.estimator._estimator_type def fit(self, X, y): """Fit the RFE model and then the underlying estimator on the selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values. """ return self._fit(X, y) def _fit(self, X, y, step_score=None): X, y = check_X_y(X, y, "csc") # Initialization n_features = X.shape[1] if self.n_features_to_select is None: n_features_to_select = n_features / 2 else: n_features_to_select = self.n_features_to_select if 0.0 < self.step < 1.0: step = int(max(1, self.step * n_features)) else: step = int(self.step) if step <= 0: raise ValueError("Step must be >0") support_ = np.ones(n_features, dtype=np.bool) ranking_ = np.ones(n_features, dtype=np.int) if step_score: self.scores_ = [] # Elimination while np.sum(support_) > n_features_to_select: # Remaining features features = np.arange(n_features)[support_] # Rank the remaining features estimator = clone(self.estimator) if self.verbose > 0: print("Fitting estimator with %d features." % np.sum(support_)) estimator.fit(X[:, features], y) # Get coefs if hasattr(estimator, 'coef_'): coefs = estimator.coef_ elif hasattr(estimator, 'feature_importances_'): coefs = estimator.feature_importances_ else: raise RuntimeError('The classifier does not expose ' '"coef_" or "feature_importances_" ' 'attributes') # Get ranks if coefs.ndim > 1: ranks = np.argsort(safe_sqr(coefs).sum(axis=0)) else: ranks = np.argsort(safe_sqr(coefs)) # for sparse case ranks is matrix ranks = np.ravel(ranks) # Eliminate the worse features threshold = min(step, np.sum(support_) - n_features_to_select) # Compute step score on the previous selection iteration # because 'estimator' must use features # that have not been eliminated yet if step_score: self.scores_.append(step_score(estimator, features)) support_[features[ranks][:threshold]] = False ranking_[np.logical_not(support_)] += 1 # Set final attributes features = np.arange(n_features)[support_] self.estimator_ = clone(self.estimator) self.estimator_.fit(X[:, features], y) # Compute step score when only n_features_to_select features left if step_score: self.scores_.append(step_score(self.estimator_, features)) self.n_features_ = support_.sum() self.support_ = support_ self.ranking_ = ranking_ return self @if_delegate_has_method(delegate='estimator') def predict(self, X): """Reduce X to the selected features and then predict using the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- y : array of shape [n_samples] The predicted target values. """ return self.estimator_.predict(self.transform(X)) @if_delegate_has_method(delegate='estimator') def score(self, X, y): """Reduce X to the selected features and then return the score of the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The target values. """ return self.estimator_.score(self.transform(X), y) def _get_support_mask(self): return self.support_ @if_delegate_has_method(delegate='estimator') def decision_function(self, X): return self.estimator_.decision_function(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): return self.estimator_.predict_proba(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): return self.estimator_.predict_log_proba(self.transform(X)) class RFECV(RFE, MetaEstimatorMixin): """Feature ranking with recursive feature elimination and cross-validated selection of the best number of features. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features with cross-validation. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that `ranking_[i]` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. grid_scores_ : array of shape [n_subsets_of_features] The cross-validation scores such that ``grid_scores_[i]`` corresponds to the CV score of the i-th subset of features. estimator_ : object The external estimator fit on the reduced dataset. Notes ----- The size of ``grid_scores_`` is equal to ceil((n_features - 1) / step) + 1, where step is the number of features removed at each iteration. Examples -------- The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFECV >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFECV(estimator, step=1, cv=5) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, step=1, cv=None, scoring=None, verbose=0): self.estimator = estimator self.step = step self.cv = cv self.scoring = scoring self.verbose = verbose def fit(self, X, y): """Fit the RFE model and automatically