repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
votti/PyLaTeX
examples/basic.py
3
1310
#!/usr/bin/python """ This example shows matplotlib functionality. .. :copyright: (c) 2014 by Jelte Fennema. :license: MIT, see License for more details. """ # begin-doc-include from pylatex import Document, Section, Subsection from pylatex.utils import italic, escape_latex def fill_document(doc): """Add a section, a subsection and some text to the document. :param doc: the document :type doc: :class:`pylatex.document.Document` instance """ with doc.create(Section('A section')): doc.append('Some regular text and some ' + italic('italic text. ')) with doc.create(Subsection('A subsection')): doc.append(escape_latex('Also some crazy characters: $&#{}')) if __name__ == '__main__': # Basic document doc = Document('basic') fill_document(doc) doc.generate_pdf() doc.generate_tex() # Document with `\maketitle` command activated doc = Document(author='Author', date='01/01/01', title='Title', maketitle=True) fill_document(doc) doc.generate_pdf('basic_maketitle', clean=False) # Add stuff to the document doc.append(Section('A second section')) doc.append('Some text.') doc.generate_pdf('basic_maketitle2') tex = doc.dumps() # The document as string in LaTeX syntax
mit
navijo/FlOYBD
Flask/utils/generalFunctions.py
2
5672
from utils.cylinders import CylindersKml from utils.cylindersExt import CylindersKmlExtended from cassandra.cluster import Cluster from utils import sparkFunctions from requests.packages.urllib3.exceptions import InsecureRequestWarning import pandas as pd import json import datetime import time import requests import logging FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(format=FORMAT,level=logging.INFO) logger = logging.getLogger('sparkFunctions') requests.packages.urllib3.disable_warnings(InsecureRequestWarning) def saveKEY(date, key): cluster = Cluster(['192.168.246.236']) session = cluster.connect("dev") valid_date = date + datetime.timedelta(days=90) session.execute("TRUNCATE api_key") session.execute("INSERT INTO api_key (creation_date,valid_until,\"apiKey\") VALUES (%s, %s, %s)" , [date, valid_date, key]) def getKey(): cluster = Cluster(['192.168.246.236']) session = cluster.connect("dev") rows = session.execute('SELECT * FROM api_key') apiKey = '' jsonList = [] jsonData = {} for row in rows: jsonData['creation_date'] = str(row[0].strftime("%Y-%m-%d %H:%M:%S")) jsonData['api_key'] = row[1] jsonData['valid_until'] = str(row[2].strftime("%Y-%m-%d %H:%M:%S")) jsonList.append(jsonData) return jsonList def getApiKey(): cluster = Cluster(['192.168.246.236']) session = cluster.connect("dev") rows = session.execute('SELECT * FROM api_key') apiKey = '' for row in rows: apiKey = row[1] return apiKey def dataframeToJson(dataFrame): return dataFrame.toPandas().to_json(orient='records', lines=True) def dataFrameToJsonStr(dataFrame): return dataFrame.toPandas().reset_index().to_json(path_or_buf=None, orient='records') def generateAllStationsKml(weatherData, stations, fileName): weatherJsonData = dataFrameToJsonStr(weatherData) weatherJsonData = json.loads(weatherJsonData) finalData = [] jsonString = [] for row in weatherJsonData: stationData = sparkFunctions.getStationInfo(stations, row.get("station_id")) stationJsonData = dataframeToJson(stationData) preparedData = prepareJson(json.dumps(row), stationJsonData) jsonString.append(preparedData) finalData.append(jsonString) cilinders = CylindersKmlExtended(fileName, finalData) cilinders.makeKMZWithTourAndRotation() def generateKml(weatherData, stationData, fileName): finalData = [] weatherJsonData = dataframeToJson(weatherData) stationJsonData = dataframeToJson(stationData) jsonString = prepareJson(weatherJsonData, stationJsonData) finalData.append(jsonString) cilinders = CylindersKml(fileName, finalData) cilinders.makeKMLWithTourAndRotation() def prepareJson(weatherData, stationData): stationData = json.loads(stationData) latitude = stationData["latitude"] longitude = stationData["longitude"] coordinates = {"lat": latitude, "lng": longitude} name = stationData["name"] calculatedData = json.loads(weatherData) maxTemp = calculatedData["max_temp"] medTemp = calculatedData["med_temp"] minTemp = calculatedData["min_temp"] temps = [maxTemp, medTemp, minTemp] finalData = {"name": name, "description": temps, "coordinates": coordinates, "extra": ""} return finalData def getCurrentWeather(station_id): logger.info("Getting current weather for station: " + station_id) global api_key, querystring, headers, base_url api_key = getApiKey() querystring = {"api_key": api_key} headers = {'cache-control': "no-cache"} base_url = "https://opendata.aemet.es/opendata" currentWeather = getData(base_url + "/api/observacion/convencional/datos/estacion/" + station_id) parsedCurrentWeatherJson = {} if currentWeather != 0 and currentWeather is not None: precip = currentWeather[0].get("prec") min_temp = currentWeather[0].get("tamin") max_temp = currentWeather[0].get("tamax") max_pres = currentWeather[0].get("pres") insolation = currentWeather[0].get("inso") parsedCurrentWeatherJson["station_id"] = station_id parsedCurrentWeatherJson["precip"] = precip parsedCurrentWeatherJson["max_temp"] = max_temp parsedCurrentWeatherJson["med_temp"] = (float(max_temp) + float(min_temp)) / 2 parsedCurrentWeatherJson["min_temp"] = min_temp parsedCurrentWeatherJson["max_pres"] = max_pres parsedCurrentWeatherJson["min_pres"] = max_pres parsedCurrentWeatherJson["insolation"] = insolation if insolation is not None else 0 return parsedCurrentWeatherJson def getData(url): """ Make the request to the api """ try: response = requests.request("GET", url, headers=headers, params=querystring, verify=False) if response: jsonResponse = response.json() if jsonResponse.get('estado') == 200: link = jsonResponse.get('datos') data = requests.request("GET", link, verify=False) if (data.status_code == 200): return data.json() else: return 0 elif jsonResponse.get('estado') == 429: # Sleep until next minute logger.error("####Sleeping") time.sleep(60) logger.error("####Waked up!!") return getData(url) except requests.exceptions.ConnectionError: logger.error("####ERROR!! => Sleeping") time.sleep(120) logger.error("####Waked up!!") return getData(url)
mit
maaskola/GPy
GPy/core/parameterization/transformations.py
10
20673
# Copyright (c) 2012, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from .domains import _POSITIVE,_NEGATIVE, _BOUNDED import weakref import sys _exp_lim_val = np.finfo(np.float64).max _lim_val = 36.0 epsilon = np.finfo(np.float64).resolution #=============================================================================== # Fixing constants __fixed__ = "fixed" FIXED = False UNFIXED = True #=============================================================================== class Transformation(object): domain = None _instance = None def __new__(cls, *args, **kwargs): if not cls._instance or cls._instance.__class__ is not cls: cls._instance = super(Transformation, cls).__new__(cls, *args, **kwargs) return cls._instance def f(self, opt_param): raise NotImplementedError def finv(self, model_param): raise NotImplementedError def log_jacobian(self, model_param): """ compute the log of the jacobian of f, evaluated at f(x)= model_param """ raise NotImplementedError def log_jacobian_grad(self, model_param): """ compute the drivative of the log of the jacobian of f, evaluated at f(x)= model_param """ raise NotImplementedError def gradfactor(self, model_param, dL_dmodel_param): """ df(opt_param)_dopt_param evaluated at self.f(opt_param)=model_param, times the gradient dL_dmodel_param, i.e.: define .. math:: \frac{\frac{\partial L}{\partial f}\left(\left.\partial f(x)}{\partial x}\right|_{x=f^{-1}(f)\right)} """ raise NotImplementedError def gradfactor_non_natural(self, model_param, dL_dmodel_param): return self.gradfactor(model_param, dL_dmodel_param) def initialize(self, f): """ produce a sensible initial value for f(x)""" raise NotImplementedError def plot(self, xlabel=r'transformed $\theta$', ylabel=r'$\theta$', axes=None, *args,**kw): assert "matplotlib" in sys.modules, "matplotlib package has not been imported." import matplotlib.pyplot as plt from ...plotting.matplot_dep import base_plots x = np.linspace(-8,8) base_plots.meanplot(x, self.f(x), *args, ax=axes, **kw) axes = plt.gca() axes.set_xlabel(xlabel) axes.set_ylabel(ylabel) def __str__(self): raise NotImplementedError def __repr__(self): return self.__class__.__name__ class Logexp(Transformation): domain = _POSITIVE def f(self, x): return np.where(x>_lim_val, x, np.log1p(np.exp(np.clip(x, -_lim_val, _lim_val)))) + epsilon #raises overflow warning: return np.where(x>_lim_val, x, np.log(1. + np.exp(x))) def finv(self, f): return np.where(f>_lim_val, f, np.log(np.exp(f+1e-20) - 1.)) def gradfactor(self, f, df): return np.einsum('i,i->i', df, np.where(f>_lim_val, 1., 1. - np.exp(-f))) def initialize(self, f): if np.any(f < 0.): print("Warning: changing parameters to satisfy constraints") return np.abs(f) def log_jacobian(self, model_param): return np.where(model_param>_lim_val, model_param, np.log(np.exp(model_param+1e-20) - 1.)) - model_param def log_jacobian_grad(self, model_param): return 1./(np.exp(model_param)-1.) def __str__(self): return '+ve' class Exponent(Transformation): domain = _POSITIVE def f(self, x): return np.where(x<_lim_val, np.where(x>-_lim_val, np.exp(x), np.exp(-_lim_val)), np.exp(_lim_val)) def finv(self, x): return np.log(x) def gradfactor(self, f, df): return np.einsum('i,i->i', df, f) def initialize(self, f): if np.any(f < 0.): print("Warning: changing parameters to satisfy constraints") return np.abs(f) def log_jacobian(self, model_param): return np.log(model_param) def log_jacobian_grad(self, model_param): return 1./model_param def __str__(self): return '+ve' class NormalTheta(Transformation): "Do not use, not officially supported!" _instances = [] def __new__(cls, mu_indices=None, var_indices=None): "Do not use, not officially supported!" if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if np.all(instance().mu_indices==mu_indices, keepdims=False) and np.all(instance().var_indices==var_indices, keepdims=False): return instance() o = super(Transformation, cls).__new__(cls, mu_indices, var_indices) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, mu_indices, var_indices): self.mu_indices = mu_indices self.var_indices = var_indices def f(self, theta): # In here abs is only a trick to make sure the numerics are ok. # The variance will never go below zero, but at initialization we need to make sure # that the values are ok # Before: theta[self.var_indices] = np.abs(-.5/theta[self.var_indices]) #theta[self.var_indices] = np.exp(-.5/theta[self.var_indices]) theta[self.mu_indices] *= theta[self.var_indices] return theta # which is now {mu, var} def finv(self, muvar): # before: varp = muvar[self.var_indices] muvar[self.mu_indices] /= varp muvar[self.var_indices] = -.5/varp #muvar[self.var_indices] = -.5/np.log(varp) return muvar # which is now {theta1, theta2} def gradfactor(self, muvar, dmuvar): mu = muvar[self.mu_indices] var = muvar[self.var_indices] #======================================================================= # theta gradients # This works and the gradient checks! dmuvar[self.mu_indices] *= var dmuvar[self.var_indices] *= 2*(var)**2 dmuvar[self.var_indices] += 2*dmuvar[self.mu_indices]*mu #======================================================================= return dmuvar # which is now the gradient multiplicator for {theta1, theta2} def initialize(self, f): if np.any(f[self.var_indices] < 0.): print("Warning: changing parameters to satisfy constraints") f[self.var_indices] = np.abs(f[self.var_indices]) return f def __str__(self): return "theta" def __getstate__(self): return [self.mu_indices, self.var_indices] def __setstate__(self, state): self.mu_indices = state[0] self.var_indices = state[1] class NormalNaturalAntti(NormalTheta): "Do not use, not officially supported!" _instances = [] def __new__(cls, mu_indices=None, var_indices=None): "Do not use, not officially supported!" if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if np.all(instance().mu_indices==mu_indices, keepdims=False) and np.all(instance().var_indices==var_indices, keepdims=False): return instance() o = super(Transformation, cls).__new__(cls, mu_indices, var_indices) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, mu_indices, var_indices): self.mu_indices = mu_indices self.var_indices = var_indices def gradfactor(self, muvar, dmuvar): mu = muvar[self.mu_indices] var = muvar[self.var_indices] #======================================================================= # theta gradients # This works and the gradient checks! dmuvar[self.mu_indices] *= var dmuvar[self.var_indices] *= 2*var**2#np.einsum('i,i,i,i->i', dmuvar[self.var_indices], [2], var, var) #======================================================================= return dmuvar # which is now the gradient multiplicator def initialize(self, f): if np.any(f[self.var_indices] < 0.): print("Warning: changing parameters to satisfy constraints") f[self.var_indices] = np.abs(f[self.var_indices]) return f def __str__(self): return "natantti" class NormalEta(Transformation): "Do not use, not officially supported!" _instances = [] def __new__(cls, mu_indices=None, var_indices=None): "Do not use, not officially supported!" if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if np.all(instance().mu_indices==mu_indices, keepdims=False) and np.all(instance().var_indices==var_indices, keepdims=False): return instance() o = super(Transformation, cls).__new__(cls, mu_indices, var_indices) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, mu_indices, var_indices): self.mu_indices = mu_indices self.var_indices = var_indices def f(self, theta): theta[self.var_indices] = np.abs(theta[self.var_indices] - theta[self.mu_indices]**2) return theta # which is now {mu, var} def finv(self, muvar): muvar[self.var_indices] += muvar[self.mu_indices]**2 return muvar # which is now {eta1, eta2} def gradfactor(self, muvar, dmuvar): mu = muvar[self.mu_indices] #======================================================================= # Lets try natural gradients instead: Not working with bfgs... try stochastic! dmuvar[self.mu_indices] -= 2*mu*dmuvar[self.var_indices] #======================================================================= return dmuvar # which is now the gradient multiplicator def initialize(self, f): if np.any(f[self.var_indices] < 0.): print("Warning: changing parameters to satisfy constraints") f[self.var_indices] = np.abs(f[self.var_indices]) return f def __str__(self): return "eta" class NormalNaturalThroughTheta(NormalTheta): "Do not use, not officially supported!" _instances = [] def __new__(cls, mu_indices=None, var_indices=None): "Do not use, not officially supported!" if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if np.all(instance().mu_indices==mu_indices, keepdims=False) and np.all(instance().var_indices==var_indices, keepdims=False): return instance() o = super(Transformation, cls).__new__(cls, mu_indices, var_indices) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, mu_indices, var_indices): self.mu_indices = mu_indices self.var_indices = var_indices def gradfactor(self, muvar, dmuvar): mu = muvar[self.mu_indices] var = muvar[self.var_indices] #======================================================================= # This is just eta direction: dmuvar[self.mu_indices] -= 2*mu*dmuvar[self.var_indices] #======================================================================= #======================================================================= # This is by going through theta fully and then going into eta direction: #dmu = dmuvar[self.mu_indices] #dmuvar[self.var_indices] += dmu*mu*(var + 4/var) #======================================================================= return dmuvar # which is now the gradient multiplicator def gradfactor_non_natural(self, muvar, dmuvar): mu = muvar[self.mu_indices] var = muvar[self.var_indices] #======================================================================= # theta gradients # This works and the gradient checks! dmuvar[self.mu_indices] *= var dmuvar[self.var_indices] *= 2*(var)**2 dmuvar[self.var_indices] += 2*dmuvar[self.mu_indices]*mu #======================================================================= return dmuvar # which is now the gradient multiplicator for {theta1, theta2} def __str__(self): return "natgrad" class NormalNaturalWhooot(NormalTheta): "Do not use, not officially supported!" _instances = [] def __new__(cls, mu_indices=None, var_indices=None): "Do not use, not officially supported!" if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if np.all(instance().mu_indices==mu_indices, keepdims=False) and np.all(instance().var_indices==var_indices, keepdims=False): return instance() o = super(Transformation, cls).__new__(cls, mu_indices, var_indices) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, mu_indices, var_indices): self.mu_indices = mu_indices self.var_indices = var_indices def gradfactor(self, muvar, dmuvar): #mu = muvar[self.mu_indices] #var = muvar[self.var_indices] #======================================================================= # This is just eta direction: #dmuvar[self.mu_indices] -= 2*mu*dmuvar[self.var_indices] #======================================================================= #======================================================================= # This is by going through theta fully and then going into eta direction: #dmu = dmuvar[self.mu_indices] #dmuvar[self.var_indices] += dmu*mu*(var + 4/var) #======================================================================= return dmuvar # which is now the gradient multiplicator def __str__(self): return "natgrad" class NormalNaturalThroughEta(NormalEta): "Do not use, not officially supported!" _instances = [] def __new__(cls, mu_indices=None, var_indices=None): "Do not use, not officially supported!" if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if np.all(instance().mu_indices==mu_indices, keepdims=False) and np.all(instance().var_indices==var_indices, keepdims=False): return instance() o = super(Transformation, cls).__new__(cls, mu_indices, var_indices) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, mu_indices, var_indices): self.mu_indices = mu_indices self.var_indices = var_indices def gradfactor(self, muvar, dmuvar): mu = muvar[self.mu_indices] var = muvar[self.var_indices] #======================================================================= # theta gradients # This works and the gradient checks! dmuvar[self.mu_indices] *= var dmuvar[self.var_indices] *= 2*(var)**2 dmuvar[self.var_indices] += 2*dmuvar[self.mu_indices]*mu #======================================================================= return dmuvar def __str__(self): return "natgrad" class LogexpNeg(Transformation): domain = _POSITIVE def f(self, x): return np.where(x>_lim_val, -x, -np.log(1. + np.exp(np.clip(x, -np.inf, _lim_val)))) #raises overflow warning: return np.where(x>_lim_val, x, np.log(1. + np.exp(x))) def finv(self, f): return np.where(f>_lim_val, 0, np.log(np.exp(-f) - 1.)) def gradfactor(self, f, df): return np.einsum('i,i->i', df, np.where(f>_lim_val, -1, -1 + np.exp(-f))) def initialize(self, f): if np.any(f < 0.): print("Warning: changing parameters to satisfy constraints") return np.abs(f) def __str__(self): return '+ve' class NegativeLogexp(Transformation): domain = _NEGATIVE logexp = Logexp() def f(self, x): return -self.logexp.f(x) # np.log(1. + np.exp(x)) def finv(self, f): return self.logexp.finv(-f) # np.log(np.exp(-f) - 1.) def gradfactor(self, f, df): return np.einsum('i,i->i', df, -self.logexp.gradfactor(-f)) def initialize(self, f): return -self.logexp.initialize(f) # np.abs(f) def __str__(self): return '-ve' class LogexpClipped(Logexp): max_bound = 1e100 min_bound = 1e-10 log_max_bound = np.log(max_bound) log_min_bound = np.log(min_bound) domain = _POSITIVE _instances = [] def __new__(cls, lower=1e-6, *args, **kwargs): if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if instance().lower == lower: return instance() o = super(Transformation, cls).__new__(cls, lower, *args, **kwargs) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, lower=1e-6): self.lower = lower def f(self, x): exp = np.exp(np.clip(x, self.log_min_bound, self.log_max_bound)) f = np.log(1. + exp) # if np.isnan(f).any(): # import ipdb;ipdb.set_trace() return np.clip(f, self.min_bound, self.max_bound) def finv(self, f): return np.log(np.exp(f - 1.)) def gradfactor(self, f, df): ef = np.exp(f) # np.clip(f, self.min_bound, self.max_bound)) gf = (ef - 1.) / ef return np.einsum('i,i->i', df, gf) # np.where(f < self.lower, 0, gf) def initialize(self, f): if np.any(f < 0.): print("Warning: changing parameters to satisfy constraints") return np.abs(f) def __str__(self): return '+ve_c' class NegativeExponent(Exponent): domain = _NEGATIVE def f(self, x): return -Exponent.f(x) def finv(self, f): return Exponent.finv(-f) def gradfactor(self, f, df): return np.einsum('i,i->i', df, f) def initialize(self, f): return -Exponent.initialize(f) #np.abs(f) def __str__(self): return '-ve' class Square(Transformation): domain = _POSITIVE def f(self, x): return x ** 2 def finv(self, x): return np.sqrt(x) def gradfactor(self, f, df): return np.einsum('i,i->i', df, 2 * np.sqrt(f)) def initialize(self, f): return np.abs(f) def __str__(self): return '+sq' class Logistic(Transformation): domain = _BOUNDED _instances = [] def __new__(cls, lower=1e-6, upper=1e-6, *args, **kwargs): if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if instance().lower == lower and instance().upper == upper: return instance() newfunc = super(Transformation, cls).__new__ if newfunc is object.__new__: o = newfunc(cls) else: o = newfunc(cls, lower, upper, *args, **kwargs) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, lower, upper): assert lower < upper self.lower, self.upper = float(lower), float(upper) self.difference = self.upper - self.lower def f(self, x): if (x<-300.).any(): x = x.copy() x[x<-300.] = -300. return self.lower + self.difference / (1. + np.exp(-x)) def finv(self, f): return np.log(np.clip(f - self.lower, 1e-10, np.inf) / np.clip(self.upper - f, 1e-10, np.inf)) def gradfactor(self, f, df): return np.einsum('i,i->i', df, (f - self.lower) * (self.upper - f) / self.difference) def initialize(self, f): if np.any(np.logical_or(f < self.lower, f > self.upper)): print("Warning: changing parameters to satisfy constraints") #return np.where(np.logical_or(f < self.lower, f > self.upper), self.f(f * 0.), f) #FIXME: Max, zeros_like right? return np.where(np.logical_or(f < self.lower, f > self.upper), self.f(np.zeros_like(f)), f) def __str__(self): return '{},{}'.format(self.lower, self.upper)
bsd-3-clause
madjelan/scikit-learn
benchmarks/bench_plot_approximate_neighbors.py
85
6377
""" Benchmark for approximate nearest neighbor search using locality sensitive hashing forest. There are two types of benchmarks. First, accuracy of LSHForest queries are measured for various hyper-parameters and index sizes. Second, speed up of LSHForest queries compared to brute force method in exact nearest neighbors is measures for the aforementioned settings. In general, speed up is increasing as the index size grows. """ from __future__ import division import numpy as np from tempfile import gettempdir from time import time from sklearn.neighbors import NearestNeighbors from sklearn.neighbors.approximate import LSHForest from sklearn.datasets import make_blobs from sklearn.externals.joblib import Memory m = Memory(cachedir=gettempdir()) @m.cache() def make_data(n_samples, n_features, n_queries, random_state=0): """Create index and query data.""" print('Generating random blob-ish data') X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=100, shuffle=True, random_state=random_state) # Keep the last samples as held out query vectors: note since we used # shuffle=True we have ensured that index and query vectors are # samples from the same distribution (a mixture of 100 gaussians in this # case) return X[:n_samples], X[n_samples:] def calc_exact_neighbors(X, queries, n_queries, n_neighbors): """Measures average times for exact neighbor queries.""" print ('Building NearestNeighbors for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) average_time = 0 t0 = time() neighbors = nbrs.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time = (time() - t0) / n_queries return neighbors, average_time def calc_accuracy(X, queries, n_queries, n_neighbors, exact_neighbors, average_time_exact, **lshf_params): """Calculates accuracy and the speed up of LSHForest.""" print('Building LSHForest for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) lshf = LSHForest(**lshf_params) t0 = time() lshf.fit(X) lshf_build_time = time() - t0 print('Done in %0.3fs' % lshf_build_time) accuracy = 0 t0 = time() approx_neighbors = lshf.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time_approx = (time() - t0) / n_queries for i in range(len(queries)): accuracy += np.in1d(approx_neighbors[i], exact_neighbors[i]).mean() accuracy /= n_queries speed_up = average_time_exact / average_time_approx print('Average time for lshf neighbor queries: %0.3fs' % average_time_approx) print ('Average time for exact neighbor queries: %0.3fs' % average_time_exact) print ('Average Accuracy : %0.2f' % accuracy) print ('Speed up: %0.1fx' % speed_up) return speed_up, accuracy if __name__ == '__main__': import matplotlib.pyplot as plt # Initialize index sizes n_samples = [int(1e3), int(1e4), int(1e5), int(1e6)] n_features = int(1e2) n_queries = 100 n_neighbors = 10 X_index, X_query = make_data(np.max(n_samples), n_features, n_queries, random_state=0) params_list = [{'n_estimators': 3, 'n_candidates': 50}, {'n_estimators': 5, 'n_candidates': 70}, {'n_estimators': 10, 'n_candidates': 100}] accuracies = np.zeros((len(n_samples), len(params_list)), dtype=float) speed_ups = np.zeros((len(n_samples), len(params_list)), dtype=float) for i, sample_size in enumerate(n_samples): print ('==========================================================') print ('Sample size: %i' % sample_size) print ('------------------------') exact_neighbors, average_time_exact = calc_exact_neighbors( X_index[:sample_size], X_query, n_queries, n_neighbors) for j, params in enumerate(params_list): print ('LSHF parameters: n_estimators = %i, n_candidates = %i' % (params['n_estimators'], params['n_candidates'])) speed_ups[i, j], accuracies[i, j] = calc_accuracy( X_index[:sample_size], X_query, n_queries, n_neighbors, exact_neighbors, average_time_exact, random_state=0, **params) print ('') print ('==========================================================') # Set labels for LSHForest parameters colors = ['c', 'm', 'y'] p1 = plt.Rectangle((0, 0), 0.1, 0.1, fc=colors[0]) p2 = plt.Rectangle((0, 0), 0.1, 0.1, fc=colors[1]) p3 = plt.Rectangle((0, 0), 0.1, 0.1, fc=colors[2]) labels = ['n_estimators=' + str(params_list[0]['n_estimators']) + ', n_candidates=' + str(params_list[0]['n_candidates']), 'n_estimators=' + str(params_list[1]['n_estimators']) + ', n_candidates=' + str(params_list[1]['n_candidates']), 'n_estimators=' + str(params_list[2]['n_estimators']) + ', n_candidates=' + str(params_list[2]['n_candidates'])] # Plot precision plt.figure() plt.legend((p1, p2, p3), (labels[0], labels[1], labels[2]), loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, accuracies[:, i], c=colors[i]) plt.plot(n_samples, accuracies[:, i], c=colors[i]) plt.ylim([0, 1.3]) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Precision@10") plt.xlabel("Index size") plt.grid(which='both') plt.title("Precision of first 10 neighbors with index size") # Plot speed up plt.figure() plt.legend((p1, p2, p3), (labels[0], labels[1], labels[2]), loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, speed_ups[:, i], c=colors[i]) plt.plot(n_samples, speed_ups[:, i], c=colors[i]) plt.ylim(0, np.max(speed_ups)) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Speed up") plt.xlabel("Index size") plt.grid(which='both') plt.title("Relationship between Speed up and index size") plt.show()
bsd-3-clause
AunShiLord/sympy
sympy/interactive/session.py
1
15016
"""Tools for setting up interactive sessions. """ from __future__ import print_function, division from sympy.external import import_module from sympy.interactive.printing import init_printing preexec_source = """\ from __future__ import division from sympy import * x, y, z, t = symbols('x y z t') k, m, n = symbols('k m n', integer=True) f, g, h = symbols('f g h', cls=Function) init_printing() """ verbose_message = """\ These commands were executed: %(source)s Documentation can be found at http://docs.sympy.org/%(version)s """ no_ipython = """\ Couldn't locate IPython. Having IPython installed is greatly recommended. See http://ipython.scipy.org for more details. If you use Debian/Ubuntu, just install the 'ipython' package and start isympy again. """ def _make_message(ipython=True, quiet=False, source=None): """Create a banner for an interactive session. """ from sympy import __version__ as sympy_version from sympy.polys.domains import GROUND_TYPES from sympy.utilities.misc import ARCH from sympy import SYMPY_DEBUG import sys import os python_version = "%d.%d.%d" % sys.version_info[:3] if ipython: shell_name = "IPython" else: shell_name = "Python" info = ['ground types: %s' % GROUND_TYPES] cache = os.getenv('SYMPY_USE_CACHE') if cache is not None and cache.lower() == 'no': info.append('cache: off') if SYMPY_DEBUG: info.append('debugging: on') args = shell_name, sympy_version, python_version, ARCH, ', '.join(info) message = "%s console for SymPy %s (Python %s-%s) (%s)\n" % args if not quiet: if source is None: source = preexec_source _source = "" for line in source.split('\n')[:-1]: if not line: _source += '\n' else: _source += '>>> ' + line + '\n' doc_version = sympy_version if doc_version.find('-git') >= 0: doc_version = "dev" else: doc_version = "%s.%s.%s/" % tuple(doc_version.split('.')[:3]) message += '\n' + verbose_message % {'source': _source, 'version': doc_version} return message def int_to_Integer(s): """ Wrap integer literals with Integer. This is based on the decistmt example from http://docs.python.org/library/tokenize.html. Only integer literals are converted. Float literals are left alone. Example ======= >>> from __future__ import division >>> from sympy.interactive.session import int_to_Integer >>> from sympy import Integer >>> s = '1.2 + 1/2 - 0x12 + a1' >>> int_to_Integer(s) '1.2 +Integer (1 )/Integer (2 )-Integer (0x12 )+a1 ' >>> s = 'print (1/2)' >>> int_to_Integer(s) 'print (Integer (1 )/Integer (2 ))' >>> exec(s) 0.5 >>> exec(int_to_Integer(s)) 1/2 """ from tokenize import generate_tokens, untokenize, NUMBER, NAME, OP from sympy.core.compatibility import StringIO def _is_int(num): """ Returns true if string value num (with token NUMBER) represents an integer. """ # XXX: Is there something in the standard library that will do this? if '.' in num or 'j' in num.lower() or 'e' in num.lower(): return False return True result = [] g = generate_tokens(StringIO(s).readline) # tokenize the string for toknum, tokval, _, _, _ in g: if toknum == NUMBER and _is_int(tokval): # replace NUMBER tokens result.extend([ (NAME, 'Integer'), (OP, '('), (NUMBER, tokval), (OP, ')') ]) else: result.append((toknum, tokval)) return untokenize(result) def enable_automatic_int_sympification(app): """ Allow IPython to automatically convert integer literals to Integer. """ hasshell = hasattr(app, 'shell') import ast if hasshell: old_run_cell = app.shell.run_cell else: old_run_cell = app.run_cell def my_run_cell(cell, *args, **kwargs): try: # Check the cell for syntax errors. This way, the syntax error # will show the original input, not the transformed input. The # downside here is that IPython magic like %timeit will not work # with transformed input (but on the other hand, IPython magic # that doesn't expect transformed input will continue to work). ast.parse(cell) except SyntaxError: pass else: cell = int_to_Integer(cell) old_run_cell(cell, *args, **kwargs) if hasshell: app.shell.run_cell = my_run_cell else: app.run_cell = my_run_cell def enable_automatic_symbols(app): """Allow IPython to automatially create symbols (``isympy -a``). """ # XXX: This should perhaps use tokenize, like int_to_Integer() above. # This would avoid re-executing the code, which can lead to subtle # issues. For example: # # In [1]: a = 1 # # In [2]: for i in range(10): # ...: a += 1 # ...: # # In [3]: a # Out[3]: 11 # # In [4]: a = 1 # # In [5]: for i in range(10): # ...: a += 1 # ...: print b # ...: # b # b # b # b # b # b # b # b # b # b # # In [6]: a # Out[6]: 12 # # Note how the for loop is executed again because `b` was not defined, but `a` # was already incremented once, so the result is that it is incremented # multiple times. import re re_nameerror = re.compile( "name '(?P<symbol>[A-Za-z_][A-Za-z0-9_]*)' is not defined") def _handler(self, etype, value, tb, tb_offset=None): """Handle :exc:`NameError` exception and allow injection of missing symbols. """ if etype is NameError and tb.tb_next and not tb.tb_next.tb_next: match = re_nameerror.match(str(value)) if match is not None: # XXX: Make sure Symbol is in scope. Otherwise you'll get infinite recursion. self.run_cell("%(symbol)s = Symbol('%(symbol)s')" % {'symbol': match.group("symbol")}, store_history=False) try: code = self.user_ns['In'][-1] except (KeyError, IndexError): pass else: self.run_cell(code, store_history=False) return None finally: self.run_cell("del %s" % match.group("symbol"), store_history=False) stb = self.InteractiveTB.structured_traceback( etype, value, tb, tb_offset=tb_offset) self._showtraceback(etype, value, stb) if hasattr(app, 'shell'): app.shell.set_custom_exc((NameError,), _handler) else: # This was restructured in IPython 0.13 app.set_custom_exc((NameError,), _handler) def init_ipython_session(argv=[], auto_symbols=False, auto_int_to_Integer=False): """Construct new IPython session. """ import IPython if IPython.__version__ >= '0.11': # use an app to parse the command line, and init config # IPython 1.0 deprecates the frontend module, so we import directly # from the terminal module to prevent a deprecation message from being # shown. if IPython.__version__ >= '1.0': from IPython.terminal import ipapp else: from IPython.frontend.terminal import ipapp app = ipapp.TerminalIPythonApp() # don't draw IPython banner during initialization: app.display_banner = False app.initialize(argv) if auto_symbols: readline = import_module("readline") if readline: enable_automatic_symbols(app) if auto_int_to_Integer: enable_automatic_int_sympification(app) return app.shell else: from IPython.Shell import make_IPython return make_IPython(argv) def init_python_session(): """Construct new Python session. """ from code import InteractiveConsole class SymPyConsole(InteractiveConsole): """An interactive console with readline support. """ def __init__(self): InteractiveConsole.__init__(self) try: import readline except ImportError: pass else: import os import atexit readline.parse_and_bind('tab: complete') if hasattr(readline, 'read_history_file'): history = os.path.expanduser('~/.sympy-history') try: readline.read_history_file(history) except IOError: pass atexit.register(readline.write_history_file, history) return SymPyConsole() def init_session(ipython=None, pretty_print=True, order=None, use_unicode=None, use_latex=None, quiet=False, auto_symbols=False, auto_int_to_Integer=False, argv=[]): """ Initialize an embedded IPython or Python session. The IPython session is initiated with the --pylab option, without the numpy imports, so that matplotlib plotting can be interactive. Parameters ========== pretty_print: boolean If True, use pretty_print to stringify; if False, use sstrrepr to stringify. order: string or None There are a few different settings for this parameter: lex (default), which is lexographic order; grlex, which is graded lexographic order; grevlex, which is reversed graded lexographic order; old, which is used for compatibility reasons and for long expressions; None, which sets it to lex. use_unicode: boolean or None If True, use unicode characters; if False, do not use unicode characters. use_latex: boolean or None If True, use latex rendering if IPython GUI's; if False, do not use latex rendering. quiet: boolean If True, init_session will not print messages regarding its status; if False, init_session will print messages regarding its status. auto_symbols: boolean If True, IPython will automatically create symbols for you. If False, it will not. The default is False. auto_int_to_Integer: boolean If True, IPython will automatically wrap int literals with Integer, so that things like 1/2 give Rational(1, 2). If False, it will not. The default is False. ipython: boolean or None If True, printing will initialize for an IPython console; if False, printing will initialize for a normal console; The default is None, which automatically determines whether we are in an ipython instance or not. argv: list of arguments for IPython See sympy.bin.isympy for options that can be used to initialize IPython. See Also ======== sympy.interactive.printing.init_printing: for examples and the rest of the parameters. Examples ======== >>> from sympy import init_session, Symbol, sin, sqrt >>> sin(x) #doctest: +SKIP NameError: name 'x' is not defined >>> init_session() #doctest: +SKIP >>> sin(x) #doctest: +SKIP sin(x) >>> sqrt(5) #doctest: +SKIP ___ \/ 5 >>> init_session(pretty_print=False) #doctest: +SKIP >>> sqrt(5) #doctest: +SKIP sqrt(5) >>> y + x + y**2 + x**2 #doctest: +SKIP x**2 + x + y**2 + y >>> init_session(order='grlex') #doctest: +SKIP >>> y + x + y**2 + x**2 #doctest: +SKIP x**2 + y**2 + x + y >>> init_session(order='grevlex') #doctest: +SKIP >>> y * x**2 + x * y**2 #doctest: +SKIP x**2*y + x*y**2 >>> init_session(order='old') #doctest: +SKIP >>> x**2 + y**2 + x + y #doctest: +SKIP x + y + x**2 + y**2 >>> theta = Symbol('theta') #doctest: +SKIP >>> theta #doctest: +SKIP theta >>> init_session(use_unicode=True) #doctest: +SKIP >>> theta # doctest: +SKIP \u03b8 """ import sys in_ipython = False if ipython is not False: try: import IPython except ImportError: if ipython is True: raise RuntimeError("IPython is not available on this system") ip = None else: if IPython.__version__ >= '0.11': try: ip = get_ipython() except NameError: ip = None else: ip = IPython.ipapi.get() if ip: ip = ip.IP in_ipython = bool(ip) if ipython is None: ipython = in_ipython if ipython is False: ip = init_python_session() mainloop = ip.interact else: if ip is None: ip = init_ipython_session(argv=argv, auto_symbols=auto_symbols, auto_int_to_Integer=auto_int_to_Integer) if IPython.__version__ >= '0.11': # runsource is gone, use run_cell instead, which doesn't # take a symbol arg. The second arg is `store_history`, # and False means don't add the line to IPython's history. ip.runsource = lambda src, symbol='exec': ip.run_cell(src, False) #Enable interactive plotting using pylab. try: ip.enable_pylab(import_all=False) except Exception: # Causes an import error if matplotlib is not installed. # Causes other errors (depending on the backend) if there # is no display, or if there is some problem in the # backend, so we have a bare "except Exception" here pass if not in_ipython: mainloop = ip.mainloop readline = import_module("readline") if auto_symbols and (not ipython or IPython.__version__ < '0.11' or not readline): raise RuntimeError("automatic construction of symbols is possible only in IPython 0.11 or above with readline support") if auto_int_to_Integer and (not ipython or IPython.__version__ < '0.11'): raise RuntimeError("automatic int to Integer transformation is possible only in IPython 0.11 or above") _preexec_source = preexec_source ip.runsource(_preexec_source, symbol='exec') init_printing(pretty_print=pretty_print, order=order, use_unicode=use_unicode, use_latex=use_latex, ip=ip) message = _make_message(ipython, quiet, _preexec_source) if not in_ipython: mainloop(message) sys.exit('Exiting ...') else: ip.write(message) import atexit atexit.register(lambda ip: ip.write("Exiting ...\n"), ip)
bsd-3-clause
MuhammadVT/davitpy
davitpy/pydarn/plotting/musicPlot.py
1
88631
# -*- coding: utf-8 -*- # Copyright (C) 2012 VT SuperDARN Lab # Full license can be found in LICENSE.txt # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """musicPlot module A module for plotting objects created and processed with the pydarn.proc.music module. Notes ----- Please see the pydarn.proc.music module documentation and the iPython notebooks included in the docs folder of the DaViTPy distribution. Module author: Nathaniel A. Frissell, Fall 2013 Functions -------------------------------------------------- daynight_terminator Calculate day/night terminator plotRelativeRanges cell distances rangeBeamPlot range versus beam timeSeriesMultiPlot time series spectrumMultiPlot 1D line spectral data multiPlot time series or spectral data plotFullSpectrum full spectrum of musicArray plotDlm cross spectral matrix plotKarr horizontal wave number plotKarrDetected add in use of detectSignals() plotKarrAxis Karr plot without titles -------------------------------------------------- Classes --------------------------------------- musicFan fan plot of musicArray data musicRTI RTI plot of musicArray data --------------------------------------- """ import numpy as np import scipy as sp import datetime from matplotlib.collections import PolyCollection from matplotlib.patches import Polygon from matplotlib import dates as md import matplotlib from mpl_toolkits.basemap import Basemap from davitpy import utils from davitpy.pydarn.radar.radUtils import getParamDict from davitpy.pydarn.proc.music import getDataSet import logging #Global Figure Size figsize=(20,10) def daynight_terminator(date, lons): """Calculates the latitude, Greenwich Hour Angle, and solar declination from a given latitude and longitude. This routine is used by musicRTI for terminator calculations. Parameters ---------- date : datetime.datetime UT date and time of terminator calculation. lons : np.array Longitudes of which to calculate the terminator. Returns ------- lats : np.array Latitudes of solar terminator. tau : np.array Greenwhich Hour Angle. dec : np.array Solar declination. Notes ----- Adapted from mpl_toolkits.basemap.solar by Nathaniel A. Frissell, Fall 2013 """ import mpl_toolkits.basemap.solar as solar dg2rad = np.pi/180. # compute greenwich hour angle and solar declination # from datetime object (assumed UTC). tau, dec = solar.epem(date) # compute day/night terminator from hour angle, declination. longitude = lons + tau lats = np.arctan(-np.cos(longitude*dg2rad)/np.tan(dec*dg2rad))/dg2rad return lats,tau,dec class musicFan(object): """Class to plot a fan plot using a pydarn.proc.music.musicArray object as the data source. Parameters ---------- dataObj : pydarn.proc.music.musicArray musicArray object dataSet : Optional[str] Which dataSet in the musicArray object to plot time : Optional[None or datetime.datetime] Time scan plot. If None, the first time in dataSet will be used. axis : Optional[None or matplotlib.figure.axis] Matplotlib axis on which to plot. If None, a new figure and axis will be created. scale : Optional[None or 2-Element iterable] Colorbar scale. If None, the default scale for the current SuperDARN parameter will be used. autoScale : Optional[bool] If True, automatically scale the color bar for good data visualization. Keyword scale must be None when using autoScale. plotZeros : Optional[bool] If True, plot cells that are exactly 0. markCell : Optional[None or 2-Element iterable] Mark the (beam, rangeGate) with black. markBeam : Optional[None or int] Mark a chosen beam. markBeam_dict : Optional[dict] dictionary of keywords defining markBeam line properties. plotTerminator : Optional[bool] If True, overlay day/night terminator on map. Uses Basemap's nightshade. plot_title : Optional[bool] If True, plot the title information title : Optional[str] Overide default title text. parallels_ticks : Optional[list] Where to draw the parallel (latitude) lines meridians_ticks : Optional[list] Where to draw the meridian (longitude) lines zoom : Optional[float] Multiply the map height and width by this factor (bigger number shows more area). lat_shift : Optional[float] Add this number to the computed lat_0 sent to basemap. lon_shift : Optional[float] Add this number to the computed lon_0 sent to basemap. cmap_handling : Optional[str] 'superdarn' to use SuperDARN-style colorbars, 'matplotlib' for direct use of matplotlib's colorbars. 'matplotlib' is recommended when using custom scales and the 'superdarn' mode is not providing a desirable result. cmap : Optional[one or matplotlib colormap object] If Nonei and cmap_handling=='matplotlib', use jet. plot_cbar : Optional[bool] If True, plot the color bar. cbar_ticks : Optional[list] Where to put the ticks on the color bar. cbar_shrink : Optional[float] Fraction by which to shrink the colorbar cbar_fraction : Optional[float] Fraction of original axes to use for colorbar cbar_gstext_offset : Optional[float] y-offset from colorbar of "Ground Scatter Only" text cbar_gstext_fontsize : Optional[float] Fontsize of "Ground Scatter Only" text model_text_size : Optional[int] fontsize of model and coordinate indicator text draw_coastlines : Optional[bool] If True, draw the coastlines. basemap_dict : Optional[dict] Dictionary of keywords sent to the basemap invocation **kwArgs Keyword Arguments Attributes ---------- map_obj pcoll Written by Nathaniel A. Frissell, Fall 2013 """ def __init__(self,dataObject, dataSet = 'active', time = None, axis = None, scale = None, autoScale = False, plotZeros = False, markCell = None, markBeam = None, markBeam_dict = {'color':'white','lw':2}, plotTerminator = True, parallels_ticks = None, meridians_ticks = None, zoom = 1., lat_shift = 0., lon_shift = 0., cmap_handling = 'superdarn', cmap = None, plot_cbar = True, cbar_ticks = None, cbar_shrink = 1.0, cbar_fraction = 0.15, cbar_gstext_offset = -0.075, cbar_gstext_fontsize = None, model_text_size = 'small', draw_coastlines = True, basemap_dict = {}, plot_title = True, title = None, **kwArgs): if axis is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) from scipy import stats # Make some variables easier to get to... currentData = getDataSet(dataObject,dataSet) metadata = currentData.metadata latFull = currentData.fov.latFull lonFull = currentData.fov.lonFull coords = metadata['coords'] # Translate parameter information from short to long form. paramDict = getParamDict(metadata['param']) if paramDict.has_key('label'): param = paramDict['param'] cbarLabel = paramDict['label'] else: param = 'width' # Set param = 'width' at this point just to not screw up the colorbar function. cbarLabel = metadata['param'] # Set colorbar scale if not explicitly defined. if(scale is None): if autoScale: sd = stats.nanstd(np.abs(currentData.data),axis=None) mean = stats.nanmean(np.abs(currentData.data),axis=None) scMax = np.ceil(mean + 1.*sd) if np.min(currentData.data) < 0: scale = scMax*np.array([-1.,1.]) else: scale = scMax*np.array([0.,1.]) else: if paramDict.has_key('range'): scale = paramDict['range'] else: scale = [-200,200] # See if an axis is provided... if not, set one up! if axis is None: axis = fig.add_subplot(111) else: fig = axis.get_figure() # Figure out which scan we are going to plot... if time is None: timeInx = 0 else: timeInx = (np.where(currentData.time >= time))[0] if np.size(timeInx) == 0: timeInx = -1 else: timeInx = int(np.min(timeInx)) # do some stuff in map projection coords to get necessary width and height of map lonFull,latFull = (np.array(lonFull)+360.)%360.,np.array(latFull) goodLatLon = np.logical_and( np.logical_not(np.isnan(lonFull)), np.logical_not(np.isnan(latFull)) ) goodInx = np.where(goodLatLon) goodLatFull = latFull[goodInx] goodLonFull = lonFull[goodInx] tmpmap = Basemap(projection='npstere', boundinglat=20,lat_0=90, lon_0=np.mean(goodLonFull)) x,y = tmpmap(goodLonFull,goodLatFull) minx = x.min() miny = y.min() maxx = x.max() maxy = y.max() width = (maxx-minx) height = (maxy-miny) cx = minx + width/2. cy = miny + height/2. lon_0,lat_0 = tmpmap(cx, cy, inverse=True) lon_0 = np.mean(goodLonFull) dist = width/50. # Fill the entire subplot area without changing the data aspect ratio. bbox = axis.get_window_extent() bbox_width = bbox.width bbox_height = bbox.height ax_aspect = bbox_width / bbox_height map_aspect = width / height if map_aspect < ax_aspect: width = (height*bbox_width) / bbox_height if map_aspect > ax_aspect: height = (width*bbox_height) / bbox_width # Zoom! width = zoom * width height = zoom * height lat_0 = lat_0 + lat_shift lon_0 = lon_0 + lon_shift bmd = basemap_dict.copy() width = bmd.pop('width', width) height = bmd.pop('height', height) lat_0 = bmd.pop('lat_0', lat_0) lon_0 = bmd.pop('lon_0', lon_0) # draw the actual map we want m = Basemap(projection='stere',width=width,height=height,lon_0=lon_0,lat_0=lat_0,ax=axis,**bmd) if parallels_ticks is None: parallels_ticks = np.arange(-80.,81.,10.) if meridians_ticks is None: meridians_ticks = np.arange(-180.,181.,20.) m.drawparallels(parallels_ticks,labels=[1,0,0,0]) m.drawmeridians(meridians_ticks,labels=[0,0,0,1]) if(coords == 'geo') and draw_coastlines == True: m.drawcoastlines(linewidth=0.5,color='k') m.drawmapboundary(fill_color='w') m.fillcontinents(color='w', lake_color='w') # Plot the SuperDARN data! ngates = np.shape(currentData.data)[2] nbeams = np.shape(currentData.data)[1] verts = [] scan = [] data = currentData.data[timeInx,:,:] for bm in range(nbeams): for rg in range(ngates): if goodLatLon[bm,rg] == False: continue if np.isnan(data[bm,rg]): continue if data[bm,rg] == 0 and not plotZeros: continue scan.append(data[bm,rg]) x1,y1 = m(lonFull[bm+0,rg+0],latFull[bm+0,rg+0]) x2,y2 = m(lonFull[bm+1,rg+0],latFull[bm+1,rg+0]) x3,y3 = m(lonFull[bm+1,rg+1],latFull[bm+1,rg+1]) x4,y4 = m(lonFull[bm+0,rg+1],latFull[bm+0,rg+1]) verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) if (cmap_handling == 'matplotlib') or autoScale: if cmap is None: cmap = matplotlib.cm.jet bounds = np.linspace(scale[0],scale[1],256) norm = matplotlib.colors.BoundaryNorm(bounds,cmap.N) elif cmap_handling == 'superdarn': colors = 'lasse' cmap,norm,bounds = utils.plotUtils.genCmap(param,scale,colors=colors) # pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll = PolyCollection(np.array(verts),edgecolors='face',closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) # Mark Cell if markCell is not None: beamInx = int(np.where(currentData.fov.beams == markCell[0])[0]) gateInx = int(np.where(currentData.fov.gates == markCell[1])[0]) x1,y1 = m(lonFull[beamInx+0,gateInx+0],latFull[beamInx+0,gateInx+0]) x2,y2 = m(lonFull[beamInx+1,gateInx+0],latFull[beamInx+1,gateInx+0]) x3,y3 = m(lonFull[beamInx+1,gateInx+1],latFull[beamInx+1,gateInx+1]) x4,y4 = m(lonFull[beamInx+0,gateInx+1],latFull[beamInx+0,gateInx+1]) mkv = np.array([[x1,y1],[x2,y2],[x3,y3],[x4,y4],[x1,y1]]) poly = Polygon(mkv,facecolor='#000000',edgecolor='none',zorder=100) axis.add_patch(poly) # Mark Beam if markBeam is not None: beamInx = int(np.where(currentData.fov.beams == markBeam)[0]) startedMarking = False for gateInx in range(ngates): if goodLatLon[beamInx,gateInx] == False: continue x1,y1 = m(lonFull[beamInx+0,gateInx+0],latFull[beamInx+0,gateInx+0]) x2,y2 = m(lonFull[beamInx+1,gateInx+0],latFull[beamInx+1,gateInx+0]) x3,y3 = m(lonFull[beamInx+1,gateInx+1],latFull[beamInx+1,gateInx+1]) x4,y4 = m(lonFull[beamInx+0,gateInx+1],latFull[beamInx+0,gateInx+1]) axis.plot([x1,x4],[y1,y4],zorder=150,**markBeam_dict) axis.plot([x2,x3],[y2,y3],zorder=150,**markBeam_dict) if not startedMarking: axis.plot([x1,x2],[y1,y2],zorder=150,**markBeam_dict) startedMarking = True if gateInx == ngates-1: axis.plot([x3,x4],[y3,y4],zorder=150,**markBeam_dict) dataName = currentData.history[max(currentData.history.keys())] # Label the plot with the current level of data processing. if plot_title: if title is None: axis.set_title(metadata['name']+' - '+dataName+currentData.time[timeInx].strftime('\n%Y %b %d %H%M UT')) else: axis.set_title(title) if plot_cbar: cbar = fig.colorbar(pcoll,orientation='vertical',shrink=cbar_shrink,fraction=cbar_fraction) cbar.set_label(cbarLabel) if cbar_ticks is None: labels = cbar.ax.get_yticklabels() labels[-1].set_visible(False) else: cbar.set_ticks(cbar_ticks) if currentData.metadata.has_key('gscat'): if currentData.metadata['gscat'] == 1: cbar.ax.text(0.5,cbar_gstext_offset,'Ground\nscat\nonly',ha='center',fontsize=cbar_gstext_fontsize) txt = 'Coordinates: ' + metadata['coords'] +', Model: ' + metadata['model'] axis.text(1.01, 0, txt, horizontalalignment='left', verticalalignment='bottom', rotation='vertical', size=model_text_size, transform=axis.transAxes) if plotTerminator: m.nightshade(currentData.time[timeInx]) self.map_obj = m self.pcoll = pcoll class musicRTI(object): """Class to create an RTI plot using a pydarn.proc.music.musicArray object as the data source. Parameters ---------- dataObj : pydarn.proc.music.musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot beam : Optional[int] Beam number to plot. xlim : Optoinal[None or 2-element iterable of datetime.datetime] Limits for x-axis. ylim : Optional[None or 2-element iterable of floats] Limits for y-axis. axis : Optional[None or matplotlib.figure.axis] Matplotlib axis on which to plot. If None, a new figure and axis will be created. scale : Optional[None or 2-Element iterable] Colorbar scale. If None, the default scale for the current SuperDARN parameter will be used. plotZeros : Optional[bool] If True, plot data cells that are identically zero. max_sounding_time : Optional[None or datetime.timedelta] Do not allow data to be plotted for longer than this duration. xBoundaryLimits: Optional[None or 2-element iterable of datetime.datetime] Mark a region of times on the RTI plot. A green dashed vertical line will be plotted at each of the boundary times. The region of time outside of the boundary will be shaded gray. If set to None, this will automatically be set to the timeLimits set in the metadata, if they exist. yBoundaryLimits : Optional[None or 2-element iterable of floats] Mark a region of range on the RTI plot. A green dashed horizontal line will be plotted at each of the boundary ranges. The region of time outside of the boundary will be shaded gray. If set to None, this will automatically be set to the gateLimits set in the metadata, if they exist. yticks : Optional[list] Where to put the ticks on the y-axis. ytick_lat_format : Optional[str] %-style string format code for latitude y-tick labels autoScale : Optional[bool] If True, automatically scale the color bar for good data visualization. Keyword scale must be None when using autoScale. ax.set_xlim(xlim) plotTerminator : Optional[bool] If True, overlay day/night terminator on the RTI plot. Every cell is evaluated for day/night and shaded accordingly. Therefore, terminator resolution will match the resolution of the RTI plot data. axvlines : Optional[None or list of datetime.datetime] Dashed vertical lines will be drawn at each specified datetime.datetime. axvline_color : Optional[str] Matplotlib color code specifying color of the axvlines. secondary_coords : Optional[str] Secondary coordate system for RTI plot y-axis ('lat' or 'range') plot_info : Optional[bool] If True, plot frequency/noise plots plot_title : Optional[bool] If True, plot the title information plot_range_limits_label : Optoinal[bool] If True, plot the label corresponding to the range limits on the right-hand y-axis. cmap_handling : Optional[str] 'superdarn' to use SuperDARN-style colorbars, 'matplotlib' for direct use of matplotlib's colorbars. 'matplotlib' is recommended when using custom scales and the 'superdarn' mode is not providing a desirable result. plot_cbar : Optional[bool] If True, plot the color bar. cbar_ticks : Optional[list] Where to put the ticks on the color bar. cbar_shrink : Optional[float] fraction by which to shrink the colorbar cbar_fraction : Optional[float] fraction of original axes to use for colorbar cbar_gstext_offset : Optional[float] y-offset from colorbar of "Ground Scatter Only" text cbar_gstext_fontsize : Optional[float] fontsize of "Ground Scatter Only" text model_text_size : Optional[int] fontsize of model and coordinate indicator text **kwArgs : Keyword Arguments Attributes ---------- cbar_info : list Written by Nathaniel A. Frissell, Fall 2013 """ def __init__(self,dataObject, dataSet = 'active', beam = 7, coords = 'gate', xlim = None, ylim = None, axis = None, scale = None, plotZeros = False, max_sounding_time = datetime.timedelta(minutes=4), xBoundaryLimits = None, yBoundaryLimits = None, yticks = None, ytick_lat_format = '.0f', autoScale = False, plotTerminator = True, axvlines = None, axvline_color = '0.25', secondary_coords = 'lat', plot_info = True, plot_title = True, plot_range_limits_label = True, cmap_handling = 'superdarn', cmap = None, bounds = None, norm = None, plot_cbar = True, cbar_ticks = None, cbar_shrink = 1.0, cbar_fraction = 0.15, cbar_gstext_offset = -0.075, cbar_gstext_fontsize = None, model_text_size = 'small', y_labelpad = None, **kwArgs): from scipy import stats from rti import plotFreq,plotNoise if axis is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) # Make some variables easier to get to... currentData = getDataSet(dataObject,dataSet) metadata = currentData.metadata latFull = currentData.fov.latFull lonFull = currentData.fov.lonFull latCenter = currentData.fov.latCenter lonCenter = currentData.fov.lonCenter time = currentData.time beamInx = np.where(currentData.fov.beams == beam)[0] radar_lats = latCenter[beamInx,:] nrTimes, nrBeams, nrGates = np.shape(currentData.data) # Calculate terminator. ######################################################## if plotTerminator: daylight = np.ones([nrTimes,nrGates],np.bool) for tm_inx in range(nrTimes): tm = time[tm_inx] term_lons = lonCenter[beamInx,:] term_lats,tau,dec = daynight_terminator(tm,term_lons) if dec > 0: # NH Summer day_inx = np.where(radar_lats < term_lats)[1] else: day_inx = np.where(radar_lats > term_lats)[1] if day_inx.size != 0: daylight[tm_inx,day_inx] = False # Translate parameter information from short to long form. paramDict = getParamDict(metadata['param']) if paramDict.has_key('label'): param = paramDict['param'] cbarLabel = paramDict['label'] else: param = 'width' # Set param = 'width' at this point just to not screw up the colorbar function. cbarLabel = metadata['param'] # Set colorbar scale if not explicitly defined. if(scale is None): if autoScale: sd = stats.nanstd(np.abs(currentData.data),axis=None) mean = stats.nanmean(np.abs(currentData.data),axis=None) scMax = np.ceil(mean + 1.*sd) if np.min(currentData.data) < 0: scale = scMax*np.array([-1.,1.]) else: scale = scMax*np.array([0.,1.]) else: if paramDict.has_key('range'): scale = paramDict['range'] else: scale = [-200,200] # See if an axis is provided... if not, set one up! if axis is None: axis = fig.add_subplot(111) else: fig = axis.get_figure() if np.size(beamInx) == 0: beamInx = 0 beam = currentData.fov.beams[0] # Plot the SuperDARN data! verts = [] scan = [] data = np.squeeze(currentData.data[:,beamInx,:]) # The coords keyword needs to be tested better. For now, just allow 'gate' only. # Even in 'gate' mode, the geographic latitudes are plotted along with gate. # if coords is None and metadata.has_key('coords'): # coords = metadata['coords'] # if coords not in ['gate','range']: logging.warning('Coords "%s" not supported for RTI plots. Using "gate".' % coords) coords = 'gate' if coords == 'gate': rnge = currentData.fov.gates elif coords == 'range': rnge = currentData.fov.slantRFull[beam,:] xvec = [matplotlib.dates.date2num(x) for x in currentData.time] for tm in range(nrTimes-1): for rg in range(nrGates-1): if np.isnan(data[tm,rg]): continue if data[tm,rg] == 0 and not plotZeros: continue if max_sounding_time is not None: if (currentData.time[tm+1] - currentData.time[tm+0]) > max_sounding_time: continue scan.append(data[tm,rg]) x1,y1 = xvec[tm+0],rnge[rg+0] x2,y2 = xvec[tm+1],rnge[rg+0] x3,y3 = xvec[tm+1],rnge[rg+1] x4,y4 = xvec[tm+0],rnge[rg+1] verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) if (cmap_handling == 'matplotlib') or autoScale: if cmap is None: cmap = matplotlib.cm.jet if bounds is None: bounds = np.linspace(scale[0],scale[1],256) if norm is None: norm = matplotlib.colors.BoundaryNorm(bounds,cmap.N) elif cmap_handling == 'superdarn': colors = 'lasse' cmap,norm,bounds = utils.plotUtils.genCmap(param,scale,colors=colors) pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) # Plot the terminator! ######################################################### if plotTerminator: # print 'Terminator functionality is disabled until further testing is completed.' term_verts = [] term_scan = [] rnge = currentData.fov.gates xvec = [matplotlib.dates.date2num(x) for x in currentData.time] for tm in range(nrTimes-1): for rg in range(nrGates-1): if daylight[tm,rg]: continue term_scan.append(1) x1,y1 = xvec[tm+0],rnge[rg+0] x2,y2 = xvec[tm+1],rnge[rg+0] x3,y3 = xvec[tm+1],rnge[rg+1] x4,y4 = xvec[tm+0],rnge[rg+1] term_verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) term_pcoll = PolyCollection(np.array(term_verts),facecolors='0.45',linewidth=0,zorder=99,alpha=0.25) axis.add_collection(term_pcoll,autolim=False) ################################################################################ if axvlines is not None: for line in axvlines: axis.axvline(line,color=axvline_color,ls='--') if xlim is None: xlim = (np.min(time),np.max(time)) axis.set_xlim(xlim) axis.xaxis.set_major_formatter(md.DateFormatter('%H:%M')) axis.set_xlabel('Time [UT]') if ylim is None: ylim = (np.min(rnge),np.max(rnge)) axis.set_ylim(ylim) if yticks is not None: axis.set_yticks(yticks) # Y-axis labeling ############################################################## if coords == 'gate': if secondary_coords: if secondary_coords == 'range': if metadata['model'] == 'IS': axis.set_ylabel('Range Gate\nSlant Range [km]',labelpad=y_labelpad) elif metadata['model'] == 'GS': axis.set_ylabel('Range Gate\nGS Mapped Range [km]',labelpad=y_labelpad) else: geo_mag = 'Geographic' if currentData.fov.coords == 'geo' else 'Magnetic' if metadata['model'] == 'IS': axis.set_ylabel('Range Gate\n%s Latitude' % geo_mag,labelpad=y_labelpad) elif metadata['model'] == 'GS': axis.set_ylabel('Range Gate\nGS Mapped %s Latitude' % geo_mag,labelpad=y_labelpad) yticks = axis.get_yticks() ytick_str = [] for tck in yticks: txt = [] txt.append('%d' % tck) rg_inx = np.where(tck == currentData.fov.gates)[0] if np.size(rg_inx) != 0: if secondary_coords == 'range': rang = currentData.fov.slantRCenter[beamInx,rg_inx] if np.isfinite(rang): txt.append('%d' % rang) else: txt.append('') else: lat = currentData.fov.latCenter[beamInx,rg_inx] if np.isfinite(lat): txt.append((u'%'+ytick_lat_format+'$^o$') % lat) else: txt.append('') txt = '\n'.join(txt) ytick_str.append(txt) axis.set_yticklabels(ytick_str,rotation=90,ma='center') else: axis.set_ylabel('Range Gate',labelpad=y_labelpad) elif coords == 'range': if secondary_coords == 'lat': # Use linear interpolation to get the latitude associated with a particular range. # Make sure we only include finite values in the interpolation function. finite_inx = np.where(np.isfinite(currentData.fov.latCenter[beam,:]))[0] tmp_ranges = currentData.fov.slantRCenter[beam,:][finite_inx] tmp_lats = currentData.fov.latCenter[beam,:][finite_inx] tmp_fn = sp.interpolate.interp1d(tmp_ranges,tmp_lats) yticks = axis.get_yticks() ytick_str = [] for tck in yticks: txt = [] # Append Latitude try: lat = tmp_fn(tck) txt.append((u'%'+ytick_lat_format+'$^o$') % lat) except: txt.append('') # Append Range txt.append('%d' % tck) txt = '\n'.join(txt) ytick_str.append(txt) # Put both lat and range on same string axis.set_yticklabels(ytick_str,rotation=90,ma='center') # Set yticklabels # Label y-axis geo_mag = 'Geographic' if currentData.fov.coords == 'geo' else 'Magnetic' if metadata['model'] == 'IS': axis.set_ylabel('%s Latitude\nSlant Range [km]' % geo_mag,labelpad=y_labelpad) elif metadata['model'] == 'GS': axis.set_ylabel('GS Mapped %s Latitude\nGS Mapped Range [km]' % geo_mag,labelpad=y_labelpad) else: if metadata['model'] == 'IS': axis.set_ylabel('Slant Range [km]',labelpad=y_labelpad) elif metadata['model'] == 'GS': axis.set_ylabel('GS Mapped Range [km]',labelpad=y_labelpad) axis.set_ylim(ylim) # Shade xBoundary Limits if xBoundaryLimits is None: if currentData.metadata.has_key('timeLimits'): xBoundaryLimits = currentData.metadata['timeLimits'] if xBoundaryLimits is not None: gray = '0.75' # axis.axvspan(xlim[0],xBoundaryLimits[0],color=gray,zorder=150,alpha=0.5) # axis.axvspan(xBoundaryLimits[1],xlim[1],color=gray,zorder=150,alpha=0.5) axis.axvspan(xlim[0],xBoundaryLimits[0],color=gray,zorder=1) axis.axvspan(xBoundaryLimits[1],xlim[1],color=gray,zorder=1) axis.axvline(x=xBoundaryLimits[0],color='g',ls='--',lw=2,zorder=150) axis.axvline(x=xBoundaryLimits[1],color='g',ls='--',lw=2,zorder=150) # Shade yBoundary Limits if yBoundaryLimits is None: if currentData.metadata.has_key('gateLimits') and coords == 'gate': yBoundaryLimits = currentData.metadata['gateLimits'] if currentData.metadata.has_key('rangeLimits') and coords == 'range': yBoundaryLimits = currentData.metadata['rangeLimits'] if yBoundaryLimits is not None: gray = '0.75' # axis.axhspan(ylim[0],yBoundaryLimits[0],color=gray,zorder=150,alpha=0.5) # axis.axhspan(yBoundaryLimits[1],ylim[1],color=gray,zorder=150,alpha=0.5) axis.axhspan(ylim[0],yBoundaryLimits[0],color=gray,zorder=1) axis.axhspan(yBoundaryLimits[1],ylim[1],color=gray,zorder=1) axis.axhline(y=yBoundaryLimits[0],color='g',ls='--',lw=2,zorder=150) axis.axhline(y=yBoundaryLimits[1],color='g',ls='--',lw=2,zorder=150) for bnd_item in yBoundaryLimits: if coords == 'gate': txt = [] txt.append('%d' % bnd_item) rg_inx = np.where(bnd_item == currentData.fov.gates)[0] if np.size(rg_inx) != 0: lat = currentData.fov.latCenter[beamInx,rg_inx] if np.isfinite(lat): txt.append(u'%.1f$^o$' % lat) else: txt.append('') txt = '\n'.join(txt) else: txt = '%.1f' % bnd_item if plot_range_limits_label: axis.annotate(txt, (1.01, bnd_item) ,xycoords=('axes fraction','data'),rotation=90,ma='center') if plot_cbar: cbar = fig.colorbar(pcoll,orientation='vertical',shrink=cbar_shrink,fraction=cbar_fraction) cbar.set_label(cbarLabel) if cbar_ticks is None: labels = cbar.ax.get_yticklabels() labels[-1].set_visible(False) else: cbar.set_ticks(cbar_ticks) if currentData.metadata.has_key('gscat'): if currentData.metadata['gscat'] == 1: cbar.ax.text(0.5,cbar_gstext_offset,'Ground\nscat\nonly',ha='center',fontsize=cbar_gstext_fontsize) txt = 'Model: ' + metadata['model'] axis.text(1.01, 0, txt, horizontalalignment='left', verticalalignment='bottom', rotation='vertical', size=model_text_size, transform=axis.transAxes) # Get axis position information. pos = list(axis.get_position().bounds) # Plot frequency and noise information. ######################################## if hasattr(dataObject,'prm') and plot_info: # Adjust current plot position to fit in the freq and noise plots. super_plot_hgt = 0.06 pos[3] = pos[3] - (2*super_plot_hgt) axis.set_position(pos) # Get current colorbar position and adjust it. cbar_pos = list(cbar.ax.get_position().bounds) cbar_pos[1] = pos[1] cbar_pos[3] = pos[3] cbar.ax.set_position(cbar_pos) curr_xlim = axis.get_xlim() curr_xticks = axis.get_xticks() pos[1] = pos[1] + pos[3] pos[3] = super_plot_hgt plotFreq(fig,dataObject.prm.time,dataObject.prm.tfreq,dataObject.prm.nave,pos=pos,xlim=curr_xlim,xticks=curr_xticks) pos[1] = pos[1] + super_plot_hgt plotNoise(fig,dataObject.prm.time,dataObject.prm.noisesky,dataObject.prm.noisesearch,pos=pos,xlim=curr_xlim,xticks=curr_xticks) # Put a title on the RTI Plot. ################################################# if plot_title: title_y = (pos[1] + pos[3]) + 0.015 xmin = pos[0] xmax = pos[0] + pos[2] txt = metadata['name']+' ('+metadata['fType']+')' fig.text(xmin,title_y,txt,ha='left',weight=550) txt = [] txt.append(xlim[0].strftime('%Y %b %d %H%M UT - ')+xlim[1].strftime('%Y %b %d %H%M UT')) txt.append(currentData.history[max(currentData.history.keys())]) # Label the plot with the current level of data processing. txt = '\n'.join(txt) fig.text((xmin+xmax)/2.,title_y,txt,weight=550,size='large',ha='center') txt = 'Beam '+str(beam) fig.text(xmax,title_y,txt,weight=550,ha='right') cbar_info = {} cbar_info['cmap'] = cmap cbar_info['bounds'] = bounds cbar_info['norm'] = norm cbar_info['label'] = cbarLabel cbar_info['ticks'] = cbar_ticks cbar_info['mappable'] = pcoll self.cbar_info = cbar_info def plotRelativeRanges(dataObj,dataSet='active',time=None,fig=None): """Plots the N-S and E-W distance from the center cell of a field-of-view in a pydarn.proc.music.musicArray object. Also plots one scan of the chosen dataSet, with the center cell marked in black. Parameters ---------- dataObj : pydarn.proc.music.musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot time : Optional[None or datetime.datetime] Time scan plot. If None, the first time in dataSet will be used. fig : Optional[None of matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. Returns ------- fig : None of matplotlib.figure matplotlib figure object that was plotted to Written by Nathaniel A. Frissell, Fall 2013 """ if fig is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) currentData = getDataSet(dataObj,dataSet) from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.figure import Figure import matplotlib # Get center of FOV. ctrBeamInx = currentData.fov.relative_centerInx[0] ctrGateInx = currentData.fov.relative_centerInx[1] ctrBeam = currentData.fov.beams[ctrBeamInx] ctrGate = currentData.fov.gates[ctrGateInx] ctrLat = currentData.fov.latCenter[ctrBeamInx,ctrGateInx] ctrLon = currentData.fov.lonCenter[ctrBeamInx,ctrGateInx] gs = matplotlib.gridspec.GridSpec(3, 2,hspace=None) axis = fig.add_subplot(gs[0:2, 1]) musicFan(dataObj,time=time,plotZeros=True,dataSet=dataSet,axis=axis,markCell=(ctrBeam,ctrGate)) # Determine the color scale for plotting. def myround(x, base=50): return int(base * round(float(x)/base)) absnanmax = np.nanmax(np.abs([currentData.fov.relative_x,currentData.fov.relative_y])) rnd = myround(absnanmax) scale = (-rnd, rnd) # Determine nanmaximum ranges. xRange = np.nanmax(currentData.fov.relative_x) - np.nanmin(currentData.fov.relative_x) yRange = np.nanmax(currentData.fov.relative_y) - np.nanmin(currentData.fov.relative_y) latRange = np.nanmax(currentData.fov.latCenter) - np.nanmin(currentData.fov.latCenter) lonRange = np.nanmax(currentData.fov.lonCenter) - np.nanmin(currentData.fov.lonCenter) axis = fig.add_subplot(gs[0:2, 0]) axis.set_axis_off() text = [] text.append('X-Range [km]: %i' % xRange) text.append('Y-Range [km]: %i' % yRange) text.append('Lat Range [deg]: %.1f' % latRange) text.append('Lon Range [deg]: %.1f' % lonRange) text.append('Center Lat [deg]: %.1f' % ctrLat) text.append('Center Lon [deg]: %.1f' % ctrLon) text = '\n'.join(text) axis.text(0,0.75,text) xlabel = 'Beam' ylabel = 'Gate' cbarLabel = 'Distance from Center [km]' axis = fig.add_subplot(gs[2,0]) data = currentData.fov.relative_y title = 'N-S Distance from Center' title = '\n'.join([title,'(Beam: %i, Gate: %i)' % (ctrBeam, ctrGate)]) rangeBeamPlot(currentData,data,axis,title=title,xlabel=xlabel,ylabel=ylabel,scale=scale,cbarLabel=cbarLabel) axis = fig.add_subplot(gs[2,1]) data = currentData.fov.relative_x title = 'E-W Distance from Center' title = '\n'.join([title,'(Beam: %i, Gate: %i)' % (ctrBeam, ctrGate)]) rangeBeamPlot(currentData,data,axis,title=title,xlabel=xlabel,ylabel=ylabel,scale=scale,cbarLabel=cbarLabel) return fig def rangeBeamPlot(currentData,data,axis,title=None,xlabel=None,ylabel=None,param='velocity',scale=None,cbarLabel=None): """Plots data on a range versus beam plot with a colorbar. Parameters ---------- currentData : pydarn.proc.music.musicDataObj musicDataObj data : numpy.array nBeams x nGates Numpy array of data axis : matplotlib.axis matplotlib axis object on which to plot title : Optional[None or str] Title of plot. xlabel : Optional[None or str] X-axis label ylabel : Optional[None or str] Y-axis label param : Optional[None or str] Parameter used for colorbar selection. scale : Optional[None or 2-element iterable] Two-element colorbar scale. cbarLabel : Optional[str] Colorbar label. Written by Nathaniel A. Frissell, Fall 2013 """ fig = axis.get_figure() ngates = len(currentData.fov.gates) nbeams = len(currentData.fov.beams) verts = [] scan = [] for bmInx in range(nbeams): for rgInx in range(ngates): scan.append(data[bmInx,rgInx]) bm = currentData.fov.beams[bmInx] rg = currentData.fov.gates[rgInx] x1,y1 = bm+0, rg+0 x2,y2 = bm+1, rg+0 x3,y3 = bm+1, rg+1 x4,y4 = bm+0, rg+1 verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) if scale is None: scale = (np.min(scan),np.max(scan)) cmap = matplotlib.cm.jet bounds = np.linspace(scale[0],scale[1],256) norm = matplotlib.colors.BoundaryNorm(bounds,cmap.N) pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) axis.set_xlim(min(currentData.fov.beams), max(currentData.fov.beams)+1) axis.set_ylim(min(currentData.fov.gates), max(currentData.fov.gates)+1) if title is not None: axis.set_title(title) if xlabel is not None: axis.set_xlabel(xlabel) if ylabel is not None: axis.set_ylabel(ylabel) cbar = fig.colorbar(pcoll,orientation='vertical')#,shrink=.65,fraction=.1) if cbarLabel is not None: cbar.set_label(cbarLabel) def timeSeriesMultiPlot(dataObj,dataSet='active',dataObj2=None,dataSet2=None,plotBeam=None,plotGate=None,fig=None,xlim=None,ylim=None,xlabel=None,ylabel=None,title=None,xBoundaryLimits=None): """Plots 1D line time series of selected cells in a pydarn.proc.music.musicArray object. This defaults to 9 cells of the FOV. Parameters ---------- dataObj : pydarn.proc.music.musicArray musicArray object dataSet : Optoinal[str] which dataSet in the musicArray object to plot dataObj2 : Optional[pydarn.proc.music.musicArray] A second musicArray object to be overlain on the the first dataObj plot. dataSet2 : Optional[str] which dataSet in the second musicArray to plot plotBeam : Optional[list of int] list of beams to plot from plotGate : Optional[list of int] list of range gates to plot from fig : Optional[matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. xlim : Optional[None or 2-element iterable] X-axis limits of all plots ylim : Optional[None or 2-element iterable] Y-axis limits of all plots xlabel : Optional[None or str] X-axis label ylabel : Optional[None or str] Y-axis label title : Optional[None or str] Title of plot xBoundaryLimits : Optional[None or 2-element iterable] Element sequence to shade out portions of the data. Data outside of this range will be shaded gray, Data inside of the range will have a white background. If set to None, this will automatically be set to the timeLimits set in the metadata, if they exist. Returns ------- fig : matplotlib.figure matplotlib figure object that was plotted to Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getDataSet(dataObj,dataSet) xData1 = currentData.time yData1 = currentData.data beams = currentData.fov.beams gates = currentData.fov.gates if dataObj2 is not None and dataSet2 is None: dataSet2 == 'active' if dataSet2 is not None: if dataObj2 is not None: currentData2 = getDataSet(dataObj2,dataSet2) else: currentData2 = getDataSet(dataObj,dataSet2) xData2 = currentData2.time yData2 = currentData2.data yData2_title = currentData2.history[max(currentData2.history.keys())] else: xData2 = None yData2 = None yData2_title = None # Define x-axis range if xlim is None: tmpLim = [] tmpLim.append(min(xData1)) tmpLim.append(max(xData1)) if xData2 is not None: tmpLim.append(min(xData2)) tmpLim.append(max(xData2)) xlim = (min(tmpLim),max(tmpLim)) # Set x boundary limits using timeLimits, if they exist. Account for both dataSet1 and dataSet2, and write it so timeLimits can be any type of sequence. if xBoundaryLimits is None: tmpLim = [] if currentData.metadata.has_key('timeLimits'): tmpLim.append(currentData.metadata['timeLimits'][0]) tmpLim.append(currentData.metadata['timeLimits'][1]) if dataSet2 is not None: if currentData2.metadata.has_key('timeLimits'): tmpLim.append(currentData2.metadata['timeLimits'][0]) tmpLim.append(currentData2.metadata['timeLimits'][1]) if tmpLim != []: xBoundaryLimits = (min(tmpLim), max(tmpLim)) # Get X-Axis title. if xlabel is None: xlabel = 'UT' # Get Y-Axis title. paramDict = getParamDict(currentData.metadata['param']) if ylabel is None and paramDict.has_key('label'): ylabel = paramDict['label'] yData1_title = currentData.history[max(currentData.history.keys())] # Label the plot with the current level of data processing if title is None: title = [] title.append('Selected Cells: '+yData1_title) title.append(currentData.metadata['code'][0].upper() + ': ' + xlim[0].strftime('%Y %b %d %H:%M - ') + xlim[1].strftime('%Y %b %d %H:%M')) title = '\n'.join(title) multiPlot(xData1,yData1,beams,gates,yData1_title=yData1_title,fig=fig,xlim=xlim,ylim=ylim,xlabel=xlabel,ylabel=ylabel,title=title, xData2=xData2,yData2=yData2,yData2_title=yData2_title,xBoundaryLimits=xBoundaryLimits) def spectrumMultiPlot(dataObj,dataSet='active',plotType='real_imag',plotBeam=None,plotGate=None,fig=None,xlim=None,ylim=None,xlabel=None,ylabel=None,title=None,xBoundaryLimits=None): """Plots 1D line spectral plots of selected cells in a pydarn.proc.music.musicArray object. This defaults to 9 cells of the FOV. Parameters ---------- dataObj : pydarn.proc.music.musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot plotType : Optional[str] {'real_imag'|'magnitude'|'phase'} plotBeam : Optional[list of int] list of beams to plot from plotGate : Optional[list of int] list of range gates to plot from fig : Optional[matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. xlim : Optional[None or 2-element iterable] X-axis limits of all plots ylim : Optional[None or 2-element iterable] Y-axis limits of all plots xlabel : Optional[None or str] X-axis label ylabel : Optional[None or str] Y-axis label title : Optional[None or str] Title of plot xBoundaryLimits : Optional[None or 2-element iterable] Element sequence to shade out portions of the data. Data outside of this range will be shaded gray, Data inside of the range will have a white background. If set to None, this will automatically be set to the timeLimits set in the metadata, if they exist. Returns ------- fig : matplotlib.figure matplotlib figure object that was plotted to Written by Nathaniel A. Frissell, Fall 2013 """ currentData = getattr(dataObj,dataSet) if plotType == 'magnitude': xData1 = currentData.freqVec yData1 = np.abs(currentData.spectrum) yData1_title = 'Magnitude' ylabel = 'Magnitude' xData2 = None yData2 = None yData2_title = None if xlim is None: xlim = (0,np.max(xData1)) if ylim is None: ylim = (0,np.max(yData1)) elif plotType == 'phase': xData1 = currentData.freqVec yData1 = np.angle(currentData.spectrum) yData1_title = 'Magnitude' ylabel = 'Phase [rad]' xData2 = None yData2 = None yData2_title = None if xlim is None: xlim = (0,np.max(xData1)) else: xData1 = currentData.freqVec yData1 = np.real(currentData.spectrum) yData1_title = 'Real Part' ylabel = 'Amplitude' xData2 = currentData.freqVec yData2 = np.imag(currentData.spectrum) yData2_title = 'Imaginary Part' if xlim is None: xlim = (np.min(xData1),np.max(xData1)) beams = currentData.fov.beams gates = currentData.fov.gates # Get the time limits. timeLim = (np.min(currentData.time),np.max(currentData.time)) # Get X-Axis title. if xlabel is None: xlabel = 'Frequency [Hz]' if title is None: title = [] title.append('Selected Cells: '+currentData.history[max(currentData.history.keys())]) # Label the plot with the current level of data processing. title.append(currentData.metadata['code'][0].upper() + ': ' + timeLim[0].strftime('%Y %b %d %H:%M - ') + timeLim[1].strftime('%Y %b %d %H:%M')) title = '\n'.join(title) multiPlot(xData1,yData1,beams,gates,yData1_title=yData1_title,fig=fig,xlim=xlim,ylim=ylim,xlabel=xlabel,ylabel=ylabel,title=title, xData2=xData2,yData2=yData2,yData2_title=yData2_title,xBoundaryLimits=xBoundaryLimits) return fig def multiPlot(xData1,yData1,beams,gates,yData1_title=None,plotBeam=None,plotGate=None,fig=None,xlim=None,ylim=None,xlabel=None,ylabel=None,title=None, xData2=None,yData2=None,yData2_title=None,xBoundaryLimits=None): """Plots 1D time series or line spectral plots of selected cells in a 3d-array. Two data sets can be plotted simultaneously for comparison. This defaults to 9 cells of the 3d-array. Parameters ---------- xData1 : 1d list or numpy.array x-axis values yData1 : 3d numpy.array Data to plot. First axis should correspond to xData1. beams : Optional[list] list identifying the beams present in the second axis of xData1. gates : Optional[list] list identifying the gates present in the second axis of xData1. yData1_title : Optional[str] Name of yData1 data. plot_beam : Optional[list of int] list of beams to plot from (corresponds to yData1 second axis) plot_gate : Optional[list of int] list of range gates to plot from (corresponds to yData1 third axis) fig : Optional[matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. xlim : Optional[None or 2-element iterable] X-axis limits of all plots ylim : Optional[None or 2-element iterable] Y-axis limits of all plots xlabel : Optional[None or str] X-axis label ylabel : Optional[None or str] Y-axis label title : Optional[None or str] Title of plot xData2 : Optional[1d list or numpy.array] x-axis values of second data set yData1 : Optional[3d numpy.array] Second data set data to plot. First axis should correspond to xData1. yData2_title : Optional[str] Name of yData2 data. xBoundaryLimits : Optional[None or 2-element iterable] Element sequence to shade out portions of the data. Data outside of this range will be shaded gray, Data inside of the range will have a white background. If set to None, this will automatically be set to the timeLimits set in the metadata, if they exist. Returns ------- fig : matplotlib.figure matplotlib figure object that was plotted to Written by Nathaniel A. Frissell, Fall 2013 """ if fig is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) from matplotlib import dates as md # Calculate three default beams and gates to plot. if plotBeam is None: beamMin = min(beams) beamMed = int(np.median(beams)) beamMax = max(beams) plotBeam = np.array([beamMin,beamMed,beamMax]) if plotGate is None: gateMin = min(gates) gateMed = int(np.median(gates)) gateMax = max(gates) plotGate = np.array([gateMin,gateMed,gateMax]) # Put things in the correct order. Gates need to be backwards. plotBeam.sort() plotGate.sort() plotGate = plotGate[::-1] # Reverse the order. # Determine the indices of the beams and gates. plotBeamInx = [] for item in plotBeam: plotBeamInx.append(int(np.where(beams == item)[0])) plotGateInx = [] for item in plotGate: plotGateInx.append(int(np.where(gates == item)[0])) plotBeamInx = np.array(plotBeamInx) plotGateInx = np.array(plotGateInx) nCols = len(plotBeam) nRows = len(plotGate) # Define x-axis range if xlim is None: tmpLim = [] tmpLim.append(min(xData1)) tmpLim.append(max(xData1)) if xData2 is not None: tmpLim.append(min(xData2)) tmpLim.append(max(xData2)) xlim = (min(tmpLim),max(tmpLim)) # Autorange y-axis... make all plots have the same range. data = [] if ylim is None: for rg,rgInx in zip(plotGate,plotGateInx): for bm,bmInx in zip(plotBeam,plotBeamInx): for item in yData1[:,bmInx,rgInx]: data.append(item) if yData2 is not None: for item in yData2[:,bmInx,rgInx]: data.append(item) mx = np.nanmax(data) mn = np.nanmin(data) if np.logical_and(mx > 0,mn >= -0.001): ylim = (0,mx) elif np.logical_and(mn < 0, mx <= 0.001): ylim = (mn,0) elif abs(mx) >= abs(mn): ylim = (-mx,mx) elif abs(mn) > abs(mx): ylim = (-abs(mn),abs(mn)) ii = 1 for rg,rgInx in zip(plotGate,plotGateInx): for bm,bmInx in zip(plotBeam,plotBeamInx): axis = fig.add_subplot(nCols,nRows,ii) l1, = axis.plot(xData1,yData1[:,bmInx,rgInx],label=yData1_title) if yData2 is not None: l2, = axis.plot(xData2,yData2[:,bmInx,rgInx],label=yData2_title) # Set axis limits. axis.set_xlim(xlim) axis.set_ylim(ylim) # Special handling for time axes. if xlabel == 'UT': axis.xaxis.set_major_formatter(md.DateFormatter('%H:%M')) labels = axis.get_xticklabels() for label in labels: label.set_rotation(30) # Gray out area outside of the boundary. if xBoundaryLimits is not None: gray = '0.75' axis.axvspan(xlim[0],xBoundaryLimits[0],color=gray) axis.axvspan(xBoundaryLimits[1],xlim[1],color=gray) axis.axvline(x=xBoundaryLimits[0],color='g',ls='--',lw=2) axis.axvline(x=xBoundaryLimits[1],color='g',ls='--',lw=2) text = 'Beam: %i, Gate: %i' % (bm, rg) axis.text(0.02,0.92,text,transform=axis.transAxes) # Only the first column gets labels. if ii % nCols == 1: axis.set_ylabel(ylabel) # Only have the last row have time ticks if ii <= (nRows-1)*nCols: axis.xaxis.set_visible(False) else: axis.set_xlabel(xlabel) ii = ii+1 if yData1_title is not None and yData2_title is not None: fig.legend((l1,l2),(yData1_title,yData2_title),loc=(0.55,0.92)) if title is not None: fig.text(0.12,0.92,title,size=24) return fig def plotFullSpectrum(dataObj,dataSet='active', fig = None, axis = None, xlim = None, normalize = False, scale = None, plot_title = True, maxXTicks = 10., plot_cbar = True, cbar_label = 'ABS(Spectral Density)', cbar_ticks = None, cbar_shrink = 1.0, cbar_fraction = 0.15, cbar_pad = 0.05, cbar_gstext_offset = -0.075, cbar_gstext_fontsize = None, cbar_gstext_enable = True, **kwArgs): """Plot full spectrum of a pydarn.proc.music.musicArray object. The spectrum must have already been calculated with pydarn.proc.music.calculateFFT(). In this plot, major divisions on the x-axis are FFT bins. Every bin contains one slice representing each beam of the given radar data, from left to right. The y-axis shows the range gates of the data object. The color bar at the top of the plot shows which FFT bin contains the most power when integrating over the entire bin. Parameters ---------- dataObj : pydarn.proc.music.musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot fig : Optional[matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. axis : Optional[ ] Matplotlib axis object to plot on. xlim : Optional[None or 2-element iterable] X-axis limits in Hz plot_title : Optional[bool] If True, plot the title information maxXTicks : Optional[int] Maximum number of xtick labels. cbar_label : Optional[str] Text for color bar label cbar_ticks : Optional[list] Where to put the ticks on the color bar. cbar_shrink : Optional[float] fraction by which to shrink the colorbar cbar_fraction : Optional[float] fraction of original axes to use for colorbar cbar_gstext_offset : Optional[float] y-offset from colorbar of "Ground Scatter Only" text cbar_gstext_fontsize : Optional[float] fontsize of "Ground Scatter Only" text cbar_gstext_enable : Optional[bool] Enable "Ground Scatter Only" text **kwArgs : Keyword Arguments Returns ------- return_dict Written by Nathaniel A. Frissell, Fall 2013 """ from scipy import stats return_dict = {} currentData = getDataSet(dataObj,dataSet) nrFreqs,nrBeams,nrGates = np.shape(currentData.spectrum) if xlim is None: posFreqInx = np.where(currentData.freqVec >= 0)[0] else: posFreqInx = np.where(np.logical_and(currentData.freqVec >= xlim[0],currentData.freqVec <= xlim[1]))[0] posFreqVec = currentData.freqVec[posFreqInx] npf = len(posFreqVec) # Number of positive frequencies data = np.abs(currentData.spectrum[posFreqInx,:,:]) # Use the magnitude of the positive frequency data. if normalize: data = data / data.max() # Determine scale for colorbar. sd = stats.nanstd(data,axis=None) mean = stats.nanmean(data,axis=None) scMax = mean + 2.*sd if scale is None: scale = scMax*np.array([0,1.]) nXBins = nrBeams * npf # number of bins we are going to plot # Average Power Spectral Density avg_psd = np.zeros(npf) for x in range(npf): avg_psd[x] = np.mean(data[x,:,:]) # Do plotting here! if fig is None and axis is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) elif axis is not None: fig = axis.get_figure() if axis is None: axis = fig.add_subplot(111) verts = [] scan = [] # Plot Spectrum sep = 0.1 for ff in range(npf): for bb in range(nrBeams): xx0 = nrBeams*(ff + 0.5*sep) + bb*(1-sep) xx1 = xx0 + (1-sep) for gg in range(nrGates): scan.append(data[ff,bb,gg]) yy0 = gg yy1 = gg + 1 x1,y1 = xx0, yy0 x2,y2 = xx1, yy0 x3,y3 = xx1, yy1 x4,y4 = xx0, yy1 verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) param = 'power' cmap = matplotlib.cm.Blues_r bounds = np.linspace(scale[0],scale[1],256) norm = matplotlib.colors.BoundaryNorm(bounds,cmap.N) pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) spect_pcoll = pcoll # Colorbar if plot_cbar: cbar = fig.colorbar(pcoll,orientation='vertical',shrink=cbar_shrink,fraction=cbar_fraction,pad=cbar_pad) cbar.set_label(cbar_label) if cbar_ticks is None: labels = cbar.ax.get_yticklabels() labels[-1].set_visible(False) else: cbar.set_ticks(cbar_ticks) if currentData.metadata.has_key('gscat') and cbar_gstext_enable: if currentData.metadata['gscat'] == 1: cbar.ax.text(0.5,cbar_gstext_offset,'Ground\nscat\nonly',ha='center',fontsize=cbar_gstext_fontsize) # Plot average values. verts = [] scan = [] yy0 = nrGates yy1 = nrGates + 1 for ff in range(npf): scan.append(avg_psd[ff]) xx0 = nrBeams*(ff + 0.5*sep) xx1 = xx0 + nrBeams*(1-sep) x1,y1 = xx0, yy0 x2,y2 = xx1, yy0 x3,y3 = xx1, yy1 x4,y4 = xx0, yy1 verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) param = 'power' cmap = matplotlib.cm.winter norm = matplotlib.colors.Normalize(vmin = 0, vmax = np.max(avg_psd)) pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) # Mark maximum PSD column. maxInx = np.argmax(avg_psd) xx0 = nrBeams*(maxInx + 0.5*sep) xx1 = xx0 + nrBeams*(1-sep) x1,y1 = xx0, yy0 x2,y2 = xx1, yy0 x3,y3 = xx1, yy1 x4,y4 = xx0, yy1 mkv = np.array([[x1,y1],[x2,y2],[x3,y3],[x4,y4],[x1,y1]]) poly = Polygon(mkv,facecolor='Red',edgecolor='none',zorder=100) axis.add_patch(poly) # X-Labels modX = np.ceil(npf / np.float(maxXTicks)) xlabels = [] xpos = [] for ff in range(npf-1): if (ff % modX) != 0: continue freqLabel = '%.2f' % (posFreqVec[ff]*1000.) if posFreqVec[ff] == 0: periodLabel = 'Inf' else: periodLabel = '%.0f' % (1./posFreqVec[ff] / 60.) xlabels.append(freqLabel+'\n'+periodLabel) xpos.append(nrBeams* (ff + 0.1)) xlabels.append('freq [mHz]\nPer. [min]') xpos.append(nrBeams* (npf-1 + 0.1)) axis.set_xticks(xpos) axis.set_xticklabels(xlabels,ha='left') # Y-Labels maxYTicks = 10. modY = np.ceil(nrGates/maxYTicks) ylabels = [] ypos = [] for gg in range(nrGates): if (gg % modY) != 0: continue ylabels.append('%i' % currentData.fov.gates[gg]) ypos.append(gg+0.5) ylabels.append('$\Sigma$PSD') ypos.append(nrGates+0.5) axis.set_yticks(ypos) axis.set_yticklabels(ylabels) axis.set_ylabel('Range Gate') for ff in range(npf): axis.axvline(x=ff*nrBeams,color='k',lw=2) # axis.set_xlim([0,nXBins]) axis.set_ylim([0,nrGates+1]) if plot_title: xpos = 0.130 fig.text(xpos,0.99,'Full Spectrum View',fontsize=20,va='top') # Get the time limits. timeLim = (np.min(currentData.time),np.max(currentData.time)) md = currentData.metadata # Translate parameter information from short to long form. paramDict = getParamDict(md['param']) param = paramDict['param'] # cbarLabel = paramDict['label'] text = md['name'] + ' ' + param.capitalize() + timeLim[0].strftime(' (%Y %b %d %H:%M - ') + timeLim[1].strftime('%Y %b %d %H:%M)') if md.has_key('fir_filter'): filt = md['fir_filter'] if filt[0] is None: low = 'None' else: low = '%.2f' % (1000. * filt[0]) if filt[1] is None: high = 'None' else: high = '%.2f' % (1000. * filt[1]) text = text + '\n' + 'Digital Filter: [' + low + ', ' + high + '] mHz' fig.text(xpos,0.95,text,fontsize=14,va='top') return_dict['cbar_pcoll'] = spect_pcoll return_dict['cbar_label'] = cbar_label return return_dict def plotDlm(dataObj,dataSet='active',fig=None): """Plot the cross spectral matrix of a pydarn.proc.music.musicArray object. The cross-spectral matrix must have already been calculated for the chosen data set using pydarn.proc.music.calculateDlm(). Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot fig : Optional[matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. Written by Nathaniel A. Frissell, Fall 2013 """ if fig is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) import copy from scipy import stats currentData = getDataSet(dataObj,dataSet) data = np.abs(currentData.Dlm) # Determine scale for colorbar. sd = stats.nanstd(data,axis=None) mean = stats.nanmean(data,axis=None) scMax = mean + 4.*sd scale = scMax*np.array([0,1.]) # Do plotting here! axis = fig.add_subplot(111) nrL, nrM = np.shape(data) verts = [] scan = [] # Plot Spectrum for ll in range(nrL): xx0 = ll xx1 = ll+1 for mm in range(nrM): scan.append(data[ll,mm]) yy0 = mm yy1 = mm + 1 x1,y1 = xx0, yy0 x2,y2 = xx1, yy0 x3,y3 = xx1, yy1 x4,y4 = xx0, yy1 verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) colors = 'lasse' if scale is None: scale = (np.min(scan),np.max(scan)) cmap = matplotlib.cm.jet bounds = np.linspace(scale[0],scale[1],256) norm = matplotlib.colors.BoundaryNorm(bounds,cmap.N) pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) # Colorbar cbar = fig.colorbar(pcoll,orientation='vertical')#,shrink=.65,fraction=.1) cbar.set_label('ABS(Spectral Density)') if currentData.metadata.has_key('gscat'): if currentData.metadata['gscat'] == 1: cbar.ax.text(0.5,-0.075,'Ground\nscat\nonly',ha='center') # labels[-1].set_visible(False) axis.set_xlim([0,nrL]) axis.set_ylim([0,nrM]) axis.set_xlabel('l') axis.set_ylabel('m') nrTimes, nrBeams, nrGates = np.shape(currentData.data) ticks = [] labels = [] mod = int(np.floor(nrGates / 10)) for x in xrange(nrGates): if x % mod != 0: continue ll = nrBeams*x ticks.append(ll) txt = '%i\n%i' % (ll, currentData.fov.gates[x]) labels.append(txt) ticks.append(nrL) xlabels = copy.copy(labels) xlabels.append('l\ngate') axis.set_xticks(ticks) axis.set_xticklabels(xlabels,ha='left') ylabels = copy.copy(labels) ylabels.append('m\ngate') axis.set_yticks(ticks) axis.set_yticklabels(ylabels) xpos = 0.130 fig.text(xpos,0.99,'ABS(Cross Spectral Density Matrix Dlm)',fontsize=20,va='top') # Get the time limits. timeLim = (np.min(currentData.time),np.max(currentData.time)) md = currentData.metadata # Translate parameter information from short to long form. paramDict = getParamDict(md['param']) param = paramDict['param'] cbarLabel = paramDict['label'] text = md['name'] + ' ' + param.capitalize() + timeLim[0].strftime(' (%Y %b %d %H:%M - ') + timeLim[1].strftime('%Y %b %d %H:%M)') if md.has_key('fir_filter'): filt = md['fir_filter'] if filt[0] is None: low = 'None' else: low = '%.2f' % (1000. * filt[0]) if filt[1] is None: high = 'None' else: high = '%.2f' % (1000. * filt[1]) text = text + '\n' + 'Digital Filter: [' + low + ', ' + high + '] mHz' fig.text(xpos,0.95,text,fontsize=14,va='top') def plotKarr(dataObj,dataSet='active',fig=None,axis=None,maxSignals=None, sig_fontsize=24, plot_title=True, cbar_ticks=None, cbar_shrink=1.0, cbar_fraction=0.15, cbar_gstext_offset=-0.075, cbar_gstext_fontsize=None, **kwArgs): """Plot the horizontal wave number array for a pydarn.proc.music.musicArray object. The kArr must have aready been calculated for the chosen data set using pydarn.proc.music.calculateKarr(). If the chosen data set has signals stored in the sigDetect attribute, numbers identifying each of the signals will be plotted on the kArr plot. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot fig : Optional[None or matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. axis : Optional[ ] Matplotlib axis object to plot on. maxSignals : Optional[None or int] Maximum number of signals to plot if detected signals exist for the chosen data set. sig_fontsize : Optional[float] fontsize of signal markers plot_title : Optional[bool] If True, plot the title information cbar_ticks : Optional[list] Where to put the ticks on the color bar. cbar_shrink : Optional[float] fraction by which to shrink the colorbar cbar_fraction : Optional[float] fraction of original axes to use for colorbar cbar_gstext_offset : Optional[float] y-offset from colorbar of "Ground Scatter Only" text cbar_gstext_fontsize : Optional[float] fontsize of "Ground Scatter Only" text **kwArgs Keywords arguments Written by Nathaniel A. Frissell, Fall 2013 """ if fig is None and axis is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) currentData = getDataSet(dataObj,dataSet) # Do plotting here! if axis is None: axis = fig.add_subplot(111,aspect='equal') else: fig = axis.get_figure() plotKarrAxis(dataObj,dataSet=dataSet,axis=axis,maxSignals=maxSignals, cbar_ticks=cbar_ticks, cbar_shrink=cbar_shrink, cbar_fraction=cbar_fraction,sig_fontsize=sig_fontsize, cbar_gstext_offset=cbar_gstext_offset, cbar_gstext_fontsize=cbar_gstext_fontsize,**kwArgs) if plot_title: xpos = 0.130 fig.text(xpos,0.99,'Horizontal Wave Number',fontsize=20,va='top') # Get the time limits. timeLim = (np.min(currentData.time),np.max(currentData.time)) md = currentData.metadata # Translate parameter information from short to long form. paramDict = getParamDict(md['param']) param = paramDict['param'] text = md['name'] + ' ' + param.capitalize() + timeLim[0].strftime(' (%Y %b %d %H:%M - ') + timeLim[1].strftime('%Y %b %d %H:%M)') if md.has_key('fir_filter'): filt = md['fir_filter'] if filt[0] is None: low = 'None' else: low = '%.2f' % (1000. * filt[0]) if filt[1] is None: high = 'None' else: high = '%.2f' % (1000. * filt[1]) text = text + '\n' + 'Digital Filter: [' + low + ', ' + high + '] mHz' fig.text(xpos,0.95,text,fontsize=14,va='top') def plotKarrDetected(dataObj,dataSet='active',fig=None,maxSignals=None,roiPlot=True): """Plot the horizontal wave number array for a pydarn.proc.music.musicArray object. The kArr must have aready been calculated for the chosen data set using pydarn.proc.music.calculateKarr(). Unlike plotKarr, this routine can plot a region-of-interest map showing features detected by pydarn.proc.music.detectSignals(). If the chosen data set has signals stored in the sigDetect attribute, numbers identifying each of the signals will be plotted on the kArr plot. Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot fig : Optional[None or matplotlib.figure] matplotlib figure object that will be plotted to. If not provided, one will be created. maxSignals : Optional[None or int] Maximum number of signals to plot if detected signals exist for the chosen data set. roiPlot : Optional[bool] If true, a region of interest plot showing the features detected using pydarn.proc.music.detectSignals() will be displayed alongside the kArr plot. Written by Nathaniel A. Frissell, Fall 2013 """ if fig is None: from matplotlib import pyplot as plt fig = plt.figure(figsize=figsize) currentData = getDataSet(dataObj,dataSet) from scipy import stats import matplotlib.patheffects as PathEffects # Do plotting here! if roiPlot: axis = fig.add_subplot(121,aspect='equal') else: axis = fig.add_subplot(111,aspect='equal') # Page-wide header ############################################################# xpos = 0.130 fig.text(xpos,0.99,'Horizontal Wave Number',fontsize=20,va='top') # Get the time limits. timeLim = (np.min(currentData.time),np.max(currentData.time)) md = currentData.metadata # Translate parameter information from short to long form. paramDict = getParamDict(md['param']) param = paramDict['param'] cbarLabel = paramDict['label'] text = md['name'] + ' ' + param.capitalize() + timeLim[0].strftime(' (%Y %b %d %H:%M - ') + timeLim[1].strftime('%Y %b %d %H:%M)') if md.has_key('fir_filter'): filt = md['fir_filter'] if filt[0] is None: low = 'None' else: low = '%.2f' % (1000. * filt[0]) if filt[1] is None: high = 'None' else: high = '%.2f' % (1000. * filt[1]) text = text + '\n' + 'Digital Filter: [' + low + ', ' + high + '] mHz' fig.text(xpos,0.95,text,fontsize=14,va='top') # End Page-wide header ######################################################### plotKarrAxis(dataObj,dataSet=dataSet,axis=axis,maxSignals=maxSignals) if roiPlot: ################################################################################ # Feature detection... data2 = currentData.sigDetect.labels nrL, nrM = np.shape(data2) scale = [0,data2.max()] # Do plotting here! axis = fig.add_subplot(122,aspect='equal') verts = [] scan = [] # Plot Spectrum for ll in range(nrL-1): xx0 = currentData.kxVec[ll] xx1 = currentData.kxVec[ll+1] for mm in range(nrM-1): scan.append(data2[ll,mm]) yy0 = currentData.kyVec[mm] yy1 = currentData.kyVec[mm + 1] x1,y1 = xx0, yy0 x2,y2 = xx1, yy0 x3,y3 = xx1, yy1 x4,y4 = xx0, yy1 verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) cmap = matplotlib.cm.jet bounds = np.linspace(scale[0],scale[1],256) norm = matplotlib.colors.BoundaryNorm(bounds,cmap.N) pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) axis.axvline(color='0.82',lw=2,zorder=150) axis.axhline(color='0.82',lw=2,zorder=150) # Colorbar cbar = fig.colorbar(pcoll,orientation='vertical')#,shrink=.65,fraction=.1) cbar.set_label('Region of Interest') cbar.set_ticks([]) axis.set_xlim([np.min(currentData.kxVec),np.max(currentData.kxVec)]) axis.set_ylim([np.min(currentData.kyVec),np.max(currentData.kyVec)]) # Add wavelength to x/y tick labels ############################################ ticks = axis.get_xticks() newLabels = [] for x in xrange(len(ticks)): tck = ticks[x] if tck != 0: km = 2*np.pi/tck km_txt = '%i' % km else: km_txt = '' rad_txt = '%.2f' % tck txt = '\n'.join([rad_txt,km_txt]) newLabels.append(txt) axis.set_xticklabels(newLabels) axis.set_xlabel(u'kx [rad]\n$\lambda$ [km]',ha='center') ticks = axis.get_yticks() newLabels = [] for y in xrange(len(ticks)): tck = ticks[y] if tck != 0: km = 2*np.pi/tck km_txt = '%i' % km else: km_txt = '' rad_txt = '%.2f' % tck txt = '\n'.join([rad_txt,km_txt]) newLabels.append(txt) axis.set_yticklabels(newLabels) axis.set_ylabel(u'ky [rad]\n$\lambda$ [km]',va='center') # End add wavelength to x/y tick labels ######################################## if hasattr(currentData,'sigDetect'): pe = [PathEffects.withStroke(linewidth=3,foreground='w')] tmpList = range(currentData.sigDetect.nrSigs)[::-1] # Force list to plot backwards so number 1 is on top! for signal in currentData.sigDetect.info: if maxSignals is not None: if signal['order'] > maxSignals: continue xpos = currentData.kxVec[signal['maxpos'][0]] ypos = currentData.kyVec[signal['maxpos'][1]] txt = '%i' % signal['order'] axis.text(xpos,ypos,txt,color='k',zorder=200-signal['order'],size=24,path_effects=pe) def plotKarrAxis(dataObj,dataSet='active',axis=None,maxSignals=None, sig_fontsize=24,x_labelpad=None,y_labelpad=None, cbar_ticks=None, cbar_shrink=1.0, cbar_fraction=0.15, cbar_gstext_offset=-0.075, cbar_gstext_fontsize=None,cbar_pad=0.05,cmap=None,plot_colorbar=True): """Plot the horizontal wave number array for a pydarn.proc.music.musicArray object. The kArr must have aready been calculated for the chosen data set using pydarn.proc.music.calculateKarr(). If the chosen data set has signals stored in the sigDetect attribute, numbers identifying each of the signals will be plotted on the kArr plot. This routine will make the plot without titles, etc. It is used as the foundation for plotKarr() and plotKarrDetected(). Parameters ---------- dataObj : musicArray musicArray object dataSet : Optional[str] which dataSet in the musicArray object to plot axis : Optional[matplotlib.figure.axis] matplotlib axis object that will be plotted to. If not provided, this function will return. maxSignals : Optional[None or int] Maximum number of signals to plot if detected signals exist for the chosen data set. sig_fontsize : Optional[float] fontsize of signal markers cbar_ticks : Optional[list] Where to put the ticks on the color bar. cbar_shrink : Optional[float] fraction by which to shrink the colorbar cbar_fraction : Optional[float] fraction of original axes to use for colorbar cbar_gstext_offset : Optional[float] y-offset from colorbar of "Ground Scatter Only" text cbar_gstext_fontsize : Optional[float] fontsize of "Ground Scatter Only" text cmap : Optional[None or matplotlib colormap object] If None and cmap_handling=='matplotlib', use jet. plot_colorbar : Optional[bool] Enable or disable colorbar plotting. Returns ------- return_dict Written by Nathaniel A. Frissell, Fall 2013 """ if axis is None: return return_dict = {} fig = axis.get_figure() from scipy import stats import matplotlib.patheffects as PathEffects currentData = getDataSet(dataObj,dataSet) data = np.abs(currentData.karr) - np.min(np.abs(currentData.karr)) # Determine scale for colorbar. sd = stats.nanstd(data,axis=None) mean = stats.nanmean(data,axis=None) scMax = mean + 6.5*sd data = data / scMax scale = [0.,1.] nrL, nrM = np.shape(data) verts = [] scan = [] # Plot Spectrum for ll in range(nrL-1): xx0 = currentData.kxVec[ll] xx1 = currentData.kxVec[ll+1] for mm in range(nrM-1): scan.append(data[ll,mm]) yy0 = currentData.kyVec[mm] yy1 = currentData.kyVec[mm + 1] x1,y1 = xx0, yy0 x2,y2 = xx1, yy0 x3,y3 = xx1, yy1 x4,y4 = xx0, yy1 verts.append(((x1,y1),(x2,y2),(x3,y3),(x4,y4),(x1,y1))) if cmap is None: cmap = matplotlib.cm.jet bounds = np.linspace(scale[0],scale[1],256) norm = matplotlib.colors.BoundaryNorm(bounds,cmap.N) pcoll = PolyCollection(np.array(verts),edgecolors='face',linewidths=0,closed=False,cmap=cmap,norm=norm,zorder=99) pcoll.set_array(np.array(scan)) axis.add_collection(pcoll,autolim=False) ################################################################################ # Annotations axis.axvline(color='0.82',lw=2,zorder=150) axis.axhline(color='0.82',lw=2,zorder=150) # Colorbar cbar_label = 'Normalized Wavenumber Power' if plot_colorbar: cbar = fig.colorbar(pcoll,orientation='vertical',shrink=cbar_shrink,fraction=cbar_fraction,pad=cbar_pad) cbar.set_label(cbar_label) if not cbar_ticks: cbar_ticks = np.arange(10)/10. cbar.set_ticks(cbar_ticks) if currentData.metadata.has_key('gscat'): if currentData.metadata['gscat'] == 1: cbar.ax.text(0.5,cbar_gstext_offset,'Ground\nscat\nonly',ha='center',fontsize=cbar_gstext_fontsize) # cbar = fig.colorbar(pcoll,orientation='vertical')#,shrink=.65,fraction=.1) # cbar.set_label('ABS(Spectral Density)') # cbar.set_ticks(np.arange(10)/10.) # if currentData.metadata.has_key('gscat'): # if currentData.metadata['gscat'] == 1: # cbar.ax.text(0.5,-0.075,'Ground\nscat\nonly',ha='center') axis.set_xlim([np.min(currentData.kxVec),np.max(currentData.kxVec)]) axis.set_ylim([np.min(currentData.kyVec),np.max(currentData.kyVec)]) # Add wavelength to x/y tick labels ############################################ ticks = axis.get_xticks() newLabels = [] for x in xrange(len(ticks)): tck = ticks[x] if tck != 0: km = 2*np.pi/tck km_txt = '%i' % km else: km_txt = '' rad_txt = '%.2f' % tck txt = '\n'.join([rad_txt,km_txt]) newLabels.append(txt) axis.set_xticklabels(newLabels) axis.set_xlabel(u'kx [rad]\n$\lambda$ [km]',ha='center',labelpad=x_labelpad) # axis.set_xlabel('%f' % x_labelpad,ha='center',labelpad=x_labelpad) ticks = axis.get_yticks() newLabels = [] for y in xrange(len(ticks)): tck = ticks[y] if tck != 0: km = 2*np.pi/tck km_txt = '%i' % km else: km_txt = '' rad_txt = '%.2f' % tck txt = '\n'.join([km_txt,rad_txt]) newLabels.append(txt) axis.set_yticklabels(newLabels,rotation=90.) axis.set_ylabel(u'ky [rad]\n$\lambda$ [km]',va='center',labelpad=y_labelpad) # End add wavelength to x/y tick labels ######################################## md = currentData.metadata # Translate parameter information from short to long form. paramDict = getParamDict(md['param']) param = paramDict['param'] cbarLabel = paramDict['label'] if hasattr(currentData,'sigDetect'): pe = [PathEffects.withStroke(linewidth=3,foreground='w')] for signal in currentData.sigDetect.info: if maxSignals is not None: if signal['order'] > maxSignals: continue xpos = currentData.kxVec[signal['maxpos'][0]] ypos = currentData.kyVec[signal['maxpos'][1]] txt = '%i' % signal['order'] axis.text(xpos,ypos,txt,color='k',zorder=200-signal['order'],size=sig_fontsize,path_effects=pe) return_dict['cbar_pcoll'] = pcoll return_dict['cbar_label'] = cbar_label return return_dict
gpl-3.0
sanketloke/scikit-learn
examples/bicluster/bicluster_newsgroups.py
142
7183
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. Output:: Vectorizing... Coclustering... Done in 9.53s. V-measure: 0.4455 MiniBatchKMeans... Done in 12.00s. V-measure: 0.3309 Best biclusters: ---------------- bicluster 0 : 1951 documents, 4373 words categories : 23% talk.politics.guns, 19% talk.politics.misc, 14% sci.med words : gun, guns, geb, banks, firearms, drugs, gordon, clinton, cdt, amendment bicluster 1 : 1165 documents, 3304 words categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism words : god, jesus, christians, atheists, kent, sin, morality, belief, resurrection, marriage bicluster 2 : 2219 documents, 2830 words categories : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics words : voltage, dsp, board, receiver, circuit, shipping, packages, stereo, compression, package bicluster 3 : 1860 documents, 2745 words categories : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale words : bike, car, dod, engine, motorcycle, ride, honda, cars, bmw, bikes bicluster 4 : 12 documents, 155 words categories : 100% rec.sport.hockey words : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved """ from __future__ import print_function print(__doc__) from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] # Note: the following is identical to X[rows[:, np.newaxis], cols].sum() but # much faster in scipy <= 0.16 weight = X[rows][:, cols].sum() cut = (X[row_complement][:, cols].sum() + X[rows][:, col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
davidgbe/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
254
2639
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positve elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T) l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
khrapovs/mygmm
docs/source/conf.py
1
9327
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # mygmm documentation build configuration file, created by # sphinx-quickstart on Sun Dec 21 16:17:43 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # -- Khrapov -------------------------------------------------------------- sys.path.insert(0, os.path.abspath('../..')) import mock MOCK_MODULES = ['numpy', 'seaborn', 'matplotlib', 'matplotlib.pylab', 'statsmodels', 'statsmodels.tsa', 'statsmodels.tsa.tsatools', 'scipy', 'scipy.stats', 'scipy.optimize', 'scipy.linalg', 'numdifftools', 'pandas'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # on_rtd is whether we are on readthedocs.org, # this line of code grabbed from docs.readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] numpydoc_class_members_toctree = False # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'numpydoc' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'mygmm' copyright = '2014, Stanislav Khrapov' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'mygmmdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'mygmm.tex', 'mygmm Documentation', 'Stanislav Khrapov', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'mygmm', 'mygmm Documentation', ['Stanislav Khrapov'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'mygmm', 'mygmm Documentation', 'Stanislav Khrapov', 'mygmm', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
mit
cms-btv-pog/rootpy
docs/sphinxext/ipython_directive.py
31
27191
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import cStringIO import os import re import sys import tempfile import ast # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive matplotlib.use('Agg') # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = cStringIO.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? seen_docs = [i for i in os.listdir(tempfile.tempdir) if i.startswith('seen_doc')] if seen_docs: fname = os.path.join(tempfile.tempdir, seen_docs[0]) docs = open(fname).read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fd, fname = tempfile.mkstemp(prefix="seen_doc", text=True) fout = open(fname, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup self.teardown() return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print 'All OK? Check figures in _static/'
gpl-3.0
jmchandonia/narrative
kbase-extension/jupyter_kernel_config.py
4
15485
# Configuration file for ipython-kernel. c = get_config() #------------------------------------------------------------------------------ # IPKernelApp configuration #------------------------------------------------------------------------------ # IPython: an enhanced interactive Python shell. # IPKernelApp will inherit config from: BaseIPythonApplication, Application, # InteractiveShellApp, ConnectionFileMixin # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.IPKernelApp.exec_PYTHONSTARTUP = True # The importstring for the DisplayHook factory # c.IPKernelApp.displayhook_class = 'IPython.kernel.zmq.displayhook.ZMQDisplayHook' # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.IPKernelApp.ip = u'' # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.IPKernelApp.pylab = None # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.IPKernelApp.verbose_crash = False # The Kernel subclass to be used. # # This should allow easy re-use of the IPKernelApp entry point to configure and # launch kernels other than IPython's own. # c.IPKernelApp.kernel_class = <class 'IPython.kernel.zmq.ipkernel.IPythonKernel'> # Run the module as a script. # c.IPKernelApp.module_to_run = '' # The date format used by logging formatters for %(asctime)s # c.IPKernelApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # set the shell (ROUTER) port [default: random] # c.IPKernelApp.shell_port = 0 # set the control (ROUTER) port [default: random] # c.IPKernelApp.control_port = 0 # Whether to overwrite existing config files when copying # c.IPKernelApp.overwrite = False # Execute the given command string. # c.IPKernelApp.code_to_run = '' # set the stdin (ROUTER) port [default: random] # c.IPKernelApp.stdin_port = 0 # Set the log level by value or name. # c.IPKernelApp.log_level = 30 # lines of code to run at IPython startup. c.InteractiveShellApp.exec_lines = [ 'import biokbase.narrative.magics', 'from biokbase.narrative.services import *', 'from biokbase.narrative.widgetmanager import WidgetManager', 'from biokbase.narrative.jobs import *' ] # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.IPKernelApp.extra_config_file = u'' # The importstring for the OutStream factory # c.IPKernelApp.outstream_class = 'IPython.kernel.zmq.iostream.OutStream' # Whether to create profile dir if it doesn't exist # c.IPKernelApp.auto_create = False # set the heartbeat port [default: random] # c.IPKernelApp.hb_port = 0 # # c.IPKernelApp.transport = 'tcp' # redirect stdout to the null device # c.IPKernelApp.no_stdout = False # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.IPKernelApp.hide_initial_ns = True # dotted module name of an IPython extension to load. # c.IPKernelApp.extra_extension = '' # A file to be run # c.IPKernelApp.file_to_run = '' # The IPython profile to use. # c.IPKernelApp.profile = u'default' # kill this process if its parent dies. On Windows, the argument specifies the # HANDLE of the parent process, otherwise it is simply boolean. # c.IPKernelApp.parent_handle = 0 # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.IPKernelApp.connection_file = '' # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.IPKernelApp.pylab_import_all = True # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. # c.IPKernelApp.ipython_dir = u'' # Configure matplotlib for interactive use with the default matplotlib backend. # c.IPKernelApp.matplotlib = None # ONLY USED ON WINDOWS Interrupt this process when the parent is signaled. # c.IPKernelApp.interrupt = 0 # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.IPKernelApp.copy_config_files = False # List of files to run at IPython startup. # c.IPKernelApp.exec_files = [] # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'osx', # 'pyglet', 'qt', 'qt5', 'tk', 'wx'). # c.IPKernelApp.gui = None # Reraise exceptions encountered loading IPython extensions? # c.IPKernelApp.reraise_ipython_extension_failures = False # A list of dotted module names of IPython extensions to load. # c.IPKernelApp.extensions = [] # redirect stderr to the null device # c.IPKernelApp.no_stderr = False # The Logging format template # c.IPKernelApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # set the iopub (PUB) port [default: random] # c.IPKernelApp.iopub_port = 0 #------------------------------------------------------------------------------ # IPythonKernel configuration #------------------------------------------------------------------------------ # IPythonKernel will inherit config from: Kernel # Whether to use appnope for compatiblity with OS X App Nap. # # Only affects OS X >= 10.9. # c.IPythonKernel._darwin_app_nap = True # # c.IPythonKernel._execute_sleep = 0.0005 # # c.IPythonKernel._poll_interval = 0.05 #------------------------------------------------------------------------------ # ZMQInteractiveShell configuration #------------------------------------------------------------------------------ # A subclass of InteractiveShell for ZMQ. # ZMQInteractiveShell will inherit config from: InteractiveShell # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.ZMQInteractiveShell.color_info = True # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.ZMQInteractiveShell.ast_transformers = [] # # c.ZMQInteractiveShell.history_length = 10000 # Don't call post-execute functions that have failed in the past. # c.ZMQInteractiveShell.disable_failing_post_execute = False # Show rewritten input, e.g. for autocall. # c.ZMQInteractiveShell.show_rewritten_input = True # Set the color scheme (NoColor, Linux, or LightBG). # c.ZMQInteractiveShell.colors = 'LightBG' # If True, anything that would be passed to the pager will be displayed as # regular output instead. # c.ZMQInteractiveShell.display_page = False # # c.ZMQInteractiveShell.separate_in = '\n' # Enable magic commands to be called without the leading %. # c.ZMQInteractiveShell.automagic = True # Deprecated, use PromptManager.in2_template # c.ZMQInteractiveShell.prompt_in2 = ' .\\D.: ' # # c.ZMQInteractiveShell.separate_out = '' # Deprecated, use PromptManager.in_template # c.ZMQInteractiveShell.prompt_in1 = 'In [\\#]: ' # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.ZMQInteractiveShell.deep_reload = False # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.ZMQInteractiveShell.autocall = 0 # # c.ZMQInteractiveShell.separate_out2 = '' # Deprecated, use PromptManager.justify # c.ZMQInteractiveShell.prompts_pad_left = True # The part of the banner to be printed before the profile # c.ZMQInteractiveShell.banner1 = 'Python 2.7.6 (default, Nov 18 2013, 15:12:51) \nType "copyright", "credits" or "license" for more information.\n\nIPython 3.2.0-dev -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # # c.ZMQInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # The part of the banner to be printed after the profile # c.ZMQInteractiveShell.banner2 = '' # # c.ZMQInteractiveShell.debug = False # # c.ZMQInteractiveShell.object_info_string_level = 0 # # c.ZMQInteractiveShell.ipython_dir = '' # # c.ZMQInteractiveShell.readline_remove_delims = '-/~' # Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. # c.ZMQInteractiveShell.logstart = False # The name of the logfile to use. # c.ZMQInteractiveShell.logfile = '' # # c.ZMQInteractiveShell.wildcards_case_sensitive = True # Save multi-line entries as one entry in readline history # c.ZMQInteractiveShell.multiline_history = True # Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. # c.ZMQInteractiveShell.logappend = '' # # c.ZMQInteractiveShell.xmode = 'Context' # # c.ZMQInteractiveShell.quiet = False # Deprecated, use PromptManager.out_template # c.ZMQInteractiveShell.prompt_out = 'Out[\\#]: ' # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.ZMQInteractiveShell.cache_size = 1000 # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.ZMQInteractiveShell.ast_node_interactivity = 'last_expr' # Automatically call the pdb debugger after every exception. # c.ZMQInteractiveShell.pdb = False #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # Session configuration #------------------------------------------------------------------------------ # Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. # Username for the Session. Default is your system username. # c.Session.username = u'' # The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. # c.Session.unpacker = 'json' # Threshold (in bytes) beyond which a buffer should be sent without copying. # c.Session.copy_threshold = 65536 # The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. # c.Session.packer = 'json' # The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # c.Session.digest_history_size = 65536 # The UUID identifying this session. # c.Session.session = u'' # The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. # c.Session.signature_scheme = 'hmac-sha256' # execution key, for signing messages. # c.Session.key = '' # Debug output in the Session # c.Session.debug = False # The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. # c.Session.item_threshold = 64 # path to file containing execution key. # c.Session.keyfile = '' # Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. # c.Session.buffer_threshold = 1024 # Metadata dictionary, which serves as the default top-level metadata dict for # each message. # c.Session.metadata = {}
mit
ywcui1990/htmresearch
projects/sequence_prediction/mackey_glass/visualize_results.py
13
1819
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import csv import sys from matplotlib import pyplot import numpy def run(filename, predictionDelay): with open(filename, 'rU') as infile: reader = csv.reader(infile) reader.next() actuals = [] shifted = [] shifted += [0] * predictionDelay for row in reader: actuals.append(row[1]) shifted.append(row[2]) shifted = shifted[predictionDelay:len(actuals)] actuals = actuals[predictionDelay:] errors = abs(numpy.array(shifted, dtype=float) - numpy.array(actuals, dtype=float)).tolist() pyplot.subplot(2, 1, 1) pyplot.plot(shifted) pyplot.plot(actuals) pyplot.subplot(2, 1, 2) pyplot.plot(errors) pyplot.show() if __name__ == "__main__": predictionDelay = int(sys.argv[2]) if len(sys.argv) > 2 else 1 run(sys.argv[1], predictionDelay)
agpl-3.0
pdamodaran/yellowbrick
yellowbrick/classifier/rocauc.py
1
20061
# yellowbrick.classifier.rocauc # Implements visual ROC/AUC curves for classification evaluation. # # Author: Rebecca Bilbro <[email protected]> # Author: Benjamin Bengfort <[email protected]> # Author: Neal Humphrey # Created: Wed May 18 12:39:40 2016 -0400 # # Copyright (C) 2017 District Data Labs # For license information, see LICENSE.txt # # ID: rocauc.py [5388065] [email protected] $ """ Implements visual ROC/AUC curves for classification evaluation. """ ########################################################################## ## Imports ########################################################################## import numpy as np from ..exceptions import ModelError from ..exceptions import YellowbrickValueError from ..style.palettes import LINE_COLOR from .base import ClassificationScoreVisualizer from scipy import interp from sklearn.preprocessing import label_binarize from sklearn.model_selection import train_test_split from sklearn.metrics import auc, roc_curve # Dictionary keys for ROCAUC MACRO = "macro" MICRO = "micro" ########################################################################## ## ROCAUC Visualizer ########################################################################## class ROCAUC(ClassificationScoreVisualizer): """ Receiver Operating Characteristic (ROC) curves are a measure of a classifier's predictive quality that compares and visualizes the tradeoff between the models' sensitivity and specificity. The ROC curve displays the true positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis. The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one. This leads to another metric, area under the curve (AUC), a computation of the relationship between false positives and true positives. The higher the AUC, the better the model generally is. However, it is also important to inspect the "steepness" of the curve, as this describes the maximization of the true positive rate while minimizing the false positive rate. Generalizing "steepness" usually leads to discussions about convexity, which we do not get into here. Parameters ---------- model : estimator Must be a classifier, otherwise raises YellowbrickTypeError ax : matplotlib Axes, default: None The axes to plot the figure on. If None is passed in the current axes will be used (or generated if required). classes : list A list of class names for the legend. If classes is None and a y value is passed to fit then the classes are selected from the target vector. Note that the curves must be computed based on what is in the target vector passed to the ``score()`` method. Class names are used for labeling only and must be in the correct order to prevent confusion. micro : bool, default = True Plot the micro-averages ROC curve, computed from the sum of all true positives and false positives across all classes. Micro is not defined for binary classification problems with estimators with only a decision_function method. macro : bool, default = True Plot the macro-averages ROC curve, which simply takes the average of curves across all classes. Macro is not defined for binary classification problems with estimators with only a decision_function method. per_class : bool, default = True Plot the ROC curves for each individual class. This should be set to false if only the macro or micro average curves are required. Per- class classification is not defined for binary classification problems with estimators with only a decision_function method. kwargs : keyword arguments passed to the super class. Currently passing in hard-coded colors for the Receiver Operating Characteristic curve and the diagonal. These will be refactored to a default Yellowbrick style. Attributes ---------- score_ : float Global accuracy score, unless micro or macro scores are requested Notes ----- ROC curves are typically used in binary classification, and in fact the Scikit-Learn ``roc_curve`` metric is only able to perform metrics for binary classifiers. As a result it is necessary to binarize the output or to use one-vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions can arise from unexpected models or outputs. Another important point is the relationship of class labels specified on initialization to those drawn on the curves. The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique values specified in the target vector to the ``score`` method. To ensure the best quality visualization, do not use a LabelEncoder for this and do not pass in class labels. .. seealso:: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html .. todo:: Allow the class list to filter the curves on the visualization. Examples -------- >>> from yellowbrick.classifier import ROCAUC >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> data = load_data("occupancy") >>> features = ["temp", "relative humidity", "light", "C02", "humidity"] >>> X_train, X_test, y_train, y_test = train_test_split(X, y) >>> oz = ROCAUC(LogisticRegression()) >>> oz.fit(X_train, y_train) >>> oz.score(X_test, y_test) >>> oz.poof() """ def __init__(self, model, ax=None, classes=None, micro=True, macro=True, per_class=True, **kwargs): super(ROCAUC, self).__init__(model, ax=ax, classes=classes, **kwargs) # Set the visual parameters for ROCAUC self.micro = micro self.macro = macro self.per_class = per_class def score(self, X, y=None, **kwargs): """ Generates the predicted target values using the Scikit-Learn estimator. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values Returns ------- score_ : float Global accuracy unless micro or macro scores are requested. """ # Compute the predictions for the test data y_pred = self._get_y_scores(X) # Note: In the above, _get_y_scores calls either a decision_function or # predict_proba, which should return a 2D array. But in a binary # classification using an estimator with only a decision_function, y_pred # will instead be 1D, meaning only one curve can be plotted. In this case, # we set the _binary_decision attribute to True to ensure only one curve is # computed and plotted later on. if y_pred.ndim == 1: self._binary_decision = True # Raise an error if it's a binary decision and user has set micro, # macro, or per_class to True if self.micro or self.macro or self.per_class: raise ModelError( "Micro, macro, and per-class scores are not defined for " "binary classification for estimators with only " "decision_function methods; set micro, macro, and " "per-class params to False." ) else: self._binary_decision = False # If it's not a binary decision, at least one of micro, macro, or # per_class must be True if not self.micro and not self.macro and not self.per_class: raise YellowbrickValueError( "no curves will be drawn; specify micro, macro, or per_class" ) # Classes may be label encoded so only use what's in y to compute. # The self.classes_ attribute will be used as names for labels. classes = np.unique(y) n_classes = len(classes) # Store the false positive rate, true positive rate and curve info. self.fpr = dict() self.tpr = dict() self.roc_auc = dict() # If the decision is binary, compute the ROC curve and ROC area if self._binary_decision == True: self.fpr[0], self.tpr[0], _ = roc_curve(y, y_pred) self.roc_auc[0] = auc(self.fpr[0], self.tpr[0]) else: # Otherwise compute the ROC curve and ROC area for each class for i, c in enumerate(classes): self.fpr[i], self.tpr[i], _ = roc_curve(y, y_pred[:,i], pos_label=c) self.roc_auc[i] = auc(self.fpr[i], self.tpr[i]) # Compute micro average if self.micro: self._score_micro_average(y, y_pred, classes, n_classes) # Compute macro average if self.macro: self._score_macro_average(n_classes) # Draw the Curves self.draw() # Set score to micro average if specified if self.micro: self.score_ = self.roc_auc[MICRO] # Set score to macro average if not micro if self.macro: self.score_ = self.roc_auc[MACRO] # Set score to the base score if neither macro nor micro self.score_ = self.estimator.score(X, y) return self.score_ def draw(self): """ Renders ROC-AUC plot. Called internally by score, possibly more than once Returns ------- ax : the axis with the plotted figure """ colors = self.colors[0:len(self.classes_)] n_classes = len(colors) # If it's a binary decision, plot the single ROC curve if self._binary_decision == True: self.ax.plot( self.fpr[0], self.tpr[0], label='ROC for binary decision, AUC = {:0.2f}'.format( self.roc_auc[0] ) ) # If per-class plotting is requested, plot ROC curves for each class if self.per_class: for i, color in zip(range(n_classes), colors): self.ax.plot( self.fpr[i], self.tpr[i], color=color, label='ROC of class {}, AUC = {:0.2f}'.format( self.classes_[i], self.roc_auc[i], ) ) # If requested, plot the ROC curve for the micro average if self.micro: self.ax.plot( self.fpr[MICRO], self.tpr[MICRO], linestyle="--", color= self.colors[len(self.classes_)-1], label='micro-average ROC curve, AUC = {:0.2f}'.format( self.roc_auc["micro"], ) ) # If requested, plot the ROC curve for the macro average if self.macro: self.ax.plot( self.fpr[MACRO], self.tpr[MACRO], linestyle="--", color= self.colors[len(self.classes_)-1], label='macro-average ROC curve, AUC = {:0.2f}'.format( self.roc_auc["macro"], ) ) # Plot the line of no discrimination to compare the curve to. self.ax.plot([0,1], [0,1], linestyle=':', c=LINE_COLOR) return self.ax def finalize(self, **kwargs): """ Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize. Parameters ---------- kwargs: generic keyword arguments. """ # Set the title and add the legend self.set_title('ROC Curves for {}'.format(self.name)) self.ax.legend(loc='lower right', frameon=True) # Set the limits for the ROC/AUC (always between 0 and 1) self.ax.set_xlim([0.0, 1.0]) self.ax.set_ylim([0.0, 1.0]) # Set x and y axis labels self.ax.set_ylabel('True Postive Rate') self.ax.set_xlabel('False Positive Rate') def _get_y_scores(self, X): """ The ``roc_curve`` metric requires target scores that can either be the probability estimates of the positive class, confidence values or non- thresholded measure of decisions (as returned by "decision_function"). This method computes the scores by resolving the estimator methods that retreive these values. .. todo:: implement confidence values metric. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features -- generally the test data that is associated with y_true values. """ # The resolution order of scoring functions attrs = ( 'predict_proba', 'decision_function', ) # Return the first resolved function for attr in attrs: try: method = getattr(self.estimator, attr, None) if method: return method(X) except AttributeError: # Some Scikit-Learn estimators have both probability and # decision functions but override __getattr__ and raise an # AttributeError on access. # Note that because of the ordering of our attrs above, # estimators with both will *only* ever use probability. continue # If we've gotten this far, raise an error raise ModelError( "ROCAUC requires estimators with predict_proba or " "decision_function methods." ) def _score_micro_average(self, y, y_pred, classes, n_classes): """ Compute the micro average scores for the ROCAUC curves. """ # Convert y to binarized array for micro and macro scores y = label_binarize(y, classes=classes) if n_classes == 2: y = np.hstack((1-y, y)) # Compute micro-average self.fpr[MICRO], self.tpr[MICRO], _ = roc_curve(y.ravel(), y_pred.ravel()) self.roc_auc[MICRO] = auc(self.fpr[MICRO], self.tpr[MICRO]) def _score_macro_average(self, n_classes): """ Compute the macro average scores for the ROCAUC curves. """ # Gather all FPRs all_fpr = np.unique(np.concatenate([self.fpr[i] for i in range(n_classes)])) avg_tpr = np.zeros_like(all_fpr) # Compute the averages per class for i in range(n_classes): avg_tpr += interp(all_fpr, self.fpr[i], self.tpr[i]) # Finalize the average avg_tpr /= n_classes # Store the macro averages self.fpr[MACRO] = all_fpr self.tpr[MACRO] = avg_tpr self.roc_auc[MACRO] = auc(self.fpr[MACRO], self.tpr[MACRO]) ########################################################################## ## Quick method for ROCAUC ########################################################################## def roc_auc(model, X, y=None, ax=None, **kwargs): """ROCAUC Quick method: Receiver Operating Characteristic (ROC) curves are a measure of a classifier's predictive quality that compares and visualizes the tradeoff between the models' sensitivity and specificity. The ROC curve displays the true positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis. The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one. This leads to another metric, area under the curve (AUC), a computation of the relationship between false positives and true positives. The higher the AUC, the better the model generally is. However, it is also important to inspect the "steepness" of the curve, as this describes the maximization of the true positive rate while minimizing the false positive rate. Generalizing "steepness" usually leads to discussions about convexity, which we do not get into here. Parameters ---------- model : the Scikit-Learn estimator Should be an instance of a classifier, else the __init__ will return an error. X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values ax : the axis to plot the figure on. classes : list A list of class names for the legend. If classes is None and a y value is passed to fit then the classes are selected from the target vector. Note that the curves must be computed based on what is in the target vector passed to the ``score()`` method. Class names are used for labeling only and must be in the correct order to prevent confusion. micro : bool, default = True Plot the micro-averages ROC curve, computed from the sum of all true positives and false positives across all classes. Micro is not defined for binary classification problems with estimators with only a decision_function method. macro : bool, default = True Plot the macro-averages ROC curve, which simply takes the average of curves across all classes. Macro is not defined for binary classification problems with estimators with only a decision_function method. per_class : bool, default = True Plot the ROC curves for each individual class. This should be set to false if only the macro or micro average curves are required. Per- class classification is not defined for binary classification problems with estimators with only a decision_function method. Notes ----- ROC curves are typically used in binary classification, and in fact the Scikit-Learn ``roc_curve`` metric is only able to perform metrics for binary classifiers. As a result it is necessary to binarize the output or to use one-vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions can arise from unexpected models or outputs. Another important point is the relationship of class labels specified on initialization to those drawn on the curves. The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique values specified in the target vector to the ``score`` method. To ensure the best quality visualization, do not use a LabelEncoder for this and do not pass in class labels. .. seealso:: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html .. todo:: Allow the class list to filter the curves on the visualization. Examples -------- >>> from yellowbrick.classifier import ROCAUC >>> from sklearn.linear_model import LogisticRegression >>> data = load_data("occupancy") >>> features = ["temp", "relative humidity", "light", "C02", "humidity"] >>> X = data[features].values >>> y = data.occupancy.values >>> roc_auc(LogisticRegression(), X, y) Returns ------- ax : matplotlib axes Returns the axes that the roc-auc curve was drawn on. """ # Instantiate the visualizer visualizer = ROCAUC(model, ax, **kwargs) # Create the train and test splits X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Fit and transform the visualizer (calls draw) visualizer.fit(X_train, y_train, **kwargs) visualizer.score(X_test, y_test) visualizer.finalize() # Return the axes object on the visualizer return visualizer.ax
apache-2.0
markomanninen/strongs
isopsephy/search.py
5
1537
#!/usr/local/bin/python # -*- coding: utf-8 -*- # file: search.py def find_cumulative_indices(list_of_numbers, search_sum): """ find_cumulative_indices([70, 58, 81, 909, 70, 215, 70, 1022, 580, 930, 898], 285) -> [[4, 5],[5, 6]] """ u = 0 y = 0 result = [] for idx, val in enumerate(list_of_numbers): y += list_of_numbers[idx] while y >= search_sum: if y == search_sum: result.append(range(u, idx+1)) y -= list_of_numbers[u] u += 1 # if matches are not found, empty string is returned # for easier cell data handling on pandas dataframe return result or '' # http://stackoverflow.com/questions/21380268/matching-the-sum-of-values-on-string def search_by_num(text, num): return list2string(find_number(string2list(text), num)) def list2string(alist): return " ".join(map(str, alist)) def string2list(slist): return list(map(int, slist.split())) def find_number(alist, total): u = 0 y = 0 # the current sum of the interval (u .. v) res = [] for v in range(0, len(alist)): # at this point the interval sum y is smaller than the requested total, # so we move the right end of the interval forward y += alist[v] while y >= total: if y == total: res.append(list2string(alist[ u : v+1 ])) # if the current sum is too large, move the left end of the interval forward y -= alist[u] u += 1 return res
mit
mrochan/gfrnet
caffe-gfrnet/examples/web_demo/app.py
41
7793
import os import time import cPickle import datetime import logging import flask import werkzeug import optparse import tornado.wsgi import tornado.httpserver import numpy as np import pandas as pd from PIL import Image import cStringIO as StringIO import urllib import exifutil import caffe REPO_DIRNAME = os.path.abspath(os.path.dirname(os.path.abspath(__file__)) + '/../..') UPLOAD_FOLDER = '/tmp/caffe_demos_uploads' ALLOWED_IMAGE_EXTENSIONS = set(['png', 'bmp', 'jpg', 'jpe', 'jpeg', 'gif']) # Obtain the flask app object app = flask.Flask(__name__) @app.route('/') def index(): return flask.render_template('index.html', has_result=False) @app.route('/classify_url', methods=['GET']) def classify_url(): imageurl = flask.request.args.get('imageurl', '') try: string_buffer = StringIO.StringIO( urllib.urlopen(imageurl).read()) image = caffe.io.load_image(string_buffer) except Exception as err: # For any exception we encounter in reading the image, we will just # not continue. logging.info('URL Image open error: %s', err) return flask.render_template( 'index.html', has_result=True, result=(False, 'Cannot open image from URL.') ) logging.info('Image: %s', imageurl) result = app.clf.classify_image(image) return flask.render_template( 'index.html', has_result=True, result=result, imagesrc=imageurl) @app.route('/classify_upload', methods=['POST']) def classify_upload(): try: # We will save the file to disk for possible data collection. imagefile = flask.request.files['imagefile'] filename_ = str(datetime.datetime.now()).replace(' ', '_') + \ werkzeug.secure_filename(imagefile.filename) filename = os.path.join(UPLOAD_FOLDER, filename_) imagefile.save(filename) logging.info('Saving to %s.', filename) image = exifutil.open_oriented_im(filename) except Exception as err: logging.info('Uploaded image open error: %s', err) return flask.render_template( 'index.html', has_result=True, result=(False, 'Cannot open uploaded image.') ) result = app.clf.classify_image(image) return flask.render_template( 'index.html', has_result=True, result=result, imagesrc=embed_image_html(image) ) def embed_image_html(image): """Creates an image embedded in HTML base64 format.""" image_pil = Image.fromarray((255 * image).astype('uint8')) image_pil = image_pil.resize((256, 256)) string_buf = StringIO.StringIO() image_pil.save(string_buf, format='png') data = string_buf.getvalue().encode('base64').replace('\n', '') return 'data:image/png;base64,' + data def allowed_file(filename): return ( '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_IMAGE_EXTENSIONS ) class ImagenetClassifier(object): default_args = { 'model_def_file': ( '{}/models/bvlc_reference_caffenet/deploy.prototxt'.format(REPO_DIRNAME)), 'pretrained_model_file': ( '{}/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'.format(REPO_DIRNAME)), 'mean_file': ( '{}/python/caffe/imagenet/ilsvrc_2012_mean.npy'.format(REPO_DIRNAME)), 'class_labels_file': ( '{}/data/ilsvrc12/synset_words.txt'.format(REPO_DIRNAME)), 'bet_file': ( '{}/data/ilsvrc12/imagenet.bet.pickle'.format(REPO_DIRNAME)), } for key, val in default_args.iteritems(): if not os.path.exists(val): raise Exception( "File for {} is missing. Should be at: {}".format(key, val)) default_args['image_dim'] = 256 default_args['raw_scale'] = 255. def __init__(self, model_def_file, pretrained_model_file, mean_file, raw_scale, class_labels_file, bet_file, image_dim, gpu_mode): logging.info('Loading net and associated files...') if gpu_mode: caffe.set_mode_gpu() else: caffe.set_mode_cpu() self.net = caffe.Classifier( model_def_file, pretrained_model_file, image_dims=(image_dim, image_dim), raw_scale=raw_scale, mean=np.load(mean_file).mean(1).mean(1), channel_swap=(2, 1, 0) ) with open(class_labels_file) as f: labels_df = pd.DataFrame([ { 'synset_id': l.strip().split(' ')[0], 'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0] } for l in f.readlines() ]) self.labels = labels_df.sort('synset_id')['name'].values self.bet = cPickle.load(open(bet_file)) # A bias to prefer children nodes in single-chain paths # I am setting the value to 0.1 as a quick, simple model. # We could use better psychological models here... self.bet['infogain'] -= np.array(self.bet['preferences']) * 0.1 def classify_image(self, image): try: starttime = time.time() scores = self.net.predict([image], oversample=True).flatten() endtime = time.time() indices = (-scores).argsort()[:5] predictions = self.labels[indices] # In addition to the prediction text, we will also produce # the length for the progress bar visualization. meta = [ (p, '%.5f' % scores[i]) for i, p in zip(indices, predictions) ] logging.info('result: %s', str(meta)) # Compute expected information gain expected_infogain = np.dot( self.bet['probmat'], scores[self.bet['idmapping']]) expected_infogain *= self.bet['infogain'] # sort the scores infogain_sort = expected_infogain.argsort()[::-1] bet_result = [(self.bet['words'][v], '%.5f' % expected_infogain[v]) for v in infogain_sort[:5]] logging.info('bet result: %s', str(bet_result)) return (True, meta, bet_result, '%.3f' % (endtime - starttime)) except Exception as err: logging.info('Classification error: %s', err) return (False, 'Something went wrong when classifying the ' 'image. Maybe try another one?') def start_tornado(app, port=5000): http_server = tornado.httpserver.HTTPServer( tornado.wsgi.WSGIContainer(app)) http_server.listen(port) print("Tornado server starting on port {}".format(port)) tornado.ioloop.IOLoop.instance().start() def start_from_terminal(app): """ Parse command line options and start the server. """ parser = optparse.OptionParser() parser.add_option( '-d', '--debug', help="enable debug mode", action="store_true", default=False) parser.add_option( '-p', '--port', help="which port to serve content on", type='int', default=5000) parser.add_option( '-g', '--gpu', help="use gpu mode", action='store_true', default=False) opts, args = parser.parse_args() ImagenetClassifier.default_args.update({'gpu_mode': opts.gpu}) # Initialize classifier + warm start by forward for allocation app.clf = ImagenetClassifier(**ImagenetClassifier.default_args) app.clf.net.forward() if opts.debug: app.run(debug=True, host='0.0.0.0', port=opts.port) else: start_tornado(app, opts.port) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) start_from_terminal(app)
mit
riddlezyc/geolab
src/structure/cluster.py
1
2173
""" use .cluster file generater by lammps rerun, get the number of molecules in certain cluster and its change with time """ import matplotlib.pyplot as plt from calc import ave_accum dirName = r"F:\simulations\asphaltenes\production\longtime\athInHeptane\nvt\rerun\4p0/" fileName = 'ath.cluster' # label = 'ATH in Toluene' label = 'ATH in Heptane' with open(dirName + fileName, 'r') as foo: dataFile = foo.read().split('ITEM: TIMESTEP\n') print len(dataFile) cluster = [] clusterNo = [] # first element is empty for iframe, frame in enumerate(dataFile[1:]): if iframe % 100 == 0: print 'Frame No.: %d' % iframe # remove the header and the last element(empty) lines = frame.split('\n')[8:-1] clusterByFrame = [] for line in lines: id, mol, type, clusterid = line.split() if [int(mol), int(clusterid)] not in clusterByFrame: clusterByFrame.append([int(mol), int(clusterid)]) # print clusterByFrame # print len(clusterByFrame) xcluster = [x[1] for x in clusterByFrame] unionCluster = set(xcluster) # remove repeated cluster id # print xcluster # print len(unionCluster) count = [] for i in unionCluster: cnttmp = xcluster.count(i) count.append(cnttmp) # print count avecount = float(sum(count)) / len(count) # print avecount cluster.append(avecount) clusterNo.append(len(unionCluster)) cumulave = ave_accum(cluster) with open(dirName + 'cluster.dat', 'w') as foo: print >> foo, '#frame clustersize ave_accum No_of_clusters' for i, t in enumerate(cluster): print >> foo, '%5d%10.4f%10.4f%5d' % (i, t, cumulave[i], clusterNo[i]) plt.figure(0, figsize=(8, 4)) figName = dirName + 'average cluster size.png' plt.title('Average Cluster Size', fontsize=12) plt.grid(True) plt.xlabel('Frames', fontsize=12) plt.ylabel('Number of molecules', fontsize=12) plt.plot(cluster, label='%s' % label) plt.plot(cumulave, label='average', linewidth=3) plt.legend(loc='best', ncol=4, fontsize=12, shadow=False) plt.savefig(figName, format='png', dpi=300) plt.show() plt.close(0)
gpl-3.0
GauravBh1010tt/DeepLearn
fake news challenge (FNC-1)/util.py
1
10812
# -*- coding: utf-8 -*- from csv import DictReader from csv import DictWriter import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Initialise global variables label_ref = {'agree': 0, 'disagree': 1, 'discuss': 2, 'unrelated': 3} label_ref_rev = {0: 'agree', 1: 'disagree', 2: 'discuss', 3: 'unrelated'} stop_words = [ "a", "about", "above", "across", "after", "afterwards", "again", "against", "all", "almost", "alone", "along", "already", "also", "although", "always", "am", "among", "amongst", "amoungst", "amount", "an", "and", "another", "any", "anyhow", "anyone", "anything", "anyway", "anywhere", "are", "around", "as", "at", "back", "be", "became", "because", "become", "becomes", "becoming", "been", "before", "beforehand", "behind", "being", "below", "beside", "besides", "between", "beyond", "bill", "both", "bottom", "but", "by", "call", "can", "co", "con", "could", "cry", "de", "describe", "detail", "do", "done", "down", "due", "during", "each", "eg", "eight", "either", "eleven", "else", "elsewhere", "empty", "enough", "etc", "even", "ever", "every", "everyone", "everything", "everywhere", "except", "few", "fifteen", "fifty", "fill", "find", "fire", "first", "five", "for", "former", "formerly", "forty", "found", "four", "from", "front", "full", "further", "get", "give", "go", "had", "has", "have", "he", "hence", "her", "here", "hereafter", "hereby", "herein", "hereupon", "hers", "herself", "him", "himself", "his", "how", "however", "hundred", "i", "ie", "if", "in", "inc", "indeed", "interest", "into", "is", "it", "its", "itself", "keep", "last", "latter", "latterly", "least", "less", "ltd", "made", "many", "may", "me", "meanwhile", "might", "mill", "mine", "more", "moreover", "most", "mostly", "move", "much", "must", "my", "myself", "name", "namely", "neither", "nevertheless", "next", "nine", "nobody", "now", "nowhere", "of", "off", "often", "on", "once", "one", "only", "onto", "or", "other", "others", "otherwise", "our", "ours", "ourselves", "out", "over", "own", "part", "per", "perhaps", "please", "put", "rather", "re", "same", "see", "serious", "several", "she", "should", "show", "side", "since", "sincere", "six", "sixty", "so", "some", "somehow", "someone", "something", "sometime", "sometimes", "somewhere", "still", "such", "system", "take", "ten", "than", "that", "the", "their", "them", "themselves", "then", "thence", "there", "thereafter", "thereby", "therefore", "therein", "thereupon", "these", "they", "thick", "thin", "third", "this", "those", "though", "three", "through", "throughout", "thru", "thus", "to", "together", "too", "top", "toward", "towards", "twelve", "twenty", "two", "un", "under", "until", "up", "upon", "us", "very", "via", "was", "we", "well", "were", "what", "whatever", "when", "whence", "whenever", "where", "whereafter", "whereas", "whereby", "wherein", "whereupon", "wherever", "whether", "which", "while", "whither", "who", "whoever", "whole", "whom", "whose", "why", "will", "with", "within", "without", "would", "yet", "you", "your", "yours", "yourself", "yourselves" ] # Define data class class FNCData: """ Define class for Fake News Challenge data """ def __init__(self, file_instances, file_bodies): # Load data self.instances = self.read(file_instances) bodies = self.read(file_bodies) self.heads = {} self.bodies = {} # Process instances for instance in self.instances: if instance['Headline'] not in self.heads: head_id = len(self.heads) self.heads[instance['Headline']] = head_id instance['Body ID'] = int(instance['Body ID']) # Process bodies for body in bodies: self.bodies[int(body['Body ID'])] = body['articleBody'] def read(self, filename): """ Read Fake News Challenge data from CSV file Args: filename: str, filename + extension Returns: rows: list, of dict per instance """ # Initialise rows = [] # Process file with open(filename, "r") as table: r = DictReader(table) for line in r: rows.append(line) return rows # Define relevant functions def pipeline_train(train, test, lim_unigram): """ Process train set, create relevant vectorizers Args: train: FNCData object, train set test: FNCData object, test set lim_unigram: int, number of most frequent words to consider Returns: train_set: list, of numpy arrays train_stances: list, of ints bow_vectorizer: sklearn CountVectorizer tfreq_vectorizer: sklearn TfidfTransformer(use_idf=False) tfidf_vectorizer: sklearn TfidfVectorizer() """ # Initialise heads = [] heads_track = {} bodies = [] bodies_track = {} body_ids = [] id_ref = {} train_set = [] train_stances = [] cos_track = {} test_heads = [] test_heads_track = {} test_bodies = [] test_bodies_track = {} test_body_ids = [] head_tfidf_track = {} body_tfidf_track = {} # Identify unique heads and bodies for instance in train.instances: head = instance['Headline'] body_id = instance['Body ID'] if head not in heads_track: heads.append(head) heads_track[head] = 1 if body_id not in bodies_track: bodies.append(train.bodies[body_id]) bodies_track[body_id] = 1 body_ids.append(body_id) for instance in test.instances: head = instance['Headline'] body_id = instance['Body ID'] if head not in test_heads_track: test_heads.append(head) test_heads_track[head] = 1 if body_id not in test_bodies_track: test_bodies.append(test.bodies[body_id]) test_bodies_track[body_id] = 1 test_body_ids.append(body_id) # Create reference dictionary for i, elem in enumerate(heads + body_ids): id_ref[elem] = i # Create vectorizers and BOW and TF arrays for train set bow_vectorizer = CountVectorizer(max_features=lim_unigram, stop_words=stop_words) bow = bow_vectorizer.fit_transform(heads + bodies) # Train set only tfreq_vectorizer = TfidfTransformer(use_idf=False).fit(bow) tfreq = tfreq_vectorizer.transform(bow).toarray() # Train set only tfidf_vectorizer = TfidfVectorizer(max_features=lim_unigram, stop_words=stop_words).\ fit(heads + bodies + test_heads + test_bodies) # Train and test sets # Process train set for instance in train.instances: head = instance['Headline'] body_id = instance['Body ID'] head_tf = tfreq[id_ref[head]].reshape(1, -1) body_tf = tfreq[id_ref[body_id]].reshape(1, -1) if head not in head_tfidf_track: head_tfidf = tfidf_vectorizer.transform([head]).toarray() head_tfidf_track[head] = head_tfidf else: head_tfidf = head_tfidf_track[head] if body_id not in body_tfidf_track: body_tfidf = tfidf_vectorizer.transform([train.bodies[body_id]]).toarray() body_tfidf_track[body_id] = body_tfidf else: body_tfidf = body_tfidf_track[body_id] if (head, body_id) not in cos_track: tfidf_cos = cosine_similarity(head_tfidf, body_tfidf)[0].reshape(1, 1) cos_track[(head, body_id)] = tfidf_cos else: tfidf_cos = cos_track[(head, body_id)] feat_vec = np.squeeze(np.c_[head_tf, body_tf, tfidf_cos]) train_set.append(feat_vec) train_stances.append(label_ref[instance['Stance']]) return train_set, train_stances, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer def pipeline_test(test, bow_vectorizer, tfreq_vectorizer, tfidf_vectorizer): """ Process test set Args: test: FNCData object, test set bow_vectorizer: sklearn CountVectorizer tfreq_vectorizer: sklearn TfidfTransformer(use_idf=False) tfidf_vectorizer: sklearn TfidfVectorizer() Returns: test_set: list, of numpy arrays """ # Initialise test_set = [] heads_track = {} bodies_track = {} cos_track = {} # Process test set for instance in test.instances: head = instance['Headline'] body_id = instance['Body ID'] if head not in heads_track: head_bow = bow_vectorizer.transform([head]).toarray() head_tf = tfreq_vectorizer.transform(head_bow).toarray()[0].reshape(1, -1) head_tfidf = tfidf_vectorizer.transform([head]).toarray().reshape(1, -1) heads_track[head] = (head_tf, head_tfidf) else: head_tf = heads_track[head][0] head_tfidf = heads_track[head][1] if body_id not in bodies_track: body_bow = bow_vectorizer.transform([test.bodies[body_id]]).toarray() body_tf = tfreq_vectorizer.transform(body_bow).toarray()[0].reshape(1, -1) body_tfidf = tfidf_vectorizer.transform([test.bodies[body_id]]).toarray().reshape(1, -1) bodies_track[body_id] = (body_tf, body_tfidf) else: body_tf = bodies_track[body_id][0] body_tfidf = bodies_track[body_id][1] if (head, body_id) not in cos_track: tfidf_cos = cosine_similarity(head_tfidf, body_tfidf)[0].reshape(1, 1) cos_track[(head, body_id)] = tfidf_cos else: tfidf_cos = cos_track[(head, body_id)] feat_vec = np.squeeze(np.c_[head_tf, body_tf, tfidf_cos]) test_set.append(feat_vec) return test_set def save_predictions(pred, file): """ Save predictions to CSV file Args: pred: numpy array, of numeric predictions file: str, filename + extension """ with open(file, 'w') as csvfile: fieldnames = ['Stance'] writer = DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for instance in pred: writer.writerow({'Stance': label_ref_rev[instance]})
mit
potash/scikit-learn
examples/gaussian_process/plot_gpr_noisy.py
104
3778
""" ============================================================= Gaussian process regression (GPR) with noise-level estimation ============================================================= This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data. An illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML. The first corresponds to a model with a high noise level and a large length scale, which explains all variations in the data by noise. The second one has a smaller noise level and shorter length scale, which explains most of the variation by the noise-free functional relationship. The second model has a higher likelihood; however, depending on the initial value for the hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is thus important to repeat the optimization several times for different initializations. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel rng = np.random.RandomState(0) X = rng.uniform(0, 5, 20)[:, np.newaxis] y = 0.5 * np.sin(3 * X[:, 0]) + rng.normal(0, 0.5, X.shape[0]) # First run plt.figure(0) kernel = 1.0 * RBF(length_scale=100.0, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1)) gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0).fit(X, y) X_ = np.linspace(0, 5, 100) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)), y_mean + np.sqrt(np.diag(y_cov)), alpha=0.5, color='k') plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s" % (kernel, gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta))) plt.tight_layout() # Second run plt.figure(1) kernel = 1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-10, 1e+1)) gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0).fit(X, y) X_ = np.linspace(0, 5, 100) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)), y_mean + np.sqrt(np.diag(y_cov)), alpha=0.5, color='k') plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s" % (kernel, gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta))) plt.tight_layout() # Plot LML landscape plt.figure(2) theta0 = np.logspace(-2, 3, 49) theta1 = np.logspace(-2, 0, 50) Theta0, Theta1 = np.meshgrid(theta0, theta1) LML = [[gp.log_marginal_likelihood(np.log([0.36, Theta0[i, j], Theta1[i, j]])) for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])] LML = np.array(LML).T vmin, vmax = (-LML).min(), (-LML).max() vmax = 50 plt.contour(Theta0, Theta1, -LML, levels=np.logspace(np.log10(vmin), np.log10(vmax), 50), norm=LogNorm(vmin=vmin, vmax=vmax)) plt.colorbar() plt.xscale("log") plt.yscale("log") plt.xlabel("Length-scale") plt.ylabel("Noise-level") plt.title("Log-marginal-likelihood") plt.tight_layout() plt.show()
bsd-3-clause
Sentient07/scikit-learn
examples/neighbors/plot_digits_kde_sampling.py
108
2026
""" ========================= Kernel Density Estimation ========================= This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn. These new samples reflect the underlying model of the data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.neighbors import KernelDensity from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV # load the data digits = load_digits() data = digits.data # project the 64-dimensional data to a lower dimension pca = PCA(n_components=15, whiten=False) data = pca.fit_transform(digits.data) # use grid search cross-validation to optimize the bandwidth params = {'bandwidth': np.logspace(-1, 1, 20)} grid = GridSearchCV(KernelDensity(), params) grid.fit(data) print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth)) # use the best estimator to compute the kernel density estimate kde = grid.best_estimator_ # sample 44 new points from the data new_data = kde.sample(44, random_state=0) new_data = pca.inverse_transform(new_data) # turn data into a 4x11 grid new_data = new_data.reshape((4, 11, -1)) real_data = digits.data[:44].reshape((4, 11, -1)) # plot real digits and resampled digits fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[])) for j in range(11): ax[4, j].set_visible(False) for i in range(4): im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) ax[0, 5].set_title('Selection from the input data') ax[5, 5].set_title('"New" digits drawn from the kernel density model') plt.show()
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tools/tests/test_join.py
7
30695
# pylint: disable=E1103 import nose from numpy.random import randn import numpy as np import pandas as pd from pandas.compat import lrange import pandas.compat as compat from pandas.tools.merge import merge, concat from pandas.util.testing import assert_frame_equal from pandas import DataFrame, MultiIndex, Series import pandas._join as _join import pandas.util.testing as tm from pandas.tools.tests.test_merge import get_test_data, N, NGROUPS a_ = np.array class TestJoin(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C']) def test_cython_left_outer_join(self): left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64) right = a_([1, 1, 0, 4, 2, 2, 1], dtype=np.int64) max_group = 5 ls, rs = _join.left_outer_join(left, right, max_group) exp_ls = left.argsort(kind='mergesort') exp_rs = right.argsort(kind='mergesort') exp_li = a_([0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10]) exp_ri = a_([0, 0, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 5, 4, 5, 4, 5, -1, -1]) exp_ls = exp_ls.take(exp_li) exp_ls[exp_li == -1] = -1 exp_rs = exp_rs.take(exp_ri) exp_rs[exp_ri == -1] = -1 self.assert_numpy_array_equal(ls, exp_ls, check_dtype=False) self.assert_numpy_array_equal(rs, exp_rs, check_dtype=False) def test_cython_right_outer_join(self): left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64) right = a_([1, 1, 0, 4, 2, 2, 1], dtype=np.int64) max_group = 5 rs, ls = _join.left_outer_join(right, left, max_group) exp_ls = left.argsort(kind='mergesort') exp_rs = right.argsort(kind='mergesort') # 0 1 1 1 exp_li = a_([0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, # 2 2 4 6, 7, 8, 6, 7, 8, -1]) exp_ri = a_([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6]) exp_ls = exp_ls.take(exp_li) exp_ls[exp_li == -1] = -1 exp_rs = exp_rs.take(exp_ri) exp_rs[exp_ri == -1] = -1 self.assert_numpy_array_equal(ls, exp_ls, check_dtype=False) self.assert_numpy_array_equal(rs, exp_rs, check_dtype=False) def test_cython_inner_join(self): left = a_([0, 1, 2, 1, 2, 0, 0, 1, 2, 3, 3], dtype=np.int64) right = a_([1, 1, 0, 4, 2, 2, 1, 4], dtype=np.int64) max_group = 5 ls, rs = _join.inner_join(left, right, max_group) exp_ls = left.argsort(kind='mergesort') exp_rs = right.argsort(kind='mergesort') exp_li = a_([0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8]) exp_ri = a_([0, 0, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 5, 4, 5, 4, 5]) exp_ls = exp_ls.take(exp_li) exp_ls[exp_li == -1] = -1 exp_rs = exp_rs.take(exp_ri) exp_rs[exp_ri == -1] = -1 self.assert_numpy_array_equal(ls, exp_ls, check_dtype=False) self.assert_numpy_array_equal(rs, exp_rs, check_dtype=False) def test_left_outer_join(self): joined_key2 = merge(self.df, self.df2, on='key2') _check_join(self.df, self.df2, joined_key2, ['key2'], how='left') joined_both = merge(self.df, self.df2) _check_join(self.df, self.df2, joined_both, ['key1', 'key2'], how='left') def test_right_outer_join(self): joined_key2 = merge(self.df, self.df2, on='key2', how='right') _check_join(self.df, self.df2, joined_key2, ['key2'], how='right') joined_both = merge(self.df, self.df2, how='right') _check_join(self.df, self.df2, joined_both, ['key1', 'key2'], how='right') def test_full_outer_join(self): joined_key2 = merge(self.df, self.df2, on='key2', how='outer') _check_join(self.df, self.df2, joined_key2, ['key2'], how='outer') joined_both = merge(self.df, self.df2, how='outer') _check_join(self.df, self.df2, joined_both, ['key1', 'key2'], how='outer') def test_inner_join(self): joined_key2 = merge(self.df, self.df2, on='key2', how='inner') _check_join(self.df, self.df2, joined_key2, ['key2'], how='inner') joined_both = merge(self.df, self.df2, how='inner') _check_join(self.df, self.df2, joined_both, ['key1', 'key2'], how='inner') def test_handle_overlap(self): joined = merge(self.df, self.df2, on='key2', suffixes=['.foo', '.bar']) self.assertIn('key1.foo', joined) self.assertIn('key1.bar', joined) def test_handle_overlap_arbitrary_key(self): joined = merge(self.df, self.df2, left_on='key2', right_on='key1', suffixes=['.foo', '.bar']) self.assertIn('key1.foo', joined) self.assertIn('key2.bar', joined) def test_join_on(self): target = self.target source = self.source merged = target.join(source, on='C') self.assert_series_equal(merged['MergedA'], target['A'], check_names=False) self.assert_series_equal(merged['MergedD'], target['D'], check_names=False) # join with duplicates (fix regression from DataFrame/Matrix merge) df = DataFrame({'key': ['a', 'a', 'b', 'b', 'c']}) df2 = DataFrame({'value': [0, 1, 2]}, index=['a', 'b', 'c']) joined = df.join(df2, on='key') expected = DataFrame({'key': ['a', 'a', 'b', 'b', 'c'], 'value': [0, 0, 1, 1, 2]}) assert_frame_equal(joined, expected) # Test when some are missing df_a = DataFrame([[1], [2], [3]], index=['a', 'b', 'c'], columns=['one']) df_b = DataFrame([['foo'], ['bar']], index=[1, 2], columns=['two']) df_c = DataFrame([[1], [2]], index=[1, 2], columns=['three']) joined = df_a.join(df_b, on='one') joined = joined.join(df_c, on='one') self.assertTrue(np.isnan(joined['two']['c'])) self.assertTrue(np.isnan(joined['three']['c'])) # merge column not p resent self.assertRaises(KeyError, target.join, source, on='E') # overlap source_copy = source.copy() source_copy['A'] = 0 self.assertRaises(ValueError, target.join, source_copy, on='A') def test_join_on_fails_with_different_right_index(self): with tm.assertRaises(ValueError): df = DataFrame({'a': np.random.choice(['m', 'f'], size=3), 'b': np.random.randn(3)}) df2 = DataFrame({'a': np.random.choice(['m', 'f'], size=10), 'b': np.random.randn(10)}, index=tm.makeCustomIndex(10, 2)) merge(df, df2, left_on='a', right_index=True) def test_join_on_fails_with_different_left_index(self): with tm.assertRaises(ValueError): df = DataFrame({'a': np.random.choice(['m', 'f'], size=3), 'b': np.random.randn(3)}, index=tm.makeCustomIndex(10, 2)) df2 = DataFrame({'a': np.random.choice(['m', 'f'], size=10), 'b': np.random.randn(10)}) merge(df, df2, right_on='b', left_index=True) def test_join_on_fails_with_different_column_counts(self): with tm.assertRaises(ValueError): df = DataFrame({'a': np.random.choice(['m', 'f'], size=3), 'b': np.random.randn(3)}) df2 = DataFrame({'a': np.random.choice(['m', 'f'], size=10), 'b': np.random.randn(10)}, index=tm.makeCustomIndex(10, 2)) merge(df, df2, right_on='a', left_on=['a', 'b']) def test_join_on_fails_with_wrong_object_type(self): # GH12081 wrongly_typed = [Series([0, 1]), 2, 'str', None, np.array([0, 1])] df = DataFrame({'a': [1, 1]}) for obj in wrongly_typed: with tm.assertRaisesRegexp(ValueError, str(type(obj))): merge(obj, df, left_on='a', right_on='a') with tm.assertRaisesRegexp(ValueError, str(type(obj))): merge(df, obj, left_on='a', right_on='a') def test_join_on_pass_vector(self): expected = self.target.join(self.source, on='C') del expected['C'] join_col = self.target.pop('C') result = self.target.join(self.source, on=join_col) assert_frame_equal(result, expected) def test_join_with_len0(self): # nothing to merge merged = self.target.join(self.source.reindex([]), on='C') for col in self.source: self.assertIn(col, merged) self.assertTrue(merged[col].isnull().all()) merged2 = self.target.join(self.source.reindex([]), on='C', how='inner') self.assert_index_equal(merged2.columns, merged.columns) self.assertEqual(len(merged2), 0) def test_join_on_inner(self): df = DataFrame({'key': ['a', 'a', 'd', 'b', 'b', 'c']}) df2 = DataFrame({'value': [0, 1]}, index=['a', 'b']) joined = df.join(df2, on='key', how='inner') expected = df.join(df2, on='key') expected = expected[expected['value'].notnull()] self.assert_series_equal(joined['key'], expected['key'], check_dtype=False) self.assert_series_equal(joined['value'], expected['value'], check_dtype=False) self.assert_index_equal(joined.index, expected.index) def test_join_on_singlekey_list(self): df = DataFrame({'key': ['a', 'a', 'b', 'b', 'c']}) df2 = DataFrame({'value': [0, 1, 2]}, index=['a', 'b', 'c']) # corner cases joined = df.join(df2, on=['key']) expected = df.join(df2, on='key') assert_frame_equal(joined, expected) def test_join_on_series(self): result = self.target.join(self.source['MergedA'], on='C') expected = self.target.join(self.source[['MergedA']], on='C') assert_frame_equal(result, expected) def test_join_on_series_buglet(self): # GH #638 df = DataFrame({'a': [1, 1]}) ds = Series([2], index=[1], name='b') result = df.join(ds, on='a') expected = DataFrame({'a': [1, 1], 'b': [2, 2]}, index=df.index) tm.assert_frame_equal(result, expected) def test_join_index_mixed(self): df1 = DataFrame({'A': 1., 'B': 2, 'C': 'foo', 'D': True}, index=np.arange(10), columns=['A', 'B', 'C', 'D']) self.assertEqual(df1['B'].dtype, np.int64) self.assertEqual(df1['D'].dtype, np.bool_) df2 = DataFrame({'A': 1., 'B': 2, 'C': 'foo', 'D': True}, index=np.arange(0, 10, 2), columns=['A', 'B', 'C', 'D']) # overlap joined = df1.join(df2, lsuffix='_one', rsuffix='_two') expected_columns = ['A_one', 'B_one', 'C_one', 'D_one', 'A_two', 'B_two', 'C_two', 'D_two'] df1.columns = expected_columns[:4] df2.columns = expected_columns[4:] expected = _join_by_hand(df1, df2) assert_frame_equal(joined, expected) # no overlapping blocks df1 = DataFrame(index=np.arange(10)) df1['bool'] = True df1['string'] = 'foo' df2 = DataFrame(index=np.arange(5, 15)) df2['int'] = 1 df2['float'] = 1. for kind in ['inner', 'outer', 'left', 'right']: joined = df1.join(df2, how=kind) expected = _join_by_hand(df1, df2, how=kind) assert_frame_equal(joined, expected) joined = df2.join(df1, how=kind) expected = _join_by_hand(df2, df1, how=kind) assert_frame_equal(joined, expected) def test_join_empty_bug(self): # generated an exception in 0.4.3 x = DataFrame() x.join(DataFrame([3], index=[0], columns=['A']), how='outer') def test_join_unconsolidated(self): # GH #331 a = DataFrame(randn(30, 2), columns=['a', 'b']) c = Series(randn(30)) a['c'] = c d = DataFrame(randn(30, 1), columns=['q']) # it works! a.join(d) d.join(a) def test_join_multiindex(self): index1 = MultiIndex.from_arrays([['a', 'a', 'a', 'b', 'b', 'b'], [1, 2, 3, 1, 2, 3]], names=['first', 'second']) index2 = MultiIndex.from_arrays([['b', 'b', 'b', 'c', 'c', 'c'], [1, 2, 3, 1, 2, 3]], names=['first', 'second']) df1 = DataFrame(data=np.random.randn(6), index=index1, columns=['var X']) df2 = DataFrame(data=np.random.randn(6), index=index2, columns=['var Y']) df1 = df1.sortlevel(0) df2 = df2.sortlevel(0) joined = df1.join(df2, how='outer') ex_index = index1._tuple_index.union(index2._tuple_index) expected = df1.reindex(ex_index).join(df2.reindex(ex_index)) expected.index.names = index1.names assert_frame_equal(joined, expected) self.assertEqual(joined.index.names, index1.names) df1 = df1.sortlevel(1) df2 = df2.sortlevel(1) joined = df1.join(df2, how='outer').sortlevel(0) ex_index = index1._tuple_index.union(index2._tuple_index) expected = df1.reindex(ex_index).join(df2.reindex(ex_index)) expected.index.names = index1.names assert_frame_equal(joined, expected) self.assertEqual(joined.index.names, index1.names) def test_join_inner_multiindex(self): key1 = ['bar', 'bar', 'bar', 'foo', 'foo', 'baz', 'baz', 'qux', 'qux', 'snap'] key2 = ['two', 'one', 'three', 'one', 'two', 'one', 'two', 'two', 'three', 'one'] data = np.random.randn(len(key1)) data = DataFrame({'key1': key1, 'key2': key2, 'data': data}) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) to_join = DataFrame(np.random.randn(10, 3), index=index, columns=['j_one', 'j_two', 'j_three']) joined = data.join(to_join, on=['key1', 'key2'], how='inner') expected = merge(data, to_join.reset_index(), left_on=['key1', 'key2'], right_on=['first', 'second'], how='inner', sort=False) expected2 = merge(to_join, data, right_on=['key1', 'key2'], left_index=True, how='inner', sort=False) assert_frame_equal(joined, expected2.reindex_like(joined)) expected2 = merge(to_join, data, right_on=['key1', 'key2'], left_index=True, how='inner', sort=False) expected = expected.drop(['first', 'second'], axis=1) expected.index = joined.index self.assertTrue(joined.index.is_monotonic) assert_frame_equal(joined, expected) # _assert_same_contents(expected, expected2.ix[:, expected.columns]) def test_join_hierarchical_mixed(self): # GH 2024 df = DataFrame([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'c']) new_df = df.groupby(['a']).agg({'b': [np.mean, np.sum]}) other_df = DataFrame( [(1, 2, 3), (7, 10, 6)], columns=['a', 'b', 'd']) other_df.set_index('a', inplace=True) # GH 9455, 12219 with tm.assert_produces_warning(UserWarning): result = merge(new_df, other_df, left_index=True, right_index=True) self.assertTrue(('b', 'mean') in result) self.assertTrue('b' in result) def test_join_float64_float32(self): a = DataFrame(randn(10, 2), columns=['a', 'b'], dtype=np.float64) b = DataFrame(randn(10, 1), columns=['c'], dtype=np.float32) joined = a.join(b) self.assertEqual(joined.dtypes['a'], 'float64') self.assertEqual(joined.dtypes['b'], 'float64') self.assertEqual(joined.dtypes['c'], 'float32') a = np.random.randint(0, 5, 100).astype('int64') b = np.random.random(100).astype('float64') c = np.random.random(100).astype('float32') df = DataFrame({'a': a, 'b': b, 'c': c}) xpdf = DataFrame({'a': a, 'b': b, 'c': c}) s = DataFrame(np.random.random(5).astype('float32'), columns=['md']) rs = df.merge(s, left_on='a', right_index=True) self.assertEqual(rs.dtypes['a'], 'int64') self.assertEqual(rs.dtypes['b'], 'float64') self.assertEqual(rs.dtypes['c'], 'float32') self.assertEqual(rs.dtypes['md'], 'float32') xp = xpdf.merge(s, left_on='a', right_index=True) assert_frame_equal(rs, xp) def test_join_many_non_unique_index(self): df1 = DataFrame({"a": [1, 1], "b": [1, 1], "c": [10, 20]}) df2 = DataFrame({"a": [1, 1], "b": [1, 2], "d": [100, 200]}) df3 = DataFrame({"a": [1, 1], "b": [1, 2], "e": [1000, 2000]}) idf1 = df1.set_index(["a", "b"]) idf2 = df2.set_index(["a", "b"]) idf3 = df3.set_index(["a", "b"]) result = idf1.join([idf2, idf3], how='outer') df_partially_merged = merge(df1, df2, on=['a', 'b'], how='outer') expected = merge(df_partially_merged, df3, on=['a', 'b'], how='outer') result = result.reset_index() expected = expected[result.columns] expected['a'] = expected.a.astype('int64') expected['b'] = expected.b.astype('int64') assert_frame_equal(result, expected) df1 = DataFrame({"a": [1, 1, 1], "b": [1, 1, 1], "c": [10, 20, 30]}) df2 = DataFrame({"a": [1, 1, 1], "b": [1, 1, 2], "d": [100, 200, 300]}) df3 = DataFrame( {"a": [1, 1, 1], "b": [1, 1, 2], "e": [1000, 2000, 3000]}) idf1 = df1.set_index(["a", "b"]) idf2 = df2.set_index(["a", "b"]) idf3 = df3.set_index(["a", "b"]) result = idf1.join([idf2, idf3], how='inner') df_partially_merged = merge(df1, df2, on=['a', 'b'], how='inner') expected = merge(df_partially_merged, df3, on=['a', 'b'], how='inner') result = result.reset_index() assert_frame_equal(result, expected.ix[:, result.columns]) # GH 11519 df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) s = Series(np.repeat(np.arange(8), 2), index=np.repeat(np.arange(8), 2), name='TEST') inner = df.join(s, how='inner') outer = df.join(s, how='outer') left = df.join(s, how='left') right = df.join(s, how='right') assert_frame_equal(inner, outer) assert_frame_equal(inner, left) assert_frame_equal(inner, right) def test_join_sort(self): left = DataFrame({'key': ['foo', 'bar', 'baz', 'foo'], 'value': [1, 2, 3, 4]}) right = DataFrame({'value2': ['a', 'b', 'c']}, index=['bar', 'baz', 'foo']) joined = left.join(right, on='key', sort=True) expected = DataFrame({'key': ['bar', 'baz', 'foo', 'foo'], 'value': [2, 3, 1, 4], 'value2': ['a', 'b', 'c', 'c']}, index=[1, 2, 0, 3]) assert_frame_equal(joined, expected) # smoke test joined = left.join(right, on='key', sort=False) self.assert_index_equal(joined.index, pd.Index(lrange(4))) def test_join_mixed_non_unique_index(self): # GH 12814, unorderable types in py3 with a non-unique index df1 = DataFrame({'a': [1, 2, 3, 4]}, index=[1, 2, 3, 'a']) df2 = DataFrame({'b': [5, 6, 7, 8]}, index=[1, 3, 3, 4]) result = df1.join(df2) expected = DataFrame({'a': [1, 2, 3, 3, 4], 'b': [5, np.nan, 6, 7, np.nan]}, index=[1, 2, 3, 3, 'a']) tm.assert_frame_equal(result, expected) df3 = DataFrame({'a': [1, 2, 3, 4]}, index=[1, 2, 2, 'a']) df4 = DataFrame({'b': [5, 6, 7, 8]}, index=[1, 2, 3, 4]) result = df3.join(df4) expected = DataFrame({'a': [1, 2, 3, 4], 'b': [5, 6, 6, np.nan]}, index=[1, 2, 2, 'a']) tm.assert_frame_equal(result, expected) def test_mixed_type_join_with_suffix(self): # GH #916 df = DataFrame(np.random.randn(20, 6), columns=['a', 'b', 'c', 'd', 'e', 'f']) df.insert(0, 'id', 0) df.insert(5, 'dt', 'foo') grouped = df.groupby('id') mn = grouped.mean() cn = grouped.count() # it works! mn.join(cn, rsuffix='_right') def test_join_many(self): df = DataFrame(np.random.randn(10, 6), columns=list('abcdef')) df_list = [df[['a', 'b']], df[['c', 'd']], df[['e', 'f']]] joined = df_list[0].join(df_list[1:]) tm.assert_frame_equal(joined, df) df_list = [df[['a', 'b']][:-2], df[['c', 'd']][2:], df[['e', 'f']][1:9]] def _check_diff_index(df_list, result, exp_index): reindexed = [x.reindex(exp_index) for x in df_list] expected = reindexed[0].join(reindexed[1:]) tm.assert_frame_equal(result, expected) # different join types joined = df_list[0].join(df_list[1:], how='outer') _check_diff_index(df_list, joined, df.index) joined = df_list[0].join(df_list[1:]) _check_diff_index(df_list, joined, df_list[0].index) joined = df_list[0].join(df_list[1:], how='inner') _check_diff_index(df_list, joined, df.index[2:8]) self.assertRaises(ValueError, df_list[0].join, df_list[1:], on='a') def test_join_many_mixed(self): df = DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D']) df['key'] = ['foo', 'bar'] * 4 df1 = df.ix[:, ['A', 'B']] df2 = df.ix[:, ['C', 'D']] df3 = df.ix[:, ['key']] result = df1.join([df2, df3]) assert_frame_equal(result, df) def test_join_dups(self): # joining dups df = concat([DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']), DataFrame(np.random.randint(0, 10, size=20) .reshape(10, 2), columns=['A', 'C'])], axis=1) expected = concat([df, df], axis=1) result = df.join(df, rsuffix='_2') result.columns = expected.columns assert_frame_equal(result, expected) # GH 4975, invalid join on dups w = DataFrame(np.random.randn(4, 2), columns=["x", "y"]) x = DataFrame(np.random.randn(4, 2), columns=["x", "y"]) y = DataFrame(np.random.randn(4, 2), columns=["x", "y"]) z = DataFrame(np.random.randn(4, 2), columns=["x", "y"]) dta = x.merge(y, left_index=True, right_index=True).merge( z, left_index=True, right_index=True, how="outer") dta = dta.merge(w, left_index=True, right_index=True) expected = concat([x, y, z, w], axis=1) expected.columns = ['x_x', 'y_x', 'x_y', 'y_y', 'x_x', 'y_x', 'x_y', 'y_y'] assert_frame_equal(dta, expected) def test_panel_join(self): panel = tm.makePanel() tm.add_nans(panel) p1 = panel.ix[:2, :10, :3] p2 = panel.ix[2:, 5:, 2:] # left join result = p1.join(p2) expected = p1.copy() expected['ItemC'] = p2['ItemC'] tm.assert_panel_equal(result, expected) # right join result = p1.join(p2, how='right') expected = p2.copy() expected['ItemA'] = p1['ItemA'] expected['ItemB'] = p1['ItemB'] expected = expected.reindex(items=['ItemA', 'ItemB', 'ItemC']) tm.assert_panel_equal(result, expected) # inner join result = p1.join(p2, how='inner') expected = panel.ix[:, 5:10, 2:3] tm.assert_panel_equal(result, expected) # outer join result = p1.join(p2, how='outer') expected = p1.reindex(major=panel.major_axis, minor=panel.minor_axis) expected = expected.join(p2.reindex(major=panel.major_axis, minor=panel.minor_axis)) tm.assert_panel_equal(result, expected) def test_panel_join_overlap(self): panel = tm.makePanel() tm.add_nans(panel) p1 = panel.ix[['ItemA', 'ItemB', 'ItemC']] p2 = panel.ix[['ItemB', 'ItemC']] # Expected index is # # ItemA, ItemB_p1, ItemC_p1, ItemB_p2, ItemC_p2 joined = p1.join(p2, lsuffix='_p1', rsuffix='_p2') p1_suf = p1.ix[['ItemB', 'ItemC']].add_suffix('_p1') p2_suf = p2.ix[['ItemB', 'ItemC']].add_suffix('_p2') no_overlap = panel.ix[['ItemA']] expected = no_overlap.join(p1_suf.join(p2_suf)) tm.assert_panel_equal(joined, expected) def test_panel_join_many(self): tm.K = 10 panel = tm.makePanel() tm.K = 4 panels = [panel.ix[:2], panel.ix[2:6], panel.ix[6:]] joined = panels[0].join(panels[1:]) tm.assert_panel_equal(joined, panel) panels = [panel.ix[:2, :-5], panel.ix[2:6, 2:], panel.ix[6:, 5:-7]] data_dict = {} for p in panels: data_dict.update(p.iteritems()) joined = panels[0].join(panels[1:], how='inner') expected = pd.Panel.from_dict(data_dict, intersect=True) tm.assert_panel_equal(joined, expected) joined = panels[0].join(panels[1:], how='outer') expected = pd.Panel.from_dict(data_dict, intersect=False) tm.assert_panel_equal(joined, expected) # edge cases self.assertRaises(ValueError, panels[0].join, panels[1:], how='outer', lsuffix='foo', rsuffix='bar') self.assertRaises(ValueError, panels[0].join, panels[1:], how='right') def _check_join(left, right, result, join_col, how='left', lsuffix='_x', rsuffix='_y'): # some smoke tests for c in join_col: assert(result[c].notnull().all()) left_grouped = left.groupby(join_col) right_grouped = right.groupby(join_col) for group_key, group in result.groupby(join_col): l_joined = _restrict_to_columns(group, left.columns, lsuffix) r_joined = _restrict_to_columns(group, right.columns, rsuffix) try: lgroup = left_grouped.get_group(group_key) except KeyError: if how in ('left', 'inner'): raise AssertionError('key %s should not have been in the join' % str(group_key)) _assert_all_na(l_joined, left.columns, join_col) else: _assert_same_contents(l_joined, lgroup) try: rgroup = right_grouped.get_group(group_key) except KeyError: if how in ('right', 'inner'): raise AssertionError('key %s should not have been in the join' % str(group_key)) _assert_all_na(r_joined, right.columns, join_col) else: _assert_same_contents(r_joined, rgroup) def _restrict_to_columns(group, columns, suffix): found = [c for c in group.columns if c in columns or c.replace(suffix, '') in columns] # filter group = group.ix[:, found] # get rid of suffixes, if any group = group.rename(columns=lambda x: x.replace(suffix, '')) # put in the right order... group = group.ix[:, columns] return group def _assert_same_contents(join_chunk, source): NA_SENTINEL = -1234567 # drop_duplicates not so NA-friendly... jvalues = join_chunk.fillna(NA_SENTINEL).drop_duplicates().values svalues = source.fillna(NA_SENTINEL).drop_duplicates().values rows = set(tuple(row) for row in jvalues) assert(len(rows) == len(source)) assert(all(tuple(row) in rows for row in svalues)) def _assert_all_na(join_chunk, source_columns, join_col): for c in source_columns: if c in join_col: continue assert(join_chunk[c].isnull().all()) def _join_by_hand(a, b, how='left'): join_index = a.index.join(b.index, how=how) a_re = a.reindex(join_index) b_re = b.reindex(join_index) result_columns = a.columns.append(b.columns) for col, s in compat.iteritems(b_re): a_re[col] = s return a_re.reindex(columns=result_columns) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
michigraber/scikit-learn