tune the number of selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where `n_samples` is the number of samples and `n_features` is the total number of features. y : array-like, shape = [n_samples] Target values (integers for classification, real numbers for regression). """ X, y = check_X_y(X, y, "csr") # Initialization cv = check_cv(self.cv, X, y, is_classifier(self.estimator)) scorer = check_scoring(self.estimator, scoring=self.scoring) n_features = X.shape[1] n_features_to_select = 1 # Determine the number of subsets of features scores = [] # Cross-validation for n, (train, test) in enumerate(cv): X_train, y_train = _safe_split(self.estimator, X, y, train) X_test, y_test = _safe_split(self.estimator, X, y, test, train) rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step, verbose=self.verbose - 1) rfe._fit(X_train, y_train, lambda estimator, features: _score(estimator, X_test[:, features], y_test, scorer)) scores.append(np.array(rfe.scores_[::-1]).reshape(1, -1)) scores = np.sum(np.concatenate(scores, 0), 0) # The index in 'scores' when 'n_features' features are selected n_feature_index = np.ceil((n_features - n_features_to_select) / float(self.step)) n_features_to_select = max(n_features_to_select, n_features - ((n_feature_index - np.argmax(scores)) * self.step)) # Re-execute an elimination with best_k over the whole set rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step) rfe.fit(X, y) # Set final attributes self.support_ = rfe.support_ self.n_features_ = rfe.n_features_ self.ranking_ = rfe.ranking_ self.estimator_ = clone(self.estimator) self.estimator_.fit(self.transform(X), y) # Fixing a normalization error, n is equal to len(cv) - 1 # here, the scores are normalized by len(cv) self.grid_scores_ = scores / len(cv) return self
bsd-3-clause
stylianos-kampakis/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
alekz112/statsmodels
statsmodels/datasets/committee/data.py
25
2583
"""First 100 days of the US House of Representatives 1995""" __docformat__ = 'restructuredtext' COPYRIGHT = """Used with express permission from the original author, who retains all rights.""" TITLE = __doc__ SOURCE = """ Jeff Gill's `Generalized Linear Models: A Unifited Approach` http://jgill.wustl.edu/research/books.html """ DESCRSHORT = """Number of bill assignments in the 104th House in 1995""" DESCRLONG = """The example in Gill, seeks to explain the number of bill assignments in the first 100 days of the US' 104th House of Representatives. The response variable is the number of bill assignments in the first 100 days over 20 Committees. The explanatory variables in the example are the number of assignments in the first 100 days of the 103rd House, the number of members on the committee, the number of subcommittees, the log of the number of staff assigned to the committee, a dummy variable indicating whether the committee is a high prestige committee, and an interaction term between the number of subcommittees and the log of the staff size. The data returned by load are not cleaned to represent the above example. """ NOTE = """:: Number of Observations - 20 Number of Variables - 6 Variable name definitions:: BILLS104 - Number of bill assignments in the first 100 days of the 104th House of Representatives. SIZE - Number of members on the committee. SUBS - Number of subcommittees. STAFF - Number of staff members assigned to the committee. PRESTIGE - PRESTIGE == 1 is a high prestige committee. BILLS103 - Number of bill assignments in the first 100 days of the 103rd House of Representatives. Committee names are included as a variable in the data file though not returned by load. """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """Load the committee data and returns a data class. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/committee.csv', 'rb'), delimiter=",", names=True, dtype=float, usecols=(1,2,3,4,5,6)) return data
bsd-3-clause
dylanGeng/BuildingMachineLearningSystemsWithPython
ch10/neighbors.py
21
1787