examples/mixture/plot_gmm_classifier.py
250
3918
""" ================== GMM classification ================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ print(__doc__) # Author: Ron Weiss <[email protected]>, Gael Varoquaux # License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from sklearn import datasets from sklearn.cross_validation import StratifiedKFold from sklearn.externals.six.moves import xrange from sklearn.mixture import GMM def make_ellipses(gmm, ax): for n, color in enumerate('rgb'): v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v *= 9 ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(iris.target, n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf)) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. classifiers = dict((covar_type, GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)) for covar_type in ['spherical', 'diag', 'tied', 'full']) n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)]) # Train the other parameters using the EM algorithm. classifier.fit(X_train) h = plt.subplot(2, n_classifiers / 2, index + 1) make_ellipses(classifier, h) for n, color in enumerate('rgb'): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], 0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate('rgb'): data = X_test[y_test == n] plt.plot(data[:, 0], data[:, 1], 'x', color=color) y_train_pred = classifier.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = classifier.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
rvraghav93/scikit-learn
examples/decomposition/plot_incremental_pca.py
175
1974
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) colors = ['navy', 'turquoise', 'darkorange'] for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], color=color, lw=2, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best", shadow=False, scatterpoints=1) plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
nhzandi/openface
util/detect-outliers.py
10
2768
#!/usr/bin/env python2 # # Detect outlier faces (not of the same person) in a directory # of aligned images. # Brandon Amos # 2016/02/14 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time start = time.time() import argparse import os import glob import numpy as np np.set_printoptions(precision=2) from sklearn.metrics.pairwise import euclidean_distances import cv2 import openface fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') openfaceModelDir = os.path.join(modelDir, 'openface') def main(): parser = argparse.ArgumentParser() parser.add_argument('--networkModel', type=str, help="Path to Torch network model.", default=os.path.join(openfaceModelDir, 'nn4.small2.v1.t7')) parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument('--cuda', action='store_true') parser.add_argument('--threshold', type=float, default=0.9) parser.add_argument('--delete', action='store_true', help='Delete the outliers.') parser.add_argument('directory') args = parser.parse_args() net = openface.TorchNeuralNet(args.networkModel, args.imgDim, cuda=args.cuda) reps = [] paths = sorted(list(glob.glob(os.path.join(args.directory, '*.png')))) print("=== {} ===".format(args.directory)) for imgPath in paths: if cv2.imread(imgPath) is None: print("Warning: Skipping bad image file: {}".format(imgPath)) if args.delete: # Remove the file if it's not a valid image. os.remove(imgPath) else: reps.append(net.forwardPath(imgPath)) mean = np.mean(reps, axis=0) dists = euclidean_distances(reps, mean) outliers = [] for path, dist in zip(paths, dists): dist = dist.take(0) if dist > args.threshold: outliers.append((path, dist)) print("Found {} outlier(s) from {} images.".format(len(outliers), len(paths))) for path, dist in outliers: print(" + {} ({:0.2f})".format(path, dist)) if args.delete: os.remove(path) if __name__ == '__main__': main()
apache-2.0
gfyoung/pandas
asv_bench/benchmarks/dtypes.py
2
3456
import string import numpy as np from pandas import DataFrame import pandas._testing as tm from pandas.api.types import pandas_dtype from .pandas_vb_common import ( datetime_dtypes, extension_dtypes, lib, numeric_dtypes, string_dtypes, ) _numpy_dtypes = [ np.dtype(dtype) for dtype in (numeric_dtypes + datetime_dtypes + string_dtypes) ] _dtypes = _numpy_dtypes + extension_dtypes class Dtypes: params = _dtypes + list(map(lambda dt: dt.name, _dtypes)) param_names = ["dtype"] def time_pandas_dtype(self, dtype): pandas_dtype(dtype) class DtypesInvalid: param_names = ["dtype"] params = ["scalar-string", "scalar-int", "list-string", "array-string"] data_dict = { "scalar-string": "foo", "scalar-int": 1, "list-string": ["foo"] * 1000, "array-string": np.array(["foo"] * 1000), } def time_pandas_dtype_invalid(self, dtype): try: pandas_dtype(self.data_dict[dtype]) except TypeError: pass class InferDtypes: param_names = ["dtype"] data_dict = { "np-object": np.array([1] * 100000, dtype="O"), "py-object": [1] * 100000, "np-null": np.array([1] * 50000 + [np.nan] * 50000), "py-null": [1] * 50000 + [None] * 50000, "np-int": np.array([1] * 100000, dtype=int), "np-floating": np.array([1.0] * 100000, dtype=float), "empty": [], "bytes": [b"a"] * 100000, } params = list(data_dict.keys()) def time_infer_skipna(self, dtype): lib.infer_dtype(self.data_dict[dtype], skipna=True) def time_infer(self, dtype): lib.infer_dtype(self.data_dict[dtype], skipna=False) class SelectDtypes: params = [ tm.ALL_INT_DTYPES + tm.ALL_EA_INT_DTYPES + tm.FLOAT_DTYPES + tm.COMPLEX_DTYPES + tm.DATETIME64_DTYPES + tm.TIMEDELTA64_DTYPES + tm.BOOL_DTYPES ] param_names = ["dtype"] def setup(self, dtype): N, K = 5000, 50 self.index = tm.makeStringIndex(N) self.columns = tm.makeStringIndex(K) def create_df(data): return DataFrame(data, index=self.index, columns=self.columns) self.df_int = create_df(np.random.randint(low=100, size=(N, K))) self.df_float = create_df(np.random.randn(N, K)) self.df_bool = create_df(np.random.choice([True, False], size=(N, K))) self.df_string = create_df( np.random.choice(list(string.ascii_letters), size=(N, K)) ) def time_select_dtype_int_include(self, dtype): self.df_int.select_dtypes(include=dtype) def time_select_dtype_int_exclude(self, dtype): self.df_int.select_dtypes(exclude=dtype) def time_select_dtype_float_include(self, dtype): self.df_float.select_dtypes(include=dtype) def time_select_dtype_float_exclude(self, dtype): self.df_float.select_dtypes(exclude=dtype) def time_select_dtype_bool_include(self, dtype): self.df_bool.select_dtypes(include=dtype) def time_select_dtype_bool_exclude(self, dtype): self.df_bool.select_dtypes(exclude=dtype) def time_select_dtype_string_include(self, dtype): self.df_string.select_dtypes(include=dtype) def time_select_dtype_string_exclude(self, dtype): self.df_string.select_dtypes(exclude=dtype) from .pandas_vb_common import setup # noqa: F401 isort:skip
bsd-3-clause
wkfwkf/statsmodels
statsmodels/sandbox/stats/stats_dhuard.py
33
10184
''' from David Huard's scipy sandbox, also attached to a ticket and in the matplotlib-user mailinglist (links ???) Notes ===== out of bounds interpolation raises exception and wouldn't be completely defined :: >>> scoreatpercentile(x, [0,25,50,100]) Traceback (most recent call last): ... raise ValueError("A value in x_new is below the interpolation " ValueError: A value in x_new is below the interpolation range. >>> percentileofscore(x, [-50, 50]) Traceback (most recent call last): ... raise ValueError("A value in x_new is below the interpolation " ValueError: A value in x_new is below the interpolation range. idea ==== histogram and empirical interpolated distribution ------------------------------------------------- dual constructor * empirical cdf : cdf on all observations through linear interpolation * binned cdf : based on histogram both should work essentially the same, although pdf of empirical has many spikes, fluctuates a lot - alternative: binning based on interpolated cdf : example in script * ppf: quantileatscore based on interpolated cdf * rvs : generic from ppf * stats, expectation ? how does integration wrt cdf work - theory? Problems * limits, lower and upper bound of support does not work or is undefined with empirical cdf and interpolation * extending bounds ? matlab has pareto tails for empirical distribution, breaks linearity empirical distribution with higher order interpolation ------------------------------------------------------ * should work easily enough with interpolating splines * not piecewise linear * can use pareto (or other) tails * ppf how do I get the inverse function of a higher order spline? Chuck: resample and fit spline to inverse function this will have an approximation error in the inverse function * -> doesn't work: higher order spline doesn't preserve monotonicity see mailing list for response to my question * pmf from derivative available in spline -> forget this and use kernel density estimator instead bootstrap/empirical distribution: --------------------------------- discrete distribution on real line given observations what's defined? * cdf : step function * pmf : points with equal weight 1/nobs * rvs : resampling * ppf : quantileatscore on sample? * moments : from data ? * expectation ? sum_{all observations x} [func(x) * pmf(x)] * similar for discrete distribution on real line * References : ? * what's the point? most of it is trivial, just for the record ? Created on Monday, May 03, 2010, 11:47:03 AM Author: josef-pktd, parts based on David Huard License: BSD ''' from __future__ import print_function import scipy.interpolate as interpolate import numpy as np def scoreatpercentile(data, percentile): """Return the score at the given percentile of the data. Example: >>> data = randn(100) >>> scoreatpercentile(data, 50) will return the median of sample `data`. """ per = np.array(percentile) cdf = empiricalcdf(data) interpolator = interpolate.interp1d(np.sort(cdf), np.sort(data)) return interpolator(per/100.) def percentileofscore(data, score): """Return the percentile-position of score relative to data. score: Array of scores at which the percentile is computed. Return percentiles (0-100). Example r = randn(50) x = linspace(-2,2,100) percentileofscore(r,x) Raise an error if the score is outside the range of data. """ cdf = empiricalcdf(data) interpolator = interpolate.interp1d(np.sort(data), np.sort(cdf)) return interpolator(score)*100. def empiricalcdf(data, method='Hazen'): """Return the empirical cdf. Methods available: Hazen: (i-0.5)/N Weibull: i/(N+1) Chegodayev: (i-.3)/(N+.4) Cunnane: (i-.4)/(N+.2) Gringorten: (i-.44)/(N+.12) California: (i-1)/N Where i goes from 1 to N. """ i = np.argsort(np.argsort(data)) + 1. N = len(data) method = method.lower() if method == 'hazen': cdf = (i-0.5)/N elif method == 'weibull': cdf = i/(N+1.) elif method == 'california': cdf = (i-1.)/N elif method == 'chegodayev': cdf = (i-.3)/(N+.4) elif method == 'cunnane': cdf = (i-.4)/(N+.2) elif method == 'gringorten': cdf = (i-.44)/(N+.12) else: raise ValueError('Unknown method. Choose among Weibull, Hazen,' 'Chegodayev, Cunnane, Gringorten and California.') return cdf class HistDist(object): '''Distribution with piecewise linear cdf, pdf is step function can be created from empiricial distribution or from a histogram (not done yet) work in progress, not finished ''' def __init__(self, data): self.data = np.atleast_1d(data) self.binlimit = np.array([self.data.min(), self.data.max()]) sortind = np.argsort(data) self._datasorted = data[sortind] self.ranking = np.argsort(sortind) cdf = self.empiricalcdf() self._empcdfsorted = np.sort(cdf) self.cdfintp = interpolate.interp1d(self._datasorted, self._empcdfsorted) self.ppfintp = interpolate.interp1d(self._empcdfsorted, self._datasorted) def empiricalcdf(self, data=None, method='Hazen'): """Return the empirical cdf. Methods available: Hazen: (i-0.5)/N Weibull: i/(N+1) Chegodayev: (i-.3)/(N+.4) Cunnane: (i-.4)/(N+.2) Gringorten: (i-.44)/(N+.12) California: (i-1)/N Where i goes from 1 to N. """ if data is None: data = self.data i = self.ranking else: i = np.argsort(np.argsort(data)) + 1. N = len(data) method = method.lower() if method == 'hazen': cdf = (i-0.5)/N elif method == 'weibull': cdf = i/(N+1.) elif method == 'california': cdf = (i-1.)/N elif method == 'chegodayev': cdf = (i-.3)/(N+.4) elif method == 'cunnane': cdf = (i-.4)/(N+.2) elif method == 'gringorten': cdf = (i-.44)/(N+.12) else: raise ValueError('Unknown method. Choose among Weibull, Hazen,' 'Chegodayev, Cunnane, Gringorten and California.') return cdf def cdf_emp(self, score): ''' this is score in dh ''' return self.cdfintp(score) #return percentileofscore(self.data, score) def ppf_emp(self, quantile): ''' this is score in dh ''' return self.ppfintp(quantile) #return scoreatpercentile(self.data, quantile*100) #from DHuard http://old.nabble.com/matplotlib-f2903.html def optimize_binning(self, method='Freedman'): """Find the optimal number of bins and update the bin countaccordingly. Available methods : Freedman Scott """ nobs = len(self.data) if method=='Freedman': IQR = self.ppf_emp(0.75) - self.ppf_emp(0.25) # Interquantile range(75% -25%) width = 2* IQR* nobs**(-1./3) elif method=='Scott': width = 3.49 * np.std(self.data) * nobs**(-1./3) self.nbin = (self.binlimit.ptp()/width) return self.nbin #changes: josef-pktd if __name__ == '__main__': import matplotlib.pyplot as plt nobs = 100 x = np.random.randn(nobs) examples = [2] if 1 in examples: empiricalcdf(x) print(percentileofscore(x, 0.5)) print(scoreatpercentile(x, 50)) import matplotlib.pyplot as plt xsupp = np.linspace(x.min(), x.max()) pos = percentileofscore(x, xsupp) plt.plot(xsupp, pos) #perc = np.linspace(2.5, 97.5) #plt.plot(scoreatpercentile(x, perc), perc) plt.plot(scoreatpercentile(x, pos), pos+1) #emp = interpolate.PiecewisePolynomial(np.sort(empiricalcdf(x)), np.sort(x)) emp=interpolate.InterpolatedUnivariateSpline(np.sort(x),np.sort(empiricalcdf(x)),k=1) pdfemp = np.array([emp.derivatives(xi)[1] for xi in xsupp]) plt.figure() plt.plot(xsupp,pdfemp) cdf_ongrid = emp(xsupp) plt.figure() plt.plot(xsupp, cdf_ongrid) #get pdf from interpolated cdf on a regular grid plt.figure() plt.step(xsupp[:-1],np.diff(cdf_ongrid)/np.diff(xsupp)) #reduce number of bins/steps xsupp2 = np.linspace(x.min(), x.max(), 25) plt.figure() plt.step(xsupp2[:-1],np.diff(emp(xsupp2))/np.diff(xsupp2)) #pdf using 25 original observations, every (nobs/25)th xso = np.sort(x) xs = xso[::nobs/25] plt.figure() plt.step(xs[:-1],np.diff(emp(xs))/np.diff(xs)) #lower end looks strange histd = HistDist(x) print(histd.optimize_binning()) print(histd.cdf_emp(histd.binlimit)) print(histd.ppf_emp([0.25, 0.5, 0.75])) print(histd.cdf_emp([-0.5, -0.25, 0, 0.25, 0.5])) xsupp = np.linspace(x.min(), x.max(), 500) emp=interpolate.InterpolatedUnivariateSpline(np.sort(x),np.sort(empiricalcdf(x)),k=1) #pdfemp = np.array([emp.derivatives(xi)[1] for xi in xsupp]) #plt.figure() #plt.plot(xsupp,pdfemp) cdf_ongrid = emp(xsupp) plt.figure() plt.plot(xsupp, cdf_ongrid) ppfintp = interpolate.InterpolatedUnivariateSpline(cdf_ongrid,xsupp,k=3) ppfs = ppfintp(cdf_ongrid) plt.plot(ppfs, cdf_ongrid) #ppfemp=interpolate.InterpolatedUnivariateSpline(np.sort(empiricalcdf(x)),np.sort(x),k=3) #Don't use interpolating splines for function approximation #with s=0.03 the spline is monotonic at the evaluated values ppfemp=interpolate.UnivariateSpline(np.sort(empiricalcdf(x)),np.sort(x),k=3, s=0.03) ppfe = ppfemp(cdf_ongrid) plt.plot(ppfe, cdf_ongrid) print('negative density') print('(np.diff(ppfs)).min()', (np.diff(ppfs)).min()) print('(np.diff(cdf_ongrid)).min()', (np.diff(cdf_ongrid)).min()) #plt.show()
bsd-3-clause
treycausey/scikit-learn
sklearn/utils/testing.py
2
19145
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import sklearn from sklearn.base import BaseEstimator # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regexp except ImportError: # for Py 2.6 def assert_raises_regexp(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except Exception as e: error_message = str(e) if not re.compile(expected_regexp).match(error_message): raise AssertionError("Error message should match pattern " "'%s'. '%s' does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("Should have raised %r" % expected_exception(expected_regexp)) def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message # To remove when we support numpy 1.7 def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not w[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, w[0])) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not w[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, w[0])) # substring will match, the entire message with typo won't msg = w[0].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if not check_in_message(msg): raise AssertionError("The message received ('%s') for <%s> is " "not the one you expected ('%s')" % (msg, func.__name__, message )) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exception, message, function, *args, **kwargs): """Helper function to test error messages in exceptions""" try: function(*args, **kwargs) raise AssertionError("Should have raised %r" % exception(message)) except exception as e: error_message = str(e) assert_in(message, error_message) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict: contains data as columns_dict[column_name] = array of data dataname: name of data set matfile: file-like object or file name ordering: list of column_names, determines the ordering in the data set Note: this function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. meta_estimators = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly other = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_others : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV type_filter : string or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_other: estimators = [c for c in estimators if not c[0] in other] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in meta_estimators] if type_filter == 'classifier': estimators = [est for est in estimators if issubclass(est[1], ClassifierMixin)] elif type_filter == 'regressor': estimators = [est for est in estimators if issubclass(est[1], RegressorMixin)] elif type_filter == 'transformer': estimators = [est for est in estimators if issubclass(est[1], TransformerMixin)] elif type_filter == 'cluster': estimators = [est for est in estimators if issubclass(est[1], ClusterMixin)] elif type_filter is not None: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # We sort in order to have reproducible test failures return sorted(estimators) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified matplotlib.pylab.figure() except: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warniings """ warnings.resetwarnings() reg = "__warningregistry__" for mod in sys.modules.values(): if hasattr(mod, reg): getattr(mod, reg).clear()
bsd-3-clause
rssalessio/PythonVRFT
examples/example2.py
1
2974
# Copyright (c) [2021] Alessio Russo [[email protected]]. All rights reserved. # This file is part of PythonVRFT. # PythonVRFT is free software: you can redistribute it and/or modify # it under the terms of the MIT License. You should have received a copy of # the MIT License along with PythonVRFT. # If not, see <https://opensource.org/licenses/MIT>. # # Code author: [Alessio Russo - [email protected]] # Last update: 10th January 2021, by [email protected] # import numpy as np import matplotlib.pyplot as plt import scipy.signal as scipysig from vrft import * # Example 2 # ------------ # In this example we see how to apply VRFT to a simple SISO model # with colored measurement noise (no instrumental variables) # Input data is generated using random normal noise # def generateNoise(t): # Generate colored noise omega = 2*np.pi*100 xi = 0.9 dt = t[1] - t[0] noise = np.random.normal(0,0.1,t.size) tf = scipysig.TransferFunction([10*omega**2], [1, 2*xi*omega, omega**2]) # Second order system _, yn, _ = scipysig.lsim(tf, noise, t) return yn #Generate time and u(t) signals t_start = 0 t_end = 10 t_step = 1e-2 t = np.arange(t_start, t_end, t_step) u = np.random.normal(size=t.size) #Experiment num = [0.5] den = [1, -0.9] sys = ExtendedTF(num, den, dt=t_step) t, y = scipysig.dlsim(sys, u, t) y = y.flatten() + generateNoise(t) data = iddata(y, u, t_step, [0]) #Reference Model refModel = ExtendedTF([0.6], [1, -0.4], dt=t_step) #PI Controller base = [ExtendedTF([1], [1, -1], dt=t_step), ExtendedTF([1, 0], [1, -1], dt=t_step)] #Experiment filter L = refModel * (1 - refModel) #VRFT theta, r, loss, C = compute_vrft(data, refModel, base, L) #Obtained controller print("Controller: {}".format(C)) L = (C * sys).feedback() print("Theta: {}".format(theta)) print(scipysig.ZerosPolesGain(L)) #Analysis t = t[:len(r)] u = np.ones(len(t)) _, yr = scipysig.dlsim(refModel, u, t) _, yc = scipysig.dlsim(L, u, t) _, ys = scipysig.dlsim(sys, u, t) yr = np.array(yr).flatten() ys = np.array(ys).flatten() yc = np.array(yc).flatten() fig, ax = plt.subplots(4, sharex=True, figsize=(12,8), dpi= 100, facecolor='w', edgecolor='k') ax[0].plot(t, yr,label='Reference System') ax[0].plot(t, yc, label='CL System') ax[0].set_title('Systems response') ax[0].grid(True) ax[1].plot(t, ys, label='OL System') ax[1].set_title('OL Systems response') ax[1].grid(True) ax[2].plot(t, y[:len(r)]) ax[2].grid(True) ax[2].set_title('Experiment data') ax[3].plot(t, r) ax[3].grid(True) ax[3].set_title('Virtual Reference') # Now add the legend with some customizations. legend = ax[0].legend(loc='lower right', shadow=True) # The frame is matplotlib.patches.Rectangle instance surrounding the legend. frame = legend.get_frame() frame.set_facecolor('0.90') # Set the fontsize for label in legend.get_texts(): label.set_fontsize('large') for label in legend.get_lines(): label.set_linewidth(1.5) # the legend line width plt.show()
gpl-3.0
grlee77/scipy
scipy/stats/tests/test_morestats.py
2
103011
# Author: Travis Oliphant, 2002 # # Further enhancements and tests added by numerous SciPy developers. # import warnings import numpy as np from numpy.random import RandomState from numpy.testing import (assert_array_equal, assert_almost_equal, assert_array_less, assert_array_almost_equal, assert_, assert_allclose, assert_equal, suppress_warnings) import pytest from pytest import raises as assert_raises from scipy import optimize from scipy import stats from scipy.stats.morestats import _abw_state from .common_tests import check_named_results from .._hypotests import _get_wilcoxon_distr from scipy.stats._binomtest import _binary_search_for_binom_tst # Matplotlib is not a scipy dependency but is optionally used in probplot, so # check if it's available try: import matplotlib # type: ignore[import] matplotlib.rcParams['backend'] = 'Agg' import matplotlib.pyplot as plt # type: ignore[import] have_matplotlib = True except Exception: have_matplotlib = False # test data gear.dat from NIST for Levene and Bartlett test # https://www.itl.nist.gov/div898/handbook/eda/section3/eda3581.htm g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000] g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988] g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996] g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996] g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996] g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996] g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002] g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006] g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991] g10 = [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997] class TestBayes_mvs: def test_basic(self): # Expected values in this test simply taken from the function. For # some checks regarding correctness of implementation, see review in # gh-674 data = [6, 9, 12, 7, 8, 8, 13] mean, var, std = stats.bayes_mvs(data) assert_almost_equal(mean.statistic, 9.0) assert_allclose(mean.minmax, (7.1036502226125329, 10.896349777387467), rtol=1e-14) assert_almost_equal(var.statistic, 10.0) assert_allclose(var.minmax, (3.1767242068607087, 24.45910381334018), rtol=1e-09) assert_almost_equal(std.statistic, 2.9724954732045084, decimal=14) assert_allclose(std.minmax, (1.7823367265645145, 4.9456146050146312), rtol=1e-14) def test_empty_input(self): assert_raises(ValueError, stats.bayes_mvs, []) def test_result_attributes(self): x = np.arange(15) attributes = ('statistic', 'minmax') res = stats.bayes_mvs(x) for i in res: check_named_results(i, attributes) class TestMvsdist: def test_basic(self): data = [6, 9, 12, 7, 8, 8, 13] mean, var, std = stats.mvsdist(data) assert_almost_equal(mean.mean(), 9.0) assert_allclose(mean.interval(0.9), (7.1036502226125329, 10.896349777387467), rtol=1e-14) assert_almost_equal(var.mean(), 10.0) assert_allclose(var.interval(0.9), (3.1767242068607087, 24.45910381334018), rtol=1e-09) assert_almost_equal(std.mean(), 2.9724954732045084, decimal=14) assert_allclose(std.interval(0.9), (1.7823367265645145, 4.9456146050146312), rtol=1e-14) def test_empty_input(self): assert_raises(ValueError, stats.mvsdist, []) def test_bad_arg(self): # Raise ValueError if fewer than two data points are given. data = [1] assert_raises(ValueError, stats.mvsdist, data) def test_warns(self): # regression test for gh-5270 # make sure there are no spurious divide-by-zero warnings with warnings.catch_warnings(): warnings.simplefilter('error', RuntimeWarning) [x.mean() for x in stats.mvsdist([1, 2, 3])] [x.mean() for x in stats.mvsdist([1, 2, 3, 4, 5])] class TestShapiro: def test_basic(self): x1 = [0.11, 7.87, 4.61, 10.14, 7.95, 3.14, 0.46, 4.43, 0.21, 4.75, 0.71, 1.52, 3.24, 0.93, 0.42, 4.97, 9.53, 4.55, 0.47, 6.66] w, pw = stats.shapiro(x1) shapiro_test = stats.shapiro(x1) assert_almost_equal(w, 0.90047299861907959, decimal=6) assert_almost_equal(shapiro_test.statistic, 0.90047299861907959, decimal=6) assert_almost_equal(pw, 0.042089745402336121, decimal=6) assert_almost_equal(shapiro_test.pvalue, 0.042089745402336121, decimal=6) x2 = [1.36, 1.14, 2.92, 2.55, 1.46, 1.06, 5.27, -1.11, 3.48, 1.10, 0.88, -0.51, 1.46, 0.52, 6.20, 1.69, 0.08, 3.67, 2.81, 3.49] w, pw = stats.shapiro(x2) shapiro_test = stats.shapiro(x2) assert_almost_equal(w, 0.9590270, decimal=6) assert_almost_equal(shapiro_test.statistic, 0.9590270, decimal=6) assert_almost_equal(pw, 0.52460, decimal=3) assert_almost_equal(shapiro_test.pvalue, 0.52460, decimal=3) # Verified against R x3 = stats.norm.rvs(loc=5, scale=3, size=100, random_state=12345678) w, pw = stats.shapiro(x3) shapiro_test = stats.shapiro(x3) assert_almost_equal(w, 0.9772805571556091, decimal=6) assert_almost_equal(shapiro_test.statistic, 0.9772805571556091, decimal=6) assert_almost_equal(pw, 0.08144091814756393, decimal=3) assert_almost_equal(shapiro_test.pvalue, 0.08144091814756393, decimal=3) # Extracted from original paper x4 = [0.139, 0.157, 0.175, 0.256, 0.344, 0.413, 0.503, 0.577, 0.614, 0.655, 0.954, 1.392, 1.557, 1.648, 1.690, 1.994, 2.174, 2.206, 3.245, 3.510, 3.571, 4.354, 4.980, 6.084, 8.351] W_expected = 0.83467 p_expected = 0.000914 w, pw = stats.shapiro(x4) shapiro_test = stats.shapiro(x4) assert_almost_equal(w, W_expected, decimal=4) assert_almost_equal(shapiro_test.statistic, W_expected, decimal=4) assert_almost_equal(pw, p_expected, decimal=5) assert_almost_equal(shapiro_test.pvalue, p_expected, decimal=5) def test_2d(self): x1 = [[0.11, 7.87, 4.61, 10.14, 7.95, 3.14, 0.46, 4.43, 0.21, 4.75], [0.71, 1.52, 3.24, 0.93, 0.42, 4.97, 9.53, 4.55, 0.47, 6.66]] w, pw = stats.shapiro(x1) shapiro_test = stats.shapiro(x1) assert_almost_equal(w, 0.90047299861907959, decimal=6) assert_almost_equal(shapiro_test.statistic, 0.90047299861907959, decimal=6) assert_almost_equal(pw, 0.042089745402336121, decimal=6) assert_almost_equal(shapiro_test.pvalue, 0.042089745402336121, decimal=6) x2 = [[1.36, 1.14, 2.92, 2.55, 1.46, 1.06, 5.27, -1.11, 3.48, 1.10], [0.88, -0.51, 1.46, 0.52, 6.20, 1.69, 0.08, 3.67, 2.81, 3.49]] w, pw = stats.shapiro(x2) shapiro_test = stats.shapiro(x2) assert_almost_equal(w, 0.9590270, decimal=6) assert_almost_equal(shapiro_test.statistic, 0.9590270, decimal=6) assert_almost_equal(pw, 0.52460, decimal=3) assert_almost_equal(shapiro_test.pvalue, 0.52460, decimal=3) def test_empty_input(self): assert_raises(ValueError, stats.shapiro, []) assert_raises(ValueError, stats.shapiro, [[], [], []]) def test_not_enough_values(self): assert_raises(ValueError, stats.shapiro, [1, 2]) assert_raises(ValueError, stats.shapiro, np.array([[], [2]], dtype=object)) def test_bad_arg(self): # Length of x is less than 3. x = [1] assert_raises(ValueError, stats.shapiro, x) def test_nan_input(self): x = np.arange(10.) x[9] = np.nan w, pw = stats.shapiro(x) shapiro_test = stats.shapiro(x) assert_equal(w, np.nan) assert_equal(shapiro_test.statistic, np.nan) assert_almost_equal(pw, 1.0) assert_almost_equal(shapiro_test.pvalue, 1.0) class TestAnderson: def test_normal(self): rs = RandomState(1234567890) x1 = rs.standard_exponential(size=50) x2 = rs.standard_normal(size=50) A, crit, sig = stats.anderson(x1) assert_array_less(crit[:-1], A) A, crit, sig = stats.anderson(x2) assert_array_less(A, crit[-2:]) v = np.ones(10) v[0] = 0 A, crit, sig = stats.anderson(v) # The expected statistic 3.208057 was computed independently of scipy. # For example, in R: # > library(nortest) # > v <- rep(1, 10) # > v[1] <- 0 # > result <- ad.test(v) # > result$statistic # A # 3.208057 assert_allclose(A, 3.208057) def test_expon(self): rs = RandomState(1234567890) x1 = rs.standard_exponential(size=50) x2 = rs.standard_normal(size=50) A, crit, sig = stats.anderson(x1, 'expon') assert_array_less(A, crit[-2:]) with np.errstate(all='ignore'): A, crit, sig = stats.anderson(x2, 'expon') assert_(A > crit[-1]) def test_gumbel(self): # Regression test for gh-6306. Before that issue was fixed, # this case would return a2=inf. v = np.ones(100) v[0] = 0.0 a2, crit, sig = stats.anderson(v, 'gumbel') # A brief reimplementation of the calculation of the statistic. n = len(v) xbar, s = stats.gumbel_l.fit(v) logcdf = stats.gumbel_l.logcdf(v, xbar, s) logsf = stats.gumbel_l.logsf(v, xbar, s) i = np.arange(1, n+1) expected_a2 = -n - np.mean((2*i - 1) * (logcdf + logsf[::-1])) assert_allclose(a2, expected_a2) def test_bad_arg(self): assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp') def test_result_attributes(self): rs = RandomState(1234567890) x = rs.standard_exponential(size=50) res = stats.anderson(x) attributes = ('statistic', 'critical_values', 'significance_level') check_named_results(res, attributes) def test_gumbel_l(self): # gh-2592, gh-6337 # Adds support to 'gumbel_r' and 'gumbel_l' as valid inputs for dist. rs = RandomState(1234567890) x = rs.gumbel(size=100) A1, crit1, sig1 = stats.anderson(x, 'gumbel') A2, crit2, sig2 = stats.anderson(x, 'gumbel_l') assert_allclose(A2, A1) def test_gumbel_r(self): # gh-2592, gh-6337 # Adds support to 'gumbel_r' and 'gumbel_l' as valid inputs for dist. rs = RandomState(1234567890) x1 = rs.gumbel(size=100) x2 = np.ones(100) # A constant array is a degenerate case and breaks gumbel_r.fit, so # change one value in x2. x2[0] = 0.996 A1, crit1, sig1 = stats.anderson(x1, 'gumbel_r') A2, crit2, sig2 = stats.anderson(x2, 'gumbel_r') assert_array_less(A1, crit1[-2:]) assert_(A2 > crit2[-1]) class TestAndersonKSamp: def test_example1a(self): # Example data from Scholz & Stephens (1987), originally # published in Lehmann (1995, Nonparametrics, Statistical # Methods Based on Ranks, p. 309) # Pass a mixture of lists and arrays t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0] t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8]) t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0]) t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8]) Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False) assert_almost_equal(Tk, 4.449, 3) assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459], tm[0:5], 4) assert_allclose(p, 0.0021, atol=0.00025) def test_example1b(self): # Example data from Scholz & Stephens (1987), originally # published in Lehmann (1995, Nonparametrics, Statistical # Methods Based on Ranks, p. 309) # Pass arrays t1 = np.array([38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]) t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8]) t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0]) t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8]) Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=True) assert_almost_equal(Tk, 4.480, 3) assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459], tm[0:5], 4) assert_allclose(p, 0.0020, atol=0.00025) def test_example2a(self): # Example data taken from an earlier technical report of # Scholz and Stephens # Pass lists instead of arrays t1 = [194, 15, 41, 29, 33, 181] t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118] t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34] t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26, 44, 23, 62] t5 = [130, 208, 70, 101, 208] t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27] t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33] t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95] t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24] t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13, 14] t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438] t12 = [50, 254, 5, 283, 35, 12] t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130] t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66, 61, 34] Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14), midrank=False) assert_almost_equal(Tk, 3.288, 3) assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009], tm[0:5], 4) assert_allclose(p, 0.0041, atol=0.00025) def test_example2b(self): # Example data taken from an earlier technical report of # Scholz and Stephens t1 = [194, 15, 41, 29, 33, 181] t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118] t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34] t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26, 44, 23, 62] t5 = [130, 208, 70, 101, 208] t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27] t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33] t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95] t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24] t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13, 14] t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438] t12 = [50, 254, 5, 283, 35, 12] t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130] t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66, 61, 34] Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14), midrank=True) assert_almost_equal(Tk, 3.294, 3) assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009], tm[0:5], 4) assert_allclose(p, 0.0041, atol=0.00025) def test_R_kSamples(self): # test values generates with R package kSamples # package version 1.2-6 (2017-06-14) # r1 = 1:100 # continuous case (no ties) --> version 1 # res <- kSamples::ad.test(r1, r1 + 40.5) # res$ad[1, "T.AD"] # 41.105 # res$ad[1, " asympt. P-value"] # 5.8399e-18 # # discrete case (ties allowed) --> version 2 (here: midrank=True) # res$ad[2, "T.AD"] # 41.235 # # res <- kSamples::ad.test(r1, r1 + .5) # res$ad[1, "T.AD"] # -1.2824 # res$ad[1, " asympt. P-value"] # 1 # res$ad[2, "T.AD"] # -1.2944 # # res <- kSamples::ad.test(r1, r1 + 7.5) # res$ad[1, "T.AD"] # 1.4923 # res$ad[1, " asympt. P-value"] # 0.077501 # # res <- kSamples::ad.test(r1, r1 + 6) # res$ad[2, "T.AD"] # 0.63892 # res$ad[2, " asympt. P-value"] # 0.17981 # # res <- kSamples::ad.test(r1, r1 + 11.5) # res$ad[1, "T.AD"] # 4.5042 # res$ad[1, " asympt. P-value"] # 0.00545 # # res <- kSamples::ad.test(r1, r1 + 13.5) # res$ad[1, "T.AD"] # 6.2982 # res$ad[1, " asympt. P-value"] # 0.00118 x1 = np.linspace(1, 100, 100) # test case: different distributions;p-value floored at 0.001 # test case for issue #5493 / #8536 with suppress_warnings() as sup: sup.filter(UserWarning, message='p-value floored') s, _, p = stats.anderson_ksamp([x1, x1 + 40.5], midrank=False) assert_almost_equal(s, 41.105, 3) assert_equal(p, 0.001) with suppress_warnings() as sup: sup.filter(UserWarning, message='p-value floored') s, _, p = stats.anderson_ksamp([x1, x1 + 40.5]) assert_almost_equal(s, 41.235, 3) assert_equal(p, 0.001) # test case: similar distributions --> p-value capped at 0.25 with suppress_warnings() as sup: sup.filter(UserWarning, message='p-value capped') s, _, p = stats.anderson_ksamp([x1, x1 + .5], midrank=False) assert_almost_equal(s, -1.2824, 4) assert_equal(p, 0.25) with suppress_warnings() as sup: sup.filter(UserWarning, message='p-value capped') s, _, p = stats.anderson_ksamp([x1, x1 + .5]) assert_almost_equal(s, -1.2944, 4) assert_equal(p, 0.25) # test case: check interpolated p-value in [0.01, 0.25] (no ties) s, _, p = stats.anderson_ksamp([x1, x1 + 7.5], midrank=False) assert_almost_equal(s, 1.4923, 4) assert_allclose(p, 0.0775, atol=0.005, rtol=0) # test case: check interpolated p-value in [0.01, 0.25] (w/ ties) s, _, p = stats.anderson_ksamp([x1, x1 + 6]) assert_almost_equal(s, 0.6389, 4) assert_allclose(p, 0.1798, atol=0.005, rtol=0) # test extended critical values for p=0.001 and p=0.005 s, _, p = stats.anderson_ksamp([x1, x1 + 11.5], midrank=False) assert_almost_equal(s, 4.5042, 4) assert_allclose(p, 0.00545, atol=0.0005, rtol=0) s, _, p = stats.anderson_ksamp([x1, x1 + 13.5], midrank=False) assert_almost_equal(s, 6.2982, 4) assert_allclose(p, 0.00118, atol=0.0001, rtol=0) def test_not_enough_samples(self): assert_raises(ValueError, stats.anderson_ksamp, np.ones(5)) def test_no_distinct_observations(self): assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), np.ones(5))) def test_empty_sample(self): assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), [])) def test_result_attributes(self): # Pass a mixture of lists and arrays t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0] t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8]) res = stats.anderson_ksamp((t1, t2), midrank=False) attributes = ('statistic', 'critical_values', 'significance_level') check_named_results(res, attributes) class TestAnsari: def test_small(self): x = [1, 2, 3, 3, 4] y = [3, 2, 6, 1, 6, 1, 4, 1] with suppress_warnings() as sup: sup.filter(UserWarning, "Ties preclude use of exact statistic.") W, pval = stats.ansari(x, y) assert_almost_equal(W, 23.5, 11) assert_almost_equal(pval, 0.13499256881897437, 11) def test_approx(self): ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99, 101, 96, 97, 102, 107, 113, 116, 113, 110, 98)) parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104, 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)) with suppress_warnings() as sup: sup.filter(UserWarning, "Ties preclude use of exact statistic.") W, pval = stats.ansari(ramsay, parekh) assert_almost_equal(W, 185.5, 11) assert_almost_equal(pval, 0.18145819972867083, 11) def test_exact(self): W, pval = stats.ansari([1, 2, 3, 4], [15, 5, 20, 8, 10, 12]) assert_almost_equal(W, 10.0, 11) assert_almost_equal(pval, 0.533333333333333333, 7) def test_bad_arg(self): assert_raises(ValueError, stats.ansari, [], [1]) assert_raises(ValueError, stats.ansari, [1], []) def test_result_attributes(self): x = [1, 2, 3, 3, 4] y = [3, 2, 6, 1, 6, 1, 4, 1] with suppress_warnings() as sup: sup.filter(UserWarning, "Ties preclude use of exact statistic.") res = stats.ansari(x, y) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) def test_bad_alternative(self): # invalid value for alternative must raise a ValueError x1 = [1, 2, 3, 4] x2 = [5, 6, 7, 8] match = "'alternative' must be 'two-sided'" with assert_raises(ValueError, match=match): stats.ansari(x1, x2, alternative='foo') def test_alternative_exact(self): x1 = [-5, 1, 5, 10, 15, 20, 25] # high scale, loc=10 x2 = [7.5, 8.5, 9.5, 10.5, 11.5, 12.5] # low scale, loc=10 # ratio of scales is greater than 1. So, the # p-value must be high when `alternative='less'` # and low when `alternative='greater'`. statistic, pval = stats.ansari(x1, x2) pval_l = stats.ansari(x1, x2, alternative='less').pvalue pval_g = stats.ansari(x1, x2, alternative='greater').pvalue assert pval_l > 0.95 assert pval_g < 0.05 # level of significance. # also check if the p-values sum up to 1 plus the the probability # mass under the calculated statistic. prob = _abw_state.pmf(statistic, len(x1), len(x2)) assert_allclose(pval_g + pval_l, 1 + prob, atol=1e-12) # also check if one of the one-sided p-value equals half the # two-sided p-value and the other one-sided p-value is its # compliment. assert_allclose(pval_g, pval/2, atol=1e-12) assert_allclose(pval_l, 1+prob-pval/2, atol=1e-12) # sanity check. The result should flip if # we exchange x and y. pval_l_reverse = stats.ansari(x2, x1, alternative='less').pvalue pval_g_reverse = stats.ansari(x2, x1, alternative='greater').pvalue assert pval_l_reverse < 0.05 assert pval_g_reverse > 0.95 @pytest.mark.parametrize( 'x, y, alternative, expected', # the tests are designed in such a way that the # if else statement in ansari test for exact # mode is covered. [([1, 2, 3, 4], [5, 6, 7, 8], 'less', 0.6285714285714), ([1, 2, 3, 4], [5, 6, 7, 8], 'greater', 0.6285714285714), ([1, 2, 3], [4, 5, 6, 7, 8], 'less', 0.8928571428571), ([1, 2, 3], [4, 5, 6, 7, 8], 'greater', 0.2857142857143), ([1, 2, 3, 4, 5], [6, 7, 8], 'less', 0.2857142857143), ([1, 2, 3, 4, 5], [6, 7, 8], 'greater', 0.8928571428571)] ) def test_alternative_exact_with_R(self, x, y, alternative, expected): # testing with R on arbitrary data # Sample R code used for the third test case above: # ```R # > options(digits=16) # > x <- c(1,2,3) # > y <- c(4,5,6,7,8) # > ansari.test(x, y, alternative='less', exact=TRUE) # # Ansari-Bradley test # # data: x and y # AB = 6, p-value = 0.8928571428571 # alternative hypothesis: true ratio of scales is less than 1 # # ``` pval = stats.ansari(x, y, alternative=alternative).pvalue assert_allclose(pval, expected, atol=1e-12) def test_alternative_approx(self): # intuitive tests for approximation x1 = stats.norm.rvs(0, 5, size=100, random_state=123) x2 = stats.norm.rvs(0, 2, size=100, random_state=123) # for m > 55 or n > 55, the test should automatically # switch to approximation. pval_l = stats.ansari(x1, x2, alternative='less').pvalue pval_g = stats.ansari(x1, x2, alternative='greater').pvalue assert_allclose(pval_l, 1.0, atol=1e-12) assert_allclose(pval_g, 0.0, atol=1e-12) # also check if one of the one-sided p-value equals half the # two-sided p-value and the other one-sided p-value is its # compliment. x1 = stats.norm.rvs(0, 2, size=60, random_state=123) x2 = stats.norm.rvs(0, 1.5, size=60, random_state=123) pval = stats.ansari(x1, x2).pvalue pval_l = stats.ansari(x1, x2, alternative='less').pvalue pval_g = stats.ansari(x1, x2, alternative='greater').pvalue assert_allclose(pval_g, pval/2, atol=1e-12) assert_allclose(pval_l, 1-pval/2, atol=1e-12) class TestBartlett: def test_data(self): # https://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10] T, pval = stats.bartlett(*args) assert_almost_equal(T, 20.78587342806484, 7) assert_almost_equal(pval, 0.0136358632781, 7) def test_bad_arg(self): # Too few args raises ValueError. assert_raises(ValueError, stats.bartlett, [1]) def test_result_attributes(self): args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10] res = stats.bartlett(*args) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) def test_empty_arg(self): args = (g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, []) assert_equal((np.nan, np.nan), stats.bartlett(*args)) # temporary fix for issue #9252: only accept 1d input def test_1d_input(self): x = np.array([[1, 2], [3, 4]]) assert_raises(ValueError, stats.bartlett, g1, x) class TestLevene: def test_data(self): # https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10] W, pval = stats.levene(*args) assert_almost_equal(W, 1.7059176930008939, 7) assert_almost_equal(pval, 0.0990829755522, 7) def test_trimmed1(self): # Test that center='trimmed' gives the same result as center='mean' # when proportiontocut=0. W1, pval1 = stats.levene(g1, g2, g3, center='mean') W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0) assert_almost_equal(W1, W2) assert_almost_equal(pval1, pval2) def test_trimmed2(self): x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0] y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0] np.random.seed(1234) x2 = np.random.permutation(x) # Use center='trimmed' W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125) W1, pval1 = stats.levene(x2, y, center='trimmed', proportiontocut=0.125) # Trim the data here, and use center='mean' W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean') # Result should be the same. assert_almost_equal(W0, W2) assert_almost_equal(W1, W2) assert_almost_equal(pval1, pval2) def test_equal_mean_median(self): x = np.linspace(-1, 1, 21) np.random.seed(1234) x2 = np.random.permutation(x) y = x**3 W1, pval1 = stats.levene(x, y, center='mean') W2, pval2 = stats.levene(x2, y, center='median') assert_almost_equal(W1, W2) assert_almost_equal(pval1, pval2) def test_bad_keyword(self): x = np.linspace(-1, 1, 21) assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1) def test_bad_center_value(self): x = np.linspace(-1, 1, 21) assert_raises(ValueError, stats.levene, x, x, center='trim') def test_too_few_args(self): assert_raises(ValueError, stats.levene, [1]) def test_result_attributes(self): args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10] res = stats.levene(*args) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) # temporary fix for issue #9252: only accept 1d input def test_1d_input(self): x = np.array([[1, 2], [3, 4]]) assert_raises(ValueError, stats.levene, g1, x) class TestBinomP: """Tests for stats.binom_test.""" binom_test_func = staticmethod(stats.binom_test) def test_data(self): pval = self.binom_test_func(100, 250) assert_almost_equal(pval, 0.0018833009350757682, 11) pval = self.binom_test_func(201, 405) assert_almost_equal(pval, 0.92085205962670713, 11) pval = self.binom_test_func([682, 243], p=3/4) assert_almost_equal(pval, 0.38249155957481695, 11) def test_bad_len_x(self): # Length of x must be 1 or 2. assert_raises(ValueError, self.binom_test_func, [1, 2, 3]) def test_bad_n(self): # len(x) is 1, but n is invalid. # Missing n assert_raises(ValueError, self.binom_test_func, [100]) # n less than x[0] assert_raises(ValueError, self.binom_test_func, [100], n=50) def test_bad_p(self): assert_raises(ValueError, self.binom_test_func, [50, 50], p=2.0) def test_alternatives(self): res = self.binom_test_func(51, 235, p=1/6, alternative='less') assert_almost_equal(res, 0.982022657605858) res = self.binom_test_func(51, 235, p=1/6, alternative='greater') assert_almost_equal(res, 0.02654424571169085) res = self.binom_test_func(51, 235, p=1/6, alternative='two-sided') assert_almost_equal(res, 0.0437479701823997) class TestBinomTestP(TestBinomP): """ Tests for stats.binomtest as a replacement for stats.binom_test. """ @staticmethod def binom_test_func(x, n=None, p=0.5, alternative='two-sided'): # This processing of x and n is copied from from binom_test. x = np.atleast_1d(x).astype(np.int_) if len(x) == 2: n = x[1] + x[0] x = x[0] elif len(x) == 1: x = x[0] if n is None or n < x: raise ValueError("n must be >= x") n = np.int_(n) else: raise ValueError("Incorrect length for x.") result = stats.binomtest(x, n, p=p, alternative=alternative) return result.pvalue class TestBinomTest: """Tests for stats.binomtest.""" # Expected results here are from old binom_test function. # The alternative will be left unspecified which defaults # it to two-sided. @pytest.mark.xfail_on_32bit("The large inputs make these tests " "sensitive to machine epsilon level") def test_two_sided_pvalues1(self): # These tests work on all OS's but fail on # Linux_Python_37_32bit_full due to numerical issues caused # by large inputs. rtol = 5e-13 # aarch64 observed rtol: 3.5e-13 res = stats.binomtest(10079999, 21000000, 0.48) assert_allclose(res.pvalue, 0.979042561004596, rtol=rtol) res = stats.binomtest(10079990, 21000000, 0.48) assert_allclose(res.pvalue, 0.9785298857599378, rtol=rtol) res = stats.binomtest(10080009, 21000000, 0.48) assert_allclose(res.pvalue, 0.9786038762958954, rtol=rtol) res = stats.binomtest(10080017, 21000000, 0.48) assert_allclose(res.pvalue, 0.9778567637538729, rtol=rtol) @pytest.mark.xfail_on_32bit("The large inputs make these tests " "sensitive to machine epsilon level") def test_two_sided_pvalues2(self): rtol = 1e-14 # no aarch64 failure with 1e-15, preemptive bump res = stats.binomtest(9, n=21, p=0.48) assert_allclose(res.pvalue, 0.6689672431938848, rtol=rtol) res = stats.binomtest(4, 21, 0.48) assert_allclose(res.pvalue, 0.008139563452105921, rtol=rtol) res = stats.binomtest(11, 21, 0.48) assert_allclose(res.pvalue, 0.8278629664608201, rtol=rtol) res = stats.binomtest(7, 21, 0.48) assert_allclose(res.pvalue, 0.19667729017182273, rtol=rtol) res = stats.binomtest(3, 10, .5) assert_allclose(res.pvalue, 0.3437499999999999, rtol=rtol) res = stats.binomtest(2, 2, .4) assert_allclose(res.pvalue, 0.16000000000000003, rtol=rtol) res = stats.binomtest(2, 4, .3) assert_allclose(res.pvalue, 0.5883999999999999, rtol=rtol) @pytest.mark.xfail_on_32bit("The large inputs make these tests " "sensitive to machine epsilon level") def test_edge_cases(self): rtol = 1e-14 # aarch64 observed rtol: 1.33e-15 res = stats.binomtest(484, 967, 0.5) assert_allclose(res.pvalue, 0.999999999998212, rtol=rtol) res = stats.binomtest(3, 47, 3/47) assert_allclose(res.pvalue, 0.9999999999999998, rtol=rtol) res = stats.binomtest(13, 46, 13/46) assert_allclose(res.pvalue, 0.9999999999999987, rtol=rtol) res = stats.binomtest(15, 44, 15/44) assert_allclose(res.pvalue, 0.9999999999999989, rtol=rtol) res = stats.binomtest(7, 13, 0.5) assert_allclose(res.pvalue, 0.9999999999999999, rtol=rtol) res = stats.binomtest(6, 11, 0.5) assert_allclose(res.pvalue, 0.9999999999999997, rtol=rtol) def test_binary_srch_for_binom_tst(self): # Test that old behavior of binomtest is maintained # by the new binary search method in cases where d # exactly equals the input on one side. n = 10 p = 0.5 k = 3 # First test for the case where k > mode of PMF i = np.arange(np.ceil(p * n), n+1) d = stats.binom.pmf(k, n, p) # Old way of calculating y, probably consistent with R. y1 = np.sum(stats.binom.pmf(i, n, p) <= d, axis=0) # New way with binary search. ix = _binary_search_for_binom_tst(lambda x1: -stats.binom.pmf(x1, n, p), -d, np.ceil(p * n), n) y2 = n - ix + int(d == stats.binom.pmf(ix, n, p)) assert_allclose(y1, y2, rtol=1e-9) # Now test for the other side. k = 7 i = np.arange(np.floor(p * n) + 1) d = stats.binom.pmf(k, n, p) # Old way of calculating y. y1 = np.sum(stats.binom.pmf(i, n, p) <= d, axis=0) # New way with binary search. ix = _binary_search_for_binom_tst(lambda x1: stats.binom.pmf(x1, n, p), d, 0, np.floor(p * n)) y2 = ix + 1 assert_allclose(y1, y2, rtol=1e-9) # Expected results here are from R 3.6.2 binom.test @pytest.mark.parametrize('alternative, pval, ci_low, ci_high', [('less', 0.1488311, 0.0, 0.2772002), ('greater', 0.9004696, 0.1366613, 1.0), ('two-sided', 0.2983721, 0.1266556, 0.2918427)]) def test_confidence_intervals1(self, alternative, pval, ci_low, ci_high): res = stats.binomtest(20, n=100, p=0.25, alternative=alternative) assert_allclose(res.pvalue, pval, rtol=1e-6) assert_equal(res.proportion_estimate, 0.2) ci = res.proportion_ci(confidence_level=0.95) assert_allclose((ci.low, ci.high), (ci_low, ci_high), rtol=1e-6) # Expected results here are from R 3.6.2 binom.test. @pytest.mark.parametrize('alternative, pval, ci_low, ci_high', [('less', 0.005656361, 0.0, 0.1872093), ('greater', 0.9987146, 0.008860761, 1.0), ('two-sided', 0.01191714, 0.006872485, 0.202706269)]) def test_confidence_intervals2(self, alternative, pval, ci_low, ci_high): res = stats.binomtest(3, n=50, p=0.2, alternative=alternative) assert_allclose(res.pvalue, pval, rtol=1e-6) assert_equal(res.proportion_estimate, 0.06) ci = res.proportion_ci(confidence_level=0.99) assert_allclose((ci.low, ci.high), (ci_low, ci_high), rtol=1e-6) # Expected results here are from R 3.6.2 binom.test. @pytest.mark.parametrize('alternative, pval, ci_high', [('less', 0.05631351, 0.2588656), ('greater', 1.0, 1.0), ('two-sided', 0.07604122, 0.3084971)]) def test_confidence_interval_exact_k0(self, alternative, pval, ci_high): # Test with k=0, n = 10. res = stats.binomtest(0, 10, p=0.25, alternative=alternative) assert_allclose(res.pvalue, pval, rtol=1e-6) ci = res.proportion_ci(confidence_level=0.95) assert_equal(ci.low, 0.0) assert_allclose(ci.high, ci_high, rtol=1e-6) # Expected results here are from R 3.6.2 binom.test. @pytest.mark.parametrize('alternative, pval, ci_low', [('less', 1.0, 0.0), ('greater', 9.536743e-07, 0.7411344), ('two-sided', 9.536743e-07, 0.6915029)]) def test_confidence_interval_exact_k_is_n(self, alternative, pval, ci_low): # Test with k = n = 10. res = stats.binomtest(10, 10, p=0.25, alternative=alternative) assert_allclose(res.pvalue, pval, rtol=1e-6) ci = res.proportion_ci(confidence_level=0.95) assert_equal(ci.high, 1.0) assert_allclose(ci.low, ci_low, rtol=1e-6) # Expected results are from the prop.test function in R 3.6.2. @pytest.mark.parametrize( 'k, alternative, corr, conf, ci_low, ci_high', [[3, 'two-sided', True, 0.95, 0.08094782, 0.64632928], [3, 'two-sided', True, 0.99, 0.0586329, 0.7169416], [3, 'two-sided', False, 0.95, 0.1077913, 0.6032219], [3, 'two-sided', False, 0.99, 0.07956632, 0.6799753], [3, 'less', True, 0.95, 0.0, 0.6043476], [3, 'less', True, 0.99, 0.0, 0.6901811], [3, 'less', False, 0.95, 0.0, 0.5583002], [3, 'less', False, 0.99, 0.0, 0.6507187], [3, 'greater', True, 0.95, 0.09644904, 1.0], [3, 'greater', True, 0.99, 0.06659141, 1.0], [3, 'greater', False, 0.95, 0.1268766, 1.0], [3, 'greater', False, 0.99, 0.08974147, 1.0], [0, 'two-sided', True, 0.95, 0.0, 0.3445372], [0, 'two-sided', False, 0.95, 0.0, 0.2775328], [0, 'less', True, 0.95, 0.0, 0.2847374], [0, 'less', False, 0.95, 0.0, 0.212942], [0, 'greater', True, 0.95, 0.0, 1.0], [0, 'greater', False, 0.95, 0.0, 1.0], [10, 'two-sided', True, 0.95, 0.6554628, 1.0], [10, 'two-sided', False, 0.95, 0.7224672, 1.0], [10, 'less', True, 0.95, 0.0, 1.0], [10, 'less', False, 0.95, 0.0, 1.0], [10, 'greater', True, 0.95, 0.7152626, 1.0], [10, 'greater', False, 0.95, 0.787058, 1.0]] ) def test_ci_wilson_method(self, k, alternative, corr, conf, ci_low, ci_high): res = stats.binomtest(k, n=10, p=0.1, alternative=alternative) if corr: method = 'wilsoncc' else: method = 'wilson' ci = res.proportion_ci(confidence_level=conf, method=method) assert_allclose((ci.low, ci.high), (ci_low, ci_high), rtol=1e-6) def test_estimate_equals_hypothesized_prop(self): # Test the special case where the estimated proportion equals # the hypothesized proportion. When alternative is 'two-sided', # the p-value is 1. res = stats.binomtest(4, 16, 0.25) assert_equal(res.proportion_estimate, 0.25) assert_equal(res.pvalue, 1.0) @pytest.mark.parametrize('k, n', [(0, 0), (-1, 2)]) def test_invalid_k_n(self, k, n): with pytest.raises(ValueError, match="must be an integer not less than"): stats.binomtest(k, n) def test_invalid_k_too_big(self): with pytest.raises(ValueError, match="k must not be greater than n"): stats.binomtest(11, 10, 0.25) def test_invalid_confidence_level(self): res = stats.binomtest(3, n=10, p=0.1) with pytest.raises(ValueError, match="must be in the interval"): res.proportion_ci(confidence_level=-1) def test_invalid_ci_method(self): res = stats.binomtest(3, n=10, p=0.1) with pytest.raises(ValueError, match="method must be"): res.proportion_ci(method="plate of shrimp") class TestFligner: def test_data(self): # numbers from R: fligner.test in package stats x1 = np.arange(5) assert_array_almost_equal(stats.fligner(x1, x1**2), (3.2282229927203536, 0.072379187848207877), 11) def test_trimmed1(self): # Perturb input to break ties in the transformed data # See https://github.com/scipy/scipy/pull/8042 for more details rs = np.random.RandomState(123) _perturb = lambda g: (np.asarray(g) + 1e-10*rs.randn(len(g))).tolist() g1_ = _perturb(g1) g2_ = _perturb(g2) g3_ = _perturb(g3) # Test that center='trimmed' gives the same result as center='mean' # when proportiontocut=0. Xsq1, pval1 = stats.fligner(g1_, g2_, g3_, center='mean') Xsq2, pval2 = stats.fligner(g1_, g2_, g3_, center='trimmed', proportiontocut=0.0) assert_almost_equal(Xsq1, Xsq2) assert_almost_equal(pval1, pval2) def test_trimmed2(self): x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0] y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0] # Use center='trimmed' Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125) # Trim the data here, and use center='mean' Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean') # Result should be the same. assert_almost_equal(Xsq1, Xsq2) assert_almost_equal(pval1, pval2) # The following test looks reasonable at first, but fligner() uses the # function stats.rankdata(), and in one of the cases in this test, # there are ties, while in the other (because of normal rounding # errors) there are not. This difference leads to differences in the # third significant digit of W. # #def test_equal_mean_median(self): # x = np.linspace(-1,1,21) # y = x**3 # W1, pval1 = stats.fligner(x, y, center='mean') # W2, pval2 = stats.fligner(x, y, center='median') # assert_almost_equal(W1, W2) # assert_almost_equal(pval1, pval2) def test_bad_keyword(self): x = np.linspace(-1, 1, 21) assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1) def test_bad_center_value(self): x = np.linspace(-1, 1, 21) assert_raises(ValueError, stats.fligner, x, x, center='trim') def test_bad_num_args(self): # Too few args raises ValueError. assert_raises(ValueError, stats.fligner, [1]) def test_empty_arg(self): x = np.arange(5) assert_equal((np.nan, np.nan), stats.fligner(x, x**2, [])) class TestMood: def test_mood(self): # numbers from R: mood.test in package stats x1 = np.arange(5) assert_array_almost_equal(stats.mood(x1, x1**2), (-1.3830857299399906, 0.16663858066771478), 11) def test_mood_order_of_args(self): # z should change sign when the order of arguments changes, pvalue # should not change np.random.seed(1234) x1 = np.random.randn(10, 1) x2 = np.random.randn(15, 1) z1, p1 = stats.mood(x1, x2) z2, p2 = stats.mood(x2, x1) assert_array_almost_equal([z1, p1], [-z2, p2]) def test_mood_with_axis_none(self): # Test with axis = None, compare with results from R x1 = [-0.626453810742332, 0.183643324222082, -0.835628612410047, 1.59528080213779, 0.329507771815361, -0.820468384118015, 0.487429052428485, 0.738324705129217, 0.575781351653492, -0.305388387156356, 1.51178116845085, 0.389843236411431, -0.621240580541804, -2.2146998871775, 1.12493091814311, -0.0449336090152309, -0.0161902630989461, 0.943836210685299, 0.821221195098089, 0.593901321217509] x2 = [-0.896914546624981, 0.184849184646742, 1.58784533120882, -1.13037567424629, -0.0802517565509893, 0.132420284381094, 0.707954729271733, -0.23969802417184, 1.98447393665293, -0.138787012119665, 0.417650750792556, 0.981752777463662, -0.392695355503813, -1.03966897694891, 1.78222896030858, -2.31106908460517, 0.878604580921265, 0.035806718015226, 1.01282869212708, 0.432265154539617, 2.09081920524915, -1.19992581964387, 1.58963820029007, 1.95465164222325, 0.00493777682814261, -2.45170638784613, 0.477237302613617, -0.596558168631403, 0.792203270299649, 0.289636710177348] x1 = np.array(x1) x2 = np.array(x2) x1.shape = (10, 2) x2.shape = (15, 2) assert_array_almost_equal(stats.mood(x1, x2, axis=None), [-1.31716607555, 0.18778296257]) def test_mood_2d(self): # Test if the results of mood test in 2-D case are consistent with the # R result for the same inputs. Numbers from R mood.test(). ny = 5 np.random.seed(1234) x1 = np.random.randn(10, ny) x2 = np.random.randn(15, ny) z_vectest, pval_vectest = stats.mood(x1, x2) for j in range(ny): assert_array_almost_equal([z_vectest[j], pval_vectest[j]], stats.mood(x1[:, j], x2[:, j])) # inverse order of dimensions x1 = x1.transpose() x2 = x2.transpose() z_vectest, pval_vectest = stats.mood(x1, x2, axis=1) for i in range(ny): # check axis handling is self consistent assert_array_almost_equal([z_vectest[i], pval_vectest[i]], stats.mood(x1[i, :], x2[i, :])) def test_mood_3d(self): shape = (10, 5, 6) np.random.seed(1234) x1 = np.random.randn(*shape) x2 = np.random.randn(*shape) for axis in range(3): z_vectest, pval_vectest = stats.mood(x1, x2, axis=axis) # Tests that result for 3-D arrays is equal to that for the # same calculation on a set of 1-D arrays taken from the # 3-D array axes_idx = ([1, 2], [0, 2], [0, 1]) # the two axes != axis for i in range(shape[axes_idx[axis][0]]): for j in range(shape[axes_idx[axis][1]]): if axis == 0: slice1 = x1[:, i, j] slice2 = x2[:, i, j] elif axis == 1: slice1 = x1[i, :, j] slice2 = x2[i, :, j] else: slice1 = x1[i, j, :] slice2 = x2[i, j, :] assert_array_almost_equal([z_vectest[i, j], pval_vectest[i, j]], stats.mood(slice1, slice2)) def test_mood_bad_arg(self): # Raise ValueError when the sum of the lengths of the args is # less than 3 assert_raises(ValueError, stats.mood, [1], []) def test_mood_alternative(self): np.random.seed(0) x = stats.norm.rvs(scale=0.75, size=100) y = stats.norm.rvs(scale=1.25, size=100) stat1, p1 = stats.mood(x, y, alternative='two-sided') stat2, p2 = stats.mood(x, y, alternative='less') stat3, p3 = stats.mood(x, y, alternative='greater') assert stat1 == stat2 == stat3 assert_allclose(p1, 0, atol=1e-7) assert_allclose(p2, p1/2) assert_allclose(p3, 1 - p1/2) with pytest.raises(ValueError, match="alternative must be..."): stats.mood(x, y, alternative='ekki-ekki') @pytest.mark.xfail(reason="SciPy needs tie correction like R (gh-13730)") @pytest.mark.parametrize("alternative, expected", [('two-sided', (1.037127561496, 0.299676411857)), ('less', (1.0371275614961, 0.8501617940715)), ('greater', (1.037127561496, 0.1498382059285))]) def test_mood_alternative_against_R(self, alternative, expected): ## Test againts R mood.test: https://rdrr.io/r/stats/mood.test.html # options(digits=16) # x <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99, # 101, 96, 97, 102, 107, 113, 116, 113, 110, 98) # y <- c(107, 108, 106, 98, 105, 103, 110, 105, 104, # 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99) # mood.test(x, y, alternative='less') x = [111, 107, 100, 99, 102, 106, 109, 108, 104, 99, 101, 96, 97, 102, 107, 113, 116, 113, 110, 98] y = [107, 108, 106, 98, 105, 103, 110, 105, 104, 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99] res = stats.mood(x, y, alternative=alternative) assert_allclose(res, expected) class TestProbplot: def test_basic(self): x = stats.norm.rvs(size=20, random_state=12345) osm, osr = stats.probplot(x, fit=False) osm_expected = [-1.8241636, -1.38768012, -1.11829229, -0.91222575, -0.73908135, -0.5857176, -0.44506467, -0.31273668, -0.18568928, -0.06158146, 0.06158146, 0.18568928, 0.31273668, 0.44506467, 0.5857176, 0.73908135, 0.91222575, 1.11829229, 1.38768012, 1.8241636] assert_allclose(osr, np.sort(x)) assert_allclose(osm, osm_expected) res, res_fit = stats.probplot(x, fit=True) res_fit_expected = [1.05361841, 0.31297795, 0.98741609] assert_allclose(res_fit, res_fit_expected) def test_sparams_keyword(self): x = stats.norm.rvs(size=100, random_state=123456) # Check that None, () and 0 (loc=0, for normal distribution) all work # and give the same results osm1, osr1 = stats.probplot(x, sparams=None, fit=False) osm2, osr2 = stats.probplot(x, sparams=0, fit=False) osm3, osr3 = stats.probplot(x, sparams=(), fit=False) assert_allclose(osm1, osm2) assert_allclose(osm1, osm3) assert_allclose(osr1, osr2) assert_allclose(osr1, osr3) # Check giving (loc, scale) params for normal distribution osm, osr = stats.probplot(x, sparams=(), fit=False) def test_dist_keyword(self): x = stats.norm.rvs(size=20, random_state=12345) osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,)) osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,)) assert_allclose(osm1, osm2) assert_allclose(osr1, osr2) assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name') assert_raises(AttributeError, stats.probplot, x, dist=[]) class custom_dist: """Some class that looks just enough like a distribution.""" def ppf(self, q): return stats.norm.ppf(q, loc=2) osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False) osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False) assert_allclose(osm1, osm2) assert_allclose(osr1, osr2) @pytest.mark.skipif(not have_matplotlib, reason="no matplotlib") def test_plot_kwarg(self): fig = plt.figure() fig.add_subplot(111) x = stats.t.rvs(3, size=100, random_state=7654321) res1, fitres1 = stats.probplot(x, plot=plt) plt.close() res2, fitres2 = stats.probplot(x, plot=None) res3 = stats.probplot(x, fit=False, plot=plt) plt.close() res4 = stats.probplot(x, fit=False, plot=None) # Check that results are consistent between combinations of `fit` and # `plot` keywords. assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2) assert_allclose(res1, res2) assert_allclose(res1, res3) assert_allclose(res1, res4) assert_allclose(fitres1, fitres2) # Check that a Matplotlib Axes object is accepted fig = plt.figure() ax = fig.add_subplot(111) stats.probplot(x, fit=False, plot=ax) plt.close() def test_probplot_bad_args(self): # Raise ValueError when given an invalid distribution. assert_raises(ValueError, stats.probplot, [1], dist="plate_of_shrimp") def test_empty(self): assert_equal(stats.probplot([], fit=False), (np.array([]), np.array([]))) assert_equal(stats.probplot([], fit=True), ((np.array([]), np.array([])), (np.nan, np.nan, 0.0))) def test_array_of_size_one(self): with np.errstate(invalid='ignore'): assert_equal(stats.probplot([1], fit=True), ((np.array([0.]), np.array([1])), (np.nan, np.nan, 0.0))) class TestWilcoxon: def test_wilcoxon_bad_arg(self): # Raise ValueError when two args of different lengths are given or # zero_method is unknown. assert_raises(ValueError, stats.wilcoxon, [1], [1, 2]) assert_raises(ValueError, stats.wilcoxon, [1, 2], [1, 2], "dummy") assert_raises(ValueError, stats.wilcoxon, [1, 2], [1, 2], alternative="dummy") assert_raises(ValueError, stats.wilcoxon, [1]*10, mode="xyz") def test_zero_diff(self): x = np.arange(20) # pratt and wilcox do not work if x - y == 0 assert_raises(ValueError, stats.wilcoxon, x, x, "wilcox", mode="approx") assert_raises(ValueError, stats.wilcoxon, x, x, "pratt", mode="approx") # ranksum is n*(n+1)/2, split in half if zero_method == "zsplit" assert_equal(stats.wilcoxon(x, x, "zsplit", mode="approx"), (20*21/4, 1.0)) def test_pratt(self): # regression test for gh-6805: p-value matches value from R package # coin (wilcoxsign_test) reported in the issue x = [1, 2, 3, 4] y = [1, 2, 3, 5] with suppress_warnings() as sup: sup.filter(UserWarning, message="Sample size too small") res = stats.wilcoxon(x, y, zero_method="pratt", mode="approx") assert_allclose(res, (0.0, 0.31731050786291415)) def test_wilcoxon_arg_type(self): # Should be able to accept list as arguments. # Address issue 6070. arr = [1, 2, 3, 0, -1, 3, 1, 2, 1, 1, 2] _ = stats.wilcoxon(arr, zero_method="pratt", mode="approx") _ = stats.wilcoxon(arr, zero_method="zsplit", mode="approx") _ = stats.wilcoxon(arr, zero_method="wilcox", mode="approx") def test_accuracy_wilcoxon(self): freq = [1, 4, 16, 15, 8, 4, 5, 1, 2] nums = range(-4, 5) x = np.concatenate([[u] * v for u, v in zip(nums, freq)]) y = np.zeros(x.size) T, p = stats.wilcoxon(x, y, "pratt", mode="approx") assert_allclose(T, 423) assert_allclose(p, 0.0031724568006762576) T, p = stats.wilcoxon(x, y, "zsplit", mode="approx") assert_allclose(T, 441) assert_allclose(p, 0.0032145343172473055) T, p = stats.wilcoxon(x, y, "wilcox", mode="approx") assert_allclose(T, 327) assert_allclose(p, 0.00641346115861) # Test the 'correction' option, using values computed in R with: # > wilcox.test(x, y, paired=TRUE, exact=FALSE, correct={FALSE,TRUE}) x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112]) y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187]) T, p = stats.wilcoxon(x, y, correction=False, mode="approx") assert_equal(T, 34) assert_allclose(p, 0.6948866, rtol=1e-6) T, p = stats.wilcoxon(x, y, correction=True, mode="approx") assert_equal(T, 34) assert_allclose(p, 0.7240817, rtol=1e-6) def test_wilcoxon_result_attributes(self): x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112]) y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187]) res = stats.wilcoxon(x, y, correction=False, mode="approx") attributes = ('statistic', 'pvalue') check_named_results(res, attributes) def test_wilcoxon_tie(self): # Regression test for gh-2391. # Corresponding R code is: # > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=FALSE) # > result$p.value # [1] 0.001565402 # > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=TRUE) # > result$p.value # [1] 0.001904195 stat, p = stats.wilcoxon([0.1] * 10, mode="approx") expected_p = 0.001565402 assert_equal(stat, 0) assert_allclose(p, expected_p, rtol=1e-6) stat, p = stats.wilcoxon([0.1] * 10, correction=True, mode="approx") expected_p = 0.001904195 assert_equal(stat, 0) assert_allclose(p, expected_p, rtol=1e-6) def test_onesided(self): # tested against "R version 3.4.1 (2017-06-30)" # x <- c(125, 115, 130, 140, 140, 115, 140, 125, 140, 135) # y <- c(110, 122, 125, 120, 140, 124, 123, 137, 135, 145) # cfg <- list(x = x, y = y, paired = TRUE, exact = FALSE) # do.call(wilcox.test, c(cfg, list(alternative = "less", correct = FALSE))) # do.call(wilcox.test, c(cfg, list(alternative = "less", correct = TRUE))) # do.call(wilcox.test, c(cfg, list(alternative = "greater", correct = FALSE))) # do.call(wilcox.test, c(cfg, list(alternative = "greater", correct = TRUE))) x = [125, 115, 130, 140, 140, 115, 140, 125, 140, 135] y = [110, 122, 125, 120, 140, 124, 123, 137, 135, 145] with suppress_warnings() as sup: sup.filter(UserWarning, message="Sample size too small") w, p = stats.wilcoxon(x, y, alternative="less", mode="approx") assert_equal(w, 27) assert_almost_equal(p, 0.7031847, decimal=6) with suppress_warnings() as sup: sup.filter(UserWarning, message="Sample size too small") w, p = stats.wilcoxon(x, y, alternative="less", correction=True, mode="approx") assert_equal(w, 27) assert_almost_equal(p, 0.7233656, decimal=6) with suppress_warnings() as sup: sup.filter(UserWarning, message="Sample size too small") w, p = stats.wilcoxon(x, y, alternative="greater", mode="approx") assert_equal(w, 27) assert_almost_equal(p, 0.2968153, decimal=6) with suppress_warnings() as sup: sup.filter(UserWarning, message="Sample size too small") w, p = stats.wilcoxon(x, y, alternative="greater", correction=True, mode="approx") assert_equal(w, 27) assert_almost_equal(p, 0.3176447, decimal=6) def test_exact_basic(self): for n in range(1, 26): cnt = _get_wilcoxon_distr(n) assert_equal(n*(n+1)/2 + 1, len(cnt)) assert_equal(sum(cnt), 2**n) def test_exact_pval(self): # expected values computed with "R version 3.4.1 (2017-06-30)" x = np.array([1.81, 0.82, 1.56, -0.48, 0.81, 1.28, -1.04, 0.23, -0.75, 0.14]) y = np.array([0.71, 0.65, -0.2, 0.85, -1.1, -0.45, -0.84, -0.24, -0.68, -0.76]) _, p = stats.wilcoxon(x, y, alternative="two-sided", mode="exact") assert_almost_equal(p, 0.1054688, decimal=6) _, p = stats.wilcoxon(x, y, alternative="less", mode="exact") assert_almost_equal(p, 0.9580078, decimal=6) _, p = stats.wilcoxon(x, y, alternative="greater", mode="exact") assert_almost_equal(p, 0.05273438, decimal=6) x = np.arange(0, 20) + 0.5 y = np.arange(20, 0, -1) _, p = stats.wilcoxon(x, y, alternative="two-sided", mode="exact") assert_almost_equal(p, 0.8694878, decimal=6) _, p = stats.wilcoxon(x, y, alternative="less", mode="exact") assert_almost_equal(p, 0.4347439, decimal=6) _, p = stats.wilcoxon(x, y, alternative="greater", mode="exact") assert_almost_equal(p, 0.5795889, decimal=6) d = np.arange(26) + 1 assert_raises(ValueError, stats.wilcoxon, d, mode="exact") # These inputs were chosen to give a W statistic that is either the # center of the distribution (when the length of the support is odd), or # the value to the left of the center (when the length of the support is # even). Also, the numbers are chosen so that the W statistic is the # sum of the positive values. @pytest.mark.parametrize('x', [[-1, -2, 3], [-1, 2, -3, -4, 5], [-1, -2, 3, -4, -5, -6, 7, 8]]) def test_exact_p_1(self, x): w, p = stats.wilcoxon(x) x = np.array(x) wtrue = x[x > 0].sum() assert_equal(w, wtrue) assert_equal(p, 1) def test_auto(self): # auto default to exact if there are no ties and n<= 25 x = np.arange(0, 25) + 0.5 y = np.arange(25, 0, -1) assert_equal(stats.wilcoxon(x, y), stats.wilcoxon(x, y, mode="exact")) # if there are ties (i.e. zeros in d = x-y), then switch to approx d = np.arange(0, 13) with suppress_warnings() as sup: sup.filter(UserWarning, message="Exact p-value calculation") w, p = stats.wilcoxon(d) assert_equal(stats.wilcoxon(d, mode="approx"), (w, p)) # use approximation for samples > 25 d = np.arange(1, 27) assert_equal(stats.wilcoxon(d), stats.wilcoxon(d, mode="approx")) class TestKstat: def test_moments_normal_distribution(self): np.random.seed(32149) data = np.random.randn(12345) moments = [stats.kstat(data, n) for n in [1, 2, 3, 4]] expected = [0.011315, 1.017931, 0.05811052, 0.0754134] assert_allclose(moments, expected, rtol=1e-4) # test equivalence with `stats.moment` m1 = stats.moment(data, moment=1) m2 = stats.moment(data, moment=2) m3 = stats.moment(data, moment=3) assert_allclose((m1, m2, m3), expected[:-1], atol=0.02, rtol=1e-2) def test_empty_input(self): assert_raises(ValueError, stats.kstat, []) def test_nan_input(self): data = np.arange(10.) data[6] = np.nan assert_equal(stats.kstat(data), np.nan) def test_kstat_bad_arg(self): # Raise ValueError if n > 4 or n < 1. data = np.arange(10) for n in [0, 4.001]: assert_raises(ValueError, stats.kstat, data, n=n) class TestKstatVar: def test_empty_input(self): assert_raises(ValueError, stats.kstatvar, []) def test_nan_input(self): data = np.arange(10.) data[6] = np.nan assert_equal(stats.kstat(data), np.nan) def test_bad_arg(self): # Raise ValueError is n is not 1 or 2. data = [1] n = 10 assert_raises(ValueError, stats.kstatvar, data, n=n) class TestPpccPlot: def setup_method(self): self.x = stats.loggamma.rvs(5, size=500, random_state=7654321) + 5 def test_basic(self): N = 5 svals, ppcc = stats.ppcc_plot(self.x, -10, 10, N=N) ppcc_expected = [0.21139644, 0.21384059, 0.98766719, 0.97980182, 0.93519298] assert_allclose(svals, np.linspace(-10, 10, num=N)) assert_allclose(ppcc, ppcc_expected) def test_dist(self): # Test that we can specify distributions both by name and as objects. svals1, ppcc1 = stats.ppcc_plot(self.x, -10, 10, dist='tukeylambda') svals2, ppcc2 = stats.ppcc_plot(self.x, -10, 10, dist=stats.tukeylambda) assert_allclose(svals1, svals2, rtol=1e-20) assert_allclose(ppcc1, ppcc2, rtol=1e-20) # Test that 'tukeylambda' is the default dist svals3, ppcc3 = stats.ppcc_plot(self.x, -10, 10) assert_allclose(svals1, svals3, rtol=1e-20) assert_allclose(ppcc1, ppcc3, rtol=1e-20) @pytest.mark.skipif(not have_matplotlib, reason="no matplotlib") def test_plot_kwarg(self): # Check with the matplotlib.pyplot module fig = plt.figure() ax = fig.add_subplot(111) stats.ppcc_plot(self.x, -20, 20, plot=plt) fig.delaxes(ax) # Check that a Matplotlib Axes object is accepted ax = fig.add_subplot(111) stats.ppcc_plot(self.x, -20, 20, plot=ax) plt.close() def test_invalid_inputs(self): # `b` has to be larger than `a` assert_raises(ValueError, stats.ppcc_plot, self.x, 1, 0) # Raise ValueError when given an invalid distribution. assert_raises(ValueError, stats.ppcc_plot, [1, 2, 3], 0, 1, dist="plate_of_shrimp") def test_empty(self): # For consistency with probplot return for one empty array, # ppcc contains all zeros and svals is the same as for normal array # input. svals, ppcc = stats.ppcc_plot([], 0, 1) assert_allclose(svals, np.linspace(0, 1, num=80)) assert_allclose(ppcc, np.zeros(80, dtype=float)) class TestPpccMax: def test_ppcc_max_bad_arg(self): # Raise ValueError when given an invalid distribution. data = [1] assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp") def test_ppcc_max_basic(self): x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000, random_state=1234567) + 1e4 assert_almost_equal(stats.ppcc_max(x), -0.71215366521264145, decimal=7) def test_dist(self): x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000, random_state=1234567) + 1e4 # Test that we can specify distributions both by name and as objects. max1 = stats.ppcc_max(x, dist='tukeylambda') max2 = stats.ppcc_max(x, dist=stats.tukeylambda) assert_almost_equal(max1, -0.71215366521264145, decimal=5) assert_almost_equal(max2, -0.71215366521264145, decimal=5) # Test that 'tukeylambda' is the default dist max3 = stats.ppcc_max(x) assert_almost_equal(max3, -0.71215366521264145, decimal=5) def test_brack(self): x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000, random_state=1234567) + 1e4 assert_raises(ValueError, stats.ppcc_max, x, brack=(0.0, 1.0, 0.5)) assert_almost_equal(stats.ppcc_max(x, brack=(0, 1)), -0.71215366521264145, decimal=7) assert_almost_equal(stats.ppcc_max(x, brack=(-2, 2)), -0.71215366521264145, decimal=7) class TestBoxcox_llf: def test_basic(self): x = stats.norm.rvs(size=10000, loc=10, random_state=54321) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf_expected = -x.size / 2. * np.log(np.sum(x.std()**2)) assert_allclose(llf, llf_expected) def test_array_like(self): x = stats.norm.rvs(size=100, loc=10, random_state=54321) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf2 = stats.boxcox_llf(lmbda, list(x)) assert_allclose(llf, llf2, rtol=1e-12) def test_2d_input(self): # Note: boxcox_llf() was already working with 2-D input (sort of), so # keep it like that. boxcox() doesn't work with 2-D input though, due # to brent() returning a scalar. x = stats.norm.rvs(size=100, loc=10, random_state=54321) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T) assert_allclose([llf, llf], llf2, rtol=1e-12) def test_empty(self): assert_(np.isnan(stats.boxcox_llf(1, []))) def test_gh_6873(self): # Regression test for gh-6873. # This example was taken from gh-7534, a duplicate of gh-6873. data = [198.0, 233.0, 233.0, 392.0] llf = stats.boxcox_llf(-8, data) # The expected value was computed with mpmath. assert_allclose(llf, -17.93934208579061) # This is the data from github user Qukaiyi, given as an example # of a data set that caused boxcox to fail. _boxcox_data = [ 15957, 112079, 1039553, 711775, 173111, 307382, 183155, 53366, 760875, 207500, 160045, 473714, 40194, 440319, 133261, 265444, 155590, 36660, 904939, 55108, 138391, 339146, 458053, 63324, 1377727, 1342632, 41575, 68685, 172755, 63323, 368161, 199695, 538214, 167760, 388610, 398855, 1001873, 364591, 1320518, 194060, 194324, 2318551, 196114, 64225, 272000, 198668, 123585, 86420, 1925556, 695798, 88664, 46199, 759135, 28051, 345094, 1977752, 51778, 82746, 638126, 2560910, 45830, 140576, 1603787, 57371, 548730, 5343629, 2298913, 998813, 2156812, 423966, 68350, 145237, 131935, 1600305, 342359, 111398, 1409144, 281007, 60314, 242004, 113418, 246211, 61940, 95858, 957805, 40909, 307955, 174159, 124278, 241193, 872614, 304180, 146719, 64361, 87478, 509360, 167169, 933479, 620561, 483333, 97416, 143518, 286905, 597837, 2556043, 89065, 69944, 196858, 88883, 49379, 916265, 1527392, 626954, 54415, 89013, 2883386, 106096, 402697, 45578, 349852, 140379, 34648, 757343, 1305442, 2054757, 121232, 606048, 101492, 51426, 1820833, 83412, 136349, 1379924, 505977, 1303486, 95853, 146451, 285422, 2205423, 259020, 45864, 684547, 182014, 784334, 174793, 563068, 170745, 1195531, 63337, 71833, 199978, 2330904, 227335, 898280, 75294, 2011361, 116771, 157489, 807147, 1321443, 1148635, 2456524, 81839, 1228251, 97488, 1051892, 75397, 3009923, 2732230, 90923, 39735, 132433, 225033, 337555, 1204092, 686588, 1062402, 40362, 1361829, 1497217, 150074, 551459, 2019128, 39581, 45349, 1117187, 87845, 1877288, 164448, 10338362, 24942, 64737, 769946, 2469124, 2366997, 259124, 2667585, 29175, 56250, 74450, 96697, 5920978, 838375, 225914, 119494, 206004, 430907, 244083, 219495, 322239, 407426, 618748, 2087536, 2242124, 4736149, 124624, 406305, 240921, 2675273, 4425340, 821457, 578467, 28040, 348943, 48795, 145531, 52110, 1645730, 1768364, 348363, 85042, 2673847, 81935, 169075, 367733, 135474, 383327, 1207018, 93481, 5934183, 352190, 636533, 145870, 55659, 146215, 73191, 248681, 376907, 1606620, 169381, 81164, 246390, 236093, 885778, 335969, 49266, 381430, 307437, 350077, 34346, 49340, 84715, 527120, 40163, 46898, 4609439, 617038, 2239574, 159905, 118337, 120357, 430778, 3799158, 3516745, 54198, 2970796, 729239, 97848, 6317375, 887345, 58198, 88111, 867595, 210136, 1572103, 1420760, 574046, 845988, 509743, 397927, 1119016, 189955, 3883644, 291051, 126467, 1239907, 2556229, 411058, 657444, 2025234, 1211368, 93151, 577594, 4842264, 1531713, 305084, 479251, 20591, 1466166, 137417, 897756, 594767, 3606337, 32844, 82426, 1294831, 57174, 290167, 322066, 813146, 5671804, 4425684, 895607, 450598, 1048958, 232844, 56871, 46113, 70366, 701618, 97739, 157113, 865047, 194810, 1501615, 1765727, 38125, 2733376, 40642, 437590, 127337, 106310, 4167579, 665303, 809250, 1210317, 45750, 1853687, 348954, 156786, 90793, 1885504, 281501, 3902273, 359546, 797540, 623508, 3672775, 55330, 648221, 266831, 90030, 7118372, 735521, 1009925, 283901, 806005, 2434897, 94321, 309571, 4213597, 2213280, 120339, 64403, 8155209, 1686948, 4327743, 1868312, 135670, 3189615, 1569446, 706058, 58056, 2438625, 520619, 105201, 141961, 179990, 1351440, 3148662, 2804457, 2760144, 70775, 33807, 1926518, 2362142, 186761, 240941, 97860, 1040429, 1431035, 78892, 484039, 57845, 724126, 3166209, 175913, 159211, 1182095, 86734, 1921472, 513546, 326016, 1891609 ] class TestBoxcox: def test_fixed_lmbda(self): x = stats.loggamma.rvs(5, size=50, random_state=12345) + 5 xt = stats.boxcox(x, lmbda=1) assert_allclose(xt, x - 1) xt = stats.boxcox(x, lmbda=-1) assert_allclose(xt, 1 - 1/x) xt = stats.boxcox(x, lmbda=0) assert_allclose(xt, np.log(x)) # Also test that array_like input works xt = stats.boxcox(list(x), lmbda=0) assert_allclose(xt, np.log(x)) def test_lmbda_None(self): # Start from normal rv's, do inverse transform to check that # optimization function gets close to the right answer. lmbda = 2.5 x = stats.norm.rvs(loc=10, size=50000, random_state=1245) x_inv = (x * lmbda + 1)**(-lmbda) xt, maxlog = stats.boxcox(x_inv) assert_almost_equal(maxlog, -1 / lmbda, decimal=2) def test_alpha(self): rng = np.random.RandomState(1234) x = stats.loggamma.rvs(5, size=50, random_state=rng) + 5 # Some regular values for alpha, on a small sample size _, _, interval = stats.boxcox(x, alpha=0.75) assert_allclose(interval, [4.004485780226041, 5.138756355035744]) _, _, interval = stats.boxcox(x, alpha=0.05) assert_allclose(interval, [1.2138178554857557, 8.209033272375663]) # Try some extreme values, see we don't hit the N=500 limit x = stats.loggamma.rvs(7, size=500, random_state=rng) + 15 _, _, interval = stats.boxcox(x, alpha=0.001) assert_allclose(interval, [0.3988867, 11.40553131]) _, _, interval = stats.boxcox(x, alpha=0.999) assert_allclose(interval, [5.83316246, 5.83735292]) def test_boxcox_bad_arg(self): # Raise ValueError if any data value is negative. x = np.array([-1, 2]) assert_raises(ValueError, stats.boxcox, x) # Raise ValueError if data is constant. assert_raises(ValueError, stats.boxcox, np.array([1])) # Raise ValueError if data is not 1-dimensional. assert_raises(ValueError, stats.boxcox, np.array([[1], [2]])) def test_empty(self): assert_(stats.boxcox([]).shape == (0,)) def test_gh_6873(self): # Regression test for gh-6873. y, lam = stats.boxcox(_boxcox_data) # The expected value of lam was computed with the function # powerTransform in the R library 'car'. I trust that value # to only about five significant digits. assert_allclose(lam, -0.051654, rtol=1e-5) @pytest.mark.parametrize("bounds", [(-1, 1), (1.1, 2), (-2, -1.1)]) def test_bounded_optimizer_within_bounds(self, bounds): # Define custom optimizer with bounds. def optimizer(fun): return optimize.minimize_scalar(fun, bounds=bounds, method="bounded") _, lmbda = stats.boxcox(_boxcox_data, lmbda=None, optimizer=optimizer) assert bounds[0] < lmbda < bounds[1] def test_bounded_optimizer_against_unbounded_optimizer(self): # Test whether setting bounds on optimizer excludes solution from # unbounded optimizer. # Get unbounded solution. _, lmbda = stats.boxcox(_boxcox_data, lmbda=None) # Set tolerance and bounds around solution. bounds = (lmbda + 0.1, lmbda + 1) options = {'xatol': 1e-12} def optimizer(fun): return optimize.minimize_scalar(fun, bounds=bounds, method="bounded", options=options) # Check bounded solution. Lower bound should be active. _, lmbda_bounded = stats.boxcox(_boxcox_data, lmbda=None, optimizer=optimizer) assert lmbda_bounded != lmbda assert_allclose(lmbda_bounded, bounds[0]) @pytest.mark.parametrize("optimizer", ["str", (1, 2), 0.1]) def test_bad_optimizer_type_raises_error(self, optimizer): # Check if error is raised if string, tuple or float is passed with pytest.raises(ValueError, match="`optimizer` must be a callable"): stats.boxcox(_boxcox_data, lmbda=None, optimizer=optimizer) def test_bad_optimizer_value_raises_error(self): # Check if error is raised if `optimizer` function does not return # `OptimizeResult` object # Define test function that always returns 1 def optimizer(fun): return 1 message = "`optimizer` must return an object containing the optimal..." with pytest.raises(ValueError, match=message): stats.boxcox(_boxcox_data, lmbda=None, optimizer=optimizer) class TestBoxcoxNormmax: def setup_method(self): self.x = stats.loggamma.rvs(5, size=50, random_state=12345) + 5 def test_pearsonr(self): maxlog = stats.boxcox_normmax(self.x) assert_allclose(maxlog, 1.804465, rtol=1e-6) def test_mle(self): maxlog = stats.boxcox_normmax(self.x, method='mle') assert_allclose(maxlog, 1.758101, rtol=1e-6) # Check that boxcox() uses 'mle' _, maxlog_boxcox = stats.boxcox(self.x) assert_allclose(maxlog_boxcox, maxlog) def test_all(self): maxlog_all = stats.boxcox_normmax(self.x, method='all') assert_allclose(maxlog_all, [1.804465, 1.758101], rtol=1e-6) @pytest.mark.parametrize("method", ["mle", "pearsonr", "all"]) @pytest.mark.parametrize("bounds", [(-1, 1), (1.1, 2), (-2, -1.1)]) def test_bounded_optimizer_within_bounds(self, method, bounds): def optimizer(fun): return optimize.minimize_scalar(fun, bounds=bounds, method="bounded") maxlog = stats.boxcox_normmax(self.x, method=method, optimizer=optimizer) assert np.all(bounds[0] < maxlog) assert np.all(maxlog < bounds[1]) def test_user_defined_optimizer(self): # tests an optimizer that is not based on scipy.optimize.minimize lmbda = stats.boxcox_normmax(self.x) lmbda_rounded = np.round(lmbda, 5) lmbda_range = np.linspace(lmbda_rounded-0.01, lmbda_rounded+0.01, 1001) class MyResult: pass def optimizer(fun): # brute force minimum over the range objs = [] for lmbda in lmbda_range: objs.append(fun(lmbda)) res = MyResult() res.x = lmbda_range[np.argmin(objs)] return res lmbda2 = stats.boxcox_normmax(self.x, optimizer=optimizer) assert lmbda2 != lmbda # not identical assert_allclose(lmbda2, lmbda, 1e-5) # but as close as it should be def test_user_defined_optimizer_and_brack_raises_error(self): optimizer = optimize.minimize_scalar # Using default `brack=None` with user-defined `optimizer` works as # expected. stats.boxcox_normmax(self.x, brack=None, optimizer=optimizer) # Using user-defined `brack` with user-defined `optimizer` is expected # to throw an error. Instead, users should specify # optimizer-specific parameters in the optimizer function itself. with pytest.raises(ValueError, match="`brack` must be None if " "`optimizer` is given"): stats.boxcox_normmax(self.x, brack=(-2.0, 2.0), optimizer=optimizer) class TestBoxcoxNormplot: def setup_method(self): self.x = stats.loggamma.rvs(5, size=500, random_state=7654321) + 5 def test_basic(self): N = 5 lmbdas, ppcc = stats.boxcox_normplot(self.x, -10, 10, N=N) ppcc_expected = [0.57783375, 0.83610988, 0.97524311, 0.99756057, 0.95843297] assert_allclose(lmbdas, np.linspace(-10, 10, num=N)) assert_allclose(ppcc, ppcc_expected) @pytest.mark.skipif(not have_matplotlib, reason="no matplotlib") def test_plot_kwarg(self): # Check with the matplotlib.pyplot module fig = plt.figure() ax = fig.add_subplot(111) stats.boxcox_normplot(self.x, -20, 20, plot=plt) fig.delaxes(ax) # Check that a Matplotlib Axes object is accepted ax = fig.add_subplot(111) stats.boxcox_normplot(self.x, -20, 20, plot=ax) plt.close() def test_invalid_inputs(self): # `lb` has to be larger than `la` assert_raises(ValueError, stats.boxcox_normplot, self.x, 1, 0) # `x` can not contain negative values assert_raises(ValueError, stats.boxcox_normplot, [-1, 1], 0, 1) def test_empty(self): assert_(stats.boxcox_normplot([], 0, 1).size == 0) class TestYeojohnson_llf: def test_array_like(self): x = stats.norm.rvs(size=100, loc=0, random_state=54321) lmbda = 1 llf = stats.yeojohnson_llf(lmbda, x) llf2 = stats.yeojohnson_llf(lmbda, list(x)) assert_allclose(llf, llf2, rtol=1e-12) def test_2d_input(self): x = stats.norm.rvs(size=100, loc=10, random_state=54321) lmbda = 1 llf = stats.yeojohnson_llf(lmbda, x) llf2 = stats.yeojohnson_llf(lmbda, np.vstack([x, x]).T) assert_allclose([llf, llf], llf2, rtol=1e-12) def test_empty(self): assert_(np.isnan(stats.yeojohnson_llf(1, []))) class TestYeojohnson: def test_fixed_lmbda(self): rng = np.random.RandomState(12345) # Test positive input x = stats.loggamma.rvs(5, size=50, random_state=rng) + 5 assert np.all(x > 0) xt = stats.yeojohnson(x, lmbda=1) assert_allclose(xt, x) xt = stats.yeojohnson(x, lmbda=-1) assert_allclose(xt, 1 - 1 / (x + 1)) xt = stats.yeojohnson(x, lmbda=0) assert_allclose(xt, np.log(x + 1)) xt = stats.yeojohnson(x, lmbda=1) assert_allclose(xt, x) # Test negative input x = stats.loggamma.rvs(5, size=50, random_state=rng) - 5 assert np.all(x < 0) xt = stats.yeojohnson(x, lmbda=2) assert_allclose(xt, -np.log(-x + 1)) xt = stats.yeojohnson(x, lmbda=1) assert_allclose(xt, x) xt = stats.yeojohnson(x, lmbda=3) assert_allclose(xt, 1 / (-x + 1) - 1) # test both positive and negative input x = stats.loggamma.rvs(5, size=50, random_state=rng) - 2 assert not np.all(x < 0) assert not np.all(x >= 0) pos = x >= 0 xt = stats.yeojohnson(x, lmbda=1) assert_allclose(xt[pos], x[pos]) xt = stats.yeojohnson(x, lmbda=-1) assert_allclose(xt[pos], 1 - 1 / (x[pos] + 1)) xt = stats.yeojohnson(x, lmbda=0) assert_allclose(xt[pos], np.log(x[pos] + 1)) xt = stats.yeojohnson(x, lmbda=1) assert_allclose(xt[pos], x[pos]) neg = ~pos xt = stats.yeojohnson(x, lmbda=2) assert_allclose(xt[neg], -np.log(-x[neg] + 1)) xt = stats.yeojohnson(x, lmbda=1) assert_allclose(xt[neg], x[neg]) xt = stats.yeojohnson(x, lmbda=3) assert_allclose(xt[neg], 1 / (-x[neg] + 1) - 1) @pytest.mark.parametrize('lmbda', [0, .1, .5, 2]) def test_lmbda_None(self, lmbda): # Start from normal rv's, do inverse transform to check that # optimization function gets close to the right answer. def _inverse_transform(x, lmbda): x_inv = np.zeros(x.shape, dtype=x.dtype) pos = x >= 0 # when x >= 0 if abs(lmbda) < np.spacing(1.): x_inv[pos] = np.exp(x[pos]) - 1 else: # lmbda != 0 x_inv[pos] = np.power(x[pos] * lmbda + 1, 1 / lmbda) - 1 # when x < 0 if abs(lmbda - 2) > np.spacing(1.): x_inv[~pos] = 1 - np.power(-(2 - lmbda) * x[~pos] + 1, 1 / (2 - lmbda)) else: # lmbda == 2 x_inv[~pos] = 1 - np.exp(-x[~pos]) return x_inv n_samples = 20000 np.random.seed(1234567) x = np.random.normal(loc=0, scale=1, size=(n_samples)) x_inv = _inverse_transform(x, lmbda) xt, maxlog = stats.yeojohnson(x_inv) assert_allclose(maxlog, lmbda, atol=1e-2) assert_almost_equal(0, np.linalg.norm(x - xt) / n_samples, decimal=2) assert_almost_equal(0, xt.mean(), decimal=1) assert_almost_equal(1, xt.std(), decimal=1) def test_empty(self): assert_(stats.yeojohnson([]).shape == (0,)) def test_array_like(self): x = stats.norm.rvs(size=100, loc=0, random_state=54321) xt1, _ = stats.yeojohnson(x) xt2, _ = stats.yeojohnson(list(x)) assert_allclose(xt1, xt2, rtol=1e-12) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_input_dtype_complex(self, dtype): x = np.arange(6, dtype=dtype) err_msg = ('Yeo-Johnson transformation is not defined for complex ' 'numbers.') with pytest.raises(ValueError, match=err_msg): stats.yeojohnson(x) @pytest.mark.parametrize('dtype', [np.int8, np.uint8, np.int16, np.int32]) def test_input_dtype_integer(self, dtype): x_int = np.arange(8, dtype=dtype) x_float = np.arange(8, dtype=np.float64) xt_int, lmbda_int = stats.yeojohnson(x_int) xt_float, lmbda_float = stats.yeojohnson(x_float) assert_allclose(xt_int, xt_float, rtol=1e-7) assert_allclose(lmbda_int, lmbda_float, rtol=1e-7) class TestYeojohnsonNormmax: def setup_method(self): self.x = stats.loggamma.rvs(5, size=50, random_state=12345) + 5 def test_mle(self): maxlog = stats.yeojohnson_normmax(self.x) assert_allclose(maxlog, 1.876393, rtol=1e-6) def test_darwin_example(self): # test from original paper "A new family of power transformations to # improve normality or symmetry" by Yeo and Johnson. x = [6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0, 9.3, 7.5, -6.0] lmbda = stats.yeojohnson_normmax(x) assert np.allclose(lmbda, 1.305, atol=1e-3) class TestCircFuncs: @pytest.mark.parametrize("test_func,expected", [(stats.circmean, 0.167690146), (stats.circvar, 42.51955609), (stats.circstd, 6.520702116)]) def test_circfuncs(self, test_func, expected): x = np.array([355, 5, 2, 359, 10, 350]) assert_allclose(test_func(x, high=360), expected, rtol=1e-7) def test_circfuncs_small(self): x = np.array([20, 21, 22, 18, 19, 20.5, 19.2]) M1 = x.mean() M2 = stats.circmean(x, high=360) assert_allclose(M2, M1, rtol=1e-5) V1 = x.var() V2 = stats.circvar(x, high=360) assert_allclose(V2, V1, rtol=1e-4) S1 = x.std() S2 = stats.circstd(x, high=360) assert_allclose(S2, S1, rtol=1e-4) @pytest.mark.parametrize("test_func, numpy_func", [(stats.circmean, np.mean), (stats.circvar, np.var), (stats.circstd, np.std)]) def test_circfuncs_close(self, test_func, numpy_func): # circfuncs should handle very similar inputs (gh-12740) x = np.array([0.12675364631578953] * 10 + [0.12675365920187928] * 100) circstat = test_func(x) normal = numpy_func(x) assert_allclose(circstat, normal, atol=1e-8) def test_circmean_axis(self): x = np.array([[355, 5, 2, 359, 10, 350], [351, 7, 4, 352, 9, 349], [357, 9, 8, 358, 4, 356]]) M1 = stats.circmean(x, high=360) M2 = stats.circmean(x.ravel(), high=360) assert_allclose(M1, M2, rtol=1e-14) M1 = stats.circmean(x, high=360, axis=1) M2 = [stats.circmean(x[i], high=360) for i in range(x.shape[0])] assert_allclose(M1, M2, rtol=1e-14) M1 = stats.circmean(x, high=360, axis=0) M2 = [stats.circmean(x[:, i], high=360) for i in range(x.shape[1])] assert_allclose(M1, M2, rtol=1e-14) def test_circvar_axis(self): x = np.array([[355, 5, 2, 359, 10, 350], [351, 7, 4, 352, 9, 349], [357, 9, 8, 358, 4, 356]]) V1 = stats.circvar(x, high=360) V2 = stats.circvar(x.ravel(), high=360) assert_allclose(V1, V2, rtol=1e-11) V1 = stats.circvar(x, high=360, axis=1) V2 = [stats.circvar(x[i], high=360) for i in range(x.shape[0])] assert_allclose(V1, V2, rtol=1e-11) V1 = stats.circvar(x, high=360, axis=0) V2 = [stats.circvar(x[:, i], high=360) for i in range(x.shape[1])] assert_allclose(V1, V2, rtol=1e-11) def test_circstd_axis(self): x = np.array([[355, 5, 2, 359, 10, 350], [351, 7, 4, 352, 9, 349], [357, 9, 8, 358, 4, 356]]) S1 = stats.circstd(x, high=360) S2 = stats.circstd(x.ravel(), high=360) assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=1) S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])] assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=0) S2 = [stats.circstd(x[:, i], high=360) for i in range(x.shape[1])] assert_allclose(S1, S2, rtol=1e-11) @pytest.mark.parametrize("test_func,expected", [(stats.circmean, 0.167690146), (stats.circvar, 42.51955609), (stats.circstd, 6.520702116)]) def test_circfuncs_array_like(self, test_func, expected): x = [355, 5, 2, 359, 10, 350] assert_allclose(test_func(x, high=360), expected, rtol=1e-7) @pytest.mark.parametrize("test_func", [stats.circmean, stats.circvar, stats.circstd]) def test_empty(self, test_func): assert_(np.isnan(test_func([]))) @pytest.mark.parametrize("test_func", [stats.circmean, stats.circvar, stats.circstd]) def test_nan_propagate(self, test_func): x = [355, 5, 2, 359, 10, 350, np.nan] assert_(np.isnan(test_func(x, high=360))) @pytest.mark.parametrize("test_func,expected", [(stats.circmean, {None: np.nan, 0: 355.66582264, 1: 0.28725053}), (stats.circvar, {None: np.nan, 0: 16.89976130, 1: 36.51366669}), (stats.circstd, {None: np.nan, 0: 4.11093193, 1: 6.04265394})]) def test_nan_propagate_array(self, test_func, expected): x = np.array([[355, 5, 2, 359, 10, 350, 1], [351, 7, 4, 352, 9, 349, np.nan], [1, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]]) for axis in expected.keys(): out = test_func(x, high=360, axis=axis) if axis is None: assert_(np.isnan(out)) else: assert_allclose(out[0], expected[axis], rtol=1e-7) assert_(np.isnan(out[1:]).all()) @pytest.mark.parametrize("test_func,expected", [(stats.circmean, {None: 359.4178026893944, 0: np.array([353.0, 6.0, 3.0, 355.5, 9.5, 349.5]), 1: np.array([0.16769015, 358.66510252])}), (stats.circvar, {None: 55.362093503276725, 0: np.array([4.00081258, 1.00005077, 1.00005077, 12.25762620, 0.25000317, 0.25000317]), 1: np.array([42.51955609, 67.09872148])}), (stats.circstd, {None: 7.440570778057074, 0: np.array([2.00020313, 1.00002539, 1.00002539, 3.50108929, 0.50000317, 0.50000317]), 1: np.array([6.52070212, 8.19138093])})]) def test_nan_omit_array(self, test_func, expected): x = np.array([[355, 5, 2, 359, 10, 350, np.nan], [351, 7, 4, 352, 9, 349, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]]) for axis in expected.keys(): out = test_func(x, high=360, nan_policy='omit', axis=axis) if axis is None: assert_allclose(out, expected[axis], rtol=1e-7) else: assert_allclose(out[:-1], expected[axis], rtol=1e-7) assert_(np.isnan(out[-1])) @pytest.mark.parametrize("test_func,expected", [(stats.circmean, 0.167690146), (stats.circvar, 42.51955609), (stats.circstd, 6.520702116)]) def test_nan_omit(self, test_func, expected): x = [355, 5, 2, 359, 10, 350, np.nan] assert_allclose(test_func(x, high=360, nan_policy='omit'), expected, rtol=1e-7) @pytest.mark.parametrize("test_func", [stats.circmean, stats.circvar, stats.circstd]) def test_nan_omit_all(self, test_func): x = [np.nan, np.nan, np.nan, np.nan, np.nan] assert_(np.isnan(test_func(x, nan_policy='omit'))) @pytest.mark.parametrize("test_func", [stats.circmean, stats.circvar, stats.circstd]) def test_nan_omit_all_axis(self, test_func): x = np.array([[np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan]]) out = test_func(x, nan_policy='omit', axis=1) assert_(np.isnan(out).all()) assert_(len(out) == 2) @pytest.mark.parametrize("x", [[355, 5, 2, 359, 10, 350, np.nan], np.array([[355, 5, 2, 359, 10, 350, np.nan], [351, 7, 4, 352, np.nan, 9, 349]])]) @pytest.mark.parametrize("test_func", [stats.circmean, stats.circvar, stats.circstd]) def test_nan_raise(self, test_func, x): assert_raises(ValueError, test_func, x, high=360, nan_policy='raise') @pytest.mark.parametrize("x", [[355, 5, 2, 359, 10, 350, np.nan], np.array([[355, 5, 2, 359, 10, 350, np.nan], [351, 7, 4, 352, np.nan, 9, 349]])]) @pytest.mark.parametrize("test_func", [stats.circmean, stats.circvar, stats.circstd]) def test_bad_nan_policy(self, test_func, x): assert_raises(ValueError, test_func, x, high=360, nan_policy='foobar') def test_circmean_scalar(self): x = 1. M1 = x M2 = stats.circmean(x) assert_allclose(M2, M1, rtol=1e-5) def test_circmean_range(self): # regression test for gh-6420: circmean(..., high, low) must be # between `high` and `low` m = stats.circmean(np.arange(0, 2, 0.1), np.pi, -np.pi) assert_(m < np.pi) assert_(m > -np.pi) def test_circfuncs_unit8(self): # regression test for gh-7255: overflow when working with # numpy uint8 data type x = np.array([150, 10], dtype='uint8') assert_equal(stats.circmean(x, high=180), 170.0) assert_allclose(stats.circvar(x, high=180), 437.45871686, rtol=1e-7) assert_allclose(stats.circstd(x, high=180), 20.91551378, rtol=1e-7) class TestMedianTest: def test_bad_n_samples(self): # median_test requires at least two samples. assert_raises(ValueError, stats.median_test, [1, 2, 3]) def test_empty_sample(self): # Each sample must contain at least one value. assert_raises(ValueError, stats.median_test, [], [1, 2, 3]) def test_empty_when_ties_ignored(self): # The grand median is 1, and all values in the first argument are # equal to the grand median. With ties="ignore", those values are # ignored, which results in the first sample being (in effect) empty. # This should raise a ValueError. assert_raises(ValueError, stats.median_test, [1, 1, 1, 1], [2, 0, 1], [2, 0], ties="ignore") def test_empty_contingency_row(self): # The grand median is 1, and with the default ties="below", all the # values in the samples are counted as being below the grand median. # This would result a row of zeros in the contingency table, which is # an error. assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1]) # With ties="above", all the values are counted as above the # grand median. assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1], ties="above") def test_bad_ties(self): assert_raises(ValueError, stats.median_test, [1, 2, 3], [4, 5], ties="foo") def test_bad_nan_policy(self): assert_raises(ValueError, stats.median_test, [1, 2, 3], [4, 5], nan_policy='foobar') def test_bad_keyword(self): assert_raises(TypeError, stats.median_test, [1, 2, 3], [4, 5], foo="foo") def test_simple(self): x = [1, 2, 3] y = [1, 2, 3] stat, p, med, tbl = stats.median_test(x, y) # The median is floating point, but this equality test should be safe. assert_equal(med, 2.0) assert_array_equal(tbl, [[1, 1], [2, 2]]) # The expected values of the contingency table equal the contingency # table, so the statistic should be 0 and the p-value should be 1. assert_equal(stat, 0) assert_equal(p, 1) def test_ties_options(self): # Test the contingency table calculation. x = [1, 2, 3, 4] y = [5, 6] z = [7, 8, 9] # grand median is 5. # Default 'ties' option is "below". stat, p, m, tbl = stats.median_test(x, y, z) assert_equal(m, 5) assert_equal(tbl, [[0, 1, 3], [4, 1, 0]]) stat, p, m, tbl = stats.median_test(x, y, z, ties="ignore") assert_equal(m, 5) assert_equal(tbl, [[0, 1, 3], [4, 0, 0]]) stat, p, m, tbl = stats.median_test(x, y, z, ties="above") assert_equal(m, 5) assert_equal(tbl, [[0, 2, 3], [4, 0, 0]]) def test_nan_policy_options(self): x = [1, 2, np.nan] y = [4, 5, 6] mt1 = stats.median_test(x, y, nan_policy='propagate') s, p, m, t = stats.median_test(x, y, nan_policy='omit') assert_equal(mt1, (np.nan, np.nan, np.nan, None)) assert_allclose(s, 0.31250000000000006) assert_allclose(p, 0.57615012203057869) assert_equal(m, 4.0) assert_equal(t, np.array([[0, 2],[2, 1]])) assert_raises(ValueError, stats.median_test, x, y, nan_policy='raise') def test_basic(self): # median_test calls chi2_contingency to compute the test statistic # and p-value. Make sure it hasn't screwed up the call... x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8] stat, p, m, tbl = stats.median_test(x, y) assert_equal(m, 4) assert_equal(tbl, [[1, 2], [4, 2]]) exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl) assert_allclose(stat, exp_stat) assert_allclose(p, exp_p) stat, p, m, tbl = stats.median_test(x, y, lambda_=0) assert_equal(m, 4) assert_equal(tbl, [[1, 2], [4, 2]]) exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, lambda_=0) assert_allclose(stat, exp_stat) assert_allclose(p, exp_p) stat, p, m, tbl = stats.median_test(x, y, correction=False) assert_equal(m, 4) assert_equal(tbl, [[1, 2], [4, 2]]) exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, correction=False) assert_allclose(stat, exp_stat) assert_allclose(p, exp_p)
bsd-3-clause
kylerbrown/scikit-learn
sklearn/tests/test_multiclass.py
136
23649
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.multiclass import fit_ovr from sklearn.multiclass import fit_ovo from sklearn.multiclass import fit_ecoc from sklearn.multiclass import predict_ovr from sklearn.multiclass import predict_ovo from sklearn.multiclass import predict_ecoc from sklearn.multiclass import predict_proba_ovr from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.preprocessing import LabelBinarizer from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) with ignore_warnings(): assert_raises(ValueError, predict_ovr, [LinearSVC(), MultinomialNB()], LabelBinarizer(), []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): # Test that ovr works with classes that are always present or absent. # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): clf = OneVsRestClassifier(base_clf).fit(X, y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): for base_classifier in [SVC(kernel='linear', random_state=0), LinearSVC(random_state=0)]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) # don't densify sparse coefficients assert_equal(sp.issparse(ovr.estimators_[0].coef_), sp.issparse(ovr.coef_)) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_on_list(): # Test that OneVsOne fitting works with a list of targets and yields the # same output as predict from an array ovo = OneVsOneClassifier(LinearSVC(random_state=0)) prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data) prediction_from_list = ovo.fit(iris.data, list(iris.target)).predict(iris.data) assert_array_equal(prediction_from_array, prediction_from_list) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_decision_function(): n_samples = iris.data.shape[0] ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0)) ovo_clf.fit(iris.data, iris.target) decisions = ovo_clf.decision_function(iris.data) assert_equal(decisions.shape, (n_samples, n_classes)) assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data)) # Compute the votes votes = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): pred = ovo_clf.estimators_[k].predict(iris.data) votes[pred == 0, i] += 1 votes[pred == 1, j] += 1 k += 1 # Extract votes and verify assert_array_equal(votes, np.round(decisions)) for class_idx in range(n_classes): # For each sample and each class, there only 3 possible vote levels # because they are only 3 distinct class pairs thus 3 distinct # binary classifiers. # Therefore, sorting predictions based on votes would yield # mostly tied predictions: assert_true(set(votes[:, class_idx]).issubset(set([0., 1., 2.]))) # The OVO decision function on the other hand is able to resolve # most of the ties on this data as it combines both the vote counts # and the aggregated confidence levels of the binary classifiers # to compute the aggregate decision function. The iris dataset # has 150 samples with a couple of duplicates. The OvO decisions # can resolve most of the ties: assert_greater(len(np.unique(decisions[:, class_idx])), 146) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # Test that ties are broken using the decision function, # not defaulting to the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) ovo_decision = multi_clf.decision_function(X) # Classifiers are in order 0-1, 0-2, 1-2 # Use decision_function to compute the votes and the normalized # sum_of_confidences, which is used to disambiguate when there is a tie in # votes. votes = np.round(ovo_decision) normalized_confidences = ovo_decision - votes # For the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # For the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # For the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], normalized_confidences[0].argmax()) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): # Test that the OvO doesn't mess up the encoding of string labels X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) ovo = OneVsOneClassifier(LinearSVC()) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) @ignore_warnings def test_deprecated(): base_estimator = DecisionTreeClassifier(random_state=0) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] all_metas = [ (OneVsRestClassifier, fit_ovr, predict_ovr, predict_proba_ovr), (OneVsOneClassifier, fit_ovo, predict_ovo, None), (OutputCodeClassifier, fit_ecoc, predict_ecoc, None), ] for MetaEst, fit_func, predict_func, proba_func in all_metas: try: meta_est = MetaEst(base_estimator, random_state=0).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train, random_state=0) except TypeError: meta_est = MetaEst(base_estimator).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train) if len(fitted_return) == 2: estimators_, classes_or_lb = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, X_test), meta_est.predict(X_test)) if proba_func is not None: assert_almost_equal(proba_func(estimators_, X_test, is_multilabel=False), meta_est.predict_proba(X_test)) else: estimators_, classes_or_lb, codebook = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, codebook, X_test), meta_est.predict(X_test))
bsd-3-clause
czhengsci/pymatgen
setup.py
1
8355
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import sys import platform from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext as _build_ext class build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) # Prevent numpy from thinking it is still in its setup process: if sys.version_info[0] >= 3: import builtins if hasattr(builtins, '__NUMPY_SETUP__'): del builtins.__NUMPY_SETUP__ import importlib import numpy importlib.reload(numpy) else: import __builtin__ if hasattr(__builtin__, '__NUMPY_SETUP__'): del __builtin__.__NUMPY_SETUP__ import imp import numpy imp.reload(numpy) self.include_dirs.append(numpy.get_include()) extra_link_args = [] if sys.platform.startswith('win') and platform.machine().endswith('64'): extra_link_args.append('-Wl,--allow-multiple-definition') long_desc = """ Official docs: `http://pymatgen.org <http://pymatgen.org/>`_ Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials analysis. These are some of the main features: 1. Highly flexible classes for the representation of Element, Site, Molecule, Structure objects. 2. Extensive input/output support, including support for VASP (http://cms.mpi.univie.ac.at/vasp/), ABINIT (http://www.abinit.org/), CIF, Gaussian, XYZ, and many other file formats. 3. Powerful analysis tools, including generation of phase diagrams, Pourbaix diagrams, diffusion analyses, reactions, etc. 4. Electronic structure analyses, such as density of states and band structure. 5. Integration with the Materials Project REST API. Pymatgen is free to use. However, we also welcome your help to improve this library by making your own contributions. These contributions can be in the form of additional tools or modules you develop, or feature requests and bug reports. Please report any bugs and issues at pymatgen's `Github page <https://github.com/materialsproject/pymatgen>`_. If you wish to be notified of pymatgen releases, you may become a member of `pymatgen's Google Groups page <https://groups.google.com/forum/?fromgroups#!forum/pymatgen/>`_. Why use pymatgen? ================= There are many materials analysis codes out there, both commerical and free, but pymatgen offer several advantages: 1. **It is (fairly) robust.** Pymatgen is used by thousands of researchers, and is the analysis code powering the `Materials Project`_. The analysis it produces survives rigorous scrutiny every single day. Bugs tend to be found and corrected quickly. Pymatgen also uses `CircleCI <https://circleci.com>`_ and `Appveyor <https://www.appveyor.com/>`_ for continuous integration on the Linux and Windows platforms, respectively, which ensures that every commit passes a comprehensive suite of unittests. The coverage of the unittests can be seen at `here <coverage/index.html>`_. 2. **It is well documented.** A fairly comprehensive documentation has been written to help you get to grips with it quickly. 3. **It is open.** You are free to use and contribute to pymatgen. It also means that pymatgen is continuously being improved. We will attribute any code you contribute to any publication you specify. Contributing to pymatgen means your research becomes more visible, which translates to greater impact. 4. **It is fast.** Many of the core numerical methods in pymatgen have been optimized by vectorizing in numpy/scipy. This means that coordinate manipulations are extremely fast and are in fact comparable to codes written in other languages. Pymatgen also comes with a complete system for handling periodic boundary conditions. 5. **It will be around.** Pymatgen is not a pet research project. It is used in the well-established Materials Project. It is also actively being developed and maintained by the `Materials Virtual Lab`_, the ABINIT group and many other research groups. With effect from version 3.0, pymatgen now supports both Python 2.7 as well as Python 3.x. """ setup( name="pymatgen", packages=find_packages(), version="2018.3.14", cmdclass={'build_ext': build_ext}, setup_requires=['numpy', 'setuptools>=18.0'], install_requires=["numpy>=1.9", "six", "requests", "ruamel.yaml>=0.15.6", "monty>=0.9.6", "scipy>=1.0.0", "pydispatcher>=2.0.5", "tabulate", "spglib>=1.9.9.44", "matplotlib>=1.5", "palettable>=2.1.1", "sympy", "pandas"], extras_require={ ':python_version == "2.7"': [ 'enum34', ], "provenance": ["pybtex"], "ase": ["ase>=3.3"], "vis": ["vtk>=6.0.0"], "abinit": ["apscheduler==2.1.0"]}, package_data={"pymatgen.core": ["*.json"], "pymatgen.analysis": ["*.yaml", "*.json"], "pymatgen.analysis.chemenv.coordination_environments.coordination_geometries_files": ["*.txt", "*.json"], "pymatgen.analysis.chemenv.coordination_environments.strategy_files": ["*.json"], "pymatgen.io.vasp": ["*.yaml"], "pymatgen.io.feff": ["*.yaml"], "pymatgen.symmetry": ["*.yaml", "*.json"], "pymatgen.entries": ["*.yaml"], "pymatgen.structure_prediction": ["data/*.json"], "pymatgen.vis": ["ElementColorSchemes.yaml"], "pymatgen.command_line": ["OxideTersoffPotentials"], "pymatgen.analysis.defects": ["*.json"], "pymatgen.analysis.diffraction": ["*.json"], "pymatgen.util": ["structures/*.json"]}, author="Pymatgen Development Team", author_email="[email protected]", maintainer="Shyue Ping Ong", maintainer_email="[email protected]", url="http://www.pymatgen.org", license="MIT", description="Python Materials Genomics is a robust materials " "analysis code that defines core object representations for " "structures and molecules with support for many electronic " "structure codes. It is currently the core analysis code " "powering the Materials Project " "(https://www.materialsproject.org).", long_description=long_desc, keywords=["VASP", "gaussian", "ABINIT", "nwchem", "materials", "project", "electronic", "structure", "analysis", "phase", "diagrams"], classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Chemistry", "Topic :: Software Development :: Libraries :: Python Modules" ], ext_modules=[Extension("pymatgen.optimization.linear_assignment", ["pymatgen/optimization/linear_assignment.c"], extra_link_args=extra_link_args), Extension("pymatgen.util.coord_cython", ["pymatgen/util/coord_cython.c"], extra_link_args=extra_link_args)], entry_points={ 'console_scripts': [ 'pmg = pymatgen.cli.pmg:main', 'feff_input_generation = pymatgen.cli.feff_input_generation:main', 'feff_plot_cross_section = pymatgen.cli.feff_plot_cross_section:main', 'feff_plot_dos = pymatgen.cli.feff_plot_dos:main', 'gaussian_analyzer = pymatgen.cli.gaussian_analyzer:main', 'get_environment = pymatgen.cli.get_environment:main', 'pydii = pymatgen.cli.pydii:main', ] } )
mit
jcrist/pydy
examples/language_templates/numpy_scipy.py
7
1316
# How to integrate equations of motion, quick and dirty way # Note: this template will not run as is # get EoM into form <qdots, udots = expressions> first though # Also, make sure there are no qdots in rhs of udots # (meaning udot = f(q, u, t), not f(q, qdot, u, t) # use Kane.kindiffdict to get dictionary, and use subs on your udot vector to # get rid of qdots in bad places. See examples from numpy import array, linspace, sin, cos # etc. import matplotlib.pyplot as plt from scipy.integrate import odeint def rhs(y, t, arg1, arg2, etc.): # unpack variables; remember the order here, it is important var1, var2, etc. = y # write return statement # copy/paste qdots, udots from console/terminal # make sure mechanics printing was turned on first though return array([var1dot, var2dot, var3dot, etc.]) # make tuple of arguement values (as floats or something) args = (arg1, arg2, etc.) # give initial conditions y0 = [] # choose a timespan t = linspace(0, 1) # call odeint y = odeint(rhs, y0, t, args) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(t, y) # give title to plot ax.set_title('My Problem') # give x axis label ax.set_xlabel('Time (s)') # give y axis label ax.set_ylabel('Qs and Us') # set legend values ax.legend(['var1', 'var2', 'var3', etc.]) # show plot plt.show()
bsd-3-clause
MichielCottaar/pymc3
pymc3/tests/test_plots.py
13
1721
import matplotlib matplotlib.use('Agg', warn=False) import numpy as np from .checks import close_to import pymc3.plots from pymc3.plots import * from pymc3 import Slice, Metropolis, find_hessian, sample def test_plots(): # Test single trace from pymc3.examples import arbitrary_stochastic as asmod with asmod.model as model: start = model.test_point h = find_hessian(start) step = Metropolis(model.vars, h) trace = sample(3000, step, start) traceplot(trace) forestplot(trace) autocorrplot(trace) def test_plots_multidimensional(): # Test single trace from .models import multidimensional_model start, model, _ = multidimensional_model() with model as model: h = np.diag(find_hessian(start)) step = Metropolis(model.vars, h) trace = sample(3000, step, start) traceplot(trace) #forestplot(trace) #autocorrplot(trace) def test_multichain_plots(): from pymc3.examples import disaster_model as dm with dm.model as model: # Run sampler step1 = Slice([dm.early_mean, dm.late_mean]) step2 = Metropolis([dm.switchpoint]) start = {'early_mean': 2., 'late_mean': 3., 'switchpoint': 50} ptrace = sample(1000, [step1, step2], start, njobs=2) forestplot(ptrace, vars=['early_mean', 'late_mean']) autocorrplot(ptrace, vars=['switchpoint']) def test_make_2d(): a = np.arange(4) close_to(pymc3.plots.make_2d(a), a[:,None], 0) n = 7 a = np.arange(n*4*5).reshape((n,4,5)) res = pymc3.plots.make_2d(a) assert res.shape == (n,20) close_to(a[:,0,0], res[:,0], 0) close_to(a[:,3,2], res[:,2*4+3], 0)
apache-2.0
kedz/cuttsum
trec2014/python/cuttsum/salience.py
1
18804
import os import re import gzip import pandas as pd from cuttsum.data import get_resource_manager, MultiProcessWorker from cuttsum.misc import ProgressBar import random import GPy import numpy as np from collections import defaultdict import multiprocessing import signal import sys import Queue from sklearn.preprocessing import StandardScaler from sklearn.externals import joblib from scipy import linalg class SalienceModels(MultiProcessWorker): def __init__(self): self.dir_ = os.path.join( os.getenv(u'TREC_DATA', u'.'), u'salience-models') if not os.path.exists(self.dir_): os.makedirs(self.dir_) def get_model_dir(self, event, feature_set, prefix): return os.path.join(self.dir_, prefix + '.' + feature_set.fs_name(), event.fs_name()) def get_model_paths(self, event, feature_set, prefix, n_samples): model_dir = self.get_model_dir(event, feature_set, prefix) return [os.path.join(model_dir, 'model_{}.pkl'.format(ver)) for ver in xrange(n_samples)] def check_coverage(self, event, corpus, feature_set, prefix, n_samples=10, **kwargs): model_dir = self.get_model_dir(event, feature_set, prefix) if n_samples <= 0: return 0 if not os.path.exists(model_dir): return 0 n_covered = 0 for model_path in self.get_model_paths( event, feature_set, prefix, n_samples): if os.path.exists(model_path): n_covered += 1 return n_covered / float(n_samples) def train_models(self, event, corpus, feature_set, prefix, n_procs=1, progress_bar=False, random_seed=42, n_samples=10, sample_size=100, **kwargs): model_paths = self.get_model_paths( event, feature_set, prefix, n_samples) model_dir = self.get_model_dir(event, feature_set, prefix) if not os.path.exists(model_dir): os.makedirs(model_dir) jobs = [] for ver, model_path in enumerate(model_paths): jobs.append((model_path, random_seed + ver)) self.do_work(salience_train_worker_, jobs, n_procs, progress_bar, event=event, corpus=corpus, feature_set=feature_set, sample_size=sample_size) def salience_train_worker_(job_queue, result_queue, **kwargs): signal.signal(signal.SIGINT, signal.SIG_IGN) corpus = kwargs.get(u'corpus') event = kwargs.get(u'event') feature_set = kwargs.get(u'feature_set') sample_size = kwargs.get(u'sample_size') while not job_queue.empty(): try: model_path, random_seed = job_queue.get(block=False) feats_df, sims_df = load_all_feats( event, feature_set, sample_size, random_seed) #sims_df = load_all_sims(event) n_points = len(feats_df) assert n_points == len(sims_df) assert n_points == sample_size fgroups = get_group_indices(feats_df) Y = [] X = [] for i in xrange(sample_size): assert feats_df.iloc[i][u'stream id'] == \ sims_df.iloc[i][u'stream id'] assert feats_df.iloc[i][u'sentence id'] == \ sims_df.iloc[i][u'sentence id'] Y.append(sims_df.iloc[i].values[2:]) X.append(feats_df.iloc[i].values[2:]) Y = np.array(Y, dtype=np.float64) #y = y[:, np.newaxis] X = np.array(X, dtype=np.float64) X += 1.e-2 * np.random.normal(0, 1, X.shape) #Xma = np.ma.masked_array(X, np.isnan(X)) xrescaler = StandardScaler() yrescaler = StandardScaler() X = xrescaler.fit_transform(X) bad_cols = set(np.where(~X.any(axis=0))[0]) | \ set(np.where(np.all(X == X[0,:], axis=0))[0]) #print bad_cols #if len(bad_cols) > 0: # result_queue.put(None) # return Y = yrescaler.fit_transform(Y) y = np.max(Y, axis=1) y = y[:, np.newaxis] kern_comb = None for key, indices in fgroups.items(): good_indices = set(indices) - bad_cols indices = sorted(list(good_indices)) kern = GPy.kern.RBF(input_dim=len(indices), active_dims=indices, ARD=True) if kern_comb is None: kern_comb = kern else: kern_comb += kern kern_comb += GPy.kern.White(input_dim=len(indices), active_dims=indices) try: m = GPy.models.GPRegression(X, y, kern_comb) m.unconstrain('') m.constrain_positive('') #m['.*white'].constrain_fixed(1.) m.optimize_restarts( num_restarts=10, robust=False, verbose=False, parallel=False, num_processes=1, max_iters=20) joblib.dump((xrescaler, yrescaler, m), model_path) except linalg.LinAlgError, e: print e #print X #print y result_queue.put(None) except Queue.Empty: pass def load_all_feats(event, fs, sample_size, random_seed): random.seed(random_seed) all_df = None features = get_resource_manager(u'SentenceFeaturesResource') fregex = fs.get_feature_regex() + "|stream id|sentence id" resevoir = None current_index = 0 hours = [] res_sims = None for hour in event.list_event_hours(): path = features.get_tsv_path(event, hour) #print path, current_index if not os.path.exists(path): continue with gzip.open(path, u'r') as f: df = pd.io.parsers.read_csv( f, sep='\t', quoting=3, header=0) df = df.filter(regex=fregex) if resevoir is None: resevoir = pd.DataFrame(columns=df.columns) for _, row in df.iterrows(): if current_index < sample_size: resevoir.loc[current_index] = row hours.append(hour) else: r = random.randint(0, current_index) if r < sample_size: resevoir.loc[r] = row hours[r] = hour current_index += 1 # if resevoir is None: # resevoir = df.iloc[range(0, sample_size)] # current_index = sample_size # paths = [path for i in range(0, sample_size)] s = get_resource_manager(u'NuggetSimilaritiesResource') for hour in set(hours): path = s.get_tsv_path(event, hour) with gzip.open(path, u'r') as f: df = pd.io.parsers.read_csv( f, sep='\t', quoting=3, header=0) if res_sims is None: res_sims = pd.DataFrame([{} for x in range(sample_size)], columns=df.columns) for idx, row_hour in enumerate(hours): if hour != row_hour: continue stream_id = resevoir.iloc[idx][u'stream id'] sent_id = resevoir.iloc[idx][u'sentence id'] res_sims.loc[idx] = df.loc[ (df[u'stream id'] == stream_id) & \ (df[u'sentence id'] == sent_id)].iloc[0] for i in range(sample_size): assert resevoir[u'sentence id'].iloc[i] == \ res_sims[u'sentence id'].iloc[i] assert resevoir[u'stream id'].iloc[i] == \ res_sims[u'stream id'].iloc[i] return resevoir, res_sims def get_group_indices(feat_df): idxmap = defaultdict(list) for idx, feat in enumerate(feat_df.columns[2:]): idxmap[feat.split('_')[0]].append(idx) for feat in idxmap.keys(): idxmap[feat].sort() # start = min(idxmap[feat]) # end = max(idxmap[feat]) + 1 # idxmap[feat] = (start, end) return idxmap class SaliencePredictions(MultiProcessWorker): def __init__(self): self.dir_ = os.path.join( os.getenv(u'TREC_DATA', u'.'), u'salience-predictions') if not os.path.exists(self.dir_): os.makedirs(self.dir_) def get_tsv_dir(self, event, prefix, feature_set): data_dir = os.path.join(self.dir_, prefix + "." + feature_set.fs_name(), event.fs_name()) return data_dir def get_tsv_path(self, event, hour, prefix, feature_set, model_path): parent_dir, model_num = os.path.split(model_path) model_name = os.path.split(parent_dir)[-1] key = model_name + "." + model_num data_dir = self.get_tsv_dir(event, prefix, feature_set) return os.path.join(data_dir, u'{}.{}.tsv.gz'.format( hour.strftime(u'%Y-%m-%d-%H'), key)) def check_coverage(self, event, corpus, feature_set, prefix, model_events, n_samples=100, **kwargs): feats = get_resource_manager(u'SentenceFeaturesResource') n_feats = 0 n_covered = 0 sm = SalienceModels() model_paths = [] for model_event in model_events: model_paths.extend( sm.get_model_paths( model_event, feature_set, prefix, n_samples)) for hour in event.list_event_hours(): for model_path in model_paths: feat_tsv_path = feats.get_tsv_path(event, hour) sal_tsv_path = self.get_tsv_path( event, hour, prefix, feature_set, model_path) if os.path.exists(feat_tsv_path): n_feats += 1 if os.path.exists(sal_tsv_path): n_covered += 1 if n_feats == 0: return 0 return n_covered / float(n_feats) def predict_salience(self, event, corpus, feature_set, prefix, model_events, n_procs=1, n_samples=10, progress_bar=False, **kwargs): data_dir = self.get_tsv_dir(event, prefix, feature_set) if not os.path.exists(data_dir): os.makedirs(data_dir) feats = get_resource_manager(u'SentenceFeaturesResource') sm = SalienceModels() model_paths = [] for model_event in model_events: model_paths.extend( sm.get_model_paths( model_event, feature_set, prefix, n_samples)) jobs = [] # for hour in event.list_event_hours(): for model_path in model_paths: # feat_tsv_path = feats.get_tsv_path(event, hour) # sal_tsv_path = self.get_tsv_path( # event, hour, prefix, feature_set, model_path) #if os.path.exists(feat_tsv_path): jobs.append(model_path) self.do_work(salience_predict_worker_, jobs, n_procs, progress_bar, event=event, feature_set=feature_set, prefix=prefix) def salience_predict_worker_(job_queue, result_queue, **kwargs): signal.signal(signal.SIGINT, signal.SIG_IGN) event = kwargs.get(u'event') fs = kwargs.get(u'feature_set') prefix = kwargs.get(u'prefix') feats = get_resource_manager(u'SentenceFeaturesResource') sp = SaliencePredictions() # model_paths = kwargs.get(u'model_paths') # model_paths.sort() # model_keys = [] # key2models = {} # n_models = len(model_paths) # for i, model_path in enumerate(model_paths, 1): # print i, "/", n_models #if not os.path.exists(model_path): # continue # parent_dir, model_num = os.path.split(model_path) # model_name = os.path.split(parent_dir)[-1] # key = model_name + "." + model_num # key2models[key] = joblib.load(model_path) # model_keys.append(key) # n_model_paths = len(model_paths) fregex = fs.get_feature_regex() + "|stream id|sentence id" while not job_queue.empty(): try: model_path = job_queue.get(block=False) parent_dir, model_num = os.path.split(model_path) model_name = os.path.split(parent_dir)[-1] model_key = model_name + "." + model_num xrescaler, yrescaler, m = joblib.load(model_path) for hour in event.list_event_hours(): feat_tsv_path = feats.get_tsv_path(event, hour) sal_tsv_path = sp.get_tsv_path( event, hour, prefix, fs, model_path) if not os.path.exists(feat_tsv_path): continue if os.path.exists(sal_tsv_path): continue with gzip.open(feat_tsv_path, u'r') as f: feats_df = pd.io.parsers.read_csv( f, sep='\t', quoting=3, header=0) feats_df = feats_df.filter(regex=fregex) feats_df = feats_df.sort([u'stream id', u'sentence id']) n_points = len(feats_df) sims = [] X = [] for i in xrange(n_points): streamid = feats_df.iloc[i][u'stream id'] sentid = feats_df.iloc[i][u'sentence id'] x = feats_df.iloc[i].values[2:] #print len(feats_df.columns), len(x), x X.append(x) sims.append({u'stream id': streamid, u'sentence id': sentid}) X = np.array(X, dtype=np.float64) # print X.shape #for model_key, (xrescaler, yrescaler, m) in key2models.items(): # print model_key #for model_path in model_paths: # parent_dir, model_num = os.path.split(model_path) # model_name = os.path.split(parent_dir)[-1] # model_key = model_name + "." + model_num #if not os.path.exists(model_path): # continue #print model_path #xrescaler, yrescaler, m = joblib.load(model_path) #print xrescaler.mean_.shape Xscale = xrescaler.transform(X) result = m.predict(Xscale) #print len(result) ##print result[0].shape yp = result[0] for i, y in enumerate(yp): sims[i][model_key] = y[0] sims_df = pd.DataFrame( sims, columns=[u'stream id', u'sentence id', model_key]) with gzip.open(sal_tsv_path, u'w') as f: sims_df.to_csv(f, sep='\t', index=False, index_label=False) result_queue.put(None) except Queue.Empty: pass class SaliencePredictionAggregator(object): def __init__(self): self.dir_ = os.path.join( os.getenv(u'TREC_DATA', u'.'), u'salience-predictions-agg') if not os.path.exists(self.dir_): os.makedirs(self.dir_) def check_coverage(self, event, corpus, feature_set, prefix, model_events, n_samples=10, **kwargs): feats = get_resource_manager(u'SentenceFeaturesResource') n_hours = 0 n_covered = 0 for hour in event.list_event_hours(): feats_tsv_path = feats.get_tsv_path(event, hour) sal_tsv_path = self.get_tsv_path(event, hour, prefix, feature_set) if os.path.exists(feats_tsv_path): n_hours += 1 if os.path.exists(sal_tsv_path): n_covered += 1 if n_hours == 0: return 0 else: return n_covered / float(n_hours) def get(self, event, corpus, feature_set, prefix, model_events, n_samples=10, **kwargs): feats = get_resource_manager(u'SentenceFeaturesResource') sm = SalienceModels() sp = SaliencePredictions() model_paths = [] for model_event in model_events: model_paths.extend( sm.get_model_paths( model_event, feature_set, prefix, n_samples)) hours = event.list_event_hours() n_hours = len(hours) pb = ProgressBar(n_hours) for hour in hours: pb.update() tsv_paths = \ [sp.get_tsv_path(event, hour, prefix, feature_set, model_path) for model_path in model_paths] tsv_paths = [path for path in tsv_paths if os.path.exists(path)] if len(tsv_paths) == 0: continue data = [] for tsv_path in tsv_paths: with gzip.open(tsv_path, u'r') as f: df = pd.io.parsers.read_csv( f, sep='\t', quoting=3, header=0) df.set_index([u'stream id', u'sentence id'], inplace=True) data.append(df) df = pd.concat(data, axis=1) agg_path = self.get_tsv_path(event, hour, prefix, feature_set) agg_dir = os.path.dirname(agg_path) if not os.path.exists(agg_dir): os.makedirs(agg_dir) df.columns=sorted(df.columns) with gzip.open(agg_path, u'w') as f: df.to_csv(f, sep='\t') def get_tsv_dir(self, event, prefix, feature_set): data_dir = os.path.join(self.dir_, prefix + "." + feature_set.fs_name(), event.fs_name()) return data_dir def get_tsv_path(self, event, hour, prefix, feature_set): data_dir = self.get_tsv_dir(event, prefix, feature_set) return os.path.join(data_dir, u'{}.tsv.gz'.format( hour.strftime(u'%Y-%m-%d-%H'))) def get_dataframe(self, event, hour, prefix, feature_set): tsv = self.get_tsv_path(event, hour, prefix, feature_set) if not os.path.exists(tsv): return None else: with gzip.open(tsv, u'r') as f: df = pd.io.parsers.read_csv( f, sep='\t', quoting=3, header=0) return df
apache-2.0
ibackus/ICgen
isaac.py
2
50087
""" ----------------------------------------------- Some simple python code to be easily imported from python ----------------------------------------------- """ import pynbody SimArray = pynbody.array.SimArray pb = pynbody import copy import matplotlib import matplotlib.pyplot as plt import numpy as np import scipy.interpolate as interp import warnings import glob import os import datetime import fnmatch import logging self_dir = os.path.dirname(os.path.realpath(__file__)) print os.path.realpath(__file__) def snapshot_defaults(snapshot): """ Applies various defaults to tipsy snapshots of protoplanetary disk simulations. These include: -Sets nice units -Calculates particle smoothing lengths using mass and rho (if available) Changes the snapshot in place """ # Setup units snapshot['pos'].convert_units('au') snapshot['mass'].convert_units('Msol') snapshot['vel'].convert_units('km s**-1') snapshot['eps'].convert_units('au') snapshot.g['temp'].convert_units('K') # Calculate smoothing lengths if ('rho' in snapshot.g.loadable_keys()) or ('rho' in snapshot.g.keys()): snapshot.g['rho'].convert_units('Msol au**-3') if ~(np.any(snapshot.g['rho'] == 0)): snapshot.g['smooth'] = (snapshot.g['mass']/snapshot.g['rho'])**(1,3) return def units_from_param(param): """ Figures out the simulation units from a .param file **ARGUMENTS** param : str or param dict (see configparser) Simulation .param file or param dict loaded by configparser Can also be a list or numpy array of these in which case a list of units dicts is returned **RETURNS** units : dict A dictionary of the units used in the simulation, returned as pynbody units """ # Define function to load the units from a given param def _load_units(param): # Load param if necessary if isinstance(param, str): param = configparser(param, 'param') # Universal G G = pynbody.units.G # Load units dKpcUnit = param['dKpcUnit'] dMsolUnit = param['dMsolUnit'] # Set up pynbody units m_unit = pynbody.units.Unit('{0} Msol'.format(dMsolUnit)) l_unit = pynbody.units.Unit('{0} kpc'.format(dKpcUnit)) t_unit = (l_unit**3/(G*m_unit))**(1,2) # Convert the time unit to something sensible years = t_unit.in_units('yr') t_unit = pynbody.units.Unit('{0} yr'.format(years)) # Return outdict = {'l_unit':l_unit, 'm_unit':m_unit, 't_unit':t_unit} return outdict # Iterate over param if necessary if isinstance(param, (list, np.ndarray)): outlist = [] for par in param: outlist.append(_load_units(par)) return outlist else: # Not iterable return _load_units(param) def kepler_pos(pos, vel, t, Mstar, order=10): """ Estimate position at future time t assuming an elliptical keplerian orbit """ G = SimArray(1.0, 'G') mu = G*Mstar r = np.sqrt((pos**2).sum()) v = np.sqrt((vel**2).sum()) # Calculate semi-major axis a = mu*r/(2*mu - v*v*r) a.convert_units(r.units) # Calculate eccentricity vector ecc = (v*v)*pos/mu - ((pos*vel).sum())*vel/mu - pos/r ecc.convert_units('1') # Calculate eccentricity e = float(np.sqrt((ecc**2).sum())) # Calculate initial eccentric anomaly # x1 = a*e^2 + r.e x1 = a*e**2 + (pos*ecc).sum() # y1 = |r x e| * sign(r.v) y1 = np.sqrt((np.cross(pos, ecc)**2).sum()) y1 *= (pos*vel).sum()/abs((pos*vel).sum()) E0 = np.arctan2(y1,x1) # Calculate mean anomaly M0 = E0 - e*np.sin(E0) a3 = np.power(a,3) M = (np.sqrt(mu/a3)*t).in_units('1') + M0 # Calculate eccentric anomaly E = E0 for i in range(order): E = M + e*np.sin(E) # Calculate (x1, y1) (relative to center of ellipse, not focus) x1 = (2*a - r) * np.cos(E) y1 = (2*a - r) * np.sin(E) # Transform to original coordinates x1hat = ecc/np.sqrt((ecc**2).sum()) y1hat = np.cross(np.cross(pos, vel), ecc) y1hat /= np.sqrt((y1hat**2).sum()) pos_f = (x1 - a*e)*x1hat + y1*y1hat return pos_f def findfiles(filefilter='*', basedir='.'): """ Recursively find files according to filefilter ** ARGUMENTS ** filefilter : str Filter for finding files. ie, '*.jpg' or 'file.txt' basedir : str Base directory to search. Default is the current directory ** RETURNS ** files : list A list of the full path to all files matching filefilter """ matches = [] for root, dirnames, filenames in os.walk(basedir): for filename in fnmatch.filter(filenames, filefilter): fname = os.path.join(root, filename) fname = os.path.realpath(fname) matches.append(fname) return matches def walltime(filename): """ Reads walltime information from a ChaNGa .log file. ** ARGUMENTS ** filename : str Filename of the .log file to load ** RETURNS ** wall_per_step : array Wall time per step in seconds """ log_file = np.genfromtxt(filename, comments='#', delimiter=' ') wall_per_step = log_file[:,-1] walltime_total = datetime.timedelta(seconds = wall_per_step.sum()) walltime_avg = datetime.timedelta(seconds = wall_per_step.mean()) print 'Total walltime: ' print str(walltime_total) print 'Average walltime per step:' print str(walltime_avg) return wall_per_step def load_acc(filename, param_name = None, low_mem = True): """ Loads accelerations from a ChaNGa acceleration file (.acc2), ignoring the star particle. IF param_name is None, a .param file is searched for, otherwise param_name should be a string specifying a .param file name IF no param_file is found, the defaults are used: length unit: AU mass unit : Msol Setting low_mem=True decreases memory usage by about 2x but also increases readtime by about 2x """ if param_name is None: prefix = filename.split('.')[0] param_list = glob.glob('*' + prefix +'*param') if len(param_list) > 0: param_name = param_list[0] elif len(glob.glob('*.param')) > 0: param_name = glob.glob('*.param')[0] else: warnings.warn('Could not find .param file. Assuming default units') if param_name is not None: # If a param name is set or a param file has been found: print 'Loading param file: {}'.format(param_name) param = configparser(param_name, ftype='param') else: # Set the default parameters param = {} # Assume AU as length unit param['dKpcUnit'] = pynbody.units.au.ratio('kpc') # Assume mass units as Msol param['dMsolUnit'] = 1.0 # Figure out units G = pynbody.units.G l_unit = param['dKpcUnit']*pynbody.units.kpc m_unit = param['dMsolUnit']*pynbody.units.Msol t_unit = ((l_unit**3) * G**-1 * m_unit**-1)**(1,2) a_unit = l_unit * t_unit**-2 if low_mem: acc_file = open(filename, 'r') n_particles = int(acc_file.readline().strip()) acc = SimArray(np.zeros(3*n_particles, dtype=np.float32), a_unit) for i, line in enumerate(acc_file): acc[i] = np.float32(line.strip()) acc_file.close() return acc.reshape([n_particles, 3], order='F')[0:-1] else: # Load acceleration file as numpy array acc = np.genfromtxt(filename, skip_header=1, dtype=np.float32) n_particles = len(acc)/3 # Reshape and make it a SimArray with proper units acc = SimArray(acc.reshape([n_particles, 3], order='F'), a_unit) return acc def height(snapshot, bins=100, center_on_star=True): """ Calculates the characteristic height (h) of a flared disk as a function of cylindrical radius (r). ** ARGUMENTS ** snapshot : TipsySnap Simulation snapshot for a flared disk bins : int or array_like Specifies the bins to use. If int, specifies the number of bins. If array_like, specifies the bin edges center_on_star : bool If true (DEFAULT), cylindrical r is calculated relative to the star ** RETURNS ** r_edges : SimArray Radial bin edges used for calculating h. Length N+1 h : SimArray Height as a function of r, calculated as the RMS of z over a bin. Length N """ # Center on star if center_on_star: star_pos = snapshot.s['pos'].copy() snapshot['pos'] -= star_pos else: star_pos = 0.0*snapshot.s['pos'] # Calculate height r = snapshot.g['rxy'] z2 = snapshot.g['z']**2 r_edges, z2_mean, err = binned_mean(r, z2, bins=bins, ret_bin_edges=True) h = np.sqrt(z2_mean) # Add star_pos back to snapshot snapshot['pos'] += star_pos return r_edges, h def sigma(snapshot, bins=100): """ Calculates surface density vs r (relative to the center of mass) ** ARGUMENTS ** snapshot : tipsy snapshot bins : int, list, array... Either the number of bins to use or the binedges to use ** RETURNS ** sigma : SimArray Surface density as a function of r r_bins : SimArray Radial bin edges """ # Begin by subtracting off the center of mass position cm = (snapshot['mass'][:,None] * snapshot['pos']).sum()/(snapshot['mass'].sum()) snapshot['pos'] -= cm r = snapshot.g['rxy'] # particle mass m_gas = snapshot.gas['mass'][[0]] N, r_bins = np.histogram(r, bins=bins) r_bins = match_units(r_bins, r.units)[0] r_center = (r_bins[1:] + r_bins[0:-1])/2 dr = r_bins[[1]] - r_bins[[0]] sig = N*m_gas/(2*np.pi*r_center*dr) # Add star position back to positions snapshot['pos'] += cm return sig, r_bins def Q2(snapshot, molecular_mass = 2.0, bins=100, max_height=None): # Physical constants kB = SimArray([1.0],'k') G = SimArray([1.0],'G') # Load stuff froms snapshot v = snapshot.g['vt'] r = snapshot.g['rxy'] z = snapshot.g['z'] T = snapshot.g['temp'] # Calculate sound speed for all particles m = match_units(molecular_mass,'m_p')[0] cs = np.sqrt(kB*T/m) # Calculate surface density sig_binned, r_edges = sigma(snapshot, bins) r_cent = (r_edges[1:]+r_edges[0:-1])/2 sig_spl = extrap1d(r_cent, sig_binned) sig = SimArray(sig_spl(r), sig_binned.units) # Calculate omega (as a proxy for kappa) omega = v/r kappa = omega #Calculate Q for all particles print 'kappa',kappa.units print 'cs',cs.units print 'sigma', sig.units Q_all = (kappa*cs/(np.pi*G*sig)).in_units('1') # Use particles close to midplane if max_height is not None: dummy, h = height(snapshot, bins=r_edges) ind = np.digitize(r, r_edges) - 1 ind[ind<0] = 0 ind[ind >= (len(r_edges)-1)] = len(r_edges)-2 mask = abs(z) < (max_height*h[ind]) Q_all = Q_all[mask] r = r[mask] dummy, Q_binned, dummy2 = binned_mean(r, Q_all, binedges=r_edges) return r_edges, Q_binned def kappa(f, bins=100): """ Estimate the epicyclic frequency from velocity **ARGUMENTS** f : TipsySnap Simulation snapshot bins : int or array-like Either the number of bins to use or the bin edges **RETURNS** kappa : SimArray epicyclic frequency r_edges : SimArray binedges used """ # Require regular spacing of bins if not isinstance(bins, int): dr = bins[[1]] - bins[[0]] eps = np.finfo(bins.dtype).eps if not np.all(bins[1:] - bins[0:-1] <= dr + 1000*eps): raise ValueError, 'Bins not uniformly spaced' r = f.g['rxy'] v = f.g['vt'] r_edges, v_mean, dummy = binned_mean(r, v, bins=bins, ret_bin_edges=True) dummy, rv_mean, dummy2 = binned_mean(r, r*v, bins=r_edges) r_cent = (r_edges[1:] + r_edges[0:-1])/2 dr = r_edges[[1]] - r_edges[[0]] drv_dr = np.gradient(rv_mean, dr) kappa = np.sqrt(2*v_mean*drv_dr)/r_cent return kappa, r_edges def Q(snapshot, molecular_mass = 2.0, bins=100, max_height=None, \ use_velocity=False, use_omega=True): """ Calculates the Toomre Q as a function of r, assuming radial temperature profile and kappa ~= omega ** ARGUMENTS ** snapshot : tipsy snapshot molecular_mass : float Mean molecular mass (for sound speed). Default = 2.0 bins : int or array Either the number of bins or the bin edges use_velocity : Bool Determines whether to use the particles' velocities to calculate orbital velocity. Useful if the circular orbital velocities are set in the snapshot. use_omega : Bool Default=True. Use omega as a proxy for kappa to reduce noise ** RETURNS ** Q : array Toomre Q as a function of r r_edges : array Radial bin edges """ # Physical constants kB = SimArray([1.0],'k') G = SimArray([1.0],'G') # Calculate surface density sig, r_edges = sigma(snapshot, bins) # Calculate sound speed m = match_units(molecular_mass,'m_p')[0] c_s_all = np.sqrt(kB*snapshot.g['temp']/m) # Bin/average sound speed dummy, c_s, dummy2 = binned_mean(snapshot.g['rxy'], c_s_all, binedges=r_edges) if use_omega: # Calculate keplerian angular velocity (as a proxy for the epicyclic # frequency, which is a noisy calculation) if use_velocity: # Calculate directly from particle's velocity dummy, omega, dummy2 = binned_mean(snapshot.g['rxy'], \ snapshot.g['vt']/snapshot.g['rxy'], binedges=r_edges) else: # Estimate, from forces, using pynbody p = pynbody.analysis.profile.Profile(snapshot, bins=r_edges) omega = p['omega'] kappa_calc = omega else: if use_velocity: # Calculate directly from particle's velocities kappa_calc, dummy = kappa(snapshot, r_edges) else: # Estimate, from forces, using pynbody p = pynbody.analysis.profile.Profile(snapshot, bins=r_edges) kappa_calc = p['kappa'] return (kappa_calc*c_s/(np.pi*G*sig)).in_units('1'), r_edges def Q_eff(snapshot, molecular_mass=2.0, bins=100): """ Calculates the effective Toomre Q as a function of r, assuming radial temp profile and kappa ~= omega and scaleheight << wavelength. This assumption simplifies the calculation of Q_eff (where wavelength is the wavelength of the disturbances of interest) ** ARGUMENTS ** snapshot : tipsy snapshot molecular_mass : float Mean molecular mass (for sound speed). Default = 2.0 bins : int or array Either the number of bins or the bin edges ** RETURNS ** Qeff : array Effective Toomre Q as a function of r for scale height << wavelength r_edges : array Radial bin edges """ # Physical constants kB = SimArray([1.0],'k') G = SimArray([1.0],'G') # Calculate surface density sig, r_edges = sigma(snapshot, bins) # Calculate keplerian angular velocity (as a proxy for the epicyclic # frequency, which is a noisy calculation) p = pynbody.analysis.profile.Profile(snapshot, bins=r_edges) omega = p['omega'] # Calculate sound speed m = match_units(molecular_mass,'m_p')[0] c_s_all = np.sqrt(kB*snapshot.g['temp']/m) # Bin/average sound speed dummy, c_s, dummy2 = binned_mean(snapshot.g['rxy'], c_s_all, binedges=r_edges) # Calculate scale height dummy, h = height(snapshot, bins=r_edges, center_on_star=False) a = np.pi*G*sig b = (2*a*h/c_s**2).in_units('1') Q0 = (omega*c_s/a).in_units('1') return Q0 * np.sqrt(1 + b), r_edges return ((omega*c_s/a) * np.sqrt(1 + 2*a*h/c_s**2)).in_units('1'), r_edges def strip_units(x): """ Removes the units from a SimArray and returns as a numpy array. Note that x is copied so that it is not destroyed x can be a single SimArray or a tuple or list of SimArrays If any of the inputs are single number, they are returned as a number USAGE: array = strip_units(SimArray) array1, array2, ... = strip_units([SimArray1, SimArray2, ...]) """ if isinstance(x, (tuple,list)): # loop through and assign output x_out = [] for x_i in x: if np.prod(x_i.shape) == 1: # There is only one element in x_i. Make sure to return it as # a number (not an array) if np.sum(x_i.shape) == 0: # This is a zero dimensional SimArray x_out.append(x_i.tolist()) else: # This is 1 dimensional SimArray x_out.append(x_i[0]) else: #This is a multi-element SimArray x_out.append(np.asarray(x_i.tolist())) else: if np.prod(x.shape) == 1: # There is only one element in x_i. Return as a number if np.sum(x.shape) == 0: # This is a 0 dimensional SimArray x_out = x.tolist() else: # This a 1 dimensional SimArray x_out = x[0] else: x_out = np.asarray(x.tolist()) return x_out def set_units(x, units): """ Sets the units of x to units. If x has units, they are ignored. Does not destroy/alter x USAGE: SimArray = set_units(x, units) SimArray1, SimArray2, ... = set_units([x1, x2, ...], units) SimArray1, SimArray2, ... = set_units([x1, x2, ...], [units1, units2, ...]) """ if isinstance(x, (tuple,list)): x_out = [] if not isinstance(units, (tuple, list)): units = [units]*len(x) for i in range(len(x)): x_i = x[i] if pynbody.units.has_units(x_i): x_i_array = strip_units(x_i) x_out.append(SimArray(x_i_array, units[i])) else: x_out.append(SimArray(x_i, units[i])) else: if pynbody.units.has_units(x): x_array = strip_units(x) x_out = SimArray(x_array, units) else: x_out = SimArray(x, units) return x_out def setup_param(param, snapshot=None, r_orb=1.0, n_orb=10.0, n_image=None, n_snap=100, \ n_check=None): """ Sets up the following for a .param file: nSteps dDumpFrameStep iOutInterval iCheckInterval **ARGUMENTS** param : str or param_dict (see isaac.configparser, configsave) parameter file for the simulation, must already have dDelta and units set properly IF a str, assumed to be a filename snapshot : str or TipsySnap(see pynbody) or None Snapshot for the simulation. Needed to estimate the outer orbital period. IF a str, assumed to be a filename IF None, the file pointed to by param is used r_orb : float radius to calculate the outer orbital period at as a fraction of the radius of the farthest out particle. Must be between 0 and 1 n_orb : float number of outer orbital periods to run simulation for n_image : int or None Total number of frames to dump (ie, dDumpFrameStep) If None, defaults to n_snap n_snap : int Total number of simulation outputs n_check : int or None Total number of simulation checkpoints. If None, defaults to n_snap """ if (r_orb > 1) | (r_orb < 0): raise ValueError, 'r_orb must be between 0 and 1' if isinstance(snapshot, str): # A filename has been passed, not a tipsy snapshot snapshot = pynbody.load(snapshot) if isinstance(param, str): # A filename has been passed. Load the dictionary param = configparser(param, 'param') else: # Copy so as to not overwrite the input dict param = copy.deepcopy(param) R_max = r_orb * snapshot.g['rxy'].max() M_star = snapshot.s['mass'] # Read in .param stuff l_unit = '{} kpc'.format(param['dKpcUnit']) m_unit = '{} Msol'.format(SimArray(param['dMsolUnit'], 'Msol')) # Outer radius and star mass in simulation units r = float(R_max.in_units(l_unit)) M = float(M_star.in_units(m_unit)) # Calculate the number of time steps to use dt = param['dDelta'] period = 2*np.pi*np.sqrt(r**3/M) N = int(np.round(n_orb * period/dt)) param['nSteps'] = N # Calculate how often to output snapshots, frames, checkpoints if n_check is None: n_check = n_snap if n_image is None: n_image = n_snap param['dDumpFrameStep'] = int(N/n_image) param['iOutInterval'] = int(N/n_snap) param['iCheckInterval'] = int(N/n_check) return param def make_submission_script(param_name, directory=None, nodes=1, walltime=12, changa='ChaNGa_uw_mpi', jobname='changasim', scriptname='subber.sh', backfill=True): """ Creates a submission script for qsub. This is highly platform dependent """ # Set up simulation directory if directory is None: directory = os.getcwd() # Load param file param = configparser(param_name, 'param') fprefix = param['achOutName'] # Format walltime for qsub seconds = int(walltime*3600) m, s = divmod(seconds, 60) h, m = divmod(m, 60) walltime_str = '{0:02d}:{1:02d}:{2:02d}'.format(h,m,s) # Format walltime for changa walltime_min = int(walltime*60) # Open submission script subber = open(scriptname,'w') # Write to submission script subber.write('#!/bin/bash\n\ #PBS -N {0}\n\ #PBS -j oe\n\ #PBS -m be\n\ #PBS -M [email protected]\n\ #PBS -l nodes={1}:ppn=12,feature=12core\n\ #PBS -l walltime={2}\n\ #PBS -V\n'.format(jobname, nodes, walltime_str)) if backfill: subber.write('#PBS -q bf\n') subber.write('module load gcc_4.4.7-ompi_1.6.5\n') subber.write('export MX_RCACHE=0\n') subber.write('workdir={0}\n'.format(directory)) subber.write('cd $workdir\n') subber.write('changbin=$(which {0})\n'.format(changa)) subber.write('if [ -e "lastcheckpoint" ]\n\ then\n\ echo "lastcheckpoint exists -- restarting simulation..."\n\ last=`cat lastcheckpoint`\n\ mpirun --mca mtl mx --mca pml cm $changbin +restart {0}.chk$last +balancer MultistepLB_notopo -wall {2} $workdir/{1} >> $workdir/{0}.out 2>&1\n\ else\n\ echo "lastcheckpoint doesnt exist -- starting new simulation..."\n\ mpirun --mca mtl mx --mca pml cm $changbin -D 3 +consph +balancer MultistepLB_notopo -wall {2} $workdir/{1} >& $workdir/{0}.out\n\ fi\n\ '.format(fprefix, param_name, walltime_min)) subber.close() # Make submission script executable os.system('chmod a+rwx {}'.format(scriptname)) def make_param(snapshot, filename=None): """ Generates a default param dictionary. Can be saved using isaac.configsave EXAMPLE snapshot = pynbody.load('snapshot.std') # Load snapshot param_dict = isaac.make_param(snapshot) # Make default param dict isaac.configsave(param_dict, 'snapshot.param', ftype='param') # Save Optionally, the user can set the snapshot filename manually """ fname_def = os.path.join(self_dir, 'default.param') param = configparser(fname_def, ftype='param') if filename is not None: param['achInFile'] = filename param['achOutName'] = os.path.splitext(filename)[0] elif snapshot.filename != '<created>': param['achInFile'] = snapshot.filename param['achOutName'] = os.path.splitext(snapshot.filename)[0] # Set up the length units param['dKpcUnit'] = snapshot['pos'].units.ratio('kpc') # Set up the mass units param['dMsolUnit'] = snapshot['mass'].units.ratio('Msol') # Set the mean molecular mass param['dMeanMolWeight'] = snapshot.gas['mu'][0] return param def make_director(sigma_min, sigma_max, r, resolution=1200, filename='snapshot'): """ Makes a director dictionary for ChaNGa runs based on the min/max surface density, maximum image radius, and image resolution for a gaseous protoplanetary disk. The created dictionary can be saved with isaac.configsave The method is to use an example director file (saved as default.director) which works for one simulation and scale the various parameters accordingly. default.director should have a commented line in it which reads: #sigma_max float where float is the maximum surface density of the simulation in simulation units. **ARGUMENTS** sigma_min : float The surface density that corresponds to 0 density on the image (ie the minimum threshold). Required for setting the dynamic range sigma_max : float Maximum surface density in the simulation r : float Maximum radius to plot out to resolution : int or float Number of pixels in image. The image is shape (resolution, resolution) filename : str prefix to use for saving the images. Example: if filename='snapshot', then the outputs will be of form 'snapshot.000000000.ppm' **RETURNS** director : dict A .director dictionary. Can be saved with isaac.configsave """ # ----------------------------------------------------------- # Parse defaults to get scale factor for c # ----------------------------------------------------------- defaults = configparser(os.path.join(self_dir, 'default.director')) if '#sigma_max' not in defaults: raise KeyError,'Default .director file should have a line e.g. << #sigma_max 0.01 >>' sigma_max0 = defaults['#sigma_max'] c0 = defaults['colgas'][3] n0 = defaults['size'][0] r0 = defaults['eye'][2] A = (c0 * float(n0)**2)/(sigma_max0 * r0**2) # ----------------------------------------------------------- # Create new director dictionary # ----------------------------------------------------------- director = copy.deepcopy(defaults) director.pop('#sigma_max', None) logscale_min = sigma_min/sigma_max if pynbody.units.has_units(logscale_min): logscale_min = float(logscale_min.in_units('1')) c = A * float(sigma_max * r**2 /float(resolution)**2) director['colgas'][3] = c director['size'] = [resolution, resolution] director['eye'][2] = r director['file'] = filename return director def match_units(x, y): """ Matches the units of x to y and returns x and y in the same units. IF x and y don't have units, they are unchanged IF one of x or y has units, the unitless quantity is returned as a SimArray (see pynbody.array.SimArray) with the units of the other quantity. IF both have units, then an attempt is made to convert x into the units of y. If this is not possible, an error is raised, for example if x is in units of 'au' and y is in units of 'Msol' x, y can be: scalar, array, SimArray, pynbody unit (eg pynbody.units.G), or a unit string (eg 'Msol a**-2') *** RETURNS *** x, y are returned as a tuple """ # ---------------------------------------------- # Check if either is a string # ---------------------------------------------- if isinstance(x, str): x = SimArray(1.0, x) if isinstance(y,str): y = SimArray(1.0, y) # ---------------------------------------------- # Check if one is a pynbody unit # ---------------------------------------------- # If one is a named unit (eg pynbody.units.G), convert to SimArray if isinstance(x, pynbody.units.UnitBase): x = SimArray(1.0, x) if isinstance(y, pynbody.units.UnitBase): y = SimArray(1.0, y) # ---------------------------------------------- # Check the units # ---------------------------------------------- # If both have units, try to convert x to the units of y if (pynbody.units.has_units(x)) & (pynbody.units.has_units(y)): x_out = (x.in_units(y.units)) y_out = y # If only x has units, make y a SimArray with the units of x elif (pynbody.units.has_units(x)): y_out = SimArray(y, x.units) x_out = x # If only y has units, make x a SimArray with the units of y elif (pynbody.units.has_units(y)): x_out = SimArray(x, y.units) y_out = y # Otherwise, neither has units else: x_out = x y_out = y # Try to copy so that changing x_out, y_out will not change x,y try: x_out = x_out.copy() except AttributeError: pass try: y_out = y_out.copy() except AttributeError: pass return x_out, y_out def digitize_threshold(x, min_per_bin = 0, bins=10): """ Digitizes x according to bins, similar to numpy.digitize, but requires that there are at least min_per_bin entries in each bin. Bins that do not have enough entries are combined with adjacent bins until they meet the requirement. **ARGUMENTS** x : array_like Input array to be binned. Must be 1-dimensional min_per_bin : int Minimum number of entries per bin. Default = 0 bins : int or sequence of scalars, optional [same as for np.histogram] If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. **RETURNS** A tuple containing: ind : array_like Indices of the bin each element of x falls into, such that: bin_edges[i] <= x[i] < bin_edges[i+1] (See np.digitize, this uses the same convention) bin_edges: array_like The edges of the bins """ # Find number in each bin N, bin_edges = np.histogram(x, bins) if N.sum() < min_per_bin: raise RuntimeError,'Not enough particles within the bin range' n_bins = len(bin_edges) - 1 # Find out which binedges to delete edge_mask = np.ones(len(bin_edges), dtype='bool') for i in range(n_bins - 1): # Work forwards if N[i] < min_per_bin: # Set mask to not use the right bin edge edge_mask[i+1] = False # Combine the particles in current and next bin N[i] += N[i+1] N[i+1] = N[i] bin_mask = edge_mask[1:] N = N[bin_mask] bin_edges = bin_edges[edge_mask] edge_mask = np.ones(len(bin_edges), dtype='bool') n_bins = len(bin_edges) - 1 for i in range(n_bins-1, 0, -1): # Work backwards if N[i] < min_per_bin: # Set mask to not use the left bin edge edge_mask[i] = False # Combine the particles in current and next bin N[i] += N[i-1] N[i-1] = N[i] bin_edges = bin_edges[edge_mask] ind = np.digitize(x, bin_edges) return ind, bin_edges def binned_mean(x, y, bins=10, nbins=None, binedges = None, weights=None,\ weighted_bins=False, ret_bin_edges=False): """ Bins y according to x and takes the average for each bin. bins can either be an integer (the number of bins to use) or an array of binedges. bins will be overridden by nbins or binedges Optionally (for compatibility reasons) if binedges is specified, the x-bins are defined by binedges. Otherwise the x-bins are determined by nbins If weights = None, equal weights are assumed for the average, otherwise weights for each data point should be specified y_err (error in y) is calculated as the standard deviation in y for each bin, divided by sqrt(N), where N is the number of counts in each bin IF weighted_bins is True, the bin centers are calculated as a center of mass NaNs are ignored for the input. Empty bins are returned with nans RETURNS a tuple of (bin_centers, y_mean, y_err) if ret_bin_edges=False else, Returns (bin_edges, y_mean, y_err) """ if (isinstance(bins, int)) and (nbins is None): nbins = bins elif (hasattr(bins, '__iter__')) and (binedges is None): binedges = bins if binedges is not None: nbins = len(binedges) - 1 else: binedges = np.linspace(x.min(), (1 + np.spacing(2))*x.max(), nbins + 1) if weights is None: weights = np.ones(x.shape) weights = strip_units(weights) # Pre-factor for weighted STD: A = 1/(1 - (weights**2).sum()) # Initialize y_mean = np.zeros(nbins) y_std = np.zeros(nbins) # Find the index bins for each data point ind = np.digitize(x, binedges) - 1 # Ignore nans nan_ind = np.isnan(y) N = np.histogram(x, binedges)[0] # Initialize bin_centers (try to retain units) bin_centers = 0.0*binedges[1:] for i in range(nbins): #Indices to use mask = (ind==i) & (~nan_ind) # Set up the weighting w = weights[mask].copy() w /= w.sum() A = 1/(1 - (w**2).sum()) #y_mean[i] = np.nanmean(y[mask]) y_mean[i] = (w * y[mask]).sum() var = A*(w*(y[mask] - y_mean[i])**2).sum() y_std[i] = np.sqrt(var) #y_std[i] = np.std(y[use_ind]) if weighted_bins: # Center of mass of x positions bin_centers[i] = (w*x[mask]).sum() y_mean = match_units(y_mean, y)[0] y_err = y_std/np.sqrt(N) y_err = match_units(y_err, y)[0] y_mean[N==0] = np.nan y_err[N==0] = np.nan if not weighted_bins: bin_centers = (binedges[0:-1] + binedges[1:])/2.0 binedges = match_units(binedges, x)[0] bin_centers = match_units(bin_centers, x)[0] else: bin_centers[N==0] = np.nan if ret_bin_edges: return binedges, y_mean, y_err else: return bin_centers, y_mean, y_err def heatmap(x, y, z, bins=10, plot=True, output=False): """ Creates a pcolor heatmap for z evaluated at (x,y). z is binned and averaged according to x and y. x, y, and z should be 1-D arrays with the same length. IF bins = N, a pcolor plot of shape (N,N) is returned IF bins = (M,N) [a tuple], a pcolor plot of shape (M,N) is returned IF plot = True (default) a plot is created. *** RETURNS *** IF output = False, nothing is returned (default) IF output = True: Returns x_mesh, y_mesh, z_binned x_mesh, y_mesh are the meshgrid x,y edges z is evaluted in. z_binned is the average of z for each bin. """ N, x_binedges, y_binedges = np.histogram2d(x, y, bins = bins) x_ind = np.digitize(x, x_binedges) - 1 y_ind = np.digitize(y, y_binedges) - 1 nx_bins = len(x_binedges) - 1 ny_bins = len(y_binedges) - 1 z_binned = np.zeros([nx_bins, ny_bins]) for i in range(nx_bins): for j in range(ny_bins): z_binned[i,j] = z[(x_ind==i) & (y_ind==j)].mean() x_mesh, y_mesh = np.meshgrid(x_binedges, y_binedges, indexing = 'ij') if plot: cmap = copy.copy(matplotlib.cm.jet) cmap.set_bad('w',1.) masked_z = np.ma.array(z_binned, mask=np.isnan(z_binned)) plt.pcolormesh(x_mesh, y_mesh, masked_z, cmap = cmap) plt.colorbar() if output: return x_mesh, y_mesh, z_binned def configparser(fname,ftype='auto'): """ -------------------------------------------------- parameters = configparser(fname,ftype='auto') Tries to parse ChaNGa configuration files ftype can be 'auto', 'param', or 'director'. If auto, config parser will try to determine the filetype on its own. returns: dictionary 'parameters'. The keys are the names of the parameters and the values are the values defined in the file fname -------------------------------------------------- """ types = np.array(['param','director']) ftype = ftype.lower() param = {} if ftype == 'auto': # Try using extension to determine file type a = fname.split('.') ftype = a[-1].lower() if np.sum(types == ftype) == 0: # Could not find file type print ('Could not determine config filetype...exiting') return param # Try to determine filetype # -------------------------------------------------- # Parse param file # -------------------------------------------------- if ftype == 'param': farray = np.genfromtxt(fname,delimiter='=',dtype=None) for n in range(len(farray)): param[farray[n,0].strip()] = str2num(farray[n,1].strip()) # -------------------------------------------------- # Parse director file # -------------------------------------------------- elif ftype == 'director': f = open(fname,'r') f.seek(0) dummy = 0 for line in f: a = line.strip().split() if len(a) == 1: # we're dealing with a flag param[a[0]] = str2num(a[0]) elif len(a) > 1: param[a[0]] = str2num(a[1:]) else: # This is an empty line pass f.close() # -------------------------------------------------- # Throw warning, return 'param' as empty # -------------------------------------------------- else: warnings.warn('Still cannot determine filetype.') return param def configsave(param,filename,ftype='auto'): """ -------------------------------------------------- Saves parameters defined by param (see configparser) to filename. Possible ftypes are 'director' and 'param'. If set to auto, configsave tries to guess file type from the extension. -------------------------------------------------- """ f = open(filename,'w') types = np.array(['param','director']) ftype = ftype.lower() if ftype == 'auto': # Try to figure out filetype a = filename.split('.') ftype = a[-1].lower() if ftype == 'param': pars = sorted(param.iteritems()) for n in range(len(pars)): f.write('{0:25s}= {1}\n'.format(pars[n][0],pars[n][1])) elif ftype == 'director': values = param.values() keys = param.keys() for n in range(len(keys)): outstr = keys[n] if outstr == values[n]: # We just have a flag pass elif isinstance(values[n],(float,int,str)): outstr = outstr + ' {0}'.format(values[n]) else: outstr = outstr + ' ' + ' '.join(map(str,values[n])) f.write('{0}\n'.format(outstr)) else: #no file type warnings.warn('no such filetype {0}\nCould not save'.format(ftype)) f.close() def extrap1d(x,y): """ Calculates a linear interpolation of x and y and does a linear extrapolation for points outside of x and y. Uses scipy.interpolate.interp1d """ # Ignore nans ind = (~np.isnan(x)) & (~np.isnan(y)) x = x[ind] y = y[ind] # calculate interpolation yspline = interp.interp1d(x,y,kind='linear') def fcn(x0): if hasattr(x0,'__iter__'): mask1 = x0 < x.min() mask2 = x0 > x.max() out = np.zeros(len(x0)) out[mask1] = y[0] + (x0[mask1] - x[0])*(y[1]-y[0])/(x[1]-x[0]) out[mask2] = y[-1] + (x0[mask2] - x[-1])*(y[-1] - y[-2])/(x[-1] - x[-2]) mask3 = (~mask1) & (~mask2) out[mask3] = yspline(x0[mask3]) else: if x0 < x.min(): out = y[0] + (x0 - x[0])*(y[1]-y[0])/(x[1]-x[0]) elif x0 > x.max(): out = y[-1] + (x0 - x[-1])*(y[-1] - y[-2])/(x[-1] - x[-2]) else: out = yspline(x0) # Don't return an array with one element out = float(out) return out return fcn def smoothstep(x,degree=5,rescale=False): """ Calculates a smooth step function y(x) evaluated at the data points x. x should be a numpy array or float. y(x) is a polynomial of order 'degree' (default is 5). degree must be an odd number between 3 and 25 (inclusive). The higher the order, the sharper the step is. y(x) is defined by: y(0) = 0 y(1) = 1 The first (degree - 1)/2 derivatives are 0 at y = 0,1 *** ARGUMENTS *** * x * Points at which to evaluate the smoothstep * degree * Degree of the smooth step. Must be odd number between 3 and 25 default = 5 * rescale * Rescale x to be between 0 and 1. Default = False. If True, x MUST be an array (greater than length 1) *** RETURNS *** """ # ----------------------------------------------------------- # Load up the hermite spline (polynomial) coefficients # ----------------------------------------------------------- fname = os.path.join(self_dir,'hermite_spline_coeffs.dat') f =open(fname,'r') coeffs_list = [] order_list = [] for line in f: l = line.strip().split(',') order_list.append(int(l[0])) for n in range(len(l)): l[n] = float(l[n].strip()) coeffs_list.append(np.array(l[1:],dtype='float')) order = np.array(order_list) coeffs = coeffs_list[(order==degree).argmax()] # ----------------------------------------------------------- # Calculate the smooth step function y(x) # ----------------------------------------------------------- n_coeffs = len(coeffs) if rescale: try: x = (x - x.min())/(x.max() - x.min()) except: raise RuntimeError,'Could not rescale x. Make sure x is an array' if isinstance(x, (int, long, float, complex)): # x is a number, handle accordingly y = 0.0 if (x > 0) & (x < 1): # If 0<x<1, calculate the smooth step for n in range(n_coeffs): y += coeffs[n] * x**(degree - n) elif x <= 0: y = 0.0 else: y = 1.0 else: # Assume x is a numpy array y = np.zeros(x.shape) ind = (x > 0) & (x < 1) for n in range(n_coeffs): y[ind] += coeffs[n] * x[ind]**(degree-n) y[x >= 1] = 1 return y def str2num(string): """ -------------------------------------------------- Tries to see if 'string' is a number If 'string' is a string, returns: int(string) for integers float(string) for floats 'string' otherwise If 'string' is a float or an integer, returns: string If none of the above, treats it like a list or tuple and returns for each entry of 'string' a float,int, or str as required. Returns as a list -------------------------------------------------- """ if isinstance(string,int): output = string elif isinstance(string,float): output = string elif not isinstance(string,str): output = [] for a in string: try: output.append(int(a)) except: try: output.append(float(a)) except: output.append(a) if len(output) == 1: output = output[0] else: output = string try: output = int(string) except: try: output = float(string) except: pass return output def loadhalos(fname=''): """ Load halo (.grp) file generated from fof Should be an ascii list of numbers, where the first row contains the total number of particles (gas+star+dark) and the remaining rows define which halo each particle belongs to """ if fname == '': # Empty filename pass grp = np.loadtxt(fname,dtype=np.uint16) grp = grp[1:] # (ignore the number of particles) return grp def fof(fFilter,saveDir='',minMembers=8,linklen=0.01): """ -------------------------------------------------- A simple script that allows you to loop through calls to fof for many files in one directory -------------------------------------------------- """ flist = np.sort(glob.glob(fFilter)) nfiles = len(flist) if (saveDir != '') and nfiles > 0: if ~os.path.isdir(saveDir): os.makedirs(saveDir) for n in range(nfiles): fname = flist[n] outname = os.path.join(saveDir,fname) os.system('totipnat < {0} | fof -g -m {1} -e {2} -o {3}'.format(fname,minMembers,linklen,outname)) def pbverbosity(cmd=None): """ Changes and returns pynbody verbosity. Works for different versions of pynbody. **ARGUMENTS** cmd -If None (default) current verbosity level is returned, nothing is done -If 'off', pynbody is silenced -If 'on', pynbody verbosity is set on -If something else, cmd is assumed to be a verbosity level **RETURNS** current_verbosity pynbody verbosity level before any changes were made **EXAMPLES** *Toggle pynbody verbosity* current_verbosity = pbverbosity('off') ... do stuff ... pbverbosity(current_verbosity) """ # ----------------------------- # Get current verbosity level # ----------------------------- if hasattr(pb, 'logger'): # As of v0.30, pynbody uses python's logging to handle verbosity logger = True current_verbosity = pb.logger.getEffectiveLevel() pb.logger.setLevel(logging.ERROR) else: # For pynbody version < 0.3, verbosity is handled in the config logger = False current_verbosity = pb.config['verbose'] # ----------------------------- # Change verbosity # ----------------------------- if cmd is None: # Don't change verbosity. just return the current verbosity pass elif cmd == 'off': # Toggle verbosity off if logger: pb.logger.setLevel(logging.ERROR) else: pb.config['verbose'] = False elif cmd == 'on': # Toggle verbosity on if logger: pb.logger.setLevel(logging.DEBUG) else: pb.config['verbose'] = True else: # Set verbosity to the verbosity level specified by cmd if logger: pb.logger.setLevel(cmd) else: pb.config['verbose'] = cmd # Return the verbosity level before any changes were made return current_verbosity
mit
zuku1985/scikit-learn
examples/decomposition/plot_ica_blind_source_separation.py
349
2228
""" ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure() models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show()
bsd-3-clause
shaneknapp/spark
python/pyspark/pandas/tests/plot/test_series_plot.py
15
4133
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import pandas as pd import numpy as np from pyspark import pandas as ps from pyspark.pandas.plot import PandasOnSparkPlotAccessor, BoxPlotBase from pyspark.testing.pandasutils import have_plotly, plotly_requirement_message class SeriesPlotTest(unittest.TestCase): @property def pdf1(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10] ) @property def psdf1(self): return ps.from_pandas(self.pdf1) @unittest.skipIf(not have_plotly, plotly_requirement_message) def test_plot_backends(self): plot_backend = "plotly" with ps.option_context("plotting.backend", plot_backend): self.assertEqual(ps.options.plotting.backend, plot_backend) module = PandasOnSparkPlotAccessor._get_plot_backend(plot_backend) self.assertEqual(module.__name__, "pyspark.pandas.plot.plotly") def test_plot_backends_incorrect(self): fake_plot_backend = "none_plotting_module" with ps.option_context("plotting.backend", fake_plot_backend): self.assertEqual(ps.options.plotting.backend, fake_plot_backend) with self.assertRaises(ValueError): PandasOnSparkPlotAccessor._get_plot_backend(fake_plot_backend) def test_box_summary(self): def check_box_summary(psdf, pdf): k = 1.5 stats, fences = BoxPlotBase.compute_stats(psdf["a"], "a", whis=k, precision=0.01) outliers = BoxPlotBase.outliers(psdf["a"], "a", *fences) whiskers = BoxPlotBase.calc_whiskers("a", outliers) fliers = BoxPlotBase.get_fliers("a", outliers, whiskers[0]) expected_mean = pdf["a"].mean() expected_median = pdf["a"].median() expected_q1 = np.percentile(pdf["a"], 25) expected_q3 = np.percentile(pdf["a"], 75) iqr = expected_q3 - expected_q1 expected_fences = (expected_q1 - k * iqr, expected_q3 + k * iqr) pdf["outlier"] = ~pdf["a"].between(fences[0], fences[1]) expected_whiskers = ( pdf.query("not outlier")["a"].min(), pdf.query("not outlier")["a"].max(), ) expected_fliers = pdf.query("outlier")["a"].values self.assertEqual(expected_mean, stats["mean"]) self.assertEqual(expected_median, stats["med"]) self.assertEqual(expected_q1, stats["q1"] + 0.5) self.assertEqual(expected_q3, stats["q3"] - 0.5) self.assertEqual(expected_fences[0], fences[0] + 2.0) self.assertEqual(expected_fences[1], fences[1] - 2.0) self.assertEqual(expected_whiskers[0], whiskers[0]) self.assertEqual(expected_whiskers[1], whiskers[1]) self.assertEqual(expected_fliers, fliers) check_box_summary(self.psdf1, self.pdf1) check_box_summary(-self.psdf1, -self.pdf1) if __name__ == "__main__": from pyspark.pandas.tests.plot.test_series_plot import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
sealhuang/brainCodingToolbox
braincode/prf/vim2_plsreg.py
3
11392
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: import os import numpy as np from scipy import ndimage from scipy.misc import imsave from sklearn.cross_decomposition import PLSRegression from sklearn.externals import joblib from braincode.util import configParser from braincode.math import corr2_coef from braincode.math import get_pls_components, pls_regression_predict from braincode.pipeline import retinotopy from braincode.prf import util as vutil from braincode.prf import dataio def check_path(dir_path): """Check whether the directory does exist, if not, create it.""" if not os.path.exists(dir_path): os.mkdir(dir_path, 0755) def retinotopic_mapping(corr_file, data_dir, vxl_idx=None, figout=False): """Make the retinotopic mapping using activation map from CNN.""" if figout: fig_dir = os.path.join(data_dir, 'fig') check_path(fig_dir) # load the cross-correlation matrix from file corr_mtx = np.load(corr_file, mmap_mode='r') # set voxel index if not isinstance(vxl_idx, np.ndarray): vxl_idx = np.arange(corr_mtx.shape[0]) elif len(vxl_idx) != corr_mtx.shape[0]: print 'mismatch on voxel number!' return else: print 'voxel index loaded.' img_size = 55.0 pos_mtx = np.zeros((73728, 2)) pos_mtx[:] = np.nan for i in range(len(vxl_idx)): print 'Iter %s of %s' %(i+1, len(vxl_idx)), tmp = corr_mtx[i, :] tmp = np.nan_to_num(np.array(tmp)) # significant threshold for one-tail test tmp[tmp <= 0.019257] = 0 if np.sum(tmp): mmtx = tmp.reshape(55, 55) #tmp = tmp.reshape(96, 27, 27) #mmtx = np.max(tmp, axis=0) print mmtx.min(), mmtx.max() if figout: fig_file = os.path.join(fig_dir, 'v'+str(vxl_idx[i])+'.png') imsave(fig_file, mmtx) # get indices of n maximum values max_n = 20 row_idx, col_idx = np.unravel_index( np.argsort(mmtx.ravel())[-1*max_n:], mmtx.shape) nmtx = np.zeros(mmtx.shape) nmtx[row_idx, col_idx] = mmtx[row_idx, col_idx] # center of mass x, y = ndimage.measurements.center_of_mass(nmtx) pos_mtx[vxl_idx[i], :] = [x, y] else: print ' ' #receptive_field_file = os.path.join(data_dir, 'receptive_field_pos.npy') #np.save(receptive_field_file, pos_mtx) #pos_mtx = np.load(receptive_field_file) # generate retinotopic mapping base_name = 'train_max' + str(max_n) prf2visual_angle(pos_mtx, img_size, data_dir, base_name) def prf2visual_angle(prf_mtx, img_size, out_dir, base_name): """Generate retinotopic mapping based on voxels' pRF parameters. `prf_mtx` is a #voxel x pRF-features matrix, pRF features can be 2 columns (row, col) of image or 3 columns which adding a third pRF size parameters. """ feature_size = prf_mtx.shape[1] pos_mtx = prf_mtx[:, :2] # eccentricity ecc = retinotopy.coord2ecc(pos_mtx, img_size, 20) vol = ecc.reshape(18, 64, 64) vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_ecc.nii.gz')) # angle angle = retinotopy.coord2angle(pos_mtx, img_size) vol = angle.reshape(18, 64, 64) vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_angle.nii.gz')) # pRF size if feature_size > 2: size_angle = retinotopy.get_prf_size(prf_mtx, 55, 20) vol = size_angle.reshape(18, 64, 64) vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_size.nii.gz')) def pls_y_pred_x(plsca, Y): """Predict X based on Y using a trained PLS CCA model `plsca`. """ coef_ = np.dot(plsca.y_rotations_, plsca.x_loadings_.T) coef_ = (1./plsca.y_std_.reshape((plsca.y_weights_.shape[0], 1)) * coef_ * plsca.x_std_) # Normalize Yk = Y - plsca.y_mean_ Yk /= plsca.y_std_ Xpred = np.dot(Y, coef_) return Xpred + plsca.x_mean_ def plscorr_eval(train_fmri_ts, train_feat_ts, val_fmri_ts, val_feat_ts, out_dir, mask_file): """Compute PLS correlation between brain activity and CNN activation.""" train_feat_ts = train_feat_ts.reshape(-1, train_feat_ts.shape[3]).T val_feat_ts = val_feat_ts.reshape(-1, val_feat_ts.shape[3]).T train_fmri_ts = train_fmri_ts.T val_fmri_ts = val_fmri_ts.T # Iteration loop for different component number #for n in range(5, 19): # print '--- Components number %s ---' %(n) # plsca = PLSCanonical(n_components=n) # plsca.fit(train_feat_ts, train_fmri_ts) # pred_feat_c, pred_fmri_c = plsca.transform(val_feat_ts, val_fmri_ts) # pred_fmri_ts = plsca.predict(val_feat_ts) # # calculate correlation coefficient between truth and prediction # r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair') # # get top 20% corrcoef for model evaluation # vsample = int(np.rint(0.2*len(r))) # print 'Sample size for evaluation : %s' % (vsample) # r.sort() # meanr = np.mean(r[-1*vsample:]) # print 'Mean prediction corrcoef : %s' %(meanr) # model generation based on optimized CC number cc_num = 10 plsca = PLSCanonical(n_components=cc_num) plsca.fit(train_feat_ts, train_fmri_ts) from sklearn.externals import joblib joblib.dump(plsca, os.path.join(out_dir, 'plsca_model.pkl')) plsca = joblib.load(os.path.join(out_dir, 'plsca_model.pkl')) # calculate correlation coefficient between truth and prediction pred_fmri_ts = plsca.predict(val_feat_ts) fmri_pred_r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair') mask = vutil.data_swap(mask_file) vxl_idx = np.nonzero(mask.flatten()==1)[0] tmp = np.zeros_like(mask.flatten(), dtype=np.float64) tmp[vxl_idx] = fmri_pred_r tmp = tmp.reshape(mask.shape) vutil.save2nifti(tmp, os.path.join(out_dir, 'pred_fmri_r.nii.gz')) pred_feat_ts = pls_y_pred_x(plsca, val_fmri_ts) pred_feat_ts = pred_feat_ts.T.reshape(96, 14, 14, 540) np.save(os.path.join(out_dir, 'pred_feat.npy'), pred_feat_ts) # get PLS-CCA weights feat_cc, fmri_cc = plsca.transform(train_feat_ts, train_fmri_ts) np.save(os.path.join(out_dir, 'feat_cc.npy'), feat_cc) np.save(os.path.join(out_dir, 'fmri_cc.npy'), fmri_cc) feat_weight = plsca.x_weights_.reshape(96, 14, 14, cc_num) #feat_weight = plsca.x_weights_.reshape(96, 11, 11, cc_num) fmri_weight = plsca.y_weights_ np.save(os.path.join(out_dir, 'feat_weights.npy'), feat_weight) np.save(os.path.join(out_dir, 'fmri_weights.npy'), fmri_weight) fmri_orig_ccs = get_pls_components(plsca.y_scores_, plsca.y_loadings_) np.save(os.path.join(out_dir, 'fmri_orig_ccs.npy'), fmri_orig_ccs) def inter_subj_cc_sim(subj1_id, subj2_id, subj_dir): """Compute inter-subjects CCs similarity.""" subj1_dir = os.path.join(subj_dir, 'vS%s'%(subj1_id)) subj2_dir = os.path.join(subj_dir, 'vS%s'%(subj2_id)) #-- inter-channel similarity feat_weights_file1 = os.path.join(subj1_dir, 'plscca', 'layer1', 'feat_weights.npy') feat_weights_file2 = os.path.join(subj2_dir, 'plscca', 'layer1', 'feat_weights.npy') feat_cc_corr1 = np.load(feat_cc_corr_file1).reshape(96, 121, 10) feat_cc_corr2 = np.load(feat_cc_corr_file2).reshape(96, 121, 10) sim_mtx = np.zeros((960, 960)) for i in range(10): data1 = feat_cc_corr1[..., i] for j in range(10): data2 = feat_cc_corr2[..., j] tmp = corr2_coef(data1, data2) sim_mtx[i*96:(i+1)*96, j*96:(j+1)*96] = np.abs(tmp) np.save('feat_cc_weights_sim_subj_%s_%s.npy'%(subj1_id, subj2_id), sim_mtx) #-- inter-CC similarity #feat_cc_corr_file1 = os.path.join(subj1_dir, 'plscca', # 'layer1', 'feat_cc_corr.npy') #feat_cc_corr_file2 = os.path.join(subj2_dir, 'plscca', # 'layer1', 'feat_cc_corr.npy') #feat_cc_corr1 = np.load(feat_cc_corr_file1).reshape(96, 11, 11, 10) #feat_cc_corr2 = np.load(feat_cc_corr_file2).reshape(96, 11, 11, 10) #avg_weights1 = vutil.fweights_top_mean(feat_cc_corr1, 0.2) #avg_weights2 = vutil.fweights_top_mean(feat_cc_corr2, 0.2) #sim_mtx = corr2_coef(avg_weights1, avg_weights2) #np.save('feat_cc_sim_subj_%s_%s.npy'%(subj1_id, subj2_id), sim_mtx) pass if __name__ == '__main__': """Main function.""" # config parser cf = configParser.Config('config') # directory config for database db_dir = cf.get('database', 'path') db_dir = os.path.join(db_dir, 'vim2') # directory config for analysis root_dir = cf.get('base', 'path') feat_dir = os.path.join(root_dir, 'sfeatures', 'vim2') res_dir = os.path.join(root_dir, 'subjects') #-- general config config subj_id = 1 subj_dir = os.path.join(res_dir, 'vim2_S%s'%(subj_id)) pls_dir = os.path.join(subj_dir, 'pls') prf_dir = os.path.join(subj_dir, 'prf', 'gaussian_kernel') check_path(pls_dir) #-- load fmri data fmri_file = os.path.join(prf_dir, 'roi_orig_fmri.npz') fmri_data = np.load(fmri_file) #-- load gabor feats: data.shape = (x, y, feature_size, 7200/540) train_feat_file = os.path.join(feat_dir, 'train_gabor_trs_scale.npy') train_feat_ts = np.load(train_feat_file, mmap_mode='r') val_feat_file = os.path.join(feat_dir, 'val_gabor_trs_scale.npy') val_feat_ts = np.load(val_feat_file, mmap_mode='r') #-- PLS regression train_feat = train_feat_ts.reshape(-1, 7200).T train_fmri = fmri_data['train_ts'].T print 'PLS model initializing ...' comps = 20 pls2 = PLSRegression(n_components=comps) pls2.fit(train_fmri, train_feat) #pls2.fit(train_feat, train_fmri) joblib.dump(pls2, os.path.join(pls_dir, 'pls_model_c%s.pkl'%(comps))) for i in range(comps): print 'Component %s'%(i+1) print np.corrcoef(pls2.x_scores_[:, i], pls2.y_scores_[:, i]) # get predicted fmri response based on PLS model #pred_train_fmri = pls_regression_predict(pls2, train_feat) pred_train_feat = pls_regression_predict(pls2, train_fmri) #pred_val_fmri = pls_regression_predict(pls2, val_feat_ts.reshape(-1, 540).T) pred_val_feat = pls_regression_predict(pls2, fmri_data['val_ts'].T) pred_file = os.path.join(pls_dir, 'pls_pred_feat_c%s'%(comps)) np.savez(pred_file, pred_train=pred_train_feat, pred_val=pred_val_feat) #-- visualize PLS weights #pls_model_file = os.path.join(pls_dir, 'pls_model_c20.pkl') #pls2 = joblib.load(pls_model_file) # plot feature weights for each component of PLS #xwts = pls2.x_weights_.reshape(128, 128, 5, -1) #vutil.plot_pls_fweights(xwts, pls_dir, 'feat_weights') # save fmri weights for each component of PLS as nifti file #vxl_idx = fmri_data['vxl_idx'] #ywts = pls2.y_weights_ #for c in range(ywts.shape[1]): # vxl_data = ywts[:, c] # outfile = os.path.join(pls_dir, 'fmri_weights_C%s.nii.gz'%(c+1)) # vutil.vxl_data2nifti(vxl_data, vxl_idx, outfile) # compute corrcoef of local ans global brain activity