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing import numpy as np import mahotas as mh from glob import glob from features import texture, color_histogram from matplotlib import pyplot as plt from sklearn.preprocessing import StandardScaler from scipy.spatial import distance basedir = '../SimpleImageDataset/' haralicks = [] chists = [] print('Computing features...') # Use glob to get all the images images = glob('{}/*.jpg'.format(basedir)) # We sort the images to ensure that they are always processed in the same order # Otherwise, this would introduce some variation just based on the random # ordering that the filesystem uses images.sort() for fname in images: imc = mh.imread(fname) imc = imc[200:-200,200:-200] haralicks.append(texture(mh.colors.rgb2grey(imc))) chists.append(color_histogram(imc)) haralicks = np.array(haralicks) chists = np.array(chists) features = np.hstack([chists, haralicks]) print('Computing neighbors...') sc = StandardScaler() features = sc.fit_transform(features) dists = distance.squareform(distance.pdist(features)) print('Plotting...') fig, axes = plt.subplots(2, 9, figsize=(16,8)) # Remove ticks from all subplots for ax in axes.flat: ax.set_xticks([]) ax.set_yticks([]) for ci,i in enumerate(range(0,90,10)): left = images[i] dists_left = dists[i] right = dists_left.argsort() # right[0] is the same as left[i], so pick the next closest element right = right[1] right = images[right] left = mh.imread(left) right = mh.imread(right) axes[0, ci].imshow(left) axes[1, ci].imshow(right) fig.tight_layout() fig.savefig('figure_neighbors.png', dpi=300)
mit
KellyBlack/Precalculus
exponentials/img/avgRateChange.py
1
1434
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path from matplotlib.patches import FancyArrowPatch from matplotlib.patches import Ellipse import math import sys from BasicPlot import BasicPlot plotter = BasicPlot() plt.figure(num=1,frameon=False) ############################### plotter.clearPlot() #plt.xkcd(scale=.6) #randomness=1,length=1,scale=0) #plotter.subplot(1,2,1) plotter.setupGrid(0.3,'--', -4.0,1.0,4.1, -4.0,1.0,4.1) plotter.setAxesBounds(-4.1,4.1,-4.1,4.1) plotter.axesDecorations('Graph of f','x','f') #plotter.addInterpolant([[-4,-2],[-3,-1],[-2,0],[0,1],[2,2],[4,4]], # np.arange(-4,4.01,0.1),'k-',2.5) x = np.arange(-4.0,4.1,0.1) y = np.exp(x/3) plotter.addFunction(x,y,'k') slope = (np.exp(1.0)-1.0)/3.0 plotter.filledCircle(0.0,1.0,0.1) plotter.filledCircle(3.0,np.exp(1.0),0.1) plotter.addFunction([-4.0,4.0],slope*np.arange(-4.0,4.1,8.0)+1.0,'k--') axes = plotter.getAxes() axes.spines['right'].set_color('none') axes.spines['top'].set_color('none') axes.xaxis.set_ticks_position('bottom') axes.spines['bottom'].set_position(('data',0)) axes.yaxis.set_ticks_position('left') axes.spines['left'].set_position(('data',0)) axes.xaxis.set_label_coords(0.95, 0.45) axes.yaxis.set_label_coords(0.45, 0.95) #plt.show() plt.savefig('avgRateChange.pgf',format='pgf')
gpl-3.0
shaileshr/ThinkStats2
code/hypothesis.py
75
10162
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import nsfg import nsfg2 import first import thinkstats2 import thinkplot import copy import random import numpy as np import matplotlib.pyplot as pyplot class CoinTest(thinkstats2.HypothesisTest): """Tests the hypothesis that a coin is fair.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ heads, tails = data test_stat = abs(heads - tails) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ heads, tails = self.data n = heads + tails sample = [random.choice('HT') for _ in range(n)] hist = thinkstats2.Hist(sample) data = hist['H'], hist['T'] return data class DiffMeansPermute(thinkstats2.HypothesisTest): """Tests a difference in means by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ group1, group2 = data test_stat = abs(group1.mean() - group2.mean()) return test_stat def MakeModel(self): """Build a model of the null hypothesis. """ group1, group2 = self.data self.n, self.m = len(group1), len(group2) self.pool = np.hstack((group1, group2)) def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ np.random.shuffle(self.pool) data = self.pool[:self.n], self.pool[self.n:] return data class DiffMeansOneSided(DiffMeansPermute): """Tests a one-sided difference in means by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ group1, group2 = data test_stat = group1.mean() - group2.mean() return test_stat class DiffStdPermute(DiffMeansPermute): """Tests a one-sided difference in standard deviation by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ group1, group2 = data test_stat = group1.std() - group2.std() return test_stat class CorrelationPermute(thinkstats2.HypothesisTest): """Tests correlations