bsd-3-clause
3manuek/scikit-learn
sklearn/metrics/metrics.py
233
1262
import warnings warnings.warn("sklearn.metrics.metrics is deprecated and will be removed in " "0.18. Please import from sklearn.metrics", DeprecationWarning) from .ranking import auc from .ranking import average_precision_score from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score
bsd-3-clause
mwv/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
251
1895
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] plt.plot(x_plot, f(x_plot), label="ground truth") plt.scatter(x, y, label="training points") for degree in [3, 4, 5]: model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
awni/tensorflow
tensorflow/contrib/skflow/python/skflow/tests/test_nonlinear.py
1
5127
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import random from sklearn import datasets from sklearn.metrics import accuracy_score, mean_squared_error import tensorflow as tf from tensorflow.contrib.skflow.python import skflow class NonLinearTest(tf.test.TestCase): def testIrisDNN(self): random.seed(42) iris = datasets.load_iris() classifier = skflow.TensorFlowDNNClassifier( hidden_units=[10, 20, 10], n_classes=3) classifier.fit(iris.data, iris.target) score = accuracy_score(iris.target, classifier.predict(iris.data)) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) weights = classifier.weights_ self.assertEqual(weights[0].shape, (4, 10)) self.assertEqual(weights[1].shape, (10, 20)) self.assertEqual(weights[2].shape, (20, 10)) self.assertEqual(weights[3].shape, (10, 3)) biases = classifier.bias_ self.assertEqual(len(biases), 4) def testBostonDNN(self): random.seed(42) boston = datasets.load_boston() regressor = skflow.TensorFlowDNNRegressor( hidden_units=[10, 20, 10], n_classes=0, batch_size=boston.data.shape[0], steps=200, learning_rate=0.001) regressor.fit(boston.data, boston.target) score = mean_squared_error( boston.target, regressor.predict(boston.data)) self.assertLess(score, 100, "Failed with score = {0}".format(score)) weights = regressor.weights_ self.assertEqual(weights[0].shape, (13, 10)) self.assertEqual(weights[1].shape, (10, 20)) self.assertEqual(weights[2].shape, (20, 10)) self.assertEqual(weights[3].shape, (10, 1)) biases = regressor.bias_ self.assertEqual(len(biases), 4) def testRNN(self): random.seed(42) import numpy as np data = np.array(list([[2, 1, 2, 2, 3], [2, 2, 3, 4, 5], [3, 3, 1, 2, 1], [2, 4, 5, 4, 1]]), dtype=np.float32) # labels for classification labels = np.array(list([1, 0, 1, 0]), dtype=np.float32) # targets for regression targets = np.array(list([10, 16, 10, 16]), dtype=np.float32) test_data = np.array(list([[1, 3, 3, 2, 1], [2, 3, 4, 5, 6]])) def input_fn(X): return tf.split(1, 5, X) # Classification classifier = skflow.TensorFlowRNNClassifier( rnn_size=2, cell_type='lstm', n_classes=2, input_op_fn=input_fn) classifier.fit(data, labels) classifier.weights_ classifier.bias_ predictions = classifier.predict(test_data) self.assertAllClose(predictions, np.array([1, 0])) classifier = skflow.TensorFlowRNNClassifier( rnn_size=2, cell_type='rnn', n_classes=2, input_op_fn=input_fn, num_layers=2) classifier.fit(data, labels) classifier = skflow.TensorFlowRNNClassifier( rnn_size=2, cell_type='invalid_cell_type', n_classes=2, input_op_fn=input_fn, num_layers=2) with self.assertRaises(ValueError): classifier.fit(data, labels) # Regression regressor = skflow.TensorFlowRNNRegressor( rnn_size=2, cell_type='gru', input_op_fn=input_fn) regressor.fit(data, targets) regressor.weights_ regressor.bias_ predictions = regressor.predict(test_data) def testBidirectionalRNN(self): random.seed(42) import numpy as np data = np.array(list([[2, 1, 2, 2, 3], [2, 2, 3, 4, 5], [3, 3, 1, 2, 1], [2, 4, 5, 4, 1]]), dtype=np.float32) labels = np.array(list([1, 0, 1, 0]), dtype=np.float32) def input_fn(X): return tf.split(1, 5, X) # Classification classifier = skflow.TensorFlowRNNClassifier( rnn_size=2, cell_type='lstm', n_classes=2, input_op_fn=input_fn, bidirectional=True) classifier.fit(data, labels) predictions = classifier.predict(np.array(list([[1, 3, 3, 2, 1], [2, 3, 4, 5, 6]]))) self.assertAllClose(predictions, np.array([1, 0])) if __name__ == "__main__": tf.test.main()
apache-2.0
rcomer/iris
docs/gallery_code/oceanography/plot_load_nemo.py
3
2120
""" Load a Time Series of Data From the NEMO Model ============================================== This example demonstrates how to load multiple files containing data output by the NEMO model and combine them into a time series in a single cube. The different time dimensions in these files can prevent Iris from concatenating them without the intervention shown here. """ from __future__ import unicode_literals import matplotlib.pyplot as plt import iris import iris.plot as iplt import iris.quickplot as qplt from iris.util import promote_aux_coord_to_dim_coord def main(): # Load the three files of sample NEMO data. fname = iris.sample_data_path("NEMO/nemo_1m_*.nc") cubes = iris.load(fname) # Some attributes are unique to each file and must be blanked # to allow concatenation. differing_attrs = ["file_name", "name", "timeStamp", "TimeStamp"] for cube in cubes: for attribute in differing_attrs: cube.attributes[attribute] = "" # The cubes still cannot be concatenated because their time dimension is # time_counter rather than time. time needs to be promoted to allow # concatenation. for cube in cubes: promote_aux_coord_to_dim_coord(cube, "time") # The cubes can now be concatenated into a single time series. cube = cubes.concatenate_cube() # Generate a time series plot of a single point plt.figure() y_point_index = 100 x_point_index = 100 qplt.plot(cube[:, y_point_index, x_point_index], "o-") # Include the point's position in the plot's title lat_point = cube.coord("latitude").points[y_point_index, x_point_index] lat_string = "{:.3f}\u00B0 {}".format( abs(lat_point), "N" if lat_point > 0.0 else "S" ) lon_point = cube.coord("longitude").points[y_point_index, x_point_index] lon_string = "{:.3f}\u00B0 {}".format( abs(lon_point), "E" if lon_point > 0.0 else "W" ) plt.title( "{} at {} {}".format( cube.long_name.capitalize(), lat_string, lon_string ) ) iplt.show() if __name__ == "__main__": main()
lgpl-3.0
Unidata/MetPy
v0.4/_downloads/Point_Interpolation.py
3
5082
# Copyright (c) 2008-2016 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """ Point Interpolation =================== Compares different point interpolation approaches. """ import cartopy import cartopy.crs as ccrs from matplotlib.colors import BoundaryNorm import matplotlib.pyplot as plt import numpy as np from metpy.cbook import get_test_data from metpy.gridding.gridding_functions import (interpolate, remove_nan_observations, remove_repeat_coordinates) ########################################### def basic_map(map_proj): """Make our basic default map for plotting""" fig = plt.figure(figsize=(15, 10)) view = fig.add_axes([0, 0, 1, 1], projection=to_proj) view.set_extent([-120, -70, 20, 50]) view.add_feature(cartopy.feature.NaturalEarthFeature(category='cultural', name='admin_1_states_provinces_lakes', scale='50m', facecolor='none')) view.add_feature(cartopy.feature.OCEAN) view.add_feature(cartopy.feature.COASTLINE) view.add_feature(cartopy.feature.BORDERS, linestyle=':') return view def station_test_data(variable_names, proj_from=None, proj_to=None): f = get_test_data('station_data.txt') all_data = np.loadtxt(f, skiprows=1, delimiter=',', usecols=(1, 2, 3, 4, 5, 6, 7, 17, 18, 19), dtype=np.dtype([('stid', '3S'), ('lat', 'f'), ('lon', 'f'), ('slp', 'f'), ('air_temperature', 'f'), ('cloud_fraction', 'f'), ('dewpoint', 'f'), ('weather', '16S'), ('wind_dir', 'f'), ('wind_speed', 'f')])) all_stids = [s.decode('ascii') for s in all_data['stid']] data = np.concatenate([all_data[all_stids.index(site)].reshape(1, ) for site in all_stids]) value = data[variable_names] lon = data['lon'] lat = data['lat'] if proj_from is not None and proj_to is not None: try: proj_points = proj_to.transform_points(proj_from, lon, lat) return proj_points[:, 0], proj_points[:, 1], value except Exception as e: print(e) return None return lon, lat, value from_proj = ccrs.Geodetic() to_proj = ccrs.AlbersEqualArea(central_longitude=-97.0000, central_latitude=38.0000) levels = list(range(-20, 20, 1)) cmap = plt.get_cmap('magma') norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) x, y, temp = station_test_data('air_temperature', from_proj, to_proj) x, y, temp = remove_nan_observations(x, y, temp) x, y, temp = remove_repeat_coordinates(x, y, temp) ########################################### # Scipy.interpolate linear # ------------------------ gx, gy, img = interpolate(x, y, temp, interp_type='linear', hres=75000) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) ########################################### # Natural neighbor interpolation (MetPy implementation) # ----------------------------------------------------- # `Reference <https://github.com/Unidata/MetPy/files/138653/cwp-657.pdf>`_ gx, gy, img = interpolate(x, y, temp, interp_type='natural_neighbor', hres=75000) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) ########################################### # Cressman interpolation # ---------------------- # search_radius = 100 km # # grid resolution = 25 km # # min_neighbors = 1 gx, gy, img = interpolate(x, y, temp, interp_type='cressman', minimum_neighbors=1, hres=75000, search_radius=100000) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) ########################################### # Barnes Interpolation # -------------------- # search_radius = 100km # # min_neighbors = 3 gx, gy, img1 = interpolate(x, y, temp, interp_type='barnes', hres=75000, search_radius=100000) img1 = np.ma.masked_where(np.isnan(img1), img1) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img1, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) ########################################### # Radial basis function interpolation # ------------------------------------ # linear gx, gy, img = interpolate(x, y, temp, interp_type='rbf', hres=75000, rbf_func='linear', rbf_smooth=0) img = np.ma.masked_where(np.isnan(img), img) view = basic_map(to_proj) mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm) plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels) plt.show()
bsd-3-clause
dsquareindia/scikit-learn
examples/feature_stacker.py
80
1911
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way too high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
stelfrich/openmicroscopy
components/tools/OmeroPy/test/unit/test_jvmcfg.py
2
7569
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2014-2015 Glencoe Software, Inc. All Rights Reserved. # Use is subject to license terms supplied in LICENSE.txt # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """ Test of the automatic JVM setting logic for OMERO startup. """ import pytest from omero.config import ConfigXml, xml from omero.install.jvmcfg import adjust_settings from omero.install.jvmcfg import ManualStrategy from omero.install.jvmcfg import PercentStrategy from omero.install.jvmcfg import Settings from omero.install.jvmcfg import Strategy from omero.install.jvmcfg import strip_dict from omero.install.jvmcfg import usage_charts from omero.util.temp_files import create_path from path import path from xml.etree.ElementTree import SubElement from xml.etree.ElementTree import tostring from xml.etree.ElementTree import XML from test.unit.test_config import initial def write_config(data): p = create_path() i = initial() for k, v in data.items(): for x in i[0:2]: # __ACTIVE__ & default SubElement(x, "property", name=k, value=v) string = tostring(i, 'utf-8') txt = xml.dom.minidom.parseString(string).toprettyxml(" ", "\n", None) p.write_text(txt) return p class TestMemoryStrip(object): def test_1(self): rv = strip_dict({"a.b": "c"}, prefix="a") assert {"b": "c"} == rv def test_2(self): rv = strip_dict({"a.b.c": "d"}, prefix="a.b") assert rv["c"] == "d" def test_3(self): rv = strip_dict({ "omero.jvmcfg.foo": "a", "something.else": "b"}) assert rv["foo"] == "a" assert "something.else" not in rv @pytest.mark.parametrize("input,output", ( ({"omero.jvmcfg.heap_size.blitz": "1g"}, {"heap_size": "1g"}), )) def test_4(self, input, output): p = write_config(input) config = ConfigXml(filename=str(p), env_config="default") try: m = config.as_map() s = strip_dict(m, suffix="blitz") assert s == output finally: config.close() def test_5(self): rv = strip_dict({ "omero.jvmcfg.a.blitz": "b", }, suffix="blitz") assert rv["a"] == "b" class TestSettings(object): def test_initial(self): s = Settings() assert s.perm_gen == "128m" assert s.heap_dump == "off" assert s.heap_size == "512m" def test_explicit(self): s = Settings({ "perm_gen": "xxx", "heap_dump": "yyy", "heap_size": "zzz", }) assert s.perm_gen == "xxx" assert s.heap_dump == "yyy" assert s.heap_size == "zzz" def test_defaults(self): s = Settings({}, { "perm_gen": "xxx", "heap_dump": "yyy", "heap_size": "zzz", }) assert s.perm_gen == "xxx" assert s.heap_dump == "yyy" assert s.heap_size == "zzz" def test_both(self): s = Settings({ "perm_gen": "aaa", "heap_dump": "bbb", "heap_size": "ccc", }, { "perm_gen": "xxx", "heap_dump": "yyy", "heap_size": "zzz", }) assert s.perm_gen == "aaa" assert s.heap_dump == "bbb" assert s.heap_size == "ccc" class TestStrategy(object): def test_no_instantiate(self): with pytest.raises(Exception): Strategy("blitz") def test_hard_coded(self): strategy = ManualStrategy("blitz") settings = strategy.get_memory_settings() assert settings == [ "-Xmx512m", "-XX:MaxPermSize=128m", "-XX:+IgnoreUnrecognizedVMOptions", ] def test_percent_usage(self): strategy = PercentStrategy("blitz") table = list(strategy.usage_table(15, 16))[0] assert table[0] == 2**15 assert table[1] == 2**15*15/100 def test_heap_dump_on(self): settings = Settings({"heap_dump": "on"}) strategy = PercentStrategy("blitz", settings) hd = strategy.get_heap_dump() append = strategy.get_append() assert " " not in hd assert "HeapDumpPath" not in hd assert not append def test_heap_dump_tmp(self): settings = Settings({"heap_dump": "tmp"}) strategy = PercentStrategy("blitz", settings) hd = strategy.get_heap_dump() append = strategy.get_append() assert " " not in hd assert "HeapDumpPath" not in hd assert "HeapDumpPath" in "".join(append) class AdjustFixture(object): def __init__(self, input, output, name, **kwargs): self.input = input self.output = output self.name = name self.kwargs = kwargs def validate(self, rv): for k, v in self.output.items(): assert k in rv found = rv[k] found.pop(0) # settings assert v == found, "%s.%s: %s <> %s" % (self.name, k, v, found) import json f = open(__file__[:-3] + ".json", "r") data = json.load(f) AFS = [] for x in data: AFS.append(AdjustFixture(x["input"], x["output"], x["name"])) def template_xml(): templates = path(__file__) / ".." / ".." / ".." templates = templates / ".." / ".." / ".." templates = templates / "etc" / "grid" / "templates.xml" templates = templates.abspath() return XML(templates.text()) class TestAdjustStrategy(object): @pytest.mark.parametrize("fixture", AFS, ids=[x.name for x in AFS]) def test_adjust(self, fixture, monkeypatch): monkeypatch.setattr(Strategy, '_system_memory_mb_java', lambda x: (2000, 4000)) p = write_config(fixture.input) xml = template_xml() config = ConfigXml(filename=str(p), env_config="default") try: rv = adjust_settings(config, xml, **fixture.kwargs) fixture.validate(rv) finally: config.close() @pytest.mark.parametrize("fixture", AFS, ids=[x.name for x in AFS]) def test_12527(self, fixture, monkeypatch): monkeypatch.setattr(Strategy, '_system_memory_mb_java', lambda x: (2000, 4000)) p = write_config(fixture.input) old_templates = path(__file__).dirname() / "old_templates.xml" xml = XML(old_templates.abspath().text()) config = ConfigXml(filename=str(p), env_config="default") with pytest.raises(Exception): adjust_settings(config, xml, **fixture.kwargs) class TestChart(object): def test_percent_chart(self): try: usage_charts("target/charts.png") except ImportError: # Requires matplotlib, etc pass
gpl-2.0
compas-dev/compas
src/compas_plotters/meshplotter.py
1
12711
from matplotlib.patches import Circle from matplotlib.patches import Polygon from compas.utilities import color_to_rgb from compas.utilities import pairwise from compas_plotters._plotter import BasePlotter, valuedict __all__ = ['MeshPlotter'] class MeshPlotter(BasePlotter): """Plotter for the visualization of COMPAS meshes. Parameters ---------- mesh: object The mesh to plot. Attributes ---------- title : str Title of the plot. mesh : object The mesh to plot. vertexcollection : object The matplotlib collection for the mesh vertices. edgecollection : object The matplotlib collection for the mesh edges. facecollection : object The matplotlib collection for the mesh faces. defaults : dict Dictionary containing default attributes for vertices and edges. Examples -------- This is a basic example using the default settings for all visualization options. For more detailed examples, see the documentation of the various drawing methods listed below... .. plot:: :include-source: import compas from compas.datastructures import Mesh from compas_plotters import MeshPlotter mesh = Mesh.from_obj(compas.get('faces.obj')) plotter = MeshPlotter(mesh) plotter.draw_vertices(text='key', radius=0.15) plotter.draw_edges() plotter.draw_faces() plotter.show() Notes ----- For more info about ``matplotlib``, see [1]_. References ---------- .. [1] Hunter, J. D., 2007. *Matplotlib: A 2D graphics environment*. Computing In Science & Engineering (9) 3, p.90-95. Available at: http://ieeexplore.ieee.org/document/4160265/citations. """ def __init__(self, mesh, **kwargs): super().__init__(**kwargs) self.title = 'MeshPlotter' self.mesh = mesh self.vertexcollection = None self.edgecollection = None self.facecollection = None self.defaults = { 'vertex.radius': 0.1, 'vertex.facecolor': '#ffffff', 'vertex.edgecolor': '#000000', 'vertex.edgewidth': 0.5, 'vertex.textcolor': '#000000', 'vertex.fontsize': kwargs.get('fontsize', 10), 'edge.width': 1.0, 'edge.color': '#000000', 'edge.textcolor': '#000000', 'edge.fontsize': kwargs.get('fontsize', 10), 'face.facecolor': '#eeeeee', 'face.edgecolor': '#000000', 'face.edgewidth': 0.1, 'face.textcolor': '#000000', 'face.fontsize': kwargs.get('fontsize', 10), } def clear(self): """Clears the mesh plotter vertices, edges and faces.""" self.clear_vertices() self.clear_edges() self.clear_faces() def draw_vertices(self, keys=None, radius=None, text=None, facecolor=None, edgecolor=None, edgewidth=None, textcolor=None, fontsize=None, picker=None): """Draws the mesh vertices. Parameters ---------- keys : list The keys of the vertices to plot. radius : {float, dict} A list of radii for the vertices. text : {{'index', 'key'}, str, dict} Strings to be displayed on the vertices. facecolor : {color, dict} Color for the vertex circle fill. edgecolor : {color, dict} Color for the vertex circle edge. edgewidth : {float, dict} Width for the vertex circle edge. textcolor : {color, dict} Color for the text to be displayed on the vertices. fontsize : {int, dict} Font size for the text to be displayed on the vertices. Returns ------- object The matplotlib vertex collection object. """ keys = keys or list(self.mesh.vertices()) if text == 'key': text = {key: str(key) for key in self.mesh.vertices()} elif text == 'index': text = {key: str(index) for index, key in enumerate(self.mesh.vertices())} elif isinstance(text, str): if text in self.mesh.default_vertex_attributes: default = self.mesh.default_vertex_attributes[text] if isinstance(default, float): text = {key: '{:.1f}'.format(attr[text]) for key, attr in self.mesh.vertices(True)} else: text = {key: str(attr[text]) for key, attr in self.mesh.vertices(True)} radiusdict = valuedict(keys, radius, self.defaults['vertex.radius']) textdict = valuedict(keys, text, '') facecolordict = valuedict(keys, facecolor, self.defaults['vertex.facecolor']) edgecolordict = valuedict(keys, edgecolor, self.defaults['vertex.edgecolor']) edgewidthdict = valuedict(keys, edgewidth, self.defaults['vertex.edgewidth']) textcolordict = valuedict(keys, textcolor, self.defaults['vertex.textcolor']) fontsizedict = valuedict(keys, fontsize, self.defaults['vertex.fontsize']) points = [] for key in keys: points.append({ 'pos': self.mesh.vertex_coordinates(key, 'xy'), 'radius': radiusdict[key], 'text': textdict[key], 'facecolor': facecolordict[key], 'edgecolor': edgecolordict[key], 'edgewidth': edgewidthdict[key], 'textcolor': textcolordict[key], 'fontsize': fontsizedict[key] }) collection = self.draw_points(points) self.vertexcollection = collection if picker: collection.set_picker(picker) return collection def clear_vertices(self): """Clears the mesh plotter vertices.""" if self.vertexcollection: self.vertexcollection.remove() def update_vertices(self, radius=None): """Updates the plotter vertex collection based on the current state of the mesh. Parameters ---------- radius : {float, dict}, optional The vertex radius as a single value, which will be applied to all vertices, or as a dictionary mapping vertex keys to specific radii. Default is the value set in ``self.defaults``. """ radius = valuedict(self.mesh.vertices(), radius, self.defaults['vertex.radius']) circles = [] for key in self.mesh.vertices(): c = self.mesh.vertex_coordinates(key, 'xy') r = radius[key] circles.append(Circle(c, r)) self.vertexcollection.set_paths(circles) def draw_edges(self, keys=None, width=None, color=None, text=None, textcolor=None, fontsize=None): """Draws the mesh edges. Parameters ---------- keys : list The keys of the edges to plot. width : {float, dict} Width of the mesh edges. color : {color, dict} Color for the edge lines. text : {{'index', 'key'}, str, dict} Strings to be displayed on the edges. textcolor : rgb tuple or dict of rgb tuples Color for the text to be displayed on the edges. fontsize : int or dict of int. Font size for the text to be displayed on the edges. Returns ------- object The matplotlib edge collection object. """ keys = keys or list(self.mesh.edges()) if text == 'key': text = {(u, v): '{}-{}'.format(u, v) for u, v in self.mesh.edges()} elif text == 'index': text = {(u, v): str(index) for index, (u, v) in enumerate(self.mesh.edges())} else: pass widthdict = valuedict(keys, width, self.defaults['edge.width']) colordict = valuedict(keys, color, self.defaults['edge.color']) textdict = valuedict(keys, text, '') textcolordict = valuedict(keys, textcolor, self.defaults['edge.textcolor']) fontsizedict = valuedict(keys, fontsize, self.defaults['edge.fontsize']) lines = [] for u, v in keys: lines.append({ 'start': self.mesh.vertex_coordinates(u, 'xy'), 'end': self.mesh.vertex_coordinates(v, 'xy'), 'width': widthdict[(u, v)], 'color': colordict[(u, v)], 'text': textdict[(u, v)], 'textcolor': textcolordict[(u, v)], 'fontsize': fontsizedict[(u, v)] }) collection = self.draw_lines(lines) self.edgecollection = collection return collection def clear_edges(self): """Clears the mesh plotter edges.""" if self.edgecollection: self.edgecollection.remove() def update_edges(self): """Updates the plotter edge collection based on the mesh.""" segments = [] for u, v in self.mesh.edges(): segments.append([self.mesh.vertex_coordinates(u, 'xy'), self.mesh.vertex_coordinates(v, 'xy')]) self.edgecollection.set_segments(segments) def highlight_path(self, path, edgecolor=None, edgetext=None, edgewidth=None): lines = [] for u, v in pairwise(path): sp = self.mesh.vertex_coordinates(u, 'xy') ep = self.mesh.vertex_coordinates(v, 'xy') lines.append({ 'start': sp, 'end': ep, 'width': edgewidth or self.defaults.get('edge.width', 2.0), 'color': edgecolor or self.defaults.get('edge.color', '#ff0000') }) self.draw_lines(lines) def draw_faces(self, keys=None, text=None, facecolor=None, edgecolor=None, edgewidth=None, textcolor=None, fontsize=None): """Draws the mesh faces. Parameters ---------- keys : list The keys of the edges to plot. text : {{'index', 'key'}, str, dict} Strings to be displayed on the edges. facecolor : {color, dict} Color for the face fill. edgecolor : {color, dict} Color for the face edge. edgewidth : {float, dict} Width for the face edge. textcolor : {color, dict} Color for the text to be displayed on the edges. fontsize : {int, dict} Font size for the text to be displayed on the edges. Returns ------- object The matplotlib face collection object. """ keys = keys or list(self.mesh.faces()) if text == 'key': text = {key: str(key) for key in self.mesh.faces()} elif text == 'index': text = {key: str(index) for index, key in enumerate(self.mesh.faces())} else: pass textdict = valuedict(keys, text, '') facecolordict = valuedict(keys, facecolor, self.defaults['face.facecolor']) edgecolordict = valuedict(keys, edgecolor, self.defaults['face.edgecolor']) edgewidthdict = valuedict(keys, edgewidth, self.defaults['face.edgewidth']) textcolordict = valuedict(keys, textcolor, self.defaults['face.textcolor']) fontsizedict = valuedict(keys, fontsize, self.defaults['face.fontsize']) polygons = [] for key in keys: polygons.append({ 'points': self.mesh.face_coordinates(key, 'xy'), 'text': textdict[key], 'facecolor': facecolordict[key], 'edgecolor': edgecolordict[key], 'edgewidth': edgewidthdict[key], 'textcolor': textcolordict[key], 'fontsize': fontsizedict[key] }) collection = self.draw_polygons(polygons) self.facecollection = collection return collection def clear_faces(self): """Clears the mesh plotter faces.""" if self.facecollection: self.facecollection.remove() def update_faces(self, facecolor=None): """Updates the plotter face collection based on the mesh.""" facecolor = valuedict(self.mesh.faces(), facecolor, self.defaults['face.facecolor']) polygons = [] facecolors = [] for fkey in self.mesh.faces(): points = self.mesh.face_coordinates(fkey, 'xy') polygons.append(Polygon(points)) facecolors.append(color_to_rgb(facecolor[fkey], normalize=True)) self.facecollection.set_paths(polygons) self.facecollection.set_facecolor(facecolors)
mit
thaihungle/deepexp
ntm-mann/run_mimic.py
1
16459
from mimic_gen import MimicDataLoader import tensorflow as tf import argparse import numpy as np from mimic_model import MimicModel from tensorflow.python import debug as tf_debug import os import time import mimic_prepare from sklearn.metrics import precision_recall_fscore_support as score import utils import random from sklearn import metrics def main(): parser = argparse.ArgumentParser() parser.add_argument('--mode', default="train") parser.add_argument('--w_strategy',default="MRUA", help='LRUA or MRUA or LMRUA') parser.add_argument('--restore_training', default=False, type=bool) parser.add_argument('--data_dir',default='./data/mimic/small') parser.add_argument('--debug', default=False, type=bool) parser.add_argument('--seq_length', default=100, type=int) parser.add_argument('--validation_length', default=20, type=int) parser.add_argument('--label_type', default="one_hot", help='one_hot or five_hot') parser.add_argument('--model', default="MANN2", help='LSTM, MANN, MANN2 or NTM') parser.add_argument('--read_head_num', default=4, type=int) parser.add_argument('--batch_size', default=1, type=int) parser.add_argument('--num_epoches', default=110000, type=int) parser.add_argument('--num_train_epoches', default=100000, type=int) parser.add_argument('--learning_rate', default=1e-3, type=float) parser.add_argument('--rnn_size', default=200, type=int) parser.add_argument('--rnn_num_layers', default=1, type=int) parser.add_argument('--memory_size', default=128, type=int) parser.add_argument('--memory_vector_dim', default=40, type=int) parser.add_argument('--shift_range', default=1, type=int, help='Only for model=NTM') parser.add_argument('--write_head_num', default=1, type=int, help='Only for model=NTM. For MANN #(write_head) = #(read_head)') parser.add_argument('--reuse', default=False, type=bool) parser.add_argument('--multi_label', default=False, type=bool) parser.add_argument('--save_dir', default='./save/mimic2') parser.add_argument('--tensorboard_dir', default='./summary/mimic2') args = parser.parse_args() if not os.path.isdir(args.tensorboard_dir): os.mkdir(args.tensorboard_dir) if not os.path.isdir(args.save_dir): os.mkdir(args.save_dir) if args.mode == 'train': train(args) def train(args): print ('TRAINING PROCESS') print ('build model ...') data_loader = MimicDataLoader( args.data_dir, batch_size=args.batch_size, max_sequence=args.seq_length, split=0.5, train_keep=0.1 ) args.n_classes = data_loader.output_size args.input_dim = data_loader.input_size model = MimicModel(args) print('done build model!') with tf.Session() as sess: if args.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess) if args.restore_training: saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(args.save_dir + '/' + args.model+ '/' + args.w_strategy) saver.restore(sess, ckpt.model_checkpoint_path) else: saver = tf.train.Saver(tf.global_variables()) tf.global_variables_initializer().run() train_report = args.tensorboard_dir + '/train_report/' if not os.path.isdir(train_report): os.mkdir(train_report) train_report += args.model if not os.path.isdir(train_report): os.mkdir(train_report) train_writer = tf.summary.FileWriter(train_report+'/'+args.w_strategy+'/', sess.graph) test_report = args.tensorboard_dir + '/test_report/' if not os.path.isdir(test_report): os.mkdir(test_report) test_report += args.model if not os.path.isdir(test_report): os.mkdir(test_report) test_writer = tf.summary.FileWriter(test_report + '/'+args.w_strategy+'/', sess.graph) print(args) best_fscore = 0 best_acc1= best_acc5= best_acc10=0 if args.reuse and args.model == 'MANN2':# make it persitent # try: with tf.variable_scope("init", reuse=True): M = tf.get_variable('M', shape=[args.batch_size, args.memory_size, args.memory_vector_dim]) updateM_placeholder = tf.placeholder(M.dtype, shape=M.get_shape()) updateM_op = M.assign(updateM_placeholder) wr = tf.get_variable('wr', shape=[args.batch_size, args.read_head_num, args.memory_size]) updatewr_placeholder = tf.placeholder(wr.dtype, shape=wr.get_shape()) updatewr_op = wr.assign(updatewr_placeholder) wu = tf.get_variable('wu', shape=[args.batch_size, args.memory_size]) updatewu_placeholder = tf.placeholder(wu.dtype, shape=wu.get_shape()) updatewu_op = wu.assign(updatewu_placeholder) # except Exception: # pass test_fscore = termm = acc1 = acc2 = acc3 = auorc= 0 for b in range(args.num_epoches): if b==0: last_y=None st = time.time() # get data is_train = True if b > args.num_train_epoches: is_train = False data_loader.is_training = False x_image, x_label, y = data_loader.fetch_batch(args, is_training=True, last_y = last_y) if args.reuse: last_y = np.reshape(y[:, -1, :], [y.shape[0], 1, y.shape[2]]) # Save model if b % 30001 == 0 and b > 0: # print(best_acc1) # print(best_acc5) # print(best_acc10) save_m = args.save_dir + '/' + args.model + '/' if not os.path.isdir(save_m): os.mkdir(save_m) print('save model...') saver.save(sess, save_m + args.w_strategy + '/model.tfmodel', global_step=b) test_fscore, rmm, acc1, acc2, acc3 = test_full(args, data_loader, model, sess, data_loader.test_data_indexes) print(rmm, acc1, acc2, acc3) raise False # Train feed_dict = {model.x_image: x_image, model.x_label: x_label, model.y: y} if is_train: sess.run(model.train_op, feed_dict=feed_dict) output, learning_loss = sess.run([model.o, model.learning_loss], feed_dict=feed_dict) if args.label_type == 'five_hot': output = utils.batch_five_hot_prob_to_one_hot(output, data_loader.output_size) y = utils.batch_five_hot_prob_to_one_hot(y, data_loader.output_size) state_list = sess.run(model.state_list, feed_dict=feed_dict) # print(state_list[0]['M']) # print('------') # print(state_list[1]['M']) # print('------') # print(output) if args.reuse and args.model == 'MANN2': sess.run(updateM_op, {updateM_placeholder: state_list[-1]['M']}) sess.run(updatewr_op, {updatewr_placeholder: state_list[-1]['wr']}) sess.run(updatewu_op, {updatewu_placeholder: state_list[-1]['wu']}) if b % 50 == 0 and b>0: # test_fscore,termm, acc1, acc2, acc3 = test_full(args, data_loader, model, sess, # data_loader.test_data_indexes) acc1, test_fscore, auorc = test_full_online(args, data_loader, model, sess) print('cur acc {} fscore {} auorc {}'.format(acc1, test_fscore, auorc)) # print(test_fscore, te_acc1, te_acc5, te_acc10) # if test_fscore >= best_fscore: # best_fscore = test_fscore # # save_m = args.save_dir + '/' + args.model + '/' # if not os.path.isdir(save_m): # os.mkdir(save_m) # print('save model...') # saver.save(sess, save_m + args.w_strategy + '/model.tfmodel', global_step=b) # # _, te2_acc1, te2_acc5, te2_acc10 = test_full(data_loader, model, sess, # data_loader.test_data_indexes[ # len(data_loader.test_data_indexes) // 2:]) # best_acc1 = te2_acc1 # best_acc5 = te2_acc5 # best_acc10 = te2_acc10 # if b % 100 == 0: # train_fscore, trrmm = test_full(data_loader, model, sess, data_loader.train_data_indexes) # print('------') learning_loss = learning_loss/args.seq_length acc = test_f(args, output, y) summary = tf.Summary() summary.value.add(tag='train_loss', simple_value=learning_loss) summary.value.add(tag='train_acc', simple_value=acc) # summary.value.add(tag='train_fscore', simple_value=train_fscore) summary.value.add(tag='test_fscore', simple_value=test_fscore) # summary.value.add(tag='rmm', simple_value=termm) summary.value.add(tag='test_acc', simple_value=acc1) summary.value.add(tag='test_auorc', simple_value=auorc) # summary.value.add(tag='tr_acc10', simple_value=acc3) # summary.value.add(tag='te_acc1', simple_value=te_acc1) # summary.value.add(tag='te_acc5', simple_value=te_acc5) # summary.value.add(tag='te_acc10', simple_value=te_acc10) if is_train: train_writer.add_summary(summary, b) train_writer.flush() else: test_writer.add_summary(summary, b) test_writer.flush() print('episode: {} with cur loss: {} cur acc: {} in {} s'.format(b, learning_loss, acc, time.time()-st)) def test_full(args, data_loader, model, sess, list_index): all_output = [] all_y = [] ii = 0 for _ in range(len(list_index) // data_loader.batch_size): if ii + data_loader.batch_size < len(list_index): inds = list(range(ii, ii + data_loader.batch_size)) else: inds = list(range(len(list_index) - data_loader.batch_size - 1, len(list_index))) ii += data_loader.batch_size # print(list_index) x_image, x_label, y, yr = data_loader.predict_index2data(args, list_index, inds) feed_dict = {model.x_image: x_image, model.x_label: x_label, model.y: y} output= sess.run(model.o, feed_dict=feed_dict) all_output.append(output[:, 0, :]) if args.multi_label: all_y.append(yr[:, 0, :]) else: all_y.append(y[:, 0, :]) if args.label_type == 'five_hot': all_output = utils.batch_five_hot_prob_to_one_hot(np.asarray(all_output), data_loader.output_size) if args.label_type == 'five_hot' and not args.multi_label: all_y = utils.batch_five_hot_prob_to_one_hot(np.asarray(all_y), data_loader.output_size) y_t_p = np.asarray(np.reshape(np.asarray(all_output), (-1, data_loader.output_size)), dtype=np.float32) y_prob=y_t_p # y_t_p = np.argmax(y_t_p, axis=-1) y_t_r = np.asarray(np.reshape(np.asarray(all_y), (-1, data_loader.output_size)), dtype=np.float32) # y_t_r = np.argmax(y_t_r, axis=-1) # print(y_t_r) # print('=====') # print(y_t_p) print(y_t_p.shape) print(y_t_r.shape) if not args.multi_label: rmm = mimic_prepare.mrr(y_prob, range(data_loader.output_size), np.argmax(y_t_r, axis=-1)) else: rmm = mimic_prepare.mrr(y_prob, range(data_loader.output_size),y_t_r) # print(metrics.classification_report(y_t_r, y_t_p)) acc1 = mimic_prepare.precision_at_k(y_prob, range(data_loader.output_size),y_t_r,1) acc2 = mimic_prepare.precision_at_k(y_prob, range(data_loader.output_size), y_t_r, 2) acc3 = mimic_prepare.precision_at_k(y_prob, range(data_loader.output_size), y_t_r, 10) precision, recall, fscore, support = score(np.argmax(y_t_r,axis=-1), np.argmax(y_t_p,axis=-1)) print("score", np.average(precision), np.average(recall), np.average(fscore)) return np.average(fscore), rmm, acc1, acc2, acc3 def test_f(args, y, output): # print('{} vs {}'.format(one_hot_decode(y), one_hot_decode(output))) # print('{} vs {}'.format(y.shape, output.shape)) return np.mean(np.asarray(np.equal(np.argmax(y, axis=-1),np.argmax(output, axis=-1)),dtype=np.float32)) def test_full_online(args, data_loader, model, sess): if args.reuse and args.model == 'MANN2': # make it persitent # try: with tf.variable_scope("init", reuse=True): M = tf.get_variable('M', shape=[args.batch_size, args.memory_size, args.memory_vector_dim]) updateM_placeholder = tf.placeholder(M.dtype, shape=M.get_shape()) updateM_op = M.assign(updateM_placeholder) wr = tf.get_variable('wr', shape=[args.batch_size, args.read_head_num, args.memory_size]) updatewr_placeholder = tf.placeholder(wr.dtype, shape=wr.get_shape()) updatewr_op = wr.assign(updatewr_placeholder) wu = tf.get_variable('wu', shape=[args.batch_size, args.memory_size]) updatewu_placeholder = tf.placeholder(wu.dtype, shape=wu.get_shape()) updatewu_op = wu.assign(updatewu_placeholder) cur_memory = sess.run([M, wr, wu]) acc=[] fscores=[] auorc = [] for _ in range(args.validation_length): num_t = len(data_loader.test_data_indexes) num_loop = num_t//args.seq_length+1 # print('valid {} num loop {}'.format(_,num_loop)) list_index = list(range(num_t)) random.shuffle(list_index) for l in range(num_loop): if l ==0: last_y=None fr = l*args.seq_length to = (l+1)*args.seq_length if fr >=num_t: break if to >=num_t: to=num_t rnum=to-fr+1 x_image, x_label, y = data_loader.fetch_batch(args, is_training=False, last_y = last_y, fix_list_index=data_loader.test_data_indexes[fr:to]) # print(list_index[fr:to]) # print(np.argmax(y,axis=-1)[0,:4]) last_y = np.reshape(y[:,-1,:],[y.shape[0],1,y.shape[2]]) feed_dict = {model.x_image: x_image, model.x_label: x_label, model.y: y} output, learning_loss = sess.run([model.o, model.learning_loss], feed_dict=feed_dict) if args.label_type == 'five_hot': output = utils.batch_five_hot_prob_to_one_hot(output, data_loader.output_size) y = utils.batch_five_hot_prob_to_one_hot(y, data_loader.output_size) y = y[:,:rnum,:] output = output[:, :rnum, :] acc.append(test_f(args, y, output)) precision, recall, fscore, support = score(np.reshape(np.asarray(np.argmax(y,axis=-1)), [-1]), np.reshape(np.argmax(output, axis=-1), [-1])) fscores.append(np.mean(fscore)) auorc.append(metrics.roc_auc_score(np.reshape(np.asarray(y), [-1]), np.reshape(output, [-1]), average='macro', sample_weight=None)) state_list = sess.run(model.state_list, feed_dict=feed_dict) if args.reuse and args.model == 'MANN2': sess.run(updateM_op, {updateM_placeholder: state_list[-1]['M']}) sess.run(updatewr_op, {updatewr_placeholder: state_list[-1]['wr']}) sess.run(updatewu_op, {updatewu_placeholder: state_list[-1]['wu']}) if args.reuse and args.model == 'MANN2': sess.run(updateM_op, {updateM_placeholder: cur_memory[0]}) sess.run(updatewr_op, {updatewr_placeholder: cur_memory[1]}) sess.run(updatewu_op, {updatewu_placeholder: cur_memory[2]}) return np.mean(acc), np.mean(fscores), np.mean(auorc) if __name__ == '__main__': main()
mit
rodorad/spark-tk
regression-tests/sparktkregtests/testcases/frames/frame_group_by_test.py
13
10492
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Test functionality of group_by, including aggregation_arguments """ import unittest import pandas as pd import numpy as np import math from sparktkregtests.lib import sparktk_test class GroupByTest(sparktk_test.SparkTKTestCase): # Aggregates and names for non-numeric aggregates # (some aggregates are not defined on integers) # atk aggregates, then numpy aggregates pd_cols_str = ['size', '<lambda>', 'max', 'min'] numpy_aggs_str = ['size', lambda x: pd.Series.nunique(x, False), 'max', 'min'] atk_cols_str = ['_COUNT', '_COUNT_DISTINCT', '_MAX', '_MIN'] pd_cols = ['mean', 'size', '<lambda>', 'max', 'min', 'std', 'nansum', 'var'] numpy_aggs = ['mean', 'size', lambda x: pd.Series.nunique(x, False), 'max', 'min', 'std', np.nansum, 'var'] atk_cols = ['_AVG', '_COUNT', '_COUNT_DISTINCT', '_MAX', '_MIN', '_STDEV', '_SUM', '_VAR'] def setUp(self): """Build test frame""" super(GroupByTest, self).setUp() # Aggregates to test on strings self.aggs_str = [self.context.agg.count, self.context.agg.count_distinct, self.context.agg.max, self.context.agg.min] # Aggregates for numeric columns self.aggs = [self.context.agg.avg, self.context.agg.count, self.context.agg.count_distinct, self.context.agg.max, self.context.agg.min, self.context.agg.stdev, self.context.agg.sum, self.context.agg.var] schema_colors = [("Int32_0_15", int), ("Int32_0_31", int), ("colors", str), ("Int64_0_15", int), ("Int64_0_31", int), ("Float32_0_15", float), ("Float32_0_31", float), ("Float64_0_15", float), ("Float64_0_31", float)] dataset = self.get_file("colors_32_9cols_128rows.csv") self.frame = self.context.frame.import_csv( dataset, schema=schema_colors) def test_stats_on_string_avg(self): """Non-numeric aggregates error on non-numeric column""" with self.assertRaises(Exception): self.frame.group_by('colors', {'colors': self.context.agg.avg}) def test_stats_on_string_stdev(self): """Non-numeric aggregates error on non-numeric column""" with self.assertRaises(Exception): self.frame.group_by('colors', {'colors': self.context.agg.stdev}) def test_stats_on_string_sum(self): """Non-numeric aggregates error on non-numeric column""" with self.assertRaises(Exception): self.frame.group_by('colors', {'colors': self.context.agg.sum}) def test_stats_on_string_var(self): """Non-numeric aggregates error on non-numeric column""" with self.assertRaises(Exception): self.frame.group_by('colors', {'colors': self.context.agg.var}) def test_invalid_column_name(self): """Aggregate on non-existant column errors""" with self.assertRaises(Exception): self.frame.group_by( 'InvalidColumnName', {'colors': self.context.agg.var}) def test_group_int32_standard(self): """Test groupby on 1 column, int32""" stats = self.frame.group_by(['Int32_0_15'], {'Int32_0_31': self.aggs}) self._validate(stats, 'Int32_0_31', ['Int32_0_15']) def test_group_float32_standard(self): """Test groupby on 1 column, float32""" stats = self.frame.group_by( ['Float32_0_15'], {'Float32_0_31': self.aggs}) self._validate(stats, 'Float32_0_31', ['Float32_0_15']) def test_group_float64_standard(self): """Test groupby on 1 column, float64""" stats = self.frame.group_by( ['Float64_0_15'], {'Float64_0_31': self.aggs}) self._validate(stats, 'Float64_0_31', ['Float64_0_15']) def test_group_int64_standard(self): """Test groupby on 1 column, int64""" stats = self.frame.group_by(['Int64_0_15'], {'Int64_0_31': self.aggs}) self._validate(stats, 'Int64_0_31', ['Int64_0_15']) def Test_group_by_str_standard(self): """Test groupby on 1 column, string""" stats = self.frame.group_by(['colors'], {'Int32_0_31': self.aggs}) self._validate_str(stats, 'Int32_0_31', ['colors']) def test_group_by_str_agg_str(self): """Test groupby on 1 column, string, aggregate is string""" stats = self.frame.group_by(['colors'], {'colors': self.aggs_str}) self._validate_str(stats, 'colors', ['colors']) def test_group_int32_multiple_cols(self): """Test groupby on multiple columns, int32""" stats = self.frame.group_by( ['Int32_0_15', 'Int32_0_31'], {'Int32_0_31': self.aggs}) self._validate(stats, 'Int32_0_31', ['Int32_0_15', 'Int32_0_31']) def test_group_float32_multiple_cols(self): """Test groupby on multiple columns, float32""" stats = self.frame.group_by( ['Float32_0_15', 'Float32_0_31'], {'Float32_0_31': self.aggs}) self._validate(stats, 'Float32_0_31', ['Float32_0_15', 'Float32_0_31']) def test_group_float64_multiple_cols(self): """Test groupby on multiple columns, float64""" stats = self.frame.group_by( ['Float64_0_15', 'Float64_0_31'], {'Float32_0_31': self.aggs}) self._validate(stats, 'Float32_0_31', ['Float64_0_15', 'Float64_0_31']) def test_group_int64_multiple_cols(self): """Test groupby on multiple columns, int64""" stats = self.frame.group_by( ['Int64_0_15', 'Int64_0_31'], {'Int64_0_31': self.aggs}) self._validate(stats, 'Int64_0_31', ['Int64_0_15', 'Int64_0_31']) def test_groupby_str_multiple_cols(self): """Test groupby on multiple columns, string""" stats = self.frame.group_by( ['colors', 'Int32_0_15'], {'colors': self.aggs_str}) self._validate_str(stats, 'colors', ['colors', 'Int32_0_15']) def test_group_int32_none(self): """Test groupby none, int32 aggregate""" stats = self.frame.group_by(None, {'Int32_0_31': self.aggs}) self._validate_single_group(stats, None, 'Int32_0_31') def test_group_float32_none(self): """Test groupby none, float32 aggregate""" stats = self.frame.group_by(None, {'Float32_0_31': self.aggs}) self._validate_single_group(stats, None, 'Float32_0_31') def test_group_float64_none(self): """Test groupby none, float64 aggregate""" stats = self.frame.group_by(None, {'Float64_0_31': self.aggs}) self._validate_single_group(stats, None, 'Float64_0_31') def test_group_int64_none(self): """Test groupby none, int64 aggregate""" stats = self.frame.group_by(None, {'Int64_0_31': self.aggs}) self._validate_single_group(stats, None, 'Int64_0_31') def _validate_single_group(self, stats, groupby_cols, aggregator): # Validate the result of atk groupby and pandas groupby are the same # when there is single group (none) pd_stats = stats.to_pandas(stats.count()) new_frame = self.frame.to_pandas(self.frame.count()) gb = new_frame.groupby(lambda x: 0)[aggregator].agg(self.numpy_aggs) int_cols = map(lambda x: aggregator+x, self.atk_cols) for k, l in zip(int_cols, self.pd_cols): self.assertAlmostEqual(gb.loc[0][l], pd_stats.loc[0][k], places=4) def _validate(self, stats, aggregator, groupby_cols): # Validate atk and pandas groupby are the same, # Cast the index to integer, and use all aggregates, as column # for aggregatees is numeric self._validate_helper( stats, aggregator, groupby_cols, self.numpy_aggs, self.pd_cols, self.atk_cols, int) def _validate_str(self, stats, aggregator, groupby_cols): # Validate atk and pandas groupby are the same, # Cast the index to the same value, and use strin aggregates, as column # for aggregatees is a string self._validate_helper( stats, aggregator, groupby_cols, self.numpy_aggs_str, self.pd_cols_str, self.atk_cols_str, lambda x: x) def _validate_helper(self, stats, aggregator, groupby_cols, aggs, pd_cols, atk_cols, mapper): # Get and compare results of atk and pandas, cast as appropriate pd_stats = stats.to_pandas(stats.count()) new_frame = self.frame.to_pandas(self.frame.count()) gb = new_frame.groupby(groupby_cols)[aggregator].agg(aggs) int_cols = map(lambda x: aggregator+x, atk_cols) for _, i in pd_stats.iterrows(): for k, l in zip(int_cols, pd_cols): if ((type(i[k]) is np.float64 or type(i[k]) is float) and math.isnan(i[k])): self.assertTrue( math.isnan( gb.loc[tuple( map(lambda x: mapper(i[x]), groupby_cols))][l])) else: self.assertAlmostEqual( gb.loc[tuple( map(lambda x: mapper(i[x]), groupby_cols))][l], i[k], places=4) if __name__ == "__main__": unittest.main()
apache-2.0
patricksnape/menpo
menpo/image/test/test_rasterize.py
2
1961
import numpy as np from numpy.testing import assert_allclose from menpo.image import Image from menpo.image.rasterize import rasterize_landmarks_2d from menpo.shape import PointCloud, PointUndirectedGraph centre = PointCloud([[4.5, 4.5]]) line = PointUndirectedGraph( np.array([[2, 4.5], [8, 4.5]]), adjacency_matrix=np.array([[0, 1], [1, 0]]) ) def test_rasterize_matplotlib_basic(): im = Image.init_blank([11, 11], fill=0, n_channels=1) im.landmarks["test"] = centre new_im = rasterize_landmarks_2d( im, group="test", render_lines=False, marker_style=".", marker_face_colour="r", marker_size=2, marker_edge_width=0, backend="matplotlib", ) assert new_im.n_channels == 3 assert new_im.shape == (11, 11) assert_allclose(new_im.pixels[:, 5, 5], [255, 0, 0]) def test_rasterize_pillow_basic(): im = Image.init_blank([11, 11], fill=0, n_channels=3) im.landmarks["test"] = centre new_im = rasterize_landmarks_2d( im, group="test", render_lines=False, marker_style="s", marker_face_colour="r", marker_size=1, marker_edge_width=0, backend="pillow", ) assert new_im.n_channels == 3 assert new_im.shape == (11, 11) assert_allclose(new_im.pixels[0, 3:6, 3:6], 255) def test_rasterize_pillow_basic_line(): im = Image.init_blank([11, 11], fill=0, n_channels=3) im.landmarks["test"] = line new_im = rasterize_landmarks_2d( im, group="test", render_lines=True, line_width=1, line_colour="b", marker_style="s", marker_face_colour="r", marker_size=1, marker_edge_width=0, backend="pillow", ) assert new_im.n_channels == 3 assert_allclose(new_im.pixels[0, 1:4, 3:6], 255) assert_allclose(new_im.pixels[0, 7:-1, 3:6], 255) assert_allclose(new_im.pixels[2, 4:7, 4], 255)
bsd-3-clause
freeman-lab/dask
dask/dataframe/shuffle.py
1
6686
from itertools import count from collections import Iterator from math import ceil from toolz import merge, accumulate, merge_sorted import toolz from operator import getitem, setitem import pandas as pd import numpy as np from .. import threaded from ..optimize import cull from .core import DataFrame, Series, get, _Frame, tokens from ..compatibility import unicode from ..utils import ignoring from .utils import (strip_categories, unique, shard_df_on_index, _categorize, get_categories) def set_index(df, index, npartitions=None, compute=True, **kwargs): """ Set DataFrame index to new column Sorts index and realigns Dataframe to new sorted order. This shuffles and repartitions your data. """ npartitions = npartitions or df.npartitions if not isinstance(index, Series): index2 = df[index] else: index2 = index divisions = (index2 .quantiles(np.linspace(0, 100, npartitions+1)) .compute()) return df.set_partition(index, divisions, compute=compute, **kwargs) def set_partition(df, index, divisions, compute=False, **kwargs): """ Group DataFrame by index Sets a new index and partitions data along that index according to divisions. Divisions are often found by computing approximate quantiles. The function ``set_index`` will do both of these steps. Parameters ---------- df: DataFrame/Series Data that we want to re-partition index: string or Series Column to become the new index divisions: list Values to form new divisions between partitions See Also -------- set_index shuffle partd """ if isinstance(index, _Frame): assert df.divisions == index.divisions import partd p = ('zpartd' + next(tokens),) # Get Categories catname = 'set-partition--get-categories' + next(tokens) dsk1 = {catname: (get_categories, df._keys()[0]), p: (partd.PandasBlocks, (partd.Buffer, (partd.Dict,), (partd.File,)))} # Partition data on disk name = 'set-partition--partition' + next(tokens) if isinstance(index, _Frame): dsk2 = dict(((name, i), (_set_partition, part, ind, divisions, p)) for i, (part, ind) in enumerate(zip(df._keys(), index._keys()))) else: dsk2 = dict(((name, i), (_set_partition, part, index, divisions, p)) for i, part in enumerate(df._keys())) # Barrier barrier_token = 'barrier' + next(tokens) dsk3 = {barrier_token: (barrier, list(dsk2))} if compute: dsk = merge(df.dask, dsk1, dsk2, dsk3) if isinstance(index, _Frame): dsk.update(index.dask) p, barrier_token = get(dsk, [p, barrier_token], **kwargs) # Collect groups name = 'set-partition--collect' + next(tokens) dsk4 = dict(((name, i), (_categorize, catname, (_set_collect, i, p, barrier_token))) for i in range(len(divisions) - 1)) dsk = merge(df.dask, dsk1, dsk2, dsk3, dsk4) if isinstance(index, _Frame): dsk.update(index.dask) if compute: dsk = cull(dsk, list(dsk4.keys())) return DataFrame(dsk, name, df.columns, divisions) def barrier(args): list(args) return 0 def _set_partition(df, index, divisions, p): """ Shard partition and dump into partd """ df = strip_categories(df) divisions = list(divisions) df = df.set_index(index) shards = shard_df_on_index(df, divisions[1:-1]) p.append(dict(enumerate(shards))) def _set_collect(group, p, barrier_token): """ Get new partition dataframe from partd """ try: return p.get(group) except ValueError: return pd.DataFrame() def shuffle(df, index, npartitions=None): """ Group DataFrame by index Hash grouping of elements. After this operation all elements that have the same index will be in the same partition. Note that this requires full dataset read, serialization and shuffle. This is expensive. If possible you should avoid shuffles. This does not preserve a meaningful index/partitioning scheme. See Also -------- set_index set_partition partd """ if isinstance(index, _Frame): assert df.divisions == index.divisions if npartitions is None: npartitions = df.npartitions import partd p = ('zpartd' + next(tokens),) dsk1 = {p: (partd.PandasBlocks, (partd.Buffer, (partd.Dict,), (partd.File,)))} # Partition data on disk name = 'shuffle-partition' + next(tokens) if isinstance(index, _Frame): dsk2 = dict(((name, i), (partition, part, ind, npartitions, p)) for i, (part, ind) in enumerate(zip(df._keys(), index._keys()))) else: dsk2 = dict(((name, i), (partition, part, index, npartitions, p)) for i, part in enumerate(df._keys())) # Barrier barrier_token = 'barrier' + next(tokens) dsk3 = {barrier_token: (barrier, list(dsk2))} # Collect groups name = 'shuffle-collect' + next(tokens) dsk4 = dict(((name, i), (collect, i, p, barrier_token)) for i in range(npartitions)) divisions = [None] * (npartitions + 1) dsk = merge(df.dask, dsk1, dsk2, dsk3, dsk4) if isinstance(index, _Frame): dsk.update(index.dask) return DataFrame(dsk, name, df.columns, divisions) def partition(df, index, npartitions, p): """ Partition a dataframe along a grouper, store partitions to partd """ rng = pd.Series(np.arange(len(df))) if isinstance(index, Iterator): index = list(index) if not isinstance(index, (pd.Index, pd.core.generic.NDFrame)): index = df[index] if isinstance(index, pd.Index): groups = rng.groupby([abs(hash(x)) % npartitions for x in index]) if isinstance(index, pd.Series): groups = rng.groupby(index.map(lambda x: abs(hash(x)) % npartitions).values) elif isinstance(index, pd.DataFrame): groups = rng.groupby(index.apply( lambda row: abs(hash(tuple(row))) % npartitions, axis=1).values) d = dict((i, df.iloc[groups.groups[i]]) for i in range(npartitions) if i in groups.groups) p.append(d) def collect(group, p, barrier_token): """ Collect partitions from partd, yield dataframes """ return p.get(group)
bsd-3-clause
zhenxu66/scipy2015-blaze-bokeh
app/viz2.py
12
4846
# -*- coding: utf-8 -*- import math from collections import OrderedDict import numpy as np import pandas as pd import netCDF4 from bokeh.plotting import figure, show, output_notebook from bokeh.models import DatetimeTickFormatter, ColumnDataSource, HoverTool, Plot, Range1d from bokeh.palettes import RdBu11 from bokeh.models.glyphs import Text, Rect import utils.world_countries as wc from utils.colormap import RGBAColorMapper colormap = RGBAColorMapper(-6, 6, RdBu11) def get_slice(t, year, month): i = (year - 1850)*12 + month - 1 return colormap.color(t[i, :, :]) def climate_map(): data = netCDF4.Dataset('data/Land_and_Ocean_LatLong1.nc') t = data.variables['temperature'] image = get_slice(t, 1950, 1) world_countries = wc.data.copy() worldmap = pd.DataFrame.from_dict(world_countries, orient='index') # Create your plot p = figure(width=900, height=500, x_axis_type=None, y_axis_type=None, x_range=[-180,180], y_range=[-90,90], toolbar_location="left") p.image_rgba( image=[image], x=[-180], y=[-90], dw=[360], dh=[180], name='image' ) p.patches(xs=worldmap['lons'], ys=worldmap['lats'], fill_color="white", fill_alpha=0, line_color="black", line_width=0.5) return p def legend(): # Set ranges xdr = Range1d(0, 100) ydr = Range1d(0, 500) # Create plot plot = Plot( x_range=xdr, y_range=ydr, title="", plot_width=100, plot_height=500, min_border=0, toolbar_location=None, outline_line_color="#FFFFFF", ) # For each color in your palette, add a Rect glyph to the plot with the appropriate properties palette = RdBu11 width = 40 for i, color in enumerate(palette): rect = Rect( x=40, y=(width * (i + 1)), width=width, height=40, fill_color=color, line_color='black' ) plot.add_glyph(rect) # Add text labels and add them to the plot minimum = Text(x=50, y=0, text=['-6 ºC']) plot.add_glyph(minimum) maximum = Text(x=50, y=460, text=['6 ºC']) plot.add_glyph(maximum) return plot def timeseries(): # Get data df = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv') df['datetime'] = pd.to_datetime(df['datetime']) df = df[['anomaly','datetime']] df['moving_average'] = pd.rolling_mean(df['anomaly'], 12) df = df.fillna(0) # List all the tools that you want in your plot separated by comas, all in one string. TOOLS="crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave" # New figure t = figure(x_axis_type = "datetime", width=1000, height=200,tools=TOOLS) # Data processing # The hover tools doesn't render datetime appropriately. We'll need a string. # We just want dates, remove time f = lambda x: str(x)[:7] df["datetime_s"]=df[["datetime"]].applymap(f) source = ColumnDataSource(df) # Create plot t.line('datetime', 'anomaly', color='lightgrey', legend='anom', source=source) t.line('datetime', 'moving_average', color='red', legend='avg', source=source, name="mva") # Style xformatter = DatetimeTickFormatter(formats=dict(months=["%b %Y"], years=["%Y"])) t.xaxis[0].formatter = xformatter t.xaxis.major_label_orientation = math.pi/4 t.yaxis.axis_label = 'Anomaly(ºC)' t.legend.orientation = "bottom_right" t.grid.grid_line_alpha=0.2 t.toolbar_location=None # Style hover tool hover = t.select(dict(type=HoverTool)) hover.tooltips = """ <div> <span style="font-size: 15px;">Anomaly</span> <span style="font-size: 17px; color: red;">@anomaly</span> </div> <div> <span style="font-size: 15px;">Month</span> <span style="font-size: 10px; color: grey;">@datetime_s</span> </div> """ hover.renderers = t.select("mva") # Show plot #show(t) return t # Add title def title(): # Data year = 1850 month = 1 years = [str(x) for x in np.arange(1850, 2015, 1)] months = [str(x) for x in np.arange(1, 13, 1)] months_str = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] month_str = months_str[month-1] title = figure(width=1200, height=100, x_range=(0, 1200), y_range=(0, 100), toolbar_location=None, x_axis_type=None, y_axis_type=None, outline_line_color="#FFFFFF", tools="", min_border=0) title.text(x=500, y=5, text=[month_str], text_font_size='36pt', text_color='black', name="month", text_font="Georgia") title.text(x=350, y=5, text=[str(year)], text_font_size='36pt', text_color='black', name="year",text_font="Georgia") return title
mit
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/examples/feature_selection/plot_permutation_test_for_classification.py
1
2270
""" ================================================================= Test with permutations the significance of a classification score ================================================================= In order to test if a classification score is significative a technique in repeating the classification procedure after randomizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is greater than the classification score obtained in the first place. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import permutation_test_score from sklearn.svm import SVC ############################################################################## # Loading a dataset iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size # Some noisy data not correlated random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) # Add noisy data to the informative features for make the task harder X = np.c_[X, E] svm = SVC(kernel='linear') cv = StratifiedKFold(2) score, permutation_scores, pvalue = permutation_test_score( svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1) print("Classification score %s (pvalue : %s)" % (score, pvalue)) ############################################################################### # View histogram of permutation scores plt.hist(permutation_scores, 20, label='Permutation scores') ylim = plt.ylim() # BUG: vlines(..., linestyle='--') fails on older versions of matplotlib # plt.vlines(score, ylim[0], ylim[1], linestyle='--', # color='g', linewidth=3, label='Classification Score' # ' (pvalue %s)' % pvalue) # plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--', # color='k', linewidth=3, label='Luck') plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show()
mit
avmarchenko/exatomic
exatomic/core/tensor.py
3
4436
# -*- coding: utf-8 -*- # Copyright (c) 2015-2018, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 from exa import DataFrame import numpy as np import pandas as pd class Tensor(DataFrame): """ The tensor dataframe. +---------------+----------+-----------------------------------------+ | Column | Type | Description | +===============+==========+=========================================+ | xx | float | 0,0 position in tensor | +---------------+----------+-----------------------------------------+ | xy | float | 0,1 position in tensor | +---------------+----------+-----------------------------------------+ | xz | float | 0,2 position in tensor | +---------------+----------+-----------------------------------------+ | yx | float | 1,0 position in tensor | +---------------+----------+-----------------------------------------+ | yy | float | 1,1 position in tensor | +---------------+----------+-----------------------------------------+ | yz | float | 1,2 position in tensor | +---------------+----------+-----------------------------------------+ | zx | float | 3,0 position in tensor | +---------------+----------+-----------------------------------------+ | zy | float | 3,1 position in tensor | +---------------+----------+-----------------------------------------+ | zz | float | 3,2 position in tensor | +---------------+----------+-----------------------------------------+ | frame | category | frame value to which atach tensor | +---------------+----------+-----------------------------------------+ | atom | int | atom index of molecule to place tensor | +---------------+----------+-----------------------------------------+ | label | category | label of the type of tensor | +---------------+----------+-----------------------------------------+ """ _index = 'tensor' _columns = ['xx','xy','xz','yx','yy','yz','zx','zy','zz', 'frame','atom','label'] _categories = {'frame': np.int64, 'label': str} #@property #def _constructor(self): # return Tensor @classmethod def from_file(cls, filename): """ A file reader that will take a tensor file and extract all necessary information. There is a specific file format in place and is as follows. frame label atom xx xy xz yx yy yz zx zy zz For multiple tensors just append the same format as above without whitespace unless leaving the frame, label, atom attributes as empty. Args: filename (str): file pathname Returns: tens (:class:`~exatomic.tensor.Tensor`): Tensor table with the tensor attributes """ df = pd.read_csv(filename, delim_whitespace=True, header=None, skip_blank_lines=False) meta = df[::4] idxs = meta.index.values n = len(idxs) df = df[~df.index.isin(idxs)] df[1] = df[1].astype(np.float64) df['grp'] = [i for i in range(n) for j in range(3)] df = pd.DataFrame(df.groupby('grp').apply(lambda x: x.unstack().values[:-3]).values.tolist(), columns=['xx','xy','xz','yx','yy','yz','zx','zy','zz']) # scale = [] # for i in df.index.values: # scale.append(5./abs(df.loc[i,:]).max().astype(np.float64)) meta.reset_index(drop=True, inplace=True) meta.rename(columns={0: 'frame', 1: 'label', 2: 'atom'}, inplace=True) df = pd.concat([meta, df], axis=1) df['atom'] = df['atom'].astype(np.int64) df['frame'] = df['frame'].astype(np.int64) # df['scale'] = scale # print(df) return cls(df) def add_tensor(uni, fp): """ Simple function to add a tensor object to the universe. Args: uni (universe): Universe object fp (str): file pathname """ uni.tensor = Tensor.from_file(fp)
apache-2.0
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/sklearn/utils/__init__.py
10
15503
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric) from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count from ..exceptions import DataConversionWarning from .deprecation import deprecated __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric", "indices_to_mask", "deprecated"] class Bunch(dict): """Container object for datasets Dictionary-like object that exposes its keys as attributes. >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): super(Bunch, self).__init__(kwargs) def __setattr__(self, key, value): self[key] = value def __dir__(self): return self.keys() def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __setstate__(self, state): # Bunch pickles generated with scikit-learn 0.16.* have an non # empty __dict__. This causes a surprising behaviour when # loading these pickles scikit-learn 0.17: reading bunch.key # uses __dict__ but assigning to bunch.key use __setattr__ and # only changes bunch['key']. More details can be found at: # https://github.com/scikit-learn/scikit-learn/issues/6196. # Overriding __setstate__ to be a noop has the effect of # ignoring the pickled __dict__ pass def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask : array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.signedinteger): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def axis0_safe_slice(X, mask, len_mask): """ This mask is safer than safe_mask since it returns an empty array, when a sparse matrix is sliced with a boolean mask with all False, instead of raising an unhelpful error in older versions of SciPy. See: https://github.com/scipy/scipy/issues/5361 Also note that we can avoid doing the dot product by checking if the len_mask is not zero in _huber_loss_and_gradient but this is not going to be the bottleneck, since the number of outliers and non_outliers are typically non-zero and it makes the code tougher to follow. """ if len_mask != 0: return X[safe_mask(X, mask), :] return np.zeros(shape=(0, X.shape[1])) def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series. Data from which to sample rows or items. indices : array-like of int Indices according to which X will be subsampled. Returns ------- subset Subset of X on first axis Notes ----- CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are not supported. """ if hasattr(X, "iloc"): # Work-around for indexing with read-only indices in pandas indices = indices if indices.flags.writeable else indices.copy() # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. If replace is False it should not be larger than the length of arrays. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples elif (max_n_samples > n_samples) and (not replace): raise ValueError("Cannot sample %d out of arrays with dim %d " "when replace is False" % (max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible. Parameters ---------- x : iterable """ if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x) def indices_to_mask(indices, mask_length): """Convert list of indices to boolean mask. Parameters ---------- indices : list-like List of integers treated as indices. mask_length : int Length of boolean mask to be generated. Returns ------- mask : 1d boolean nd-array Boolean array that is True where indices are present, else False. """ if mask_length <= np.max(indices): raise ValueError("mask_length must be greater than max(indices)") mask = np.zeros(mask_length, dtype=np.bool) mask[indices] = True return mask
mit
kedz/cuttsum
trec2015/sbin/salience-regression-dev/salience-predictor.py
1
7352
import os import cuttsum.events import cuttsum.corpora from cuttsum.pipeline import InputStreamResource import numpy as np import pandas as pd def ds(X, y): I = np.arange(y.shape[0]) I_1 = I[y[:,0] == 1] I_0 = I[y[:,0] == 0] size = I_1.shape[0] np.random.shuffle(I_0) I_0_ds = I_0[:size] X_0 = X[I_0_ds] X_1 = X[I_1] y_ds = np.zeros((size * 2,), dtype="int32") y_ds[size:2*size] = 1 X_ds = np.vstack([X_0, X_1]) I_ds = np.arange(size * 2) np.random.shuffle(I_ds) X_ds = X_ds[I_ds] y_ds = y_ds[I_ds] return X_ds, y_ds def get_input_stream(event, extractor="goose", thresh=.8, delay=None, topk=20): corpus = cuttsum.corpora.get_raw_corpus(event) res = InputStreamResource() return res.get_dataframes(event, corpus, extractor, thresh, delay, topk) dirname = "sp" if not os.path.exists(dirname): os.makedirs(dirname) basic_cols = ["BASIC length", "BASIC char length", "BASIC doc position", "BASIC all caps ratio", "BASIC upper ratio", #"BASIC lower ratio", #"BASIC punc ratio", "BASIC person ratio", "BASIC location ratio", "BASIC organization ratio", "BASIC date ratio", "BASIC time ratio", "BASIC duration ratio", "BASIC number ratio", "BASIC ordinal ratio", "BASIC percent ratio", "BASIC money ratio", "BASIC set ratio", "BASIC misc ratio"] query_bw_cols = [ "Q_sent_query_cov", "Q_sent_syn_cov", "Q_sent_hyper_cov", "Q_sent_hypo_cov", ] query_fw_cols = [ "Q_query_sent_cov", "Q_syn_sent_cov", "Q_hyper_sent_cov", "Q_hypo_sent_cov", ] lm_cols = ["LM domain avg lp", "LM gw avg lp"] sum_cols = [ "SUM_sbasic_sum", "SUM_sbasic_amean", # "SUM_sbasic_max", "SUM_novelty_gmean", "SUM_novelty_amean", # "SUM_novelty_max", "SUM_centrality", "SUM_pagerank", ] stream_cols = [ "STREAM_sbasic_sum", "STREAM_sbasic_amean", "STREAM_sbasic_max", "STREAM_per_prob_sum", "STREAM_per_prob_max", "STREAM_per_prob_amean", "STREAM_loc_prob_sum", "STREAM_loc_prob_max", "STREAM_loc_prob_amean", "STREAM_org_prob_sum", "STREAM_org_prob_max", "STREAM_org_prob_amean", "STREAM_nt_prob_sum", "STREAM_nt_prob_max", "STREAM_nt_prob_amean", ] cols = basic_cols + query_fw_cols + lm_cols + sum_cols + stream_cols events = [e for e in cuttsum.events.get_events() if e.query_num < 26 and e.query_num not in set([6, 7])] events = events y = [] X = [] istreams = [] for event in events: print event istream = get_input_stream(event) istreams.append(istream) y_e = [] X_e = [] for df in istream: selector = (df["n conf"] == 1) & (df["nugget probs"].apply(len) == 0) df.loc[selector, "nugget probs"] = df.loc[selector, "nuggets"].apply(lambda x: {n:1 for n in x}) df["probs"] = df["nugget probs"].apply(lambda x: [val for key, val in x.items()] +[0]) df["probs"] = df["probs"].apply(lambda x: np.max(x)) df.loc[(df["n conf"] == 1) & (df["nuggets"].apply(len) == 0), "probs"] = 0 y_t = df["probs"].values y_t = y_t[:, np.newaxis] y_e.append(y_t) X_t = df[cols].values X_e.append(X_t) y_e = np.vstack(y_e) y.append(y_e) X_e = np.vstack(X_e) X.append(X_e) from sklearn.ensemble import GradientBoostingRegressor from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn import tree from sklearn.metrics import classification_report, mean_squared_error import matplotlib.pyplot as plt num_events = len(events) def hard_test(istream, cols): X = [] y = [] for df in istream: df_c = df[df["n conf"] == 1] y_t = (df_c["nuggets"].apply(len) > 0).values.astype("int32") y_t = y_t[:, np.newaxis] y.append(y_t) X_t = df_c[cols].values X.append(X_t) X = np.vstack(X) y = np.vstack(y) return X, y clfs = [] results = [] for i in xrange(num_events): X_test, y_test = hard_test(istreams[i], cols) X_test_s = X[i] y_test_s = y[i] X_train = np.vstack(X[0:i] + X[i+1:]) y_train = np.vstack(y[0:i] + y[i+1:]) # X_train, y_train = ds(X_train, y_train) for max_depth in [3]: #, 2, 3, 4, 5]: for lr in [1.,]: # 1.,]: for est in [100, ]: gbc = GradientBoostingRegressor(n_estimators=est, learning_rate=lr, max_depth=max_depth, random_state=0) gbc.fit(X_train, y_train.ravel()) y_pred = gbc.predict(X_test) mse = mean_squared_error(y_test, y_pred) #prec, rec, fscore, sup = precision_recall_fscore_support(y_test, y_pred) I = y_test.ravel().argsort() item_index = np.where(y_test.ravel()[I] == 1) print y_test.ravel()[I][:item_index[0][0]] neg_mean = np.mean(y_pred.ravel()[I][:item_index[0][0]]) pos_mean = np.mean(y_pred.ravel()[I][item_index[0][0]:]) #print I plt.plot(y_pred.ravel()[I], label="predicted") #plt.plot(np.sort(y_test.ravel()), label="truth") plt.plot(y_test.ravel()[I], label="truth") plt.plot([0,item_index[0][0]], [neg_mean] * 2, "-.", label="neg mean") plt.plot([item_index[0][0],item_index[0][-1]], [pos_mean] * 2, "-.", label="neg mean") #plt.legend() plt.gcf().suptitle(events[i].fs_name()) plt.savefig(os.path.join(dirname, "{}_hard.png".format(events[i].fs_name()))) plt.close("all") y_pred = gbc.predict(X_test_s) mse = mean_squared_error(y_test_s, y_pred) I = y_test_s.ravel().argsort() #print I #print y_test plt.plot(y_pred.ravel()[I], label="predicted") #plt.plot(np.sort(y_test.ravel()), label="truth") plt.plot(y_test_s.ravel()[I], label="truth") #plt.legend() plt.gcf().suptitle(events[i].fs_name()) plt.savefig(os.path.join(dirname, "{}_soft.png".format(events[i].fs_name()))) plt.close("all") plt.hist(y_test_s.ravel() - y_pred.ravel(), bins=25) plt.gcf().suptitle(events[i].fs_name()+" residuals") plt.savefig(os.path.join(dirname, "{}_res.png".format(events[i].fs_name()))) plt.close("all") results.append( {"name": "gbc lr_{} est_{} dep_{}".format(lr, est, max_depth), "event": events[i].fs_name(), "mse": mse, #"pos prec": prec[1], #"pos recall": rec[1], #"pos fscore": fscore[1], #"pos support": sup[1], }) print results[-1]["name"] df = pd.DataFrame(results) #u_df = df[["name", "pos prec", "pos recall", "pos fscore"]].groupby("name").agg("mean") u_df = df[["name", "mse"]].groupby("name").agg("mean") print u_df print idx = u_df["mse"].argmax() print u_df.loc[idx]
apache-2.0
pratapvardhan/scikit-learn
examples/text/document_classification_20newsgroups.py
37
10499
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='navy') plt.barh(indices + .3, training_time, .2, label="training time", color='c') plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
has2k1/plotnine
plotnine/positions/position_stack.py
1
2953
from warnings import warn import numpy as np import pandas as pd from ..exceptions import PlotnineWarning from ..utils import remove_missing from .position import position class position_stack(position): """ Stack plotted objects on top of each other The objects to stack are those that have an overlapping x range. """ fill = False def __init__(self, vjust=1, reverse=False): self.params = {'vjust': vjust, 'reverse': reverse} def setup_params(self, data): """ Verify, modify & return a copy of the params. """ # Variable for which to do the stacking if 'ymax' in data: if any((data['ymin'] != 0) & (data['ymax'] != 0)): warn("Stacking not well defined when not " "anchored on the axis.", PlotnineWarning) var = 'ymax' elif 'y' in data: var = 'y' else: warn("Stacking requires either ymin & ymax or y " "aesthetics. Maybe you want position = 'identity'?", PlotnineWarning) var = None params = self.params.copy() params['var'] = var params['fill'] = self.fill return params def setup_data(self, data, params): if not params['var']: return data if params['var'] == 'y': data['ymax'] = data['y'] elif params['var'] == 'ymax': bool_idx = data['ymax'] == 0 data.loc[bool_idx, 'ymax'] = data.loc[bool_idx, 'ymin'] data = remove_missing( data, vars=('x', 'xmin', 'xmax', 'y'), name='position_stack') return data @classmethod def compute_panel(cls, data, scales, params): if not params['var']: return data negative = data['ymax'] < 0 neg = data.loc[negative] pos = data.loc[~negative] if len(neg): neg = cls.collide(neg, params=params) if len(pos): pos = cls.collide(pos, params=params) data = pd.concat([neg, pos], axis=0, ignore_index=True, sort=True) return data @staticmethod def strategy(data, params): """ Stack overlapping intervals. Assumes that each set has the same horizontal position """ vjust = params['vjust'] y = data['y'].copy() y[np.isnan(y)] = 0 heights = np.append(0, y.cumsum()) if params['fill']: heights = heights / np.abs(heights[-1]) data['ymin'] = np.min([heights[:-1], heights[1:]], axis=0) data['ymax'] = np.max([heights[:-1], heights[1:]], axis=0) # less intuitive than (ymin + vjust(ymax-ymin)), but # this way avoids subtracting numbers of potentially # similar precision data['y'] = ((1-vjust)*data['ymin'] + vjust*data['ymax']) return data
gpl-2.0
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/sklearn/ensemble/tests/test_forest.py
8
28031
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import product import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.grid_search import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.validation import check_random_state # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): """Check consistency on dataset iris.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): """Check consistency on dataset boston house prices.""" ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", )): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): """Regression models should not have a classes_ attribute.""" r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): """Predict probabilities.""" ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importance(name, X, y): """Check variable importances.""" ForestClassifier = FOREST_CLASSIFIERS[name] for n_jobs in [1, 2]: clf = ForestClassifier(n_estimators=10, n_jobs=n_jobs) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) X_new = clf.transform(X, threshold="mean") assert_less(0 < X_new.shape[1], X.shape[1]) # Check with sample weights sample_weight = np.ones(y.shape) sample_weight[y == 1] *= 100 clf = ForestClassifier(n_estimators=50, n_jobs=n_jobs, random_state=0) clf.fit(X, y, sample_weight=sample_weight) importances = clf.feature_importances_ assert_true(np.all(importances >= 0.0)) clf = ForestClassifier(n_estimators=50, n_jobs=n_jobs, random_state=0) clf.fit(X, y, sample_weight=3 * sample_weight) importances_bis = clf.feature_importances_ assert_almost_equal(importances, importances_bis) def test_importances(): X, y = datasets.make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name in FOREST_CLASSIFIERS: yield check_importance, name, X, y def check_oob_score(name, X, y, n_estimators=20): """Check that oob prediction is a good estimation of the generalization error.""" # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): """Check that base trees can be grid-searched.""" for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): """Check pickability.""" ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): """Check estimators on multi-output problems.""" X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): """Test that n_classes_ and classes_ have proper shape.""" ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): ''' Test that the `sparse_output` parameter of RandomTreesEmbedding works by returning a dense array. ''' # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): ''' Test that the `sparse_output` parameter of RandomTreesEmbedding works by returning the same array for both argument values. ''' # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name, X, y): """Test precedence of max_leaf_nodes over max_depth. """ ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name, X, y def check_min_samples_leaf(name, X, y): """Test if leaves contain more than leaf_count training examples""" ForestEstimator = FOREST_ESTIMATORS[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): est = ForestEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def test_min_samples_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name, X, y def check_min_weight_fraction_leaf(name, X, y): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) if isinstance(est, (RandomForestClassifier, RandomForestRegressor)): est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) X = X.astype(np.float32) for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name, X, y def check_memory_layout(name, dtype): """Check that it works no matter the memory layout""" est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) def test_1d_input(): X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_warm_start(name, random_state=42): """Test if fitting incrementally with warm start gives a forest of the right size and the same results as a normal fit.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): """Test if fit clears state and grows a new forest when warm_start==False. """ X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): """Test if warm start second fit with smaller n_estimators raises error.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): """Test if warm start with equal n_estimators does nothing and returns the same forest and raises a warning.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): """Test that the warm start computes oob score when asked.""" X, y = datasets.make_hastie_10_2(n_samples=20, random_state=1) ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name if __name__ == "__main__": import nose nose.runmodule()
bsd-3-clause
njchiang/task-fmri-utils
fmri_core/cross_searchlight.py
1
13150
""" Custom version of searchlight for cross-classification The searchlight is a widely used approach for the study of the fine-grained patterns of information in fMRI analysis, in which multivariate statistical relationships are iteratively tested in the neighborhood of each location of a domain. """ # Authors : Vincent Michel ([email protected]) # Alexandre Gramfort ([email protected]) # Philippe Gervais ([email protected]) # # License: simplified BSD import time import sys import warnings from distutils.version import LooseVersion import numpy as np import sklearn from sklearn.externals.joblib import Parallel, delayed, cpu_count from sklearn import svm from sklearn.base import BaseEstimator from sklearn.model_selection import cross_val_score, permutation_test_score from nilearn import masking from nilearn.image.resampling import coord_transform from nilearn.input_data.nifti_spheres_masker import _apply_mask_and_get_affinity from nilearn._utils.compat import _basestring # from nilearn._utils.fixes import cross_val_score ESTIMATOR_CATALOG = dict(svc=svm.LinearSVC, svr=svm.SVR) def search_light(X, y, estimator, A, groups=None, scoring=None, cv=None, n_jobs=-1, verbose=0, permutations=0, random_state=42): """Function for computing a search_light Parameters ---------- X : array-like of shape at least 2D data to fit. y : array-like target variable to predict. estimator : estimator object implementing 'fit' object to use to fit the data A : scipy sparse matrix. adjacency matrix. Defines for each feature the neigbhoring features following a given structure of the data. groups : array-like, optional group label for each sample for cross validation. default None NOTE: will have no effect for scikit learn < 0.18 scoring : string or callable, optional The scoring strategy to use. See the scikit-learn documentation for possible values. If callable, it taks as arguments the fitted estimator, the test data (X_test) and the test target (y_test) if y is not None. cv : cross-validation generator, optional A cross-validation generator. If None, a 3-fold cross validation is used or 3-fold stratified cross-validation when y is supplied. n_jobs : int, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : int, optional The verbosity level. Defaut is 0 Returns ------- scores : array-like of shape (number of rows in A) search_light scores """ # TODO : figure out hwat's going on here... group_iter = GroupIterator(A.shape[0], n_jobs) scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_group_iter_search_light)( A.rows[list_i], estimator, X, y, groups, scoring, cv, thread_id + 1, A.shape[0], verbose, permutations, random_state) for thread_id, list_i in enumerate(group_iter)) return np.concatenate(scores) class GroupIterator(object): """Group iterator Provides group of features for search_light loop that may be used with Parallel. Parameters ---------- n_features : int Total number of features n_jobs : int, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. Defaut is 1 """ def __init__(self, n_features, n_jobs=1): self.n_features = n_features if n_jobs == -1: n_jobs = cpu_count() self.n_jobs = n_jobs def __iter__(self): split = np.array_split(np.arange(self.n_features), self.n_jobs) for list_i in split: yield list_i def _group_iter_search_light(list_rows, estimator, X, y, groups, scoring, cv, thread_id, total, verbose=0, permutations=0, random_state=42): """Function for grouped iterations of search_light Parameters ----------- list_rows : array of arrays of int adjacency rows. For a voxel with index i in X, list_rows[i] is the list of neighboring voxels indices (in X). estimator : estimator object implementing 'fit' object to use to fit the data X : array-like of shape at least 2D data to fit. y : array-like target variable to predict. groups : array-like, optional group label for each sample for cross validation. NOTE: will have no effect for scikit learn < 0.18 scoring : string or callable, optional Scoring strategy to use. See the scikit-learn documentation. If callable, takes as arguments the fitted estimator, the test data (X_test) and the test target (y_test) if y is not None. cv : cross-validation generator, optional A cross-validation generator. If None, a 3-fold cross validation is used or 3-fold stratified cross-validation when y is supplied. thread_id : int process id, used for display. total : int Total number of voxels, used for display verbose : int, optional The verbosity level. Defaut is 0 Returns ------- par_scores : numpy.ndarray score for each voxel. dtype: float64. """ if permutations > 0: par_scores = np.zeros((len(list_rows), permutations + 1)) else: if groups is not None: par_scores = np.zeros((len(list_rows), len(set(groups)))) else: par_scores = np.zeros(len(list_rows)) t0 = time.time() for i, row in enumerate(list_rows): kwargs = dict() if not LooseVersion(sklearn.__version__) < LooseVersion('0.15'): kwargs['scoring'] = scoring if LooseVersion(sklearn.__version__) >= LooseVersion('0.18'): kwargs['groups'] = groups elif scoring is not None: warnings.warn('Scikit-learn version is too old. ' 'scoring argument ignored', stacklevel=2) if permutations > 0: actual, perms, _ = permutation_test_score(estimator, X[:, row], y, cv=cv, n_jobs=1, n_permutations=permutations, random_state=random_state, **kwargs) par_scores[i] = np.hstack([actual, perms]) else: if groups is not None: par_scores[i] = cross_val_score(estimator, X[:, row], y, cv=cv, n_jobs=1, **kwargs) else: par_scores[i] = np.mean(cross_val_score(estimator, X[:, row], y, cv=cv, n_jobs=1, **kwargs)) if verbose > 0: # One can't print less than each 10 iterations step = 11 - min(verbose, 10) if (i % step == 0): # If there is only one job, progress information is fixed if total == len(list_rows): crlf = "\r" else: crlf = "\n" percent = float(i) / len(list_rows) percent = round(percent * 100, 2) dt = time.time() - t0 # We use a max to avoid a division by zero remaining = (100. - percent) / max(0.01, percent) * dt sys.stderr.write( "Job #%d, processed %d/%d voxels " "(%0.2f%%, %i seconds remaining)%s" % (thread_id, i, len(list_rows), percent, remaining, crlf)) return par_scores ############################################################################## # Class for search_light ##################################################### ############################################################################## class SearchLight(BaseEstimator): """Implement search_light analysis using an arbitrary type of classifier. Parameters ----------- mask_img : Niimg-like object See http://nilearn.github.io/manipulating_images/input_output.html boolean image giving location of voxels containing usable signals. process_mask_img : Niimg-like object, optional See http://nilearn.github.io/manipulating_images/input_output.html boolean image giving voxels on which searchlight should be computed. radius : float, optional radius of the searchlight ball, in millimeters. Defaults to 2. estimator : 'svr', 'svc', or an estimator object implementing 'fit' The object to use to fit the data n_jobs : int, optional. Default is -1. The number of CPUs to use to do the computation. -1 means 'all CPUs'. scoring : string or callable, optional The scoring strategy to use. See the scikit-learn documentation If callable, takes as arguments the fitted estimator, the test data (X_test) and the test target (y_test) if y is not None. cv : cross-validation generator, optional A cross-validation generator. If None, a 3-fold cross validation is used or 3-fold stratified cross-validation when y is supplied. verbose : int, optional Verbosity level. Defaut is False Notes ------ The searchlight [Kriegeskorte 06] is a widely used approach for the study of the fine-grained patterns of information in fMRI analysis. Its principle is relatively simple: a small group of neighboring features is extracted from the data, and the prediction function is instantiated on these features only. The resulting prediction accuracy is thus associated with all the features within the group, or only with the feature on the center. This yields a map of local fine-grained information, that can be used for assessing hypothesis on the local spatial layout of the neural code under investigation. Nikolaus Kriegeskorte, Rainer Goebel & Peter Bandettini. Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 10, pages 3863-3868, March 2006 """ def __init__(self, mask_img, process_mask_img=None, radius=2., estimator='svc', n_jobs=1, scoring=None, cv=None, verbose=0): self.mask_img = mask_img self.process_mask_img = process_mask_img self.radius = radius self.estimator = estimator self.n_jobs = n_jobs self.scoring = scoring self.cv = cv self.verbose = verbose def fit(self, imgs, y, groups=None, permutations=0, random_state=42): """Fit the searchlight Parameters ---------- imgs : Niimg-like object See http://nilearn.github.io/manipulating_images/input_output.html 4D image. y : 1D array-like Target variable to predict. Must have exactly as many elements as 3D images in img. groups : array-like, optional group label for each sample for cross validation. Must have exactly as many elements as 3D images in img. default None NOTE: will have no effect for scikit learn < 0.18 """ # Get the seeds process_mask_img = self.process_mask_img if self.process_mask_img is None: process_mask_img = self.mask_img # Compute world coordinates of the seeds process_mask, process_mask_affine = masking._load_mask_img( process_mask_img) process_mask_coords = np.where(process_mask != 0) process_mask_coords = coord_transform( process_mask_coords[0], process_mask_coords[1], process_mask_coords[2], process_mask_affine) process_mask_coords = np.asarray(process_mask_coords).T X, A = _apply_mask_and_get_affinity( process_mask_coords, imgs, self.radius, True, mask_img=self.mask_img) estimator = self.estimator if isinstance(estimator, _basestring): estimator = ESTIMATOR_CATALOG[estimator]() scores = search_light(X, y, estimator, A, groups, self.scoring, self.cv, self.n_jobs, self.verbose, permutations=permutations, random_state=random_state) if groups is not None: scores_3D = [] for g in range(scores.shape[1]): these_scores = np.zeros(process_mask.shape) these_scores[process_mask] = scores[:, g] scores_3D.append(these_scores) scores_3D = np.stack(scores_3D, -1) else: scores_3D = np.zeros(process_mask.shape) scores_3D[process_mask] = scores self.scores_ = scores_3D return self
mit
hrjn/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
sebchalmers/TrafficMHE
TrafficFlow.py
1
25833
# -*- coding: utf-8 -*- """ Created on Fri Oct 16, 2014 @author: Sebastien Gros Assistant Professor Department of Signals and Systems Chalmers University of Technology SE-412 96 Gšteborg, SWEDEN [email protected] Python/casADi Module: An MHE module for Freeway Traffic Incident Detection Requires the installation of the open-source Python module casADi together with the NLP solver ipopt Required version of CasADi: v1.7.x """ from casadi import * from casadi.tools import * #import math as math import numpy as np import scipy.special as sc_spec from scipy import linalg import scipy.io import random as rand import matplotlib.pyplot as plt from pylab import matshow from matplotlib import interactive def assertList(var): if not(isinstance(var,list)): var = [var] return var #Solver Constructor (used in both Turbine and WindFarm class) def _setSolver(self, V,Cost,g,P, Tol): lbg = g() ubg = g() if ('IneqConst' in g.keys()): lbg['IneqConst'] = -inf ubg['IneqConst'] = 0 EqConst = list(veccat(g.i['EqConst' ])) if 'IneqConst' in g.keys(): IneqConst = list(veccat(g.i['IneqConst'])) else: IneqConst = [] nl = MXFunction(nlpIn(x=V,p=P),nlpOut(f=Cost,g=g)) nl.init() # set-up solver solver = IpoptSolver(nl) solver.setOption("expand",True) solver.setOption("print_level",0) solver.setOption("hessian_approximation","exact") solver.setOption("max_iter",1500) solver.setOption("tol",Tol) solver.setOption("linear_solver","ma27") solver.init() print "Solver constructed, Extract Hessian & gradient" H = solver.hessLag() H.init() dg = solver.jacG() dg.init() gfunc = MXFunction([V,P],[g]) gfunc.init() f = solver.gradF() f.init() Solver = {'solver': solver, 'H': H, 'f': f, 'dg': dg, 'g': gfunc, 'lbg': lbg, 'ubg': ubg, 'V': V, 'EqConst':EqConst, 'IneqConst':IneqConst} return Solver def _CreateQP(solver,V): solver['H'].evaluate() H = solver['H'].output()# + np.eye(solver['H'].output().shape[0]) solver['dg'].evaluate() dg = solver['dg'].output() QPsolver = NLPQPSolver(qpStruct(h=H.sparsity(),a=dg.sparsity())) QPsolver.setOption({"nlp_solver":IpoptSolver, "nlp_solver_options": {"tol": 1e-8,"verbose": 0} }) QPsolver.init() return QPsolver def _CreateFunc(Input,Output): Func = MXFunction(Input,Output) Func.init() return Func class FreeWay: def _StructBuilder(self, Vars): EntryList = [] for key in Vars: Struct = struct_ssym([key]) EntryList.append(entry(key, struct = Struct, repeat = self.NumSegment)) Struct = struct_msym(EntryList) return Struct def __init__(self, Path = [], Slacks = [], Meas = [], ExtParam = []): print "------------------" print "Initialize FreeWay" print "------------------" print "Load Data" try: self.Data = scipy.io.loadmat(Path) except: print "Unkown Data file, give path/name", Path print "Build Symbolic variables" self.NumSegment = self.Data['L'].shape[1]+1 self.DataTime = self.Data['vv_3lane'].shape[0]-1 VarList = { 'States': ['rho', 'v'], 'Inputs': ['r','f','alpha','beta', 'Ve'] } GlobalParams = struct_ssym(['vfree', 'kappa', 'tau', 'a', 'rho_cr', 'eta', 'T', 'delta']) Li = struct_ssym(['L']) #Build structure to hold the data (will merge into EP) if not(Meas == []): self.Meas = self._StructBuilder(Meas) else: print "WARNING: NO DATA PROVIDED" if not(Slacks == []): # Slacks declared by the user (for constraints relaxation) print "Slack variables detected:" print Slacks VarList['Slacks'] = Slacks #Spatial Structure self.VSpace = {} self.VSpacePrev = {} for var in VarList.keys(): self.VSpace[var] = self._StructBuilder(VarList[var]) self.VSpacePrev[var] = self._StructBuilder(VarList[var]) #Create Structure for External parameters ParamList = [ entry('Global', struct = GlobalParams ), entry('States0', struct = self.VSpace['States'] ), entry('Inputs0', struct = self.VSpace['Inputs'] ), entry('Dist', struct = Li, repeat = self.NumSegment ) ] self.Param = struct_msym(ParamList) if not(ExtParam == []): ExtParamList = [] for key in ExtParam: Struct = struct_ssym([key]) ExtParamList.append(entry(key, struct = Struct, repeat = self.NumSegment )) self.ExtParam = struct_msym(ExtParamList) T = self.Param['Global', 'T'] a = self.Param['Global', 'a'] delta = self.Param['Global', 'delta'] kappa = self.Param['Global', 'kappa'] tau = self.Param['Global', 'tau'] vfree = self.Param['Global', 'vfree'] rho_cr = self.Param['Global','rho_cr'] eta = self.Param['Global', 'eta'] print "Build Stage-wise Dynamic Function" self._Shoot = ['Boundary, dynamics n/a'] for i in range(1,self.NumSegment-1): ##Attribute spatial dynamic elements rho_i = self.VSpace['States']['rho', i] v_i = self.VSpace['States']['v', i] rho_im = self.VSpace['States']['rho',i-1] v_im = self.VSpace['States']['v', i-1] rho_ip = self.VSpace['States']['rho',i+1] v_ip = self.VSpace['States']['v', i+1] q_im = rho_im*v_im q_i = rho_i *v_i r_i = self.VSpace['Inputs']['r', i] f_i = self.VSpace['Inputs']['f', i] beta_i = self.VSpace['Inputs']['beta', i] alpha_i = self.VSpace['Inputs']['alpha',i] Ve_i = self.VSpace['Inputs']['Ve', i] Li = self.Param['Dist',i,'L'] #Construct Dynamics Dyn = [] Dyn.append( rho_i + T*(q_im - q_i + r_i - f_i)/Li ) Dyn.append( v_i + T*(beta_i*Ve_i - v_i)/tau \ + T*v_i*(v_im - v_i)/Li \ - beta_i*(1 - alpha_i)*(eta*T)*(rho_ip - rho_i)/(rho_i + kappa)/(tau*Li) ) Shoot = _CreateFunc([self.VSpace['Inputs'],self.VSpace['States'],self.Param],[veccat(Dyn)]) self._Shoot.append(Shoot) self._Shoot.append('Boundary, dynamics n/a') def _BuildFunc(self, Expr, Type): X = self.VSpace['States'] U = self.VSpace['Inputs'] Xprev = self.VSpacePrev['States'] Uprev = self.VSpacePrev['Inputs'] #CAREFUL, THE INPUT SCHEME MUST MATCH THE FUNCTION CALLS !! if Type == 'Terminal': listFuncInput = [X, Xprev] #, Slacks; if applicable else: listFuncInput = [X, Xprev, U, Uprev] #, Slacks; if applicable if ('Slacks' in self.VSpace.keys()): listFuncInput.append(self.VSpace['Slacks'])#['Slacks']) listFuncInput.append(self.Param) listFuncInput.append(self.Meas) if hasattr(self,'ExtParam'): listFuncInput.append(self.ExtParam) self.listFuncInput = listFuncInput Func = MXFunction(listFuncInput,[Expr]) Func.init() return Func def setIneqConst(self, Const, Type = 'Stage'): """ Sets the Cost of your MHE problem. Send in a symbolic expression constructed from .VSpace symbols as argument. Specify Terminal = True if this is your Terminal constraint. """ if not(isinstance(Const,list)): Const = [Const] #ConstFunc = self._BuildFunc(veccat(Const), Terminal) if (Type == 'Stage'): self._StageConst = self._BuildFunc(veccat(Const), Type) if (Type == 'Arrival'): self._ArrivalConst = self._BuildFunc(veccat(Const), Type) if (Type == 'Terminal'): self._TerminalConst = self._BuildFunc(veccat(Const), Type) def setCost(self, Expr, Type = 'Stage'): """ Sets the Cost of your MHE problem. Send in a symbolic expression constructed from .VSpace symbols as argument. Specify Arrival = True if this is your arrival cost. """ if (Type == 'Stage'): self._StageCost = self._BuildFunc(Expr, Type) if (Type == 'Arrival'): self._ArrivalCost = self._BuildFunc(Expr, Type) if (Type == 'Terminal'): self._TerminalCost = self._BuildFunc(Expr, Type) def _AddCostAndConst(self, Cost, IneqConst, k): StageInputList = [] AddCost = 0 if (k==0): StageInputList.append(self.V['States', k ]) StageInputList.append(self.EP['Param','States0' ]) StageInputList.append(self.V[ 'Inputs', k ]) StageInputList.append(self.EP['Param','Inputs0' ]) if (k > 0) and (k < self.Horizon-1): StageInputList.append(self.V['States', k ]) StageInputList.append(self.V['States', k-1 ]) StageInputList.append(self.V['Inputs', k ]) StageInputList.append(self.V['Inputs', k-1 ]) if (k == self.Horizon-1): StageInputList.append(self.V['States', k ]) StageInputList.append(self.V['States', k-1 ]) if ('Slacks' in self.VSpace.keys()): StageInputList.append(self.V['Slacks',k]) StageInputList.append(self.EP['Param']) StageInputList.append(self.EP['Meas', k]) if ('ExtParam' in self.EP.keys()): StageInputList.append(self.EP['ExtParam',k]) if k == 0: if hasattr(self, '_ArrivalCost'): print "Arrival Cost Detected, build." [AddCost ] = self._ArrivalCost.call( StageInputList) Cost += AddCost if hasattr(self, '_ArrivalConst'): print "Arrival Constraint Detected, build." [AppendConst] = self._ArrivalConst.call(StageInputList) IneqConst.append( AppendConst ) if k == self.Horizon-1: if hasattr(self, '_TerminalCost'): print "Terminal Cost Detected, build." [AddCost ] = self._TerminalCost.call( StageInputList) Cost += AddCost if hasattr(self, '_TerminalConst'): print "Terminal Constraint Detected, build." [AppendConst] = self._TerminalConst.call(StageInputList) IneqConst.append( AppendConst ) if (k < self.Horizon-1) and (k > 0): if hasattr(self, '_StageCost'): print "Stage Cost Detected, build." [AddCost ] = self._StageCost.call( StageInputList) Cost += AddCost if hasattr(self, '_StageConst'): print "Stage Constraint Detected, build." [AppendConst] = self._StageConst.call( StageInputList) IneqConst.append( AppendConst ) return Cost, IneqConst def _CreateEPStruct(self, TimeHorizon): EPList = [ entry('Param', struct = self.Param), entry('Meas', struct = self.Meas, repeat = TimeHorizon) ] if hasattr(self,'ExtParam'): EPList.append(entry('ExtParam', struct = self.ExtParam, repeat = TimeHorizon)) EP = struct_msym(EPList) return EP def BuildMHE(self, Horizon = 1, SimTime = 1, Tol = 1e-3): """ Construct the MHE problem. Specify your horizon lengths as Horizon = ... """ if (Horizon > 0): self.Horizon = Horizon else: print "Warning, no horizon specified. Default value is 1 !!" self.SimTime = SimTime + Horizon NumElement = {'States': Horizon, 'Inputs' : Horizon-1} if ('Slacks' in self.VSpace.keys()): NumElement['Slacks'] = Horizon print "Build Freeway Variable Structures" VarStruct = [] for var in NumElement.keys(): VarStruct.append( entry(var, struct = self.VSpace[var], repeat = NumElement[var] )) SimStruct = [] for var in NumElement.keys(): SimStruct.append( entry(var, struct = self.VSpace[var], repeat = self.SimTime )) self.V = struct_msym(VarStruct) self.VSim = struct_msym(SimStruct) self.EP = self._CreateEPStruct(self.Horizon) self.EPSim = self._CreateEPStruct(self.SimTime) #Construct Dynamic Constraints print "Building Dynamic Constraints" EquConst = [] for k in range(0,Horizon-1): #print "Time", k for i in range(1,self.NumSegment-1): #print "Segment", i [Xplus] = self._Shoot[i].call([self.V['Inputs',k],self.V['States',k],self.EP['Param']]) self.Xplus = Xplus EquConst.append( veccat(self.V['States',k+1,...,i]) - Xplus ) #Construct Stage Cost & Inequality Constraints print "Building Cost & Inequality Constraints" IneqConst = [] Cost = 0 for k in range(Horizon): Cost, IneqConst = self._AddCostAndConst(Cost, IneqConst, k) print "\n" print "------------------" print "Construct Solvers" print "------------------" print "\n" print "NLP" gList = [entry('EqConst', expr = EquConst)] if not(IneqConst == []): gList.append(entry('IneqConst', expr = IneqConst)) self.g = struct_MX(gList) ##Setup Central Solver self.Solver = _setSolver(self, self.V, Cost, self.g, self.EP, Tol = Tol) self.gfunc = MXFunction([self.V, self.EP],[self.g]) self.gfunc.init() self.Costfunc = MXFunction([self.V, self.EP],[Cost]) self.Costfunc.init() ##Setup Central Solver print "QP" self.QPSolver = _CreateQP(self.Solver, self.V) print "\n" print "Construction Terminated." def PrepareQP(self, solver = [], Primal = [], Adjoint = [], EP = [], lbV = [], ubV = []): solver['H'].setInput(Primal, 0) solver['H'].setInput(EP ,1) solver['H'].setInput(1. ,2) solver['H'].setInput(Adjoint,3) solver['H'].evaluate() solver['f'].setInput(Primal, 0) solver['f'].setInput(EP, 1) solver['f'].evaluate() solver['dg'].setInput(Primal, 0) solver['dg'].setInput(EP, 1) solver['dg'].evaluate() solver['g'].setInput(Primal, 0) solver['g'].setInput(EP, 1) solver['g'].evaluate() QP = { 'H' : DMatrix(solver[ 'H'].output()), 'f' : DMatrix(solver[ 'f'].output()), 'dg' : DMatrix(solver['dg'].output()), 'g' : DMatrix(solver[ 'g'].output()), 'lbX': DMatrix( lbV.cat - Primal.cat), 'ubX': DMatrix( ubV.cat - Primal.cat), 'lbg': DMatrix(solver['lbg'].cat - solver['g'].output()), 'ubg': DMatrix(solver['ubg'].cat - solver['g'].output()) } return QP def PlotSparsity(self, solver): """ Call in with your T.Solver as argument. """ solver['H'].evaluate() H = solver['H'].output() solver['dg'].evaluate() dg = solver['dg'].output() plt.figure(1) plt.spy(np.concatenate([H,dg.T],axis=1)) plt.show() def _setParameters(self, EP = [], ExtParam = []): """ Sets the FreeWay parameters. Call in with a Dictionary of your external parameters. Segment lengths are automatically assigned from your specified data file. """ for key in ExtParam.keys(): EP['Param','Global',key] = ExtParam[key] for i in range(self.Data['L'].shape[1]): EP['Param','Dist',i,'L'] = self.Data['L'][0,i] return EP def _AssignData(self, Simulated, Data = 0, VStruct = [], EPStruct = [], ExtParam = []): TimeRange = len(VStruct['States',:,...,veccat]) SegmentList = range(self.NumSegment) EPStruct = self._setParameters(EP = EPStruct, ExtParam = ExtParam) #Assign Measurements DataDic = {'v': ['vv_3lane', 1.], 'rho': ['rr_3lane', 3.]} for k in range(TimeRange): for i in SegmentList: for key in DataDic.keys(): EPStruct['Meas', k,key,i] = Data[DataDic[key][0]][k, i]/DataDic[key][1] VStruct['States',k,key,i] = Data[DataDic[key][0]][k, i]/DataDic[key][1] #Assign accident-free values VStruct['Inputs',:,'alpha',:] = 0. VStruct['Inputs',:,'beta',:] = 1. for key in ['rho','v']: EPStruct['Meas',:,key,:] = VStruct['States',:,key,:] return VStruct, EPStruct def GenerateData(self, VStruct = [], EPStruct = [], ExtParam = [], TimeRange = 0, Simulated = False, AddNoise = False): """ Generate data for testing purposes """ print "Assign Data" StateNoise = 0 Data, EP = self._AssignData(Simulated, Data = self.Data, VStruct = VStruct, EPStruct = EPStruct, ExtParam = ExtParam) if AddNoise: rhoMean = np.mean(Data['States',:,'rho',:]) vMean = np.mean(Data['States',:,'v',:]) if TimeRange == 0: TimeRange = len(Data['States',:,...,veccat]) if Simulated: print "Construct Simulated Data" FaultySegment = 3 #Assign parameters vfree = EP['Param','Global', 'vfree' ] a = EP['Param','Global', 'a' ] rho_cr = EP['Param','Global', 'rho_cr' ] for k in range(TimeRange-1): #Generate accident if k in range(360,840): Data['Inputs',k,'alpha',FaultySegment] = np.min([Data['Inputs',k-1,'alpha',FaultySegment] + 0.01, 0.3]) Data['Inputs',k, 'beta',FaultySegment] = np.max([Data['Inputs',k-1, 'beta',FaultySegment] - 0.01, 0.7]) #Forward Simulation for i in range(1,self.NumSegment-1): #Assign Ve Ve_arg = (1 + Data['Inputs',k,'alpha',i])*Data['States',k,'rho',i] Data['Inputs',k,'Ve',i] = vfree*exp(-((Ve_arg/rho_cr)**a)/a) for index, setInput in enumerate([Data['Inputs',k],Data['States',k],EP['Param']]): self._Shoot[i].setInput(setInput,index) self._Shoot[i].evaluate() if AddNoise: StateNoise = np.array([ rand.normalvariate(0,1e-3*rhoMean), rand.normalvariate(0,1e-3*vMean) ]) Data['States',k+1,...,i] = list(self._Shoot[i].output() + StateNoise) for key in ['rho','v']: EP['Meas',:,key,:] = Data['States',:,key,:] #Assign Ve on the boundaries (for consistency) for k in range(TimeRange-1): for i in [0,self.NumSegment-1]: Ve_arg = (1 + Data['Inputs',k,'alpha',i])*Data['States',k,'rho',i] Data['Inputs',k,'Ve',i] = vfree*exp(-((Ve_arg/rho_cr)**a)/a) #Assign initial conditions for key in ['Inputs','States']: EP['Param',key+'0'] = Data[key,0] print "Done" return Data, EP def PassMHEData(self,Data = [], EP = [], time = 0, ExtParam = []): """ Assign data to the MHE solver """ initMHE = self.V() EPMHE = self._setParameters(EP = self.EP(), ExtParam = ExtParam) for key in ['States0','Inputs0']: EPMHE['Param',key] = EP['Param',key] for k in range(self.Horizon): initMHE['States',k,...] = Data['States',time+k,...] EPMHE['Meas',k,...,:] = EP['Meas',time+k,...,:] for k in range(self.Horizon-1): initMHE['Inputs',k,...] = Data['Inputs',time+k,...] #Set variable bounds & initial guess lbV = self.V(-inf) ubV = self.V( inf) #Collapsed variables for key in ['f','r']: lbV['Inputs',:,key,:] = 0. ubV['Inputs',:,key,:] = 0. #Bounds on alpha, beta for key in ['alpha', 'beta']: lbV['Inputs',:,key,:] = 0 ubV['Inputs',:,key,:] = 1 if ('Slacks' in lbV.keys()): lbV['Slacks'] = 0. lbV['States'] = 0 lbV['Inputs',:,'Ve',:] = 0 ubV['Inputs',:,'Ve',:] = 130. ubV['States',:,'v',:] = 130. ubV['States',:,'rho',:] = 90. ubV['Slacks'] = 1. #for i in range(self.NumSegment): # for k in range(self.Horizon-1): # VeBound = np.mean(self.Data['VMS_d'][time+k,3*i:3*i+3]) # if np.isnan(VeBound): # VeBound = 200. # ubV['Inputs',k,'Ve',i] = VeBound return initMHE, EPMHE, lbV, ubV def SolveMHE(self, EP = [], lbV = [], ubV = [], init = []): print "Solve Instance of MHE" self.Solver['solver'].setInput(init, "x0") self.Solver['solver'].setInput(self.Solver['lbg'], "lbg") self.Solver['solver'].setInput(self.Solver['ubg'], "ubg") self.Solver['solver'].setInput(lbV, "lbx") self.Solver['solver'].setInput(ubV, "ubx") self.Solver['solver'].setInput(EP, "p") self.Solver['solver'].solve() self._lbg = self.Solver['lbg'] self._ubg = self.Solver['ubg'] Adjoints = self.g(np.array(self.Solver['solver'].output('lam_g'))) Primal = self.V(np.array(self.Solver['solver'].output('x'))) Cost = self.Solver['solver'].output('f') Status = int(self.Solver['solver'].getStats()['return_status'] == 'Solve_Succeeded') return Primal, Adjoints, Cost, Status def Shift(self, Primal, EP): #Assign the previous 1st state and input to EP EPShifted = EP EPShifted['Param','States0'] = Primal['States',1] EPShifted['Param','Inputs0'] = Primal['Inputs',1] #Primal Shift PrimalShifted = self.V(Primal) PrimalShifted[...,:-1] = Primal[...,1:] PrimalShifted[...,-1] = Primal[...,-1] #Last step completion for i in range(1,self.NumSegment-1): for index, setInput in enumerate([Primal['Inputs',-1],Primal['States',-1],EP['Param']]): self._Shoot[i].setInput(setInput,index) self._Shoot[i].evaluate() PrimalShifted['States',-1,...,i] = list(self._Shoot[i].output()) #Assign measurement to the boundary conditions for i in [0,self.NumSegment-1]: PrimalShifted['States',-1,...,i] = EP['Meas',-1,...,i] return PrimalShifted, EPShifted def Check(self, init = 0, EP = 0): #Check initial guess self.Costfunc.setInput(init, 0) self.Costfunc.setInput(EP, 1) self.Costfunc.evaluate() Cost0 = self.Costfunc.output() self.gfunc.setInput(init, 0) self.gfunc.setInput(EP, 1) self.gfunc.evaluate() g0 = self.gfunc.output() return Cost0, self.g(g0)
gpl-2.0
DonBeo/statsmodels
docs/sphinxext/ipython_directive.py
30
27623
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import cStringIO import os import re import sys import tempfile import ast import time # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive matplotlib.use('Agg') # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): #handle try/except blocks. only catch outer except if re.match(continuation + '\sexcept:', nextline): inputline += '\n' + nextline[Nc+1:] else: inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = cStringIO.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin block = '\n'.join(content) # remove blank lines block = re.sub('\n+', '\n', block) content = block.split('\n') # if any figures, make sure you can handle them and no other figures exist if re.search('^\s*@savefig', block, flags=re.MULTILINE): self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() # sub out the pseudo-decorators so we can parse block = re.sub('@(?=[savefig|suppress|verbatim|doctest])', '#@', block) # this is going to raise an error if there's problems # in the python. if you want errors, make an ipython block parsed_block = ast.parse(block) in_lines = [i.lineno for i in parsed_block.body] output = [] ct = 1 for lineno, line in enumerate(content): line_stripped = line.strip('\n') if lineno + 1 in in_lines: # this is an input line modified = u"%s %s" % (fmtin % ct, line_stripped) ct += 1 elif line.startswith('@'): # is it a decorator? modified = line else: # this is something else continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) modified = u'%s %s' % (continuation, line) output.append(modified) output = re.sub('#@(?=[savefig|suppress|verbatim|doctest])', '@', '\n'.join(output)).split('\n') # put blank lines after input lines for i in in_lines[1:][::-1]: output.insert(i-1, u'') # fix the spacing for decorators # might be a cleaner regex for # \n@savefig name.png\n\n -> \n\n@savefig name.png\n decpat1 = '(?<=@[savefig|suppress|verbatim|doctest])(?P<options>.+)\n\n' output = re.sub(decpat1, '\g<options>\n','\n'.join(output)) decpat2 = '\n(?=@[savefig|suppress|verbatim|doctest])' output = re.sub(decpat2, '\n\n', output).split('\n') return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # make a file in this directory, if there's already one # if it's older than 5 minutes, delete it # this needs a more robust solution cur_dir = os.path.normpath( os.path.join(self.state.document.settings.env.srcdir, '..')) tmp_file = os.path.join(cur_dir, 'seen_docs.temp') if os.path.exists(tmp_file): file_t = os.path.getmtime(tmp_file) now_t = time.time() if (now_t - file_t)/60. >= 5: docs = [] os.remove(tmp_file) else: docs = open(tmp_file, 'r').read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fout = open(tmp_file, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup #self.teardown() # this gets called on _every_ exit from a block return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print 'All OK? Check figures in _static/'
bsd-3-clause
Iceman121/radial_bar_chart
src/package/data/user_input.py
1
1320
# ============================================================================== # Chapter 1: Importing Data Related Modules # ============================================================================== # For storing bar chart data import pandas as po # For path details import os # ============================================================================== # Defining Attributes and Methods for Use # ============================================================================== # Get Path path = os.getcwd() # Get Files List def list_files(): files_list = po.DataFrame(os.listdir(path+'/data/raw/'), columns=['Files']) files_list = files_list.reset_index() files_list.columns = ['ID', 'Files'] return files_list # Import Data def import_data(): print('Available Files for import: ') files_list = list_files() print(files_list) print() # User Input for identifying which file to convert choice = int(input('Please enter the file ID you want to convert: ')) file_name = str(files_list.ix[files_list['ID'] == choice, 'Files'].values[0]) print() print("Importing Raw Data...") data = po.read_csv(path + "/data/raw/"+file_name, header=0) print(data.head()) print() return data
mit
probml/pyprobml
scripts/logreg_poly_demo.py
1
5022
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 27 10:08:08 2020 @author: kpmurphy """ # Fit logistic regression models to 2d data using polynomial features import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_classification, make_blobs from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LogisticRegression import matplotlib.colors as mcol import os figdir = "../figures" def save_fig(fname): plt.savefig(os.path.join(figdir, fname)) def plot_data(ax, X, y, is_train=True): X0 = X[:,0]; X1 = X[:,1] colors = [ 'red', 'blue'] if is_train: markers = ['x', '*'] else: markers = ['o', 's'] for x0, x1, cls in zip(X0, X1, y): color = colors[int(cls)-1] marker = markers[int(cls)-1] ax.scatter(x0, x1, marker=marker, color=color) ax.set_ylim(-2.75,2.75) def plot_predictions(ax, xx, yy, transformer, model): grid = np.c_[xx.ravel(), yy.ravel()] grid2 = transformer.transform(grid)[:, 1:] Z = model.predict(grid2).reshape(xx.shape) ax.pcolormesh(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.1) #plt.axis('off') def make_data(ntrain, ntest): n = ntrain + ntest X, y = make_classification( n_samples=n, n_features=2, n_redundant=0, n_classes=2, n_clusters_per_class=2, class_sep=0.1, random_state=1) X0, y0 = make_blobs(n_samples=[n, n], n_features=2, cluster_std=2, random_state=1) Xtrain = X[:ntrain, :]; ytrain = y[:ntrain] Xtest = X[ntrain:, :]; ytest = y[ntrain:] xmin = np.min(X[:,0]); xmax = np.max(X[:,0]); ymin = np.min(X[:,1]); ymax = np.max(X[:,1]); xx, yy = np.meshgrid(np.linspace(xmin, xmax, n), np.linspace(ymin, ymax, 200)) return Xtrain, ytrain, Xtest, ytest, xx, yy ntrain = 50; ntest = 1000; Xtrain, ytrain, Xtest, ytest, xx, yy = make_data(ntrain, ntest) ''' degree_list = [1,2,4,6,8,10] plot_list = degree_list err_train_list = [] err_test_list = [] w_list = [] for i, degree in enumerate(degree_list): transformer = PolynomialFeatures(degree) name = 'Degree{}'.format(degree) XXtrain = transformer.fit_transform(Xtrain)[:, 1:] # skip the first column of 1s model = LogisticRegression(C=1e4) model = model.fit(XXtrain, ytrain) w = model.coef_[0] w_list.append(w) ytrain_pred = model.predict(XXtrain) nerrors_train = np.sum(ytrain_pred != ytrain) err_train_list.append(nerrors_train / ntrain) XXtest = transformer.fit_transform(Xtest)[:, 1:] # skip the first column of 1s ytest_pred = model.predict(XXtest) nerrors_test = np.sum(ytest_pred != ytest) err_test_list.append(nerrors_test / ntest) if degree in plot_list: fig, ax = plt.subplots() plot_predictions(ax, xx, yy, transformer, model) plot_data(ax, Xtrain, ytrain, is_train=True) #plot_data(ax, Xtest, ytest, is_train=False) ax.set_title(name) fname = 'logreg_poly_surface-{}.png'.format(name) save_fig(fname) plt.draw() plt.figure() plt.plot(degree_list, err_train_list, 'x-', label='train') plt.plot(degree_list, err_test_list, 'o-', label='test') plt.legend() plt.xlabel('polynomial degree') plt.ylabel('error rate') save_fig('logreg_poly_vs_degree.png') for i in range(2): print(w_list[i]) ''' ### Try different strngth regularizers degree = 4 # C =1/lambda, so large C is large variance is small regularization C_list = np.logspace(0, 5, 7) #C_list = [1, 10, 100, 200, 500, 1000] plot_list = C_list err_train_list = [] err_test_list = [] w_list = [] for i, C in enumerate(C_list): transformer = PolynomialFeatures(degree) name = 'Reg{:d}-Degree{}'.format(int(C), degree) XXtrain = transformer.fit_transform(Xtrain)[:, 1:] # skip the first column of 1s model = LogisticRegression(C=C) model = model.fit(XXtrain, ytrain) w = model.coef_[0] w_list.append(w) ytrain_pred = model.predict(XXtrain) nerrors_train = np.sum(ytrain_pred != ytrain) err_train_list.append(nerrors_train / ntrain) XXtest = transformer.fit_transform(Xtest)[:, 1:] # skip the first column of 1s ytest_pred = model.predict(XXtest) nerrors_test = np.sum(ytest_pred != ytest) err_test_list.append(nerrors_test / ntest) if C in plot_list: fig, ax = plt.subplots() plot_predictions(ax, xx, yy, transformer, model) plot_data(ax, Xtrain, ytrain, is_train=True) #plot_data(ax, Xtest, ytest, is_train=False) ax.set_title(name) fname = 'logreg_poly_surface-{}.png'.format(name) save_fig(fname) plt.draw() plt.figure() plt.plot(C_list, err_train_list, 'x-', label='train') plt.plot(C_list, err_test_list, 'o-', label='test') plt.legend() plt.xscale('log') plt.xlabel('Inverse regularization') plt.ylabel('error rate') save_fig('logreg_poly_vs_reg-Degree{}.pdf'.format(degree))
mit
zuku1985/scikit-learn
sklearn/feature_extraction/tests/test_image.py
38
11165
# Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import scipy as sp from scipy import ndimage from numpy.testing import assert_raises from sklearn.feature_extraction.image import ( img_to_graph, grid_to_graph, extract_patches_2d, reconstruct_from_patches_2d, PatchExtractor, extract_patches) from sklearn.utils.graph import connected_components from sklearn.utils.testing import SkipTest, assert_equal, assert_true from sklearn.utils.fixes import sp_version if sp_version < (0, 12): raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and " "thus does not include the scipy.misc.face() image.") def test_img_to_graph(): x, y = np.mgrid[:4, :4] - 10 grad_x = img_to_graph(x) grad_y = img_to_graph(y) assert_equal(grad_x.nnz, grad_y.nnz) # Negative elements are the diagonal: the elements of the original # image. Positive elements are the values of the gradient, they # should all be equal on grad_x and grad_y np.testing.assert_array_equal(grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0]) def test_grid_to_graph(): # Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=np.bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size ** 2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert_true(connected_components(A)[0] == 2) # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert_true(connected_components(A)[0] == 1) # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.bool) assert_true(A.dtype == np.bool) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.int) assert_true(A.dtype == np.int) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float64) assert_true(A.dtype == np.float64) def test_connect_regions(): try: face = sp.face(gray=True) except AttributeError: # Newer versions of scipy have face in misc from scipy import misc face = misc.face(gray=True) for thr in (50, 150): mask = face > thr graph = img_to_graph(face, mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def test_connect_regions_with_grid(): try: face = sp.face(gray=True) except AttributeError: # Newer versions of scipy have face in misc from scipy import misc face = misc.face(gray=True) mask = face > 50 graph = grid_to_graph(*face.shape, mask=mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) mask = face > 150 graph = grid_to_graph(*face.shape, mask=mask, dtype=None) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def _downsampled_face(): try: face = sp.face(gray=True) except AttributeError: # Newer versions of scipy have face in misc from scipy import misc face = misc.face(gray=True) face = face.astype(np.float32) face = (face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2]) face = (face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2]) face = face.astype(np.float32) face /= 16.0 return face def _orange_face(face=None): face = _downsampled_face() if face is None else face face_color = np.zeros(face.shape + (3,)) face_color[:, :, 0] = 256 - face face_color[:, :, 1] = 256 - face / 2 face_color[:, :, 2] = 256 - face / 4 return face_color def _make_images(face=None): face = _downsampled_face() if face is None else face # make a collection of faces images = np.zeros((3,) + face.shape) images[0] = face images[1] = face + 1 images[2] = face + 2 return images downsampled_face = _downsampled_face() orange_face = _orange_face(downsampled_face) face_collection = _make_images(downsampled_face) def test_extract_patches_all(): face = downsampled_face i_h, i_w = face.shape p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(face, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_all_color(): face = orange_face i_h, i_w = face.shape[:2] p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(face, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_all_rect(): face = downsampled_face face = face[:, 32:97] i_h, i_w = face.shape p_h, p_w = 16, 12 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(face, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_max_patches(): face = downsampled_face i_h, i_w = face.shape p_h, p_w = 16, 16 patches = extract_patches_2d(face, (p_h, p_w), max_patches=100) assert_equal(patches.shape, (100, p_h, p_w)) expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1)) patches = extract_patches_2d(face, (p_h, p_w), max_patches=0.5) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) assert_raises(ValueError, extract_patches_2d, face, (p_h, p_w), max_patches=2.0) assert_raises(ValueError, extract_patches_2d, face, (p_h, p_w), max_patches=-1.0) def test_reconstruct_patches_perfect(): face = downsampled_face p_h, p_w = 16, 16 patches = extract_patches_2d(face, (p_h, p_w)) face_reconstructed = reconstruct_from_patches_2d(patches, face.shape) np.testing.assert_array_almost_equal(face, face_reconstructed) def test_reconstruct_patches_perfect_color(): face = orange_face p_h, p_w = 16, 16 patches = extract_patches_2d(face, (p_h, p_w)) face_reconstructed = reconstruct_from_patches_2d(patches, face.shape) np.testing.assert_array_almost_equal(face, face_reconstructed) def test_patch_extractor_fit(): faces = face_collection extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0) assert_true(extr == extr.fit(faces)) def test_patch_extractor_max_patches(): faces = face_collection i_h, i_w = faces.shape[1:3] p_h, p_w = 8, 8 max_patches = 100 expected_n_patches = len(faces) * max_patches extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(faces) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) max_patches = 0.5 expected_n_patches = len(faces) * int((i_h - p_h + 1) * (i_w - p_w + 1) * max_patches) extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(faces) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_max_patches_default(): faces = face_collection extr = PatchExtractor(max_patches=100, random_state=0) patches = extr.transform(faces) assert_equal(patches.shape, (len(faces) * 100, 19, 25)) def test_patch_extractor_all_patches(): faces = face_collection i_h, i_w = faces.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(faces) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(faces) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_color(): faces = _make_images(orange_face) i_h, i_w = faces.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(faces) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(faces) assert_true(patches.shape == (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_strided(): image_shapes_1D = [(10,), (10,), (11,), (10,)] patch_sizes_1D = [(1,), (2,), (3,), (8,)] patch_steps_1D = [(1,), (1,), (4,), (2,)] expected_views_1D = [(10,), (9,), (3,), (2,)] last_patch_1D = [(10,), (8,), (8,), (2,)] image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)] patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)] patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)] expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)] last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)] image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)] patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)] patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)] expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)] last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)] image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D expected_views = expected_views_1D + expected_views_2D + expected_views_3D last_patches = last_patch_1D + last_patch_2D + last_patch_3D for (image_shape, patch_size, patch_step, expected_view, last_patch) in zip(image_shapes, patch_sizes, patch_steps, expected_views, last_patches): image = np.arange(np.prod(image_shape)).reshape(image_shape) patches = extract_patches(image, patch_shape=patch_size, extraction_step=patch_step) ndim = len(image_shape) assert_true(patches.shape[:ndim] == expected_view) last_patch_slices = [slice(i, i + j, None) for i, j in zip(last_patch, patch_size)] assert_true((patches[[slice(-1, None, None)] * ndim] == image[last_patch_slices].squeeze()).all()) def test_extract_patches_square(): # test same patch size for all dimensions face = downsampled_face i_h, i_w = face.shape p = 8 expected_n_patches = ((i_h - p + 1), (i_w - p + 1)) patches = extract_patches(face, patch_shape=p) assert_true(patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p)) def test_width_patch(): # width and height of the patch should be less than the image x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(ValueError, extract_patches_2d, x, (4, 1)) assert_raises(ValueError, extract_patches_2d, x, (1, 4))
bsd-3-clause
fzalkow/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
129
10192
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius(query_pt, r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius(query_pt, r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
CrazyGuo/bokeh
sphinx/source/docs/tutorials/exercises/stocks.py
23
2098
### ### NOTE: This exercise requires a network connection ### import numpy as np import pandas as pd from bokeh.plotting import figure, output_file, show, VBox # Here is some code to read in some stock data from the Yahoo Finance API AAPL = pd.read_csv( "http://ichart.yahoo.com/table.csv?s=AAPL&a=0&b=1&c=2000&d=0&e=1&f=2010", parse_dates=['Date']) MSFT = pd.read_csv( "http://ichart.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2000&d=0&e=1&f=2010", parse_dates=['Date']) IBM = pd.read_csv( "http://ichart.yahoo.com/table.csv?s=IBM&a=0&b=1&c=2000&d=0&e=1&f=2010", parse_dates=['Date']) output_file("stocks.html", title="stocks.py example") # create a figure p1 = figure(title="Stocks", x_axis_label="Date", y_axis_label="Close price", x_axis_type="datetime") p1.below[0].formatter.formats = dict(years=['%Y'], months=['%b %Y'], days=['%d %b %Y']) # EXERCISE: finish this line plot, and add more for the other stocks. Each one should # have a legend, and its own color. p1.line( AAPL['Date'], # x coordinates AAPL['Adj Close'], # y coordinates color='#A6CEE3', # set a color for the line legend='AAPL', # attach a legend label ) # EXERCISE: style the plot, set a title, lighten the gridlines, etc. # EXERCISE: start a new figure # Here is some code to compute the 30-day moving average for AAPL aapl = AAPL['Adj Close'] aapl_dates = AAPL['Date'] window_size = 30 window = np.ones(window_size)/float(window_size) aapl_avg = np.convolve(aapl, window, 'same') # EXERCISE: plot a scatter of circles for the individual AAPL prices with legend # 'close'. Remember to set the x axis type and tools on the first renderer # EXERCISE: plot a line of the AAPL moving average data with the legeng 'avg' # EXERCISE: style the plot, set a title, lighten the gridlines, etc. show(VBox(p1, p2)) # open a browser
bsd-3-clause
dsm054/pandas
pandas/tests/frame/test_repr_info.py
1
17663
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import re import sys import textwrap import numpy as np import pytest from pandas import (DataFrame, Series, compat, option_context, date_range, period_range, Categorical) from pandas.compat import StringIO, lrange, u, PYPY import pandas.io.formats.format as fmt import pandas as pd import pandas.util.testing as tm from pandas.tests.frame.common import TestData # Segregated collection of methods that require the BlockManager internal data # structure class TestDataFrameReprInfoEtc(TestData): def test_repr_empty(self): # empty foo = repr(self.empty) # noqa # empty with index frame = DataFrame(index=np.arange(1000)) foo = repr(frame) # noqa def test_repr_mixed(self): buf = StringIO() # mixed foo = repr(self.mixed_frame) # noqa self.mixed_frame.info(verbose=False, buf=buf) @pytest.mark.slow def test_repr_mixed_big(self): # big mixed biggie = DataFrame({'A': np.random.randn(200), 'B': tm.makeStringIndex(200)}, index=lrange(200)) biggie.loc[:20, 'A'] = np.nan biggie.loc[:20, 'B'] = np.nan foo = repr(biggie) # noqa def test_repr(self): buf = StringIO() # small one foo = repr(self.frame) self.frame.info(verbose=False, buf=buf) # even smaller self.frame.reindex(columns=['A']).info(verbose=False, buf=buf) self.frame.reindex(columns=['A', 'B']).info(verbose=False, buf=buf) # exhausting cases in DataFrame.info # columns but no index no_index = DataFrame(columns=[0, 1, 3]) foo = repr(no_index) # noqa # no columns or index self.empty.info(buf=buf) df = DataFrame(["a\n\r\tb"], columns=["a\n\r\td"], index=["a\n\r\tf"]) assert "\t" not in repr(df) assert "\r" not in repr(df) assert "a\n" not in repr(df) def test_repr_dimensions(self): df = DataFrame([[1, 2, ], [3, 4]]) with option_context('display.show_dimensions', True): assert "2 rows x 2 columns" in repr(df) with option_context('display.show_dimensions', False): assert "2 rows x 2 columns" not in repr(df) with option_context('display.show_dimensions', 'truncate'): assert "2 rows x 2 columns" not in repr(df) @pytest.mark.slow def test_repr_big(self): # big one biggie = DataFrame(np.zeros((200, 4)), columns=lrange(4), index=lrange(200)) repr(biggie) def test_repr_unsortable(self): # columns are not sortable import warnings warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") unsortable = DataFrame({'foo': [1] * 50, datetime.today(): [1] * 50, 'bar': ['bar'] * 50, datetime.today() + timedelta(1): ['bar'] * 50}, index=np.arange(50)) repr(unsortable) fmt.set_option('display.precision', 3, 'display.column_space', 10) repr(self.frame) fmt.set_option('display.max_rows', 10, 'display.max_columns', 2) repr(self.frame) fmt.set_option('display.max_rows', 1000, 'display.max_columns', 1000) repr(self.frame) tm.reset_display_options() warnings.filters = warn_filters def test_repr_unicode(self): uval = u('\u03c3\u03c3\u03c3\u03c3') # TODO(wesm): is this supposed to be used? bval = uval.encode('utf-8') # noqa df = DataFrame({'A': [uval, uval]}) result = repr(df) ex_top = ' A' assert result.split('\n')[0].rstrip() == ex_top df = DataFrame({'A': [uval, uval]}) result = repr(df) assert result.split('\n')[0].rstrip() == ex_top def test_unicode_string_with_unicode(self): df = DataFrame({'A': [u("\u05d0")]}) if compat.PY3: str(df) else: compat.text_type(df) def test_bytestring_with_unicode(self): df = DataFrame({'A': [u("\u05d0")]}) if compat.PY3: bytes(df) else: str(df) def test_very_wide_info_repr(self): df = DataFrame(np.random.randn(10, 20), columns=tm.rands_array(10, 20)) repr(df) def test_repr_column_name_unicode_truncation_bug(self): # #1906 df = DataFrame({'Id': [7117434], 'StringCol': ('Is it possible to modify drop plot code' ' so that the output graph is displayed ' 'in iphone simulator, Is it possible to ' 'modify drop plot code so that the ' 'output graph is \xe2\x80\xa8displayed ' 'in iphone simulator.Now we are adding ' 'the CSV file externally. I want to Call' ' the File through the code..')}) with option_context('display.max_columns', 20): assert 'StringCol' in repr(df) def test_latex_repr(self): result = r"""\begin{tabular}{llll} \toprule {} & 0 & 1 & 2 \\ \midrule 0 & $\alpha$ & b & c \\ 1 & 1 & 2 & 3 \\ \bottomrule \end{tabular} """ with option_context("display.latex.escape", False, 'display.latex.repr', True): df = DataFrame([[r'$\alpha$', 'b', 'c'], [1, 2, 3]]) assert result == df._repr_latex_() # GH 12182 assert df._repr_latex_() is None @tm.capture_stdout def test_info(self): io = StringIO() self.frame.info(buf=io) self.tsframe.info(buf=io) frame = DataFrame(np.random.randn(5, 3)) frame.info() frame.info(verbose=False) def test_info_memory(self): # https://github.com/pandas-dev/pandas/issues/21056 df = pd.DataFrame({'a': pd.Series([1, 2], dtype='i8')}) buf = StringIO() df.info(buf=buf) result = buf.getvalue() bytes = float(df.memory_usage().sum()) expected = textwrap.dedent("""\ <class 'pandas.core.frame.DataFrame'> RangeIndex: 2 entries, 0 to 1 Data columns (total 1 columns): a 2 non-null int64 dtypes: int64(1) memory usage: {} bytes """.format(bytes)) assert result == expected def test_info_wide(self): from pandas import set_option, reset_option io = StringIO() df = DataFrame(np.random.randn(5, 101)) df.info(buf=io) io = StringIO() df.info(buf=io, max_cols=101) rs = io.getvalue() assert len(rs.splitlines()) > 100 xp = rs set_option('display.max_info_columns', 101) io = StringIO() df.info(buf=io) assert rs == xp reset_option('display.max_info_columns') def test_info_duplicate_columns(self): io = StringIO() # it works! frame = DataFrame(np.random.randn(1500, 4), columns=['a', 'a', 'b', 'b']) frame.info(buf=io) def test_info_duplicate_columns_shows_correct_dtypes(self): # GH11761 io = StringIO() frame = DataFrame([[1, 2.0]], columns=['a', 'a']) frame.info(buf=io) io.seek(0) lines = io.readlines() assert 'a 1 non-null int64\n' == lines[3] assert 'a 1 non-null float64\n' == lines[4] def test_info_shows_column_dtypes(self): dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]', 'complex128', 'object', 'bool'] data = {} n = 10 for i, dtype in enumerate(dtypes): data[i] = np.random.randint(2, size=n).astype(dtype) df = DataFrame(data) buf = StringIO() df.info(buf=buf) res = buf.getvalue() for i, dtype in enumerate(dtypes): name = '%d %d non-null %s' % (i, n, dtype) assert name in res def test_info_max_cols(self): df = DataFrame(np.random.randn(10, 5)) for len_, verbose in [(5, None), (5, False), (10, True)]: # For verbose always ^ setting ^ summarize ^ full output with option_context('max_info_columns', 4): buf = StringIO() df.info(buf=buf, verbose=verbose) res = buf.getvalue() assert len(res.strip().split('\n')) == len_ for len_, verbose in [(10, None), (5, False), (10, True)]: # max_cols no exceeded with option_context('max_info_columns', 5): buf = StringIO() df.info(buf=buf, verbose=verbose) res = buf.getvalue() assert len(res.strip().split('\n')) == len_ for len_, max_cols in [(10, 5), (5, 4)]: # setting truncates with option_context('max_info_columns', 4): buf = StringIO() df.info(buf=buf, max_cols=max_cols) res = buf.getvalue() assert len(res.strip().split('\n')) == len_ # setting wouldn't truncate with option_context('max_info_columns', 5): buf = StringIO() df.info(buf=buf, max_cols=max_cols) res = buf.getvalue() assert len(res.strip().split('\n')) == len_ def test_info_memory_usage(self): # Ensure memory usage is displayed, when asserted, on the last line dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]', 'complex128', 'object', 'bool'] data = {} n = 10 for i, dtype in enumerate(dtypes): data[i] = np.random.randint(2, size=n).astype(dtype) df = DataFrame(data) buf = StringIO() # display memory usage case df.info(buf=buf, memory_usage=True) res = buf.getvalue().splitlines() assert "memory usage: " in res[-1] # do not display memory usage case df.info(buf=buf, memory_usage=False) res = buf.getvalue().splitlines() assert "memory usage: " not in res[-1] df.info(buf=buf, memory_usage=True) res = buf.getvalue().splitlines() # memory usage is a lower bound, so print it as XYZ+ MB assert re.match(r"memory usage: [^+]+\+", res[-1]) df.iloc[:, :5].info(buf=buf, memory_usage=True) res = buf.getvalue().splitlines() # excluded column with object dtype, so estimate is accurate assert not re.match(r"memory usage: [^+]+\+", res[-1]) # Test a DataFrame with duplicate columns dtypes = ['int64', 'int64', 'int64', 'float64'] data = {} n = 100 for i, dtype in enumerate(dtypes): data[i] = np.random.randint(2, size=n).astype(dtype) df = DataFrame(data) df.columns = dtypes df_with_object_index = pd.DataFrame({'a': [1]}, index=['foo']) df_with_object_index.info(buf=buf, memory_usage=True) res = buf.getvalue().splitlines() assert re.match(r"memory usage: [^+]+\+", res[-1]) df_with_object_index.info(buf=buf, memory_usage='deep') res = buf.getvalue().splitlines() assert re.match(r"memory usage: [^+]+$", res[-1]) # Ensure df size is as expected # (cols * rows * bytes) + index size df_size = df.memory_usage().sum() exp_size = len(dtypes) * n * 8 + df.index.nbytes assert df_size == exp_size # Ensure number of cols in memory_usage is the same as df size_df = np.size(df.columns.values) + 1 # index=True; default assert size_df == np.size(df.memory_usage()) # assert deep works only on object assert df.memory_usage().sum() == df.memory_usage(deep=True).sum() # test for validity DataFrame(1, index=['a'], columns=['A'] ).memory_usage(index=True) DataFrame(1, index=['a'], columns=['A'] ).index.nbytes df = DataFrame( data=1, index=pd.MultiIndex.from_product( [['a'], range(1000)]), columns=['A'] ) df.index.nbytes df.memory_usage(index=True) df.index.values.nbytes mem = df.memory_usage(deep=True).sum() assert mem > 0 @pytest.mark.skipif(PYPY, reason="on PyPy deep=True doesn't change result") def test_info_memory_usage_deep_not_pypy(self): df_with_object_index = pd.DataFrame({'a': [1]}, index=['foo']) assert (df_with_object_index.memory_usage( index=True, deep=True).sum() > df_with_object_index.memory_usage( index=True).sum()) df_object = pd.DataFrame({'a': ['a']}) assert (df_object.memory_usage(deep=True).sum() > df_object.memory_usage().sum()) @pytest.mark.skipif(not PYPY, reason="on PyPy deep=True does not change result") def test_info_memory_usage_deep_pypy(self): df_with_object_index = pd.DataFrame({'a': [1]}, index=['foo']) assert (df_with_object_index.memory_usage( index=True, deep=True).sum() == df_with_object_index.memory_usage( index=True).sum()) df_object = pd.DataFrame({'a': ['a']}) assert (df_object.memory_usage(deep=True).sum() == df_object.memory_usage().sum()) @pytest.mark.skipif(PYPY, reason="PyPy getsizeof() fails by design") def test_usage_via_getsizeof(self): df = DataFrame( data=1, index=pd.MultiIndex.from_product( [['a'], range(1000)]), columns=['A'] ) mem = df.memory_usage(deep=True).sum() # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = mem - sys.getsizeof(df) assert abs(diff) < 100 def test_info_memory_usage_qualified(self): buf = StringIO() df = DataFrame(1, columns=list('ab'), index=[1, 2, 3]) df.info(buf=buf) assert '+' not in buf.getvalue() buf = StringIO() df = DataFrame(1, columns=list('ab'), index=list('ABC')) df.info(buf=buf) assert '+' in buf.getvalue() buf = StringIO() df = DataFrame(1, columns=list('ab'), index=pd.MultiIndex.from_product( [range(3), range(3)])) df.info(buf=buf) assert '+' not in buf.getvalue() buf = StringIO() df = DataFrame(1, columns=list('ab'), index=pd.MultiIndex.from_product( [range(3), ['foo', 'bar']])) df.info(buf=buf) assert '+' in buf.getvalue() def test_info_memory_usage_bug_on_multiindex(self): # GH 14308 # memory usage introspection should not materialize .values from string import ascii_uppercase as uppercase def memory_usage(f): return f.memory_usage(deep=True).sum() N = 100 M = len(uppercase) index = pd.MultiIndex.from_product([list(uppercase), pd.date_range('20160101', periods=N)], names=['id', 'date']) df = DataFrame({'value': np.random.randn(N * M)}, index=index) unstacked = df.unstack('id') assert df.values.nbytes == unstacked.values.nbytes assert memory_usage(df) > memory_usage(unstacked) # high upper bound assert memory_usage(unstacked) - memory_usage(df) < 2000 def test_info_categorical(self): # GH14298 idx = pd.CategoricalIndex(['a', 'b']) df = pd.DataFrame(np.zeros((2, 2)), index=idx, columns=idx) buf = StringIO() df.info(buf=buf) def test_info_categorical_column(self): # make sure it works n = 2500 df = DataFrame({'int64': np.random.randint(100, size=n)}) df['category'] = Series(np.array(list('abcdefghij')).take( np.random.randint(0, 10, size=n))).astype('category') df.isna() buf = StringIO() df.info(buf=buf) df2 = df[df['category'] == 'd'] buf = compat.StringIO() df2.info(buf=buf) def test_repr_categorical_dates_periods(self): # normal DataFrame dt = date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') p = period_range('2011-01', freq='M', periods=5) df = DataFrame({'dt': dt, 'p': p}) exp = """ dt p 0 2011-01-01 09:00:00-05:00 2011-01 1 2011-01-01 10:00:00-05:00 2011-02 2 2011-01-01 11:00:00-05:00 2011-03 3 2011-01-01 12:00:00-05:00 2011-04 4 2011-01-01 13:00:00-05:00 2011-05""" df = DataFrame({'dt': Categorical(dt), 'p': Categorical(p)}) assert repr(df) == exp
bsd-3-clause
yannickmartin/wellFARE
wellfare/ILM/fast_estimators.py
1
5629
""" This module implements fast estimators for the time-profiles of growth rate, promoter activity, and protein concentrations. These estimators rely on a simple model in which gene expression is modeled as a one-step process. This enables to compute the observation matrix directly using an ad-hoc formula. As a consequence these algorithms are faster and require less parameters than their counterparts in module ``estimators`` Simple approximations are made to compute the observation matrix, these are valid as long as the vector of estimation times (ttu) of the different estimated input (growth rate, promoter actitivity, protein concentration) has a fine time resolution. See also: ---------- estimators : collection of functions for the inference """ from ..curves import Curve from .methods import DEFAULT_ALPHAS, infer_control def ilp_growth_rate(curve_volume, ttu, alphas=None, eps_L=.0001): """ Returns -------- mu, v_smoothed, model As described below. mu Vector of inferred mu. v_smoothed The predicted value of the observed volume at the same time points as the data. v_smoothed will appear smoothed compared to the measured volume. mod instance of sklearn.linear_model.RidgeCV, used for the Ridge regularization / cross-validation. Useful to get the value of the parameter alpha used etc. """ if isinstance(curve_volume, list): results = [ilp_growth_rate(v, ttu, alphas=alphas, eps_L=eps_L) for v in curve_volume] return zip(*results) if alphas is None: alphas = DEFAULT_ALPHAS ttv = curve_volume.x dttu = 1.0*(ttu[1]-ttu[0]) H_ic = np.ones((len(ttv),1)) # dT is a Ny x Nu matrix with # dT[i,j] = ttv[i] - ttu[j] dT = np.array([ttv]).T - ttu H_u = ( np.maximum(0, np.minimum(dttu, dT)) * curve_volume(ttu+ dttu/2)) H = np.hstack([H_ic, H_u]) growth_rate, v_smooth, ic, alpha, ascores = \ infer_control(H, y= curve_volume.y, Nic= 1, alphas= alphas, eps_L = eps_L) return ( Curve(ttu, growth_rate), Curve(ttv, v_smooth), ic, alpha, ascores ) def ilp_synthesis_rate(curve_fluo, curve_volume, ttu, degr, alphas=None, eps_L=.0001): """ dF/dt = s(t)V(t) - degr*F Parameters ----------- curve_fluo A curve instance representing the (noisy) measured fluorescence curve_volume A curve instance representing the (noisy) measured volume ttu Times at which the control is Returns -------- synth_rate, fluo_smoothed, ic, alpha, ascores As described below. synth_rate Vector. Inferred control. fluo_smoothed The predicted value of the observed data at the same time points as the data. y_smoothed will appear smoothed compared to y. mod instance of sklearn.linear_model.RidgeCV, used for the Ridge regularization / cross-validation. Useful to get the value of the parameter alpha used etc. """ if isinstance(curve_fluo, list): results = [ilp_synthesis_rate(f, v, ttu, degr, alphas=alphas, eps_L=eps_L) for f, v in zip(curve_fluo, curve_volume)] return zip(*results) if alphas is None: alphas = DEFAULT_ALPHAS tt_fluo= curve_fluo.x H_ic = np.exp(-degr*tt_fluo).reshape((len(tt_fluo),1)) model = lambda Y,t: 1 - degr*Y dtau = ttu[1]-ttu[0] m = odeint(model,0,[0,dtau]).flatten()[1] TT = (ttu-np.array([tt_fluo]).T) H_u = (m*np.exp(degr*TT)*(TT<0)) * curve_volume(ttu + dtau/2) H = np.hstack([H_ic, H_u]) activity, fluo_smooth, ic, alpha, ascores = \ infer_control(H, y= curve_fluo.y, Nic= 1, alphas= alphas, eps_L = eps_L) return ( Curve(ttu, activity), Curve(tt_fluo, fluo_smooth), ic, alpha, ascores ) def ilp_concentration(curve_fluo, curve_volume, ttu, dR, dP, alphas=None, eps_L=0.0001): """ Retrieves the concentration of a protein P, given the fluorescence of reporter R. Parameters ----------- curve_fluo A curve instance representing the measured fluorescence (proportional to the quantities of reporter) curve_volume Volume of the population. dR Degradation rate of the reporter dP Degradation rate of the proteins. alphas Smoothing parameters to be tested. eps_L Negligible factor for the derivation matrix. """ if isinstance(curve_fluo, list): results = [ilp_concentration(f, v, ttu, dR, dP, alphas=alphas, eps_L=eps_L) for f, v in zip(curve_fluo, curve_volume)] return zip(*results) tt = curve_fluo.x deltatau = ttu[1]-ttu[0] dT = np.array([tt]).T-ttu dTlz = dT >= 0 # ti-tj > 0 dTlzsdtau = dTlz*(dT < deltatau) # 0 < ti-tj < delta_tau A = np.exp(dR*np.minimum(deltatau, dT)) - 1 B = dTlz*np.exp(dT*(-dR))*(dP-dR)/dR Hu = (dTlzsdtau + A*B)*curve_volume(ttu+deltatau/2) Hic = np.array([np.exp(-dR*tt)]).reshape((len(tt),1)) H = np.hstack([Hic, Hu]) p_est, f_est, ic, a, ascores = infer_control( H, curve_fluo.y, 1, alphas=alphas, eps_L=eps_L) return (Curve(ttu, p_est), Curve(tt, f_est), ic, a, ascores )
lgpl-3.0
RPGOne/Skynet
scikit-learn-0.18.1/examples/tree/plot_unveil_tree_structure.py
67
4824
""" ========================================= Understanding the decision tree structure ========================================= The decision tree structure can be analysed to gain further insight on the relation between the features and the target to predict. In this example, we show how to retrieve: - the binary tree structure; - the depth of each node and whether or not it's a leaf; - the nodes that were reached by a sample using the ``decision_path`` method; - the leaf that was reached by a sample using the apply method; - the rules that were used to predict a sample; - the decision path shared by a group of samples. """ import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) estimator.fit(X_train, y_train) # The decision estimator has an attribute called tree_ which stores the entire # tree structure and allows access to low level attributes. The binary tree # tree_ is represented as a number of parallel arrays. The i-th element of each # array holds information about the node `i`. Node 0 is the tree's root. NOTE: # Some of the arrays only apply to either leaves or split nodes, resp. In this # case the values of nodes of the other type are arbitrary! # # Among those arrays, we have: # - left_child, id of the left child of the node # - right_child, id of the right child of the node # - feature, feature used for splitting the node # - threshold, threshold value at the node # # Using those arrays, we can parse the tree structure: n_nodes = estimator.tree_.node_count children_left = estimator.tree_.children_left children_right = estimator.tree_.children_right feature = estimator.tree_.feature threshold = estimator.tree_.threshold # The tree structure can be traversed to compute various properties such # as the depth of each node and whether or not it is a leaf. node_depth = np.zeros(shape=n_nodes) is_leaves = np.zeros(shape=n_nodes, dtype=bool) stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0: node_id, parent_depth = stack.pop() node_depth[node_id] = parent_depth + 1 # If we have a test node if (children_left[node_id] != children_right[node_id]): stack.append((children_left[node_id], parent_depth + 1)) stack.append((children_right[node_id], parent_depth + 1)) else: is_leaves[node_id] = True print("The binary tree structure has %s nodes and has " "the following tree structure:" % n_nodes) for i in range(n_nodes): if is_leaves[i]: print("%snode=%s leaf node." % (node_depth[i] * "\t", i)) else: print("%snode=%s test node: go to node %s if X[:, %s] <= %ss else to " "node %s." % (node_depth[i] * "\t", i, children_left[i], feature[i], threshold[i], children_right[i], )) print() # First let's retrieve the decision path of each sample. The decision_path # method allows to retrieve the node indicator functions. A non zero element of # indicator matrix at the position (i, j) indicates that the sample i goes # through the node j. node_indicator = estimator.decision_path(X_test) # Similarly, we can also have the leaves ids reached by each sample. leave_id = estimator.apply(X_test) # Now, it's possible to get the tests that were used to predict a sample or # a group of samples. First, let's make it for the sample. sample_id = 0 node_index = node_indicator.indices[node_indicator.indptr[sample_id]: node_indicator.indptr[sample_id + 1]] print('Rules used to predict sample %s: ' % sample_id) for node_id in node_index: if leave_id[sample_id] != node_id: continue if (X_test[sample_id, feature[node_id]] <= threshold[node_id]): threshold_sign = "<=" else: threshold_sign = ">" print("decision id node %s : (X[%s, %s] (= %s) %s %s)" % (node_id, sample_id, feature[node_id], X_test[i, feature[node_id]], threshold_sign, threshold[node_id])) # For a group of samples, we have the following common node. sample_ids = [0, 1] common_nodes = (node_indicator.toarray()[sample_ids].sum(axis=0) == len(sample_ids)) common_node_id = np.arange(n_nodes)[common_nodes] print("\nThe following samples %s share the node %s in the tree" % (sample_ids, common_node_id)) print("It is %s %% of all nodes." % (100 * len(common_node_id) / n_nodes,))
bsd-3-clause
nmartensen/pandas
pandas/tests/frame/test_reshape.py
5
30682
# -*- coding: utf-8 -*- from __future__ import print_function from warnings import catch_warnings from datetime import datetime import itertools import pytest from numpy.random import randn from numpy import nan import numpy as np from pandas.compat import u from pandas import (DataFrame, Index, Series, MultiIndex, date_range, Timedelta, Period) import pandas as pd from pandas.util.testing import assert_series_equal, assert_frame_equal import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameReshape(TestData): def test_pivot(self): data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data) pivoted = frame.pivot( index='index', columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' tm.assert_frame_equal(pivoted, expected) # name tracking assert pivoted.index.name == 'index' assert pivoted.columns.name == 'columns' # don't specify values pivoted = frame.pivot(index='index', columns='columns') assert pivoted.index.name == 'index' assert pivoted.columns.names == (None, 'columns') with catch_warnings(record=True): # pivot multiple columns wp = tm.makePanel() lp = wp.to_frame() df = lp.reset_index() tm.assert_frame_equal(df.pivot('major', 'minor'), lp.unstack()) def test_pivot_duplicates(self): data = DataFrame({'a': ['bar', 'bar', 'foo', 'foo', 'foo'], 'b': ['one', 'two', 'one', 'one', 'two'], 'c': [1., 2., 3., 3., 4.]}) with tm.assert_raises_regex(ValueError, 'duplicate entries'): data.pivot('a', 'b', 'c') def test_pivot_empty(self): df = DataFrame({}, columns=['a', 'b', 'c']) result = df.pivot('a', 'b', 'c') expected = DataFrame({}) tm.assert_frame_equal(result, expected, check_names=False) def test_pivot_integer_bug(self): df = DataFrame(data=[("A", "1", "A1"), ("B", "2", "B2")]) result = df.pivot(index=1, columns=0, values=2) repr(result) tm.assert_index_equal(result.columns, Index(['A', 'B'], name=0)) def test_pivot_index_none(self): # gh-3962 data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data).set_index('index') result = frame.pivot(columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' assert_frame_equal(result, expected) # omit values result = frame.pivot(columns='columns') expected.columns = pd.MultiIndex.from_tuples([('values', 'One'), ('values', 'Two')], names=[None, 'columns']) expected.index.name = 'index' tm.assert_frame_equal(result, expected, check_names=False) assert result.index.name == 'index' assert result.columns.names == (None, 'columns') expected.columns = expected.columns.droplevel(0) result = frame.pivot(columns='columns', values='values') expected.columns.name = 'columns' tm.assert_frame_equal(result, expected) def test_stack_unstack(self): f = self.frame.copy() f[:] = np.arange(np.prod(f.shape)).reshape(f.shape) stacked = f.stack() stacked_df = DataFrame({'foo': stacked, 'bar': stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() assert_frame_equal(unstacked, f) assert_frame_equal(unstacked_df['bar'], f) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) assert_frame_equal(unstacked_cols.T, f) assert_frame_equal(unstacked_cols_df['bar'].T, f) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack(fill_value=-1) expected = DataFrame({'a': [1, -1, 5], 'b': [2, 4, -1]}, index=['x', 'y', 'z'], dtype=np.int16) assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame({'a': [1, 0.5, 5], 'b': [2, 4, 0.5]}, index=['x', 'y', 'z'], dtype=np.float) assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list('AB'), dtype=np.int32) df.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list('xyz'), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) # From a mixed type dataframe df['A'] = df['A'].astype(np.int16) df['B'] = df['B'].astype(np.float64) result = df.unstack(fill_value=-1) expected['A'] = expected['A'].astype(np.int16) expected['B'] = expected['B'].astype(np.float64) assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list('xyz'), dtype=np.float) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = pd.date_range('2012-01-01', periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [dv[0], pd.NaT, dv[3]], 'b': [dv[1], dv[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame({'a': [dv[0], dv[0], dv[3]], 'b': [dv[1], dv[2], dv[0]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [td[0], pd.NaT, td[3]], 'b': [td[1], td[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame({'a': [td[0], td[1], td[3]], 'b': [td[1], td[2], td[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [Period('2012-01'), Period('2012-02'), Period('2012-03'), Period('2012-04')] data = Series(periods) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [periods[0], None, periods[3]], 'b': [periods[1], periods[2], None]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame({'a': [periods[0], periods[1], periods[3]], 'b': [periods[1], periods[2], periods[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = pd.Series(['a', 'b', 'c', 'a'], dtype='category') data.index = pd.MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) # By default missing values will be NaN result = data.unstack() expected = DataFrame({'a': pd.Categorical(list('axa'), categories=list('abc')), 'b': pd.Categorical(list('bcx'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) # Fill with non-category results in NaN entries similar to above result = data.unstack(fill_value='d') assert_frame_equal(result, expected) # Fill with category value replaces missing values as expected result = data.unstack(fill_value='c') expected = DataFrame({'a': pd.Categorical(list('aca'), categories=list('abc')), 'b': pd.Categorical(list('bcc'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = pd.DataFrame(dict(state=['IL', 'MI', 'NC'], index=['a', 'b', 'c'], some_categories=pd.Series(['a', 'b', 'c'] ).astype('category'), A=np.random.rand(3), B=1, C='foo', D=pd.Timestamp('20010102'), E=pd.Series([1.0, 50.0, 100.0] ).astype('float32'), F=pd.Series([3.0, 4.0, 5.0]).astype('float64'), G=False, H=pd.Series([1, 200, 923442], dtype='int8'))) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(['state', 'index']) unstack_and_compare(df1, 'index') df1 = df.set_index(['state', 'some_categories']) unstack_and_compare(df1, 'some_categories') df1 = df.set_index(['F', 'C']) unstack_and_compare(df1, 'F') df1 = df.set_index(['G', 'B', 'state']) unstack_and_compare(df1, 'B') df1 = df.set_index(['E', 'A']) unstack_and_compare(df1, 'E') df1 = df.set_index(['state', 'index']) s = df1['A'] unstack_and_compare(s, 'index') def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) assert_frame_equal(df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1)) df_named = df.copy() df_named.columns.set_names(range(3), inplace=True) assert_frame_equal(df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1)) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ['exp', 'animal', 1] assert_frame_equal(df2.stack(level=['animal', 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=['exp', 1]), exp_hair_stacked, check_names=False) # When mixed types are passed and the ints are not level # names, raise pytest.raises(ValueError, df2.stack, level=['animal', 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ['exp', 'animal', 0] assert_frame_equal(df3.stack(level=['animal', 0]), animal_hair_stacked, check_names=False) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=['exp', 'animal']) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) df2 = df.copy() df2.columns.names = [0, 1, 2] assert_frame_equal(df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] assert_frame_equal(df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False) def test_unstack_bool(self): df = DataFrame([False, False], index=MultiIndex.from_arrays([['a', 'b'], ['c', 'l']]), columns=['col']) rs = df.unstack() xp = DataFrame(np.array([[False, np.nan], [np.nan, False]], dtype=object), index=['a', 'b'], columns=MultiIndex.from_arrays([['col', 'col'], ['c', 'l']])) assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = pd.MultiIndex( levels=[[u('foo'), u('bar')], [u('one'), u('two')], [u('a'), u('b')]], labels=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=[u('first'), u('second'), u('third')]) s = pd.Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = pd.MultiIndex( levels=[['foo', 'bar'], ['one', 'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=['first', 'second']) expected = pd.DataFrame(np.array([[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64), index=expected_mi, columns=pd.Index(['a', 'b'], name='third')) assert_frame_equal(result, expected) def test_unstack_to_series(self): # check reversibility data = self.frame.unstack() assert isinstance(data, Series) undo = data.unstack().T assert_frame_equal(undo, self.frame) # check NA handling data = DataFrame({'x': [1, 2, np.NaN], 'y': [3.0, 4, np.NaN]}) data.index = Index(['a', 'b', 'c']) result = data.unstack() midx = MultiIndex(levels=[['x', 'y'], ['a', 'b', 'c']], labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = Series([1, 2, np.NaN, 3, 4, np.NaN], index=midx) assert_series_equal(result, expected) # check composability of unstack old_data = data.copy() for _ in range(4): data = data.unstack() assert_frame_equal(old_data, data) def test_unstack_dtypes(self): # GH 2929 rows = [[1, 1, 3, 4], [1, 2, 3, 4], [2, 1, 3, 4], [2, 2, 3, 4]] df = DataFrame(rows, columns=list('ABCD')) result = df.get_dtype_counts() expected = Series({'int64': 4}) assert_series_equal(result, expected) # single dtype df2 = df.set_index(['A', 'B']) df3 = df2.unstack('B') result = df3.get_dtype_counts() expected = Series({'int64': 4}) assert_series_equal(result, expected) # mixed df2 = df.set_index(['A', 'B']) df2['C'] = 3. df3 = df2.unstack('B') result = df3.get_dtype_counts() expected = Series({'int64': 2, 'float64': 2}) assert_series_equal(result, expected) df2['D'] = 'foo' df3 = df2.unstack('B') result = df3.get_dtype_counts() expected = Series({'float64': 2, 'object': 2}) assert_series_equal(result, expected) # GH7405 for c, d in (np.zeros(5), np.zeros(5)), \ (np.arange(5, dtype='f8'), np.arange(5, 10, dtype='f8')): df = DataFrame({'A': ['a'] * 5, 'C': c, 'D': d, 'B': pd.date_range('2012-01-01', periods=5)}) right = df.iloc[:3].copy(deep=True) df = df.set_index(['A', 'B']) df['D'] = df['D'].astype('int64') left = df.iloc[:3].unstack(0) right = right.set_index(['A', 'B']).unstack(0) right[('D', 'a')] = right[('D', 'a')].astype('int64') assert left.shape == (3, 2) tm.assert_frame_equal(left, right) def test_unstack_non_unique_index_names(self): idx = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')], names=['c1', 'c1']) df = DataFrame([1, 2], index=idx) with pytest.raises(ValueError): df.unstack('c1') with pytest.raises(ValueError): df.T.stack('c1') def test_unstack_nan_index(self): # GH7466 cast = lambda val: '{0:1}'.format('' if val != val else val) nan = np.nan def verify(df): mk_list = lambda a: list(a) if isinstance(a, tuple) else [a] rows, cols = df.notna().values.nonzero() for i, j in zip(rows, cols): left = sorted(df.iloc[i, j].split('.')) right = mk_list(df.index[i]) + mk_list(df.columns[j]) right = sorted(list(map(cast, right))) assert left == right df = DataFrame({'jim': ['a', 'b', nan, 'd'], 'joe': ['w', 'x', 'y', 'z'], 'jolie': ['a.w', 'b.x', ' .y', 'd.z']}) left = df.set_index(['jim', 'joe']).unstack()['jolie'] right = df.set_index(['joe', 'jim']).unstack()['jolie'].T assert_frame_equal(left, right) for idx in itertools.permutations(df.columns[:2]): mi = df.set_index(list(idx)) for lev in range(2): udf = mi.unstack(level=lev) assert udf.notna().values.sum() == len(df) verify(udf['jolie']) df = DataFrame({'1st': ['d'] * 3 + [nan] * 5 + ['a'] * 2 + ['c'] * 3 + ['e'] * 2 + ['b'] * 5, '2nd': ['y'] * 2 + ['w'] * 3 + [nan] * 3 + ['z'] * 4 + [nan] * 3 + ['x'] * 3 + [nan] * 2, '3rd': [67, 39, 53, 72, 57, 80, 31, 18, 11, 30, 59, 50, 62, 59, 76, 52, 14, 53, 60, 51]}) df['4th'], df['5th'] = \ df.apply(lambda r: '.'.join(map(cast, r)), axis=1), \ df.apply(lambda r: '.'.join(map(cast, r.iloc[::-1])), axis=1) for idx in itertools.permutations(['1st', '2nd', '3rd']): mi = df.set_index(list(idx)) for lev in range(3): udf = mi.unstack(level=lev) assert udf.notna().values.sum() == 2 * len(df) for col in ['4th', '5th']: verify(udf[col]) # GH7403 df = pd.DataFrame( {'A': list('aaaabbbb'), 'B': range(8), 'C': range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(['A', 'B']).unstack(0) vals = [[3, 0, 1, 2, nan, nan, nan, nan], [nan, nan, nan, nan, 4, 5, 6, 7]] vals = list(map(list, zip(*vals))) idx = Index([nan, 0, 1, 2, 4, 5, 6, 7], name='B') cols = MultiIndex(levels=[['C'], ['a', 'b']], labels=[[0, 0], [0, 1]], names=[None, 'A']) right = DataFrame(vals, columns=cols, index=idx) assert_frame_equal(left, right) df = DataFrame({'A': list('aaaabbbb'), 'B': list(range(4)) * 2, 'C': range(8)}) df.iloc[2, 1] = np.NaN left = df.set_index(['A', 'B']).unstack(0) vals = [[2, nan], [0, 4], [1, 5], [nan, 6], [3, 7]] cols = MultiIndex(levels=[['C'], ['a', 'b']], labels=[[0, 0], [0, 1]], names=[None, 'A']) idx = Index([nan, 0, 1, 2, 3], name='B') right = DataFrame(vals, columns=cols, index=idx) assert_frame_equal(left, right) df = pd.DataFrame({'A': list('aaaabbbb'), 'B': list(range(4)) * 2, 'C': range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(['A', 'B']).unstack(0) vals = [[3, nan], [0, 4], [1, 5], [2, 6], [nan, 7]] cols = MultiIndex(levels=[['C'], ['a', 'b']], labels=[[0, 0], [0, 1]], names=[None, 'A']) idx = Index([nan, 0, 1, 2, 3], name='B') right = DataFrame(vals, columns=cols, index=idx) assert_frame_equal(left, right) # GH7401 df = pd.DataFrame({'A': list('aaaaabbbbb'), 'C': np.arange(10), 'B': (date_range('2012-01-01', periods=5) .tolist() * 2)}) df.iloc[3, 1] = np.NaN left = df.set_index(['A', 'B']).unstack() vals = np.array([[3, 0, 1, 2, nan, 4], [nan, 5, 6, 7, 8, 9]]) idx = Index(['a', 'b'], name='A') cols = MultiIndex(levels=[['C'], date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) right = DataFrame(vals, columns=cols, index=idx) assert_frame_equal(left, right) # GH4862 vals = [['Hg', nan, nan, 680585148], ['U', 0.0, nan, 680585148], ['Pb', 7.07e-06, nan, 680585148], ['Sn', 2.3614e-05, 0.0133, 680607017], ['Ag', 0.0, 0.0133, 680607017], ['Hg', -0.00015, 0.0133, 680607017]] df = DataFrame(vals, columns=['agent', 'change', 'dosage', 's_id'], index=[17263, 17264, 17265, 17266, 17267, 17268]) left = df.copy().set_index(['s_id', 'dosage', 'agent']).unstack() vals = [[nan, nan, 7.07e-06, nan, 0.0], [0.0, -0.00015, nan, 2.3614e-05, nan]] idx = MultiIndex(levels=[[680585148, 680607017], [0.0133]], labels=[[0, 1], [-1, 0]], names=['s_id', 'dosage']) cols = MultiIndex(levels=[['change'], ['Ag', 'Hg', 'Pb', 'Sn', 'U']], labels=[[0, 0, 0, 0, 0], [0, 1, 2, 3, 4]], names=[None, 'agent']) right = DataFrame(vals, columns=cols, index=idx) assert_frame_equal(left, right) left = df.loc[17264:].copy().set_index(['s_id', 'dosage', 'agent']) assert_frame_equal(left.unstack(), right) # GH9497 - multiple unstack with nulls df = DataFrame({'1st': [1, 2, 1, 2, 1, 2], '2nd': pd.date_range('2014-02-01', periods=6, freq='D'), 'jim': 100 + np.arange(6), 'joe': (np.random.randn(6) * 10).round(2)}) df['3rd'] = df['2nd'] - pd.Timestamp('2014-02-02') df.loc[1, '2nd'] = df.loc[3, '2nd'] = nan df.loc[1, '3rd'] = df.loc[4, '3rd'] = nan left = df.set_index(['1st', '2nd', '3rd']).unstack(['2nd', '3rd']) assert left.notna().values.sum() == 2 * len(df) for col in ['jim', 'joe']: for _, r in df.iterrows(): key = r['1st'], (col, r['2nd'], r['3rd']) assert r[col] == left.loc[key] def test_stack_datetime_column_multiIndex(self): # GH 8039 t = datetime(2014, 1, 1) df = DataFrame( [1, 2, 3, 4], columns=MultiIndex.from_tuples([(t, 'A', 'B')])) result = df.stack() eidx = MultiIndex.from_product([(0, 1, 2, 3), ('B',)]) ecols = MultiIndex.from_tuples([(t, 'A')]) expected = DataFrame([1, 2, 3, 4], index=eidx, columns=ecols) assert_frame_equal(result, expected) def test_stack_partial_multiIndex(self): # GH 8844 def _test_stack_with_multiindex(multiindex): df = DataFrame(np.arange(3 * len(multiindex)) .reshape(3, len(multiindex)), columns=multiindex) for level in (-1, 0, 1, [0, 1], [1, 0]): result = df.stack(level=level, dropna=False) if isinstance(level, int): # Stacking a single level should not make any all-NaN rows, # so df.stack(level=level, dropna=False) should be the same # as df.stack(level=level, dropna=True). expected = df.stack(level=level, dropna=True) if isinstance(expected, Series): assert_series_equal(result, expected) else: assert_frame_equal(result, expected) df.columns = MultiIndex.from_tuples(df.columns.get_values(), names=df.columns.names) expected = df.stack(level=level, dropna=False) if isinstance(expected, Series): assert_series_equal(result, expected) else: assert_frame_equal(result, expected) full_multiindex = MultiIndex.from_tuples([('B', 'x'), ('B', 'z'), ('A', 'y'), ('C', 'x'), ('C', 'u')], names=['Upper', 'Lower']) for multiindex_columns in ([0, 1, 2, 3, 4], [0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2], [1, 2, 3], [2, 3, 4], [0, 1], [0, 2], [0, 3], [0], [2], [4]): _test_stack_with_multiindex(full_multiindex[multiindex_columns]) if len(multiindex_columns) > 1: multiindex_columns.reverse() _test_stack_with_multiindex( full_multiindex[multiindex_columns]) df = DataFrame(np.arange(6).reshape(2, 3), columns=full_multiindex[[0, 1, 3]]) result = df.stack(dropna=False) expected = DataFrame([[0, 2], [1, nan], [3, 5], [4, nan]], index=MultiIndex( levels=[[0, 1], ['u', 'x', 'y', 'z']], labels=[[0, 0, 1, 1], [1, 3, 1, 3]], names=[None, 'Lower']), columns=Index(['B', 'C'], name='Upper'), dtype=df.dtypes[0]) assert_frame_equal(result, expected) def test_stack_preserve_categorical_dtype(self): # GH13854 for ordered in [False, True]: for labels in [list("yxz"), list("yxy")]: cidx = pd.CategoricalIndex(labels, categories=list("xyz"), ordered=ordered) df = DataFrame([[10, 11, 12]], columns=cidx) result = df.stack() # `MutliIndex.from_product` preserves categorical dtype - # it's tested elsewhere. midx = pd.MultiIndex.from_product([df.index, cidx]) expected = Series([10, 11, 12], index=midx) tm.assert_series_equal(result, expected)
bsd-3-clause
leelasd/LigParGenTools
ljLRC.py
1
1027
import os import sys import numpy as np import pandas as pandas def readLJfromPRM(filename): infi=open(filename).readlines() NBS=0 for n in range(len(infi)): if 'NONBONDED' in infi[n]: NBS=n+2 break LJpar={} atno = 0 for line in infi[NBS:]: LJpar[atno]={'AT':line.split()[0],'EPS':-1.0*float(line.split()[2]),'SIG':float(line.split()[3])/0.561231} atno+=1 return LJpar def CalcLRC(solvpar,solupar,Nsolv,cutoff,denSolv): LRC = 0 for i in solvpar.keys(): for j in solupar.keys(): sigma = np.sqrt(solvpar[i]['SIG']*solupar[j]['SIG']) epsil = np.sqrt(solvpar[i]['EPS']*solupar[j]['EPS']) ratio = sigma/cutoff print i,j, (pow(ratio,9)/3.0 - pow(ratio,3))*epsil*pow(sigma,3) LRC = LRC + (pow(ratio,9)/3.0 - pow(ratio,3))*epsil*pow(sigma,3) print LRC LRC = LRC*8*np.pi*Nsolv*denSolv/3.0 return LRC solv=readLJfromPRM('CYH.prm') solu=readLJfromPRM('MET.prm') print CalcLRC(solv,solu,Nsolv=140,cutoff=10.0,denSolv=0.774)
mit
CGATOxford/CGATPipelines
obsolete/pipeline_transcriptdiffexpression/trackers/Results.py
1
4372
import pandas as pd import numpy as np import sqlite3 from CGATReport.Tracker import SingleTableTrackerRows from CGATReport.Tracker import SingleTableTrackerHistogram from CGATReport.Tracker import * from CGATReport.Utils import PARAMS as P from IsoformReport import * ############################################################################### # parse params ############################################################################### DATABASE = P.get('', P.get('sql_backend', 'sqlite:///./csvdb')) ANNOTATIONS_DATABASE = P.get('annotations_database') ############################################################################### # trackers ############################################################################### class SleuthResults(IsoformTracker): pattern = "(.*)_DEresults$" direction = "" where = "WHERE p_value NOT NULL" def __call__(self, track, slice=None): quantifier = track.split("_")[-2] statement = ''' SELECT A.gene_name, A.gene_id, A.transcript_id, B.reason AS flagged, A.control_mean AS expression, A.fold, A.l2fold, A.p_value, A.p_value_adj, A.significant, A.transcript_biotype FROM %(track)s_DEresults AS A LEFT JOIN %(quantifier)s_flagged_transcripts AS B ON A.transcript_id = B.transcript_id %(where)s ORDER BY A.significant DESC, A.l2fold ASC ''' return self.getAll(statement) class SleuthResultsSig(SleuthResults): pattern = "(.*)_DEresults$" direction = "" where = "WHERE p_value NOT NULL AND significant == 1 AND ABS(l2fold) > 1" class SleuthAll(IsoformTracker): pattern = "" table = "" def __call__(self, track, slice=None): statement = ''' SELECT A.*, B.reason as flagged FROM all_%(table)s_%(track)s AS A LEFT JOIN %(track)s_flagged_transcripts AS B ON A.transcript_id = B.transcript_id ''' return self.getAll(statement) class SleuthCountsAll(SleuthAll): pattern = "all_counts_(.*)" table = "counts" class SleuthTpmAll(SleuthAll): pattern = "all_tpm_(.*)" table = "tpm" class SummarisedResults(IsoformTracker): pattern = "(.*)_DEresults$" def __call__(self, track, slice=None): quantifier = track.split("_")[-2] design = "_".join(track.split("_")[:-2]) + "_design" select_results = '''SELECT A.*, B.p_value, B.p_value_adj, B.l2fold, B.transcript_biotype FROM all_tpm_%(quantifier)s AS A LEFT JOIN %(track)s_DEresults AS B ON A.transcript_id = B.transcript_id WHERE B.p_value<0.05''' results_df = pd.DataFrame(self.getAll(select_results)) select_design = '''SELECT * FROM %(design)s''' design_df = self.getDataFrame(select_design) for group in set(design_df['_group']): group_tracks = design_df[design_df["_group"] == group]['track'] group_tracks = [x.replace("-", "_") for x in group_tracks] results_df["group_%s_mean" % group] = results_df[group_tracks].mean(axis=1) results_df["group_%s_stdev" % group] = results_df[group_tracks].std(axis=1) return results_df class SleuthAllGenes(IsoformTracker): pattern = "" table = "" def __call__(self, track, slice=None): statement = "SELECT * FROM all_gene_expression_%(table)s_%(track)s" return self.getDataFrame(statement) class SleuthCountsAllGenes(SleuthAllGenes): pattern = "all_gene_expression_counts_(.*)" table = "counts" class SleuthTpmAllGenes(SleuthAllGenes): pattern = "all_gene_expression_tpm_(.*)" table = "tpm" class Deseq2Results(IsoformTracker): pattern = "(.*)_deseq2_DE_results$" direction = "" where = "WHERE p_value NOT NULL" def __call__(self, track, slice=None): statement = ''' SELECT gene_name, gene_id, control_mean AS expression, fold, l2fold, p_value, p_value_adj, significant FROM %(track)s_deseq2_DE_results WHERE p_value NOT NULL ORDER BY significant DESC, l2fold ASC ''' return self.getAll(statement) class Deseq2ResultsSig(Deseq2Results): pattern = "(.*)_deseq2_DE_results$" direction = "" where = "WHERE p_value NOT NULL AND significant == 1 AND ABS(l2fold) > 1"
mit
rahul-c1/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
276
3790
# Authors: Lars Buitinck <[email protected]> # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
rhiever/tpot
tpot/config/classifier_sparse.py
3
3726
# -*- coding: utf-8 -*- """This file is part of the TPOT library. TPOT was primarily developed at the University of Pennsylvania by: - Randal S. Olson ([email protected]) - Weixuan Fu ([email protected]) - Daniel Angell ([email protected]) - and many more generous open source contributors TPOT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. TPOT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with TPOT. If not, see <http://www.gnu.org/licenses/>. """ import numpy as np classifier_config_sparse = { 'tpot.builtins.OneHotEncoder': { 'minimum_fraction': [0.05, 0.1, 0.15, 0.2, 0.25] }, 'sklearn.neighbors.KNeighborsClassifier': { 'n_neighbors': range(1, 101), 'weights': ["uniform", "distance"], 'p': [1, 2] }, 'sklearn.ensemble.RandomForestClassifier': { 'n_estimators': [100], 'criterion': ["gini", "entropy"], 'max_features': np.arange(0.05, 1.01, 0.05), 'min_samples_split': range(2, 21), 'min_samples_leaf': range(1, 21), 'bootstrap': [True, False] }, 'sklearn.feature_selection.SelectFwe': { 'alpha': np.arange(0, 0.05, 0.001), 'score_func': { 'sklearn.feature_selection.f_classif': None } }, 'sklearn.feature_selection.SelectPercentile': { 'percentile': range(1, 100), 'score_func': { 'sklearn.feature_selection.f_classif': None } }, 'sklearn.feature_selection.VarianceThreshold': { 'threshold': np.arange(0.05, 1.01, 0.05) }, 'sklearn.feature_selection.RFE': { 'step': np.arange(0.05, 1.01, 0.05), 'estimator': { 'sklearn.ensemble.ExtraTreesClassifier': { 'n_estimators': [100], 'criterion': ['gini', 'entropy'], 'max_features': np.arange(0.05, 1.01, 0.05) } } }, 'sklearn.feature_selection.SelectFromModel': { 'threshold': np.arange(0, 1.01, 0.05), 'estimator': { 'sklearn.ensemble.ExtraTreesClassifier': { 'n_estimators': [100], 'criterion': ['gini', 'entropy'], 'max_features': np.arange(0.05, 1.01, 0.05) } } }, 'sklearn.linear_model.LogisticRegression': { 'penalty': ["l1", "l2"], 'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.], 'dual': [True, False] }, 'sklearn.naive_bayes.BernoulliNB': { 'alpha': [1e-3, 1e-2, 1e-1, 1., 10., 100.], 'fit_prior': [True, False] }, 'sklearn.naive_bayes.MultinomialNB': { 'alpha': [1e-3, 1e-2, 1e-1, 1., 10., 100.], 'fit_prior': [True, False] }, 'sklearn.svm.LinearSVC': { 'penalty': ["l1", "l2"], 'loss': ["hinge", "squared_hinge"], 'dual': [True, False], 'tol': [1e-5, 1e-4, 1e-3, 1e-2, 1e-1], 'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.] }, 'xgboost.XGBClassifier': { 'n_estimators': [100], 'max_depth': range(1, 11), 'learning_rate': [1e-3, 1e-2, 1e-1, 0.5, 1.], 'subsample': np.arange(0.05, 1.01, 0.05), 'min_child_weight': range(1, 21), 'nthread': [1] } }
lgpl-3.0
pierrepo/PBxplore
pbxplore/scripts/PBstat.py
2
7591
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Statistical analysis and graphical representations of PBs. Compute Neq, PBs distribution and draw logo representation of PBs. 2013 - P. Poulain, A. G. de Brevern """ # ============================================================================ # Modules # ============================================================================ # Use print as a function for python 3 compatibility # Standard modules import os import sys import argparse # Local module import pbxplore as pbx # Weblogolib is an optional requirement try: import weblogo except: IS_WEBLOGO = False else: IS_WEBLOGO = True import matplotlib # ============================================================================ # Python2/Python3 compatibility # ============================================================================ # The range function in python 3 behaves as the range function in python 2 # and returns a generator rather than a list. To produce a list in python 3, # one should use list(range). Here we change range to behave the same in # python 2 and in python 3. In both cases, range will return a generator. try: range = xrange except NameError: pass def user_inputs(): """ Handle the user parameters for PBstat.py. Returns ------- options : the parsed arguments as parsed by `argparse`. """ parser = argparse.ArgumentParser( description="Statistical analysis and graphical representations of PBs.") # mandatory arguments parser.add_argument("-f", action="store", required=True, help="name of file that contains PBs frequency (count)") parser.add_argument("-o", action="store", required=True, help="name for results") # optional arguments parser.add_argument("--map", action="store_true", default=False, dest="mapdist", help="generate map of the distribution of PBs along protein sequence") parser.add_argument("--neq", action="store_true", default=False, dest="neq", help="compute Neq and generate Neq plot along protein sequence") parser.add_argument("--logo", action="store_true", default=False, dest="logo", help="generate logo representation of PBs frequency along protein sequence") parser.add_argument("--image-format", action='store', type=str, dest='image_format', default='png', choices=['pdf', 'png', 'jpg'], help='File format for all image output.') parser.add_argument("--residue-min", action="store", type=int, dest="residue_min", help="defines lower bound of residue frame") parser.add_argument("--residue-max", action="store", type=int, dest="residue_max", help="defines upper bound of residue frame") parser.add_argument('-v', '--version', action='version', version='%(prog)s {}'.format(pbx.__version__)) # get all parameters options = parser.parse_args() # check file if not os.path.isfile(options.f): parser.error("{0}: not a valid file".format(options.f)) # Check residues min/max residues = [options.residue_min, options.residue_max] for residue in residues: if residue is not None and residue < 0: parser.error("residue argument must be >=0") if None not in residues and options.residue_min >= options.residue_max: parser.error("residue-min must be < residue-max.") # Check weblogo if options.logo: if not IS_WEBLOGO: parser.error("Weblogo is not installed; cannot generate the logo image.") return options def check_residue_range(residues, residue_min, residue_max): """" Ensure that the lower bound and the upper bound parameters are in the range of the list `residues`. Parameters ---------- residues : list the list of residues indexes residue_min: the lower bound of residue residue_max: the upper bound of residue Exceptions ---------- IndexError : if `residue_min` or `residue_max` is not in the range """ if residue_min is None: residue_min = residues[0] if residue_max is None: residue_max = residues[-1] if residue_min not in residues: raise IndexError("residue_min does not belong to the residue range") if residue_max not in residues: raise IndexError("residue_max does not belong to the residue range") if residue_min >= residue_max: raise IndexError("Lower bound > upper bound") return residue_min, residue_max def pbstat_cli(): """ PBstat command line. """ options = user_inputs() try: count, residues = pbx.analysis.read_occurence_file(options.f) # Handle the index of the first residue in the matrix idx_first_residue = residues[0] print("Index of first residue in {0} is {1}".format(options.f, idx_first_residue)) residue_min, residue_max = check_residue_range(residues, options.residue_min, options.residue_max) except Exception as e: sys.exit("ERROR: {0}".format(e)) print("First residue in the output file(s) is {0}".format(residue_min)) # Handle output file name... output_file_name = options.o + ".PB.{0}" if options.residue_min or options.residue_max: output_file_name = "{0}.{1}-{2}".format(output_file_name, residue_min, residue_max) # ... and figure name output_fig_name = output_file_name + "." + options.image_format # ------------------------------------------------------------------------------- # generates map of the distribution of PBs along protein sequence # ------------------------------------------------------------------------------- if options.mapdist: file_fig_name = output_fig_name.format("map") pbx.analysis.plot_map(file_fig_name, count, idx_first_residue, residue_min, residue_max) print("wrote " + file_fig_name) # ------------------------------------------------------------------------------- # computes Neq and generates neq plot along protein sequence # ------------------------------------------------------------------------------- if options.neq: # compute Neq neq = pbx.analysis.compute_neq(count) # write Neq neq_file_name = output_file_name.format("Neq") with open(neq_file_name, "w") as outfile: pbx.io.write_neq(outfile, neq, idx_first_residue, residue_min, residue_max) print("wrote {0}".format(neq_file_name)) # draw Neq file_fig_name = output_fig_name.format("Neq") pbx.analysis.plot_neq(file_fig_name, neq, idx_first_residue, residue_min, residue_max) print("wrote {}".format(file_fig_name)) # ------------------------------------------------------------------------------- # generates logo representation of PBs frequency along protein sequence # ------------------------------------------------------------------------------- if options.logo: file_fig_name = output_fig_name.format("logo") title = options.f.replace(".PB.count", "") pbx.analysis.generate_weblogo(file_fig_name, count, idx_first_residue, residue_min, residue_max, title) print("wrote {}".format(file_fig_name)) if __name__ == '__main__': pbstat_cli()