by permutation.""" def TestStatistic(self, data): """Computes the test statistic. data: tuple of xs and ys """ xs, ys = data test_stat = abs(thinkstats2.Corr(xs, ys)) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ xs, ys = self.data xs = np.random.permutation(xs) return xs, ys class DiceTest(thinkstats2.HypothesisTest): """Tests whether a six-sided die is fair.""" def TestStatistic(self, data): """Computes the test statistic. data: list of frequencies """ observed = data n = sum(observed) expected = np.ones(6) * n / 6 test_stat = sum(abs(observed - expected)) return test_stat def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ n = sum(self.data) values = [1,2,3,4,5,6] rolls = np.random.choice(values, n, replace=True) hist = thinkstats2.Hist(rolls) freqs = hist.Freqs(values) return freqs class DiceChiTest(DiceTest): """Tests a six-sided die using a chi-squared statistic.""" def TestStatistic(self, data): """Computes the test statistic. data: list of frequencies """ observed = data n = sum(observed) expected = np.ones(6) * n / 6 test_stat = sum((observed - expected)**2 / expected) return test_stat class PregLengthTest(thinkstats2.HypothesisTest): """Tests difference in pregnancy length using a chi-squared statistic.""" def TestStatistic(self, data): """Computes the test statistic. data: pair of lists of pregnancy lengths """ firsts, others = data stat = self.ChiSquared(firsts) + self.ChiSquared(others) return stat def ChiSquared(self, lengths): """Computes the chi-squared statistic. lengths: sequence of lengths returns: float """ hist = thinkstats2.Hist(lengths) observed = np.array(hist.Freqs(self.values)) expected = self.expected_probs * len(lengths) stat = sum((observed - expected)**2 / expected) return stat def MakeModel(self): """Build a model of the null hypothesis. """ firsts, others = self.data self.n = len(firsts) self.pool = np.hstack((firsts, others)) pmf = thinkstats2.Pmf(self.pool) self.values = range(35, 44) self.expected_probs = np.array(pmf.Probs(self.values)) def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ np.random.shuffle(self.pool) data = self.pool[:self.n], self.pool[self.n:] return data def RunDiceTest(): """Tests whether a die is fair. """ data = [8, 9, 19, 5, 8, 11] dt = DiceTest(data) print('dice test', dt.PValue(iters=10000)) dt = DiceChiTest(data) print('dice chi test', dt.PValue(iters=10000)) def FalseNegRate(data, num_runs=1000): """Computes the chance of a false negative based on resampling. data: pair of sequences num_runs: how many experiments to simulate returns: float false negative rate """ group1, group2 = data count = 0 for i in range(num_runs): sample1 = thinkstats2.Resample(group1) sample2 = thinkstats2.Resample(group2) ht = DiffMeansPermute((sample1, sample2)) p_value = ht.PValue(iters=101) if p_value > 0.05: count += 1 return count / num_runs def PrintTest(p_value, ht): """Prints results from a hypothesis test. p_value: float ht: HypothesisTest """ print('p-value =', p_value) print('actual =', ht.actual) print('ts max =', ht.MaxTestStat()) def RunTests(data, iters=1000): """Runs several tests on the given data. data: pair of sequences iters: number of iterations to run """ # test the difference in means ht = DiffMeansPermute(data) p_value = ht.PValue(iters=iters) print('\nmeans permute two-sided') PrintTest(p_value, ht) ht.PlotCdf() thinkplot.Save(root='hypothesis1', title='Permutation test', xlabel='difference in means (weeks)', ylabel='CDF', legend=False) # test the difference in means one-sided ht = DiffMeansOneSided(data) p_value = ht.PValue(iters=iters) print('\nmeans permute one-sided') PrintTest(p_value, ht) # test the difference in std ht = DiffStdPermute(data) p_value = ht.PValue(iters=iters) print('\nstd permute one-sided') PrintTest(p_value, ht) def ReplicateTests(): """Replicates tests with the new NSFG data.""" live, firsts, others = nsfg2.MakeFrames() # compare pregnancy lengths print('\nprglngth2') data = firsts.prglngth.values, others.prglngth.values ht = DiffMeansPermute(data) p_value = ht.PValue(iters=1000) print('means permute two-sided') PrintTest(p_value, ht) print('\nbirth weight 2') data = (firsts.totalwgt_lb.dropna().values, others.totalwgt_lb.dropna().values) ht = DiffMeansPermute(data) p_value = ht.PValue(iters=1000) print('means permute two-sided') PrintTest(p_value, ht) # test