mit
jessefeinman/FintechHackathon
python-getting-started/nlp/classificationTools.py
1
2927
import nltk import os from random import shuffle from nltk.classify.scikitlearn import SklearnClassifier from sklearn.naive_bayes import MultinomialNB, BernoulliNB from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from datetime import datetime from nltk import classify, NaiveBayesClassifier from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis import pickle def listOfFiles(flagged): files = os.listdir(os.getcwd() + "/emailNames" + flagged) listToReturn = [] for file in files: with open("emailNames" + flagged + "/" + file, 'r') as names: listToReturn.append(([word[:-1].lower for word in names], flagged)) names.close() return listToReturn documents = listOfFiles("Flagged") + listOfFiles("NotFlagged") shuffle(documents) all_words = [] for document in documents: all_words.extend(document[0]) word_features = nltk.FreqDist(all_words) def find_features(document): words = set(document) features = {} for w in word_features: features[w] = (w in words) return features featuresets = [(find_features(rev), category) for (rev, category) in documents] try: d = SklearnClassifier(MultinomialNB()) d.train(featuresets[:300]) print(classify.accuracy(d, featuresets[300:])) except: print("d") try: a = NaiveBayesClassifier.train(featuresets[:300]) print(classify.accuracy(a, featuresets[300:])) except: print("a") try: e = SklearnClassifier(LinearSVC()) e.train(featuresets[:300]) print(classify.accuracy(e, featuresets[300:])) except: print("e") try: f = SklearnClassifier(SVC(), sparse=False) f.train(featuresets[:300]) print(classify.accuracy(f, featuresets[300:])) except: print("f") try: g = SklearnClassifier(LinearSVC()) g.train(featuresets[:300]) print(classify.accuracy(g, featuresets[300:])) except: print("g") try: h = nltk.classify.DecisionTreeClassifier.train(featuresets[:300], entropy_cutoff=0, support_cutoff=0) print(classify.accuracy(h, featuresets[300:])) except: print("h") def saveClassifier(classifier): pickleClassifier = open(classifier.__name__ + datetime.now().strftime('%H:%M:%S') + ".pickle", "wb") pickle.dump(classifier, pickleClassifier) pickleClassifier.close() return classifier def loadClassifier(name): pickledClassifier = open(name, "rb") classifier = pickle.load(pickledClassifier) pickledClassifier.close() return classifier
bsd-2-clause
savoirfairelinux/opendht
python/tools/dht/tests.py
1
34972
# -*- coding: utf-8 -*- # Copyright (C) 2015-2019 Savoir-Faire Linux Inc. # Author(s): Adrien Béraud <[email protected]> # Simon Désaulniers <[email protected]> import sys import os import threading import random import string import time import subprocess import re import traceback import collections from matplotlib.ticker import FuncFormatter import math import numpy as np import matplotlib.pyplot as plt import networkx as nx from networkx.drawing.nx_agraph import graphviz_layout from opendht import * from dht.network import DhtNetwork, DhtNetworkSubProcess ############ # Common # ############ # matplotlib display format for bits (b, Kb, Mb) bit_format = None Kbit_format = FuncFormatter(lambda x, pos: '%1.1f' % (x*1024**-1) + 'Kb') Mbit_format = FuncFormatter(lambda x, pos: '%1.1f' % (x*1024**-2) + 'Mb') def random_str_val(size=1024): """Creates a random string value of specified size. @param size: Size, in bytes, of the value. @type size: int @return: Random string value @rtype : str """ return ''.join(random.choice(string.hexdigits) for _ in range(size)) def random_hash(): """Creates random InfoHash. """ return InfoHash(random_str_val(size=40).encode()) def timer(f, *args): """ Start a timer which count time taken for execute function f @param f : Function to time @type f : function @param args : Arguments of the function f @type args : list @rtype : timer @return : Time taken by the function f """ start = time.time() f(*args) return time.time() - start def reset_before_test(featureTestMethod): """ This is a decorator for all test methods needing reset(). @param featureTestMethod: The method to be decorated. All decorated methods must have 'self' object as first arg. @type featureTestMethod: function """ def call(*args, **kwargs): self = args[0] if isinstance(self, FeatureTest): self._reset() return featureTestMethod(*args, **kwargs) return call def display_plot(yvals, xvals=None, yformatter=None, display_time=3, **kwargs): """ Displays a plot of data in interactive mode. This method is made to be called successively for plot refreshing. @param yvals: Ordinate values (float). @type yvals: list @param xvals: Abscissa values (float). @type xvals: list @param yformatter: The matplotlib FuncFormatter to use for y values. @type yformatter: matplotlib.ticker.FuncFormatter @param displaytime: The time matplotlib can take to refresht the plot. @type displaytime: int """ plt.ion() plt.clf() plt.show() if yformatter: plt.axes().yaxis.set_major_formatter(Kbit_format) if xvals: plt.plot(xvals, yvals, **kwargs) else: plt.plot(yvals, **kwargs) plt.pause(display_time) def display_traffic_plot(ifname): """Displays the traffic plot for a given interface name. @param ifname: Interface name. @type ifname: string """ ydata = [] xdata = [] # warning: infinite loop interval = 2 for rate in iftop_traffic_data(ifname, interval=interval): ydata.append(rate) xdata.append((xdata[-1] if len(xdata) > 0 else 0) + interval) display_plot(ydata, xvals=xdata, yformatter=Kbit_format, color='blue') def iftop_traffic_data(ifname, interval=2, rate_type='send_receive'): """ Generator (yields data) function collecting traffic data from iftop subprocess. @param ifname: Interface to listen to. @type ifname: string @param interval: Interval of time between to data collections. Possible values are 2, 10 or 40. @type interval: int @param rates: (default: send_receive) Wether to pick "send", "receive" or "send and receive" rates. Possible values : "send", "receive" and "send_receive". @type rates: string @param _format: Format in which to display data on the y axis. Possible values: Mb, Kb or b. @type _format: string """ # iftop stdout string format SEND_RATE_STR = "Total send rate" RECEIVE_RATE_STR = "Total receive rate" SEND_RECEIVE_RATE_STR = "Total send and receive rate" RATE_STR = { "send" : SEND_RATE_STR, "receive" : RECEIVE_RATE_STR, "send_receive" : SEND_RECEIVE_RATE_STR } TWO_SECONDS_RATE_COL = 0 TEN_SECONDS_RATE_COL = 1 FOURTY_SECONDS_RATE_COL = 2 COLS = { 2 : TWO_SECONDS_RATE_COL, 10 : TEN_SECONDS_RATE_COL, 40 : FOURTY_SECONDS_RATE_COL } FLOAT_REGEX = "[0-9]+[.]*[0-9]*" BIT_REGEX = "[KM]*b" iftop = subprocess.Popen(["iftop", "-i", ifname, "-t"], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) while True: line = iftop.stdout.readline().decode() if RATE_STR[rate_type] in line: rate, unit = re.findall("("+FLOAT_REGEX+")("+BIT_REGEX+")", line)[COLS[interval]] rate = float(rate) if unit == "Kb": rate *= 1024 elif unit == "Mb": rate *= 1024**2 yield rate ########### # Tests # ########### class FeatureTest(object): """ This is a base test. """ done = 0 lock = None def __init__(self, test, workbench): """ @param test: The test string indicating the test to run. This string is determined in the child classes. @type test: string @param workbench: A WorkBench object to use inside this test. @type workbench: WorkBench """ self._test = test self._workbench = workbench self._bootstrap = self._workbench.get_bootstrap() def _reset(self): """ Resets some static variables. This method is most likely going to be called before each tests. """ FeatureTest.done = 0 FeatureTest.lock = threading.Condition() def run(self): raise NotImplementedError('This method must be implemented.') ################################## # PHT # ################################## class PhtTest(FeatureTest): """TODO """ indexEntries = None prefix = None key = None def __init__(self, test, workbench, opts): """ @param test: is one of the following: - 'insert': indexes a considerable amount of data in the PHT structure. TODO @type test: string @param opts: Dictionnary containing options for the test. Allowed options are: - 'num_keys': this specifies the number of keys to insert in the PHT during the test. @type opts: dict """ super(PhtTest, self).__init__(test, workbench) self._num_keys = opts['num_keys'] if 'num_keys' in opts else 32 self._timer = True if 'timer' in opts else False def _reset(self): super(PhtTest, self)._reset() PhtTest.indexEntries = [] @staticmethod def lookupCb(vals, prefix): PhtTest.indexEntries = list(vals) PhtTest.prefix = prefix.decode() DhtNetwork.log('Index name: <todo>') DhtNetwork.log('Leaf prefix:', prefix) for v in vals: DhtNetwork.log('[ENTRY]:', v) @staticmethod def lookupDoneCb(ok): DhtNetwork.log('[LOOKUP]:', PhtTest.key, "--", "success!" if ok else "Fail...") with FeatureTest.lock: FeatureTest.lock.notify() @staticmethod def insertDoneCb(ok): DhtNetwork.log('[INSERT]:', PhtTest.key, "--", "success!" if ok else "Fail...") with FeatureTest.lock: FeatureTest.lock.notify() @staticmethod def drawTrie(trie_dict): """ Draws the trie structure of the PHT from dictionnary. @param trie_dict: Dictionnary of index entries (prefix -> entry). @type trie_dict: dict """ prefixes = list(trie_dict.keys()) if len(prefixes) == 0: return edges = list([]) for prefix in prefixes: for i in range(-1, len(prefix)-1): u = prefix[:i+1] x = ("." if i == -1 else u, u+"0") y = ("." if i == -1 else u, u+"1") if x not in edges: edges.append(x) if y not in edges: edges.append(y) # TODO: use a binary tree position layout... # UPDATE : In a better way [change lib] G = nx.Graph(sorted(edges, key=lambda x: len(x[0]))) plt.title("PHT: Tree") pos=graphviz_layout(G,prog='dot') nx.draw(G, pos, with_labels=True, node_color='white') plt.show() def run(self): try: if self._test == 'insert': self._insertTest() except Exception as e: print(e) finally: self._bootstrap.resize(1) ########### # Tests # ########### @reset_before_test def _insertTest(self): """TODO: Docstring for _massIndexTest. """ bootstrap = self._bootstrap bootstrap.resize(2) dht = bootstrap.get(1) NUM_DIG = max(math.log(self._num_keys, 2)/4, 5) # at least 5 digit keys. keyspec = collections.OrderedDict([('foo', NUM_DIG)]) pht = Pht(b'foo_index', keyspec, dht) DhtNetwork.log('PHT has', pht.MAX_NODE_ENTRY_COUNT, 'node'+ ('s' if pht.MAX_NODE_ENTRY_COUNT > 1 else ''), 'per leaf bucket.') keys = [{ [_ for _ in keyspec.keys()][0] : ''.join(random.SystemRandom().choice(string.hexdigits) for _ in range(NUM_DIG)).encode() } for n in range(self._num_keys)] all_entries = {} # Index all entries. for key in keys: PhtTest.key = key with FeatureTest.lock: time_taken = timer(pht.insert, key, IndexValue(random_hash()), PhtTest.insertDoneCb) if self._timer: DhtNetwork.log('This insert step took : ', time_taken, 'second') FeatureTest.lock.wait() time.sleep(1) # Recover entries now that the trie is complete. for key in keys: PhtTest.key = key with FeatureTest.lock: time_taken = timer(pht.lookup, key, PhtTest.lookupCb, PhtTest.lookupDoneCb) if self._timer: DhtNetwork.log('This lookup step took : ', time_taken, 'second') FeatureTest.lock.wait() all_entries[PhtTest.prefix] = [e.__str__() for e in PhtTest.indexEntries] for p in all_entries.keys(): DhtNetwork.log('All entries under prefix', p, ':') DhtNetwork.log(all_entries[p]) PhtTest.drawTrie(all_entries) ################################## # DHT # ################################## class DhtFeatureTest(FeatureTest): """ This is a base dht test. """ #static variables used by class callbacks successfullTransfer = lambda lv,fv: len(lv) == len(fv) foreignNodes = None foreignValues = None def __init__(self, test, workbench): super(DhtFeatureTest, self).__init__(test, workbench) def _reset(self): super(DhtFeatureTest, self)._reset() DhtFeatureTest.foreignNodes = [] DhtFeatureTest.foreignValues = [] @staticmethod def getcb(value): vstr = value.__str__()[:100] DhtNetwork.Log.log('[GET]: %s' % vstr + ("..." if len(vstr) > 100 else "")) DhtFeatureTest.foreignValues.append(value) return True @staticmethod def putDoneCb(ok, nodes): with FeatureTest.lock: if not ok: DhtNetwork.Log.log("[PUT]: failed!") FeatureTest.done -= 1 FeatureTest.lock.notify() @staticmethod def getDoneCb(ok, nodes): with FeatureTest.lock: if not ok: DhtNetwork.Log.log("[GET]: failed!") else: for node in nodes: if not node.getNode().isExpired(): DhtFeatureTest.foreignNodes.append(node.getId().toString()) FeatureTest.done -= 1 FeatureTest.lock.notify() def _dhtPut(self, producer, _hash, *values): with FeatureTest.lock: for val in values: vstr = val.__str__()[:100] DhtNetwork.Log.log('[PUT]:', _hash.toString(), '->', vstr + ("..." if len(vstr) > 100 else "")) FeatureTest.done += 1 producer.put(_hash, val, DhtFeatureTest.putDoneCb) while FeatureTest.done > 0: FeatureTest.lock.wait() def _dhtGet(self, consumer, _hash): DhtFeatureTest.foreignValues = [] DhtFeatureTest.foreignNodes = [] with FeatureTest.lock: FeatureTest.done += 1 DhtNetwork.Log.log('[GET]:', _hash.toString()) consumer.get(_hash, DhtFeatureTest.getcb, DhtFeatureTest.getDoneCb) while FeatureTest.done > 0: FeatureTest.lock.wait() def _gottaGetThemAllPokeNodes(self, consumer, hashes, nodes=None): for h in hashes: self._dhtGet(consumer, h) if nodes is not None: for n in DhtFeatureTest.foreignNodes: nodes.add(n) class PersistenceTest(DhtFeatureTest): """ This tests persistence of data on the network. """ def __init__(self, test, workbench, opts): """ @param test: is one of the following: - 'mult_time': test persistence of data based on internal OpenDHT storage maintenance timings. - 'delete': test persistence of data upon deletion of nodes. - 'replace': replacing cluster successively. @type test: string OPTIONS - dump_str_log: Enables storage log at test ending. - keep_alive: Keeps the test running indefinately. This may be useful to manually analyse the network traffic during a longer period. - num_producers: Number of producers of data during a DHT test. - num_values: Number of values to initialize the DHT with. """ # opts super(PersistenceTest, self).__init__(test, workbench) self._traffic_plot = True if 'traffic_plot' in opts else False self._dump_storage = True if 'dump_str_log' in opts else False self._op_plot = True if 'op_plot' in opts else False self._keep_alive = True if 'keep_alive' in opts else False self._num_producers = opts['num_producers'] if 'num_producers' in opts else None self._num_values = opts['num_values'] if 'num_values' in opts else None def _trigger_dp(self, trigger_nodes, _hash, count=1): """ Triggers the data persistence over time. In order to this, `count` nodes are created with an id around the hash of a value. @param trigger_nodes: List of created nodes. The nodes created in this function are append to this list. @type trigger_nodes: list @param _hash: Is the id of the value around which creating nodes. @type _hash: InfoHash @param count: The number of nodes to create with id around the id of value. @type count: int """ _hash_str = _hash.toString().decode() _hash_int = int(_hash_str, 16) for i in range(int(-count/2), int(count/2)+1): _hash_str = '{:40x}'.format(_hash_int + i) config = DhtConfig() config.setNodeId(InfoHash(_hash_str.encode())) n = DhtRunner() n.run(config=config) n.bootstrap(self._bootstrap.ip4, str(self._bootstrap.port)) DhtNetwork.log('Node','['+_hash_str+']', 'started around', _hash.toString().decode() if n.isRunning() else 'failed to start...' ) trigger_nodes.append(n) def _result(self, local_values, new_nodes): bootstrap = self._bootstrap if not DhtFeatureTest.successfullTransfer(local_values, DhtFeatureTest.foreignValues): DhtNetwork.Log.log('[GET]: Only %s on %s values persisted.' % (len(DhtFeatureTest.foreignValues), len(local_values))) else: DhtNetwork.Log.log('[GET]: All values successfully persisted.') if DhtFeatureTest.foreignValues: if new_nodes: DhtNetwork.Log.log('Values are newly found on:') for node in new_nodes: DhtNetwork.Log.log(node) if self._dump_storage: DhtNetwork.Log.log('Dumping all storage log from '\ 'hosting nodes.') for proc in self._workbench.procs: proc.sendClusterRequest(DhtNetworkSubProcess.DUMP_STORAGE_REQ, DhtFeatureTest.foreignNodes) else: DhtNetwork.Log.log("Values didn't reach new hosting nodes after shutdown.") def run(self): try: if self._test == 'normal': self._totallyNormalTest() elif self._test == 'delete': self._deleteTest() elif self._test == 'replace': self._replaceClusterTest() elif self._test == 'mult_time': self._multTimeTest() else: raise NameError("This test is not defined '" + self._test + "'") except Exception as e: traceback.print_tb(e.__traceback__) print(type(e).__name__+':', e, file=sys.stderr) finally: if self._traffic_plot or self._op_plot: plot_fname = "traffic-plot" print('plot saved to', plot_fname) plt.savefig(plot_fname) self._bootstrap.resize(1) ########### # Tests # ########### @reset_before_test def _totallyNormalTest(self): """ Reproduces a network in a realistic state. """ trigger_nodes = [] wb = self._workbench bootstrap = self._bootstrap # Value representing an ICE packet. Each ICE packet is around 1KB. VALUE_SIZE = 1024 num_values_per_hash = self._num_values/wb.node_num if self._num_values else 5 # nodes and values counters total_nr_values = 0 nr_nodes = wb.node_num op_cv = threading.Condition() # values string in string format. Used for sending cluster request. hashes = [random_hash() for _ in range(wb.node_num)] def normalBehavior(do, t): nonlocal total_nr_values, op_cv while True: with op_cv: do() time.sleep(random.uniform(0.0, float(t))) def putRequest(): nonlocal hashes, VALUE_SIZE, total_nr_values lock = threading.Condition() def dcb(success): nonlocal total_nr_values, lock if success: total_nr_values += 1 DhtNetwork.Log.log("INFO: "+ str(total_nr_values)+" values put on the dht since begining") with lock: lock.notify() with lock: DhtNetwork.Log.warn("Random value put on the DHT...") random.choice(wb.procs).sendClusterPutRequest(random.choice(hashes).toString(), random_str_val(size=VALUE_SIZE).encode(), done_cb=dcb) lock.wait() puts = threading.Thread(target=normalBehavior, args=(putRequest, 30.0/wb.node_num)) puts.daemon = True puts.start() def newNodeRequest(): nonlocal nr_nodes lock = threading.Condition() def dcb(success): nonlocal nr_nodes, lock nr_nodes += 1 DhtNetwork.Log.log("INFO: now "+str(nr_nodes)+" nodes on the dht") with lock: lock.notify() with lock: DhtNetwork.Log.warn("Node joining...") random.choice(wb.procs).sendClusterRequest(DhtNetworkSubProcess.NEW_NODE_REQ, done_cb=dcb) lock.wait() connections = threading.Thread(target=normalBehavior, args=(newNodeRequest, 1*50.0/wb.node_num)) connections.daemon = True connections.start() def shutdownNodeRequest(): nonlocal nr_nodes lock = threading.Condition() def dcb(success): nonlocal nr_nodes, lock if success: nr_nodes -= 1 DhtNetwork.Log.log("INFO: now "+str(nr_nodes)+" nodes on the dht") else: DhtNetwork.Log.err("Oops.. No node to shutodwn.") with lock: lock.notify() with lock: DhtNetwork.Log.warn("Node shutting down...") random.choice(wb.procs).sendClusterRequest(DhtNetworkSubProcess.SHUTDOWN_NODE_REQ, done_cb=dcb) lock.wait() shutdowns = threading.Thread(target=normalBehavior, args=(shutdownNodeRequest, 1*60.0/wb.node_num)) shutdowns.daemon = True shutdowns.start() if self._traffic_plot: display_traffic_plot('br'+wb.ifname) else: # blocks in matplotlib thread while True: plt.pause(3600) @reset_before_test def _deleteTest(self): """ It uses Dht shutdown call from the API to gracefuly finish the nodes one after the other. """ bootstrap = self._bootstrap ops_count = [] bootstrap.resize(3) consumer = bootstrap.get(1) producer = bootstrap.get(2) myhash = random_hash() local_values = [Value(b'foo'), Value(b'bar'), Value(b'foobar')] self._dhtPut(producer, myhash, *local_values) #checking if values were transfered self._dhtGet(consumer, myhash) if not DhtFeatureTest.successfullTransfer(local_values, DhtFeatureTest.foreignValues): if DhtFeatureTest.foreignValues: DhtNetwork.Log.log('[GET]: Only ', len(DhtFeatureTest.foreignValues) ,' on ', len(local_values), ' values successfully put.') else: DhtNetwork.Log.log('[GET]: 0 values successfully put') if DhtFeatureTest.foreignValues and DhtFeatureTest.foreignNodes: DhtNetwork.Log.log('Values are found on :') for node in DhtFeatureTest.foreignNodes: DhtNetwork.Log.log(node) for _ in range(max(1, int(self._workbench.node_num/32))): DhtNetwork.Log.log('Removing all nodes hosting target values...') cluster_ops_count = 0 for proc in self._workbench.procs: DhtNetwork.Log.log('[REMOVE]: sending shutdown request to', proc) lock = threading.Condition() def dcb(success): nonlocal lock if not success: DhtNetwork.Log.err("Failed to shutdown.") with lock: lock.notify() with lock: proc.sendClusterRequest( DhtNetworkSubProcess.SHUTDOWN_NODE_REQ, DhtFeatureTest.foreignNodes, done_cb=dcb ) lock.wait() DhtNetwork.Log.log('sending message stats request') def msg_dcb(stats): nonlocal cluster_ops_count, lock if stats: cluster_ops_count += sum(stats[1:]) with lock: lock.notify() with lock: proc.sendGetMessageStats(done_cb=msg_dcb) lock.wait() DhtNetwork.Log.log("5 seconds wait...") time.sleep(5) ops_count.append(cluster_ops_count/self._workbench.node_num) # checking if values were transfered to new nodes foreignNodes_before_delete = DhtFeatureTest.foreignNodes DhtNetwork.Log.log('[GET]: trying to fetch persistent values') self._dhtGet(consumer, myhash) new_nodes = set(DhtFeatureTest.foreignNodes) - set(foreignNodes_before_delete) self._result(local_values, new_nodes) if self._op_plot: display_plot(ops_count, color='blue') else: DhtNetwork.Log.log("[GET]: either couldn't fetch values or nodes hosting values...") if traffic_plot_thread: print("Traffic plot running for ever. Ctrl-c for stopping it.") traffic_plot_thread.join() @reset_before_test def _replaceClusterTest(self): """ It replaces all clusters one after the other. """ clusters = 8 bootstrap = self._bootstrap bootstrap.resize(3) consumer = bootstrap.get(1) producer = bootstrap.get(2) myhash = random_hash() local_values = [Value(b'foo'), Value(b'bar'), Value(b'foobar')] self._dhtPut(producer, myhash, *local_values) self._dhtGet(consumer, myhash) initial_nodes = DhtFeatureTest.foreignNodes DhtNetwork.Log.log('Replacing', clusters, 'random clusters successively...') for n in range(clusters): i = random.randint(0, len(self._workbench.procs)-1) proc = self._workbench.procs[i] DhtNetwork.Log.log('Replacing', proc) proc.sendClusterRequest(DhtNetworkSubProcess.SHUTDOWN_CLUSTER_REQ) self._workbench.stop_cluster(i) self._workbench.start_cluster(i) DhtNetwork.Log.log('[GET]: trying to fetch persistent values') self._dhtGet(consumer, myhash) new_nodes = set(DhtFeatureTest.foreignNodes) - set(initial_nodes) self._result(local_values, new_nodes) @reset_before_test def _multTimeTest(self): """ Multiple put() calls are made from multiple nodes to multiple hashes after what a set of 8 nodes is created around each hashes in order to enable storage maintenance each nodes. Therefor, this tests will wait 10 minutes for the nodes to trigger storage maintenance. """ trigger_nodes = [] bootstrap = self._bootstrap N_PRODUCERS = self._num_producers if self._num_values else 16 DP_TIMEOUT = 1 hashes = [] # Generating considerable amount of values of size 1KB. VALUE_SIZE = 1024 NUM_VALUES = self._num_values if self._num_values else 50 values = [Value(random_str_val(size=VALUE_SIZE).encode()) for _ in range(NUM_VALUES)] bootstrap.resize(N_PRODUCERS+2) consumer = bootstrap.get(N_PRODUCERS+1) producers = (bootstrap.get(n) for n in range(1,N_PRODUCERS+1)) for p in producers: hashes.append(random_hash()) self._dhtPut(p, hashes[-1], *values) once = True while self._keep_alive or once: nodes = set([]) self._gottaGetThemAllPokeNodes(consumer, hashes, nodes=nodes) DhtNetwork.Log.log("Values are found on:") for n in nodes: DhtNetwork.Log.log(n) DhtNetwork.Log.log("Creating 8 nodes around all of these hashes...") for _hash in hashes: self._trigger_dp(trigger_nodes, _hash, count=8) DhtNetwork.Log.log('Waiting', DP_TIMEOUT+1, 'minutes for normal storage maintenance.') time.sleep((DP_TIMEOUT+1)*60) DhtNetwork.Log.log('Deleting old nodes from previous search.') for proc in self._workbench.procs: DhtNetwork.Log.log('[REMOVE]: sending delete request to', proc) proc.sendClusterRequest( DhtNetworkSubProcess.REMOVE_NODE_REQ, nodes) # new consumer (fresh cache) bootstrap.resize(N_PRODUCERS+1) bootstrap.resize(N_PRODUCERS+2) consumer = bootstrap.get(N_PRODUCERS+1) nodes_after_time = set([]) self._gottaGetThemAllPokeNodes(consumer, hashes, nodes=nodes_after_time) self._result(values, nodes_after_time - nodes) once = False class PerformanceTest(DhtFeatureTest): """ Tests for general performance of dht operations. """ def __init__(self, test, workbench, opts): """ @param test: is one of the following: - 'gets': multiple get operations and statistical results. - 'delete': perform multiple put() operations followed by targeted deletion of nodes hosting the values. Doing so until half of the nodes on the network remain. @type test: string """ super(PerformanceTest, self).__init__(test, workbench) def run(self): try: if self._test == 'gets': self._getsTimesTest() elif self._test == 'delete': self._delete() else: raise NameError("This test is not defined '" + self._test + "'") except Exception as e: traceback.print_tb(e.__traceback__) print(type(e).__name__+':', e, file=sys.stderr) finally: self._bootstrap.resize(1) ########### # Tests # ########### @reset_before_test def _getsTimesTest(self): """ Tests for performance of the DHT doing multiple get() operation. """ bootstrap = self._bootstrap plt.ion() fig, axes = plt.subplots(2, 1) fig.tight_layout() lax = axes[0] hax = axes[1] lines = None#ax.plot([]) #plt.ylabel('time (s)') hax.set_ylim(0, 2) # let the network stabilise plt.pause(20) #start = time.time() times = [] lock = threading.Condition() done = 0 def getcb(v): nonlocal bootstrap DhtNetwork.Log.log("found", v) return True def donecb(ok, nodes, start): nonlocal bootstrap, lock, done, times t = time.time()-start with lock: if not ok: DhtNetwork.Log.log("failed !") times.append(t) done -= 1 lock.notify() def update_plot(): nonlocal lines while lines: l = lines.pop() l.remove() del l if len(times) > 1: n, bins, lines = hax.hist(times, 100, normed=1, histtype='stepfilled', color='g') hax.set_ylim(min(n), max(n)) lines.extend(lax.plot(times, color='blue')) plt.draw() def run_get(): nonlocal done done += 1 start = time.time() bootstrap.front().get(InfoHash.getRandom(), getcb, lambda ok, nodes: donecb(ok, nodes, start)) plt.pause(5) plt.show() update_plot() times = [] for n in range(10): self._workbench.replace_cluster() plt.pause(2) DhtNetwork.Log.log("Getting 50 random hashes succesively.") for i in range(50): with lock: for _ in range(1): run_get() while done > 0: lock.wait() update_plot() plt.pause(.1) update_plot() print("Took", np.sum(times), "mean", np.mean(times), "std", np.std(times), "min", np.min(times), "max", np.max(times)) print('GET calls timings benchmark test : DONE. ' \ 'Close Matplotlib window for terminating the program.') plt.ioff() plt.show() @reset_before_test def _delete(self): """ Tests for performance of get() and put() operations on the network while deleting around the target hash. """ bootstrap = self._bootstrap bootstrap.resize(3) consumer = bootstrap.get(1) producer = bootstrap.get(2) myhash = random_hash() local_values = [Value(b'foo'), Value(b'bar'), Value(b'foobar')] for _ in range(max(1, int(self._workbench.node_num/32))): self._dhtGet(consumer, myhash) DhtNetwork.Log.log("Waiting 15 seconds...") time.sleep(15) self._dhtPut(producer, myhash, *local_values) #checking if values were transfered self._dhtGet(consumer, myhash) DhtNetwork.Log.log('Values are found on :') for node in DhtFeatureTest.foreignNodes: DhtNetwork.Log.log(node) if not DhtFeatureTest.successfullTransfer(local_values, DhtFeatureTest.foreignValues): if DhtFeatureTest.foreignValues: DhtNetwork.Log.log('[GET]: Only ', len(DhtFeatureTest.foreignValues) ,' on ', len(local_values), ' values successfully put.') else: DhtNetwork.Log.log('[GET]: 0 values successfully put') DhtNetwork.Log.log('Removing all nodes hosting target values...') for proc in self._workbench.procs: DhtNetwork.Log.log('[REMOVE]: sending shutdown request to', proc) proc.sendClusterRequest( DhtNetworkSubProcess.SHUTDOWN_NODE_REQ, DhtFeatureTest.foreignNodes )
gpl-3.0
cogeorg/black_rhino
examples/Georg2012/networkx/drawing/nx_pylab.py
10
27884
""" ********** Matplotlib ********** Draw networks with matplotlib (pylab). See Also -------- matplotlib: http://matplotlib.sourceforge.net/ pygraphviz: http://networkx.lanl.gov/pygraphviz/ """ # Copyright (C) 2004-2012 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx from networkx.drawing.layout import shell_layout,\ circular_layout,spectral_layout,spring_layout,random_layout __author__ = """Aric Hagberg ([email protected])""" __all__ = ['draw', 'draw_networkx', 'draw_networkx_nodes', 'draw_networkx_edges', 'draw_networkx_labels', 'draw_networkx_edge_labels', 'draw_circular', 'draw_random', 'draw_spectral', 'draw_spring', 'draw_shell', 'draw_graphviz'] def draw(G, pos=None, ax=None, hold=None, **kwds): """Draw the graph G with Matplotlib (pylab). Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. ax : Matplotlib Axes object, optional Draw the graph in specified Matplotlib axes. hold : bool, optional Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes. **kwds : optional keywords See networkx.draw_networkx() for a description of optional keywords. Examples -------- >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout See Also -------- draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() Notes ----- This function has the same name as pylab.draw and pyplot.draw so beware when using >>> from networkx import * since you might overwrite the pylab.draw function. Good alternatives are: With pylab: >>> import pylab as P # >>> import networkx as nx >>> G=nx.dodecahedral_graph() >>> nx.draw(G) # networkx draw() >>> P.draw() # pylab draw() With pyplot >>> import matplotlib.pyplot as plt >>> import networkx as nx >>> G=nx.dodecahedral_graph() >>> nx.draw(G) # networkx draw() >>> plt.draw() # pyplot draw() Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html """ try: import matplotlib.pylab as pylab except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise cf=pylab.gcf() cf.set_facecolor('w') if ax is None: if cf._axstack() is None: ax=cf.add_axes((0,0,1,1)) else: ax=cf.gca() # allow callers to override the hold state by passing hold=True|False b = pylab.ishold() h = kwds.pop('hold', None) if h is not None: pylab.hold(h) try: draw_networkx(G,pos=pos,ax=ax,**kwds) ax.set_axis_off() pylab.draw_if_interactive() except: pylab.hold(b) raise pylab.hold(b) return def draw_networkx(G, pos=None, with_labels=True, **kwds): """Draw the graph G using Matplotlib. Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. with_labels : bool, optional (default=True) Set to True to draw labels on the nodes. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. nodelist : list, optional (default G.nodes()) Draw only specified nodes edgelist : list, optional (default=G.edges()) Draw only specified edges node_size : scalar or array, optional (default=300) Size of nodes. If an array is specified it must be the same length as nodelist. node_color : color string, or array of floats, (default='r') Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. node_shape : string, optional (default='o') The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'. alpha : float, optional (default=1.0) The node transparency cmap : Matplotlib colormap, optional (default=None) Colormap for mapping intensities of nodes vmin,vmax : float, optional (default=None) Minimum and maximum for node colormap scaling linewidths : [None | scalar | sequence] Line width of symbol border (default =1.0) width : float, optional (default=1.0) Line width of edges edge_color : color string, or array of floats (default='r') Edge color. Can be a single color format string, or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. edge_ cmap : Matplotlib colormap, optional (default=None) Colormap for mapping intensities of edges edge_vmin,edge_vmax : floats, optional (default=None) Minimum and maximum for edge colormap scaling style : string, optional (deafult='solid') Edge line style (solid|dashed|dotted,dashdot) labels : dictionary, optional (deafult=None) Node labels in a dictionary keyed by node of text labels font_size : int, optional (default=12) Font size for text labels font_color : string, optional (default='k' black) Font color string font_weight : string, optional (default='normal') Font weight font_family : string, optional (default='sans-serif') Font family label : string, optional Label for graph legend Examples -------- >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout >>> import pylab >>> limits=pylab.axis('off') # turn of axis Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib.pylab as pylab except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if pos is None: pos=nx.drawing.spring_layout(G) # default to spring layout node_collection=draw_networkx_nodes(G, pos, **kwds) edge_collection=draw_networkx_edges(G, pos, **kwds) if with_labels: draw_networkx_labels(G, pos, **kwds) pylab.draw_if_interactive() def draw_networkx_nodes(G, pos, nodelist=None, node_size=300, node_color='r', node_shape='o', alpha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, label = None, **kwds): """Draw the nodes of the graph G. This draws only the nodes of the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. nodelist : list, optional Draw only specified nodes (default G.nodes()) node_size : scalar or array Size of nodes (default=300). If an array is specified it must be the same length as nodelist. node_color : color string, or array of floats Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. node_shape : string The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8' (default='o'). alpha : float The node transparency (default=1.0) cmap : Matplotlib colormap Colormap for mapping intensities of nodes (default=None) vmin,vmax : floats Minimum and maximum for node colormap scaling (default=None) linewidths : [None | scalar | sequence] Line width of symbol border (default =1.0) label : [None| string] Label for legend Examples -------- >>> G=nx.dodecahedral_graph() >>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib.pylab as pylab import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if nodelist is None: nodelist=G.nodes() if not nodelist or len(nodelist)==0: # empty nodelist, no drawing return None try: xy=numpy.asarray([pos[v] for v in nodelist]) except KeyError as e: raise nx.NetworkXError('Node %s has no position.'%e) except ValueError: raise nx.NetworkXError('Bad value in node positions.') node_collection=ax.scatter(xy[:,0], xy[:,1], s=node_size, c=node_color, marker=node_shape, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, label=label) # pylab.axes(ax) pylab.sci(node_collection) node_collection.set_zorder(2) return node_collection def draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=None, edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, label=None, **kwds): """Draw the edges of the graph G. This draws only the edges of the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. edgelist : collection of edge tuples Draw only specified edges(default=G.edges()) width : float Line width of edges (default =1.0) edge_color : color string, or array of floats Edge color. Can be a single color format string (default='r'), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. style : string Edge line style (default='solid') (solid|dashed|dotted,dashdot) alpha : float The edge transparency (default=1.0) edge_ cmap : Matplotlib colormap Colormap for mapping intensities of edges (default=None) edge_vmin,edge_vmax : floats Minimum and maximum for edge colormap scaling (default=None) ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. arrows : bool, optional (default=True) For directed graphs, if True draw arrowheads. label : [None| string] Label for legend Notes ----- For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. Examples -------- >>> G=nx.dodecahedral_graph() >>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib import matplotlib.pylab as pylab import matplotlib.cbook as cb from matplotlib.colors import colorConverter,Colormap from matplotlib.collections import LineCollection import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if edgelist is None: edgelist=G.edges() if not edgelist or len(edgelist)==0: # no edges! return None # set edge positions edge_pos=numpy.asarray([(pos[e[0]],pos[e[1]]) for e in edgelist]) if not cb.iterable(width): lw = (width,) else: lw = width if not cb.is_string_like(edge_color) \ and cb.iterable(edge_color) \ and len(edge_color)==len(edge_pos): if numpy.alltrue([cb.is_string_like(c) for c in edge_color]): # (should check ALL elements) # list of color letters such as ['k','r','k',...] edge_colors = tuple([colorConverter.to_rgba(c,alpha) for c in edge_color]) elif numpy.alltrue([not cb.is_string_like(c) for c in edge_color]): # If color specs are given as (rgb) or (rgba) tuples, we're OK if numpy.alltrue([cb.iterable(c) and len(c) in (3,4) for c in edge_color]): edge_colors = tuple(edge_color) else: # numbers (which are going to be mapped with a colormap) edge_colors = None else: raise ValueError('edge_color must consist of either color names or numbers') else: if cb.is_string_like(edge_color) or len(edge_color)==1: edge_colors = ( colorConverter.to_rgba(edge_color, alpha), ) else: raise ValueError('edge_color must be a single color or list of exactly m colors where m is the number or edges') edge_collection = LineCollection(edge_pos, colors = edge_colors, linewidths = lw, antialiaseds = (1,), linestyle = style, transOffset = ax.transData, ) edge_collection.set_zorder(1) # edges go behind nodes edge_collection.set_label(label) ax.add_collection(edge_collection) # Note: there was a bug in mpl regarding the handling of alpha values for # each line in a LineCollection. It was fixed in matplotlib in r7184 and # r7189 (June 6 2009). We should then not set the alpha value globally, # since the user can instead provide per-edge alphas now. Only set it # globally if provided as a scalar. if cb.is_numlike(alpha): edge_collection.set_alpha(alpha) if edge_colors is None: if edge_cmap is not None: assert(isinstance(edge_cmap, Colormap)) edge_collection.set_array(numpy.asarray(edge_color)) edge_collection.set_cmap(edge_cmap) if edge_vmin is not None or edge_vmax is not None: edge_collection.set_clim(edge_vmin, edge_vmax) else: edge_collection.autoscale() pylab.sci(edge_collection) arrow_collection=None if G.is_directed() and arrows: # a directed graph hack # draw thick line segments at head end of edge # waiting for someone else to implement arrows that will work arrow_colors = edge_colors a_pos=[] p=1.0-0.25 # make head segment 25 percent of edge length for src,dst in edge_pos: x1,y1=src x2,y2=dst dx=x2-x1 # x offset dy=y2-y1 # y offset d=numpy.sqrt(float(dx**2+dy**2)) # length of edge if d==0: # source and target at same position continue if dx==0: # vertical edge xa=x2 ya=dy*p+y1 if dy==0: # horizontal edge ya=y2 xa=dx*p+x1 else: theta=numpy.arctan2(dy,dx) xa=p*d*numpy.cos(theta)+x1 ya=p*d*numpy.sin(theta)+y1 a_pos.append(((xa,ya),(x2,y2))) arrow_collection = LineCollection(a_pos, colors = arrow_colors, linewidths = [4*ww for ww in lw], antialiaseds = (1,), transOffset = ax.transData, ) arrow_collection.set_zorder(1) # edges go behind nodes arrow_collection.set_label(label) ax.add_collection(arrow_collection) # update view minx = numpy.amin(numpy.ravel(edge_pos[:,:,0])) maxx = numpy.amax(numpy.ravel(edge_pos[:,:,0])) miny = numpy.amin(numpy.ravel(edge_pos[:,:,1])) maxy = numpy.amax(numpy.ravel(edge_pos[:,:,1])) w = maxx-minx h = maxy-miny padx, pady = 0.05*w, 0.05*h corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady) ax.update_datalim( corners) ax.autoscale_view() # if arrow_collection: return edge_collection def draw_networkx_labels(G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, ax=None, **kwds): """Draw node labels on the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. font_size : int Font size for text labels (default=12) font_color : string Font color string (default='k' black) font_family : string Font family (default='sans-serif') font_weight : string Font weight (default='normal') alpha : float The text transparency (default=1.0) ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. Examples -------- >>> G=nx.dodecahedral_graph() >>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_edge_labels() """ try: import matplotlib.pylab as pylab import matplotlib.cbook as cb except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if labels is None: labels=dict( (n,n) for n in G.nodes()) # set optional alignment horizontalalignment=kwds.get('horizontalalignment','center') verticalalignment=kwds.get('verticalalignment','center') text_items={} # there is no text collection so we'll fake one for n, label in labels.items(): (x,y)=pos[n] if not cb.is_string_like(label): label=str(label) # this will cause "1" and 1 to be labeled the same t=ax.text(x, y, label, size=font_size, color=font_color, family=font_family, weight=font_weight, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, transform = ax.transData, clip_on=True, ) text_items[n]=t return text_items def draw_networkx_edge_labels(G, pos, edge_labels=None, label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, rotate=True, **kwds): """Draw edge labels. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. alpha : float The text transparency (default=1.0) edge_labels : dictionary Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn. label_pos : float Position of edge label along edge (0=head, 0.5=center, 1=tail) font_size : int Font size for text labels (default=12) font_color : string Font color string (default='k' black) font_weight : string Font weight (default='normal') font_family : string Font family (default='sans-serif') bbox : Matplotlib bbox Specify text box shape and colors. clip_on : bool Turn on clipping at axis boundaries (default=True) Examples -------- >>> G=nx.dodecahedral_graph() >>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() """ try: import matplotlib.pylab as pylab import matplotlib.cbook as cb import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if edge_labels is None: labels=dict( ((u,v), d) for u,v,d in G.edges(data=True) ) else: labels = edge_labels text_items={} for (n1,n2), label in labels.items(): (x1,y1)=pos[n1] (x2,y2)=pos[n2] (x,y) = (x1 * label_pos + x2 * (1.0 - label_pos), y1 * label_pos + y2 * (1.0 - label_pos)) if rotate: angle=numpy.arctan2(y2-y1,x2-x1)/(2.0*numpy.pi)*360 # degrees # make label orientation "right-side-up" if angle > 90: angle-=180 if angle < - 90: angle+=180 # transform data coordinate angle to screen coordinate angle xy=numpy.array((x,y)) trans_angle=ax.transData.transform_angles(numpy.array((angle,)), xy.reshape((1,2)))[0] else: trans_angle=0.0 # use default box of white with white border if bbox is None: bbox = dict(boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0), ) if not cb.is_string_like(label): label=str(label) # this will cause "1" and 1 to be labeled the same # set optional alignment horizontalalignment=kwds.get('horizontalalignment','center') verticalalignment=kwds.get('verticalalignment','center') t=ax.text(x, y, label, size=font_size, color=font_color, family=font_family, weight=font_weight, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, rotation=trans_angle, transform = ax.transData, bbox = bbox, zorder = 1, clip_on=True, ) text_items[(n1,n2)]=t return text_items def draw_circular(G, **kwargs): """Draw the graph G with a circular layout.""" draw(G,circular_layout(G),**kwargs) def draw_random(G, **kwargs): """Draw the graph G with a random layout.""" draw(G,random_layout(G),**kwargs) def draw_spectral(G, **kwargs): """Draw the graph G with a spectral layout.""" draw(G,spectral_layout(G),**kwargs) def draw_spring(G, **kwargs): """Draw the graph G with a spring layout.""" draw(G,spring_layout(G),**kwargs) def draw_shell(G, **kwargs): """Draw networkx graph with shell layout.""" nlist = kwargs.get('nlist', None) if nlist != None: del(kwargs['nlist']) draw(G,shell_layout(G,nlist=nlist),**kwargs) def draw_graphviz(G, prog="neato", **kwargs): """Draw networkx graph with graphviz layout.""" pos=nx.drawing.graphviz_layout(G,prog) draw(G,pos,**kwargs) def draw_nx(G,pos,**kwds): """For backward compatibility; use draw or draw_networkx.""" draw(G,pos,**kwds) # fixture for nose tests def setup_module(module): from nose import SkipTest try: import matplotlib as mpl mpl.use('PS',warn=False) import pylab except: raise SkipTest("matplotlib not available")
gpl-3.0
cl4rke/scikit-learn
sklearn/tests/test_lda.py
71
5883
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.datasets import make_blobs from sklearn import lda # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct values # for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = lda.LDA(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = lda.LDA(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = lda.LDA(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = lda.LDA(solver="svd") clf_lda_lsqr = lda.LDA(solver="lsqr") clf_lda_eigen = lda.LDA(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = lda.LDA(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = lda.LDA(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = lda.LDA(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver)
bsd-3-clause
madelynfreed/rlundo
venv/lib/python2.7/site-packages/IPython/extensions/rmagic.py
4
23016
# -*- coding: utf-8 -*- """ ====== Rmagic ====== Magic command interface for interactive work with R via rpy2 .. note:: The ``rpy2`` package needs to be installed separately. It can be obtained using ``easy_install`` or ``pip``. You will also need a working copy of R. Usage ===== To enable the magics below, execute ``%load_ext rmagic``. ``%R`` {R_DOC} ``%Rpush`` {RPUSH_DOC} ``%Rpull`` {RPULL_DOC} ``%Rget`` {RGET_DOC} """ from __future__ import print_function #----------------------------------------------------------------------------- # Copyright (C) 2012 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- import sys import tempfile from glob import glob from shutil import rmtree import warnings # numpy and rpy2 imports import numpy as np import rpy2.rinterface as ri import rpy2.robjects as ro try: from rpy2.robjects import pandas2ri pandas2ri.activate() except ImportError: pandas2ri = None from rpy2.robjects import numpy2ri numpy2ri.activate() # IPython imports from IPython.core.displaypub import publish_display_data from IPython.core.magic import (Magics, magics_class, line_magic, line_cell_magic, needs_local_scope) from IPython.testing.skipdoctest import skip_doctest from IPython.core.magic_arguments import ( argument, magic_arguments, parse_argstring ) from IPython.external.simplegeneric import generic from IPython.utils.py3compat import (str_to_unicode, unicode_to_str, PY3, unicode_type) from IPython.utils.text import dedent class RInterpreterError(ri.RRuntimeError): """An error when running R code in a %%R magic cell.""" def __init__(self, line, err, stdout): self.line = line self.err = err.rstrip() self.stdout = stdout.rstrip() def __unicode__(self): s = 'Failed to parse and evaluate line %r.\nR error message: %r' % \ (self.line, self.err) if self.stdout and (self.stdout != self.err): s += '\nR stdout:\n' + self.stdout return s if PY3: __str__ = __unicode__ else: def __str__(self): return unicode_to_str(unicode(self), 'utf-8') def Rconverter(Robj, dataframe=False): """ Convert an object in R's namespace to one suitable for ipython's namespace. For a data.frame, it tries to return a structured array. It first checks for colnames, then names. If all are NULL, it returns np.asarray(Robj), else it tries to construct a recarray Parameters ---------- Robj: an R object returned from rpy2 """ is_data_frame = ro.r('is.data.frame') colnames = ro.r('colnames') rownames = ro.r('rownames') # with pandas, these could be used for the index names = ro.r('names') if dataframe: as_data_frame = ro.r('as.data.frame') cols = colnames(Robj) _names = names(Robj) if cols != ri.NULL: Robj = as_data_frame(Robj) names = tuple(np.array(cols)) elif _names != ri.NULL: names = tuple(np.array(_names)) else: # failed to find names return np.asarray(Robj) Robj = np.rec.fromarrays(Robj, names = names) return np.asarray(Robj) @generic def pyconverter(pyobj): """Convert Python objects to R objects. Add types using the decorator: @pyconverter.when_type """ return pyobj # The default conversion for lists seems to make them a nested list. That has # some advantages, but is rarely convenient, so for interactive use, we convert # lists to a numpy array, which becomes an R vector. @pyconverter.when_type(list) def pyconverter_list(pyobj): return np.asarray(pyobj) if pandas2ri is None: # pandas2ri was new in rpy2 2.3.3, so for now we'll fallback to pandas' # conversion function. try: from pandas import DataFrame from pandas.rpy.common import convert_to_r_dataframe @pyconverter.when_type(DataFrame) def pyconverter_dataframe(pyobj): return convert_to_r_dataframe(pyobj, strings_as_factors=True) except ImportError: pass @magics_class class RMagics(Magics): """A set of magics useful for interactive work with R via rpy2. """ def __init__(self, shell, Rconverter=Rconverter, pyconverter=pyconverter, cache_display_data=False): """ Parameters ---------- shell : IPython shell Rconverter : callable To be called on values taken from R before putting them in the IPython namespace. pyconverter : callable To be called on values in ipython namespace before assigning to variables in rpy2. cache_display_data : bool If True, the published results of the final call to R are cached in the variable 'display_cache'. """ super(RMagics, self).__init__(shell) self.cache_display_data = cache_display_data self.r = ro.R() self.Rstdout_cache = [] self.pyconverter = pyconverter self.Rconverter = Rconverter def eval(self, line): ''' Parse and evaluate a line of R code with rpy2. Returns the output to R's stdout() connection, the value generated by evaluating the code, and a boolean indicating whether the return value would be visible if the line of code were evaluated in an R REPL. R Code evaluation and visibility determination are done via an R call of the form withVisible({<code>}) ''' old_writeconsole = ri.get_writeconsole() ri.set_writeconsole(self.write_console) try: res = ro.r("withVisible({%s\n})" % line) value = res[0] #value (R object) visible = ro.conversion.ri2py(res[1])[0] #visible (boolean) except (ri.RRuntimeError, ValueError) as exception: warning_or_other_msg = self.flush() # otherwise next return seems to have copy of error raise RInterpreterError(line, str_to_unicode(str(exception)), warning_or_other_msg) text_output = self.flush() ri.set_writeconsole(old_writeconsole) return text_output, value, visible def write_console(self, output): ''' A hook to capture R's stdout in a cache. ''' self.Rstdout_cache.append(output) def flush(self): ''' Flush R's stdout cache to a string, returning the string. ''' value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache]) self.Rstdout_cache = [] return value @skip_doctest @needs_local_scope @line_magic def Rpush(self, line, local_ns=None): ''' A line-level magic for R that pushes variables from python to rpy2. The line should be made up of whitespace separated variable names in the IPython namespace:: In [7]: import numpy as np In [8]: X = np.array([4.5,6.3,7.9]) In [9]: X.mean() Out[9]: 6.2333333333333343 In [10]: %Rpush X In [11]: %R mean(X) Out[11]: array([ 6.23333333]) ''' if local_ns is None: local_ns = {} inputs = line.split(' ') for input in inputs: try: val = local_ns[input] except KeyError: try: val = self.shell.user_ns[input] except KeyError: # reraise the KeyError as a NameError so that it looks like # the standard python behavior when you use an unnamed # variable raise NameError("name '%s' is not defined" % input) self.r.assign(input, self.pyconverter(val)) @skip_doctest @magic_arguments() @argument( '-d', '--as_dataframe', action='store_true', default=False, help='Convert objects to data.frames before returning to ipython.' ) @argument( 'outputs', nargs='*', ) @line_magic def Rpull(self, line): ''' A line-level magic for R that pulls variables from python to rpy2:: In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4) In [19]: %Rpull x y z In [20]: x Out[20]: array([ 3. , 4. , 6.7]) In [21]: y Out[21]: array([ 4., 6., 7.]) In [22]: z Out[22]: array(['a', '3', '4'], dtype='|S1') If --as_dataframe, then each object is returned as a structured array after first passed through "as.data.frame" in R before being calling self.Rconverter. This is useful when a structured array is desired as output, or when the object in R has mixed data types. See the %%R docstring for more examples. Notes ----- Beware that R names can have '.' so this is not fool proof. To avoid this, don't name your R objects with '.'s... ''' args = parse_argstring(self.Rpull, line) outputs = args.outputs for output in outputs: self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)}) @skip_doctest @magic_arguments() @argument( '-d', '--as_dataframe', action='store_true', default=False, help='Convert objects to data.frames before returning to ipython.' ) @argument( 'output', nargs=1, type=str, ) @line_magic def Rget(self, line): ''' Return an object from rpy2, possibly as a structured array (if possible). Similar to Rpull except only one argument is accepted and the value is returned rather than pushed to self.shell.user_ns:: In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) In [5]: %R -i datapy In [6]: %Rget datapy Out[6]: array([['1', '2', '3', '4'], ['2', '3', '2', '5'], ['a', 'b', 'c', 'e']], dtype='|S1') In [7]: %Rget -d datapy Out[7]: array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) ''' args = parse_argstring(self.Rget, line) output = args.output return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe) @skip_doctest @magic_arguments() @argument( '-i', '--input', action='append', help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.' ) @argument( '-o', '--output', action='append', help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.' ) @argument( '-w', '--width', type=int, help='Width of png plotting device sent as an argument to *png* in R.' ) @argument( '-h', '--height', type=int, help='Height of png plotting device sent as an argument to *png* in R.' ) @argument( '-d', '--dataframe', action='append', help='Convert these objects to data.frames and return as structured arrays.' ) @argument( '-u', '--units', type=unicode_type, choices=["px", "in", "cm", "mm"], help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].' ) @argument( '-r', '--res', type=int, help='Resolution of png plotting device sent as an argument to *png* in R. Defaults to 72 if *units* is one of ["in", "cm", "mm"].' ) @argument( '-p', '--pointsize', type=int, help='Pointsize of png plotting device sent as an argument to *png* in R.' ) @argument( '-b', '--bg', help='Background of png plotting device sent as an argument to *png* in R.' ) @argument( '-n', '--noreturn', help='Force the magic to not return anything.', action='store_true', default=False ) @argument( 'code', nargs='*', ) @needs_local_scope @line_cell_magic def R(self, line, cell=None, local_ns=None): ''' Execute code in R, and pull some of the results back into the Python namespace. In line mode, this will evaluate an expression and convert the returned value to a Python object. The return value is determined by rpy2's behaviour of returning the result of evaluating the final line. Multiple R lines can be executed by joining them with semicolons:: In [9]: %R X=c(1,4,5,7); sd(X); mean(X) Out[9]: array([ 4.25]) In cell mode, this will run a block of R code. The resulting value is printed if it would printed be when evaluating the same code within a standard R REPL. Nothing is returned to python by default in cell mode:: In [10]: %%R ....: Y = c(2,4,3,9) ....: summary(lm(Y~X)) Call: lm(formula = Y ~ X) Residuals: 1 2 3 4 0.88 -0.24 -2.28 1.64 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.0800 2.3000 0.035 0.975 X 1.0400 0.4822 2.157 0.164 Residual standard error: 2.088 on 2 degrees of freedom Multiple R-squared: 0.6993,Adjusted R-squared: 0.549 F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638 In the notebook, plots are published as the output of the cell:: %R plot(X, Y) will create a scatter plot of X bs Y. If cell is not None and line has some R code, it is prepended to the R code in cell. Objects can be passed back and forth between rpy2 and python via the -i -o flags in line:: In [14]: Z = np.array([1,4,5,10]) In [15]: %R -i Z mean(Z) Out[15]: array([ 5.]) In [16]: %R -o W W=Z*mean(Z) Out[16]: array([ 5., 20., 25., 50.]) In [17]: W Out[17]: array([ 5., 20., 25., 50.]) The return value is determined by these rules: * If the cell is not None, the magic returns None. * If the cell evaluates as False, the resulting value is returned unless the final line prints something to the console, in which case None is returned. * If the final line results in a NULL value when evaluated by rpy2, then None is returned. * No attempt is made to convert the final value to a structured array. Use the --dataframe flag or %Rget to push / return a structured array. * If the -n flag is present, there is no return value. * A trailing ';' will also result in no return value as the last value in the line is an empty string. The --dataframe argument will attempt to return structured arrays. This is useful for dataframes with mixed data types. Note also that for a data.frame, if it is returned as an ndarray, it is transposed:: In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) In [20]: %%R -o datar datar = datapy ....: In [21]: datar Out[21]: array([['1', '2', '3', '4'], ['2', '3', '2', '5'], ['a', 'b', 'c', 'e']], dtype='|S1') In [22]: %%R -d datar datar = datapy ....: In [23]: datar Out[23]: array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) The --dataframe argument first tries colnames, then names. If both are NULL, it returns an ndarray (i.e. unstructured):: In [1]: %R mydata=c(4,6,8.3); NULL In [2]: %R -d mydata In [3]: mydata Out[3]: array([ 4. , 6. , 8.3]) In [4]: %R names(mydata) = c('a','b','c'); NULL In [5]: %R -d mydata In [6]: mydata Out[6]: array((4.0, 6.0, 8.3), dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')]) In [7]: %R -o mydata In [8]: mydata Out[8]: array([ 4. , 6. , 8.3]) ''' args = parse_argstring(self.R, line) # arguments 'code' in line are prepended to # the cell lines if cell is None: code = '' return_output = True line_mode = True else: code = cell return_output = False line_mode = False code = ' '.join(args.code) + code # if there is no local namespace then default to an empty dict if local_ns is None: local_ns = {} if args.input: for input in ','.join(args.input).split(','): try: val = local_ns[input] except KeyError: try: val = self.shell.user_ns[input] except KeyError: raise NameError("name '%s' is not defined" % input) self.r.assign(input, self.pyconverter(val)) if getattr(args, 'units') is not None: if args.units != "px" and getattr(args, 'res') is None: args.res = 72 args.units = '"%s"' % args.units png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'res', 'height', 'width', 'bg', 'pointsize']]) png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None]) # execute the R code in a temporary directory tmpd = tempfile.mkdtemp() self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd.replace('\\', '/'), png_args)) text_output = '' try: if line_mode: for line in code.split(';'): text_result, result, visible = self.eval(line) text_output += text_result if text_result: # the last line printed something to the console so we won't return it return_output = False else: text_result, result, visible = self.eval(code) text_output += text_result if visible: old_writeconsole = ri.get_writeconsole() ri.set_writeconsole(self.write_console) ro.r.show(result) text_output += self.flush() ri.set_writeconsole(old_writeconsole) except RInterpreterError as e: print(e.stdout) if not e.stdout.endswith(e.err): print(e.err) rmtree(tmpd) return finally: self.r('dev.off()') # read out all the saved .png files images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)] # now publish the images # mimicking IPython/zmq/pylab/backend_inline.py fmt = 'png' mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' } mime = mimetypes[fmt] # publish the printed R objects, if any display_data = [] if text_output: display_data.append(('RMagic.R', {'text/plain':text_output})) # flush text streams before sending figures, helps a little with output for image in images: # synchronization in the console (though it's a bandaid, not a real sln) sys.stdout.flush(); sys.stderr.flush() display_data.append(('RMagic.R', {mime: image})) # kill the temporary directory rmtree(tmpd) # try to turn every output into a numpy array # this means that output are assumed to be castable # as numpy arrays if args.output: for output in ','.join(args.output).split(','): self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)}) if args.dataframe: for output in ','.join(args.dataframe).split(','): self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)}) for tag, disp_d in display_data: publish_display_data(data=disp_d, source=tag) # this will keep a reference to the display_data # which might be useful to other objects who happen to use # this method if self.cache_display_data: self.display_cache = display_data # if in line mode and return_output, return the result as an ndarray if return_output and not args.noreturn: if result != ri.NULL: return self.Rconverter(result, dataframe=False) __doc__ = __doc__.format( R_DOC = dedent(RMagics.R.__doc__), RPUSH_DOC = dedent(RMagics.Rpush.__doc__), RPULL_DOC = dedent(RMagics.Rpull.__doc__), RGET_DOC = dedent(RMagics.Rget.__doc__) ) def load_ipython_extension(ip): """Load the extension in IPython.""" warnings.warn("The rmagic extension in IPython is deprecated in favour of " "rpy2.ipython. If available, that will be loaded instead.\n" "http://rpy.sourceforge.net/") try: import rpy2.ipython except ImportError: pass # Fall back to our own implementation for now else: return rpy2.ipython.load_ipython_extension(ip) ip.register_magics(RMagics) # Initialising rpy2 interferes with readline. Since, at this point, we've # probably just loaded rpy2, we reset the delimiters. See issue gh-2759. if ip.has_readline: ip.readline.set_completer_delims(ip.readline_delims)
gpl-3.0
harisbal/pandas
pandas/tests/groupby/test_groupby.py
3
54271
# -*- coding: utf-8 -*- from __future__ import print_function import pytest from datetime import datetime from decimal import Decimal from pandas import (date_range, Timestamp, Index, MultiIndex, DataFrame, Series, Panel, DatetimeIndex, read_csv) from pandas.errors import PerformanceWarning from pandas.util.testing import (assert_frame_equal, assert_series_equal, assert_almost_equal) from pandas.compat import (range, lrange, StringIO, lmap, lzip, map, zip, OrderedDict) from pandas import compat from collections import defaultdict import pandas.core.common as com import numpy as np import pandas.util.testing as tm import pandas as pd def test_repr(): # GH18203 result = repr(pd.Grouper(key='A', level='B')) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize('dtype', ['int64', 'int32', 'float64', 'float32']) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 assert_series_equal(agged, grouped.agg(np.mean)) # shorthand assert_series_equal(agged, grouped.mean()) assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 assert_series_equal(transformed, expected) value_grouped = data.groupby(data) assert_series_equal(value_grouped.aggregate(np.mean), agged, check_index_type=False) # complex agg agged = grouped.aggregate([np.mean, np.std]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): agged = grouped.aggregate({'one': np.mean, 'two': np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases pytest.raises(Exception, grouped.aggregate, lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.labels[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype('O')).sum() assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df['value'] = lrange(len(df)) def max_value(group): return group.loc[group['value'].idxmax()] applied = df.groupby('A').apply(max_value) result = applied.get_dtype_counts().sort_values() expected = Series({'float64': 2, 'int64': 1, 'object': 2}).sort_values() assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [{"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12} ]) def func(dataf): return dataf["val2"] - dataf["val2"].mean() result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [{"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12} ]) def func(dataf): return dataf["val2"] - dataf["val2"].mean() result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=['X', 'Y']) result = df.groupby('X', squeeze=False).count() assert isinstance(result, DataFrame) # GH5592 # inconcistent return type df = DataFrame(dict(A=['Tiger', 'Tiger', 'Tiger', 'Lamb', 'Lamb', 'Pony', 'Pony'], B=Series( np.arange(7), dtype='int64'), C=date_range( '20130101', periods=7))) def f(grp): return grp.iloc[0] expected = df.groupby('A').first()[['B']] result = df.groupby('A').apply(f)[['B']] assert_frame_equal(result, expected) def f(grp): if grp.name == 'Tiger': return None return grp.iloc[0] result = df.groupby('A').apply(f)[['B']] e = expected.copy() e.loc['Tiger'] = np.nan assert_frame_equal(result, e) def f(grp): if grp.name == 'Pony': return None return grp.iloc[0] result = df.groupby('A').apply(f)[['B']] e = expected.copy() e.loc['Pony'] = np.nan assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == 'Pony': return None return grp.iloc[0] result = df.groupby('A').apply(f)[['C']] e = df.groupby('A').first()[['C']] e.loc['Pony'] = pd.NaT assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == 'Pony': return None return grp.iloc[0].loc['C'] result = df.groupby('A').apply(f) e = df.groupby('A').first()['C'].copy() e.loc['Pony'] = np.nan e.name = None assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(.8) trans_expected = ts_grouped.transform(g) assert_series_equal(apply_result, agg_expected) assert_series_equal(agg_result, agg_expected, check_names=False) assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) assert_series_equal(agg_result, agg_expected) assert_series_equal(apply_result, agg_expected) assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, .8) expected = df_grouped.quantile(.8) assert_frame_equal(apply_result, expected) assert_frame_equal(agg_result, expected, check_names=False) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=.8) assert_frame_equal(agg_result, expected, check_names=False) assert_frame_equal(apply_result, expected) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(('a'))) == 0 assert len(df.groupby(('b'))) == 3 assert len(df.groupby(['a', 'b'])) == 3 def test_basic_regression(): # regression T = [1.0 * x for x in lrange(1, 10) * 10][:1095] result = Series(T, lrange(0, len(T))) groupings = np.random.random((1100, )) groupings = Series(groupings, lrange(0, len(groupings))) * 10. grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize('dtype', ['float64', 'float32', 'int64', 'int32', 'int16', 'int8']) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series([np.nan, 'foo', 'bar', 'bar', np.nan, np.nan, 'bar', 'bar', np.nan, 'foo'], index=index) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=['bar', 'foo']) assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=['bar', 'foo']) assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, labels=[[]] * 2, names=['b', 'c']) res = DataFrame(None, columns=['a'], index=multiindex) return res else: y = y.set_index(['b', 'c']) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(['b', 'c']) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, labels=[[]] * 2, names=['foo', 'bar']) res = DataFrame(None, columns=['a', 'b'], index=multiindex) return res else: return y df = DataFrame({'a': [1, 2, 2, 2], 'b': lrange(4), 'c': lrange(5, 9)}) df2 = DataFrame({'a': [3, 2, 2, 2], 'b': lrange(4), 'c': lrange(5, 9)}) # correct result result1 = df.groupby('a').apply(f1) result2 = df2.groupby('a').apply(f1) assert_frame_equal(result1, result2) # should fail (not the same number of levels) pytest.raises(AssertionError, df.groupby('a').apply, f2) pytest.raises(AssertionError, df2.groupby('a').apply, f2) # should fail (incorrect shape) pytest.raises(AssertionError, df.groupby('a').apply, f3) pytest.raises(AssertionError, df2.groupby('a').apply, f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {} for name, gp in grouped: expected[name] = gp.describe() expected = DataFrame(expected).T assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error pytest.raises(AttributeError, getattr, grouped, 'foo') def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy['weekday'] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby('weekday').aggregate(np.mean) assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in compat.iteritems(groups): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {'A': 0, 'B': 0, 'C': 1, 'D': 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby('A') result = grouped.mean() assert result.index.name == 'A' result = df.groupby('A', as_index=False).mean() assert result.index.name != 'A' result = grouped.agg(np.mean) assert result.index.name == 'A' result = grouped.agg({'C': np.mean, 'D': np.std}) assert result.index.name == 'A' result = grouped['C'].mean() assert result.index.name == 'A' result = grouped['C'].agg(np.mean) assert result.index.name == 'A' result = grouped['C'].agg([np.mean, np.std]) assert result.index.name == 'A' with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = grouped['C'].agg({'foo': np.mean, 'bar': np.std}) assert result.index.name == 'A' def test_multi_func(df): col1 = df['A'] col2 = df['B'] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(['A', 'B']).mean() # TODO groupby get drops names assert_frame_equal(agged.loc[:, ['C', 'D']], expected.loc[:, ['C', 'D']], check_names=False) # some "groups" with no data df = DataFrame({'v1': np.random.randn(6), 'v2': np.random.randn(6), 'k1': np.array(['b', 'b', 'b', 'a', 'a', 'a']), 'k2': np.array(['1', '1', '1', '2', '2', '2'])}, index=['one', 'two', 'three', 'four', 'five', 'six']) # only verify that it works for now grouped = df.groupby(['k1', 'k2']) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(['A', 'B'])['C'] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({'mean': grouped.agg(np.mean), 'std': grouped.agg(np.std)}) assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( {'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) grouped = data.groupby(['A', 'B']) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat([grouped['D'].agg(funcs), grouped['E'].agg(funcs), grouped['F'].agg(funcs)], keys=['D', 'E', 'F'], axis=1) assert (isinstance(agged.index, MultiIndex)) assert (isinstance(expected.index, MultiIndex)) assert_frame_equal(agged, expected) @pytest.mark.parametrize('op', [lambda x: x.sum(), lambda x: x.mean()]) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(['A', 'B']) result1 = op(grouped) expected = defaultdict(dict) for n1, gp1 in data.groupby('A'): for n2, gp2 in gp1.groupby('B'): expected[n1][n2] = op(gp2.loc[:, ['C', 'D']]) expected = {k: DataFrame(v) for k, v in compat.iteritems(expected)} expected = Panel.fromDict(expected).swapaxes(0, 1) expected.major_axis.name, expected.minor_axis.name = 'A', 'B' # a little bit crude for col in ['C', 'D']: result_col = op(grouped[col]) exp = expected[col] pivoted = result1[col].unstack() pivoted2 = result_col.unstack() assert_frame_equal(pivoted.reindex_like(exp), exp) assert_frame_equal(pivoted2.reindex_like(exp), exp) # test single series works the same result = data['C'].groupby([data['A'], data['B']]).mean() expected = data.groupby(['A', 'B']).mean()['C'] assert_series_equal(result, expected) def test_groupby_as_index_agg(df): grouped = df.groupby('A', as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() assert_frame_equal(result, expected) result2 = grouped.agg(OrderedDict([['C', np.mean], ['D', np.sum]])) expected2 = grouped.mean() expected2['D'] = grouped.sum()['D'] assert_frame_equal(result2, expected2) grouped = df.groupby('A', as_index=True) expected3 = grouped['C'].sum() expected3 = DataFrame(expected3).rename(columns={'C': 'Q'}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result3 = grouped['C'].agg({'Q': np.sum}) assert_frame_equal(result3, expected3) # multi-key grouped = df.groupby(['A', 'B'], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() assert_frame_equal(result, expected) result2 = grouped.agg(OrderedDict([['C', np.mean], ['D', np.sum]])) expected2 = grouped.mean() expected2['D'] = grouped.sum()['D'] assert_frame_equal(result2, expected2) expected3 = grouped['C'].sum() expected3 = DataFrame(expected3).rename(columns={'C': 'Q'}) result3 = grouped['C'].agg({'Q': np.sum}) assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=['jim', 'joe', 'jolie']) ts = Series(np.random.randint(5, 10, 50), name='jim') gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ['mean', 'max', 'count', 'idxmax', 'cumsum', 'all']: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) assert_frame_equal(left, right) def test_as_index_series_return_frame(df): grouped = df.groupby('A', as_index=False) grouped2 = df.groupby(['A', 'B'], as_index=False) result = grouped['C'].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ['A', 'C']] assert isinstance(result, DataFrame) assert_frame_equal(result, expected) result2 = grouped2['C'].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ['A', 'B', 'C']] assert isinstance(result2, DataFrame) assert_frame_equal(result2, expected2) result = grouped['C'].sum() expected = grouped.sum().loc[:, ['A', 'C']] assert isinstance(result, DataFrame) assert_frame_equal(result, expected) result2 = grouped2['C'].sum() expected2 = grouped2.sum().loc[:, ['A', 'B', 'C']] assert isinstance(result2, DataFrame) assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby('A', as_index=False) msg = r"Column\(s\) C already selected" with tm.assert_raises_regex(IndexError, msg): grouped['C'].__getitem__('D') def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby('A', as_index=False) result = grouped.mean() expected = data.groupby(['A']).mean() expected.insert(0, 'A', expected.index) expected.index = np.arange(len(expected)) assert_frame_equal(result, expected) # multi-key grouped = data.groupby(['A', 'B'], as_index=False) result = grouped.mean() expected = data.groupby(['A', 'B']).mean() arrays = lzip(*expected.index.values) expected.insert(0, 'A', arrays[0]) expected.insert(1, 'B', arrays[1]) expected.index = np.arange(len(expected)) assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(['A', 'B'], as_index=False) # GH #421 result = grouped['C'].agg(len) expected = grouped.agg(len).loc[:, ['A', 'B', 'C']] assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): pytest.raises(TypeError, ts.groupby, lambda x: x.weekday(), as_index=False) pytest.raises(ValueError, df.groupby, lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() assert_almost_equal(df.values, agged.values) grouped = df.T.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df['bad'] = np.nan agged = df.groupby(['A', 'B']).mean() expected = df.groupby(['A', 'B']).mean() expected['bad'] = np.nan assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby('A') result = grouped.mean() expected = df.loc[:, ['A', 'C', 'D']].groupby('A').mean() assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() assert_frame_equal(agged, exp) df = df.loc[:, ['A', 'C', 'D']] df['E'] = datetime.now() grouped = df.groupby('A') result = grouped.agg(np.sum) expected = grouped.sum() assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({'A': 0, 'C': 0, 'D': 1, 'E': 1}, axis=1) result = pytest.raises(TypeError, grouped.agg, lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(['A', 'B']) agged = grouped.agg(np.mean) exp = grouped.mean() assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame({'k1': np.array(['b', 'b', 'b', 'a', 'a', 'a']), 'k2': np.array(['1', '1', '1', '2', '2', '2']), 'k3': ['foo', 'bar'] * 3, 'v1': np.random.randn(6), 'v2': np.random.randn(6)}) grouped = df.groupby(['k1', 'k2']) result = grouped.agg(np.mean) expected = grouped.mean() assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped['A'].apply(np.mean) assert_series_equal(agged['A'], agged_A) assert agged.index.name == 'first' def test_nonsense_func(): df = DataFrame([0]) pytest.raises(Exception, df.groupby, lambda x: x + 'foo') def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df['baz', 'two'] = 'peekaboo' keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ('foo', 'one'): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == 'first' result = mframe.groupby(level=1).count() assert result.index.name == 'second' result = mframe['A'].groupby(level=0).count() assert result.index.name == 'first' def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {'foo': 0, 'bar': 0, 'baz': 1, 'qux': 1} mapper1 = {'one': 0, 'two': 0, 'three': 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled['first']]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled['second']]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = 'first', 'second' assert_frame_equal(result0, expected0) assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name='foo')) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name='foo')) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) pytest.raises(ValueError, s.groupby, level=1) pytest.raises(ValueError, s.groupby, level=-2) pytest.raises(ValueError, s.groupby, level=[]) pytest.raises(ValueError, s.groupby, level=[0, 0]) pytest.raises(ValueError, s.groupby, level=[0, 1]) pytest.raises(ValueError, s.groupby, level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() assert_series_equal(result, expected) result = a.sum(level=0) assert_series_equal(result, expected) def test_mutate_groups(): # GH3380 df = DataFrame({ 'cat1': ['a'] * 8 + ['b'] * 6, 'cat2': ['c'] * 2 + ['d'] * 2 + ['e'] * 2 + ['f'] * 2 + ['c'] * 2 + ['d'] * 2 + ['e'] * 2, 'cat3': lmap(lambda x: 'g%s' % x, lrange(1, 15)), 'val': np.random.randint(100, size=14), }) def f_copy(x): x = x.copy() x['rank'] = x.val.rank(method='min') return x.groupby('cat2')['rank'].min() def f_no_copy(x): x['rank'] = x.val.rank(method='min') return x.groupby('cat2')['rank'].min() grpby_copy = df.groupby('cat1').apply(f_copy) grpby_no_copy = df.groupby('cat1').apply(f_no_copy) assert_series_equal(grpby_copy, grpby_no_copy) def test_no_mutate_but_looks_like(): # GH 8467 # first show's mutation indicator # second does not, but should yield the same results df = DataFrame({'key': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'value': range(9)}) result1 = df.groupby('key', group_keys=True).apply(lambda x: x[:].key) result2 = df.groupby('key', group_keys=True).apply(lambda x: x.key) assert_series_equal(result1, result2) def test_groupby_series_indexed_differently(): s1 = Series([5.0, -9.0, 4.0, 100., -5., 55., 6.7], index=Index(['a', 'b', 'c', 'd', 'e', 'f', 'g'])) s2 = Series([1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(['a', 'b', 'd', 'f', 'g', 'h'])) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']])) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'), ( 'B', 'cat'), ('A', 'dog')]) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(['A', 'B'])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df['A', 'foo'] = 'bar' result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df['A'].values) result = grouped.sum() expected = df.groupby('A').sum() assert_frame_equal(result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(['foo', 'bar', 'baz', 'spam']) result = grouped.agg(np.mean) expected = grouped.mean() assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df['A']).mean() result2 = df.groupby(df['A'], as_index=False).mean() assert result.index.name == 'A' assert 'A' in result2 result = df.groupby([df['A'], df['B']]).mean() result2 = df.groupby([df['A'], df['B']], as_index=False).mean() assert result.index.names == ('A', 'B') assert 'A' in result2 assert 'B' in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby('A')['C'] assert result.count().name == 'C' assert result.mean().name == 'C' testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == 'C' def test_consistency_name(): # GH 12363 df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': np.random.randn(8) + 1.0, 'D': np.arange(8)}) expected = df.groupby(['A']).B.count() result = df.B.groupby(df.A).count() assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({'count': 1, 'mean': 2, 'omissions': 3, }, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({ 'count': 1, 'mean': 2, 'omissions': 3, }, name=df.iloc[0]['A']) metrics = df.groupby('A').apply(summarize) assert metrics.columns.name is None metrics = df.groupby('A').apply(summarize, 'metrics') assert metrics.columns.name == 'metrics' metrics = df.groupby('A').apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=['A', 'B', 0]) expected = DataFrame([[1, 2]], columns=['B', 0], index=Index([0], name='A')) result = df.groupby('A').first() tm.assert_frame_equal(result, expected) result = df.groupby('A').sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0], index=lrange(100)) inds = np.tile(lrange(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(lrange(5)) labels = np.array(['a', 'b', 'c', 'd', 'e'], dtype='O') def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert (len(x.values.base) > 0) return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({'x': [], 'range': np.arange(0, dtype='int64')}) assert df['x'].dtype == np.float64 result = df.groupby('x').first() exp_index = Index([], name='x', dtype=np.float64) expected = DataFrame({'range': Series( [], index=exp_index, dtype='int64')}) assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df['A'])).mean() expected = df.groupby(df['A']).mean() assert_frame_equal(result, expected, check_names=False) pytest.raises(Exception, df.groupby, list(df['A'][:-1])) # pathological case of ambiguity df = DataFrame({'foo': [0, 1], 'bar': [3, 4], 'val': np.random.randn(2)}) result = df.groupby(['foo', 'bar']).mean() expected = df.groupby([df['foo'], df['bar']]).mean()[['val']] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = 's' index = pd.date_range(start=pd.Timestamp('2015-09-29T11:34:44-0700'), periods=2, freq=freq) df = pd.DataFrame([['A', 10], ['B', 15]], columns=[ 'metric', 'values' ], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), 'metric']).mean() expected = df.set_index([df.index, 'metric']) assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 df1 = pd.DataFrame(np.random.randn(1, 4), columns=list('ABCD')) pytest.raises(KeyError, df1.groupby, 'Z') df2 = pd.DataFrame(np.random.randn(2, 4), columns=list('ABCD')) pytest.raises(KeyError, df2.groupby, 'Z') def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( {'values': np.random.randn(8), 'dt': [np.nan, pd.Timestamp('2013-01-01'), np.nan, pd.Timestamp( '2013-02-01'), np.nan, pd.Timestamp('2013-02-01'), np.nan, pd.Timestamp('2013-01-01')], 'str': [np.nan, 'a', np.nan, 'a', np.nan, 'a', np.nan, 'b']}) grouped = df.groupby('dt') expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp('2013-01-01 00:00:00'): np.array([1, 7], dtype=np.int64), Timestamp('2013-02-01 00:00:00'): np.array([3, 5], dtype=np.int64) } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal( grouped.get_group(Timestamp('2013-01-01')), df.iloc[[1, 7]]) tm.assert_frame_equal( grouped.get_group(Timestamp('2013-02-01')), df.iloc[[3, 5]]) pytest.raises(KeyError, grouped.get_group, pd.NaT) nan_df = DataFrame({'nan': [np.nan, np.nan, np.nan], 'nat': [pd.NaT, pd.NaT, pd.NaT]}) assert nan_df['nan'].dtype == 'float64' assert nan_df['nat'].dtype == 'datetime64[ns]' for key in ['nan', 'nat']: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} pytest.raises(KeyError, grouped.get_group, np.nan) pytest.raises(KeyError, grouped.get_group, pd.NaT) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_sparse_friendly(df): sdf = df[['C', 'D']].to_sparse() panel = tm.makePanel() tm.add_nans(panel) def _check_work(gp): gp.mean() gp.agg(np.mean) dict(iter(gp)) # it works! _check_work(sdf.groupby(lambda x: x // 2)) _check_work(sdf['C'].groupby(lambda x: x // 2)) _check_work(sdf.groupby(df['A'])) # do this someday # _check_work(panel.groupby(lambda x: x.month, axis=1)) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_panel_groupby(): panel = tm.makePanel() tm.add_nans(panel) grouped = panel.groupby({'ItemA': 0, 'ItemB': 0, 'ItemC': 1}, axis='items') agged = grouped.mean() agged2 = grouped.agg(lambda x: x.mean('items')) tm.assert_panel_equal(agged, agged2) tm.assert_index_equal(agged.items, Index([0, 1])) grouped = panel.groupby(lambda x: x.month, axis='major') agged = grouped.mean() exp = Index(sorted(list(set(panel.major_axis.month)))) tm.assert_index_equal(agged.major_axis, exp) grouped = panel.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1}, axis='minor') agged = grouped.mean() tm.assert_index_equal(agged.minor_axis, Index([0, 1])) def test_groupby_2d_malformed(): d = DataFrame(index=lrange(2)) d['group'] = ['g1', 'g2'] d['zeros'] = [0, 0] d['ones'] = [1, 1] d['label'] = ['l1', 'l2'] tmp = d.groupby(['group']).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(['zeros', 'ones'])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000) )) A = np.arange(25000) df = DataFrame({'A': A, 'B': B, 'C': A, 'D': B, 'E': np.random.randn(25000)}) left = df.groupby(['A', 'B', 'C', 'D']).sum() right = df.groupby(['D', 'C', 'B', 'A']).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame({'a': ['foo', 'bar', 'baz'], 'b': [3, 2, 1], 'c': [0, 1, 2], 'd': np.random.randn(3)}) tups = lmap(tuple, df[['a', 'b', 'c']].values) tups = com.asarray_tuplesafe(tups) result = df.groupby(['a', 'b', 'c'], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = lmap(tuple, df[['c', 'a', 'b']].values) tups = com.asarray_tuplesafe(tups) result = df.groupby(['c', 'a', 'b'], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = lmap(tuple, df[['b', 'c', 'a']].values) tups = com.asarray_tuplesafe(tups) result = df.groupby(['b', 'c', 'a'], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame({'a': [0, 1, 2, 0, 1, 2], 'b': [0, 0, 0, 1, 1, 1], 'd': np.random.randn(6)}) grouped = df.groupby(['a', 'b'])['d'] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = lmap(tuple, df[keys].values) tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in compat.iteritems(expected): assert (result[k] == v) _check_groupby(df, result, ['a', 'b'], 'd') def test_dont_clobber_name_column(): df = DataFrame({'key': ['a', 'a', 'a', 'b', 'b', 'b'], 'name': ['foo', 'bar', 'baz'] * 2}) result = df.groupby('key').apply(lambda x: x) assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by='A')[:3]) pieces = [] for key, group in grouped: pieces.append(group.sort_values(by='A')[:3]) expected = pd.concat(pieces) assert_frame_equal(result, expected) grouped = tsf['A'].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [] for key, group in grouped: pieces.append(group.sort_values()[:3]) expected = pd.concat(pieces) assert_series_equal(result, expected) def test_no_nonsense_name(frame): # GH #995 s = frame['C'].copy() s.name = None result = s.groupby(frame['A']).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x['test'] = 0 x['fl'] = [1.3, 1.5, 1.6] grouped = x.groupby('test') result = grouped.agg({'fl': 'sum', 2: 'size'}) assert result['fl'].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {'max': group.max(), 'min': group.min()} def g(group): return Series({'max': group.max(), 'min': group.min()}) result = df.groupby('A')['C'].apply(f) expected = df.groupby('A')['C'].apply(g) assert isinstance(result, Series) assert_series_equal(result, expected) @pytest.mark.parametrize('grouper', ['A', ['A', 'B']]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({'C': freduce, 'D': freduce}) grouped.transform(f) grouped['C'].apply(f) grouped['C'].aggregate(freduce) grouped['C'].aggregate([freduce, foo]) grouped['C'].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = pd.DataFrame({'a': [0, 0, 1, 1, 2, 2], 'b': np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby('a', sort=False, group_keys=False).apply(f) # we expect 2 zeros because we call ``f`` once to see if a faster route # can be used. expected_names = [0, 0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 result = df.groupby(df['A'].values).sum() assert result.index.name is None result = df.groupby([df['A'].values, df['B'].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex(levels=[[1, 2], [1, 2]], labels=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=['a', 'b']) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex(levels=[[1, 2], [1, 2]], labels=[[0, 0, 1], [1, 0, 0]], names=['a', 'b']) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=['a', 'b'], sort=False).first() assert_series_equal(result, mseries_result) result = mseries.groupby(level=['a', 'b'], sort=True).first() assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = DatetimeIndex(start='2012/1/1', freq='5min', periods=periods) df = DataFrame({'high': np.arange( periods), 'low': np.arange(periods)}, index=ind) def agg_before(hour, func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map( lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func def afunc(data): d = data.select(lambda x: x.hour < 11).dropna() return np.max(d) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({'high': agg_before(11, np.max)}) closure_good = grouped.agg({'high': agg_before(11, np.max, True)}) assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame({'group1': ['a', 'a', 'a', 'b'], 'group2': ['c', 'c', 'd', 'c'], 'value': [1, 1, 1, 5]}) df = df.set_index(['group1', 'group2']) df_grouped = df.groupby(level=['group1', 'group2'], sort=True) res = df_grouped.agg('sum') idx = MultiIndex.from_tuples( [('a', 'c'), ('a', 'd'), ('b', 'c')], names=['group1', 'group2']) exp = DataFrame([[2], [1], [5]], index=idx, columns=['value']) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [('a', ''), ('b1', 'c1'), ('b2', 'c2')], names=['b', 'c']) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) not_lexsorted_df = not_lexsorted_df.pivot_table( index='a', columns=['b', 'c'], values='d') not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby('a').mean() with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.groupby('a').mean() tm.assert_frame_equal(expected, result) # a transforming function should work regardless of sort # GH 14776 df = DataFrame({'x': ['a', 'a', 'b', 'a'], 'y': [1, 1, 2, 2], 'z': [1, 2, 3, 4]}).set_index(['x', 'y']) assert not df.index.is_lexsorted() for level in [0, 1, [0, 1]]: for sort in [False, True]: result = df.groupby(level=level, sort=sort).apply( DataFrame.drop_duplicates) expected = df tm.assert_frame_equal(expected, result) result = df.sort_index().groupby(level=level, sort=sort).apply( DataFrame.drop_duplicates) expected = df.sort_index() tm.assert_frame_equal(expected, result) def test_index_label_overlaps_location(): # checking we don't have any label/location confusion in the # the wake of GH5375 df = DataFrame(list('ABCDE'), index=[2, 0, 2, 1, 1]) g = df.groupby(list('ababb')) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list('ababb')) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) assert_series_equal(actual, expected) # ... and again, with a generic Index of floats df.index = df.index.astype(float) g = df.groupby(list('ababb')) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list('ababb')) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) assert_series_equal(actual, expected) def test_transform_doesnt_clobber_ints(): # GH 7972 n = 6 x = np.arange(n) df = DataFrame({'a': x // 2, 'b': 2.0 * x, 'c': 3.0 * x}) df2 = DataFrame({'a': x // 2 * 1.0, 'b': 2.0 * x, 'c': 3.0 * x}) gb = df.groupby('a') result = gb.transform('mean') gb2 = df2.groupby('a') expected = gb2.transform('mean') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('sort_column', ['ints', 'floats', 'strings', ['ints', 'floats'], ['ints', 'strings']]) @pytest.mark.parametrize('group_column', ['int_groups', 'string_groups', ['int_groups', 'string_groups']]) def test_groupby_preserves_sort(sort_column, group_column): # Test to ensure that groupby always preserves sort order of original # object. Issue #8588 and #9651 df = DataFrame( {'int_groups': [3, 1, 0, 1, 0, 3, 3, 3], 'string_groups': ['z', 'a', 'z', 'a', 'a', 'g', 'g', 'g'], 'ints': [8, 7, 4, 5, 2, 9, 1, 1], 'floats': [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], 'strings': ['z', 'd', 'a', 'e', 'word', 'word2', '42', '47']}) # Try sorting on different types and with different group types df = df.sort_values(by=sort_column) g = df.groupby(group_column) def test_sort(x): assert_frame_equal(x, x.sort_values(by=sort_column)) g.apply(test_sort) def test_group_shift_with_null_key(): # This test is designed to replicate the segfault in issue #13813. n_rows = 1200 # Generate a moderately large dataframe with occasional missing # values in column `B`, and then group by [`A`, `B`]. This should # force `-1` in `labels` array of `g.grouper.group_info` exactly # at those places, where the group-by key is partially missing. df = DataFrame([(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None) g = df.groupby(["A", "B"]) expected = DataFrame([(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)], dtype=float, columns=["Z"], index=None) result = g.shift(-1) assert_frame_equal(result, expected) def test_pivot_table_values_key_error(): # This test is designed to replicate the error in issue #14938 df = pd.DataFrame({'eventDate': pd.date_range(pd.datetime.today(), periods=20, freq='M').tolist(), 'thename': range(0, 20)}) df['year'] = df.set_index('eventDate').index.year df['month'] = df.set_index('eventDate').index.month with pytest.raises(KeyError): df.reset_index().pivot_table(index='year', columns='month', values='badname', aggfunc='count') def test_empty_dataframe_groupby(): # GH8093 df = DataFrame(columns=['A', 'B', 'C']) result = df.groupby('A').sum() expected = DataFrame(columns=['B', 'C'], dtype=np.float64) expected.index.name = 'A' assert_frame_equal(result, expected) def test_tuple_warns(): # https://github.com/pandas-dev/pandas/issues/18314 df = pd.DataFrame({('a', 'b'): [1, 1, 2, 2], 'a': [1, 1, 1, 2], 'b': [1, 2, 2, 2], 'c': [1, 1, 1, 1]}) with tm.assert_produces_warning(FutureWarning) as w: df[['a', 'b', 'c']].groupby(('a', 'b')).c.mean() assert "Interpreting tuple 'by' as a list" in str(w[0].message) with tm.assert_produces_warning(None): df.groupby(('a', 'b')).c.mean() def test_tuple_warns_unhashable(): # https://github.com/pandas-dev/pandas/issues/18314 business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B') df = DataFrame(1, index=business_dates, columns=['a', 'b']) with tm.assert_produces_warning(FutureWarning) as w: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1]) assert "Interpreting tuple 'by' as a list" in str(w[0].message) def test_tuple_correct_keyerror(): # https://github.com/pandas-dev/pandas/issues/18798 df = pd.DataFrame(1, index=range(3), columns=pd.MultiIndex.from_product([[1, 2], [3, 4]])) with tm.assert_raises_regex(KeyError, "(7, 8)"): df.groupby((7, 8)).mean() def test_groupby_agg_ohlc_non_first(): # GH 21716 df = pd.DataFrame([[1], [1]], columns=['foo'], index=pd.date_range('2018-01-01', periods=2, freq='D')) expected = pd.DataFrame([ [1, 1, 1, 1, 1], [1, 1, 1, 1, 1] ], columns=pd.MultiIndex.from_tuples(( ('foo', 'ohlc', 'open'), ('foo', 'ohlc', 'high'), ('foo', 'ohlc', 'low'), ('foo', 'ohlc', 'close'), ('foo', 'sum', 'foo'))), index=pd.date_range( '2018-01-01', periods=2, freq='D')) result = df.groupby(pd.Grouper(freq='D')).agg(['sum', 'ohlc']) tm.assert_frame_equal(result, expected)
bsd-3-clause