correlation live2 = live.dropna(subset=['agepreg', 'totalwgt_lb']) data = live2.agepreg.values, live2.totalwgt_lb.values ht = CorrelationPermute(data) p_value = ht.PValue() print('\nage weight correlation 2') PrintTest(p_value, ht) # compare pregnancy lengths (chi-squared) data = firsts.prglngth.values, others.prglngth.values ht = PregLengthTest(data) p_value = ht.PValue() print('\npregnancy length chi-squared 2') PrintTest(p_value, ht) def main(): thinkstats2.RandomSeed(17) # run the coin test ct = CoinTest((140, 110)) pvalue = ct.PValue() print('coin test p-value', pvalue) # compare pregnancy lengths print('\nprglngth') live, firsts, others = first.MakeFrames() data = firsts.prglngth.values, others.prglngth.values RunTests(data) # compare birth weights print('\nbirth weight') data = (firsts.totalwgt_lb.dropna().values, others.totalwgt_lb.dropna().values) ht = DiffMeansPermute(data) p_value = ht.PValue(iters=1000) print('means permute two-sided') PrintTest(p_value, ht) # test correlation live2 = live.dropna(subset=['agepreg', 'totalwgt_lb']) data = live2.agepreg.values, live2.totalwgt_lb.values ht = CorrelationPermute(data) p_value = ht.PValue() print('\nage weight correlation') print('n=', len(live2)) PrintTest(p_value, ht) # run the dice test RunDiceTest() # compare pregnancy lengths (chi-squared) data = firsts.prglngth.values, others.prglngth.values ht = PregLengthTest(data) p_value = ht.PValue() print('\npregnancy length chi-squared') PrintTest(p_value, ht) # compute the false negative rate for difference in pregnancy length data = firsts.prglngth.values, others.prglngth.values neg_rate = FalseNegRate(data) print('false neg rate', neg_rate) # run the tests with new nsfg data ReplicateTests() if __name__ == "__main__": main()
gpl-3.0
pprett/scikit-learn
sklearn/ensemble/tests/test_voting_classifier.py
15
14956
"""Testing for the VotingClassifier""" import numpy as np from sklearn.utils.testing import assert_almost_equal, assert_array_equal from sklearn.utils.testing import assert_equal, assert_true, assert_false from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import NotFittedError from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.model_selection import GridSearchCV from sklearn import datasets from sklearn.model_selection import cross_val_score from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_estimator_init(): eclf = VotingClassifier(estimators=[]) msg = ('Invalid `estimators` attribute, `estimators` should be' ' a list of (string, estimator) tuples') assert_raise_message(AttributeError, msg, eclf.fit, X, y) clf = LogisticRegression(random_state=1) eclf = VotingClassifier(estimators=[('lr', clf)], voting='error') msg = ('Voting must be \'soft\' or \'hard\'; got (voting=\'error\')') assert_raise_message(ValueError, msg, eclf.fit, X, y) eclf = VotingClassifier(estimators=[('lr', clf)], weights=[1, 2]) msg = ('Number of classifiers and weights must be equal' '; got 2 weights, 1 estimators') assert_raise_message(ValueError, msg, eclf.fit, X, y) eclf = VotingClassifier(estimators=[('lr', clf), ('lr', clf)], weights=[1, 2]) msg = "Names provided are not unique: ['lr', 'lr']" assert_raise_message(ValueError, msg, eclf.fit, X, y) eclf = VotingClassifier(estimators=[('lr__', clf)]) msg = "Estimator names must not contain __: got ['lr__']" assert_raise_message(ValueError, msg, eclf.fit, X, y) eclf = VotingClassifier(estimators=[('estimators', clf)]) msg = "Estimator names conflict with constructor arguments: ['estimators']" assert_raise_message(ValueError, msg, eclf.fit, X, y) def test_predictproba_hardvoting(): eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()), ('lr2', LogisticRegression())], voting='hard') msg = "predict_proba is not available when voting='hard'" assert_raise_message(AttributeError, msg, eclf.predict_proba, X) def test_notfitted(): eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()), ('lr2', LogisticRegression())], voting='soft') msg = ("This VotingClassifier instance is not fitted yet. Call \'fit\'" " with appropriate arguments before using this method.") assert_raise_message(NotFittedError, msg, eclf.predict_proba, X) def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'voting': ['soft', 'hard'], 'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target) def test_parallel_predict(): """Check parallel backend of VotingClassifier on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf1 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', n_jobs=1).fit(X, y) eclf2 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', n_jobs=2).fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) def test_sample_weight(): """Tests sample_weight parameter of VotingClassifier""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = SVC(probability=True, random_state=123) eclf1 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('svc', clf3)], voting='soft').fit(X, y, sample_weight=np.ones((len(y),))) eclf2 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('svc', clf3)], voting='soft').fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) sample_weight = np.random.RandomState(123).uniform(size=(len(y),)) eclf3 = VotingClassifier(estimators=[('lr', clf1)], voting='soft') eclf3.fit(X, y, sample_weight) clf1.fit(X, y, sample_weight) assert_array_equal(eclf3.predict(X), clf1.predict(X)) assert_array_equal(eclf3.predict_proba(X), clf1.predict_proba(X)) clf4 = KNeighborsClassifier() eclf3 = VotingClassifier(estimators=[ ('lr', clf1), ('svc', clf3), ('knn', clf4)], voting='soft') msg = ('Underlying estimator \'knn\' does not support sample weights.') assert_raise_message(ValueError, msg, eclf3.fit, X, y, sample_weight) def test_set_params(): """set_params should be able to set estimators""" clf1 = LogisticRegression(random_state=123, C=1.0) clf2 = RandomForestClassifier(random_state=123, max_depth=None) clf3 = GaussianNB() eclf1 = VotingClassifier([('lr', clf1), ('rf', clf2)], voting='soft', weights=[1, 2]) eclf1.fit(X, y) eclf2 = VotingClassifier([('lr', clf1), ('nb', clf3)], voting='soft', weights=[1, 2]) eclf2.set_params(nb=clf2).fit(X, y) assert_false(hasattr(eclf2, 'nb')) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) assert_equal(eclf2.estimators[0][1].get_params(), clf1.get_params()) assert_equal(eclf2.estimators[1][1].get_params(), clf2.get_params()) eclf1.set_params(lr__C=10.0) eclf2.set_params(nb__max_depth=5) assert_true(eclf1.estimators[0][1].get_params()['C'] == 10.0) assert_true(eclf2.estimators[1][1].get_params()['max_depth'] == 5) assert_equal(eclf1.get_params()["lr__C"], eclf1.get_params()["lr"].get_params()['C']) def test_set_estimator_none(): """VotingClassifier set_params should be able to set estimators as None""" # Test predict clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('nb', clf3)], voting='hard', weights=[1, 0, 0.5]).fit(X, y) eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('nb', clf3)], voting='hard', weights=[1, 1, 0.5]) eclf2.set_params(rf=None).fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_true(dict(eclf2.estimators)["rf"] is None) assert_true(len(eclf2.estimators_) == 2) assert_true(all([not isinstance(est, RandomForestClassifier) for est in eclf2.estimators_])) assert_true(eclf2.get_params()["rf"] is None) eclf1.set_params(voting='soft').fit(X, y) eclf2.set_params(voting='soft').fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) msg = ('All estimators are None. At least one is required' ' to be a classifier!') assert_raise_message( ValueError, msg, eclf2.set_params(lr=None, rf=None, nb=None).fit, X, y) # Test soft voting transform X1 = np.array([[1], [2]]) y1 = np.array([1, 2]) eclf1 = VotingClassifier(estimators=[('rf', clf2), ('nb', clf3)], voting='soft', weights=[0, 0.5]).fit(X1, y1) eclf2 = VotingClassifier(estimators=[('rf', clf2), ('nb', clf3)], voting='soft', weights=[1, 0.5]) eclf2.set_params(rf=None).fit(X1, y1) assert_array_equal(eclf1.transform(X1), np.array([[[0.7, 0.3], [0.3, 0.7]], [[1., 0.], [0., 1.]]])) assert_array_equal(eclf2.transform(X1), np.array([[[1., 0.], [0., 1.]]])) eclf1.set_params(voting='hard') eclf2.set_params(voting='hard') assert_array_equal(eclf1.transform(X1), np.array([[0, 0], [1, 1]])) assert_array_equal(eclf2.transform(X1), np.array([[0], [1]])) def test_estimator_weights_format(): # Test estimator weights inputs as list and array clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf1 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2)], weights=[1, 2], voting='soft') eclf2 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2)], weights=np.array((1, 2)), voting='soft') eclf1.fit(X, y) eclf2.fit(X, y) assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
bsd-3-clause