droundy/deft
papers/water-saft/figs/density-compare.py
1
1705
#!/usr/bin/env python #need this to run without xserver import matplotlib matplotlib.use('Agg') import math import matplotlib.pyplot as pyplot import numpy import pylab from matplotlib.patches import Ellipse nm = 18.8972613 gpermL=4.9388942e-3/0.996782051315 # conversion from atomic units to mass density grey = '#999999' blueish = '#99cccc'#'#aadddd' #'#55dae0' rod = '#666666' hugdata = pylab.loadtxt('figs/hughes-single-rod-1nm-density.dat') rhug = hugdata[:, 0]/nm hugdensity = hugdata[:, 1]/gpermL p1, = pylab.plot(rhug, hugdensity, color = '#3333aa', linestyle='--') newdata = pylab.loadtxt('figs/single-rod-1nm-density.dat') rnew = newdata[:, 0]/nm newdensity = newdata[:, 1]/gpermL p2, = pylab.plot(rnew, newdensity, color = '#dd6677', linestyle='-') pyplot.hlines(1, 0, 1.3, 'black', ':') circleheight = 0.25 ymax = 3.1 rmax = 1.2 hardsphere_diameter = 3.0342/10 # nm rod_radius = 0.25 # nm pyplot.vlines([rod_radius - hardsphere_diameter/2], 0, ymax, rod, '-') xpoints = [rod_radius + n*hardsphere_diameter for n in range(4)] ypoints = [circleheight]*4 pyplot.plot(xpoints, ypoints, marker = 'o', color = 'black', linestyle = '') fig = pyplot.gcf() for n in range(4): xpos = rod_radius + n*hardsphere_diameter pyplot.vlines(xpos, 0, ymax, grey, ':') fig.gca().add_artist(Ellipse((xpos, circleheight), hardsphere_diameter, 1.2*hardsphere_diameter*ymax/rmax, color = blueish, fill=False)) #plot properties pyplot.ylabel('Density (g/mL)') pyplot.xlabel('Radius (nm)') pyplot.ylim(0, ymax) pyplot.xlim(0, rmax) pyplot.legend([p1, p2], ["Hughes, et al", "This work"]) pyplot.savefig('figs/density-compare.pdf')
gpl-2.0
kirel/political-affiliation-prediction
partyprograms.py
2
3428
# -*- coding: utf-8 -*- import re import cPickle from classifier import Classifier import json from scipy import ones,argmax from sklearn.metrics import classification_report,confusion_matrix def partyprograms(folder='model'): clf = Classifier(folder=folder) # converted with pdftotext text = {} bow = {} # from https://www.spd.de/linkableblob/96686/data/20130415_regierungsprogramm_2013_2017.pdf txt = open(folder+'/textdata/SPD_programm.txt').read() # remove page footer txt = re.sub(r'\W+Das Regierungsprogramm 2013 – 2017\W+\d+\W+','\n',txt) # split in sections txt = re.split('\n(IX|IV|V?I{0,3}\.\d? )',txt) text['spd'] = txt # from http://www.cdu.de/sites/default/files/media/dokumente/regierungsprogramm-2013-2017-langfassung-20130911.pdf txt = open(folder+'/textdata/CDU_programm.txt').read() # remove page footer txt = re.sub(r'\W+Gemeinsam erfolgreich für Deutschland | Regierungsprogramm 2013 – 2017\W+','\n',txt) # remove page numbers txt = re.sub(r'\n\d+\n',' ',txt) # get sections txt = re.split(r'\n\d\.\d?\W',txt) # remove sections without proper text txt = [t for t in txt if len(t)>1000] text['cdu'] = txt # from https://www.die-linke.de/fileadmin/download/wahlen2013/bundestagswahlprogramm/bundestagswahlprogramm2013_langfassung.pdf txt = open(folder+'/textdata/LINKE_programm.txt').read() # remove page numbers txt = re.sub(r'\n\d+\n',' ',txt) # get sections txt = re.split('\n\n+',txt) # remove sections without proper text txt = [t for t in txt if len(t)>1000] text['linke'] = txt # from http://www.gruene.de/fileadmin/user_upload/Dokumente/Wahlprogramm/Wahlprogramm-barrierefrei.pdf txt = open(folder+'/textdata/GRUENE_programm.txt').read() # remove page footer txt = re.sub(r'(\d+)?\W+Bundestagswahlprogramm 2013\nBündnis 90/Die Grünen\W+\d?\n','\n',txt) txt = re.sub(r'Teilhaben. Einmischen. Zukunft schaffen.','',txt) txt = re.sub(r'Zeit für den grünen Wandel','',txt) # remove page numbers txt = re.sub(r'\n\d+\n',' ',txt) # get sections txt = re.split(r'\n\d\.\d?\W',txt) # remove sections without proper text txt = [t for t in txt if len(t)>1000] text['gruene'] = txt json.dump(text,open(folder+'/textdata/programs.json', 'wb'),ensure_ascii=False) predictions,predictions_total = dict(),dict() Ytrue, Yhat = [],[] for key in text.keys(): predictions[key] = [] # for each paragraph separately for paragraph in text[key]: prediction = clf.predict(paragraph)['prediction'] idx = argmax([x['probability'] for x in prediction]) Yhat.append(text.keys().index(prediction[idx]['party'])) predictions[key].append(prediction) #predictions[key] = map(lambda x: clf.predict(x)['prediction'],text[key]) # for the entire program at once predictions_total[key] = clf.predict(' '.join(text[key]))['prediction'] Ytrue.extend(ones(len(text[key]))*text.keys().index(key)) print(confusion_matrix(Ytrue,Yhat)) print(classification_report(Ytrue,Yhat,target_names=text.keys())) json.dump(predictions,open(folder+'/textdata/predictions.json','wb'),ensure_ascii=False) json.dump(predictions_total,open(folder+'/textdata/predictions_total.json','wb'),ensure_ascii=False)
mit
GreenGear5/planet-wars
bots/alphabetaregular/alphabetaregular.py
1
4321
#!/usr/bin/env python """ A basic adaptive bot. This is part of the second worksheet. """ from api import State, util import random, os from sklearn.externals import joblib DEFAULT_MODEL = os.path.dirname(os.path.realpath(__file__)) + '/alphabetaregular-model.pkl' class Bot: __max_depth = -1 __randomize = True __model = None def __init__(self, randomize=True, depth=4, model_file=DEFAULT_MODEL): print(model_file) self.__randomize = randomize self.__max_depth = depth # Load the model self.__model = joblib.load(model_file) def get_move(self, state): val, move = self.value(state) return move def value(self, state, alpha=float('-inf'), beta=float('inf'), depth = 0): """ Return the value of this state and the associated move :param state: :param alpha: The highest score that the maximizing player can guarantee given current knowledge :param beta: The lowest score that the minimizing player can guarantee given current knowledge :param depth: How deep we are in the tree :return: val, move: the value of the state, and the best move. """ if state.finished(): return (1.0, None) if state.winner() == 1 else (-1.0, None) if depth == self.__max_depth: return self.heuristic(state), None best_value = float('-inf') if maximizing(state) else float('inf') best_move = None moves = state.moves() if self.__randomize: random.shuffle(moves) for move in moves: next_state = state.next(move) value, m = self.value(next_state, alpha, beta, depth + 1) if maximizing(state): if value > best_value: best_value = value best_move = move alpha = best_value else: if value < best_value: best_value = value best_move = move beta = best_value # Prune the search tree # We know this state will never be chosen, so we stop evaluating its children if alpha < beta: break return best_value, best_move def heuristic(self, state): # Convert the state to a feature vector feature_vector = [features(state)] # These are the classes: ('won', 'lost') classes = list(self.__model.classes_) # Ask the model for a prediction # This returns a probability for each class prob = self.__model.predict_proba(feature_vector)[0] # print('{} {} {}'.format(classes, prob, util.ratio_ships(state, 1))) # Weigh the win/loss outcomes (-1 and 1) by their probabilities res = -1.0 * prob[classes.index('lost')] + 1.0 * prob[classes.index('won')] # print(res) return res def maximizing(state): """ Whether we're the maximizing player (1) or the minimizing player (2). :param state: :return: """ return state.whose_turn() == 1 def features(state): # type: (State) -> tuple[float, ...] """ Extract features from this state. Remember that every feature vector returned should have the same length. :param state: A state to be converted to a feature vector :return: A tuple of floats: a feature vector representing this state. """ my_id = state.whose_turn() opponent_id = 1 if my_id == 0 else 0 # How many ships does p1 have in garrisons? p1_garrisons = 0.0 # How many ships does p2 have in garrisons? p2_garrisons = 0.0 p1_planets = 0 p2_planets = 0 for planet in state.planets(my_id): p1_garrisons += state.garrison(planet) p1_planets += 1 for planet in state.planets(opponent_id): p2_garrisons += state.garrison(planet) p2_planets += 1 # How many ships does p1 have in fleets? p1_fleets = 0.0 # How many ships does p2 have in fleets? p2_fleets = 0.0 for fleet in state.fleets(): if fleet.owner() == my_id: p1_fleets = fleet.size() else: p2_fleets += fleet.size() return p1_garrisons, p2_garrisons, p1_fleets, p2_fleets, p1_planets, p2_planets
mit
vybstat/scikit-learn
examples/linear_model/plot_robust_fit.py
238
2414
""" Robust linear estimator fitting =============================== Here a sine function is fit with a polynomial of order 3, for values close to zero. Robust fitting is demoed in different situations: - No measurement errors, only modelling errors (fitting a sine with a polynomial) - Measurement errors in X - Measurement errors in y The median absolute deviation to non corrupt new data is used to judge the quality of the prediction. What we can see that: - RANSAC is good for strong outliers in the y direction - TheilSen is good for small outliers, both in direction X and y, but has a break point above which it performs worst than OLS. """ from matplotlib import pyplot as plt import numpy as np from sklearn import linear_model, metrics from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline np.random.seed(42) X = np.random.normal(size=400) y = np.sin(X) # Make sure that it X is 2D X = X[:, np.newaxis] X_test = np.random.normal(size=200) y_test = np.sin(X_test) X_test = X_test[:, np.newaxis] y_errors = y.copy() y_errors[::3] = 3 X_errors = X.copy() X_errors[::3] = 3 y_errors_large = y.copy() y_errors_large[::3] = 10 X_errors_large = X.copy() X_errors_large[::3] = 10 estimators = [('OLS', linear_model.LinearRegression()), ('Theil-Sen', linear_model.TheilSenRegressor(random_state=42)), ('RANSAC', linear_model.RANSACRegressor(random_state=42)), ] x_plot = np.linspace(X.min(), X.max()) for title, this_X, this_y in [ ('Modeling errors only', X, y), ('Corrupt X, small deviants', X_errors, y), ('Corrupt y, small deviants', X, y_errors), ('Corrupt X, large deviants', X_errors_large, y), ('Corrupt y, large deviants', X, y_errors_large)]: plt.figure(figsize=(5, 4)) plt.plot(this_X[:, 0], this_y, 'k+') for name, estimator in estimators: model = make_pipeline(PolynomialFeatures(3), estimator) model.fit(this_X, this_y) mse = metrics.mean_squared_error(model.predict(X_test), y_test) y_plot = model.predict(x_plot[:, np.newaxis]) plt.plot(x_plot, y_plot, label='%s: error = %.3f' % (name, mse)) plt.legend(loc='best', frameon=False, title='Error: mean absolute deviation\n to non corrupt data') plt.xlim(-4, 10.2) plt.ylim(-2, 10.2) plt.title(title) plt.show()
bsd-3-clause
alexeyum/scikit-learn
sklearn/metrics/tests/test_pairwise.py
4
26200
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_BOOLEAN_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize from sklearn.exceptions import DataConversionWarning def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unknown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") # ignore conversion to boolean in pairwise_distances @ignore_warnings(category=DataConversionWarning) def test_pairwise_boolean_distance(): # test that we convert to boolean arrays for boolean distances rng = np.random.RandomState(0) X = rng.randn(5, 4) Y = X.copy() Y[0, 0] = 1 - Y[0, 0] for metric in PAIRWISE_BOOLEAN_FUNCTIONS: for Z in [Y, None]: res = pairwise_distances(X, Z, metric=metric) res[np.isnan(res)] = 0 assert_true(np.sum(res != 0) == 0) def test_pairwise_precomputed(): for func in [pairwise_distances, pairwise_kernels]: # Test correct shape assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), metric='precomputed') # with two args assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 4)), metric='precomputed') # even if shape[1] agrees (although thus second arg is spurious) assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 3)), metric='precomputed') # Test not copied (if appropriate dtype) S = np.zeros((5, 5)) S2 = func(S, metric="precomputed") assert_true(S is S2) # with two args S = np.zeros((5, 3)) S2 = func(S, np.zeros((3, 3)), metric="precomputed") assert_true(S is S2) # Test always returns float dtype S = func(np.array([[1]], dtype='int'), metric='precomputed') assert_equal('f', S.dtype.kind) # Test converts list to array-like S = func([[1.]], metric='precomputed') assert_true(isinstance(S, np.ndarray)) def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1.]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {'gamma': 0.1} K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) rng = np.random.RandomState(0) X = rng.random_sample((10, 4)) Y = rng.random_sample((20, 4)) X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1) Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1) # check that we still get the right answers with {X,Y}_norm_squared D1 = euclidean_distances(X, Y) D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) assert_array_almost_equal(D2, D1) assert_array_almost_equal(D3, D1) assert_array_almost_equal(D4, D1) # check we get the wrong answer with wrong {X,Y}_norm_squared X_norm_sq *= 0.5 Y_norm_sq *= 0.5 wrong_D = euclidean_distances(X, Y, X_norm_squared=np.zeros_like(X_norm_sq), Y_norm_squared=np.zeros_like(Y_norm_sq)) assert_greater(np.max(np.abs(wrong_D - D1)), .01) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_laplacian_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = laplacian_kernel(X, X) # the diagonal elements of a laplacian kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(5)) # off-diagonal elements are < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. # The modified tests are not 1D. In the old test, the array was internally # converted to 2D anyways XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
jjs0sbw/CSPLN
apps/scaffolding/mac/web2py/web2py.app/Contents/Resources/lib/python2.7/matplotlib/table.py
3
16868
""" Place a table below the x-axis at location loc. The table consists of a grid of cells. The grid need not be rectangular and can have holes. Cells are added by specifying their row and column. For the purposes of positioning the cell at (0, 0) is assumed to be at the top left and the cell at (max_row, max_col) is assumed to be at bottom right. You can add additional cells outside this range to have convenient ways of positioning more interesting grids. Author : John Gill <[email protected]> Copyright : 2004 John Gill and John Hunter License : matplotlib license """ from __future__ import division import warnings import artist from artist import Artist, allow_rasterization from patches import Rectangle from cbook import is_string_like from matplotlib import docstring from text import Text from transforms import Bbox class Cell(Rectangle): """ A cell is a Rectangle with some associated text. """ PAD = 0.1 # padding between text and rectangle def __init__(self, xy, width, height, edgecolor='k', facecolor='w', fill=True, text='', loc=None, fontproperties=None ): # Call base Rectangle.__init__(self, xy, width=width, height=height, edgecolor=edgecolor, facecolor=facecolor, ) self.set_clip_on(False) # Create text object if loc is None: loc = 'right' self._loc = loc self._text = Text(x=xy[0], y=xy[1], text=text, fontproperties=fontproperties) self._text.set_clip_on(False) def set_transform(self, trans): Rectangle.set_transform(self, trans) # the text does not get the transform! def set_figure(self, fig): Rectangle.set_figure(self, fig) self._text.set_figure(fig) def get_text(self): 'Return the cell Text intance' return self._text def set_fontsize(self, size): self._text.set_fontsize(size) def get_fontsize(self): 'Return the cell fontsize' return self._text.get_fontsize() def auto_set_font_size(self, renderer): """ Shrink font size until text fits. """ fontsize = self.get_fontsize() required = self.get_required_width(renderer) while fontsize > 1 and required > self.get_width(): fontsize -= 1 self.set_fontsize(fontsize) required = self.get_required_width(renderer) return fontsize @allow_rasterization def draw(self, renderer): if not self.get_visible(): return # draw the rectangle Rectangle.draw(self, renderer) # position the text self._set_text_position(renderer) self._text.draw(renderer) def _set_text_position(self, renderer): """ Set text up so it draws in the right place. Currently support 'left', 'center' and 'right' """ bbox = self.get_window_extent(renderer) l, b, w, h = bbox.bounds # draw in center vertically self._text.set_verticalalignment('center') y = b + (h / 2.0) # now position horizontally if self._loc == 'center': self._text.set_horizontalalignment('center') x = l + (w / 2.0) elif self._loc == 'left': self._text.set_horizontalalignment('left') x = l + (w * self.PAD) else: self._text.set_horizontalalignment('right') x = l + (w * (1.0 - self.PAD)) self._text.set_position((x, y)) def get_text_bounds(self, renderer): """ Get text bounds in axes co-ordinates. """ bbox = self._text.get_window_extent(renderer) bboxa = bbox.inverse_transformed(self.get_data_transform()) return bboxa.bounds def get_required_width(self, renderer): """ Get width required for this cell. """ l,b,w,h = self.get_text_bounds(renderer) return w * (1.0 + (2.0 * self.PAD)) def set_text_props(self, **kwargs): 'update the text properties with kwargs' self._text.update(kwargs) class Table(Artist): """ Create a table of cells. Table can have (optional) row and column headers. Each entry in the table can be either text or patches. Column widths and row heights for the table can be specifified. Return value is a sequence of text, line and patch instances that make up the table """ codes = {'best' : 0, 'upper right' : 1, # default 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'center left' : 5, 'center right' : 6, 'lower center' : 7, 'upper center' : 8, 'center' : 9, 'top right' : 10, 'top left' : 11, 'bottom left' : 12, 'bottom right' : 13, 'right' : 14, 'left' : 15, 'top' : 16, 'bottom' : 17, } FONTSIZE = 10 AXESPAD = 0.02 # the border between the axes and table edge def __init__(self, ax, loc=None, bbox=None): Artist.__init__(self) if is_string_like(loc) and loc not in self.codes: warnings.warn('Unrecognized location %s. Falling back on bottom; valid locations are\n%s\t' %(loc, '\n\t'.join(self.codes.keys()))) loc = 'bottom' if is_string_like(loc): loc = self.codes.get(loc, 1) self.set_figure(ax.figure) self._axes = ax self._loc = loc self._bbox = bbox # use axes coords self.set_transform(ax.transAxes) self._texts = [] self._cells = {} self._autoRows = [] self._autoColumns = [] self._autoFontsize = True self._cachedRenderer = None def add_cell(self, row, col, *args, **kwargs): """ Add a cell to the table. """ xy = (0,0) cell = Cell(xy, *args, **kwargs) cell.set_figure(self.figure) cell.set_transform(self.get_transform()) cell.set_clip_on(False) self._cells[(row, col)] = cell def _approx_text_height(self): return self.FONTSIZE/72.0*self.figure.dpi/self._axes.bbox.height * 1.2 @allow_rasterization def draw(self, renderer): # Need a renderer to do hit tests on mouseevent; assume the last one will do if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') self._cachedRenderer = renderer if not self.get_visible(): return renderer.open_group('table') self._update_positions(renderer) keys = self._cells.keys() keys.sort() for key in keys: self._cells[key].draw(renderer) #for c in self._cells.itervalues(): # c.draw(renderer) renderer.close_group('table') def _get_grid_bbox(self, renderer): """Get a bbox, in axes co-ordinates for the cells. Only include those in the range (0,0) to (maxRow, maxCol)""" boxes = [self._cells[pos].get_window_extent(renderer) for pos in self._cells.keys() if pos[0] >= 0 and pos[1] >= 0] bbox = Bbox.union(boxes) return bbox.inverse_transformed(self.get_transform()) def contains(self,mouseevent): """Test whether the mouse event occurred in the table. Returns T/F, {} """ if callable(self._contains): return self._contains(self,mouseevent) # TODO: Return index of the cell containing the cursor so that the user # doesn't have to bind to each one individually. if self._cachedRenderer is not None: boxes = [self._cells[pos].get_window_extent(self._cachedRenderer) for pos in self._cells.keys() if pos[0] >= 0 and pos[1] >= 0] bbox = bbox_all(boxes) return bbox.contains(mouseevent.x,mouseevent.y),{} else: return False,{} def get_children(self): 'Return the Artists contained by the table' return self._cells.values() get_child_artists = get_children # backward compatibility def get_window_extent(self, renderer): 'Return the bounding box of the table in window coords' boxes = [c.get_window_extent(renderer) for c in self._cells] return bbox_all(boxes) def _do_cell_alignment(self): """ Calculate row heights and column widths. Position cells accordingly. """ # Calculate row/column widths widths = {} heights = {} for (row, col), cell in self._cells.iteritems(): height = heights.setdefault(row, 0.0) heights[row] = max(height, cell.get_height()) width = widths.setdefault(col, 0.0) widths[col] = max(width, cell.get_width()) # work out left position for each column xpos = 0 lefts = {} cols = widths.keys() cols.sort() for col in cols: lefts[col] = xpos xpos += widths[col] ypos = 0 bottoms = {} rows = heights.keys() rows.sort() rows.reverse() for row in rows: bottoms[row] = ypos ypos += heights[row] # set cell positions for (row, col), cell in self._cells.iteritems(): cell.set_x(lefts[col]) cell.set_y(bottoms[row]) def auto_set_column_width(self, col): self._autoColumns.append(col) def _auto_set_column_width(self, col, renderer): """ Automagically set width for column. """ cells = [key for key in self._cells if key[1] == col] # find max width width = 0 for cell in cells: c = self._cells[cell] width = max(c.get_required_width(renderer), width) # Now set the widths for cell in cells: self._cells[cell].set_width(width) def auto_set_font_size(self, value=True): """ Automatically set font size. """ self._autoFontsize = value def _auto_set_font_size(self, renderer): if len(self._cells) == 0: return fontsize = self._cells.values()[0].get_fontsize() cells = [] for key, cell in self._cells.iteritems(): # ignore auto-sized columns if key[1] in self._autoColumns: continue size = cell.auto_set_font_size(renderer) fontsize = min(fontsize, size) cells.append(cell) # now set all fontsizes equal for cell in self._cells.itervalues(): cell.set_fontsize(fontsize) def scale(self, xscale, yscale): """ Scale column widths by xscale and row heights by yscale. """ for c in self._cells.itervalues(): c.set_width(c.get_width() * xscale) c.set_height(c.get_height() * yscale) def set_fontsize(self, size): """ Set the fontsize of the cell text ACCEPTS: a float in points """ for cell in self._cells.itervalues(): cell.set_fontsize(size) def _offset(self, ox, oy): 'Move all the artists by ox,oy (axes coords)' for c in self._cells.itervalues(): x, y = c.get_x(), c.get_y() c.set_x(x+ox) c.set_y(y+oy) def _update_positions(self, renderer): # called from renderer to allow more precise estimates of # widths and heights with get_window_extent # Do any auto width setting for col in self._autoColumns: self._auto_set_column_width(col, renderer) if self._autoFontsize: self._auto_set_font_size(renderer) # Align all the cells self._do_cell_alignment() bbox = self._get_grid_bbox(renderer) l,b,w,h = bbox.bounds if self._bbox is not None: # Position according to bbox rl, rb, rw, rh = self._bbox self.scale(rw/w, rh/h) ox = rl - l oy = rb - b self._do_cell_alignment() else: # Position using loc (BEST, UR, UL, LL, LR, CL, CR, LC, UC, C, TR, TL, BL, BR, R, L, T, B) = range(len(self.codes)) # defaults for center ox = (0.5-w/2)-l oy = (0.5-h/2)-b if self._loc in (UL, LL, CL): # left ox = self.AXESPAD - l if self._loc in (BEST, UR, LR, R, CR): # right ox = 1 - (l + w + self.AXESPAD) if self._loc in (BEST, UR, UL, UC): # upper oy = 1 - (b + h + self.AXESPAD) if self._loc in (LL, LR, LC): # lower oy = self.AXESPAD - b if self._loc in (LC, UC, C): # center x ox = (0.5-w/2)-l if self._loc in (CL, CR, C): # center y oy = (0.5-h/2)-b if self._loc in (TL, BL, L): # out left ox = - (l + w) if self._loc in (TR, BR, R): # out right ox = 1.0 - l if self._loc in (TR, TL, T): # out top oy = 1.0 - b if self._loc in (BL, BR, B): # out bottom oy = - (b + h) self._offset(ox, oy) def get_celld(self): 'return a dict of cells in the table' return self._cells def table(ax, cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): """ TABLE(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None) Factory function to generate a Table instance. Thanks to John Gill for providing the class and table. """ # Check we have some cellText if cellText is None: # assume just colours are needed rows = len(cellColours) cols = len(cellColours[0]) cellText = [[''] * rows] * cols rows = len(cellText) cols = len(cellText[0]) for row in cellText: assert len(row) == cols if cellColours is not None: assert len(cellColours) == rows for row in cellColours: assert len(row) == cols else: cellColours = ['w' * cols] * rows # Set colwidths if not given if colWidths is None: colWidths = [1.0/cols] * cols # Check row and column labels rowLabelWidth = 0 if rowLabels is None: if rowColours is not None: rowLabels = [''] * cols rowLabelWidth = colWidths[0] elif rowColours is None: rowColours = 'w' * rows if rowLabels is not None: assert len(rowLabels) == rows offset = 0 if colLabels is None: if colColours is not None: colLabels = [''] * rows offset = 1 elif colColours is None: colColours = 'w' * cols offset = 1 if rowLabels is not None: assert len(rowLabels) == rows # Set up cell colours if not given if cellColours is None: cellColours = ['w' * cols] * rows # Now create the table table = Table(ax, loc, bbox) height = table._approx_text_height() # Add the cells for row in xrange(rows): for col in xrange(cols): table.add_cell(row+offset, col, width=colWidths[col], height=height, text=cellText[row][col], facecolor=cellColours[row][col], loc=cellLoc) # Do column labels if colLabels is not None: for col in xrange(cols): table.add_cell(0, col, width=colWidths[col], height=height, text=colLabels[col], facecolor=colColours[col], loc=colLoc) # Do row labels if rowLabels is not None: for row in xrange(rows): table.add_cell(row+offset, -1, width=rowLabelWidth or 1e-15, height=height, text=rowLabels[row], facecolor=rowColours[row], loc=rowLoc) if rowLabelWidth == 0: table.auto_set_column_width(-1) ax.add_table(table) return table docstring.interpd.update(Table=artist.kwdoc(Table))
gpl-3.0
beepee14/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
181
15664
from __future__ import division from collections import defaultdict from functools import partial import numpy as np import scipy.sparse as sp from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(sp.issparse(Y)) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs(random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
deepakantony/sms-tools
lectures/08-Sound-transformations/plots-code/sineModelTimeScale-functions.py
24
2725
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, hanning, triang, blackmanharris, resample from scipy.fftpack import fft, ifft, fftshift import sys, os, functools, time, math from scipy.interpolate import interp1d sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import sineModel as SM import stft as STFT import sineModel as SM import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/mridangam.wav') x1 = x[:int(1.49*fs)] w = np.hamming(801) N = 2048 t = -90 minSineDur = .005 maxnSines = 150 freqDevOffset = 20 freqDevSlope = 0.02 Ns = 512 H = Ns/4 sfreq, smag, sphase = SM.sineModelAnal(x1, fs, w, N, H, t, maxnSines, minSineDur, freqDevOffset, freqDevSlope) timeScale = np.array([.01, .0, .03, .03, .335, .8, .355, .82, .671, 1.0, .691, 1.02, .858, 1.1, .878, 1.12, 1.185, 1.8, 1.205, 1.82, 1.49, 2.0]) L = sfreq[:,0].size # number of input frames maxInTime = max(timeScale[::2]) # maximum value used as input times maxOutTime = max(timeScale[1::2]) # maximum value used in output times outL = int(L*maxOutTime/maxInTime) # number of output frames inFrames = L*timeScale[::2]/maxInTime # input time values in frames outFrames = outL*timeScale[1::2]/maxOutTime # output time values in frames timeScalingEnv = interp1d(outFrames, inFrames, fill_value=0) # interpolation function indexes = timeScalingEnv(np.arange(outL)) # generate frame indexes for the output ysfreq = sfreq[round(indexes[0]),:] # first output frame ysmag = smag[round(indexes[0]),:] # first output frame for l in indexes[1:]: # generate frames for output sine tracks ysfreq = np.vstack((ysfreq, sfreq[round(l),:])) ysmag = np.vstack((ysmag, smag[round(l),:])) mag1 = np.sum(10**(smag/20), axis=1) mag2 = np.sum(10**(ysmag/20), axis=1) mag1 = 20*np.log10(mag1) mag2 = 20*np.log10(mag2) plt.figure(1, figsize=(9, 7)) maxplotfreq = 4000.0 plt.subplot(3,1,1) plt.plot(H*indexes/float(fs), H*np.arange(outL)/float(fs), color='k', lw=1.5) plt.autoscale(tight=True) plt.xlabel('input times') plt.ylabel('output times') plt.title('output scaling') plt.subplot(3,1,2) plt.plot(H*np.arange(mag1.size)/float(fs), mag1, color='k', lw=1.5) plt.autoscale(tight=True) plt.title('input magnitude sines') plt.subplot(3,1,3) plt.plot(H*np.arange(mag2.size)/float(fs), mag2, color='k', lw=1.5) plt.autoscale(tight=True) plt.title('output magnitude sines') plt.tight_layout() plt.savefig('sineModelTimeScale-functions.png') plt.show()
agpl-3.0
Pegasus99/Kaggle
bag of words meets bags of popcorn/using bag of words and random forest/script.py
1
1831
import pandas as pd from sklearn.ensemble import RandomForestClassifier as rand_forest from bs4 import BeautifulSoup import numpy as np import re import nltk from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer def clean_word (word): soup_obj = BeautifulSoup(word) kein_html = soup_obj.get_text() nur_buchstaben = re.sub ("[^a-zA-Z]"," ",kein_html) lower_case =nur_buchstaben.lower() words =lower_case.split() stop_words =set (stopwords.words("english")) words = [ w for w in words if not w in stop_words ] return (" ". join(words) ) def clean_reviews (reviews): num_rev = len (reviews) clean_review=[] for i in xrange(0,num_rev): if ( (i+1) %10000 ==0): print ("now reached %d from %d "% (i,num_rev) ) clean_review.append( clean_word(reviews[i]) ) return clean_review train_set = pd.read_csv("labeledTrainData.tsv",header=0 ,delimiter="\t",quoting=3) clean_train_reviews=clean_reviews((train_set["review"])) vectorizer = CountVectorizer(max_features=1000 ) train_data_features = vectorizer.fit_transform(clean_train_reviews) train_data_features = train_data_features.toarray() forest =rand_forest(n_estimators=100) print("now to training") forest =forest.fit(train_data_features,train_set["sentiment"] ) print("training is finished ") test_set=pd.read_csv("testData.tsv",header=0 ,delimiter="\t",quoting=3) clean_test_reviews = clean_reviews((test_set["review"])) test_features = vectorizer.transform(clean_test_reviews) clean_test_reviews=None clean_train_reviews=None train_set=None test_features =test_features.toarray() res = forest.predict(test_features) output =pd.DataFrame(data={"id":test_set["id"],"sentiment":res}) output.to_csv("Pegasus_review.csv",index=False ,quoting=3)
mit
ishank08/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
42
14294
import numpy as np from sklearn.utils.testing import (assert_equal, assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_, CCA def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, pls_bysvd.x_loadings_, decimal=5, err_msg="nipals and svd implementations lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, pls_bysvd.y_loadings_, decimal=5, err_msg="nipals and svd implementations lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) # x_weights_sign_flip holds columns of 1 or -1, depending on sign flip # between R and python x_weights_sign_flip = pls_ca.x_weights_ / x_weights x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) x_rotations_sign_flip = pls_ca.x_rotations_ / x_rotations y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) y_weights_sign_flip = pls_ca.y_weights_ / y_weights y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) y_rotations_sign_flip = pls_ca.y_rotations_ / y_rotations # x_weights = X.dot(x_rotation) # Hence R/python sign flip should be the same in x_weight and x_rotation assert_array_almost_equal(x_rotations_sign_flip, x_weights_sign_flip) # This test that R / python give the same result up to column # sign indeterminacy assert_array_almost_equal(np.abs(x_rotations_sign_flip), 1, 4) assert_array_almost_equal(np.abs(x_weights_sign_flip), 1, 4) assert_array_almost_equal(y_rotations_sign_flip, y_weights_sign_flip) assert_array_almost_equal(np.abs(y_rotations_sign_flip), 1, 4) assert_array_almost_equal(np.abs(y_weights_sign_flip), 1, 4) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) x_weights_sign_flip = pls_2.x_weights_ / x_weights x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) x_loadings_sign_flip = pls_2.x_loadings_ / x_loadings y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) y_weights_sign_flip = pls_2.y_weights_ / y_weights y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) y_loadings_sign_flip = pls_2.y_loadings_ / y_loadings # x_loadings[:, i] = Xi.dot(x_weights[:, i]) \forall i assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip, 4) assert_array_almost_equal(np.abs(x_loadings_sign_flip), 1, 4) assert_array_almost_equal(np.abs(x_weights_sign_flip), 1, 4) assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip, 4) assert_array_almost_equal(np.abs(y_loadings_sign_flip), 1, 4) assert_array_almost_equal(np.abs(y_weights_sign_flip), 1, 4) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) x_weights_sign_flip = pls_ca.x_weights_ / x_weights x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) x_loadings_sign_flip = pls_ca.x_loadings_ / x_loadings y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) y_weights_sign_flip = pls_ca.y_weights_ / y_weights y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) y_loadings_sign_flip = pls_ca.y_loadings_ / y_loadings assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip, 4) assert_array_almost_equal(np.abs(x_weights_sign_flip), 1, 4) assert_array_almost_equal(np.abs(x_loadings_sign_flip), 1, 4) assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip, 4) assert_array_almost_equal(np.abs(y_weights_sign_flip), 1, 4) assert_array_almost_equal(np.abs(y_loadings_sign_flip), 1, 4) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specified number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale_and_stability(): # We test scale=True parameter # This allows to check numerical stability over platforms as well d = load_linnerud() X1 = d.data Y1 = d.target # causes X[:, -1].std() to be zero X1[:, -1] = 1.0 # From bug #2821 # Test with X2, T2 s.t. clf.x_score[:, 1] == 0, clf.y_score[:, 1] == 0 # This test robustness of algorithm when dealing with value close to 0 X2 = np.array([[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [3., 5., 4.]]) Y2 = np.array([[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]) for (X, Y) in [(X1, Y1), (X2, Y2)]: X_std = X.std(axis=0, ddof=1) X_std[X_std == 0] = 1 Y_std = Y.std(axis=0, ddof=1) Y_std[Y_std == 0] = 1 X_s = (X - X.mean(axis=0)) / X_std Y_s = (Y - Y.mean(axis=0)) / Y_std for clf in [CCA(), pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) X_score, Y_score = clf.fit_transform(X, Y) clf.set_params(scale=False) X_s_score, Y_s_score = clf.fit_transform(X_s, Y_s) assert_array_almost_equal(X_s_score, X_score) assert_array_almost_equal(Y_s_score, Y_score) # Scaling should be idempotent clf.set_params(scale=True) X_score, Y_score = clf.fit_transform(X_s, Y_s) assert_array_almost_equal(X_s_score, X_score) assert_array_almost_equal(Y_s_score, Y_score) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
hansehe/Wind-Blade-Inspection
src/DroneVision/DroneVision_src/imgProcessing/featureDetection/generalDetectors/detectLines.py
1
16807
''' Author: Hans Erik Heggem Email: [email protected] Project: Master's Thesis - Autonomous Inspection Of Wind Blades Repository: Master's Thesis - CV (Computer Vision ''' import math, cv2, operator import numpy as np from Settings.Exceptions import DroneVisionError from src.DroneVision.DroneVision_src.imgProcessing.frameTools.frameTools import CheckGrayScale, CheckColor, GetShape from src.DroneVision.DroneVision_src.hardware.imageTools import MatplotShow def FindLineLimits(frame, hough_lines, keypoints, radi_threshold=None, radi_threshold_tuning_param=2.0, draw_hough_matrix=False, draw_bounded_lines=False, draw_max_min_lines=False, draw_arrowed_bounded_lines=True): ''' @brief Find boundaries for all hough lines according to the point map. Segments an object based on the point list by limiting the hough lines and detecting the boundary lines. @param frame (grayscale) @param hough_lines List of hough lines (rho, theta). @param keypoints List of detected point positions. @param radi_threshold Threshold in pixels to search for in vertical and horizontal axis (If none, then it is set to the biggest blob size) @param radi_threshold_tuning_param Threshold tuning parameter (default=2 when using biggest blob size. < 0.5 is recommended when using distance betwen blobs). @param draw_hough_matrix Draw hough lines matrix. @param draw_bounded_lines Draw bounded lines. @param draw_max_min_lines Draw detected max min lines. @param draw_arrowed_bounded_lines @return frame, bounded_lines, max_hor_line, min_hor_line, max_vert_line, min_vert_line frame - Usually grayscale, but rgb frame if any draw flag == True bounded_lines - list with vertical and horizontal lines. bounded_lines[0] = horizontal lines list, bounded_lines[1] = vertical lines list, where each index describing a line as ((x1,y1), (x2,y2)) max_min_lines - List of max and min horizontal and vertical lines, in this order: max_hor_line - Bottom boundary line on the horizontal axis (Note: bottom = max index in images) as ((x1,y1), (x2,y2)) min_hor_line - Top boundary line on the horizontal axis (Note: top = min index in images) as ((x1,y1), (x2,y2)) max_vert_line - Right most boundary line on the vertical axis as ((x1,y1), (x2,y2)) min_vert_line - Left most boundary line on the horizontal axis as ((x1,y1), (x2,y2)) ''' x_points = np.zeros(len(keypoints)) #Width y_points = np.zeros(len(keypoints)) #height biggest_size = 0.0 for i in range(len(keypoints)): if keypoints[i].size > biggest_size: biggest_size = keypoints[i].size x_points[i] = keypoints[i].pt[0] y_points[i] = keypoints[i].pt[1] # Tuning variable - search along vertical or horizontal axis is limited to this radius. if radi_threshold == None: radi_threshold = biggest_size radi_threshold *= radi_threshold_tuning_param min_vert_points = [[],[]] max_vert_points = [[],[]] min_hor_points = [[],[]] max_hor_points = [[],[]] bounded_lines = [[],[]] width, height = GetShape(frame) size = math.sqrt(math.pow(width, 2.0) + math.pow(height, 2.0)) max_vert_line_y_pos = -size*10 # Set invalid 'large' values to begin with min_vert_line_y_pos = size*10 max_hor_line_x_pos = -size*10 min_hor_line_x_pos = size*10 if draw_hough_matrix: frame = DrawHoughLines(frame, hough_lines) for rho, theta in hough_lines: a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho if round(np.rad2deg(a)) == 0: # Horizontal lines - search y_points y_m_above = np.argwhere(y_points >= y0 - radi_threshold).T[0] y_m_below = np.argwhere(y_points < y0 + radi_threshold).T[0] y_m_ab_b = np.in1d(y_m_above, y_m_below) y_m_be_b = np.in1d(y_m_below, y_m_above) y_m_ab_in = np.argwhere(y_m_ab_b == True).T[0] y_m_be_in = np.argwhere(y_m_be_b == True).T[0] y_m_temp = np.zeros(len(y_m_ab_in) + len(y_m_be_in)) len_ab = len(y_m_ab_in) for i in range(len(y_m_temp)): if i < len_ab: y_m_temp[i] = y_m_above[y_m_ab_in[i]] else: y_m_temp[i] = y_m_below[y_m_be_in[i-len_ab]] y_m = np.unique(y_m_temp) if len(y_m) < 2: # Ignore lines of only a single point. continue y_dist = {} for y in y_m: y = int(y) y_dist[x_points[y]] = y_points[y] sorted_y = sorted(y_dist.items(), key=operator.itemgetter(0)) min_point = sorted_y[0] max_point = sorted_y[-1:][0] xp = np.zeros(len(y_dist)) fp = np.zeros(len(y_dist)) i = 0 for x, y in sorted_y: xp[i] = x fp[i] = y i += 1 y_inter = np.interp([min_point[0], max_point[0]], xp, fp) x1 = int(round(min_point[0])) y1 = int(round(y_inter[0])) x2 = int(round(max_point[0])) y2 = int(round(y_inter[1])) min_hor_points[0].append(min_point[0]) #x min_hor_points[1].append(y_inter[0]) #y max_hor_points[0].append(max_point[0]) #x max_hor_points[1].append(y_inter[1]) #y average_line_x_pos = y_inter[0] + (y_inter[1] - y_inter[0])/2 if average_line_x_pos > max_hor_line_x_pos: max_hor_line_x_pos = average_line_x_pos max_hor_line = ((x1,y1), (x2,y2)) if average_line_x_pos < min_hor_line_x_pos: min_hor_line_x_pos = average_line_x_pos min_hor_line = ((x1,y1), (x2,y2)) bounded_lines[0].append(((x1,y1), (x2,y2))) elif round(np.rad2deg(b)) == 0: # vertical lines - search x_points x_m_above = np.argwhere(x_points >= x0 - radi_threshold).T[0] x_m_below = np.argwhere(x_points < x0 + radi_threshold).T[0] x_m_ab_b = np.in1d(x_m_above, x_m_below) x_m_be_b = np.in1d(x_m_below, x_m_above) x_m_ab_in = np.argwhere(x_m_ab_b == True).T[0] x_m_be_in = np.argwhere(x_m_be_b == True).T[0] x_m_temp = np.zeros(len(x_m_ab_in) + len(x_m_be_in)) len_ab = len(x_m_ab_in) for i in range(len(x_m_temp)): if i < len_ab: x_m_temp[i] = x_m_above[x_m_ab_in[i]] else: x_m_temp[i] = x_m_below[x_m_be_in[i-len_ab]] x_m = np.unique(x_m_temp) if len(x_m) < 2: # Ignore lines of only a single point. continue x_dist = {} for x in x_m: x = int(x) x_dist[y_points[x]] = x_points[x] sorted_x = sorted(x_dist.items(), key=operator.itemgetter(0)) min_point = sorted_x[0] max_point = sorted_x[-1:][0] xp = np.zeros(len(x_dist)) fp = np.zeros(len(x_dist)) i = 0 for x, y in sorted_x: xp[i] = x fp[i] = y i += 1 x_inter = np.interp([min_point[1], max_point[1]], xp, fp) x1 = int(round(x_inter[0])) y1 = int(round(min_point[0])) x2 = int(round(x_inter[1])) y2 = int(round(max_point[0])) min_vert_points[0].append(x_inter[0]) #x min_vert_points[1].append(min_point[0]) #y max_vert_points[0].append(x_inter[1]) #x max_vert_points[1].append(max_point[0]) #y average_line_y_pos = x_inter[0] + (x_inter[1] - x_inter[0])/2 if average_line_y_pos > max_vert_line_y_pos: max_vert_line_y_pos = average_line_y_pos max_vert_line = ((x1,y1), (x2,y2)) if average_line_y_pos < min_vert_line_y_pos: min_vert_line_y_pos = average_line_y_pos min_vert_line = ((x1,y1), (x2,y2)) bounded_lines[1].append(((x1,y1), (x2,y2))) else: raise DroneVisionError('find_line_limits_unexpected_angle') if draw_bounded_lines: color = (0,255,255) line_thick = 2 if draw_arrowed_bounded_lines: tipLength = 0.05 cv2.arrowedLine(frame, (x1,y1), (x2,y2), color, line_thick, tipLength=tipLength) cv2.arrowedLine(frame, (x2,y2), (x1,y1), color, line_thick, tipLength=tipLength) else: cv2.line(frame, (x1,y1), (x2,y2), color, line_thick) try: max_min_lines = [max_hor_line, min_hor_line, max_vert_line, min_vert_line] except: raise DroneVisionError('find_line_limits_no_hor_or_vert_found') if draw_max_min_lines and len(hough_lines) > 0: cv2.line(frame, max_hor_line[0], max_hor_line[1], (255,0,255),4) cv2.line(frame, min_hor_line[0], min_hor_line[1], (255,0,255),4) cv2.line(frame, max_vert_line[0], max_vert_line[1], (255,0,255),4) cv2.line(frame, min_vert_line[0], min_vert_line[1], (255,0,255),4) return frame, bounded_lines, max_min_lines def DrawHoughLine(frame, hough_line, color): ''' @brief Draw hough line on frame. Hough lines are give in rho, theta coordinates. @param frame @param hough_line (rho, theta) @param color RGB color (R,G,B) @return frame (with drawn line) ''' frame = CheckColor(frame) width, height = GetShape(frame) size = math.sqrt(math.pow(width, 2.0) + math.pow(height, 2.0)) rho, theta = hough_line if not(np.isnan(theta)) and not(np.isnan(rho)): a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + size*(-b)) y1 = int(y0 + size*(a)) x2 = int(x0 - size*(-b)) y2 = int(y0 - size*(a)) cv2.line(frame, (x1,y1), (x2,y2), color, 2) return frame def DrawHoughLines(frame, hough_lines, color=(255,0,0)): ''' @brief Draw hough lines on frame. Hough lines are give in rho, theta coordinates. @param frame @param hough_lines List of hough lines (rho, theta) @param color RGB color (R,G,B) @return frame (with drawn lines) ''' for hough_line in hough_lines: frame = DrawHoughLine(frame, hough_line, color) return frame def PrintHoughAccumulator(accumulator, id_m, rhos): ''' @brief Print Hough transform accumulator in matplotlib figure. @param accumulator ''' acc_shape = GetShape(accumulator) ylabs = np.deg2rad(np.arange(-0.0, 180.0, 1)) acc_map = np.zeros((acc_shape[0], len(ylabs)), dtype=np.uint16) id_acc = np.argwhere(accumulator > 0) for i in range(len(id_acc)): idx = id_acc[i][0]*acc_shape[1] + id_acc[i][1] rho = rhos[idx / acc_shape[1]] acc_map[int(rho), idx % acc_shape[1]] += 1 acc_map = cv2.cvtColor(acc_map, cv2.COLOR_GRAY2BGR) for i in range(len(id_m)): idx = id_m[i][0]*acc_shape[1] + id_m[i][1] rho = rhos[idx / acc_shape[1]] cv2.circle(acc_map,(int(rho), idx % acc_shape[1]), 1, (0,0,255), -1) acc_map = CheckGrayScale(acc_map) touple_frame_plot = [] touple_frame_plot.append(('Hough line accumulator', acc_map.T)) MatplotShow(touple_frame_plot, 'Hough_line_accumulator') def concatenateLines(lines, change_rho): ''' @brief Concatene hough lines which are within a distance. @returns concatenated lines. (sorted from min -> max theta) ''' theta_dict = {} for rho, theta in lines: if not(theta in theta_dict): theta_dict[theta] = [] theta_dict[theta].append(rho) con_lines = [] for theta in theta_dict: theta_dict[theta].sort() j = 0 for i in range(1, len(theta_dict[theta])): if abs(theta_dict[theta][i] - theta_dict[theta][i-1]) > change_rho: con_lines.append((np.median(theta_dict[theta][j:i]), theta)) j = i con_lines.append((np.median(theta_dict[theta][j:]), theta)) return con_lines def HoughLineEdgePoints(frame, edge_points, horizontal_points, hough_peak_param=1.2, dilation_kernel_size=3, dilation_iterations=1): ''' @brief Speeded up Houg lines transform for lines by iterating over known key point positions. Inspired by: https://alyssaq.github.io/2014/understanding-hough-transform/ @param frame @param edge_points List of detected edge points as [[x], [y]] @param horizontal_points Set True for detecting horizontal lines, and False for detecting vertical lines. The lines will be focused around the vertical or horizontal axis. @param hough_peak_param Delimiter for increasing number of peaks to validate for finding the most significant peaks. Must be >= 1.0. @param dilation_kernel_size (Increase strong areas of peak points by dilation. Set the kernel size for dilation as a dilation_kernel_size*dilation_kernel_size (f.eks 3*3 kernel size). Set to 1 to give the dilation no effect. (default=3)) @param dilation_iterations (Number of dilation iterations to increase the width of strong areas (default=1)) @return (rho, theta) (Distance and angle of the most significant edge.) ''' # Rho and Theta ranges if horizontal_points: start_degree = 0.0 end_degree = 45.0 step_degree = 1.0 thetas_small = np.deg2rad(np.arange(start_degree, end_degree, step_degree)) start_degree = 135.0 end_degree = 180.0 step_degree = 1.0 thetas_big = np.deg2rad(np.arange(start_degree, end_degree, step_degree)) thetas = np.concatenate((thetas_small, thetas_big)) else: # vertical points start_degree = 45.0 end_degree = 135.0 step_degree = 1.0 thetas = np.deg2rad(np.arange(start_degree, end_degree, step_degree)) width, height = GetShape(frame) diag_len = np.ceil(np.sqrt(width * width + height * height)) # max_dist rhos = np.linspace(-np.int(diag_len), np.int(diag_len), np.int(diag_len) * 2) # Cache some reusable values cos_t = np.cos(thetas) sin_t = np.sin(thetas) num_thetas = len(thetas) # Hough accumulator array of theta vs rho accumulator = np.zeros((int(2 * diag_len), num_thetas), dtype=np.float32) acc_shape = GetShape(accumulator) # Vote in the hough accumulator for i in range(len(edge_points[0])): x = edge_points[0][i] y = edge_points[1][i] for t_idx in range(num_thetas): # Calculate rho. diag_len is added for a positive index rho = int(round(x * cos_t[t_idx] + y * sin_t[t_idx]) + diag_len) accumulator[rho, t_idx] += 1 # Dilate the accumulator so that close neighboring voting points are stronger, and add the Gaussian smoothed accumulator to highlight the strongest peak in the strongest areas. accumulator = cv2.dilate(accumulator, np.ones((dilation_kernel_size,dilation_kernel_size), dtype=np.uint8), iterations=dilation_iterations) accumulator += cv2.GaussianBlur(accumulator, (dilation_kernel_size,dilation_kernel_size), 0) # Let sigma be calculated according to the kernel size. See cv2 doc. # Peak finding based on max votes. id_m = np.argwhere(accumulator >= np.max(accumulator)/hough_peak_param) len_id_m = len(id_m) rhos_res = [0]*len_id_m thetas_res = [0]*len_id_m for i in range(len_id_m): idx = id_m[i][0]*acc_shape[1] + id_m[i][1] rhos_res[i] = rhos[idx / acc_shape[1]] thetas_res[i] = thetas[idx % acc_shape[1]] rho = np.median(rhos_res) theta = np.median(thetas_res) return (rho, theta) def HoughLinesPointMatrix(frame, keypoints, min_lines=2, radi_threshold=None, radi_threshold_tuning_param=2.0): ''' @brief Speeded up Houg lines transform for lines by iterating over known key point positions. Inspired by: https://alyssaq.github.io/2014/understanding-hough-transform/ @param frame @param keypoints List of detected points (using the blob detection algorithm.) @param min_lines Minimum lines to finally end up with. Set to -1 to hinder any concateniation of detected lines. @param radi_threshold Threshold in pixels to search for in vertical and horizontal axis (If none, then it is set to the biggest blob size) @param radi_threshold_tuning_param Threshold tuning parameter (default=2 when using biggest blob size. < 0.5 is recommended when using distance betwen blobs). @return hough_lines Returned as list of touples (rho, theta) ''' # Rho and Theta ranges thetas = np.deg2rad(np.array([0.0, 90.0])) width, height = GetShape(frame) diag_len = np.ceil(np.sqrt(width * width + height * height)) # max_dist rhos = np.linspace(-np.int(diag_len), np.int(diag_len), np.int(diag_len) * 2) # Cache some resuable values cos_t = np.cos(thetas) sin_t = np.sin(thetas) num_thetas = len(thetas) # Hough accumulator array of theta vs rho accumulator = np.zeros((int(2 * diag_len), num_thetas), dtype=np.float32) acc_shape = GetShape(accumulator) biggest_point = 0 # Vote in the hough accumulator for i in range(len(keypoints)): x = keypoints[i].pt[0] y = keypoints[i].pt[1] if keypoints[i].size > biggest_point: biggest_point = keypoints[i].size for t_idx in range(num_thetas): # Calculate rho. diag_len is added for a positive index rho = int(round(x * cos_t[t_idx] + y * sin_t[t_idx]) + diag_len) accumulator[rho, t_idx] += 1 # Peak finding based on max votes id_m = np.argwhere(accumulator >= 1) len_id_m = len(id_m) hough_lines = [0]*len_id_m #PrintHoughAccumulator(accumulator, id_m, rhos) for i in range(len_id_m): idx = id_m[i][0]*acc_shape[1] + id_m[i][1] rho = rhos[idx / acc_shape[1]] theta = thetas[idx % acc_shape[1]] hough_lines[i] = (rho, theta) if radi_threshold != None: origin_threshold = radi_threshold*radi_threshold_tuning_param else: origin_threshold = biggest_point threshold = origin_threshold n_lines = len(hough_lines) + 1 #Stop concatenating when there is no change in n_lines while len(hough_lines) > min_lines and n_lines - len(hough_lines) > 0 and min_lines > 0: n_lines = len(hough_lines) hough_lines = concatenateLines(hough_lines, threshold) threshold += origin_threshold/2 return hough_lines # returned as touples of (rho, theta)
mit
openhumanoids/exotica
exotica_python/src/pyexotica/tools.py
2
4212
from __future__ import print_function, division import numpy as np from time import time import matplotlib.pyplot as plt from collections import OrderedDict __all__ = [ "check_trajectory_continuous_time", "check_whether_trajectory_is_collision_free_by_subsampling", "get_colliding_links", "plot_task_cost_over_time", ] def check_trajectory_continuous_time(scene, trajectory): start_time = time() all_good = True robot_links = scene.get_collision_robot_links() world_links = scene.get_collision_world_links() for t in range(1, trajectory.shape[0]): q_t_1 = trajectory[t - 1, :] q_t_2 = trajectory[t, :] for r_l in robot_links: for w_l in world_links: scene.update(q_t_1) T_r_l_1 = scene.fk(r_l) T_w_l_1 = scene.fk(w_l) scene.update(q_t_2) T_r_l_2 = scene.fk(r_l) T_w_l_2 = scene.fk(w_l) p = scene.get_collision_scene().continuous_collision_check( r_l, T_r_l_1, T_r_l_2, w_l, T_w_l_1, T_w_l_2 ) if p.in_collision: print(t, p) all_good = False end_time = time() print("Continuous-time collision verification took", end_time - start_time) return all_good def check_whether_trajectory_is_collision_free_by_subsampling( scene, trajectory, num_subsamples=10, debug=False ): """ num_subsamples specifies how many steps are checked between two configurations. Returns True if trajectory is collision-free, and False otherwise. TODO: Support setting time for Scene update. """ start_time = time() trajectory_length = trajectory.shape[0] for t in range(1, trajectory_length): q_t_1 = trajectory[t - 1, :] q_t_2 = trajectory[t, :] q_t_interpolation = np.linspace(q_t_1, q_t_2, num_subsamples) for i in range(num_subsamples): scene.update(q_t_interpolation[i, :]) if not scene.is_state_valid(True): return False end_time = time() if debug: print("Trajectory transition collision check took", end_time - start_time) return True def get_colliding_links( scene, margin=0.0, safe_distance=0.0, check_self_collision=True, debug=False ): robotLinks = scene.get_collision_robot_links() world_links = scene.get_collision_world_links() collisions = [] for r_l in robotLinks: for w_l in world_links: if scene.is_allowed_to_collide(r_l, w_l, True): if not scene.is_collision_free(r_l, w_l, margin): d = scene.get_collision_distance(r_l, w_l) if abs(d[0].distance) > safe_distance: collisions.append((r_l, w_l, d[0].distance)) if debug: print(r_l, "-", w_l, "d=", d[0].distance) if check_self_collision: for w_l in robotLinks: if w_l != r_l: if scene.is_allowed_to_collide(r_l, w_l, True): if not scene.is_collision_free(r_l, w_l, margin): d = scene.get_collision_distance(r_l, w_l) if abs(d[0].distance) > safe_distance: collisions.append((r_l, w_l, d[0].distance)) if debug: print(r_l, "-", w_l, d[0].distance) return collisions def plot_task_cost_over_time(problem): """ Plots the task cost (task maps) over time given a problem. """ costs = OrderedDict() for task_name in problem.cost.task_maps: costs[task_name] = np.zeros((problem.T,)) for t in range(problem.T): ydiff = problem.cost.get_task_error(task_name, t) S = problem.cost.get_S(task_name, t) cost = np.dot(np.dot(ydiff, S), ydiff.T) costs[task_name][t] = cost fig = plt.figure() for task_name in costs: plt.plot(costs[task_name], label=task_name) plt.title("Task cost over time") plt.legend() plt.tight_layout() plt.show()
bsd-3-clause
AllenDowney/ThinkStats2
code/analytic.py
1
6275
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import math import numpy as np import pandas import nsfg import thinkplot import thinkstats2 def ParetoMedian(xmin, alpha): """Computes the median of a Pareto distribution.""" return xmin * pow(2, 1/alpha) def MakeExpoCdf(): """Generates a plot of the exponential CDF.""" thinkplot.PrePlot(3) for lam in [2.0, 1, 0.5]: xs, ps = thinkstats2.RenderExpoCdf(lam, 0, 3.0, 50) label = r'$\lambda=%g$' % lam thinkplot.Plot(xs, ps, label=label) thinkplot.Save(root='analytic_expo_cdf', title='Exponential CDF', xlabel='x', ylabel='CDF') def ReadBabyBoom(filename='babyboom.dat'): """Reads the babyboom data. filename: string returns: DataFrame """ var_info = [ ('time', 1, 8, int), ('sex', 9, 16, int), ('weight_g', 17, 24, int), ('minutes', 25, 32, int), ] columns = ['name', 'start', 'end', 'type'] variables = pandas.DataFrame(var_info, columns=columns) variables.end += 1 dct = thinkstats2.FixedWidthVariables(variables, index_base=1) df = dct.ReadFixedWidth(filename, skiprows=59) return df def MakeBabyBoom(): """Plot CDF of interarrival time on log and linear scales. """ # compute the interarrival times df = ReadBabyBoom() diffs = df.minutes.diff() cdf = thinkstats2.Cdf(diffs, label='actual') thinkplot.PrePlot(cols=2) thinkplot.Cdf(cdf) thinkplot.Config(xlabel='minutes', ylabel='CDF', legend=False) thinkplot.SubPlot(2) thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel='minutes', ylabel='CCDF', yscale='log', legend=False) thinkplot.Save(root='analytic_interarrivals', legend=False) def MakeParetoCdf(): """Generates a plot of the Pareto CDF.""" xmin = 0.5 thinkplot.PrePlot(3) for alpha in [2.0, 1.0, 0.5]: xs, ps = thinkstats2.RenderParetoCdf(xmin, alpha, 0, 10.0, n=100) thinkplot.Plot(xs, ps, label=r'$\alpha=%g$' % alpha) thinkplot.Save(root='analytic_pareto_cdf', title='Pareto CDF', xlabel='x', ylabel='CDF') def MakeParetoCdf2(): """Generates a plot of the CDF of height in Pareto World.""" xmin = 100 alpha = 1.7 xs, ps = thinkstats2.RenderParetoCdf(xmin, alpha, 0, 1000.0, n=100) thinkplot.Plot(xs, ps) thinkplot.Save(root='analytic_pareto_height', title='Pareto CDF', xlabel='height (cm)', ylabel='CDF', legend=False) def MakeNormalCdf(): """Generates a plot of the normal CDF.""" thinkplot.PrePlot(3) mus = [1.0, 2.0, 3.0] sigmas = [0.5, 0.4, 0.3] for mu, sigma in zip(mus, sigmas): xs, ps = thinkstats2.RenderNormalCdf(mu=mu, sigma=sigma, low=-1.0, high=4.0) label = r'$\mu=%g$, $\sigma=%g$' % (mu, sigma) thinkplot.Plot(xs, ps, label=label) thinkplot.Save(root='analytic_normal_cdf', title='Normal CDF', xlabel='x', ylabel='CDF', loc=2) def MakeNormalModel(weights): """Plot the CDF of birthweights with a normal model.""" # estimate parameters: trimming outliers yields a better fit mu, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) print('Mean, Var', mu, var) # plot the model sigma = math.sqrt(var) print('Sigma', sigma) xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=12.5) thinkplot.Plot(xs, ps, label='model', color='0.8') # plot the data cdf = thinkstats2.Cdf(weights, label='data') thinkplot.PrePlot(1) thinkplot.Cdf(cdf) thinkplot.Save(root='analytic_birthwgt_model', title='Birth weights', xlabel='birth weight (lbs)', ylabel='CDF') def MakeExampleNormalPlot(): """Generates a sample normal probability plot. """ n = 1000 thinkplot.PrePlot(3) mus = [0, 1, 5] sigmas = [1, 1, 2] for mu, sigma in zip(mus, sigmas): sample = np.random.normal(mu, sigma, n) xs, ys = thinkstats2.NormalProbability(sample) label = '$\mu=%d$, $\sigma=%d$' % (mu, sigma) thinkplot.Plot(xs, ys, label=label) thinkplot.Save(root='analytic_normal_prob_example', title='Normal probability plot', xlabel='standard normal sample', ylabel='sample values') def MakeNormalPlot(weights, term_weights): """Generates a normal probability plot of birth weights.""" mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = math.sqrt(var) xs = [-4, 4] fxs, fys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(fxs, fys, linewidth=4, color='0.8') thinkplot.PrePlot(2) xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label='all live') xs, ys = thinkstats2.NormalProbability(term_weights) thinkplot.Plot(xs, ys, label='full term') thinkplot.Save(root='analytic_birthwgt_normal', title='Normal probability plot', xlabel='Standard deviations from mean', ylabel='Birth weight (lbs)') def main(): thinkstats2.RandomSeed(18) MakeExampleNormalPlot() # make the analytic CDFs MakeExpoCdf() MakeBabyBoom() MakeParetoCdf() MakeParetoCdf2() MakeNormalCdf() # test the distribution of birth weights for normality preg = nsfg.ReadFemPreg() full_term = preg[preg.prglngth >= 37] weights = preg.totalwgt_lb.dropna() term_weights = full_term.totalwgt_lb.dropna() MakeNormalModel(weights) MakeNormalPlot(weights, term_weights) if __name__ == "__main__": main()
gpl-3.0
maxalbert/bokeh
examples/interactions/interactive_bubble/gapminder.py
8
4161
import pandas as pd from jinja2 import Template from bokeh.browserlib import view from bokeh.models import ( ColumnDataSource, Plot, Circle, Range1d, LinearAxis, HoverTool, Text, SingleIntervalTicker, CustomJS, Slider ) from bokeh.palettes import Spectral6 from bokeh.plotting import vplot from bokeh.resources import JSResources from bokeh.embed import file_html from data import process_data fertility_df, life_expectancy_df, population_df_size, regions_df, years, regions = process_data() sources = {} region_color = regions_df['region_color'] region_color.name = 'region_color' for year in years: fertility = fertility_df[year] fertility.name = 'fertility' life = life_expectancy_df[year] life.name = 'life' population = population_df_size[year] population.name = 'population' new_df = pd.concat([fertility, life, population, region_color], axis=1) sources['_' + str(year)] = ColumnDataSource(new_df) dictionary_of_sources = dict(zip([x for x in years], ['_%s' % x for x in years])) js_source_array = str(dictionary_of_sources).replace("'", "") xdr = Range1d(1, 9) ydr = Range1d(20, 100) plot = Plot( x_range=xdr, y_range=ydr, title="", plot_width=800, plot_height=400, outline_line_color=None, toolbar_location=None, ) AXIS_FORMATS = dict( minor_tick_in=None, minor_tick_out=None, major_tick_in=None, major_label_text_font_size="10pt", major_label_text_font_style="normal", axis_label_text_font_size="10pt", axis_line_color='#AAAAAA', major_tick_line_color='#AAAAAA', major_label_text_color='#666666', major_tick_line_cap="round", axis_line_cap="round", axis_line_width=1, major_tick_line_width=1, ) xaxis = LinearAxis(SingleIntervalTicker(interval=1), axis_label="Children per woman (total fertility)", **AXIS_FORMATS) yaxis = LinearAxis(SingleIntervalTicker(interval=20), axis_label="Life expectancy at birth (years)", **AXIS_FORMATS) plot.add_layout(xaxis, 'below') plot.add_layout(yaxis, 'left') # ### Add the background year text # We add this first so it is below all the other glyphs text_source = ColumnDataSource({'year': ['%s' % years[0]]}) text = Text(x=2, y=35, text='year', text_font_size='150pt', text_color='#EEEEEE') plot.add_glyph(text_source, text) # Add the circle renderer_source = sources['_%s' % years[0]] circle_glyph = Circle( x='fertility', y='life', size='population', fill_color='region_color', fill_alpha=0.8, line_color='#7c7e71', line_width=0.5, line_alpha=0.5) circle_renderer = plot.add_glyph(renderer_source, circle_glyph) # Add the hover (only against the circle and not other plot elements) tooltips = "@index" plot.add_tools(HoverTool(tooltips=tooltips, renderers=[circle_renderer])) # Add the legend text_x = 7 text_y = 95 for i, region in enumerate(regions): plot.add_glyph(Text(x=text_x, y=text_y, text=[region], text_font_size='10pt', text_color='#666666')) plot.add_glyph(Circle(x=text_x - 0.1, y=text_y + 2, fill_color=Spectral6[i], size=10, line_color=None, fill_alpha=0.8)) text_y = text_y - 5 # Add the slider code = """ var year = slider.get('value'), sources = %s, new_source_data = sources[year].get('data'); renderer_source.set('data', new_source_data); text_source.set('data', {'year': [String(year)]}); """ % js_source_array callback = CustomJS(args=sources, code=code) slider = Slider(start=years[0], end=years[-1], value=1, step=1, title="Year", callback=callback, name='testy') callback.args["renderer_source"] = renderer_source callback.args["slider"] = slider callback.args["text_source"] = text_source # Stick the plot and the slider together layout = vplot(plot, slider) # Open our custom template with open('gapminder_template.jinja', 'r') as f: template = Template(f.read()) # Use inline resources, render the html and open js_resources = JSResources(mode='inline') title = "Bokeh - Gapminder Bubble Plot" html = file_html(layout, None, title, template=template, js_resources=js_resources) output_file = 'gapminder.html' with open(output_file, 'w') as f: f.write(html) view(output_file)
bsd-3-clause
UPDDI/mps-database-server
clustergrammer/make_unique_labels.py
2
1934
import pandas as pd def main(net, df=None): ''' Run in load_data module (which runs when file is loaded or dataframe is loaded), check for duplicate row/col names, and add index to names if necesary ''' if df is None: df = net.export_df() # rows ############# rows = df.index.tolist() if type(rows[0]) is str: if len(rows) != len(list(set(rows))): new_rows = add_index_list(rows) df.index = new_rows elif type(rows[0]) is tuple: row_names = [] for inst_row in rows: row_names.append(inst_row[0]) if len(row_names) != len(list(set(row_names))): row_names = add_index_list(row_names) # add back to tuple new_rows = [] for inst_index in range(len(rows)): inst_row = rows[inst_index] new_row = list(inst_row) new_row[0] = row_names[inst_index] new_row = tuple(new_row) new_rows.append(new_row) df.index = new_rows # cols ############# cols = df.columns.tolist() if type(cols[0]) is str: # list column names if len(cols) != len(list(set(cols))): new_cols = add_index_list(cols) df.columns = new_cols elif type(cols[0]) is tuple: col_names = [] for inst_col in cols: col_names.append(inst_col[0]) if len(col_names) != len(list(set(col_names))): col_names = add_index_list(col_names) # add back to tuple new_cols = [] for inst_index in range(len(cols)): inst_col = cols[inst_index] new_col = list(inst_col) new_col[0] = col_names[inst_index] new_col = tuple(new_col) new_cols.append(new_col) df.columns = new_cols # return dataframe with unique names return df def add_index_list(nodes): new_nodes = [] for i in range(len(nodes)): index = i + 1 inst_node = nodes[i] new_node = inst_node + '-' + str(index) new_nodes.append(new_node) return new_nodes
mit
annoviko/pyclustering
pyclustering/utils/tests/integration/it_metric.py
1
4645
"""! @brief Integration-tests for metrics. @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ import unittest # Generate images without having a window appear. import matplotlib matplotlib.use('Agg') import numpy from pyclustering.core.metric_wrapper import metric_wrapper from pyclustering.utils.metric import type_metric, distance_metric class MetricUnitTest(unittest.TestCase): def testEuclideanMetric(self): metric_instance = metric_wrapper(type_metric.EUCLIDEAN, [], None) self.assertEqual(2.0, metric_instance([0.0, 0.0], [2.0, 0.0])) def testSquareEuclideanMetric(self): metric_instance = metric_wrapper(type_metric.EUCLIDEAN_SQUARE, [], None) self.assertEqual(4.0, metric_instance([0.0, 0.0], [2.0, 0.0])) def testManhattanMetric(self): metric_instance = metric_wrapper(type_metric.MANHATTAN, [], None) self.assertEqual(3.0, metric_instance([1.0, 2.0], [0.0, 0.0])) def testChebyshevMetric(self): metric_instance = metric_wrapper(type_metric.CHEBYSHEV, [], None) self.assertEqual(4.0, metric_instance([1.0, 4.0], [0.0, 0.0])) def testMinkowskiMetric(self): metric_instance = metric_wrapper(type_metric.MINKOWSKI, [2.0], None) self.assertEqual(2.0, metric_instance([0.0, 0.0], [2.0, 0.0])) def testCanberraMetric(self): metric_instance = metric_wrapper(type_metric.CANBERRA, [], None) self.assertEqual(0.0, metric_instance([0.0, 0.0], [0.0, 0.0])) self.assertEqual(2.0, metric_instance([0.0, 0.0], [1.0, 1.0])) self.assertEqual(1.0, metric_instance([0.75, 0.75], [0.25, 0.25])) self.assertEqual(0.0, metric_instance([-1.0, -1.0], [-1.0, -1.0])) self.assertEqual(0.4, metric_instance([-2.0, -2.0], [-3.0, -3.0])) def testChiSquareMetric(self): metric_instance = metric_wrapper(type_metric.CHI_SQUARE, [], None) self.assertEqual(0.0, metric_instance([0.0, 0.0], [0.0, 0.0])) self.assertEqual(2.0, metric_instance([0.0, 0.0], [1.0, 1.0])) self.assertEqual(0.5, metric_instance([0.75, 0.75], [0.25, 0.25])) self.assertEqual(0.0, metric_instance([-1.0, -1.0], [-1.0, -1.0])) self.assertEqual(0.4, metric_instance([-2.0, -2.0], [-3.0, -3.0])) def testGowerDistance(self): metric_instance = metric_wrapper(type_metric.GOWER, [0.0], None) self.assertEqual(0.0, metric_instance([0.0], [0.0])) metric_instance = metric_wrapper(type_metric.GOWER, [1.0, 1.0], None) self.assertEqual(1.0, metric_instance([0.0, 0.0], [1.0, 1.0])) metric_instance = metric_wrapper(type_metric.GOWER, [0.5, 0.5], None) self.assertEqual(1.0, metric_instance([0.75, 0.75], [0.25, 0.25])) metric_instance = metric_wrapper(type_metric.GOWER, [0.0, 0.0], None) self.assertEqual(0.0, metric_instance([-1.0, -1.0], [-1.0, -1.0])) metric_instance = metric_wrapper(type_metric.GOWER, [1.0, 1.0], None) self.assertEqual(1.0, metric_instance([-2.0, -2.0], [-3.0, -3.0])) def testBuildGowerDistanceFromMetricWithMaxRange(self): metric = distance_metric(type_metric.GOWER, max_range=[2.0, 0.0]) ccore_metric = metric_wrapper.create_instance(metric) self.assertEqual(0.5, ccore_metric([-3.0, -3.0], [-5.0, -3.0])) def testBuildGowerDistanceFromMetricWithNumpyMaxRange(self): metric = distance_metric(type_metric.GOWER, max_range=numpy.array([2.0, 0.0])) ccore_metric = metric_wrapper.create_instance(metric) self.assertEqual(0.5, ccore_metric([-3.0, -3.0], [-5.0, -3.0])) def testBuildGowerDistanceFromMetricWithData(self): metric = distance_metric(type_metric.GOWER, data=[[-3.0, -3.0], [-4.0, -3.0], [-4.5, -3.0], [-5.0, -3.0]]) ccore_metric = metric_wrapper.create_instance(metric) self.assertEqual(0.5, ccore_metric([-3.0, -3.0], [-5.0, -3.0])) def testBuildGowerDistanceFromMetricWithNumpyData(self): metric = distance_metric(type_metric.GOWER, data=numpy.array([[-3.0, -3.0], [-4.0, -3.0], [-4.5, -3.0], [-5.0, -3.0]])) ccore_metric = metric_wrapper.create_instance(metric) self.assertEqual(0.5, ccore_metric([-3.0, -3.0], [-5.0, -3.0])) # TODO: doesn't work for some platforms. #def testUserDefinedMetric(self): # user_metric = lambda p1, p2 : p1[0] + p2[0]; # metric_instance = metric_wrapper(type_metric.USER_DEFINED, [], user_metric); # assertion.eq(2.0, metric_instance([0.0, 0.0], [2.0, 0.0])); # assertion.eq(4.0, metric_instance([3.0, 2.0], [1.0, 5.0]));
gpl-3.0
astroML/astroML
examples/datasets/plot_great_wall.py
2
1071
""" SDSS "Great Wall" ----------------- Plotting the SDSS "great wall", a filament of galaxies visible by-eye in the projected locations of the SDSS spectroscopic galaxy sample. This follows a similar procedure to [1]_, References ---------- .. [1] http://adsabs.harvard.edu/abs/2008ApJ...674L..13C """ # Author: Jake VanderPlas <[email protected]> # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np from matplotlib import pyplot as plt from astroML.datasets import fetch_great_wall from astroML.density_estimation import KNeighborsDensity #------------------------------------------------------------ # Fetch the great wall data X = fetch_great_wall() #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(8, 4)) # First plot: scatter the points ax = plt.subplot(111, aspect='equal') ax.scatter(X[:, 1], X[:, 0], s=1, lw=0, c='k') ax.set_xlim(-300, 200) ax.set_ylim(-375, -175) ax.set_xlabel('y (Mpc)') ax.set_ylabel('x (MPC)') plt.show()
bsd-2-clause
clancyian/my_vimrc
ipython_config.py
2
22105
# Configuration file for ipython. #------------------------------------------------------------------------------ # InteractiveShellApp(Configurable) configuration #------------------------------------------------------------------------------ ## A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` ## Execute the given command string. #c.InteractiveShellApp.code_to_run = '' ## Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. #c.InteractiveShellApp.exec_PYTHONSTARTUP = True ## List of files to run at IPython startup. #c.InteractiveShellApp.exec_files = [] ## lines of code to run at IPython startup. #c.InteractiveShellApp.exec_lines = [] ## A list of dotted module names of IPython extensions to load. #c.InteractiveShellApp.extensions = [] ## dotted module name of an IPython extension to load. #c.InteractiveShellApp.extra_extension = '' ## A file to be run #c.InteractiveShellApp.file_to_run = '' ## Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk2', 'gtk3', # 'osx', 'pyglet', 'qt', 'qt4', 'qt5', 'tk', 'wx', 'gtk2', 'qt4'). #c.InteractiveShellApp.gui = None ## Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? #c.InteractiveShellApp.hide_initial_ns = True ## Configure matplotlib for interactive use with the default matplotlib backend. #c.InteractiveShellApp.matplotlib = None ## Run the module as a script. #c.InteractiveShellApp.module_to_run = '' ## Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. #c.InteractiveShellApp.pylab = None ## If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. #c.InteractiveShellApp.pylab_import_all = True ## Reraise exceptions encountered loading IPython extensions? #c.InteractiveShellApp.reraise_ipython_extension_failures = False #------------------------------------------------------------------------------ # Application(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## This is an application. ## The date format used by logging formatters for %(asctime)s #c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template #c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set the log level by value or name. #c.Application.log_level = 30 #------------------------------------------------------------------------------ # BaseIPythonApplication(Application) configuration #------------------------------------------------------------------------------ ## IPython: an enhanced interactive Python shell. ## Whether to create profile dir if it doesn't exist #c.BaseIPythonApplication.auto_create = False ## Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. #c.BaseIPythonApplication.copy_config_files = False ## Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. #c.BaseIPythonApplication.extra_config_file = u'' ## The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. #c.BaseIPythonApplication.ipython_dir = u'' ## Whether to overwrite existing config files when copying #c.BaseIPythonApplication.overwrite = False ## The IPython profile to use. #c.BaseIPythonApplication.profile = u'default' ## Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback #c.BaseIPythonApplication.verbose_crash = False #------------------------------------------------------------------------------ # TerminalIPythonApp(BaseIPythonApplication,InteractiveShellApp) configuration #------------------------------------------------------------------------------ ## Whether to display a banner upon starting IPython. #c.TerminalIPythonApp.display_banner = True ## If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. #c.TerminalIPythonApp.force_interact = False ## Start IPython quickly by skipping the loading of config files. #c.TerminalIPythonApp.quick = False #------------------------------------------------------------------------------ # InteractiveShell(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## An enhanced, interactive shell for Python. ## 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). #c.InteractiveShell.ast_node_interactivity = 'last_expr' ## A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. #c.InteractiveShell.ast_transformers = [] ## Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). #c.InteractiveShell.autocall = 0 ## Autoindent IPython code entered interactively. #c.InteractiveShell.autoindent = True ## Enable magic commands to be called without the leading %. #c.InteractiveShell.automagic = True ## The part of the banner to be printed before the profile #c.InteractiveShell.banner1 = 'Python 2.7.12 |Continuum Analytics, Inc.| (default, Jun 29 2016, 11:08:50) \nType "copyright", "credits" or "license" for more information.\n\nIPython 5.1.0 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' ## The part of the banner to be printed after the profile #c.InteractiveShell.banner2 = '' ## Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working #c.InteractiveShell.cache_size = 1000 ## Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. #c.InteractiveShell.color_info = True ## Set the color scheme (NoColor, Neutral, Linux, or LightBG). #c.InteractiveShell.colors = 'Neutral' ## #c.InteractiveShell.debug = False ## **Deprecated** # # Will be removed in IPython 6.0 # # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). `deep_reload` # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). #c.InteractiveShell.deep_reload = False ## Don't call post-execute functions that have failed in the past. #c.InteractiveShell.disable_failing_post_execute = False ## If True, anything that would be passed to the pager will be displayed as # regular output instead. #c.InteractiveShell.display_page = False ## (Provisional API) enables html representation in mime bundles sent to pagers. #c.InteractiveShell.enable_html_pager = False ## Total length of command history #c.InteractiveShell.history_length = 10000 ## The number of saved history entries to be loaded into the history buffer at # startup. #c.InteractiveShell.history_load_length = 1000 ## #c.InteractiveShell.ipython_dir = '' ## Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. #c.InteractiveShell.logappend = '' ## The name of the logfile to use. #c.InteractiveShell.logfile = '' ## Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. #c.InteractiveShell.logstart = False ## #c.InteractiveShell.object_info_string_level = 0 ## Automatically call the pdb debugger after every exception. #c.InteractiveShell.pdb = False ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_in1 = 'In [\\#]: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_in2 = ' .\\D.: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_out = 'Out[\\#]: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompts_pad_left = True ## #c.InteractiveShell.quiet = False ## #c.InteractiveShell.separate_in = '\n' ## #c.InteractiveShell.separate_out = '' ## #c.InteractiveShell.separate_out2 = '' ## Show rewritten input, e.g. for autocall. #c.InteractiveShell.show_rewritten_input = True ## Enables rich html representation of docstrings. (This requires the docrepr # module). #c.InteractiveShell.sphinxify_docstring = False ## #c.InteractiveShell.wildcards_case_sensitive = True ## #c.InteractiveShell.xmode = 'Context' #------------------------------------------------------------------------------ # TerminalInteractiveShell(InteractiveShell) configuration #------------------------------------------------------------------------------ ## Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. #c.TerminalInteractiveShell.confirm_exit = True ## Options for displaying tab completions, 'column', 'multicolumn', and # 'readlinelike'. These options are for `prompt_toolkit`, see `prompt_toolkit` # documentation for more information. #c.TerminalInteractiveShell.display_completions = 'multicolumn' ## Shortcut style to use at the prompt. 'vi' or 'emacs'. c.TerminalInteractiveShell.editing_mode = 'vi' ## Set the editor used by IPython (default to $EDITOR/vi/notepad). c.TerminalInteractiveShell.editor = 'vi' ## Highlight matching brackets . #c.TerminalInteractiveShell.highlight_matching_brackets = True ## The name of a Pygments style to use for syntax highlighting: manni, igor, # lovelace, xcode, vim, autumn, vs, rrt, native, perldoc, borland, tango, emacs, # friendly, monokai, paraiso-dark, colorful, murphy, bw, pastie, algol_nu, # paraiso-light, trac, default, algol, fruity #c.TerminalInteractiveShell.highlighting_style = 'legacy' ## Override highlighting format for specific tokens #c.TerminalInteractiveShell.highlighting_style_overrides = {} ## Enable mouse support in the prompt #c.TerminalInteractiveShell.mouse_support = False ## Class used to generate Prompt token for prompt_toolkit #c.TerminalInteractiveShell.prompts_class = 'IPython.terminal.prompts.Prompts' ## Use `raw_input` for the REPL, without completion, multiline input, and prompt # colors. # # Useful when controlling IPython as a subprocess, and piping STDIN/OUT/ERR. # Known usage are: IPython own testing machinery, and emacs inferior-shell # integration through elpy. # # This mode default to `True` if the `IPY_TEST_SIMPLE_PROMPT` environment # variable is set, or the current terminal is not a tty. #c.TerminalInteractiveShell.simple_prompt = False ## Number of line at the bottom of the screen to reserve for the completion menu #c.TerminalInteractiveShell.space_for_menu = 6 ## Automatically set the terminal title #c.TerminalInteractiveShell.term_title = True ## Use 24bit colors instead of 256 colors in prompt highlighting. If your # terminal supports true color, the following command should print 'TRUECOLOR' # in orange: printf "\x1b[38;2;255;100;0mTRUECOLOR\x1b[0m\n" #c.TerminalInteractiveShell.true_color = False #------------------------------------------------------------------------------ # HistoryAccessor(HistoryAccessorBase) configuration #------------------------------------------------------------------------------ ## Access the history database without adding to it. # # This is intended for use by standalone history tools. IPython shells use # HistoryManager, below, which is a subclass of this. ## Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. #c.HistoryAccessor.connection_options = {} ## enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. #c.HistoryAccessor.enabled = True ## Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # # you can also use the specific value `:memory:` (including the colon at both # end but not the back ticks), to avoid creating an history file. #c.HistoryAccessor.hist_file = u'' #------------------------------------------------------------------------------ # HistoryManager(HistoryAccessor) configuration #------------------------------------------------------------------------------ ## A class to organize all history-related functionality in one place. ## Write to database every x commands (higher values save disk access & power). # Values of 1 or less effectively disable caching. #c.HistoryManager.db_cache_size = 0 ## Should the history database include output? (default: no) #c.HistoryManager.db_log_output = False #------------------------------------------------------------------------------ # ProfileDir(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. ## Set the profile location directly. This overrides the logic used by the # `profile` option. #c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # BaseFormatter(Configurable) configuration #------------------------------------------------------------------------------ ## A base formatter class that is configurable. # # This formatter should usually be used as the base class of all formatters. It # is a traited :class:`Configurable` class and includes an extensible API for # users to determine how their objects are formatted. The following logic is # used to find a function to format an given object. # # 1. The object is introspected to see if it has a method with the name # :attr:`print_method`. If is does, that object is passed to that method # for formatting. # 2. If no print method is found, three internal dictionaries are consulted # to find print method: :attr:`singleton_printers`, :attr:`type_printers` # and :attr:`deferred_printers`. # # Users should use these dictionaries to register functions that will be used to # compute the format data for their objects (if those objects don't have the # special print methods). The easiest way of using these dictionaries is through # the :meth:`for_type` and :meth:`for_type_by_name` methods. # # If no function/callable is found to compute the format data, ``None`` is # returned and this format type is not used. ## #c.BaseFormatter.deferred_printers = {} ## #c.BaseFormatter.enabled = True ## #c.BaseFormatter.singleton_printers = {} ## #c.BaseFormatter.type_printers = {} #------------------------------------------------------------------------------ # PlainTextFormatter(BaseFormatter) configuration #------------------------------------------------------------------------------ ## The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') ## #c.PlainTextFormatter.float_precision = '' ## Truncate large collections (lists, dicts, tuples, sets) to this size. # # Set to 0 to disable truncation. #c.PlainTextFormatter.max_seq_length = 1000 ## #c.PlainTextFormatter.max_width = 79 ## #c.PlainTextFormatter.newline = '\n' ## #c.PlainTextFormatter.pprint = True ## #c.PlainTextFormatter.verbose = False #------------------------------------------------------------------------------ # Completer(Configurable) configuration #------------------------------------------------------------------------------ ## Activate greedy completion PENDING DEPRECTION. this is now mostly taken care # of with Jedi. # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. #c.Completer.greedy = False #------------------------------------------------------------------------------ # IPCompleter(Completer) configuration #------------------------------------------------------------------------------ ## Extension of the completer class with IPython-specific features ## DEPRECATED as of version 5.0. # # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored #c.IPCompleter.limit_to__all__ = False ## Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. #c.IPCompleter.merge_completions = True ## Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. #c.IPCompleter.omit__names = 2 #------------------------------------------------------------------------------ # ScriptMagics(Magics) configuration #------------------------------------------------------------------------------ ## Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. ## Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_paths #c.ScriptMagics.script_magics = [] ## Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. #c.ScriptMagics.script_paths = {} #------------------------------------------------------------------------------ # StoreMagics(Magics) configuration #------------------------------------------------------------------------------ ## Lightweight persistence for python variables. # # Provides the %store magic. ## If True, any %store-d variables will be automatically restored when IPython # starts. #c.StoreMagics.autorestore = False
unlicense
phdowling/scikit-learn
examples/classification/plot_classifier_comparison.py
181
4699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.lda import LDA from sklearn.qda import QDA h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause