repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
ryfeus/lambda-packs
Pandas_numpy/source/pandas/core/missing.py
6
23369
""" Routines for filling missing data """ import numpy as np from distutils.version import LooseVersion from pandas._libs import algos, lib from pandas.compat import range, string_types from pandas.core.dtypes.common import ( is_numeric_v_string_like, is_float_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_integer_dtype, is_scalar, is_integer, needs_i8_conversion, _ensure_float64) from pandas.core.dtypes.cast import infer_dtype_from_array from pandas.core.dtypes.missing import isna def mask_missing(arr, values_to_mask): """ Return a masking array of same size/shape as arr with entries equaling any member of values_to_mask set to True """ dtype, values_to_mask = infer_dtype_from_array(values_to_mask) try: values_to_mask = np.array(values_to_mask, dtype=dtype) except Exception: values_to_mask = np.array(values_to_mask, dtype=object) na_mask = isna(values_to_mask) nonna = values_to_mask[~na_mask] mask = None for x in nonna: if mask is None: # numpy elementwise comparison warning if is_numeric_v_string_like(arr, x): mask = False else: mask = arr == x # if x is a string and arr is not, then we get False and we must # expand the mask to size arr.shape if is_scalar(mask): mask = np.zeros(arr.shape, dtype=bool) else: # numpy elementwise comparison warning if is_numeric_v_string_like(arr, x): mask |= False else: mask |= arr == x if na_mask.any(): if mask is None: mask = isna(arr) else: mask |= isna(arr) return mask def clean_fill_method(method, allow_nearest=False): # asfreq is compat for resampling if method in [None, 'asfreq']: return None if isinstance(method, string_types): method = method.lower() if method == 'ffill': method = 'pad' elif method == 'bfill': method = 'backfill' valid_methods = ['pad', 'backfill'] expecting = 'pad (ffill) or backfill (bfill)' if allow_nearest: valid_methods.append('nearest') expecting = 'pad (ffill), backfill (bfill) or nearest' if method not in valid_methods: msg = ('Invalid fill method. Expecting {expecting}. Got {method}' .format(expecting=expecting, method=method)) raise ValueError(msg) return method def clean_interp_method(method, **kwargs): order = kwargs.get('order') valid = ['linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial', 'krogh', 'piecewise_polynomial', 'pchip', 'akima', 'spline', 'from_derivatives'] if method in ('spline', 'polynomial') and order is None: raise ValueError("You must specify the order of the spline or " "polynomial.") if method not in valid: raise ValueError("method must be one of {valid}. Got '{method}' " "instead.".format(valid=valid, method=method)) return method def interpolate_1d(xvalues, yvalues, method='linear', limit=None, limit_direction='forward', fill_value=None, bounds_error=False, order=None, **kwargs): """ Logic for the 1-d interpolation. The result should be 1-d, inputs xvalues and yvalues will each be 1-d arrays of the same length. Bounds_error is currently hardcoded to False since non-scipy ones don't take it as an argumnet. """ # Treat the original, non-scipy methods first. invalid = isna(yvalues) valid = ~invalid if not valid.any(): # have to call np.asarray(xvalues) since xvalues could be an Index # which cant be mutated result = np.empty_like(np.asarray(xvalues), dtype=np.float64) result.fill(np.nan) return result if valid.all(): return yvalues if method == 'time': if not getattr(xvalues, 'is_all_dates', None): # if not issubclass(xvalues.dtype.type, np.datetime64): raise ValueError('time-weighted interpolation only works ' 'on Series or DataFrames with a ' 'DatetimeIndex') method = 'values' valid_limit_directions = ['forward', 'backward', 'both'] limit_direction = limit_direction.lower() if limit_direction not in valid_limit_directions: msg = ('Invalid limit_direction: expecting one of {valid!r}, ' 'got {invalid!r}.') raise ValueError(msg.format(valid=valid_limit_directions, invalid=limit_direction)) from pandas import Series ys = Series(yvalues) start_nans = set(range(ys.first_valid_index())) end_nans = set(range(1 + ys.last_valid_index(), len(valid))) # violate_limit is a list of the indexes in the series whose yvalue is # currently NaN, and should still be NaN after the interpolation. # Specifically: # # If limit_direction='forward' or None then the list will contain NaNs at # the beginning of the series, and NaNs that are more than 'limit' away # from the prior non-NaN. # # If limit_direction='backward' then the list will contain NaNs at # the end of the series, and NaNs that are more than 'limit' away # from the subsequent non-NaN. # # If limit_direction='both' then the list will contain NaNs that # are more than 'limit' away from any non-NaN. # # If limit=None, then use default behavior of filling an unlimited number # of NaNs in the direction specified by limit_direction # default limit is unlimited GH #16282 if limit is None: # limit = len(xvalues) pass elif not is_integer(limit): raise ValueError('Limit must be an integer') elif limit < 1: raise ValueError('Limit must be greater than 0') # each possible limit_direction # TODO: do we need sorted? if limit_direction == 'forward' and limit is not None: violate_limit = sorted(start_nans | set(_interp_limit(invalid, limit, 0))) elif limit_direction == 'forward': violate_limit = sorted(start_nans) elif limit_direction == 'backward' and limit is not None: violate_limit = sorted(end_nans | set(_interp_limit(invalid, 0, limit))) elif limit_direction == 'backward': violate_limit = sorted(end_nans) elif limit_direction == 'both' and limit is not None: violate_limit = sorted(_interp_limit(invalid, limit, limit)) else: violate_limit = [] xvalues = getattr(xvalues, 'values', xvalues) yvalues = getattr(yvalues, 'values', yvalues) result = yvalues.copy() if method in ['linear', 'time', 'index', 'values']: if method in ('values', 'index'): inds = np.asarray(xvalues) # hack for DatetimeIndex, #1646 if needs_i8_conversion(inds.dtype.type): inds = inds.view(np.int64) if inds.dtype == np.object_: inds = lib.maybe_convert_objects(inds) else: inds = xvalues result[invalid] = np.interp(inds[invalid], inds[valid], yvalues[valid]) result[violate_limit] = np.nan return result sp_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'spline', 'polynomial', 'from_derivatives', 'piecewise_polynomial', 'pchip', 'akima'] if method in sp_methods: inds = np.asarray(xvalues) # hack for DatetimeIndex, #1646 if issubclass(inds.dtype.type, np.datetime64): inds = inds.view(np.int64) result[invalid] = _interpolate_scipy_wrapper(inds[valid], yvalues[valid], inds[invalid], method=method, fill_value=fill_value, bounds_error=bounds_error, order=order, **kwargs) result[violate_limit] = np.nan return result def _interpolate_scipy_wrapper(x, y, new_x, method, fill_value=None, bounds_error=False, order=None, **kwargs): """ passed off to scipy.interpolate.interp1d. method is scipy's kind. Returns an array interpolated at new_x. Add any new methods to the list in _clean_interp_method """ try: from scipy import interpolate # TODO: Why is DatetimeIndex being imported here? from pandas import DatetimeIndex # noqa except ImportError: raise ImportError('{method} interpolation requires SciPy' .format(method=method)) new_x = np.asarray(new_x) # ignores some kwargs that could be passed along. alt_methods = { 'barycentric': interpolate.barycentric_interpolate, 'krogh': interpolate.krogh_interpolate, 'from_derivatives': _from_derivatives, 'piecewise_polynomial': _from_derivatives, } if getattr(x, 'is_all_dates', False): # GH 5975, scipy.interp1d can't hande datetime64s x, new_x = x._values.astype('i8'), new_x.astype('i8') if method == 'pchip': try: alt_methods['pchip'] = interpolate.pchip_interpolate except AttributeError: raise ImportError("Your version of Scipy does not support " "PCHIP interpolation.") elif method == 'akima': try: from scipy.interpolate import Akima1DInterpolator # noqa alt_methods['akima'] = _akima_interpolate except ImportError: raise ImportError("Your version of Scipy does not support " "Akima interpolation.") interp1d_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial'] if method in interp1d_methods: if method == 'polynomial': method = order terp = interpolate.interp1d(x, y, kind=method, fill_value=fill_value, bounds_error=bounds_error) new_y = terp(new_x) elif method == 'spline': # GH #10633 if not order: raise ValueError("order needs to be specified and greater than 0") terp = interpolate.UnivariateSpline(x, y, k=order, **kwargs) new_y = terp(new_x) else: # GH 7295: need to be able to write for some reason # in some circumstances: check all three if not x.flags.writeable: x = x.copy() if not y.flags.writeable: y = y.copy() if not new_x.flags.writeable: new_x = new_x.copy() method = alt_methods[method] new_y = method(x, y, new_x, **kwargs) return new_y def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ import scipy from scipy import interpolate if LooseVersion(scipy.__version__) < '0.18.0': try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, orders=order, der=der) except AttributeError: pass # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x) def _akima_interpolate(xi, yi, x, der=0, axis=0): """ Convenience function for akima interpolation. xi and yi are arrays of values used to approximate some function f, with ``yi = f(xi)``. See `Akima1DInterpolator` for details. Parameters ---------- xi : array_like A sorted list of x-coordinates, of length N. yi : array_like A 1-D array of real values. `yi`'s length along the interpolation axis must be equal to the length of `xi`. If N-D array, use axis parameter to select correct axis. x : scalar or array_like Of length M. der : int or list, optional How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This number includes the function value as 0th derivative. axis : int, optional Axis in the yi array corresponding to the x-coordinate values. See Also -------- scipy.interpolate.Akima1DInterpolator Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ from scipy import interpolate try: P = interpolate.Akima1DInterpolator(xi, yi, axis=axis) except TypeError: # Scipy earlier than 0.17.0 missing axis P = interpolate.Akima1DInterpolator(xi, yi) if der == 0: return P(x) elif interpolate._isscalar(der): return P(x, der=der) else: return [P(x, nu) for nu in der] def interpolate_2d(values, method='pad', axis=0, limit=None, fill_value=None, dtype=None): """ perform an actual interpolation of values, values will be make 2-d if needed fills inplace, returns the result """ transf = (lambda x: x) if axis == 0 else (lambda x: x.T) # reshape a 1 dim if needed ndim = values.ndim if values.ndim == 1: if axis != 0: # pragma: no cover raise AssertionError("cannot interpolate on a ndim == 1 with " "axis != 0") values = values.reshape(tuple((1,) + values.shape)) if fill_value is None: mask = None else: # todo create faster fill func without masking mask = mask_missing(transf(values), fill_value) method = clean_fill_method(method) if method == 'pad': values = transf(pad_2d( transf(values), limit=limit, mask=mask, dtype=dtype)) else: values = transf(backfill_2d( transf(values), limit=limit, mask=mask, dtype=dtype)) # reshape back if ndim == 1: values = values[0] return values def _interp_wrapper(f, wrap_dtype, na_override=None): def wrapper(arr, mask, limit=None): view = arr.view(wrap_dtype) f(view, mask, limit=limit) return wrapper _pad_1d_datetime = _interp_wrapper(algos.pad_inplace_int64, np.int64) _pad_2d_datetime = _interp_wrapper(algos.pad_2d_inplace_int64, np.int64) _backfill_1d_datetime = _interp_wrapper(algos.backfill_inplace_int64, np.int64) _backfill_2d_datetime = _interp_wrapper(algos.backfill_2d_inplace_int64, np.int64) def pad_1d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): name = 'pad_inplace_{name}'.format(name=dtype.name) _method = getattr(algos, name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _pad_1d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.pad_inplace_float64 elif values.dtype == np.object_: _method = algos.pad_inplace_object if _method is None: raise ValueError('Invalid dtype for pad_1d [{name}]' .format(name=dtype.name)) if mask is None: mask = isna(values) mask = mask.view(np.uint8) _method(values, mask, limit=limit) return values def backfill_1d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): name = 'backfill_inplace_{name}'.format(name=dtype.name) _method = getattr(algos, name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _backfill_1d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.backfill_inplace_float64 elif values.dtype == np.object_: _method = algos.backfill_inplace_object if _method is None: raise ValueError('Invalid dtype for backfill_1d [{name}]' .format(name=dtype.name)) if mask is None: mask = isna(values) mask = mask.view(np.uint8) _method(values, mask, limit=limit) return values def pad_2d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): name = 'pad_2d_inplace_{name}'.format(name=dtype.name) _method = getattr(algos, name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _pad_2d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.pad_2d_inplace_float64 elif values.dtype == np.object_: _method = algos.pad_2d_inplace_object if _method is None: raise ValueError('Invalid dtype for pad_2d [{name}]' .format(name=dtype.name)) if mask is None: mask = isna(values) mask = mask.view(np.uint8) if np.all(values.shape): _method(values, mask, limit=limit) else: # for test coverage pass return values def backfill_2d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): name = 'backfill_2d_inplace_{name}'.format(name=dtype.name) _method = getattr(algos, name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _backfill_2d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.backfill_2d_inplace_float64 elif values.dtype == np.object_: _method = algos.backfill_2d_inplace_object if _method is None: raise ValueError('Invalid dtype for backfill_2d [{name}]' .format(name=dtype.name)) if mask is None: mask = isna(values) mask = mask.view(np.uint8) if np.all(values.shape): _method(values, mask, limit=limit) else: # for test coverage pass return values _fill_methods = {'pad': pad_1d, 'backfill': backfill_1d} def get_fill_func(method): method = clean_fill_method(method) return _fill_methods[method] def clean_reindex_fill_method(method): return clean_fill_method(method, allow_nearest=True) def fill_zeros(result, x, y, name, fill): """ if this is a reversed op, then flip x,y if we have an integer value (or array in y) and we have 0's, fill them with the fill, return the result mask the nan's from x """ if fill is None or is_float_dtype(result): return result if name.startswith(('r', '__r')): x, y = y, x is_variable_type = (hasattr(y, 'dtype') or hasattr(y, 'type')) is_scalar_type = is_scalar(y) if not is_variable_type and not is_scalar_type: return result if is_scalar_type: y = np.array(y) if is_integer_dtype(y): if (y == 0).any(): # GH 7325, mask and nans must be broadcastable (also: PR 9308) # Raveling and then reshaping makes np.putmask faster mask = ((y == 0) & ~np.isnan(result)).ravel() shape = result.shape result = result.astype('float64', copy=False).ravel() np.putmask(result, mask, fill) # if we have a fill of inf, then sign it correctly # (GH 6178 and PR 9308) if np.isinf(fill): signs = np.sign(y if name.startswith(('r', '__r')) else x) negative_inf_mask = (signs.ravel() < 0) & mask np.putmask(result, negative_inf_mask, -fill) if "floordiv" in name: # (PR 9308) nan_mask = ((y == 0) & (x == 0)).ravel() np.putmask(result, nan_mask, np.nan) result = result.reshape(shape) return result def _interp_limit(invalid, fw_limit, bw_limit): """Get idx of values that won't be filled b/c they exceed the limits. This is equivalent to the more readable, but slower .. code-block:: python for x in np.where(invalid)[0]: if invalid[max(0, x - fw_limit):x + bw_limit + 1].all(): yield x """ # handle forward first; the backward direction is the same except # 1. operate on the reversed array # 2. subtract the returned indicies from N - 1 N = len(invalid) def inner(invalid, limit): limit = min(limit, N) windowed = _rolling_window(invalid, limit + 1).all(1) idx = (set(np.where(windowed)[0] + limit) | set(np.where((~invalid[:limit + 1]).cumsum() == 0)[0])) return idx if fw_limit == 0: f_idx = set(np.where(invalid)[0]) else: f_idx = inner(invalid, fw_limit) if bw_limit == 0: # then we don't even need to care about backwards, just use forwards return f_idx else: b_idx = set(N - 1 - np.asarray(list(inner(invalid[::-1], bw_limit)))) if fw_limit == 0: return b_idx return f_idx & b_idx def _rolling_window(a, window): """ [True, True, False, True, False], 2 -> [ [True, True], [True, False], [False, True], [True, False], ] """ # https://stackoverflow.com/a/6811241 shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
mit
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/pandas/stats/tests/common.py
9
4394
# pylint: disable-msg=W0611,W0402 # flake8: noqa from datetime import datetime import string import nose import numpy as np from pandas import DataFrame, bdate_range from pandas.util.testing import assert_almost_equal # imported in other tests import pandas.util.testing as tm N = 100 K = 4 start = datetime(2007, 1, 1) DATE_RANGE = bdate_range(start, periods=N) COLS = ['Col' + c for c in string.ascii_uppercase[:K]] def makeDataFrame(): data = DataFrame(np.random.randn(N, K), columns=COLS, index=DATE_RANGE) return data def getBasicDatasets(): A = makeDataFrame() B = makeDataFrame() C = makeDataFrame() return A, B, C def check_for_scipy(): try: import scipy except ImportError: raise nose.SkipTest('no scipy') def check_for_statsmodels(): _have_statsmodels = True try: import statsmodels.api as sm except ImportError: try: import scikits.statsmodels.api as sm except ImportError: raise nose.SkipTest('no statsmodels') class BaseTest(tm.TestCase): def setUp(self): check_for_scipy() check_for_statsmodels() self.A, self.B, self.C = getBasicDatasets() self.createData1() self.createData2() self.createData3() def createData1(self): date = datetime(2007, 1, 1) date2 = datetime(2007, 1, 15) date3 = datetime(2007, 1, 22) A = self.A.copy() B = self.B.copy() C = self.C.copy() A['ColA'][date] = np.NaN B['ColA'][date] = np.NaN C['ColA'][date] = np.NaN C['ColA'][date2] = np.NaN # truncate data to save time A = A[:30] B = B[:30] C = C[:30] self.panel_y = A self.panel_x = {'B': B, 'C': C} self.series_panel_y = A.filter(['ColA']) self.series_panel_x = {'B': B.filter(['ColA']), 'C': C.filter(['ColA'])} self.series_y = A['ColA'] self.series_x = {'B': B['ColA'], 'C': C['ColA']} def createData2(self): y_data = [[1, np.NaN], [2, 3], [4, 5]] y_index = [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)] y_cols = ['A', 'B'] self.panel_y2 = DataFrame(np.array(y_data), index=y_index, columns=y_cols) x1_data = [[6, np.NaN], [7, 8], [9, 30], [11, 12]] x1_index = [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4)] x1_cols = ['A', 'B'] x1 = DataFrame(np.array(x1_data), index=x1_index, columns=x1_cols) x2_data = [[13, 14, np.NaN], [15, np.NaN, np.NaN], [16, 17, 48], [19, 20, 21], [22, 23, 24]] x2_index = [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)] x2_cols = ['C', 'A', 'B'] x2 = DataFrame(np.array(x2_data), index=x2_index, columns=x2_cols) self.panel_x2 = {'x1': x1, 'x2': x2} def createData3(self): y_data = [[1, 2], [3, 4]] y_index = [datetime(2000, 1, 1), datetime(2000, 1, 2)] y_cols = ['A', 'B'] self.panel_y3 = DataFrame(np.array(y_data), index=y_index, columns=y_cols) x1_data = [['A', 'B'], ['C', 'A']] x1_index = [datetime(2000, 1, 1), datetime(2000, 1, 2)] x1_cols = ['A', 'B'] x1 = DataFrame(np.array(x1_data), index=x1_index, columns=x1_cols) x2_data = [['foo', 'bar'], ['baz', 'foo']] x2_index = [datetime(2000, 1, 1), datetime(2000, 1, 2)] x2_cols = ['A', 'B'] x2 = DataFrame(np.array(x2_data), index=x2_index, columns=x2_cols) self.panel_x3 = {'x1': x1, 'x2': x2}
apache-2.0
nrkumar93/bnr_workspace
label_training_detection/scripts/plot_detection_time_scale_factor.py
1
4096
#!/usr/bin/env python # -*- coding: utf-8 -*- # # batch_label_localization_top_level.py # # Copyright 2016 Prasanna <prasanna@prasanna-ThinkStation-P300> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # import json import argparse import subprocess import math import matplotlib.pyplot as plt def main(): parser = argparse.ArgumentParser(description="Use label_defs to set params. Open this program to set step size and aspect ratio.") parser.add_argument("label_defs", help="The path to label_defs.json file") parser.add_argument("input_dir", help="The directory containing symlinks to input images.") args = parser.parse_args() step_size = 0.02 aspect_ratio = 1.75 avg_time = [] x = [] yy = [] diag_dist = [] for i in range(40): label_defs = open(args.label_defs, 'r').read() defs = json.loads(label_defs) defs['label_definitions'][0]['classifier_types']['source'][0]['scale_factor'] = defs['label_definitions'][0]['classifier_types']['source'][0]['scale_factor'] + (i*step_size) with open('/tmp/label_defs.json', 'w') as outfile: json.dump(defs, outfile) print defs['label_definitions'][0]['classifier_types']['source'][0]['scale_factor'] command = 'rosrun bnr_analytics_labels label_detect_tool ' command += ' --images_path ' + args.input_dir command += ' --label_defs_json ' + '/tmp/label_defs.json' print '========================================EXECUTING========================================' print command print '=========================================================================================' cmd = command.split() ret = subprocess.Popen(cmd, stdout=subprocess.PIPE) avg_time.append(float(ret.stdout.readlines()[-1].replace('\n', ''))) diag_dist.append(math.sqrt(defs['label_definitions'][0]['classifier_types']['source'][0]['maxSize_height']**2 + defs['label_definitions'][0]['classifier_types']['source'][0]['maxSize_width']**2) - math.sqrt(defs['label_definitions'][0]['classifier_types']['source'][0]['minSize_height']**2 + defs['label_definitions'][0]['classifier_types']['source'][0]['minSize_width']**2)) x.append(defs['label_definitions'][0]['classifier_types']['source'][0]['scale_factor']) yy.append(math.log(defs['label_definitions'][0]['classifier_types']['source'][0]['maxSize_width']/defs['label_definitions'][0]['classifier_types']['source'][0]['minSize_width'], defs['label_definitions'][0]['classifier_types']['source'][0]['scale_factor'])) print avg_time print x if defs['label_definitions'][0]['classifier_types']['source'][0]['minSize_height']*defs['label_definitions'][0]['classifier_types']['source'][0]['scale_factor'] > defs['label_definitions'][0]['classifier_types']['source'][0]['maxSize_height'] or defs['label_definitions'][0]['classifier_types']['source'][0]['minSize_width']*defs['label_definitions'][0]['classifier_types']['source'][0]['scale_factor'] > defs['label_definitions'][0]['classifier_types']['source'][0]['maxSize_width']: x = x[0:len(x)-1] avg_time = avg_time[0:len(avg_time)-1] break plt.plot(x, avg_time, '-o', linewidth=1.0, label='Observed') plt.plot(x, yy, '-x', linewidth=1.0, label='Theoretical') plt.xlabel('Scale Factor ($\gamma$)') plt.ylabel('Time taken (ms)') plt.legend(loc='upper left') plt.ylim((0, max(avg_time)+3)) plt.show() return 0 if __name__ == '__main__': main()
gpl-3.0
upliftaero/MissionPlanner
Lib/site-packages/numpy/doc/creation.py
94
5411
""" ============== Array Creation ============== Introduction ============ There are 5 general mechanisms for creating arrays: 1) Conversion from other Python structures (e.g., lists, tuples) 2) Intrinsic numpy array array creation objects (e.g., arange, ones, zeros, etc.) 3) Reading arrays from disk, either from standard or custom formats 4) Creating arrays from raw bytes through the use of strings or buffers 5) Use of special library functions (e.g., random) This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will it cover creating object arrays or record arrays. Both of those are covered in their own sections. Converting Python array_like Objects to Numpy Arrays ==================================================== In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works! (The Python Way). Examples: :: >>> x = np.array([2,3,1,0]) >>> x = np.array([2, 3, 1, 0]) >>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists, and types >>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]]) Intrinsic Numpy Array Creation ============================== Numpy has built-in functions for creating arrays from scratch: zeros(shape) will create an array filled with 0 values with the specified shape. The default dtype is float64. ``>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])`` ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects. arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the various ways it can be used. A few examples will be given here: :: >>> np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.arange(2, 10, dtype=np.float) array([ 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.arange(2, 3, 0.1) array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]) Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the arange docstring. linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values. For example: :: >>> np.linspace(1., 4., 6) array([ 1. , 1.6, 2.2, 2.8, 3.4, 4. ]) The advantage of this creation function is that one can guarantee the number of elements and the starting and end point, which arange() generally will not do for arbitrary start, stop, and step values. indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension. An example illustrates much better than a verbal description: :: >>> np.indices((3,3)) array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]]) This is particularly useful for evaluating functions of multiple dimensions on a regular grid. Reading Arrays From Disk ======================== This is presumably the most common case of large array creation. The details, of course, depend greatly on the format of data on disk and so this section can only give general pointers on how to handle various formats. Standard Binary Formats ----------------------- Various fields have standard formats for array data. The following lists the ones with known python libraries to read them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so check the last section as well) :: HDF5: PyTables FITS: PyFITS Examples of formats that cannot be read directly but for which it is not hard to convert are libraries like PIL (able to read and write many image formats such as jpg, png, etc). Common ASCII Formats ------------------------ Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part of matplotlib). More generic ascii files can be read using the io package in scipy. Custom Binary Formats --------------------- There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface with C or C++. Use of Special Libraries ------------------------ There are libraries that can be used to generate arrays for special purposes and it isn't possible to enumerate all of them. The most common uses are use of the many array generation functions in random that can generate arrays of random values, and some utility functions to generate special matrices (e.g. diagonal). """
gpl-3.0
AlexRobson/nilmtk
nilmtk/feature_detectors/cluster.py
6
5343
from __future__ import print_function, division import numpy as np import pandas as pd # Fix the seed for repeatability of experiments SEED = 42 np.random.seed(SEED) def cluster(X, max_num_clusters=3, exact_num_clusters=None): '''Applies clustering on reduced data, i.e. data where power is greater than threshold. Parameters ---------- X : pd.Series or single-column pd.DataFrame max_num_clusters : int Returns ------- centroids : ndarray of int32s Power in different states of an appliance, sorted ''' # Find where power consumption is greater than 10 data = _transform_data(X) # Find clusters centroids = _apply_clustering(data, max_num_clusters, exact_num_clusters) centroids = np.append(centroids, 0) # add 'off' state centroids = np.round(centroids).astype(np.int32) centroids = np.unique(centroids) # np.unique also sorts # TODO: Merge similar clusters return centroids def _transform_data(data): '''Subsamples if needed and converts to column vector (which is what scikit-learn requires). Parameters ---------- data : pd.Series or single column pd.DataFrame Returns ------- data_above_thresh : ndarray column vector ''' MAX_NUMBER_OF_SAMPLES = 2000 MIN_NUMBER_OF_SAMPLES = 20 DATA_THRESHOLD = 10 data_above_thresh = data[data > DATA_THRESHOLD].dropna().values n_samples = len(data_above_thresh) if n_samples < MIN_NUMBER_OF_SAMPLES: return np.zeros((MAX_NUMBER_OF_SAMPLES, 1)) elif n_samples > MAX_NUMBER_OF_SAMPLES: # Randomly subsample (we don't want to smoothly downsample # because that is likely to change the values) random_indices = np.random.randint(0, n_samples, MAX_NUMBER_OF_SAMPLES) resampled = data_above_thresh[random_indices] return resampled.reshape(MAX_NUMBER_OF_SAMPLES, 1) else: return data_above_thresh.reshape(n_samples, 1) def _apply_clustering_n_clusters(X, n_clusters): """ :param X: ndarray :param n_clusters: exact number of clusters to use :return: """ from sklearn.cluster import KMeans k_means = KMeans(init='k-means++', n_clusters=n_clusters) k_means.fit(X) return k_means.labels_, k_means.cluster_centers_ def _apply_clustering(X, max_num_clusters, exact_num_clusters=None): ''' Parameters ---------- X : ndarray max_num_clusters : int Returns ------- centroids : list of numbers List of power in different states of an appliance ''' # If we import sklearn at the top of the file then it makes autodoc fail from sklearn import metrics # sklearn produces lots of DepreciationWarnings with PyTables import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # Finds whether 2 or 3 gives better Silhouellete coefficient # Whichever is higher serves as the number of clusters for that # appliance num_clus = -1 sh = -1 k_means_labels = {} k_means_cluster_centers = {} k_means_labels_unique = {} # If the exact number of clusters are specified, then use that if exact_num_clusters is not None: labels, centers = _apply_clustering_n_clusters(X, exact_num_clusters) return centers.flatten() # Exact number of clusters are not specified, use the cluster validity measures # to find the optimal number for n_clusters in range(1, max_num_clusters): try: labels, centers = _apply_clustering_n_clusters(X, n_clusters) k_means_labels[n_clusters] = labels k_means_cluster_centers[n_clusters] = centers k_means_labels_unique[n_clusters] = np.unique(labels) try: sh_n = metrics.silhouette_score( X, k_means_labels[n_clusters], metric='euclidean') if sh_n > sh: sh = sh_n num_clus = n_clusters except Exception: num_clus = n_clusters except Exception: if num_clus > -1: return k_means_cluster_centers[num_clus] else: return np.array([0]) return k_means_cluster_centers[num_clus].flatten() def hart85_means_shift_cluster(pair_buffer_df, cols): from sklearn.cluster import MeanShift # Creating feature vector cluster_df = pd.DataFrame() power_types = [col[1] for col in cols] if 'active' in power_types: cluster_df['active'] = pd.Series(pair_buffer_df.apply(lambda row: ((np.fabs(row['T1 Active']) + np.fabs(row['T2 Active'])) / 2), axis=1), index=pair_buffer_df.index) if 'reactive' in power_types: cluster_df['reactive'] = pd.Series(pair_buffer_df.apply(lambda row: ((np.fabs(row['T1 Reactive']) + np.fabs(row['T2 Reactive'])) / 2), axis=1), index=pair_buffer_df.index) X = cluster_df.values.reshape((len(cluster_df.index), len(cols))) ms = MeanShift(bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) return pd.DataFrame(cluster_centers, columns=cols)
apache-2.0
tdent/pycbc
examples/distributions/spin_examples.py
14
1894
import matplotlib.pyplot as plt import numpy import pycbc.coordinates as co from pycbc import distributions # We can choose any bounds between 0 and pi for this distribution but in # units of pi so we use between 0 and 1 theta_low = 0. theta_high = 1. # Units of pi for the bounds of the azimuthal angle which goes from 0 to 2 pi phi_low = 0. phi_high = 2. # Create a distribution object from distributions.py. Here we are using the # Uniform Solid Angle function which takes # theta = polar_bounds(theta_lower_bound to a theta_upper_bound), and then # phi = azimuthal_ bound(phi_lower_bound to a phi_upper_bound). uniform_solid_angle_distribution = distributions.UniformSolidAngle( polar_bounds=(theta_low,theta_high), azimuthal_bounds=(phi_low,phi_high)) # Now we can take a random variable sample from that distribution. In this # case we want 50000 samples. solid_angle_samples = uniform_solid_angle_distribution.rvs(size=500000) # Make spins with unit length for coordinate transformation below. spin_mag = numpy.ndarray(shape=(500000), dtype=float) for i in range(0,500000): spin_mag[i] = 1. # Use the pycbc.coordinates as co spherical_to_cartesian function to convert # from spherical polar coordinates to cartesian coordinates spinx, spiny, spinz = co.spherical_to_cartesian(spin_mag, solid_angle_samples['phi'], solid_angle_samples['theta']) # Choose 50 bins for the histograms. n_bins = 50 plt.figure(figsize=(10,10)) plt.subplot(2, 2, 1) plt.hist(spinx, bins = n_bins) plt.title('Spin x samples') plt.subplot(2, 2, 2) plt.hist(spiny, bins = n_bins) plt.title('Spin y samples') plt.subplot(2, 2, 3) plt.hist(spinz, bins = n_bins) plt.title('Spin z samples') plt.tight_layout() plt.show()
gpl-3.0
CartoDB/cartoframes
tests/unit/analysis/test_grid.py
1
2773
# """Unit tests for cartoframes.analysis.grid""" import os import pytest import numpy as np from pandas import read_csv from geopandas import GeoDataFrame from shapely.geometry import box, shape from cartoframes.analysis.grid import QuadGrid from cartoframes.utils.geom_utils import set_geometry from geopandas.testing import assert_geodataframe_equal # DATA FRAME SRC BBOX pol_1 = box(1, 1, 2, 2) pol_2 = box(3, 3, 4, 4) GDF_BOX = GeoDataFrame({'id': [1, 2], 'geom': [pol_1, pol_2]}, columns=['id', 'geom'], geometry='geom') pol_geojson = { 'type': 'Polygon', 'coordinates': [ [ [ -5.899658203125, 38.436379603 ], [ -6.690673828125, 37.67512527892127 ], [ -6.15234375, 37.43997405227057 ], [ -5.8447265625, 37.70120736474139 ], [ -6.13037109375, 37.82280243352756 ], [ -5.877685546874999, 38.02213147353745 ], [ -6.009521484375, 38.12591462924157 ], [ -5.5810546875, 38.1777509666256 ], [ -5.899658203125, 38.436379603 ] ] ] } GDF_IRREGULAR = GeoDataFrame({'id': [1], 'geom': [shape(pol_geojson)]}, columns=['id', 'geom'], geometry='geom') BASE_FOLDER = os.path.dirname(os.path.abspath(__file__)) class TestGrid(object): def _load_test_gdf(self, fname): fname = os.path.join(BASE_FOLDER, fname) df = read_csv(fname, dtype={'id': np.int64, 'geom': object, 'quadkey': object}) gdf = GeoDataFrame(df, crs='epsg:4326') set_geometry(gdf, 'geom', inplace=True) return gdf @pytest.mark.skip() def test_quadgrid_polyfill_box(self, mocker): """cartoframes.analysis.grid.QuadGrid.polyfill""" gdf = QuadGrid().polyfill(GDF_BOX, 12) assert isinstance(gdf, GeoDataFrame) # Check both dataframes are equals gdf_test = self._load_test_gdf('grid_quadkey_bbox.csv') assert_geodataframe_equal(gdf, gdf_test, check_less_precise=True) @pytest.mark.skip() def test_quadgrid_polyfill_pol(self, mocker): """cartoframes.analysis.grid.QuadGrid.polyfill""" gdf = QuadGrid().polyfill(GDF_IRREGULAR, 12) assert isinstance(gdf, GeoDataFrame) # Check both dataframes are equals gdf_test = self._load_test_gdf('grid_quadkey_pol.csv') assert_geodataframe_equal(gdf, gdf_test, check_less_precise=True)
bsd-3-clause
madelynfreed/rlundo
venv/lib/python2.7/site-packages/IPython/kernel/zmq/ipkernel.py
4
13846
"""The IPython kernel implementation""" import getpass import sys import traceback from IPython.core import release from IPython.utils.py3compat import builtin_mod, PY3 from IPython.utils.tokenutil import token_at_cursor, line_at_cursor from IPython.utils.traitlets import Instance, Type, Any, List from IPython.utils.decorators import undoc from ..comm import CommManager from .kernelbase import Kernel as KernelBase from .serialize import serialize_object, unpack_apply_message from .zmqshell import ZMQInteractiveShell def lazy_import_handle_comm_opened(*args, **kwargs): from IPython.html.widgets import Widget Widget.handle_comm_opened(*args, **kwargs) class IPythonKernel(KernelBase): shell = Instance('IPython.core.interactiveshell.InteractiveShellABC') shell_class = Type(ZMQInteractiveShell) user_module = Any() def _user_module_changed(self, name, old, new): if self.shell is not None: self.shell.user_module = new user_ns = Instance(dict, args=None, allow_none=True) def _user_ns_changed(self, name, old, new): if self.shell is not None: self.shell.user_ns = new self.shell.init_user_ns() # A reference to the Python builtin 'raw_input' function. # (i.e., __builtin__.raw_input for Python 2.7, builtins.input for Python 3) _sys_raw_input = Any() _sys_eval_input = Any() def __init__(self, **kwargs): super(IPythonKernel, self).__init__(**kwargs) # Initialize the InteractiveShell subclass self.shell = self.shell_class.instance(parent=self, profile_dir = self.profile_dir, user_module = self.user_module, user_ns = self.user_ns, kernel = self, ) self.shell.displayhook.session = self.session self.shell.displayhook.pub_socket = self.iopub_socket self.shell.displayhook.topic = self._topic('execute_result') self.shell.display_pub.session = self.session self.shell.display_pub.pub_socket = self.iopub_socket self.shell.data_pub.session = self.session self.shell.data_pub.pub_socket = self.iopub_socket # TMP - hack while developing self.shell._reply_content = None self.comm_manager = CommManager(shell=self.shell, parent=self, kernel=self) self.comm_manager.register_target('ipython.widget', lazy_import_handle_comm_opened) self.shell.configurables.append(self.comm_manager) comm_msg_types = [ 'comm_open', 'comm_msg', 'comm_close' ] for msg_type in comm_msg_types: self.shell_handlers[msg_type] = getattr(self.comm_manager, msg_type) help_links = List([ { 'text': "Python", 'url': "http://docs.python.org/%i.%i" % sys.version_info[:2], }, { 'text': "IPython", 'url': "http://ipython.org/documentation.html", }, { 'text': "NumPy", 'url': "http://docs.scipy.org/doc/numpy/reference/", }, { 'text': "SciPy", 'url': "http://docs.scipy.org/doc/scipy/reference/", }, { 'text': "Matplotlib", 'url': "http://matplotlib.org/contents.html", }, { 'text': "SymPy", 'url': "http://docs.sympy.org/latest/index.html", }, { 'text': "pandas", 'url': "http://pandas.pydata.org/pandas-docs/stable/", }, ]) # Kernel info fields implementation = 'ipython' implementation_version = release.version language_info = { 'name': 'python', 'version': sys.version.split()[0], 'mimetype': 'text/x-python', 'codemirror_mode': {'name': 'ipython', 'version': sys.version_info[0]}, 'pygments_lexer': 'ipython%d' % (3 if PY3 else 2), 'nbconvert_exporter': 'python', 'file_extension': '.py' } @property def banner(self): return self.shell.banner def start(self): self.shell.exit_now = False super(IPythonKernel, self).start() def set_parent(self, ident, parent): """Overridden from parent to tell the display hook and output streams about the parent message. """ super(IPythonKernel, self).set_parent(ident, parent) self.shell.set_parent(parent) def _forward_input(self, allow_stdin=False): """Forward raw_input and getpass to the current frontend. via input_request """ self._allow_stdin = allow_stdin if PY3: self._sys_raw_input = builtin_mod.input builtin_mod.input = self.raw_input else: self._sys_raw_input = builtin_mod.raw_input self._sys_eval_input = builtin_mod.input builtin_mod.raw_input = self.raw_input builtin_mod.input = lambda prompt='': eval(self.raw_input(prompt)) self._save_getpass = getpass.getpass getpass.getpass = self.getpass def _restore_input(self): """Restore raw_input, getpass""" if PY3: builtin_mod.input = self._sys_raw_input else: builtin_mod.raw_input = self._sys_raw_input builtin_mod.input = self._sys_eval_input getpass.getpass = self._save_getpass @property def execution_count(self): return self.shell.execution_count @execution_count.setter def execution_count(self, value): # Ignore the incrememnting done by KernelBase, in favour of our shell's # execution counter. pass def do_execute(self, code, silent, store_history=True, user_expressions=None, allow_stdin=False): shell = self.shell # we'll need this a lot here self._forward_input(allow_stdin) reply_content = {} # FIXME: the shell calls the exception handler itself. shell._reply_content = None try: shell.run_cell(code, store_history=store_history, silent=silent) except: status = u'error' # FIXME: this code right now isn't being used yet by default, # because the run_cell() call above directly fires off exception # reporting. This code, therefore, is only active in the scenario # where runlines itself has an unhandled exception. We need to # uniformize this, for all exception construction to come from a # single location in the codbase. etype, evalue, tb = sys.exc_info() tb_list = traceback.format_exception(etype, evalue, tb) reply_content.update(shell._showtraceback(etype, evalue, tb_list)) else: status = u'ok' finally: self._restore_input() reply_content[u'status'] = status # Return the execution counter so clients can display prompts reply_content['execution_count'] = shell.execution_count - 1 # FIXME - fish exception info out of shell, possibly left there by # runlines. We'll need to clean up this logic later. if shell._reply_content is not None: reply_content.update(shell._reply_content) e_info = dict(engine_uuid=self.ident, engine_id=self.int_id, method='execute') reply_content['engine_info'] = e_info # reset after use shell._reply_content = None if 'traceback' in reply_content: self.log.info("Exception in execute request:\n%s", '\n'.join(reply_content['traceback'])) # At this point, we can tell whether the main code execution succeeded # or not. If it did, we proceed to evaluate user_expressions if reply_content['status'] == 'ok': reply_content[u'user_expressions'] = \ shell.user_expressions(user_expressions or {}) else: # If there was an error, don't even try to compute expressions reply_content[u'user_expressions'] = {} # Payloads should be retrieved regardless of outcome, so we can both # recover partial output (that could have been generated early in a # block, before an error) and clear the payload system always. reply_content[u'payload'] = shell.payload_manager.read_payload() # Be agressive about clearing the payload because we don't want # it to sit in memory until the next execute_request comes in. shell.payload_manager.clear_payload() return reply_content def do_complete(self, code, cursor_pos): # FIXME: IPython completers currently assume single line, # but completion messages give multi-line context # For now, extract line from cell, based on cursor_pos: if cursor_pos is None: cursor_pos = len(code) line, offset = line_at_cursor(code, cursor_pos) line_cursor = cursor_pos - offset txt, matches = self.shell.complete('', line, line_cursor) return {'matches' : matches, 'cursor_end' : cursor_pos, 'cursor_start' : cursor_pos - len(txt), 'metadata' : {}, 'status' : 'ok'} def do_inspect(self, code, cursor_pos, detail_level=0): name = token_at_cursor(code, cursor_pos) info = self.shell.object_inspect(name) reply_content = {'status' : 'ok'} reply_content['data'] = data = {} reply_content['metadata'] = {} reply_content['found'] = info['found'] if info['found']: info_text = self.shell.object_inspect_text( name, detail_level=detail_level, ) data['text/plain'] = info_text return reply_content def do_history(self, hist_access_type, output, raw, session=None, start=None, stop=None, n=None, pattern=None, unique=False): if hist_access_type == 'tail': hist = self.shell.history_manager.get_tail(n, raw=raw, output=output, include_latest=True) elif hist_access_type == 'range': hist = self.shell.history_manager.get_range(session, start, stop, raw=raw, output=output) elif hist_access_type == 'search': hist = self.shell.history_manager.search( pattern, raw=raw, output=output, n=n, unique=unique) else: hist = [] return {'history' : list(hist)} def do_shutdown(self, restart): self.shell.exit_now = True return dict(status='ok', restart=restart) def do_is_complete(self, code): status, indent_spaces = self.shell.input_transformer_manager.check_complete(code) r = {'status': status} if status == 'incomplete': r['indent'] = ' ' * indent_spaces return r def do_apply(self, content, bufs, msg_id, reply_metadata): shell = self.shell try: working = shell.user_ns prefix = "_"+str(msg_id).replace("-","")+"_" f,args,kwargs = unpack_apply_message(bufs, working, copy=False) fname = getattr(f, '__name__', 'f') fname = prefix+"f" argname = prefix+"args" kwargname = prefix+"kwargs" resultname = prefix+"result" ns = { fname : f, argname : args, kwargname : kwargs , resultname : None } # print ns working.update(ns) code = "%s = %s(*%s,**%s)" % (resultname, fname, argname, kwargname) try: exec(code, shell.user_global_ns, shell.user_ns) result = working.get(resultname) finally: for key in ns: working.pop(key) result_buf = serialize_object(result, buffer_threshold=self.session.buffer_threshold, item_threshold=self.session.item_threshold, ) except: # invoke IPython traceback formatting shell.showtraceback() # FIXME - fish exception info out of shell, possibly left there by # run_code. We'll need to clean up this logic later. reply_content = {} if shell._reply_content is not None: reply_content.update(shell._reply_content) e_info = dict(engine_uuid=self.ident, engine_id=self.int_id, method='apply') reply_content['engine_info'] = e_info # reset after use shell._reply_content = None self.send_response(self.iopub_socket, u'error', reply_content, ident=self._topic('error')) self.log.info("Exception in apply request:\n%s", '\n'.join(reply_content['traceback'])) result_buf = [] if reply_content['ename'] == 'UnmetDependency': reply_metadata['dependencies_met'] = False else: reply_content = {'status' : 'ok'} return reply_content, result_buf def do_clear(self): self.shell.reset(False) return dict(status='ok') # This exists only for backwards compatibility - use IPythonKernel instead @undoc class Kernel(IPythonKernel): def __init__(self, *args, **kwargs): import warnings warnings.warn('Kernel is a deprecated alias of IPython.kernel.zmq.ipkernel.IPythonKernel', DeprecationWarning) super(Kernel, self).__init__(*args, **kwargs)
gpl-3.0
rbooth200/DiscEvolution
scripts/plot_planet_M-R.py
1
2774
import os import numpy as np from scipy.interpolate import interp2d import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from matplotlib import rcParams rcParams['image.cmap'] = 'magma' from snap_reader import DiscReader, PlanetReader from chemistry import SimpleCOMolAbund, SimpleCOAtomAbund class Formatter(object): def __init__(self, x,y,z): self._x, self._y, self._z = x,y,z self._zi = interp2d(np.log(self._x), self._y, np.log(self._z), bounds_error=True) def __call__(self, x, y): try: z = np.exp(self._zi(np.log(x), y)[0]) return 'x={:5g}, y={:5g}, z={:5g}'.format(x, y, z) except ValueError: return 'x={:5g}, y={:5g}'.format(x, y) def make_plot_planets(planets): for p in planets: plt.subplot(211) plt.loglog(p.R, p.M / 317.8) plt.subplot(212) plt.loglog(p.R, p.M_core) plt.subplot(211) plt.title('t_0 = {:g}yr'.format(p.t_form[0])) plt.ylabel('$M\,[M_J]$') plt.plot([0.1, 300], [1,1], 'k--') plt.xlim(0.1, 300) plt.subplot(212) plt.ylabel('$M_c\,[M_\oplus]$') plt.xlabel('$R\,[\mathrm{au}]$') plt.xlim(0.1, 300) if __name__ == "__main__": import sys DIR = os.path.join('../planets/pb_gas_acc_f_0.0/TimeDep/' 'irradiated/Rc_200/Mdot_1e-09/') try: DIR = sys.argv[1] except IndexError: pass planets = PlanetReader(DIR, 'planets').compute_planet_evo() # Collect the planet data tf = {} for p in planets: if p.t_form[0] not in tf: tf[p.t_form[0]] = [] tf[p.t_form[0]].append(p) t_form = np.array(sorted(tf.keys()), dtype='f8') R_form = np.array([p.R[0] for p in tf[t_form[0]]], dtype='f8') M_final = np.empty([t_form.shape[0], R_form.shape[0]], dtype='f8') R_final = np.empty([t_form.shape[0], R_form.shape[0]], dtype='f8') for i, ti in enumerate(t_form): for j, p in enumerate(tf[ti]): M_final[i,j] = p[-1].M R_final[i,j] = p[-1].R t_form /= 1e6 MJ = 317.8 im = plt.pcolormesh(R_form, t_form, M_final, shading='gouraud', norm=LogNorm(), vmin=0.5, vmax=10*MJ) plt.gca().format_coord = Formatter(R_form, t_form, M_final) CS = plt.contour(R_form, t_form, R_final, colors='b', levels=[0.5, 1, 2, 5, 10, 20, 50, 100]) plt.colorbar(im, label='$M\,[\mathrm{M}_\oplus]$') plt.clabel(CS, CS.levels[1::2], inline=True, fmt='%.1f') #manual=[(21, 0.2), (20, 0.8), (63, 0.5)]) plt.xscale('log') plt.xlabel('$R\,[\mathrm{au}]$') plt.ylabel('$t_\mathrm{form}\,[\mathrm{Myr}]$') plt.show()
gpl-3.0
JeanKossaifi/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
83
17276
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(LogisticRegression(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
tschaume/pymatgen
pymatgen/analysis/defects/utils.py
4
57308
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Utilities for defects module. """ import math from monty.json import MSONable import itertools import pandas as pd import numpy as np from numpy.linalg import norm import logging from collections import defaultdict from scipy.spatial import Voronoi from scipy.spatial.distance import squareform from scipy.cluster.hierarchy import linkage, fcluster from pymatgen.analysis.local_env import LocalStructOrderParams, \ MinimumDistanceNN, cn_opt_params from pymatgen.core.periodic_table import Element, get_el_sp from pymatgen.core.sites import PeriodicSite from pymatgen.core.structure import Structure from pymatgen.io.vasp.outputs import Chgcar from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.analysis.phase_diagram import get_facets from pymatgen.util.coord import pbc_diff from pymatgen.vis.structure_vtk import StructureVis from monty.dev import requires from copy import deepcopy try: from skimage.feature import peak_local_max peak_local_max_found = True except ImportError: peak_local_max_found = False __author__ = "Danny Broberg, Shyam Dwaraknath, Bharat Medasani, Nils Zimmermann, Geoffroy Hautier" __copyright__ = "Copyright 2014, The Materials Project" __version__ = "1.0" __maintainer__ = "Danny Broberg, Shyam Dwaraknath" __email__ = "[email protected], [email protected]" __status__ = "Development" __date__ = "January 11, 2018" logger = logging.getLogger(__name__) hart_to_ev = 27.2114 ang_to_bohr = 1.8897 invang_to_ev = 3.80986 kb = 8.6173324e-5 # eV / K kumagai_to_V = 1.809512739e2 # = Electron charge * 1e10 / VacuumPermittivity Constant motif_cn_op = {} for cn, di in cn_opt_params.items(): # type: ignore for mot, li in di.items(): motif_cn_op[mot] = {'cn': int(cn), 'optype': li[0]} motif_cn_op[mot]['params'] = deepcopy(li[1]) if len(li) > 1 else None class QModel(MSONable): """ Model for the defect charge distribution. A combination of exponential tail and gaussian distribution is used (see Freysoldt (2011), DOI: 10.1002/pssb.201046289 ) q_model(r) = q [x exp(-r/gamma) + (1-x) exp(-r^2/beta^2)] without normalization constants By default, gaussian distribution with 1 Bohr width is assumed. If defect charge is more delocalized, exponential tail is suggested. """ def __init__(self, beta=1.0, expnorm=0.0, gamma=1.0): """ Args: beta: Gaussian decay constant. Default value is 1 Bohr. When delocalized (eg. diamond), 2 Bohr is more appropriate. expnorm: Weight for the exponential tail in the range of [0-1]. Default is 0.0 indicating no tail . For delocalized charges ideal value is around 0.54-0.6. gamma: Exponential decay constant """ self.beta = beta self.expnorm = expnorm self.gamma = gamma self.beta2 = beta * beta self.gamma2 = gamma * gamma if expnorm and not gamma: raise ValueError("Please supply exponential decay constant.") def rho_rec(self, g2): """ Reciprocal space model charge value for input squared reciprocal vector. Args: g2: Square of reciprocal vector Returns: Charge density at the reciprocal vector magnitude """ return (self.expnorm / np.sqrt(1 + self.gamma2 * g2) + ( 1 - self.expnorm) * np.exp(-0.25 * self.beta2 * g2)) @property def rho_rec_limit0(self): """ Reciprocal space model charge value close to reciprocal vector 0 . rho_rec(g->0) -> 1 + rho_rec_limit0 * g^2 """ return -2 * self.gamma2 * self.expnorm - 0.25 * self.beta2 * ( 1 - self.expnorm) def eV_to_k(energy): """ Convert energy to reciprocal vector magnitude k via hbar*k^2/2m Args: a: Energy in eV. Returns: (double) Reciprocal vector magnitude (units of 1/Bohr). """ return math.sqrt(energy / invang_to_ev) * ang_to_bohr def genrecip(a1, a2, a3, encut): """ Args: a1, a2, a3: lattice vectors in bohr encut: energy cut off in eV Returns: reciprocal lattice vectors with energy less than encut """ vol = np.dot(a1, np.cross(a2, a3)) # 1/bohr^3 b1 = (2 * np.pi / vol) * np.cross(a2, a3) # units 1/bohr b2 = (2 * np.pi / vol) * np.cross(a3, a1) b3 = (2 * np.pi / vol) * np.cross(a1, a2) # create list of recip space vectors that satisfy |i*b1+j*b2+k*b3|<=encut G_cut = eV_to_k(encut) # Figure out max in all recipricol lattice directions i_max = int(math.ceil(G_cut / norm(b1))) j_max = int(math.ceil(G_cut / norm(b2))) k_max = int(math.ceil(G_cut / norm(b3))) # Build index list i = np.arange(-i_max, i_max) j = np.arange(-j_max, j_max) k = np.arange(-k_max, k_max) # Convert index to vectors using meshgrid indicies = np.array(np.meshgrid(i, j, k)).T.reshape(-1, 3) # Multiply integer vectors to get recipricol space vectors vecs = np.dot(indicies, [b1, b2, b3]) # Calculate radii of all vectors radii = np.sqrt(np.einsum('ij,ij->i', vecs, vecs)) # Yield based on radii for vec, r in zip(vecs, radii): if r < G_cut and r != 0: yield vec def generate_reciprocal_vectors_squared(a1, a2, a3, encut): """ Generate reciprocal vector magnitudes within the cutoff along the specied lattice vectors. Args: a1: Lattice vector a (in Bohrs) a2: Lattice vector b (in Bohrs) a3: Lattice vector c (in Bohrs) encut: Reciprocal vector energy cutoff Returns: [[g1^2], [g2^2], ...] Square of reciprocal vectors (1/Bohr)^2 determined by a1, a2, a3 and whose magntidue is less than gcut^2. """ for vec in genrecip(a1, a2, a3, encut): yield np.dot(vec, vec) def closestsites(struct_blk, struct_def, pos): """ Returns closest site to the input position for both bulk and defect structures Args: struct_blk: Bulk structure struct_def: Defect structure pos: Position Return: (site object, dist, index) """ blk_close_sites = struct_blk.get_sites_in_sphere(pos, 5, include_index=True) blk_close_sites.sort(key=lambda x: x[1]) def_close_sites = struct_def.get_sites_in_sphere(pos, 5, include_index=True) def_close_sites.sort(key=lambda x: x[1]) return blk_close_sites[0], def_close_sites[0] class StructureMotifInterstitial: """ Generate interstitial sites at positions where the interstitialcy is coordinated by nearest neighbors in a way that resembles basic structure motifs (e.g., tetrahedra, octahedra). The algorithm is called InFiT (Interstitialcy Finding Tool), it was introducted by Nils E. R. Zimmermann, Matthew K. Horton, Anubhav Jain, and Maciej Haranczyk (Front. Mater., 4, 34, 2017), and it is used by the Python Charged Defect Toolkit (PyCDT: D. Broberg et al., Comput. Phys. Commun., in press, 2018). """ def __init__(self, struct, inter_elem, motif_types=("tetrahedral", "octahedral"), op_threshs=(0.3, 0.5), dl=0.2, doverlap=1, facmaxdl=1.01, verbose=False): """ Generates symmetrically distinct interstitial sites at positions where the interstitial is coordinated by nearest neighbors in a pattern that resembles a supported structure motif (e.g., tetrahedra, octahedra). Args: struct (Structure): input structure for which symmetrically distinct interstitial sites are to be found. inter_elem (string): element symbol of desired interstitial. motif_types ([string]): list of structure motif types that are to be considered. Permissible types are: tet (tetrahedron), oct (octahedron). op_threshs ([float]): threshold values for the underlying order parameters to still recognize a given structural motif (i.e., for an OP value >= threshold the coordination pattern match is positive, for OP < threshold the match is negative. dl (float): grid fineness in Angstrom. The input structure is divided into a grid of dimension a/dl x b/dl x c/dl along the three crystallographic directions, with a, b, and c being the lengths of the three lattice vectors of the input unit cell. doverlap (float): distance that is considered to flag an overlap between any trial interstitial site and a host atom. facmaxdl (float): factor to be multiplied with the maximum grid width that is then used as a cutoff distance for the clustering prune step. verbose (bool): flag indicating whether (True) or not (False; default) to print additional information to screen. """ # Initialize interstitial finding. self._structure = struct.copy() self._motif_types = motif_types[:] if len(self._motif_types) == 0: raise RuntimeError("no motif types provided.") self._op_threshs = op_threshs[:] self.cn_motif_lostop = {} self.target_cns = [] for motif in self._motif_types: if motif not in list(motif_cn_op.keys()): raise RuntimeError("unsupported motif type: {}.".format(motif)) cn = int(motif_cn_op[motif]['cn']) if cn not in self.target_cns: self.target_cns.append(cn) if cn not in list(self.cn_motif_lostop.keys()): self.cn_motif_lostop[cn] = {} tmp_optype = motif_cn_op[motif]['optype'] if tmp_optype == 'tet_max': tmp_optype = 'tet' if tmp_optype == 'oct_max': tmp_optype = 'oct' self.cn_motif_lostop[cn][motif] = LocalStructOrderParams( [tmp_optype], parameters=[motif_cn_op[motif]['params']], cutoff=-10.0) self._dl = dl self._defect_sites = [] self._defect_types = [] self._defect_site_multiplicity = [] self._defect_cns = [] self._defect_opvals = [] rots, trans = SpacegroupAnalyzer(struct)._get_symmetry() nbins = [int(struct.lattice.a / dl), int(struct.lattice.b / dl), int(struct.lattice.c / dl)] dls = [ struct.lattice.a / float(nbins[0]), struct.lattice.b / float(nbins[1]), struct.lattice.c / float(nbins[2]) ] maxdl = max(dls) if verbose: print("Grid size: {} {} {}".format(nbins[0], nbins[1], nbins[2])) print("dls: {} {} {}".format(dls[0], dls[1], dls[2])) struct_w_inter = struct.copy() struct_w_inter.append(inter_elem, [0, 0, 0]) natoms = len(list(struct_w_inter.sites)) trialsites = [] # Build index list i = np.arange(0, nbins[0]) + 0.5 j = np.arange(0, nbins[1]) + 0.5 k = np.arange(0, nbins[2]) + 0.5 # Convert index to vectors using meshgrid indicies = np.array(np.meshgrid(i, j, k)).T.reshape(-1, 3) # Multiply integer vectors to get recipricol space vectors vecs = np.multiply(indicies, np.divide(1, nbins)) # Loop over trial positions that are based on a regular # grid in fractional coordinate space # within the unit cell. for vec in vecs: struct_w_inter.replace(natoms - 1, inter_elem, coords=vec, coords_are_cartesian=False) if len(struct_w_inter.get_sites_in_sphere( struct_w_inter.sites[natoms - 1].coords, doverlap)) == 1: neighs_images_weigths = MinimumDistanceNN(tol=0.8, cutoff=6).get_nn_info( struct_w_inter, natoms - 1) neighs_images_weigths_sorted = sorted(neighs_images_weigths, key=lambda x: x['weight'], reverse=True) for nsite in range(1, len(neighs_images_weigths_sorted) + 1): if nsite not in self.target_cns: continue allsites = [neighs_images_weigths_sorted[i]['site'] for i in range(nsite)] indices_neighs = [i for i in range(len(allsites))] allsites.append(struct_w_inter.sites[natoms - 1]) for mot, ops in self.cn_motif_lostop[nsite].items(): opvals = ops.get_order_parameters( allsites, len(allsites) - 1, indices_neighs=indices_neighs) if opvals[0] > op_threshs[motif_types.index(mot)]: cns = {} for isite in range(nsite): site = neighs_images_weigths_sorted[isite][ 'site'] if isinstance(site.specie, Element): elem = site.specie.symbol else: elem = site.specie.element.symbol if elem in list(cns.keys()): cns[elem] = cns[elem] + 1 else: cns[elem] = 1 trialsites.append({ "mtype": mot, "opval": opvals[0], "coords": struct_w_inter.sites[ natoms - 1].coords[:], "fracs": vec, "cns": dict(cns) }) break # Prune list of trial sites by clustering and find the site # with the largest order parameter value in each cluster. nintersites = len(trialsites) unique_motifs = [] for ts in trialsites: if ts["mtype"] not in unique_motifs: unique_motifs.append(ts["mtype"]) labels = {} connected = [] for i in range(nintersites): connected.append([]) for j in range(nintersites): dist, image = struct_w_inter.lattice.get_distance_and_image( trialsites[i]["fracs"], trialsites[j]["fracs"]) connected[i].append( True if dist < (maxdl * facmaxdl) else False) include = [] for motif in unique_motifs: labels[motif] = [] for i, ts in enumerate(trialsites): labels[motif].append(i if ts["mtype"] == motif else -1) change = True while change: change = False for i in range(nintersites - 1): if change: break if labels[motif][i] == -1: continue for j in range(i + 1, nintersites): if labels[motif][j] == -1: continue if connected[i][j] and labels[motif][i] != \ labels[motif][j]: if labels[motif][i] < labels[motif][j]: labels[motif][j] = labels[motif][i] else: labels[motif][i] = labels[motif][j] change = True break unique_ids = [] for l in labels[motif]: if l != -1 and l not in unique_ids: unique_ids.append(l) if verbose: print("unique_ids {} {}".format(motif, unique_ids)) for uid in unique_ids: maxq = 0.0 imaxq = -1 for i in range(nintersites): if labels[motif][i] == uid: if imaxq < 0 or trialsites[i]["opval"] > maxq: imaxq = i maxq = trialsites[i]["opval"] include.append(imaxq) # Prune by symmetry. multiplicity = {} discard = [] for motif in unique_motifs: discard_motif = [] for indi, i in enumerate(include): if trialsites[i]["mtype"] != motif or \ i in discard_motif: continue multiplicity[i] = 1 symposlist = [ trialsites[i]["fracs"].dot(np.array(m, dtype=float)) for m in rots] for t in trans: symposlist.append(trialsites[i]["fracs"] + np.array(t)) for indj in range(indi + 1, len(include)): j = include[indj] if trialsites[j]["mtype"] != motif or \ j in discard_motif: continue for sympos in symposlist: dist, image = struct.lattice.get_distance_and_image( sympos, trialsites[j]["fracs"]) if dist < maxdl * facmaxdl: discard_motif.append(j) multiplicity[i] += 1 break for i in discard_motif: if i not in discard: discard.append(i) if verbose: print("Initial trial sites: {}\nAfter clustering: {}\n" "After symmetry pruning: {}".format(len(trialsites), len(include), len(include) - len( discard))) for i in include: if i not in discard: self._defect_sites.append( PeriodicSite( Element(inter_elem), trialsites[i]["fracs"], self._structure.lattice, to_unit_cell=False, coords_are_cartesian=False, properties=None)) self._defect_types.append(trialsites[i]["mtype"]) self._defect_cns.append(trialsites[i]["cns"]) self._defect_site_multiplicity.append(multiplicity[i]) self._defect_opvals.append(trialsites[i]["opval"]) def enumerate_defectsites(self): """ Get all defect sites. Returns: defect_sites ([PeriodicSite]): list of periodic sites representing the interstitials. """ return self._defect_sites def get_motif_type(self, i): """ Get the motif type of defect with index i (e.g., "tet"). Returns: motif (string): motif type. """ return self._defect_types[i] def get_defectsite_multiplicity(self, n): """ Returns the symmtric multiplicity of the defect site at the index. """ return self._defect_site_multiplicity[n] def get_coordinating_elements_cns(self, i): """ Get element-specific coordination numbers of defect with index i. Returns: elem_cn (dict): dictionary storing the coordination numbers (int) with string representation of elements as keys. (i.e., {elem1 (string): cn1 (int), ...}). """ return self._defect_cns[i] def get_op_value(self, i): """ Get order-parameter value of defect with index i. Returns: opval (float): OP value. """ return self._defect_opvals[i] def make_supercells_with_defects(self, scaling_matrix): """ Generate a sequence of supercells in which each supercell contains a single interstitial, except for the first supercell in the sequence which is a copy of the defect-free input structure. Args: scaling_matrix (3x3 integer array): scaling matrix to transform the lattice vectors. Returns: scs ([Structure]): sequence of supercells. """ scs = [] sc = self._structure.copy() sc.make_supercell(scaling_matrix) scs.append(sc) for ids, defect_site in enumerate(self._defect_sites): sc_with_inter = sc.copy() sc_with_inter.append( defect_site.species_string, defect_site.frac_coords, coords_are_cartesian=False, validate_proximity=False, properties=None) if not sc_with_inter: raise RuntimeError( "could not generate supercell with" " interstitial {}".format( ids + 1)) scs.append(sc_with_inter.copy()) return scs class TopographyAnalyzer: """ This is a generalized module to perform topological analyses of a crystal structure using Voronoi tessellations. It can be used for finding potential interstitial sites. Applications including using these sites for inserting additional atoms or for analyzing diffusion pathways. Note that you typically want to do some preliminary postprocessing after the initial construction. The initial construction will create a lot of points, especially for determining potential insertion sites. Some helper methods are available to perform aggregation and elimination of nodes. A typical use is something like:: a = TopographyAnalyzer(structure, ["O"], ["P"]) a.cluster_nodes() a.remove_collisions() """ def __init__(self, structure, framework_ions, cations, tol=0.0001, max_cell_range=1, check_volume=True, constrained_c_frac=0.5, thickness=0.5): """ Init. Args: structure (Structure): An initial structure. framework_ions ([str]): A list of ions to be considered as a framework. Typically, this would be all anion species. E.g., ["O", "S"]. cations ([str]): A list of ions to be considered as non-migrating cations. E.g., if you are looking at Li3PS4 as a Li conductor, Li is a mobile species. Your cations should be [ "P"]. The cations are used to exclude polyhedra from diffusion analysis since those polyhedra are already occupied. tol (float): A tolerance distance for the analysis, used to determine if something are actually periodic boundary images of each other. Default is usually fine. max_cell_range (int): This is the range of periodic images to construct the Voronoi tesselation. A value of 1 means that we include all points from (x +- 1, y +- 1, z+- 1) in the voronoi construction. This is because the Voronoi poly extends beyond the standard unit cell because of PBC. Typically, the default value of 1 works fine for most structures and is fast. But for really small unit cells with high symmetry, you may need to increase this to 2 or higher. check_volume (bool): Set False when ValueError always happen after tuning tolerance. constrained_c_frac (float): Constraint the region where users want to do Topology analysis the default value is 0.5, which is the fractional coordinate of the cell thickness (float): Along with constrained_c_frac, limit the thickness of the regions where we want to explore. Default is 0.5, which is mapping all the site of the unit cell. """ self.structure = structure self.framework_ions = set([get_el_sp(sp) for sp in framework_ions]) self.cations = set([get_el_sp(sp) for sp in cations]) # Let us first map all sites to the standard unit cell, i.e., # 0 ≤ coordinates < 1. # structure = Structure.from_sites(structure, to_unit_cell=True) # lattice = structure.lattice # We could constrain the region where we want to dope/explore by setting # the value of constrained_c_frac and thickness. The default mode is # mapping all sites to the standard unit cell s = structure.copy() constrained_sites = [] for i, site in enumerate(s): if site.frac_coords[2] >= constrained_c_frac - thickness and \ site.frac_coords[ 2] <= constrained_c_frac + thickness: constrained_sites.append(site) structure = Structure.from_sites(sites=constrained_sites) lattice = structure.lattice # Divide the sites into framework and non-framework sites. framework = [] non_framework = [] for site in structure: if self.framework_ions.intersection(site.species.keys()): framework.append(site) else: non_framework.append(site) # We construct a supercell series of coords. This is because the # Voronoi polyhedra can extend beyond the standard unit cell. Using a # range of -2, -1, 0, 1 should be fine. coords = [] cell_range = list(range(-max_cell_range, max_cell_range + 1)) for shift in itertools.product(cell_range, cell_range, cell_range): for site in framework: shifted = site.frac_coords + shift coords.append(lattice.get_cartesian_coords(shifted)) # Perform the voronoi tessellation. voro = Voronoi(coords) # Store a mapping of each voronoi node to a set of points. node_points_map = defaultdict(set) for pts, vs in voro.ridge_dict.items(): for v in vs: node_points_map[v].update(pts) logger.debug("%d total Voronoi vertices" % len(voro.vertices)) # Vnodes store all the valid voronoi polyhedra. Cation vnodes store # the voronoi polyhedra that are already occupied by existing cations. vnodes = [] cation_vnodes = [] def get_mapping(poly): """ Helper function to check if a vornoi poly is a periodic image of one of the existing voronoi polys. """ for v in vnodes: if v.is_image(poly, tol): return v return None # Filter all the voronoi polyhedra so that we only consider those # which are within the unit cell. for i, vertex in enumerate(voro.vertices): if i == 0: continue fcoord = lattice.get_fractional_coords(vertex) poly = VoronoiPolyhedron(lattice, fcoord, node_points_map[i], coords, i) if np.all([-tol <= c < 1 + tol for c in fcoord]): if len(vnodes) == 0: vnodes.append(poly) else: ref = get_mapping(poly) if ref is None: vnodes.append(poly) logger.debug("%d voronoi vertices in cell." % len(vnodes)) # Eliminate all voronoi nodes which are closest to existing cations. if len(cations) > 0: cation_coords = [ site.frac_coords for site in non_framework if self.cations.intersection(site.species.keys()) ] vertex_fcoords = [v.frac_coords for v in vnodes] dist_matrix = lattice.get_all_distances(cation_coords, vertex_fcoords) indices = \ np.where(dist_matrix == np.min(dist_matrix, axis=1)[:, None])[1] cation_vnodes = [v for i, v in enumerate(vnodes) if i in indices] vnodes = [v for i, v in enumerate(vnodes) if i not in indices] logger.debug("%d vertices in cell not with cation." % len(vnodes)) self.coords = coords self.vnodes = vnodes self.cation_vnodes = cation_vnodes self.framework = framework self.non_framework = non_framework if check_volume: self.check_volume() def check_volume(self): """ Basic check for volume of all voronoi poly sum to unit cell volume Note that this does not apply after poly combination. """ vol = sum((v.volume for v in self.vnodes)) + sum( (v.volume for v in self.cation_vnodes)) if abs(vol - self.structure.volume) > 1e-8: raise ValueError( "Sum of voronoi volumes is not equal to original volume of " "structure! This may lead to inaccurate results. You need to " "tweak the tolerance and max_cell_range until you get a " "correct mapping.") def cluster_nodes(self, tol=0.2): """ Cluster nodes that are too close together using a tol. Args: tol (float): A distance tolerance. PBC is taken into account. """ lattice = self.structure.lattice vfcoords = [v.frac_coords for v in self.vnodes] # Manually generate the distance matrix (which needs to take into # account PBC. dist_matrix = np.array(lattice.get_all_distances(vfcoords, vfcoords)) dist_matrix = (dist_matrix + dist_matrix.T) / 2 for i in range(len(dist_matrix)): dist_matrix[i, i] = 0 condensed_m = squareform(dist_matrix) z = linkage(condensed_m) cn = fcluster(z, tol, criterion="distance") merged_vnodes = [] for n in set(cn): poly_indices = set() frac_coords = [] for i, j in enumerate(np.where(cn == n)[0]): poly_indices.update(self.vnodes[j].polyhedron_indices) if i == 0: frac_coords.append(self.vnodes[j].frac_coords) else: fcoords = self.vnodes[j].frac_coords # We need the image to combine the frac_coords properly. d, image = lattice.get_distance_and_image(frac_coords[0], fcoords) frac_coords.append(fcoords + image) merged_vnodes.append( VoronoiPolyhedron(lattice, np.average(frac_coords, axis=0), poly_indices, self.coords)) self.vnodes = merged_vnodes logger.debug("%d vertices after combination." % len(self.vnodes)) def remove_collisions(self, min_dist=0.5): """ Remove vnodes that are too close to existing atoms in the structure Args: min_dist(float): The minimum distance that a vertex needs to be from existing atoms. """ vfcoords = [v.frac_coords for v in self.vnodes] sfcoords = self.structure.frac_coords dist_matrix = self.structure.lattice.get_all_distances(vfcoords, sfcoords) all_dist = np.min(dist_matrix, axis=1) new_vnodes = [] for i, v in enumerate(self.vnodes): if all_dist[i] > min_dist: new_vnodes.append(v) self.vnodes = new_vnodes def get_structure_with_nodes(self): """ Get the modified structure with the voronoi nodes inserted. The species is set as a DummySpecie X. """ new_s = Structure.from_sites(self.structure) for v in self.vnodes: new_s.append("X", v.frac_coords) return new_s def print_stats(self): """ Print stats such as the MSE dist. """ latt = self.structure.lattice def get_min_dist(fcoords): n = len(fcoords) dist = latt.get_all_distances(fcoords, fcoords) all_dist = [dist[i, j] for i in range(n) for j in range(i + 1, n)] return min(all_dist) voro = [s[1] for s in self.vertices] print("Min dist between voronoi vertices centers = %.4f" % get_min_dist( voro)) def get_non_framework_dist(fcoords): cations = [site.frac_coords for site in self.non_framework] dist_matrix = latt.get_all_distances(cations, fcoords) min_dist = np.min(dist_matrix, axis=1) if len(cations) != len(min_dist): raise Exception("Could not calculate distance to all cations") return np.linalg.norm(min_dist), min(min_dist), max(min_dist) print(len(self.non_framework)) print("MSE dist voro = %s" % str(get_non_framework_dist(voro))) def write_topology(self, fname="Topo.cif"): """ Write topology to a file. :param fname: Filename """ new_s = Structure.from_sites(self.structure) for v in self.vnodes: new_s.append("Mg", v.frac_coords) new_s.to(filename=fname) def analyze_symmetry(self, tol): """ :param tol: Tolerance for SpaceGroupAnalyzer :return: List """ s = Structure.from_sites(self.framework) site_to_vindex = {} for i, v in enumerate(self.vnodes): s.append("Li", v.frac_coords) site_to_vindex[s[-1]] = i print(len(s)) finder = SpacegroupAnalyzer(s, tol) print(finder.get_space_group_operations()) symm_structure = finder.get_symmetrized_structure() print(len(symm_structure.equivalent_sites)) return [[site_to_vindex[site] for site in sites] for sites in symm_structure.equivalent_sites if sites[0].specie.symbol == "Li"] def vtk(self): """ Show VTK visualization. """ if StructureVis is None: raise NotImplementedError("vtk must be present to view.") lattice = self.structure.lattice vis = StructureVis() vis.set_structure(Structure.from_sites(self.structure)) for v in self.vnodes: vis.add_site(PeriodicSite("K", v.frac_coords, lattice)) vis.add_polyhedron( [PeriodicSite("S", c, lattice, coords_are_cartesian=True) for c in v.polyhedron_coords], PeriodicSite("Na", v.frac_coords, lattice), color="element", draw_edges=True, edges_color=(0, 0, 0)) vis.show() class VoronoiPolyhedron: """ Convenience container for a voronoi point in PBC and its associated polyhedron. """ def __init__(self, lattice, frac_coords, polyhedron_indices, all_coords, name=None): """ :param lattice: :param frac_coords: :param polyhedron_indices: :param all_coords: :param name: """ self.lattice = lattice self.frac_coords = frac_coords self.polyhedron_indices = polyhedron_indices self.polyhedron_coords = np.array(all_coords)[list(polyhedron_indices), :] self.name = name def is_image(self, poly, tol): """ :param poly: VoronoiPolyhedron :param tol: Coordinate tolerance. :return: Whether a poly is an image of the current one. """ frac_diff = pbc_diff(poly.frac_coords, self.frac_coords) if not np.allclose(frac_diff, [0, 0, 0], atol=tol): return False to_frac = self.lattice.get_fractional_coords for c1 in self.polyhedron_coords: found = False for c2 in poly.polyhedron_coords: d = pbc_diff(to_frac(c1), to_frac(c2)) if not np.allclose(d, [0, 0, 0], atol=tol): found = True break if not found: return False return True @property def coordination(self): """ :return: Coordination number """ return len(self.polyhedron_indices) @property def volume(self): """ :return: Volume """ return calculate_vol(self.polyhedron_coords) def __str__(self): return "Voronoi polyhedron %s" % self.name class ChargeDensityAnalyzer: """ Analyzer to find potential interstitial sites based on charge density. The `total` charge density is used. """ def __init__(self, chgcar): """ Initialization. Args: chgcar (pmg.Chgcar): input Chgcar object. """ self.chgcar = chgcar self.structure = chgcar.structure self.extrema_coords = [] # list of frac_coords of local extrema self.extrema_type = None # "local maxima" or "local minima" self._extrema_df = None # extrema frac_coords - chg density table self._charge_distribution_df = None # frac_coords - chg density table @classmethod def from_file(cls, chgcar_filename): """ Init from a CHGCAR. :param chgcar_filename: :return: """ chgcar = Chgcar.from_file(chgcar_filename) return cls(chgcar=chgcar) @property def charge_distribution_df(self): """ :return: Charge distribution. """ if self._charge_distribution_df is None: return self._get_charge_distribution_df() else: return self._charge_distribution_df @property def extrema_df(self): """ :return: The extrema in charge density. """ if self.extrema_type is None: logger.warning( "Please run ChargeDensityAnalyzer.get_local_extrema first!") return self._extrema_df def _get_charge_distribution_df(self): """ Return a complete table of fractional coordinates - charge density. """ # Fraction coordinates and corresponding indices axis_grid = np.array([np.array(self.chgcar.get_axis_grid(i)) / self.structure.lattice.abc[i] for i in range(3)]) axis_index = np.array([range(len(axis_grid[i])) for i in range(3)]) data = {} for index in itertools.product(*axis_index): a, b, c = index f_coords = (axis_grid[0][a], axis_grid[1][b], axis_grid[2][c]) data[f_coords] = self.chgcar.data["total"][a][b][c] # Fraction coordinates - charge density table df = pd.Series(data).reset_index() df.columns = ['a', 'b', 'c', 'Charge Density'] self._charge_distribution_df = df return df def _update_extrema(self, f_coords, extrema_type, threshold_frac=None, threshold_abs=None): """Update _extrema_df, extrema_type and extrema_coords""" if threshold_frac is not None: if threshold_abs is not None: logger.warning( # Exit if both filter are set "Filter can be either threshold_frac or threshold_abs!") return if threshold_frac > 1 or threshold_frac < 0: raise Exception("threshold_frac range is [0, 1]!") # Return empty result if coords list is empty if len(f_coords) == 0: df = pd.DataFrame({}, columns=['A', 'B', 'C', "Chgcar"]) self._extrema_df = df self.extrema_coords = [] logger.info("Find {} {}.".format(len(df), extrema_type)) return data = {} unit = 1 / np.array(self.chgcar.dim) # pixel along a, b, c for fc in f_coords: a, b, c = tuple(map(int, fc / unit)) data[tuple(fc)] = self.chgcar.data["total"][a][b][c] df = pd.Series(data).reset_index() df.columns = ['a', 'b', 'c', 'Charge Density'] ascending = (extrema_type == "local minima") if threshold_abs is None: threshold_frac = threshold_frac \ if threshold_frac is not None else 1.0 num_extrema = int(threshold_frac * len(f_coords)) df = df.sort_values(by="Charge Density", ascending=ascending)[ 0:num_extrema] df.reset_index(drop=True, inplace=True) # reset major index else: # threshold_abs is set df = df.sort_values(by="Charge Density", ascending=ascending) df = df[df["Charge Density"] <= threshold_abs] if ascending \ else df[df["Charge Density"] >= threshold_abs] extrema_coords = [] for row in df.iterrows(): fc = np.array(row[1]["a":"c"]) extrema_coords.append(fc) self._extrema_df = df self.extrema_type = extrema_type self.extrema_coords = extrema_coords logger.info("Find {} {}.".format(len(df), extrema_type)) @requires(peak_local_max_found, "get_local_extrema requires skimage.feature.peak_local_max module" " to be installed. Please confirm your skimage installation.") def get_local_extrema(self, find_min=True, threshold_frac=None, threshold_abs=None): """ Get all local extrema fractional coordinates in charge density, searching for local minimum by default. Note that sites are NOT grouped symmetrically. Args: find_min (bool): True to find local minimum else maximum, otherwise find local maximum. threshold_frac (float): optional fraction of extrema shown, which returns `threshold_frac * tot_num_extrema` extrema fractional coordinates based on highest/lowest intensity. E.g. set 0.2 to show the extrema with 20% highest or lowest intensity. Value range: 0 <= threshold_frac <= 1 Note that threshold_abs and threshold_frac should not set in the same time. threshold_abs (float): optional filter. When searching for local minima, intensity <= threshold_abs returns; when searching for local maxima, intensity >= threshold_abs returns. Note that threshold_abs and threshold_frac should not set in the same time. Returns: extrema_coords (list): list of fractional coordinates corresponding to local extrema. """ sign, extrema_type = 1, "local maxima" if find_min: sign, extrema_type = -1, "local minima" # Make 3x3x3 supercell # This is a trick to resolve the periodical boundary issue. total_chg = sign * self.chgcar.data["total"] total_chg = np.tile(total_chg, reps=(3, 3, 3)) coordinates = peak_local_max(total_chg, min_distance=1) # Remove duplicated sites introduced by supercell. f_coords = [coord / total_chg.shape * 3 for coord in coordinates] f_coords = [f - 1 for f in f_coords if all(np.array(f) < 2) and all(np.array(f) >= 1)] # Update information self._update_extrema(f_coords, extrema_type, threshold_frac=threshold_frac, threshold_abs=threshold_abs) return self.extrema_coords def cluster_nodes(self, tol=0.2): """ Cluster nodes that are too close together using a tol. Args: tol (float): A distance tolerance. PBC is taken into account. """ lattice = self.structure.lattice vf_coords = self.extrema_coords if len(vf_coords) == 0: if self.extrema_type is None: logger.warning( "Please run ChargeDensityAnalyzer.get_local_extrema first!") return new_f_coords = [] self._update_extrema(new_f_coords, self.extrema_type) return new_f_coords # Manually generate the distance matrix (which needs to take into # account PBC. dist_matrix = np.array(lattice.get_all_distances(vf_coords, vf_coords)) dist_matrix = (dist_matrix + dist_matrix.T) / 2 for i in range(len(dist_matrix)): dist_matrix[i, i] = 0 condensed_m = squareform(dist_matrix) z = linkage(condensed_m) cn = fcluster(z, tol, criterion="distance") merged_fcoords = [] for n in set(cn): frac_coords = [] for i, j in enumerate(np.where(cn == n)[0]): if i == 0: frac_coords.append(self.extrema_coords[j]) else: f_coords = self.extrema_coords[j] # We need the image to combine the frac_coords properly. d, image = lattice.get_distance_and_image(frac_coords[0], f_coords) frac_coords.append(f_coords + image) merged_fcoords.append(np.average(frac_coords, axis=0)) merged_fcoords = [f - np.floor(f) for f in merged_fcoords] merged_fcoords = [f * (np.abs(f - 1) > 1E-15) for f in merged_fcoords] # the second line for fringe cases like # np.array([ 5.0000000e-01 -4.4408921e-17 5.0000000e-01]) # where the shift to [0,1) does not work due to float precision self._update_extrema(merged_fcoords, extrema_type=self.extrema_type) logger.debug( "{} vertices after combination.".format(len(self.extrema_coords))) def remove_collisions(self, min_dist=0.5): """ Remove predicted sites that are too close to existing atoms in the structure. Args: min_dist (float): The minimum distance (in Angstrom) that a predicted site needs to be from existing atoms. A min_dist with value <= 0 returns all sites without distance checking. """ s_f_coords = self.structure.frac_coords f_coords = self.extrema_coords if len(f_coords) == 0: if self.extrema_type is None: logger.warning( "Please run ChargeDensityAnalyzer.get_local_extrema first!") return new_f_coords = [] self._update_extrema(new_f_coords, self.extrema_type) return new_f_coords dist_matrix = self.structure.lattice.get_all_distances(f_coords, s_f_coords) all_dist = np.min(dist_matrix, axis=1) new_f_coords = [] for i, f in enumerate(f_coords): if all_dist[i] > min_dist: new_f_coords.append(f) self._update_extrema(new_f_coords, self.extrema_type) return new_f_coords def get_structure_with_nodes(self, find_min=True, min_dist=0.5, tol=0.2, threshold_frac=None, threshold_abs=None): """ Get the modified structure with the possible interstitial sites added. The species is set as a DummySpecie X. Args: find_min (bool): True to find local minimum else maximum, otherwise find local maximum. min_dist (float): The minimum distance (in Angstrom) that a predicted site needs to be from existing atoms. A min_dist with value <= 0 returns all sites without distance checking. tol (float): A distance tolerance of nodes clustering that sites too closed to other predicted sites will be merged. PBC is taken into account. threshold_frac (float): optional fraction of extrema, which returns `threshold_frac * tot_num_extrema` extrema fractional coordinates based on highest/lowest intensity. E.g. set 0.2 to insert DummySpecie atom at the extrema with 20% highest or lowest intensity. Value range: 0 <= threshold_frac <= 1 Note that threshold_abs and threshold_frac should not set in the same time. threshold_abs (float): optional filter. When searching for local minima, intensity <= threshold_abs returns; when searching for local maxima, intensity >= threshold_abs returns. Note that threshold_abs and threshold_frac should not set in the same time. Returns: structure (Structure) """ structure = self.structure.copy() self.get_local_extrema(find_min=find_min, threshold_frac=threshold_frac, threshold_abs=threshold_abs) self.remove_collisions(min_dist) self.cluster_nodes(tol=tol) for fc in self.extrema_coords: structure.append("X", fc) return structure def sort_sites_by_integrated_chg(self, r=0.4): """ Get the average charge density around each local minima in the charge density and store the result in _extrema_df Args: r (float): radius of sphere around each site to evaluate the average """ if self.extrema_type is None: self.get_local_extrema() int_den = [] for isite in self.extrema_coords: mask = self._dist_mat(isite) < r vol_sphere = self.chgcar.structure.volume * (mask.sum() / self.chgcar.ngridpts) chg_in_sphere = np.sum(self.chgcar.data['total'] * mask) / mask.size / vol_sphere int_den.append(chg_in_sphere) self._extrema_df['avg_charge_den'] = int_den self._extrema_df.sort_values(by=['avg_charge_den'], inplace=True) self._extrema_df.reset_index(drop=True, inplace=True) def _dist_mat(self, pos_frac): # return a matrix that contains the distances aa = np.linspace(0, 1, len(self.chgcar.get_axis_grid(0)), endpoint=False) bb = np.linspace(0, 1, len(self.chgcar.get_axis_grid(1)), endpoint=False) cc = np.linspace(0, 1, len(self.chgcar.get_axis_grid(2)), endpoint=False) AA, BB, CC = np.meshgrid(aa, bb, cc, indexing='ij') dist_from_pos = self.chgcar.structure.lattice.get_all_distances( fcoords1=np.vstack([AA.flatten(), BB.flatten(), CC.flatten()]).T, fcoords2=pos_frac) return dist_from_pos.reshape(AA.shape) def calculate_vol(coords): """ Calculate volume given a set of coords. :param coords: List of coords. :return: Volume """ if len(coords) == 4: coords_affine = np.ones((4, 4)) coords_affine[:, 0:3] = np.array(coords) return abs(np.linalg.det(coords_affine)) / 6 else: simplices = get_facets(coords, joggle=True) center = np.average(coords, axis=0) vol = 0 for s in simplices: c = list(coords[i] for i in s) c.append(center) vol += calculate_vol(c) return vol def converge(f, step, tol, max_h): """ simple newton iteration based convergence function """ g = f(0) dx = 10000 h = step while (dx > tol): g2 = f(h) dx = abs(g - g2) g = g2 h += step if h > max_h: raise Exception("Did not converge before {}".format(h)) return g def tune_for_gamma(lattice, epsilon): """ This tunes the gamma parameter for Kumagai anisotropic Ewald calculation. Method is to find a gamma parameter which generates a similar number of reciprocal and real lattice vectors, given the suggested cut off radii by Kumagai and Oba """ logger.debug("Converging for ewald parameter...") prec = 25 # a reasonable precision to tune gamma for gamma = (2 * np.average(lattice.abc)) ** (-1 / 2.) recip_set, _, real_set, _ = generate_R_and_G_vecs(gamma, prec, lattice, epsilon) recip_set = recip_set[0] real_set = real_set[0] logger.debug("First approach with gamma ={}\nProduced {} real vecs and {} recip " "vecs.".format(gamma, len(real_set), len(recip_set))) while float(len(real_set)) / len(recip_set) > 1.05 or \ float(len(recip_set)) / len(real_set) > 1.05: gamma *= (float(len(real_set)) / float(len(recip_set))) ** 0.17 logger.debug("\tNot converged...Try modifying gamma to {}.".format(gamma)) recip_set, _, real_set, _ = generate_R_and_G_vecs(gamma, prec, lattice, epsilon) recip_set = recip_set[0] real_set = real_set[0] logger.debug("Now have {} real vecs and {} recip vecs.".format(len(real_set), len(recip_set))) logger.debug("Converged with gamma = {}".format(gamma)) return gamma def generate_R_and_G_vecs(gamma, prec_set, lattice, epsilon): """ This returns a set of real and reciprocal lattice vectors (and real/recip summation values) based on a list of precision values (prec_set) gamma (float): Ewald parameter prec_set (list or number): for prec values to consider (20, 25, 30 are sensible numbers) lattice: Lattice object of supercell in question """ if type(prec_set) != list: prec_set = [prec_set] [a1, a2, a3] = lattice.matrix # Angstrom volume = lattice.volume [b1, b2, b3] = lattice.reciprocal_lattice.matrix # 1/ Angstrom invepsilon = np.linalg.inv(epsilon) rd_epsilon = np.sqrt(np.linalg.det(epsilon)) # generate reciprocal vector set (for each prec_set) recip_set = [[] for prec in prec_set] recip_summation_values = [0. for prec in prec_set] recip_cut_set = [(2 * gamma * prec) for prec in prec_set] i_max = int(math.ceil(max(recip_cut_set) / np.linalg.norm(b1))) j_max = int(math.ceil(max(recip_cut_set) / np.linalg.norm(b2))) k_max = int(math.ceil(max(recip_cut_set) / np.linalg.norm(b3))) for i in np.arange(-i_max, i_max + 1): for j in np.arange(-j_max, j_max + 1): for k in np.arange(-k_max, k_max + 1): if not i and not j and not k: continue gvec = i * b1 + j * b2 + k * b3 normgvec = np.linalg.norm(gvec) for recip_cut_ind, recip_cut in enumerate(recip_cut_set): if normgvec <= recip_cut: recip_set[recip_cut_ind].append(gvec) Gdotdiel = np.dot(gvec, np.dot(epsilon, gvec)) summand = math.exp(-Gdotdiel / (4 * (gamma ** 2))) / Gdotdiel recip_summation_values[recip_cut_ind] += summand recip_summation_values = np.array(recip_summation_values) recip_summation_values /= volume # generate real vector set (for each prec_set) real_set = [[] for prec in prec_set] real_summation_values = [0. for prec in prec_set] real_cut_set = [(prec / gamma) for prec in prec_set] i_max = int(math.ceil(max(real_cut_set) / np.linalg.norm(a1))) j_max = int(math.ceil(max(real_cut_set) / np.linalg.norm(a2))) k_max = int(math.ceil(max(real_cut_set) / np.linalg.norm(a3))) for i in np.arange(-i_max, i_max + 1): for j in np.arange(-j_max, j_max + 1): for k in np.arange(-k_max, k_max + 1): rvec = i * a1 + j * a2 + k * a3 normrvec = np.linalg.norm(rvec) for real_cut_ind, real_cut in enumerate(real_cut_set): if normrvec <= real_cut: real_set[real_cut_ind].append(rvec) if normrvec > 1e-8: sqrt_loc_res = np.sqrt(np.dot(rvec, np.dot(invepsilon, rvec))) nmr = math.erfc(gamma * sqrt_loc_res) real_summation_values[real_cut_ind] += nmr / sqrt_loc_res real_summation_values = np.array(real_summation_values) real_summation_values /= (4 * np.pi * rd_epsilon) return recip_set, recip_summation_values, real_set, real_summation_values
mit
psychopy/versions
psychopy/data/base.py
2
22096
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function # from future import standard_library # standard_library.install_aliases() from builtins import str from past.builtins import basestring from builtins import object import weakref import pickle import os import sys import copy import inspect import codecs import numpy as np import pandas as pd import json_tricks from pkg_resources import parse_version import psychopy from psychopy import logging from psychopy.tools.filetools import (openOutputFile, genDelimiter, genFilenameFromDelimiter, pathToString) from psychopy.tools.fileerrortools import handleFileCollision from psychopy.tools.arraytools import extendArr from .utils import _getExcelCellName try: import openpyxl if parse_version(openpyxl.__version__) >= parse_version('2.4.0'): # openpyxl moved get_column_letter to utils.cell from openpyxl.utils.cell import get_column_letter else: from openpyxl.cell import get_column_letter from openpyxl import load_workbook, Workbook haveOpenpyxl = True except ImportError: haveOpenpyxl = False _experiments = weakref.WeakValueDictionary() class _ComparisonMixin(object): def __eq__(self, other): # NoneType and booleans, for example, don't have a .__dict__ attribute. try: getattr(other, '__dict__') except AttributeError: return False # Check if the dictionary keys are the same before proceeding. if set(self.__dict__.keys()) != set(other.__dict__.keys()): return False # Loop over all keys, implementing special handling for certain # data types. for key, val in self.__dict__.items(): if isinstance(val, np.ma.core.MaskedArray): if not np.ma.allclose(val, getattr(other, key)): return False elif isinstance(val, np.ndarray): if not np.allclose(val, getattr(other, key)): return False elif isinstance(val, (pd.DataFrame, pd.Series)): if not val.equals(getattr(other, key)): return False else: if val != getattr(other, key): return False return True def __ne__(self, other): return not self == other class _BaseTrialHandler(_ComparisonMixin): def setExp(self, exp): """Sets the ExperimentHandler that this handler is attached to Do NOT attempt to set the experiment using:: trials._exp = myExperiment because it needs to be performed using the `weakref` module. """ # need to use a weakref to avoid creating a circular reference that # prevents effective object deletion expId = id(exp) _experiments[expId] = exp self._exp = expId # origin will have been stored by the exp so don't store again: self.origin = None def getExp(self): """Return the ExperimentHandler that this handler is attached to, if any. Returns None if not attached """ if self._exp is None or self._exp not in _experiments: return None else: return _experiments[self._exp] def _terminate(self): """Remove references to ourself in experiments and terminate the loop """ # remove ourself from the list of unfinished loops in the experiment exp = self.getExp() if exp != None: exp.loopEnded(self) # and halt the loop raise StopIteration def saveAsPickle(self, fileName, fileCollisionMethod='rename'): """Basically just saves a copy of the handler (with data) to a pickle file. This can be reloaded if necessary and further analyses carried out. :Parameters: fileCollisionMethod: Collision method passed to :func:`~psychopy.tools.fileerrortools.handleFileCollision` """ fileName = pathToString(fileName) if self.thisTrialN < 1 and self.thisRepN < 1: # if both are < 1 we haven't started if self.autoLog: logging.info('.saveAsPickle() called but no trials completed.' ' Nothing saved') return -1 if not fileName.endswith('.psydat'): fileName += '.psydat' with openOutputFile(fileName=fileName, append=False, fileCollisionMethod=fileCollisionMethod) as f: pickle.dump(self, f) logging.info('saved data to %s' % f.name) def saveAsText(self, fileName, stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'), delim=None, matrixOnly=False, appendFile=True, summarised=True, fileCollisionMethod='rename', encoding='utf-8-sig'): """ Write a text file with the data and various chosen stimulus attributes :Parameters: fileName: will have .tsv appended and can include path info. stimOut: the stimulus attributes to be output. To use this you need to use a list of dictionaries and give here the names of dictionary keys that you want as strings dataOut: a list of strings specifying the dataType and the analysis to be performed,in the form `dataType_analysis`. The data can be any of the types that you added using trialHandler.data.add() and the analysis can be either 'raw' or most things in the numpy library, including; 'mean','std','median','max','min'... The default values will output the raw, mean and std of all datatypes found delim: allows the user to use a delimiter other than tab ("," is popular with file extension ".csv") matrixOnly: outputs the data with no header row or extraInfo attached appendFile: will add this output to the end of the specified file if it already exists fileCollisionMethod: Collision method passed to :func:`~psychopy.tools.fileerrortools.handleFileCollision` encoding: The encoding to use when saving a the file. Defaults to `utf-8-sig`. """ fileName = pathToString(fileName) if stimOut is None: stimOut = [] if self.thisTrialN < 1 and self.thisRepN < 1: # if both are < 1 we haven't started if self.autoLog: logging.info('TrialHandler.saveAsText called but no trials' ' completed. Nothing saved') return -1 dataArray = self._createOutputArray(stimOut=stimOut, dataOut=dataOut, matrixOnly=matrixOnly) # set default delimiter if none given if delim is None: delim = genDelimiter(fileName) # create the file or send to stdout fileName = genFilenameFromDelimiter(fileName, delim) with openOutputFile(fileName=fileName, append=appendFile, fileCollisionMethod=fileCollisionMethod, encoding=encoding) as f: # loop through lines in the data matrix for line in dataArray: for cellN, entry in enumerate(line): # surround in quotes to prevent effect of delimiter if delim in str(entry): f.write(u'"%s"' % str(entry)) else: f.write(str(entry)) if cellN < (len(line) - 1): f.write(delim) f.write("\n") # add an EOL at end of each line if (fileName is not None) and (fileName != 'stdout') and self.autoLog: logging.info('saved data to %s' % f.name) def printAsText(self, stimOut=None, dataOut=('all_mean', 'all_std', 'all_raw'), delim='\t', matrixOnly=False): """Exactly like saveAsText() except that the output goes to the screen instead of a file """ if stimOut is None: stimOut = [] self.saveAsText('stdout', stimOut, dataOut, delim, matrixOnly) def saveAsExcel(self, fileName, sheetName='rawData', stimOut=None, dataOut=('n', 'all_mean', 'all_std', 'all_raw'), matrixOnly=False, appendFile=True, fileCollisionMethod='rename'): """ Save a summary data file in Excel OpenXML format workbook (:term:`xlsx`) for processing in most spreadsheet packages. This format is compatible with versions of Excel (2007 or greater) and and with OpenOffice (>=3.0). It has the advantage over the simpler text files (see :func:`TrialHandler.saveAsText()` ) that data can be stored in multiple named sheets within the file. So you could have a single file named after your experiment and then have one worksheet for each participant. Or you could have one file for each participant and then multiple sheets for repeated sessions etc. The file extension `.xlsx` will be added if not given already. :Parameters: fileName: string the name of the file to create or append. Can include relative or absolute path sheetName: string the name of the worksheet within the file stimOut: list of strings the attributes of the trial characteristics to be output. To use this you need to have provided a list of dictionaries specifying to trialList parameter of the TrialHandler and give here the names of strings specifying entries in that dictionary dataOut: list of strings specifying the dataType and the analysis to be performed, in the form `dataType_analysis`. The data can be any of the types that you added using trialHandler.data.add() and the analysis can be either 'raw' or most things in the numpy library, including 'mean','std','median','max','min'. e.g. `rt_max` will give a column of max reaction times across the trials assuming that `rt` values have been stored. The default values will output the raw, mean and std of all datatypes found. appendFile: True or False If False any existing file with this name will be overwritten. If True then a new worksheet will be appended. If a worksheet already exists with that name a number will be added to make it unique. fileCollisionMethod: string Collision method passed to :func:`~psychopy.tools.fileerrortools.handleFileCollision` This is ignored if ``append`` is ``True``. """ fileName = pathToString(fileName) if stimOut is None: stimOut = [] if self.thisTrialN < 1 and self.thisRepN < 1: # if both are < 1 we haven't started if self.autoLog: logging.info('TrialHandler.saveAsExcel called but no ' 'trials completed. Nothing saved') return -1 # NB this was based on the limited documentation (1 page wiki) for # openpyxl v1.0 if not haveOpenpyxl: raise ImportError('openpyxl is required for saving files in' ' Excel (xlsx) format, but was not found.') # return -1 # create the data array to be sent to the Excel file dataArray = self._createOutputArray(stimOut=stimOut, dataOut=dataOut, matrixOnly=matrixOnly) if not fileName.endswith('.xlsx'): fileName += '.xlsx' # create or load the file if appendFile and os.path.isfile(fileName): wb = load_workbook(fileName) newWorkbook = False else: if not appendFile: # the file exists but we're not appending, will be overwritten fileName = handleFileCollision(fileName, fileCollisionMethod) wb = Workbook() # create new workbook wb.properties.creator = 'PsychoPy' + psychopy.__version__ newWorkbook = True if newWorkbook: ws = wb.worksheets[0] ws.title = sheetName else: ws = wb.create_sheet() ws.title = sheetName # loop through lines in the data matrix for lineN, line in enumerate(dataArray): if line is None: continue for colN, entry in enumerate(line): if entry is None: entry = '' try: # if it can convert to a number (from numpy) then do it val = float(entry) except Exception: val = u"{}".format(entry) ws.cell(column=colN+1, row=lineN+1, value=val) wb.save(filename=fileName) def saveAsJson(self, fileName=None, encoding='utf-8-sig', fileCollisionMethod='rename'): """ Serialize the object to the JSON format. Parameters ---------- fileName: string, or None the name of the file to create or append. Can include a relative or absolute path. If `None`, will not write to a file, but return an in-memory JSON object. encoding : string, optional The encoding to use when writing the file. fileCollisionMethod : string Collision method passed to :func:`~psychopy.tools.fileerrortools.handleFileCollision`. Can be either of `'rename'`, `'overwrite'`, or `'fail'`. Notes ----- Currently, a copy of the object is created, and the copy's .origin attribute is set to an empty string before serializing because loading the created JSON file would sometimes fail otherwise. """ fileName = pathToString(fileName) self_copy = copy.deepcopy(self) self_copy.origin = '' msg = ('Setting attribute .origin to empty string during JSON ' 'serialization.') logging.warn(msg) if (fileName is None) or (fileName == 'stdout'): return json_tricks.dumps(self_copy) else: with openOutputFile(fileName=fileName, fileCollisionMethod=fileCollisionMethod, encoding=encoding) as f: json_tricks.dump(self_copy, f) logging.info('Saved JSON data to %s' % f.name) def getOriginPathAndFile(self, originPath=None): """Attempts to determine the path of the script that created this data file and returns both the path to that script and its contents. Useful to store the entire experiment with the data. If originPath is provided (e.g. from Builder) then this is used otherwise the calling script is the originPath (fine from a standard python script). """ # self.originPath and self.origin (the contents of the origin file) if originPath == -1: return -1, None # the user wants to avoid storing this elif originPath is None or not os.path.isfile(originPath): try: originPath = inspect.getouterframes( inspect.currentframe())[2][1] if self.autoLog: logging.debug("Using %s as origin file" % originPath) except Exception: if self.autoLog: logging.debug("Failed to find origin file using " "inspect.getouterframes") return '', '' if os.path.isfile(originPath): # do we NOW have a path? with codecs.open(originPath, "r", encoding="utf-8-sig") as f: origin = f.read() else: origin = None return originPath, origin class DataHandler(_ComparisonMixin, dict): """For handling data (used by TrialHandler, principally, rather than by users directly) Numeric data are stored as numpy masked arrays where the mask is set True for missing entries. When any non-numeric data (string, list or array) get inserted using DataHandler.add(val) the array is converted to a standard (not masked) numpy array with dtype='O' and where missing entries have value = "--". Attributes: - ['key']=data arrays containing values for that key (e.g. data['accuracy']=...) - dataShape=shape of data (x,y,...z,nReps) - dataTypes=list of keys as strings """ def __init__(self, dataTypes=None, trials=None, dataShape=None): self.trials = trials self.dataTypes = [] # names will be added during addDataType self.isNumeric = {} # if given dataShape use it - otherwise guess! if dataShape: self.dataShape = dataShape elif self.trials: self.dataShape = list(np.asarray(trials.trialList, 'O').shape) self.dataShape.append(trials.nReps) # initialise arrays now if poss if dataTypes and self.dataShape: for thisType in dataTypes: self.addDataType(thisType) def __eq__(self, other): # We ignore an attached TrialHandler object, otherwise we will end up # in an infinite loop, as this DataHandler is attached to the # TrialHandler! from psychopy.data import TrialHandler if isinstance(self.trials, TrialHandler): self_copy = copy.deepcopy(self) other_copy = copy.deepcopy(other) del self_copy.trials, other_copy.trials result = super(DataHandler, self_copy).__eq__(other_copy) msg = ('TrialHandler object detected in .trials. Excluding it from ' 'comparison.') logging.warning(msg) else: result = super(DataHandler, self).__eq__(other) return result def addDataType(self, names, shape=None): """Add a new key to the data dictionary of particular shape if specified (otherwise the shape of the trial matrix in the trial handler. Data are initialised to be zero everywhere. Not needed by user: appropriate types will be added during initialisation and as each xtra type is needed. """ if not shape: shape = self.dataShape if not isinstance(names, basestring): # recursively call this function until we have a string for thisName in names: self.addDataType(thisName) else: # create the appropriate array in the dict # initially use numpy masked array of floats with mask=True # for missing vals. convert to a numpy array with dtype='O' # if non-numeric data given. NB don't use masked array with # dytpe='O' together - they don't unpickle self[names] = np.ma.zeros(shape, 'f') # masked array of floats self[names].mask = True # add the name to the list self.dataTypes.append(names) self.isNumeric[names] = True # until we need otherwise def add(self, thisType, value, position=None): """Add data to an existing data type (and add a new one if necess) """ if not thisType in self: self.addDataType(thisType) if position is None: # 'ran' is always the first thing to update repN = sum(self['ran'][self.trials.thisIndex]) if thisType != 'ran': # because it has already been updated repN -= 1 # make a list where 1st digit is trial number position = [self.trials.thisIndex] position.append(repN) # check whether data falls within bounds posArr = np.asarray(position) shapeArr = np.asarray(self.dataShape) if not np.alltrue(posArr < shapeArr): # array isn't big enough logging.warning('need a bigger array for: ' + thisType) # not implemented yet! self[thisType] = extendArr(self[thisType], posArr) # check for ndarrays with more than one value and for non-numeric data if (self.isNumeric[thisType] and ((type(value) == np.ndarray and len(value) > 1) or (type(value) not in [float, int]))): self._convertToObjectArray(thisType) # insert the value self[thisType][position[0], int(position[1])] = value def _convertToObjectArray(self, thisType): """Convert this datatype from masked numeric array to unmasked object array """ dat = self[thisType] # create an array of Object type self[thisType] = np.array(dat.data, dtype='O') # masked vals should be "--", others keep data # we have to repeat forcing to 'O' or text gets truncated to 4chars self[thisType] = np.where(dat.mask, '--', dat).astype('O') self.isNumeric[thisType] = False
gpl-3.0
zuku1985/scikit-learn
examples/cluster/plot_color_quantization.py
61
3444
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1]) china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
bsd-3-clause
sugartom/tensorflow-alien
tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
2
36442
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools import json import os import tempfile import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib import learn from tensorflow.contrib import lookup from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn import monitors as monitors_lib from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.contrib.testing.python.framework import util_test from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import queue_runner_impl from tensorflow.python.training import session_run_hook from tensorflow.python.util import compat _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' def _build_estimator_for_export_tests(tmpdir): def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_columns = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] est = linear.LinearRegressor(feature_columns) est.fit(input_fn=_input_fn, steps=20) feature_spec = feature_column_lib.create_feature_spec_for_parsing( feature_columns) serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec) # hack in an op that uses an asset, in order to test asset export. # this is not actually valid, of course. def serving_input_fn_with_asset(): features, labels, inputs = serving_input_fn() vocab_file_name = os.path.join(tmpdir, 'my_vocab_file') vocab_file = gfile.GFile(vocab_file_name, mode='w') vocab_file.write(VOCAB_FILE_CONTENT) vocab_file.close() hashtable = lookup.HashTable( lookup.TextFileStringTableInitializer(vocab_file_name), 'x') features['bogus_lookup'] = hashtable.lookup( math_ops.to_int64(features['feature'])) return input_fn_utils.InputFnOps(features, labels, inputs) return est, serving_input_fn_with_asset class CheckCallsMonitor(monitors_lib.BaseMonitor): def __init__(self, expect_calls): super(CheckCallsMonitor, self).__init__() self.begin_calls = None self.end_calls = None self.expect_calls = expect_calls def begin(self, max_steps): self.begin_calls = 0 self.end_calls = 0 def step_begin(self, step): self.begin_calls += 1 return {} def step_end(self, step, outputs): self.end_calls += 1 return False def end(self): assert (self.end_calls == self.expect_calls and self.begin_calls == self.expect_calls) class EstimatorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=estimator.Estimator(model_fn=linear_model_fn), train_input_fn=boston_input_fn, eval_input_fn=boston_input_fn) exp.test() def testModelFnArgs(self): expected_param = {'some_param': 'some_value'} expected_config = run_config.RunConfig() expected_config.i_am_test = True def _argument_checker(features, labels, mode, params, config): _, _ = features, labels self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_param, params) self.assertTrue(config.i_am_test) return constant_op.constant(0.), constant_op.constant( 0.), constant_op.constant(0.) est = estimator.Estimator( model_fn=_argument_checker, params=expected_param, config=expected_config) est.fit(input_fn=boston_input_fn, steps=1) def testModelFnWithModelDir(self): expected_param = {'some_param': 'some_value'} expected_model_dir = tempfile.mkdtemp() def _argument_checker(features, labels, mode, params, config=None, model_dir=None): _, _, _ = features, labels, config self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_param, params) self.assertEqual(model_dir, expected_model_dir) return constant_op.constant(0.), constant_op.constant( 0.), constant_op.constant(0.) est = estimator.Estimator(model_fn=_argument_checker, params=expected_param, model_dir=expected_model_dir) est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_train_op(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w return None, loss, None est = estimator.Estimator(model_fn=_invalid_model_fn) with self.assertRaisesRegexp(ValueError, 'Missing training_op'): est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_loss(self): def _invalid_model_fn(features, labels, mode): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w train_op = w.assign_add(loss / 100.0) predictions = loss if mode == model_fn.ModeKeys.EVAL: loss = None return predictions, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing loss'): est.evaluate(input_fn=boston_eval_fn, steps=1) def testInvalidModelFn_no_prediction(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w train_op = w.assign_add(loss / 100.0) return None, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.evaluate(input_fn=boston_eval_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict(input_fn=boston_input_fn) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict( input_fn=functools.partial( boston_input_fn, num_epochs=1), as_iterable=True) def testModelFnScaffold(self): self.is_init_fn_called = False def _init_fn(scaffold, session): _, _ = scaffold, session self.is_init_fn_called = True def _model_fn_scaffold(features, labels, mode): _, _ = features, labels return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant(0.), loss=constant_op.constant(0.), train_op=constant_op.constant(0.), scaffold=monitored_session.Scaffold(init_fn=_init_fn)) est = estimator.Estimator(model_fn=_model_fn_scaffold) est.fit(input_fn=boston_input_fn, steps=1) self.assertTrue(self.is_init_fn_called) def testCheckpointSaverHookSuppressesTheDefaultOne(self): saver_hook = test.mock.Mock( spec=basic_session_run_hooks.CheckpointSaverHook) saver_hook.before_run.return_value = None est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1, monitors=[saver_hook]) # test nothing is saved, due to suppressing default saver with self.assertRaises(learn.NotFittedError): est.evaluate(input_fn=boston_input_fn, steps=1) def testCustomConfig(self): test_random_seed = 5783452 class TestInput(object): def __init__(self): self.random_seed = 0 def config_test_input_fn(self): self.random_seed = ops.get_default_graph().seed return constant_op.constant([[1.]]), constant_op.constant([1.]) config = run_config.RunConfig(tf_random_seed=test_random_seed) test_input = TestInput() est = estimator.Estimator(model_fn=linear_model_fn, config=config) est.fit(input_fn=test_input.config_test_input_fn, steps=1) # If input_fn ran, it will have given us the random seed set on the graph. self.assertEquals(test_random_seed, test_input.random_seed) def testRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator(model_fn=linear_model_fn, config=config) self.assertEqual('test_dir', est.config.model_dir) def testModelDirAndRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator(model_fn=linear_model_fn, config=config, model_dir='test_dir') self.assertEqual('test_dir', est.config.model_dir) with self.assertRaises(ValueError): estimator.Estimator(model_fn=linear_model_fn, config=config, model_dir='different_dir') def testCheckInputs(self): est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) # Lambdas so we have to different objects to compare right_features = lambda: np.ones(shape=[7, 8], dtype=np.float32) right_labels = lambda: np.ones(shape=[7, 10], dtype=np.int32) est.fit(right_features(), right_labels(), steps=1) # TODO(wicke): This does not fail for np.int32 because of data_feeder magic. wrong_type_features = np.ones(shape=[7, 8], dtype=np.int64) wrong_size_features = np.ones(shape=[7, 10]) wrong_type_labels = np.ones(shape=[7, 10], dtype=np.float32) wrong_size_labels = np.ones(shape=[7, 11]) est.fit(x=right_features(), y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_type_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_size_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_type_labels, steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_size_labels, steps=1) def testBadInput(self): est = estimator.Estimator(model_fn=linear_model_fn) self.assertRaisesRegexp( ValueError, 'Either x or input_fn must be provided.', est.fit, x=None, input_fn=None, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, x='X', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, y='Y', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and batch_size', est.fit, input_fn=iris_input_fn, batch_size=100, steps=1) self.assertRaisesRegexp( ValueError, 'Inputs cannot be tensors. Please provide input_fn.', est.fit, x=constant_op.constant(1.), steps=1) def testUntrained(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) with self.assertRaises(learn.NotFittedError): _ = est.score(x=boston.data, y=boston.target.astype(np.float64)) with self.assertRaises(learn.NotFittedError): est.predict(x=boston.data) def testContinueTraining(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_fn, model_dir=output_dir)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=50) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_fn, model_dir=output_dir)) # Check we can evaluate and predict. scores2 = est2.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores['MSE'], scores2['MSE']) predictions = np.array(list(est2.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, float64_labels) self.assertAllClose(scores['MSE'], other_score) # Check we can keep training. est2.fit(x=boston.data, y=float64_labels, steps=100) scores3 = est2.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertLess(scores3['MSE'], scores['MSE']) def testEstimatorParams(self): boston = base.load_boston() est = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_params_fn, params={'learning_rate': 0.01})) est.fit(x=boston.data, y=boston.target, steps=100) def testHooksNotChanged(self): est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) # We pass empty array and expect it to remain empty after calling # fit and evaluate. Requires inside to copy this array if any hooks were # added. my_array = [] est.fit(input_fn=iris_input_fn, steps=100, monitors=my_array) _ = est.evaluate(input_fn=iris_input_fn, steps=1, hooks=my_array) self.assertEqual(my_array, []) def testIrisIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = itertools.islice(iris.target, 100) estimator.SKCompat(est).fit(x_iter, y_iter, steps=20) eval_result = est.evaluate(input_fn=iris_input_fn, steps=1) x_iter_eval = itertools.islice(iris.data, 100) y_iter_eval = itertools.islice(iris.target, 100) score_result = estimator.SKCompat(est).score(x_iter_eval, y_iter_eval) print(score_result) self.assertItemsEqual(eval_result.keys(), score_result.keys()) self.assertItemsEqual(['global_step', 'loss'], score_result.keys()) predictions = estimator.SKCompat(est).predict(x=iris.data)['class'] self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisIteratorArray(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (np.array(x) for x in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisIteratorPlainInt(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (v for v in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisTruncatedIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 50) y_iter = ([np.int32(v)] for v in iris.target) est.fit(x_iter, y_iter, steps=100) def testTrainStepsIsIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, steps=15) self.assertEqual(25, est.get_variable_value('global_step')) def testTrainMaxStepsIsNotIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, max_steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, max_steps=15) self.assertEqual(15, est.get_variable_value('global_step')) def testPredict(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) output = list(est.predict(x=boston.data, batch_size=10)) self.assertEqual(len(output), boston.target.shape[0]) def testWithModelFnOps(self): """Test for model_fn that returns `ModelFnOps`.""" est = estimator.Estimator(model_fn=linear_model_fn_with_model_fn_ops) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) scores = est.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores.keys()) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testWrongInput(self): def other_input_fn(): return { 'other': constant_op.constant([0, 0, 0]) }, constant_op.constant([0, 0, 0]) est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaises(ValueError): est.fit(input_fn=other_input_fn, steps=1) def testMonitorsForFit(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=21, monitors=[CheckCallsMonitor(expect_calls=21)]) def testHooksForEvaluate(self): class CheckCallHook(session_run_hook.SessionRunHook): def __init__(self): self.run_count = 0 def after_run(self, run_context, run_values): self.run_count += 1 est = learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) hook = CheckCallHook() est.evaluate(input_fn=boston_eval_fn, steps=3, hooks=[hook]) self.assertEqual(3, hook.run_count) def testSummaryWriting(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate(input_fn=boston_input_fn, steps=200) loss_summary = util_test.simple_values_from_events( util_test.latest_events(est.model_dir), ['OptimizeLoss/loss']) self.assertEqual(1, len(loss_summary)) def testLossInGraphCollection(self): class _LossCheckerHook(session_run_hook.SessionRunHook): def begin(self): self.loss_collection = ops.get_collection(ops.GraphKeys.LOSSES) hook = _LossCheckerHook() est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200, monitors=[hook]) self.assertTrue(hook.loss_collection) def test_export_returns_exported_dirname(self): expected = '/path/to/some_dir' with test.mock.patch.object(estimator, 'export') as mock_export_module: mock_export_module._export_estimator.return_value = expected est = estimator.Estimator(model_fn=linear_model_fn) actual = est.export('/path/to') self.assertEquals(expected, actual) def test_export_savedmodel(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_export_tests(tmpdir) extra_file_name = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_extra_file')) extra_file = gfile.GFile(extra_file_name, mode='w') extra_file.write(EXTRA_FILE_CONTENT) extra_file.close() assets_extra = {'some/sub/directory/my_extra_file': extra_file_name} export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel( export_dir_base, serving_input_fn, assets_extra=assets_extra) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes( 'saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file')))) self.assertEqual( compat.as_bytes(VOCAB_FILE_CONTENT), compat.as_bytes( gfile.GFile( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file'))).read())) expected_extra_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra/some/sub/directory/my_extra_file')) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra')))) self.assertTrue(gfile.Exists(expected_extra_path)) self.assertEqual( compat.as_bytes(EXTRA_FILE_CONTENT), compat.as_bytes(gfile.GFile(expected_extra_path).read())) expected_vocab_file = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_vocab_file')) # Restore, to validate that the export was well-formed. with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, [tag_constants.SERVING], export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('linear/linear/feature/matmul' in graph_ops) # cleanup gfile.DeleteRecursively(tmpdir) class InferRealValuedColumnsTest(test.TestCase): def testInvalidArgs(self): with self.assertRaisesRegexp(ValueError, 'x or input_fn must be provided'): estimator.infer_real_valued_columns_from_input(None) with self.assertRaisesRegexp(ValueError, 'cannot be tensors'): estimator.infer_real_valued_columns_from_input(constant_op.constant(1.0)) def _assert_single_feature_column(self, expected_shape, expected_dtype, feature_columns): self.assertEqual(1, len(feature_columns)) feature_column = feature_columns[0] self.assertEqual('', feature_column.name) self.assertEqual( { '': parsing_ops.FixedLenFeature( shape=expected_shape, dtype=expected_dtype) }, feature_column.config) def testInt32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.int32)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int32), None)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.int64)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testInt64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int64), None)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testFloat32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.float32)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float32), None)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.float64)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testFloat64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float64), None)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testBoolInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): estimator.infer_real_valued_columns_from_input( np.array([[False for _ in xrange(8)] for _ in xrange(7)])) def testBoolInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: (constant_op.constant(False, shape=[7, 8], dtype=dtypes.bool), None)) def testStringInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input( np.array([['%d.0' % i for i in xrange(8)] for _ in xrange(7)])) def testStringInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: ( constant_op.constant([['%d.0' % i for i in xrange(8)] for _ in xrange(7)]), None)) def testBostonInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) self._assert_single_feature_column([_BOSTON_INPUT_DIM], dtypes.float64, feature_columns) def testIrisInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( iris_input_fn) self._assert_single_feature_column([_IRIS_INPUT_DIM], dtypes.float64, feature_columns) class ReplicaDeviceSetterTest(test.TestCase): def testVariablesAreOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker', a.device) def testVariablesAreLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('', v.device) self.assertDeviceEqual('', v.initializer.device) self.assertDeviceEqual('', w.device) self.assertDeviceEqual('', w.initializer.device) self.assertDeviceEqual('', a.device) def testMutableHashTableIsOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('/job:ps/task:0', table._table_ref.device) self.assertDeviceEqual('/job:ps/task:0', output.device) def testMutableHashTableIsLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('', table._table_ref.device) self.assertDeviceEqual('', output.device) def testTaskIsSetOnWorkerWhenJobNameIsSet(self): tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0'] }, 'task': { 'type': run_config.TaskType.WORKER, 'index': 3 } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker/task:3', a.device) if __name__ == '__main__': test.main()
apache-2.0
nvoron23/statsmodels
statsmodels/sandbox/tsa/example_arma.py
27
11572
'''trying to verify theoretical acf of arma explicit functions for autocovariance functions of ARIMA(1,1), MA(1), MA(2) plus 3 functions from nitime.utils ''' from __future__ import print_function from statsmodels.compat.python import range import numpy as np from numpy.testing import assert_array_almost_equal import matplotlib.mlab as mlab from statsmodels.tsa.arima_process import arma_generate_sample, arma_impulse_response from statsmodels.tsa.arima_process import arma_acovf, arma_acf, ARIMA #from movstat import acf, acovf #from statsmodels.sandbox.tsa import acf, acovf, pacf from statsmodels.tsa.stattools import acf, acovf, pacf ar = [1., -0.6] #ar = [1., 0.] ma = [1., 0.4] #ma = [1., 0.4, 0.6] #ma = [1., 0.] mod = ''#'ma2' x = arma_generate_sample(ar, ma, 5000) x_acf = acf(x)[:10] x_ir = arma_impulse_response(ar, ma) #print x_acf[:10] #print x_ir[:10] #irc2 = np.correlate(x_ir,x_ir,'full')[len(x_ir)-1:] #print irc2[:10] #print irc2[:10]/irc2[0] #print irc2[:10-1] / irc2[1:10] #print x_acf[:10-1] / x_acf[1:10] # detrend helper from matplotlib.mlab def detrend(x, key=None): if key is None or key=='constant': return detrend_mean(x) elif key=='linear': return detrend_linear(x) def demean(x, axis=0): "Return x minus its mean along the specified axis" x = np.asarray(x) if axis: ind = [slice(None)] * axis ind.append(np.newaxis) return x - x.mean(axis)[ind] return x - x.mean(axis) def detrend_mean(x): "Return x minus the mean(x)" return x - x.mean() def detrend_none(x): "Return x: no detrending" return x def detrend_linear(y): "Return y minus best fit line; 'linear' detrending " # This is faster than an algorithm based on linalg.lstsq. x = np.arange(len(y), dtype=np.float_) C = np.cov(x, y, bias=1) b = C[0,1]/C[0,0] a = y.mean() - b*x.mean() return y - (b*x + a) def acovf_explicit(ar, ma, nobs): '''add correlation of MA representation explicitely ''' ir = arma_impulse_response(ar, ma) acovfexpl = [np.dot(ir[:nobs-t], ir[t:nobs]) for t in range(10)] return acovfexpl def acovf_arma11(ar, ma): # ARMA(1,1) # Florens et al page 278 # wrong result ? # new calculation bigJudge p 311, now the same a = -ar[1] b = ma[1] #rho = [1.] #rho.append((1-a*b)*(a-b)/(1.+a**2-2*a*b)) rho = [(1.+b**2+2*a*b)/(1.-a**2)] rho.append((1+a*b)*(a+b)/(1.-a**2)) for _ in range(8): last = rho[-1] rho.append(a*last) return np.array(rho) # print acf11[:10] # print acf11[:10] /acf11[0] def acovf_ma2(ma): # MA(2) # from Greene p616 (with typo), Florens p280 b1 = -ma[1] b2 = -ma[2] rho = np.zeros(10) rho[0] = (1 + b1**2 + b2**2) rho[1] = (-b1 + b1*b2) rho[2] = -b2 return rho # rho2 = rho/rho[0] # print rho2 # print irc2[:10]/irc2[0] def acovf_ma1(ma): # MA(1) # from Greene p616 (with typo), Florens p280 b = -ma[1] rho = np.zeros(10) rho[0] = (1 + b**2) rho[1] = -b return rho # rho2 = rho/rho[0] # print rho2 # print irc2[:10]/irc2[0] ar1 = [1., -0.8] ar0 = [1., 0.] ma1 = [1., 0.4] ma2 = [1., 0.4, 0.6] ma0 = [1., 0.] comparefn = dict( [('ma1', acovf_ma1), ('ma2', acovf_ma2), ('arma11', acovf_arma11), ('ar1', acovf_arma11)]) cases = [('ma1', (ar0, ma1)), ('ma2', (ar0, ma2)), ('arma11', (ar1, ma1)), ('ar1', (ar1, ma0))] for c, args in cases: ar, ma = args print('') print(c, ar, ma) myacovf = arma_acovf(ar, ma, nobs=10) myacf = arma_acf(ar, ma, nobs=10) if c[:2]=='ma': othacovf = comparefn[c](ma) else: othacovf = comparefn[c](ar, ma) print(myacovf[:5]) print(othacovf[:5]) #something broke again, #for high persistence case eg ar=0.99, nobs of IR has to be large #made changes to arma_acovf assert_array_almost_equal(myacovf, othacovf,10) assert_array_almost_equal(myacf, othacovf/othacovf[0],10) #from nitime.utils def ar_generator(N=512, sigma=1.): # this generates a signal u(n) = a1*u(n-1) + a2*u(n-2) + ... + v(n) # where v(n) is a stationary stochastic process with zero mean # and variance = sigma # this sequence is shown to be estimated well by an order 8 AR system taps = np.array([2.7607, -3.8106, 2.6535, -0.9238]) v = np.random.normal(size=N, scale=sigma**0.5) u = np.zeros(N) P = len(taps) for l in range(P): u[l] = v[l] + np.dot(u[:l][::-1], taps[:l]) for l in range(P,N): u[l] = v[l] + np.dot(u[l-P:l][::-1], taps) return u, v, taps #JP: small differences to using np.correlate, because assumes mean(s)=0 # denominator is N, not N-k, biased estimator # misnomer: (biased) autocovariance not autocorrelation #from nitime.utils def autocorr(s, axis=-1): """Returns the autocorrelation of signal s at all lags. Adheres to the definition r(k) = E{s(n)s*(n-k)} where E{} is the expectation operator. """ N = s.shape[axis] S = np.fft.fft(s, n=2*N-1, axis=axis) sxx = np.fft.ifft(S*S.conjugate(), axis=axis).real[:N] return sxx/N #JP: with valid this returns a single value, if x and y have same length # e.g. norm_corr(x, x) # using std subtracts mean, but correlate doesn't, requires means are exactly 0 # biased, no n-k correction for laglength #from nitime.utils def norm_corr(x,y,mode = 'valid'): """Returns the correlation between two ndarrays, by calling np.correlate in 'same' mode and normalizing the result by the std of the arrays and by their lengths. This results in a correlation = 1 for an auto-correlation""" return ( np.correlate(x,y,mode) / (np.std(x)*np.std(y)*(x.shape[-1])) ) # from matplotlib axes.py # note: self is axis def pltacorr(self, x, **kwargs): """ call signature:: acorr(x, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs) Plot the autocorrelation of *x*. If *normed* = *True*, normalize the data by the autocorrelation at 0-th lag. *x* is detrended by the *detrend* callable (default no normalization). Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length 2*maxlags+1 lag vector - *c* is the 2*maxlags+1 auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :meth:`plot` The default *linestyle* is None and the default *marker* is ``'o'``, though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines` rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw vertical lines from the origin to the acorr. Otherwise, the plot style is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all :math:`2 \mathrm{len}(x) - 1` lags. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where - *linecol* is the :class:`~matplotlib.collections.LineCollection` - *b* is the *x*-axis. .. seealso:: :meth:`~matplotlib.axes.Axes.plot` or :meth:`~matplotlib.axes.Axes.vlines` For documentation on valid kwargs. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ return self.xcorr(x, x, **kwargs) def pltxcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): """ call signature:: def xcorr(self, x, y, normed=True, detrend=detrend_none, usevlines=True, maxlags=10, **kwargs): Plot the cross correlation between *x* and *y*. If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ Nx = len(x) if Nx!=len(y): raise ValueError('x and y must be equal length') x = detrend(np.asarray(x)) y = detrend(np.asarray(y)) c = np.correlate(x, y, mode=2) if normed: c/= np.sqrt(np.dot(x,x) * np.dot(y,y)) if maxlags is None: maxlags = Nx - 1 if maxlags >= Nx or maxlags < 1: raise ValueError('maglags must be None or strictly ' 'positive < %d'%Nx) lags = np.arange(-maxlags,maxlags+1) c = c[Nx-1-maxlags:Nx+maxlags] if usevlines: a = self.vlines(lags, [0], c, **kwargs) b = self.axhline(**kwargs) kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') d = self.plot(lags, c, **kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b arrvs = ar_generator() ##arma = ARIMA() ##res = arma.fit(arrvs[0], 4, 0) arma = ARIMA(arrvs[0]) res = arma.fit((4,0, 0)) print(res[0]) acf1 = acf(arrvs[0]) acovf1b = acovf(arrvs[0], unbiased=False) acf2 = autocorr(arrvs[0]) acf2m = autocorr(arrvs[0]-arrvs[0].mean()) print(acf1[:10]) print(acovf1b[:10]) print(acf2[:10]) print(acf2m[:10]) x = arma_generate_sample([1.0, -0.8], [1.0], 500) print(acf(x)[:20]) import statsmodels.api as sm print(sm.regression.yule_walker(x, 10)) import matplotlib.pyplot as plt #ax = plt.axes() plt.plot(x) #plt.show() plt.figure() pltxcorr(plt,x,x) plt.figure() pltxcorr(plt,x,x, usevlines=False) plt.figure() #FIXME: plotacf was moved to graphics/tsaplots.py, and interface changed plotacf(plt, acf1[:20], np.arange(len(acf1[:20])), usevlines=True) plt.figure() ax = plt.subplot(211) plotacf(ax, acf1[:20], usevlines=True) ax = plt.subplot(212) plotacf(ax, acf1[:20], np.arange(len(acf1[:20])), usevlines=False) #plt.show()
bsd-3-clause
tgquintela/NetSymulationTools
setup.py
2
2050
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Setup script for the installation of NetTools. It is possible to install this package with python setup.py install """ from glob import glob import sys import os import warnings from NetTools import release ## Temporally commented #if os.path.exists('MANIFEST'): # os.remove('MANIFEST') ## Definition of useful functions def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() ## Check problems with the setuptools try: from setuptools import setup except ImportError: from distutils.core import setup if sys.argv[-1] == 'setup.py': print("To install, run 'python setup.py install'") print() version = release.write_versionfile() packages = ['NetTools', 'NetTools.NetSimulation', 'NetTools.NetStructure', 'NetTools.tests' ] docdirbase = 'share/doc/NetTools-%s' % version # add basic documentation data = [(docdirbase, glob("*.txt"))] # add examples for d in ['advanced', 'algorithms']: dd = os.path.join(docdirbase, 'examples', d) pp = os.path.join('examples', d) data.append((dd, glob(os.path.join(pp, "*.py")))) data.append((dd, glob(os.path.join(pp, "*.bz2")))) data.append((dd, glob(os.path.join(pp, "*.gz")))) data.append((dd, glob(os.path.join(pp, "*.mbox")))) data.append((dd, glob(os.path.join(pp, "*.edgelist")))) # add the tests #package_data = {'NetTools': ['tests/*.py']} package_data = {} install_requires = ['numpy', 'scipy', 'pandas', 'matplotlib'] ## Setup setup(name=release.name, version=version, description=release.description, license=release.license, platforms=release.platforms, maintainer=release.maintainer, maintainer_email=release.maintainer_email, author=release.author, author_email=release.author_email, url=release.url, classifiers=release.classifiers, long_description=read('README.md'), packages=packages, install_requires=install_requires, )
mit
saromanov/scikit-json
scikit_json/scikit_json.py
1
8294
#from sklearn.datasets import load_digits import os import json # Dirty, but it needs to load all models from sklearn import * from sklearn.externals import joblib import sklearn import argparse import functools import numpy as np import logging class Scikitjson: def __init__(self): self.jsonmodel = None self.path = None def loadFile(self, path): self.jsonmodel = self._innerLoad(path) self.path = path def loadJSONModel(self, model): """ Load model without reading from file""" self.jsonmodel = json.loads(model) return self.jsonmodel def _innerLoad(self, path): if not os.path.exists(path): raise Exception("file {0} not found".format(path)) fs = open(path, 'r') raw_data = fs.read() fs.close() return self.loadJSONModel(raw_data) def run(self): if self.jsonmodel == None: raise Exception("Model was not loaded") model = ConstructModel(self.jsonmodel, title=self.path) return model.run() class ConstructModel: def __init__(self, jsonmodel, title=None): self.jsonmodel = jsonmodel self.title = title def _construct_dataset(self, title): alldatasets = dir(datasets) if title in alldatasets: ds = getattr(datasets, title)() return ds.data, ds.target def _construct_user_dataset(self, userdataset): ''' Load data from file ''' logging.info("Start to construct user dataset") filetype = 'default' if 'path' not in userdataset: raise Exception("path param is not found") path = userdataset['path'] if 'data' not in userdataset: raise Exception( 'data param (start and indexes on training) not found') else: dataidx = userdataset['data'] if 'labels' not in userdataset: print( 'Labels param not found. Default label index will be last index on file') labelsidx = [] else: labelsidx = userdataset['labels'] if 'split' not in userdataset: splitter = ' ' else: splitter = userdataset['split'] if not os.path.exists(path): raise Exception("Dataset file not found") if 'type' in userdataset: filetype = userdataset['type'] if filetype == 'default': return self._parse_dataset_by_default(path) if tiletype == 'csv': return self._parse_as_csv(path) else: raise Exception("This type of dataset format is not supported") def _parse_dataset_by_default(self, path): fs = open(path, 'r') lines = fs.readlines() fs.close() X = [] y = [] for line in lines: res = line.split(splitter) X.append(res[dataidx[0]: dataidx[1]]) y.extend(res[labelsidx[0]: labelsidx[1]]) log.info("Finished to construct user dataset") return np.array(X), np.array(y) def _parse_as_csv(self, path): if not os.path.exists(path): raise Exception("Path for loading dataset is not found") fs = open(path, 'r') data = fs.read() fs.close() return csv.reader(data) def _split_dataset(self, X, y): ''' Split current dataset on training and testing ''' pass def _construct_method(self, title): return self._find_method(title) def _find_method(self, title): args = {} if isinstance(title, dict): candsplit = title['name'].split('.') args = title['params'] else: candsplit = title.split('.') allmethods = dir(sklearn) if len(candsplit) > 1: name = candsplit[0] #model = sklearn return functools.reduce(lambda x, a: getattr(x, a), candsplit[1:], getattr(sklearn, name))(**args) def _random_forest(self): from sklearn.ensemble import RandomForestClassifier return RandomForestClassifier(n_estimators=100) def _construct_default_model(self, typetitle): """ This comes from 'type'""" logging.info("Start to construct deafault model") typetitle = typetitle.lower() if typetitle == 'classification': return self._random_forest() if typetitle == 'regression': from sklearn.linear_model import LogisticRegression return LogisticRegression(penalty='l2') if typetitle == 'clustering': from sklearn.cluster import KMeans return KMeans() def try_to_save(self, model, path): ''' In the case if parameter save in on ''' if path == None: return joblib.dump(model, path, compress=9) def try_to_load(self, path): return joblib.load(path) def _predict_and_show(self, method, methodname, data): result = method.predict(data) print("Result: {0} ({1})".format(result, methodname)) return result def run(self): if self.title != None: print("Model from {0}\n".format(self.title)) modelnames = list(self.jsonmodel.keys()) if len(list(modelnames)) == 0: return [] for key in list(modelnames): yield self.run_inner(key) def run_inner(self, name): ''' return predicted value ''' logging.info("Start to prepare model {0}".format(name)) print("Model name: {0} ".format(name)) typeparams = self.jsonmodel[name] if typeparams == {}: return [] items = {key.lower(): value for (key, value) in typeparams.items()} ''' In the case if exists some model.pkl Example of usage: loading.json { "class1" :{ load:"model.pkl", predict: [1,2,3] } } ''' if 'load' in items: method = self.try_to_load(items['load']) if 'predict' not in items: return return self._predict_and_show(method, items['predict']) ''' In the case if you want experimenting with datasets in sklearn''' if 'dataset' in items: X, y = self._construct_dataset(items['dataset']) if 'dataset_file' in items: X, y = self._construct_user_dataset(items['dataset_file']) methodname = items['method'] if 'method' in items else 'RandomForest' method = self._construct_method( items['method']) if 'method' in items else self._random_forest() if 'method' in items: method = self._construct_method(items['method']) elif 'type' in items: # Now supported is 'classification' and 'regression' thistype = items['type'] method = self._construct_default_model(thistype) '''else: raise Exception("Model not found")''' method.fit(X, y) self.try_to_save(method, items['save'] if 'save' in items else None) if 'predict' not in items: print("Predict not contains in your model") return return self._predict_and_show(method, methodname, items['predict']) def configure_logging(level): if level == None: return level = level.lower() title = logging.NOTSET if level == 'debug': title = logging.DEBUG if level == 'info': title = logging.INFO if level == 'warning': title = logging.ERROR if level == 'critical': title = logging.CRITICAL if level == 'error': title = logging.ERROR logging.basicConfig(level=title) def main(path): sj = Scikitjson() if path == None: log.error("Path to JSON model not found") return sj.loadFile(path) print(list(sj.run())) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--json', help='path to json model') parser.add_argument( '--loglevel', help='DEBUG level to show all info messages') args = parser.parse_args() configure_logging(args.loglevel) main(args.json)
mit
achon22/cs231nLung
luna/preprocess.py
1
9510
# Luna preprocessing code from https://www.kaggle.com/arnavkj95/candidate-generation-and-luna16-preprocessing import numpy as np # linear algebra import os import skimage, os from skimage.morphology import ball, disk, dilation, binary_erosion, remove_small_objects, erosion, closing, reconstruction, binary_closing from skimage.measure import label,regionprops, perimeter from skimage.morphology import binary_dilation, binary_opening from skimage.filters import roberts, sobel from skimage import measure, feature from skimage.segmentation import clear_border from skimage import data from scipy import ndimage as ndi import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection import dicom import scipy.misc import numpy as np import SimpleITK as sitk # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from subprocess import check_output def get_annotations(filename): lines = [line.strip().split(',') for line in open(filename)][1:] result = {} for i in range(len(lines)): key = lines[i][0] for j in range(1,5): lines[i][j] = float(lines[i][j]) if key in result: result[key].append(lines[i]) else: result[key] = [lines[i]] return result def segment_lung_from_ct_scan(ct_scan): return np.asarray([get_segmented_lungs(slice) for slice in ct_scan]) def get_segmented_lungs(im, plot=False): ''' This funtion segments the lungs from the given 2D slice. ''' if plot == True: f, plots = plt.subplots(8, 1, figsize=(5, 40)) ''' Step 1: Convert into a binary image. ''' binary = im < 604 if plot == True: plots[0].axis('off') plots[0].imshow(binary, cmap=plt.cm.bone) ''' Step 2: Remove the blobs connected to the border of the image. ''' cleared = clear_border(binary) if plot == True: plots[1].axis('off') plots[1].imshow(cleared, cmap=plt.cm.bone) ''' Step 3: Label the image. ''' label_image = label(cleared) if plot == True: plots[2].axis('off') plots[2].imshow(label_image, cmap=plt.cm.bone) ''' Step 4: Keep the labels with 2 largest areas. ''' areas = [r.area for r in regionprops(label_image)] areas.sort() if len(areas) > 2: for region in regionprops(label_image): if region.area < areas[-2]: for coordinates in region.coords: label_image[coordinates[0], coordinates[1]] = 0 binary = label_image > 0 if plot == True: plots[3].axis('off') plots[3].imshow(binary, cmap=plt.cm.bone) ''' Step 5: Erosion operation with a disk of radius 2. This operation is seperate the lung nodules attached to the blood vessels. ''' selem = disk(2) binary = binary_erosion(binary, selem) if plot == True: plots[4].axis('off') plots[4].imshow(binary, cmap=plt.cm.bone) ''' Step 6: Closure operation with a disk of radius 10. This operation is to keep nodules attached to the lung wall. ''' selem = disk(10) binary = binary_closing(binary, selem) if plot == True: plots[5].axis('off') plots[5].imshow(binary, cmap=plt.cm.bone) ''' Step 7: Fill in the small holes inside the binary mask of lungs. ''' edges = roberts(binary) binary = ndi.binary_fill_holes(edges) if plot == True: plots[6].axis('off') plots[6].imshow(binary, cmap=plt.cm.bone) ''' Step 8: Superimpose the binary mask on the input image. ''' get_high_vals = binary == 0 im[get_high_vals] = 0 if plot == True: plots[7].axis('off') plots[7].imshow(im, cmap=plt.cm.bone) return im def load_itk(filename): # Reads the image using SimpleITK itkimage = sitk.ReadImage(filename) # Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x ct_scan = sitk.GetArrayFromImage(itkimage) # Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa. origin = np.array(list(reversed(itkimage.GetOrigin()))) # Read the spacing along each dimension spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing ''' This function is used to convert the world coordinates to voxel coordinates using the origin and spacing of the ct_scan ''' def world_2_voxel(world_coordinates, origin, spacing): stretched_voxel_coordinates = np.absolute(world_coordinates - origin) voxel_coordinates = stretched_voxel_coordinates / spacing return voxel_coordinates ''' This function is used to convert the voxel coordinates to world coordinates using the origin and spacing of the ct_scan. ''' def voxel_2_world(voxel_coordinates, origin, spacing): stretched_voxel_coordinates = voxel_coordinates * spacing world_coordinates = stretched_voxel_coordinates + origin return world_coordinates def seq(start, stop, step=1): n = int(round((stop - start)/float(step))) if n > 1: return([start + step*i for i in range(n+1)]) else: return([]) ''' This function is used to create spherical regions in binary masks at the given locations and radius. ''' def draw_circles(image,cands,origin,spacing): #make empty matrix, which will be filled with the mask RESIZE_SPACING = [1, 1, 1] image_mask = np.zeros(image.shape) #run over all the nodules in the lungs for ca in cands: #get middel x-,y-, and z-worldcoordinate of the nodule radius = np.ceil(ca[4])/2 coord_x = ca[1] coord_y = ca[2] coord_z = ca[3] image_coord = np.array((coord_z,coord_y,coord_x)) #determine voxel coordinate given the worldcoordinate image_coord = world_2_voxel(image_coord,origin,spacing) #determine the range of the nodule noduleRange = seq(-radius, radius, RESIZE_SPACING[0]) #create the mask for x in noduleRange: for y in noduleRange: for z in noduleRange: coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing) if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius: image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1) return image_mask def create_nodule_mask(imagePath, maskPath, cands, exId): #if os.path.isfile(imagePath.replace('original',SAVE_FOLDER_image)) == False: img, origin, spacing = load_itk(imagePath) #calculate resize factor RESIZE_SPACING = [1, 1, 1] resize_factor = spacing / RESIZE_SPACING new_real_shape = img.shape * resize_factor new_shape = np.round(new_real_shape) real_resize = new_shape / img.shape new_spacing = spacing / real_resize #resize image lung_img = scipy.ndimage.interpolation.zoom(img, real_resize) # Segment the lung structure lung_img = lung_img + 1024 lung_mask = segment_lung_from_ct_scan(lung_img) lung_img = lung_img - 1024 #create nodule mask nodule_mask = draw_circles(lung_img,cands,origin,new_spacing) lung_img_512, lung_mask_512, nodule_mask_512 = np.zeros((lung_img.shape[0], 512, 512)), np.zeros((lung_mask.shape[0], 512, 512)), np.zeros((nodule_mask.shape[0], 512, 512)) original_shape = lung_img.shape for z in range(lung_img.shape[0]): offset = (512 - original_shape[1]) upper_offset = np.round(offset/2) lower_offset = offset - upper_offset new_origin = voxel_2_world([-upper_offset,-lower_offset,0],origin,new_spacing) lung_img_512[z, upper_offset:-lower_offset,upper_offset:-lower_offset] = lung_img[z,:,:] lung_mask_512[z, upper_offset:-lower_offset,upper_offset:-lower_offset] = lung_mask[z,:,:] nodule_mask_512[z, upper_offset:-lower_offset,upper_offset:-lower_offset] = nodule_mask[z,:,:] # save images. #np.save(maskPath + exId + '_lung_img.npz', lung_img_512) ''' np.save(maskPath + exId + '_lung_mask.npz', lung_mask_512) np.save(maskPath + exId + '_nodule_mask.npz', nodule_mask_512) ''' included_slices = [z for z in range(lung_img_512.shape[0]) if np.sum(nodule_mask_512[z]) > 0.001] np.save(maskPath + exId + '_lung_mask', lung_mask_512[included_slices].astype(np.float16)) np.save(maskPath + exId + '_nodule_mask', nodule_mask_512[included_slices].astype(np.bool)) def main(): # ct_scan, origin, spacing = load_itk("lunaFiles/subset5/1.3.6.1.4.1.14519.5.2.1.6279.6001.255999614855292116767517149228.mhd") # print(ct_scan.shape) # print(origin.shape) # print(spacing.shape) cands = get_annotations("CSVFILES/annotations.csv") # exId = "1.3.6.1.4.1.14519.5.2.1.6279.6001.323408652979949774528873200770" path = "lunaFiles/subset9/" patients = os.listdir(path) allIds = set([patient[:-4] for patient in patients]) for exId in allIds: if exId in cands: create_nodule_mask(path + exId + ".mhd", "masks/", cands[exId], exId) print("finished " + exId) else: print("no nodules in " + exId) if __name__ == '__main__': main()
mit
zihua/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
311
5431
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.cv_mse_path_, ':') plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
trankmichael/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
202
3757
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.linear_model import LogisticRegression from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling msg = "Estimator type doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(LogisticRegression) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
intuition-io/intuition
tests/api/test_datafeed.py
1
9643
''' Tests for intuition.api.datafeed ''' import unittest from nose.tools import raises, ok_, eq_, nottest import random import pytz import datetime as dt import pandas as pd import intuition.api.datafeed as datafeed from intuition.data.universe import Market from intuition.errors import InvalidDatafeed import dna.test_utils class FakeBacktestDatasource(object): def __init__(self, sids, properties): pass @property def mapping(self): return { 'backtest': (lambda x: True, 'sid'), 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'volume': (int, 'volume'), } def get_data(self, sids, start, end): index = pd.date_range(start, end, tz=pytz.utc) return pd.DataFrame({sid: [random.random()] * len(index) for sid in sids}, index=index) class FakePanelBacktestDatasource(object): def __init__(self, sids, properties): pass @property def mapping(self): return { 'backtest': (lambda x: True, 'sid'), 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'low': (float, 'low'), 'high': (float, 'high'), 'volume': (int, 'volume'), } def get_data(self, sids, start, end): index = pd.date_range(start, end, tz=pytz.utc) fake_data = {} for sid in sids: fake_data[sid] = pd.DataFrame( {field: [random.random()] * len(index) for field in ['price', 'low', 'high', 'volume']}, index=index) return pd.Panel(fake_data) class FakePanelWithoutVolumeBacktestDatasource(object): def __init__(self, sids, properties): pass def get_data(self, sids, start, end): index = pd.date_range(start, end, tz=pytz.utc) fake_data = {} for sid in sids: fake_data[sid] = pd.DataFrame( {field: [random.random()] * len(index) for field in ['price', 'low', 'high']}, index=index) return pd.Panel(fake_data) class FakeLiveDatasource(object): def __init__(self, sids, properties): pass @property def mapping(self): return { 'live': True } def get_data(self, sids, start, end): return pd.DataFrame() class DatafeedUtilsTestCase(unittest.TestCase): def setUp(self): dna.test_utils.setup_logger(self) self.fake_sid = 'fake_sid' self.fake_one_sid_series = pd.Series( {key: random.random() for key in ['low', 'close']}) self.fake_multiple_sids_series = pd.Series( {key: random.random() for key in ['goog', 'fake_sid']}) self.fake_multiple_sids_df = pd.DataFrame( {key: {'price': random.random(), 'close': 0.3} for key in ['goog', 'fake_sid']}) self.fake_date = dt.datetime(2013, 1, 1) def tearDown(self): dna.test_utils.teardown_logger(self) @nottest def _check_event(self, event): self.assertIsInstance(event, dict) self.assertIn('volume', event) self.assertIn('dt', event) eq_(event['dt'], self.fake_date) eq_(event['sid'], self.fake_sid) def test_build_safe_event_without_volume(self): partial_event = self.fake_one_sid_series.to_dict() event = datafeed._build_safe_event( partial_event, self.fake_date, self.fake_sid) self._check_event(event) for field in self.fake_one_sid_series.index: self.assertIn(field, event.keys()) def test_build_safe_event_with_volume(self): partial_event = self.fake_one_sid_series.to_dict() partial_event.update({'volume': 12034}) event = datafeed._build_safe_event( partial_event, self.fake_date, self.fake_sid) self._check_event(event) for field in self.fake_one_sid_series.index: self.assertIn(field, event.keys()) @raises(AttributeError) def test_wrong_data_type(self): wrong_type = bool datafeed._build_safe_event(wrong_type, self.fake_date, self.fake_sid) def test_check_data_modules(self): end = self.fake_date + pd.datetools.MonthBegin(6) ok_(datafeed._check_data_modules( 'backtest.module', None, self.fake_date, end)) @raises(InvalidDatafeed) def test_check_data_modules_all_nones(self): end = self.fake_date + pd.datetools.MonthBegin(6) datafeed._check_data_modules(None, None, self.fake_date, end) class HybridDataFactoryTestCase(unittest.TestCase): def setUp(self): dna.test_utils.setup_logger(self) self.test_index = pd.date_range( '2012/01/01', '2012/01/7', tz=pytz.utc) self.test_universe = 'forex,5' self.market = Market() self.market.parse_universe_description(self.test_universe) self.test_sids = self.market.sids def tearDown(self): dna.test_utils.teardown_logger(self) @nottest def _check_datasource(self, source): ok_((source.index == self.test_index).all()) eq_(source.start, self.test_index[0]) eq_(source.end, self.test_index[-1]) eq_(source.sids, self.test_sids) self.assertIsNone(source._raw_data) eq_(source.arg_string, source.instance_hash) eq_(source.event_type, 4) ok_(hasattr(source, 'log')) self.assertFalse(source._is_live) @raises(InvalidDatafeed) def test_data_source_without_modules(self): config = { 'sids': self.test_sids, 'index': self.test_index } datafeed.HybridDataFactory(**config) @raises(InvalidDatafeed) def test_data_source_invalid_index(self): config = { 'sids': self.test_sids, 'index': bool } datafeed.HybridDataFactory(**config) def test_minimal_data_source(self): source = datafeed.HybridDataFactory( universe=self.market, index=self.test_index, backtest=FakeBacktestDatasource) self._check_datasource(source) def test_hybrid_mapping(self): source = datafeed.HybridDataFactory( universe=self.market, index=self.test_index, backtest=FakeBacktestDatasource, live=FakeLiveDatasource) self.assertIn('backtest', source.mapping) source._is_live = True self.assertIn('live', source.mapping) # TODO Test Live data sources class SpecificMarketDataFactoryTestCase(unittest.TestCase): def setUp(self): dna.test_utils.setup_logger(self) self.test_index = pd.date_range( '2012/01/01', '2012/01/7', tz=pytz.utc) def tearDown(self): dna.test_utils.teardown_logger(self) def test_dataframe_forex_backtest_data_generation(self): test_universe = 'forex,5' market = Market() market.parse_universe_description(test_universe) source = datafeed.HybridDataFactory( universe=market, index=self.test_index, backtest=FakeBacktestDatasource) total_rows = 0 for row in source.raw_data: if not total_rows: self.assertListEqual( sorted(row.keys()), sorted(['dt', 'price', 'sid', 'volume'])) total_rows += 1 eq_(total_rows, 2 * len(self.test_index) * len(market.sids)) def test_dataframe_cac40_backtest_data_generation(self): test_universe = 'stocks:paris:cac40' market = Market() market.parse_universe_description(test_universe) source = datafeed.HybridDataFactory( universe=market, index=self.test_index, backtest=FakeBacktestDatasource) total_rows = 0 for row in source.raw_data: if not total_rows: self.assertListEqual( sorted(row.keys()), sorted(['dt', 'price', 'sid', 'volume'])) total_rows += 1 eq_(total_rows, len(self.test_index) * len(market.sids)) def test_panel_cac40_backtest_data_generation(self): test_universe = 'stocks:paris:cac40' market = Market() market.parse_universe_description(test_universe) source = datafeed.HybridDataFactory( universe=market, index=self.test_index, backtest=FakePanelBacktestDatasource) total_rows = 0 for row in source.raw_data: if not total_rows: self.assertListEqual( sorted(row.keys()), sorted(['dt', 'price', 'low', 'high', 'sid', 'volume'])) total_rows += 1 eq_(total_rows, len(self.test_index) * len(market.sids)) def test_panel_without_volume_cac40_backtest_data_generation(self): test_universe = 'stocks:paris:cac40,5' market = Market() market.parse_universe_description(test_universe) source = datafeed.HybridDataFactory( universe=market, index=self.test_index, backtest=FakePanelWithoutVolumeBacktestDatasource) total_rows = 0 for row in source.raw_data: if not total_rows: self.assertListEqual( sorted(row.keys()), sorted(['dt', 'price', 'low', 'high', 'sid', 'volume'])) total_rows += 1 eq_(total_rows, len(self.test_index) * len(market.sids))
apache-2.0
HolgerPeters/scikit-learn
examples/tree/plot_iris.py
86
1965
""" ================================================================ Plot the decision surface of a decision tree on the iris dataset ================================================================ Plot the decision surface of a decision tree trained on pairs of features of the iris dataset. See :ref:`decision tree <tree>` for more information on the estimator. For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "bry" plot_step = 0.02 # Load data iris = load_iris() for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) plt.axis("tight") # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.axis("tight") plt.suptitle("Decision surface of a decision tree using paired features") plt.legend() plt.show()
bsd-3-clause
fzalkow/scikit-learn
sklearn/covariance/robust_covariance.py
198
29735
""" Robust location and covariance estimators. Here are implemented estimators that are resistant to outliers. """ # Author: Virgile Fritsch <[email protected]> # # License: BSD 3 clause import warnings import numbers import numpy as np from scipy import linalg from scipy.stats import chi2 from . import empirical_covariance, EmpiricalCovariance from ..utils.extmath import fast_logdet, pinvh from ..utils import check_random_state, check_array # Minimum Covariance Determinant # Implementing of an algorithm by Rousseeuw & Van Driessen described in # (A Fast Algorithm for the Minimum Covariance Determinant Estimator, # 1999, American Statistical Association and the American Society # for Quality, TECHNOMETRICS) # XXX Is this really a public function? It's not listed in the docs or # exported by sklearn.covariance. Deprecate? def c_step(X, n_support, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD. Parameters ---------- X : array-like, shape (n_samples, n_features) Data set in which we look for the n_support observations whose scatter matrix has minimum determinant. n_support : int, > n_samples / 2 Number of observations to compute the robust estimates of location and covariance from. remaining_iterations : int, optional Number of iterations to perform. According to [Rouseeuw1999]_, two iterations are sufficient to get close to the minimum, and we never need more than 30 to reach convergence. initial_estimates : 2-tuple, optional Initial estimates of location and shape from which to run the c_step procedure: - initial_estimates[0]: an initial location estimate - initial_estimates[1]: an initial covariance estimate verbose : boolean, optional Verbose mode. random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Returns ------- location : array-like, shape (n_features,) Robust location estimates. covariance : array-like, shape (n_features, n_features) Robust covariance estimates. support : array-like, shape (n_samples,) A mask for the `n_support` observations whose scatter matrix has minimum determinant. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ X = np.asarray(X) random_state = check_random_state(random_state) return _c_step(X, n_support, remaining_iterations=remaining_iterations, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state) def _c_step(X, n_support, random_state, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance): n_samples, n_features = X.shape # Initialisation support = np.zeros(n_samples, dtype=bool) if initial_estimates is None: # compute initial robust estimates from a random subset support[random_state.permutation(n_samples)[:n_support]] = True else: # get initial robust estimates from the function parameters location = initial_estimates[0] covariance = initial_estimates[1] # run a special iteration for that case (to get an initial support) precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(1) # compute new estimates support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(0) covariance = cov_computation_method(X_support) # Iterative procedure for Minimum Covariance Determinant computation det = fast_logdet(covariance) previous_det = np.inf while (det < previous_det) and (remaining_iterations > 0): # save old estimates values previous_location = location previous_covariance = covariance previous_det = det previous_support = support # compute a new support from the full data set mahalanobis distances precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1) # compute new estimates support = np.zeros(n_samples, dtype=bool) support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(axis=0) covariance = cov_computation_method(X_support) det = fast_logdet(covariance) # update remaining iterations for early stopping remaining_iterations -= 1 previous_dist = dist dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1) # Catch computation errors if np.isinf(det): raise ValueError( "Singular covariance matrix. " "Please check that the covariance matrix corresponding " "to the dataset is full rank and that MinCovDet is used with " "Gaussian-distributed data (or at least data drawn from a " "unimodal, symmetric distribution.") # Check convergence if np.allclose(det, previous_det): # c_step procedure converged if verbose: print("Optimal couple (location, covariance) found before" " ending iterations (%d left)" % (remaining_iterations)) results = location, covariance, det, support, dist elif det > previous_det: # determinant has increased (should not happen) warnings.warn("Warning! det > previous_det (%.15f > %.15f)" % (det, previous_det), RuntimeWarning) results = previous_location, previous_covariance, \ previous_det, previous_support, previous_dist # Check early stopping if remaining_iterations == 0: if verbose: print('Maximum number of iterations reached') results = location, covariance, det, support, dist return results def select_candidates(X, n_support, n_trials, select=1, n_iter=30, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """Finds the best pure subset of observations to compute MCD from it. The purpose of this function is to find the best sets of n_support observations with respect to a minimization of their covariance matrix determinant. Equivalently, it removes n_samples-n_support observations to construct what we call a pure data set (i.e. not containing outliers). The list of the observations of the pure data set is referred to as the `support`. Starting from a random support, the pure data set is found by the c_step procedure introduced by Rousseeuw and Van Driessen in [Rouseeuw1999]_. Parameters ---------- X : array-like, shape (n_samples, n_features) Data (sub)set in which we look for the n_support purest observations. n_support : int, [(n + p + 1)/2] < n_support < n The number of samples the pure data set must contain. select : int, int > 0 Number of best candidates results to return. n_trials : int, nb_trials > 0 or 2-tuple Number of different initial sets of observations from which to run the algorithm. Instead of giving a number of trials to perform, one can provide a list of initial estimates that will be used to iteratively run c_step procedures. In this case: - n_trials[0]: array-like, shape (n_trials, n_features) is the list of `n_trials` initial location estimates - n_trials[1]: array-like, shape (n_trials, n_features, n_features) is the list of `n_trials` initial covariances estimates n_iter : int, nb_iter > 0 Maximum number of iterations for the c_step procedure. (2 is enough to be close to the final solution. "Never" exceeds 20). random_state : integer or numpy.RandomState, default None The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) verbose : boolean, default False Control the output verbosity. See Also --------- c_step Returns ------- best_locations : array-like, shape (select, n_features) The `select` location estimates computed from the `select` best supports found in the data set (`X`). best_covariances : array-like, shape (select, n_features, n_features) The `select` covariance estimates computed from the `select` best supports found in the data set (`X`). best_supports : array-like, shape (select, n_samples) The `select` best supports found in the data set (`X`). References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ random_state = check_random_state(random_state) n_samples, n_features = X.shape if isinstance(n_trials, numbers.Integral): run_from_estimates = False elif isinstance(n_trials, tuple): run_from_estimates = True estimates_list = n_trials n_trials = estimates_list[0].shape[0] else: raise TypeError("Invalid 'n_trials' parameter, expected tuple or " " integer, got %s (%s)" % (n_trials, type(n_trials))) # compute `n_trials` location and shape estimates candidates in the subset all_estimates = [] if not run_from_estimates: # perform `n_trials` computations from random initial supports for j in range(n_trials): all_estimates.append( _c_step( X, n_support, remaining_iterations=n_iter, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) else: # perform computations from every given initial estimates for j in range(n_trials): initial_estimates = (estimates_list[0][j], estimates_list[1][j]) all_estimates.append(_c_step( X, n_support, remaining_iterations=n_iter, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = \ zip(*all_estimates) # find the `n_best` best results among the `n_trials` ones index_best = np.argsort(all_dets_sub)[:select] best_locations = np.asarray(all_locs_sub)[index_best] best_covariances = np.asarray(all_covs_sub)[index_best] best_supports = np.asarray(all_supports_sub)[index_best] best_ds = np.asarray(all_ds_sub)[index_best] return best_locations, best_covariances, best_supports, best_ds def fast_mcd(X, support_fraction=None, cov_computation_method=empirical_covariance, random_state=None): """Estimates the Minimum Covariance Determinant matrix. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: `[n_sample + n_features + 1] / 2`. random_state : integer or numpy.RandomState, optional The generator used to randomly subsample. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Notes ----- The FastMCD algorithm has been introduced by Rousseuw and Van Driessen in "A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS". The principle is to compute robust estimates and random subsets before pooling them into a larger subsets, and finally into the full data set. Depending on the size of the initial sample, we have one, two or three such computation levels. Note that only raw estimates are returned. If one is interested in the correction and reweighting steps described in [Rouseeuw1999]_, see the MinCovDet object. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400 Returns ------- location : array-like, shape (n_features,) Robust location of the data. covariance : array-like, shape (n_features, n_features) Robust covariance of the features. support : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the robust location and covariance estimates of the data set. """ random_state = check_random_state(random_state) X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) warnings.warn("Only one sample available. " "You may want to reshape your data array") n_samples, n_features = X.shape # minimum breakdown value if support_fraction is None: n_support = int(np.ceil(0.5 * (n_samples + n_features + 1))) else: n_support = int(support_fraction * n_samples) # 1-dimensional case quick computation # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust # Regression and Outlier Detection, John Wiley & Sons, chapter 4) if n_features == 1: if n_support < n_samples: # find the sample shortest halves X_sorted = np.sort(np.ravel(X)) diff = X_sorted[n_support:] - X_sorted[:(n_samples - n_support)] halves_start = np.where(diff == np.min(diff))[0] # take the middle points' mean to get the robust location estimate location = 0.5 * (X_sorted[n_support + halves_start] + X_sorted[halves_start]).mean() support = np.zeros(n_samples, dtype=bool) X_centered = X - location support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True covariance = np.asarray([[np.var(X[support])]]) location = np.array([location]) # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) else: support = np.ones(n_samples, dtype=bool) covariance = np.asarray([[np.var(X)]]) location = np.asarray([np.mean(X)]) X_centered = X - location # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) # Starting FastMCD algorithm for p-dimensional case if (n_samples > 500) and (n_features > 1): # 1. Find candidate supports on subsets # a. split the set in subsets of size ~ 300 n_subsets = n_samples // 300 n_samples_subsets = n_samples // n_subsets samples_shuffle = random_state.permutation(n_samples) h_subset = int(np.ceil(n_samples_subsets * (n_support / float(n_samples)))) # b. perform a total of 500 trials n_trials_tot = 500 # c. select 10 best (location, covariance) for each subset n_best_sub = 10 n_trials = max(10, n_trials_tot // n_subsets) n_best_tot = n_subsets * n_best_sub all_best_locations = np.zeros((n_best_tot, n_features)) try: all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) except MemoryError: # The above is too big. Let's try with something much small # (and less optimal) all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) n_best_tot = 10 n_best_sub = 2 for i in range(n_subsets): low_bound = i * n_samples_subsets high_bound = low_bound + n_samples_subsets current_subset = X[samples_shuffle[low_bound:high_bound]] best_locations_sub, best_covariances_sub, _, _ = select_candidates( current_subset, h_subset, n_trials, select=n_best_sub, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub) all_best_locations[subset_slice] = best_locations_sub all_best_covariances[subset_slice] = best_covariances_sub # 2. Pool the candidate supports into a merged set # (possibly the full dataset) n_samples_merged = min(1500, n_samples) h_merged = int(np.ceil(n_samples_merged * (n_support / float(n_samples)))) if n_samples > 1500: n_best_merged = 10 else: n_best_merged = 1 # find the best couples (location, covariance) on the merged set selection = random_state.permutation(n_samples)[:n_samples_merged] locations_merged, covariances_merged, supports_merged, d = \ select_candidates( X[selection], h_merged, n_trials=(all_best_locations, all_best_covariances), select=n_best_merged, cov_computation_method=cov_computation_method, random_state=random_state) # 3. Finally get the overall best (locations, covariance) couple if n_samples < 1500: # directly get the best couple (location, covariance) location = locations_merged[0] covariance = covariances_merged[0] support = np.zeros(n_samples, dtype=bool) dist = np.zeros(n_samples) support[selection] = supports_merged[0] dist[selection] = d[0] else: # select the best couple on the full dataset locations_full, covariances_full, supports_full, d = \ select_candidates( X, n_support, n_trials=(locations_merged, covariances_merged), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] elif n_features > 1: # 1. Find the 10 best couples (location, covariance) # considering two iterations n_trials = 30 n_best = 10 locations_best, covariances_best, _, _ = select_candidates( X, n_support, n_trials=n_trials, select=n_best, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) # 2. Select the best couple on the full dataset amongst the 10 locations_full, covariances_full, supports_full, d = select_candidates( X, n_support, n_trials=(locations_best, covariances_best), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] return location, covariance, support, dist class MinCovDet(EmpiricalCovariance): """Minimum Covariance Determinant (MCD): robust estimator of covariance. The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should consider projection pursuit methods to deal with multi-modal datasets. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- store_precision : bool Specify if the estimated precision is stored. assume_centered : Boolean If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- raw_location_ : array-like, shape (n_features,) The raw robust estimated location before correction and re-weighting. raw_covariance_ : array-like, shape (n_features, n_features) The raw robust estimated covariance before correction and re-weighting. raw_support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the raw robust estimates of location and shape, before correction and re-weighting. location_ : array-like, shape (n_features,) Estimated robust location covariance_ : array-like, shape (n_features, n_features) Estimated robust covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. (stored only if store_precision is True) support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the robust estimates of location and shape. dist_ : array-like, shape (n_samples,) Mahalanobis distances of the training set (on which `fit` is called) observations. References ---------- .. [Rouseeuw1984] `P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.` .. [Rouseeuw1999] `A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS` .. [Butler1993] `R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400` """ _nonrobust_covariance = staticmethod(empirical_covariance) def __init__(self, store_precision=True, assume_centered=False, support_fraction=None, random_state=None): self.store_precision = store_precision self.assume_centered = assume_centered self.support_fraction = support_fraction self.random_state = random_state def fit(self, X, y=None): """Fits a Minimum Covariance Determinant with the FastMCD algorithm. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns ------- self : object Returns self. """ X = check_array(X) random_state = check_random_state(self.random_state) n_samples, n_features = X.shape # check that the empirical covariance is full rank if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features: warnings.warn("The covariance matrix associated to your dataset " "is not full rank") # compute and store raw estimates raw_location, raw_covariance, raw_support, raw_dist = fast_mcd( X, support_fraction=self.support_fraction, cov_computation_method=self._nonrobust_covariance, random_state=random_state) if self.assume_centered: raw_location = np.zeros(n_features) raw_covariance = self._nonrobust_covariance(X[raw_support], assume_centered=True) # get precision matrix in an optimized way precision = pinvh(raw_covariance) raw_dist = np.sum(np.dot(X, precision) * X, 1) self.raw_location_ = raw_location self.raw_covariance_ = raw_covariance self.raw_support_ = raw_support self.location_ = raw_location self.support_ = raw_support self.dist_ = raw_dist # obtain consistency at normal models self.correct_covariance(X) # re-weight estimator self.reweight_covariance(X) return self def correct_covariance(self, data): """Apply a correction to raw Minimum Covariance Determinant estimates. Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [Rouseeuw1984]_. Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- covariance_corrected : array-like, shape (n_features, n_features) Corrected robust covariance estimate. """ correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5) covariance_corrected = self.raw_covariance_ * correction self.dist_ /= correction return covariance_corrected def reweight_covariance(self, data): """Re-weight raw Minimum Covariance Determinant estimates. Re-weight observations using Rousseeuw's method (equivalent to deleting outlying observations from the data set before computing location and covariance estimates). [Rouseeuw1984]_ Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- location_reweighted : array-like, shape (n_features, ) Re-weighted robust location estimate. covariance_reweighted : array-like, shape (n_features, n_features) Re-weighted robust covariance estimate. support_reweighted : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the re-weighted robust location and covariance estimates. """ n_samples, n_features = data.shape mask = self.dist_ < chi2(n_features).isf(0.025) if self.assume_centered: location_reweighted = np.zeros(n_features) else: location_reweighted = data[mask].mean(0) covariance_reweighted = self._nonrobust_covariance( data[mask], assume_centered=self.assume_centered) support_reweighted = np.zeros(n_samples, dtype=bool) support_reweighted[mask] = True self._set_covariance(covariance_reweighted) self.location_ = location_reweighted self.support_ = support_reweighted X_centered = data - self.location_ self.dist_ = np.sum( np.dot(X_centered, self.get_precision()) * X_centered, 1) return location_reweighted, covariance_reweighted, support_reweighted
bsd-3-clause
mblondel/scikit-learn
examples/neighbors/plot_nearest_centroid.py
264
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
chenhh/PySPPortfolio
PySPPortfolio/example/portfolio_maxRet/MultiStagePortfolio.py
1
4920
# -*- coding: utf-8 -*- ''' @author: Hung-Hsin Chen @mail: [email protected] ''' import time import os from datetime import date import numpy as np import pandas as pd from coopr.pyomo import (Set, RangeSet, Param, Var, Objective, Constraint, ConcreteModel, Reals, NonNegativeReals, maximize, display) from coopr.opt import SolverFactory PklBasicFeaturesDir = os.path.join(os.getcwd(),'pkl', 'BasicFeatures') def maxRetPortfolio(riskyRetMtx, riskFreeRetVec, buyTransFeeMtx, sellTransFeeMtx, allocatedWealth): ''' -假設有T期的資料, 投資在M個risky assets, 以及1個riskfree asset -在(T+1)期初結算 goal: 最大化T+1期期初財產 @param riskyRetMtx, numpy.array, size: M * T+1 @param riskFreeRetVec, numpy.array, size: T+1 @param buyTransFeeMtx, numpy.array, size: M * T @param sellTransFeeMtx, numpy.array, size: M * T @param allocatedWealth, numpy.array, size: (M+1) (最後一個為cash) @return (buyMtx, sellMtx), numpy.array, each size: M*T ''' assert buyTransFeeMtx.shape == sellTransFeeMtx.shape assert riskyRetMtx.shape[1] == riskFreeRetVec.size M, T = buyTransFeeMtx.shape t1 = time.time() #create model model = ConcreteModel() #number of asset and number of periods model.symbols = range(M) model.T = range(T) model.Tp1 = range(T+1) model.Mp1 = range(M+1) #decision variables model.buys = Var(model.symbols, model.T, within=NonNegativeReals) model.sells = Var(model.symbols, model.T, within=NonNegativeReals) model.riskyWealth = Var(model.symbols, model.T, within=NonNegativeReals) model.riskFreeWealth = Var(model.T, within=NonNegativeReals) #objective def objective_rule(model): wealth =sum( (1. + riskyRetMtx[m, T]) * model.riskyWealth[m, T-1] for m in xrange(M)) wealth += (1.+ riskFreeRetVec[T]) * model.riskFreeWealth[T-1] return wealth model.objective = Objective(rule=objective_rule, sense=maximize) #constraint def riskyWealth_constraint_rule(model, m, t): if t>=1: preWealth = model.riskyWealth[m, t-1] else: preWealth = allocatedWealth[m] return (model.riskyWealth[m, t] == (1. + riskyRetMtx[m,t])*preWealth + model.buys[m,t] - model.sells[m,t]) def riskyFreeWealth_constraint_rule(model, t): totalSell = sum((1-sellTransFeeMtx[mdx, t])*model.sells[mdx, t] for mdx in xrange(M)) totalBuy = sum((1+buyTransFeeMtx[mdx, t])*model.buys[mdx, t] for mdx in xrange(M)) if t >=1: preWealth = model.riskFreeWealth[t-1] else: preWealth = allocatedWealth[-1] return( model.riskFreeWealth[t] == (1. + riskFreeRetVec[t])*preWealth + totalSell - totalBuy) model.riskyWeathConstraint = Constraint(model.symbols, model.T, rule=riskyWealth_constraint_rule) model.riskFreeWealthConstraint = Constraint(model.T, rule=riskyFreeWealth_constraint_rule) #optimizer opt = SolverFactory('cplex') # opt.options["threads"] = 4 instance = model.create() results = opt.solve(instance) print results # instance.load(results) # display(instance) # instance.load(results) # for var in instance.active_components(Var): # varobj = getattr(instance, var) # for idx in varobj: # print varobj[idx], varobj[idx].value # print "elapsed %.3f secs"%(time.time()-t1) def constructModelData(): # symbols = ('1101', '1102', '1103') symbols = ('1101', '1102', '1103', '1104' ) startDate, endDate = date(2005,1,1), date(2012, 12, 31) dfs = [] for symbol in symbols: df = pd.read_pickle(os.path.join(PklBasicFeaturesDir, 'BasicFeatures_%s_00-12.pkl'%symbol)) dfs.append(df[startDate: endDate]) M, T = len(symbols), dfs[0].index.size - 1 money = 1e5 riskyRetMtx = np.empty((M, T+1)) for idx, df in enumerate(dfs): riskyRetMtx[idx, :] = df['adjROI'].values/100 riskFreeRetVec = np.zeros(T+1) buyTransFeeMtx = np.ones((M,T))* 0.003 #買進0.3%手續費 sellTransFeeMtx = np.ones((M,T))* 0.004425 #賣出0.3%手續費+0.1425%交易稅 allocated = np.zeros(M+1) allocated[-1] = money maxRetMultiStagePortfolio(riskyRetMtx, riskFreeRetVec, buyTransFeeMtx, sellTransFeeMtx, allocated) print riskyRetMtx if __name__ == '__main__': # testMSPortfolio() constructModelData()
gpl-3.0
chrisburr/scikit-learn
examples/feature_selection/plot_feature_selection.py
95
2847
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm from sklearn.feature_selection import SelectPercentile, f_classif ############################################################################### # import some data to play with # The iris dataset iris = datasets.load_iris() # Some noisy data not correlated E = np.random.uniform(0, 0.1, size=(len(iris.data), 20)) # Add the noisy data to the informative features X = np.hstack((iris.data, E)) y = iris.target ############################################################################### plt.figure(1) plt.clf() X_indices = np.arange(X.shape[-1]) ############################################################################### # Univariate feature selection with F-test for feature scoring # We use the default selection function: the 10% most significant features selector = SelectPercentile(f_classif, percentile=10) selector.fit(X, y) scores = -np.log10(selector.pvalues_) scores /= scores.max() plt.bar(X_indices - .45, scores, width=.2, label=r'Univariate score ($-Log(p_{value})$)', color='darkorange') ############################################################################### # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) svm_weights = (clf.coef_ ** 2).sum(axis=0) svm_weights /= svm_weights.max() plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='navy') clf_selected = svm.SVC(kernel='linear') clf_selected.fit(selector.transform(X), y) svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0) svm_weights_selected /= svm_weights_selected.max() plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected, width=.2, label='SVM weights after selection', color='c') plt.title("Comparing feature selection") plt.xlabel('Feature number') plt.yticks(()) plt.axis('tight') plt.legend(loc='upper right') plt.show()
bsd-3-clause
ChristosChristofidis/h2o-3
h2o-py/tests/testdir_algos/gbm/pyunit_weights_var_impGBM.py
1
6163
import sys sys.path.insert(1, "../../../") import h2o import random def weights_var_imp(ip,port): # Connect to h2o h2o.init(ip,port) def check_same(data1, data2, min_rows_scale): gbm1_regression = h2o.gbm(x=data1[["displacement", "power", "weight", "acceleration", "year"]], y=data1["economy"], min_rows=5, ntrees=5, max_depth=2) gbm2_regression = h2o.gbm(x=data2[["displacement", "power", "weight", "acceleration", "year"]], y=data2["economy"], training_frame=data2, min_rows=5*min_rows_scale, weights_column="weights", ntrees=5, max_depth=2) gbm1_binomial = h2o.gbm(x=data1[["displacement", "power", "weight", "acceleration", "year"]], y=data1["economy_20mpg"], min_rows=5, distribution="bernoulli", ntrees=5, max_depth=2) gbm2_binomial = h2o.gbm(x=data2[["displacement", "power", "weight", "acceleration", "year"]], y=data2["economy_20mpg"], training_frame=data2, weights_column="weights", min_rows=5*min_rows_scale, distribution="bernoulli", ntrees=5, max_depth=2) gbm1_multinomial = h2o.gbm(x=data1[["displacement", "power", "weight", "acceleration", "year"]], y=data1["cylinders"], min_rows=5, distribution="multinomial", ntrees=5, max_depth=2) gbm2_multinomial = h2o.gbm(x=data2[["displacement", "power", "weight", "acceleration", "year"]], y=data2["cylinders"], training_frame=data2, weights_column="weights", min_rows=5*min_rows_scale, distribution="multinomial", ntrees=5, max_depth=2) reg1_vi = gbm1_regression.varimp(return_list=True) reg2_vi = gbm2_regression.varimp(return_list=True) bin1_vi = gbm1_binomial.varimp(return_list=True) bin2_vi = gbm2_binomial.varimp(return_list=True) mul1_vi = gbm1_multinomial.varimp(return_list=True) mul2_vi = gbm2_multinomial.varimp(return_list=True) print "Varimp (regresson) no weights vs. weights: {0}, {1}".format(reg1_vi, reg2_vi) print "Varimp (binomial) no weights vs. weights: {0}, {1}".format(bin1_vi, bin2_vi) print "Varimp (multinomial) no weights vs. weights: {0}, {1}".format(mul1_vi, mul2_vi) for rvi1, rvi2 in zip(reg1_vi, reg2_vi): assert rvi1 == rvi1, "Expected vi's (regression) to be the same, but got {0}, and {1}".format(rvi1, rvi2) for bvi1, bvi2 in zip(bin1_vi, bin2_vi): assert bvi1 == bvi1, "Expected vi's (binomial) to be the same, but got {0}, and {1}".format(bvi1, bvi2) for mvi1, mvi2 in zip(mul1_vi, mul2_vi): assert mvi1 == mvi1, "Expected vi's (multinomial) to be the same, but got {0}, and {1}".format(mvi1, mvi2) h2o_cars_data = h2o.import_frame(h2o.locate("smalldata/junit/cars_20mpg.csv")) h2o_cars_data["economy_20mpg"] = h2o_cars_data["economy_20mpg"].asfactor() h2o_cars_data["cylinders"] = h2o_cars_data["cylinders"].asfactor() # uniform weights same as no weights weight = random.randint(1,10) uniform_weights = [[weight] for r in range(406)] h2o_uniform_weights = h2o.H2OFrame(python_obj=uniform_weights) h2o_uniform_weights.setNames(["weights"]) h2o_data_uniform_weights = h2o_cars_data.cbind(h2o_uniform_weights) print "\n\nChecking that using uniform weights is equivalent to no weights:" check_same(h2o_cars_data, h2o_data_uniform_weights, weight) # zero weights same as removed observations zero_weights = [[0] if random.randint(0,1) else [1] for r in range(406)] h2o_zero_weights = h2o.H2OFrame(python_obj=zero_weights) h2o_zero_weights.setNames(["weights"]) h2o_data_zero_weights = h2o_cars_data.cbind(h2o_zero_weights) h2o_data_zeros_removed = h2o_cars_data[h2o_zero_weights["weights"] == 1] print "\n\nChecking that using some zero weights is equivalent to removing those observations:" check_same(h2o_data_zeros_removed, h2o_data_zero_weights, 1) # doubled weights same as doubled observations doubled_weights = [[1] if random.randint(0,1) else [2] for r in range(406)] h2o_doubled_weights = h2o.H2OFrame(python_obj=doubled_weights) h2o_doubled_weights.setNames(["weights"]) h2o_data_doubled_weights = h2o_cars_data.cbind(h2o_doubled_weights) doubled_data = h2o.as_list(h2o_cars_data, use_pandas=False) colnames = doubled_data.pop(0) for idx, w in enumerate(doubled_weights): if w[0] == 2: doubled_data.append(doubled_data[idx]) h2o_data_doubled = h2o.H2OFrame(python_obj=doubled_data) h2o_data_doubled.setNames(colnames) h2o_data_doubled["economy_20mpg"] = h2o_data_doubled["economy_20mpg"].asfactor() h2o_data_doubled["cylinders"] = h2o_data_doubled["cylinders"].asfactor() h2o_data_doubled_weights["economy_20mpg"] = h2o_data_doubled_weights["economy_20mpg"].asfactor() h2o_data_doubled_weights["cylinders"] = h2o_data_doubled_weights["cylinders"].asfactor() print "\n\nChecking that doubling some weights is equivalent to doubling those observations:" check_same(h2o_data_doubled, h2o_data_doubled_weights, 1) if __name__ == "__main__": h2o.run_test(sys.argv, weights_var_imp)
apache-2.0
ilyes14/scikit-learn
sklearn/tests/test_grid_search.py
53
28730
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler, ChangedBehaviorWarning) from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, StratifiedKFold, FitFailedWarning from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
rseubert/scikit-learn
benchmarks/bench_plot_nmf.py
206
5890
""" Benchmarks of Non-Negative Matrix Factorization """ from __future__ import print_function from collections import defaultdict import gc from time import time import numpy as np from scipy.linalg import norm from sklearn.decomposition.nmf import NMF, _initialize_nmf from sklearn.datasets.samples_generator import make_low_rank_matrix from sklearn.externals.six.moves import xrange def alt_nnmf(V, r, max_iter=1000, tol=1e-3, R=None): ''' A, S = nnmf(X, r, tol=1e-3, R=None) Implement Lee & Seung's algorithm Parameters ---------- V : 2-ndarray, [n_samples, n_features] input matrix r : integer number of latent features max_iter : integer, optional maximum number of iterations (default: 1000) tol : double tolerance threshold for early exit (when the update factor is within tol of 1., the function exits) R : integer, optional random seed Returns ------- A : 2-ndarray, [n_samples, r] Component part of the factorization S : 2-ndarray, [r, n_features] Data part of the factorization Reference --------- "Algorithms for Non-negative Matrix Factorization" by Daniel D Lee, Sebastian H Seung (available at http://citeseer.ist.psu.edu/lee01algorithms.html) ''' # Nomenclature in the function follows Lee & Seung eps = 1e-5 n, m = V.shape if R == "svd": W, H = _initialize_nmf(V, r) elif R is None: R = np.random.mtrand._rand W = np.abs(R.standard_normal((n, r))) H = np.abs(R.standard_normal((r, m))) for i in xrange(max_iter): updateH = np.dot(W.T, V) / (np.dot(np.dot(W.T, W), H) + eps) H *= updateH updateW = np.dot(V, H.T) / (np.dot(W, np.dot(H, H.T)) + eps) W *= updateW if i % 10 == 0: max_update = max(updateW.max(), updateH.max()) if abs(1. - max_update) < tol: break return W, H def report(error, time): print("Frobenius loss: %.5f" % error) print("Took: %.2fs" % time) print() def benchmark(samples_range, features_range, rank=50, tolerance=1e-5): it = 0 timeset = defaultdict(lambda: []) err = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: print("%2d samples, %2d features" % (n_samples, n_features)) print('=======================') X = np.abs(make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2)) gc.collect() print("benchmarking nndsvd-nmf: ") tstart = time() m = NMF(n_components=30, tol=tolerance, init='nndsvd').fit(X) tend = time() - tstart timeset['nndsvd-nmf'].append(tend) err['nndsvd-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvda-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvda', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvda-nmf'].append(tend) err['nndsvda-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvdar-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvdar', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvdar-nmf'].append(tend) err['nndsvdar-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking random-nmf") tstart = time() m = NMF(n_components=30, init=None, max_iter=1000, tol=tolerance).fit(X) tend = time() - tstart timeset['random-nmf'].append(tend) err['random-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking alt-random-nmf") tstart = time() W, H = alt_nnmf(X, r=30, R=None, tol=tolerance) tend = time() - tstart timeset['alt-random-nmf'].append(tend) err['alt-random-nmf'].append(np.linalg.norm(X - np.dot(W, H))) report(norm(X - np.dot(W, H)), tend) return timeset, err if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection axes3d import matplotlib.pyplot as plt samples_range = np.linspace(50, 500, 3).astype(np.int) features_range = np.linspace(50, 500, 3).astype(np.int) timeset, err = benchmark(samples_range, features_range) for i, results in enumerate((timeset, err)): fig = plt.figure('scikit-learn Non-Negative Matrix Factorization benchmark results') ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbgcm', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') zlabel = 'Time (s)' if i == 0 else 'reconstruction error' ax.set_zlabel(zlabel) ax.legend() plt.show()
bsd-3-clause
lucashtnguyen/pybmpdb
pybmpdb/summary.py
1
29178
import os import sys from pkg_resources import resource_filename import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as mticker import pandas import openpyxl from wqio import utils from wqio import Parameter from . import dataAccess, info from statsmodels.tools.decorators import ( resettable_cache, cache_readonly, cache_writable ) def filterlocation(location, count=5, column='bmp'): location.filtered_data = ( location.filtered_data .groupby(level=column) .filter(lambda g: g.count() >= count) ) location.include = ( location.filtered_data .index .get_level_values(column) .unique() .shape[0] ) >= count def getPFCs(db): # get BMP Name of pervious friction course (PFC) BMPs bmpnamecol = 'BMPNAME' bmptable = 'BMP INFO S02' bmptypecol = 'TBMPT 2009' query = """ select [{0}] FROM [{1}] WHERE [{2}] = 'PF'; """.format(bmpnamecol, bmptable, bmptypecol) with db.connect() as cnn: pfc_names = pandas.read_sql(query, cnn)[bmpnamecol].tolist() return pfc_names def _pick_best_station(dataframe): def best_col(row, mainstation, backupstation, valcol): try: if pandas.isnull(row[(mainstation, valcol)]): return row[(backupstation, valcol)] else: return row[(mainstation, valcol)] except KeyError: return np.nan xtab = dataframe.unstack(level='station') xtab.columns = xtab.columns.swaplevel(0, 1) xtab[('final_outflow', 'res')] = xtab.apply( best_col, axis=1, args=('outflow', 'subsurface', 'res') ) xtab[('final_outflow', 'qual')] = xtab.apply( best_col, axis=1, args=('outflow', 'subsurface', 'qual') ) xtab[('final_inflow', 'qual')] = xtab.apply( best_col, axis=1, args=('inflow', 'reference outflow', 'qual') ) xtab[('final_inflow', 'res')] = xtab.apply( best_col, axis=1, args=('inflow', 'reference outflow', 'res') ) data = ( xtab.select(lambda c: 'final_' in c[0], axis=1) .rename(columns=lambda col: col.replace('final_', '')) .stack(level='station') ) return data def _pick_best_sampletype(dataframe): def best_col(row): if pandas.isnull(row['composite']): return row[badval] else: return np.nan pivotlevel='sampletype' badval='grab' orig_cols = dataframe.columns xtab = dataframe.unstack(level=pivotlevel) for col in orig_cols: xtab[(col, badval)] = xtab[col].apply(best_col, axis=1) data = ( xtab.select(lambda c: c[1] != 'unknown', axis=1) .stack(level=['sampletype']) ) return data def _filter_onesided_BMPs(dataframe): grouplevels = ['site', 'bmp', 'parameter', 'category'] pivotlevel = 'station' xtab = dataframe.unstack(level=pivotlevel) xgrp = xtab.groupby(level=grouplevels) data = xgrp.filter( lambda g: np.all(g['res'].describe().loc['count'] > 0) ) return data.stack(level=pivotlevel) def _filter_by_storm_count(dataframe, minstorms): # filter out all monitoring stations with less than /N/ storms grouplevels = ['site', 'bmp', 'parameter', 'station'] data = dataframe.groupby(level=grouplevels).filter( lambda g: g.count()['res'] >= minstorms ) return data def _filter_by_BMP_count(dataframe, minbmps): grouplevels = ['category', 'parameter', 'station'] data = dataframe.groupby(level=grouplevels).filter( lambda g: g.index.get_level_values('bmp').unique().shape[0] >= minbmps ) return data def getSummaryData(dbpath=None, catanalysis=False, astable=False, minstorms=3, minbmps=3, name=None, useTex=False, excludedbmps=None, excludedparams=None, **selection): '''Select offical data from database. Parameters ---------- dbpath : string File path to the BMP Database Access file. catanalysis : optional bool (default = False) Filters for data approved for BMP Category-level analysis. wqanalysis : optional bool (default = False) Filters for data approvded for individual BMP analysis. minstorms : option int (default = 3) The minimum number of storms each group defined by BMP, station, and parameter should have. Groups with too few storms will be filtered out. minstorms : option int (default = 3) The minimum number of BMPs each group defined by category, station, and parameter should have. Groups with too few BMPs will be filtered out. astable : optional bool (default = False) Toggles whether the database will be returned as a pandas.DataFrame (default) or a bmp.Table object. excludedbmps : optional list or None (default) List of BMP Names to exclude form the result. name : optional string or None (default) Passed directly to the Table constuctor. usetex : optional bool (default = False) Passed directly to the Table constuctor. **selection : optional keyword arguments Selection criteria passed directly Database.selectData Returns ------- subset : pandas.DataFrame or bmpTable ''' # main dataset if dbpath is None: dbpath = resource_filename("pybmpdb.data", 'bmpdata.csv') db = dataAccess.Database(dbpath, catanalysis=catanalysis) # astable must be true here. The input value is respected later table = db.selectData(astable=True, useTex=useTex, **selection) # combine NO3+NO2 and NO3 into NOx nitro_components = [ 'Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N', 'Nitrogen, Nitrate (NO3) as N' ] nitros_exist = table._check_for_parameters(nitro_components) if nitros_exist: nitro_combined = 'Nitrogen, NOx as N' table.unionParamsWithPreference(nitro_components, nitro_combined, 'mg/L') grab_BMPs = ['Retention Pond', 'Wetland Basin'] if catanalysis: # merge Wet land Basins and Retention ponds, keeping # the original records WBRP_combo = 'Wetland Basin/Retention Pond' table.redefineBMPCategory( bmpname=WBRP_combo, criteria=lambda r: r[0] in grab_BMPs, dropold=False ) grab_BMPs.append(WBRP_combo) # all data should be compisite data, but grabs are allowed # for bacteria at all BMPs, and all parameter groups at # retention ponds and wetland basins. Samples of an unknown # type are excluded querytxt = ( "(sampletype == 'composite') | (" "(category in {}) | " "(paramgroup == 'Biological') " ") & (sampletype != 'unknown')" ).format(grab_BMPs) subset = table.data.query(querytxt) if excludedbmps is not None: # remove all of the PFCs from the dataset exclude_bmp_query = "bmp not in {}".format(excludedbmps) subset = subset.query(exclude_bmp_query) if excludedparams is not None: exclude_params_query = "parameter not in {}".format(excludedparams) subset = subset.query(exclude_params_query) subset = _pick_best_sampletype(subset) subset = _pick_best_station(subset) subset = _filter_by_storm_count(subset, minstorms) subset = _filter_by_BMP_count(subset, minbmps) subset = _filter_onesided_BMPs(subset) if astable: table = dataAccess.Table(subset, name=name, useTex=useTex) return table, db else: return subset, db def setMPLStyle(serif=False): if serif: fontfamily = 'serif' preamble = [ r'\usepackage{siunitx}', r'\sisetup{detect-all}', r'\usepackage{fourier}' ] else: fontfamily = 'sans-serif' preamble = [ r'\usepackage{siunitx}', r'\sisetup{detect-all}', r'\usepackage{helvet}', r'\usepackage{sansmath}', r'\sansmath' ] style_dict = { 'text.usetex': True, 'font.family': [fontfamily], 'font.serif': ['Utopia', 'Palantino'], 'font.sans-serif': ['Helvetica', 'Arial'], 'lines.linewidth': 0.5, 'patch.linewidth': 0.5, 'text.latex.preamble': preamble, 'axes.linewidth': 0.5, 'axes.grid': True, 'axes.titlesize': 12, 'axes.labelsize': 10, 'xtick.labelsize': 10, 'xtick.direction': 'out', 'ytick.labelsize': 10, 'ytick.direction': 'out', 'grid.linewidth': 0.5, 'legend.fancybox': True, 'legend.numpoints': 1, 'legend.fontsize': 8, 'figure.figsize': (6.5, 3.5), 'savefig.dpi': 300 } matplotlib.rcParams.update(style_dict) class DatasetSummary(object): def __init__(self, dataset, paramgroup, figpath, forcepaths=False): self.forcepaths = forcepaths self.figpath = figpath self.paramgroup = paramgroup self.ds = dataset self.parameter = self.ds.definition['parameter'] self.parameter.usingTex = True self.bmp = self.ds.definition['category'] # properties self._latex_file_name = None self._scatter_fig_path = None self._scatter_fig_name = None self._stat_fig_path = None self._stat_fig_name = None @property def latex_file_name(self): if self._latex_file_name is None: self._latex_file_name = utils.processFilename('{}_{}_{}'.format( self.paramgroup, self.bmp, self.parameter.name )).lower() return self._latex_file_name @latex_file_name.setter def latex_file_name(self, value): self._latex_file_name = value @property def scatter_fig_path(self): if self._scatter_fig_path is None: self._scatter_fig_path = self.figpath + '/scatterplot' if not os.path.exists(self._scatter_fig_path) and self.forcepaths: os.mkdir(self._scatter_fig_path) return self._scatter_fig_path @property def scatter_fig_name(self): if self._scatter_fig_name is None: figname = utils.processFilename('{}_scatter.pdf'.format(self.latex_file_name)) self._scatter_fig_name = self.scatter_fig_path + '/' + figname return self._scatter_fig_name @scatter_fig_name.setter def scatter_fig_name(self, value): self._scatter_fig_name = value @property def stat_fig_path(self): if self._stat_fig_path is None: self._stat_fig_path = self.figpath + '/statplot' if not os.path.exists(self._stat_fig_path) and self.forcepaths: os.mkdir(self._stat_fig_path) return self._stat_fig_path @property def stat_fig_name(self): if self._stat_fig_name is None: figname = utils.processFilename('{}_stats.pdf'.format(self.latex_file_name)) self._stat_fig_name = self.stat_fig_path + '/' + figname return self._stat_fig_name @stat_fig_name.setter def stat_fig_name(self, value): self._stat_fig_name = value def _tex_table_row(self, name, attribute, rule='mid', twoval=False, sigfigs=3, ci=False, fromdataset=False, pval=False, tex=False, forceint=False): rulemap = { 'top': '\\toprule', 'mid': '\\midrule', 'bottom': '\\bottomrule', 'none': '%%', } try: thisrule = rulemap[rule] except KeyError: raise KeyError('top, mid, bottom rules or none allowed') if fromdataset: if self.ds.effluent.include and self.ds.influent.include: val = utils.sigFigs(getattr(self.ds, attribute), sigfigs, pval=pval, tex=tex, forceint=forceint) else: val = 'NA' formatter = dict(ruler=thisrule, name=name, value=val) row = r""" {ruler} {name} & \multicolumn{{2}}{{c}} {{{value}}} \\""" else: valstrings = [] for loc in [self.ds.influent, self.ds.effluent]: if loc.include: if hasattr(attribute, 'append'): val = [getattr(loc, attr) for attr in attribute] else: val = getattr(loc, attribute) if val is not None: if twoval: thisstring = '{}; {}'.format( utils.sigFigs(val[0], sigfigs, pval=pval, tex=tex, forceint=forceint), utils.sigFigs(val[1], sigfigs, pval=pval, tex=tex, forceint=forceint) ) if ci: thisstring = '({})'.format(thisstring) else: thisstring = utils.sigFigs( val, sigfigs, pval=pval, tex=tex, forceint=forceint ) else: thisstring = 'NA' else: thisstring = 'NA' valstrings.append(thisstring) formatter = dict( ruler=thisrule, name=name, val_in=valstrings[0], val_out=valstrings[1] ) row = r""" {ruler} {name} & {val_in} & {val_out} \\""" return row.format(**formatter) def _make_tex_table(self, tabletitle): ''' Generate a LaTeX table comparing the stats of `self.influent` and `self.effluent`. Parameters ---------- tabletitle : string Title of the table as it should appear in a LaTeX document. Writes ------ Returns ------- stattable : string The LaTeX commands for the statsummary table. ''' #tabletitle = 'Summary of {} at {} BMPs'.format(self.parameter.tex, self.bmpName) stattable = r""" \begin{table}[h!] \caption{%s} \centering \begin{tabular}{l l l l l} \toprule \textbf{Statistic} & \textbf{Inlet} & \textbf{Outlet} \\""" % tabletitle stats = [ {'name': 'Count', 'attribute': 'N', 'rule': 'top', 'forceint': True}, {'name': 'Number of NDs', 'attribute': 'ND', 'forceint': True}, #{'name': 'Number of Studies', 'attribute': 'JUNK', 'sigfigs': 0}, {'name': 'Min; Max', 'attribute': ['min', 'max'], 'twoval': True}, {'name': 'Mean', 'attribute': 'mean', }, {'name': '(95\% confidence interval)', 'attribute': 'mean_conf_interval', 'twoval': True, 'ci': True, 'rule':'none' }, {'name': 'Standard Deviation', 'attribute': 'std', }, {'name': 'Log. Mean', 'attribute': 'logmean', }, {'name': '(95\% confidence interval)', 'attribute': 'logmean_conf_interval', 'twoval': True, 'ci': True, 'rule':'none' }, {'name': 'Log. Standard Deviation', 'attribute': 'logstd', }, {'name': 'Geo. Mean', 'attribute': 'geomean', }, {'name': '(95\% confidence interval)', 'attribute': 'geomean_conf_interval', 'twoval': True, 'ci': True, 'rule':'none' }, {'name': 'Coeff. of Variation', 'attribute': 'cov', }, {'name': 'Skewness', 'attribute': 'skew', }, {'name': 'Median', 'attribute': 'median', }, {'name': '(95\% confidence interval)', 'attribute': 'median_conf_interval', 'twoval': True, 'ci': True, 'rule':'none' }, {'name': 'Quartiles', 'attribute': ['pctl25', 'pctl75'], 'twoval': True, }, {'name': 'Number of Pairs', 'attribute': 'n_pairs', 'rule': 'top', 'fromdataset': True, 'sigfigs': 1, 'forceint': True }, {'name': 'Wilcoxon p-value', 'attribute': 'wilcoxon_p', 'fromdataset': True, 'pval': True, 'tex': True }, {'name': 'Mann-Whitney p-value', 'attribute': 'mannwhitney_p', 'fromdataset': True, 'pval': True, 'tex': True }, ] for s in stats: stattable += self._tex_table_row(**s) stattable += r""" \bottomrule \end{tabular} \end{table}""" return stattable + '\n' # doesn't need to be a class method yet def _make_tex_figure(self, filename, caption, position='hb', clearpage=True): ''' Create the LaTeX for include a figure in a document Parameters ---------- filename : string Path to the image you want to include caption : string Caption tp appear below the figure position : string (default = 'hb') Valid LaTeX "float" placement preference (h=here, b=bottom, t=top, !=priority) clearpage : bool (default = True) Toggles the LaTeX command "\clearpage" after the figure Writes ------ None Returns ------- figurestring : string The LaTeX string to include a figure in a document ''' if clearpage: clrpage = ' \\clearpage\n' else: clrpage = '\n' figurestring = r""" \begin{figure}[%s] %% FIGURE \centering \includegraphics[scale=1.00]{%s} \caption{%s} \end{figure}%s""" % (position, filename, caption, clrpage) return figurestring def makeTexInput(self, tabletitle, subsection=True): ''' Creates an input file for a dataset including a summary table, stat plot, and scatter plot. Parameters ---------- figpath : string Path to teh figure relative to the current directory subsection : bool (default = True) Toggles the data going in its own subsection in the document Writes ------ A full LaTeX input file for inclusion in a final or draft template Returns ------- filename : string Filename and path of the file that is written ''' tablestring = '' # if there's enough effluent data if self.ds.effluent.include: if subsection: tablestring += r'\subsection{%s}' % (self.bmp,) # caption for the stats plot prob_caption = 'Box and Probability Plots of {} at {} BMPs'.format( self.parameter.name, self.bmp ) # caption for the scatter plot scatter_caption = 'Influent vs. Effluent Plots of {} at {} BMPs'.format( self.parameter.name, self.bmp ) # warning about having a lot of non-detects warning = ''' Warning: there is a very high percentage of non-detects in this data set. The hypothesis test results and other statistics reported in this table may not be valid. ''' # make the table and write it to the output file tablestring += self._make_tex_table(tabletitle) # if less than 80% of the data is ND if self.ds.effluent.ND / self.ds.effluent.N <= 0.8: # make the stat plot string statfig = self._make_tex_figure( self.stat_fig_name, prob_caption, clearpage=False ) # make the scatter plot string scatterfig = self._make_tex_figure( self.scatter_fig_name, scatter_caption, clearpage=True ) # write the strings to the file tablestring += statfig tablestring += scatterfig else: # if there are too many non-detect, # issue the warning tablestring += warning return tablestring class CategoricalSummary(object): def __init__(self, datasets, paramgroup, basepath, figpath, showprogress=False, applyfilters=False, filtercount=5, filtercolumn='bmp'): self._cache = resettable_cache() self._applyfilters = applyfilters self.filtercount = filtercount self.filtercolumn = filtercolumn self._raw_datasets = [ds for ds in filter( lambda x: x.effluent.include, datasets )] self.basepath = basepath self.figpath = figpath self.showprogress = showprogress self.parameters = [ds.definition['parameter'] for ds in self.datasets] self.bmps = [ds.definition['category'] for ds in self.datasets] self.paramgroup = paramgroup @cache_readonly def datasets(self): if self._applyfilters: filtered_datasets = [] for ds in self._raw_datasets: filterlocation(ds.effluent, count=self.filtercount, column=self.filtercolumn) filterlocation(ds.influent, count=self.filtercount, column=self.filtercolumn) #if ds.n_pairs is None or ds.paired_data is None or ds.n_pairs < self.filtercount: # ds.include = False #else: ds.include = ds.effluent.include if ds.include: filtered_datasets.append(ds) else: filtered_datasets = self._raw_datasets return filtered_datasets def _make_input_file_IO(self, inputIO, regenfigs=True): figoptions = dict(dpi=600, bbox_inches='tight', transparent=True) if self.showprogress: pbar = utils.ProgressBar(self.datasets) old_param = 'pure garbage' for n, ds in enumerate(self.datasets, 1): dsum = DatasetSummary(ds, self.paramgroup, self.figpath) new_param = dsum.parameter.name tabletitle = 'Statistics for {} at {} BMPs'.format( dsum.parameter.paramunit(), dsum.bmp ) latex_input = '' if old_param != new_param: latex_input = '\\section{%s}\n' % dsum.parameter.name latex_input += dsum.makeTexInput(tabletitle, subsection=True) latex_input += '\\clearpage\n' if regenfigs: statfig = ds.statplot( ylabel=dsum.parameter.paramunit(), bacteria=(self.paramgroup=='Bacteria'), axtype='prob' ) scatterfig = ds.scatterplot( xlabel='Influent ' + dsum.parameter.paramunit(), ylabel='Effluent ' + dsum.parameter.paramunit(), one2one=True ) statpath = os.path.join(self.basepath, dsum.stat_fig_name) statfig.savefig(statpath, **figoptions) scatterpath = os.path.join(self.basepath, dsum.scatter_fig_name) scatterfig.savefig(scatterpath, **figoptions) inputIO.write(latex_input) plt.close('all') old_param = new_param if self.showprogress: pbar.animate(n) def _make_report_IO(self, templateIO, inputpath, reportIO, report_title): inputname = os.path.basename(inputpath) documentstring = templateIO.read().replace('__VARTITLE', report_title) documentstring += '\n\\input{%s}\n\\end{document}\n' % (inputname,) reportIO.write(documentstring) def makeReport(self, templatepath, inputpath, reportpath, report_title, regenfigs=True): with open(inputpath, 'w') as inputIO: self._make_input_file_IO(inputIO, regenfigs=regenfigs) with open(templatepath, 'r') as templateIO: with open(reportpath, 'w') as reportIO: self._make_report_IO( templateIO, inputpath, reportIO, report_title ) def _proxy_inflow_outflow(dataset): from matplotlib.lines import Line2D infl_color = dataset.influent.color infl = Line2D([], [], color=infl_color, linestyle='-', linewidth=1.75, marker='o', markerfacecolor='white', markeredgewidth=1.25, markeredgecolor=infl_color) effl_color = dataset.effluent.color effl = Line2D([], [], color=effl_color, linestyle='-', linewidth=1.75, marker='s', markerfacecolor='white', markeredgewidth=1.25, markeredgecolor=effl_color) return infl, effl def parameterBoxplots(datacollection, prefix, bacteria=False): param = None bmplabels = datacollection.tidy['category'].unique() # positions of the ticks bmppositions = np.arange(1, len(bmplabels) + 1) * 2 pos_map = dict(zip(bmplabels, bmppositions)) for parameter in datacollection.tidy['parameter'].unique(): fig, ax = plt.subplots(figsize=(6.5, 4)) datasets = datacollection.selectDatasets(parameter=parameter) infl_proxy = None effl_proxy = None for n, ds in enumerate(datasets): pos = pos_map[ds.definition['category']] if ds is not None: bp = ds.boxplot(ax=ax, yscale='log', width=0.45, bacteria=bacteria, pos=pos, offset=0.25) if infl_proxy is None: infl_proxy, effl_proxy = _proxy_inflow_outflow(ds) if param is None: param = ds.definition['parameter_obj'] ax.set_xticks(bmppositions) ax.set_xticklabels([x.replace('/', '/\n') for x in bmplabels]) ax.set_ylabel(param.paramunit()) ax.set_xlabel('') utils.figutils.rotateTickLabels(ax, 45, 'x') ax.set_xlim(left=1, right=bmppositions.max()+1) if infl_proxy is not None: ax.legend( (infl_proxy, effl_proxy), ('Influent', 'Effluent'), ncol=2, frameon=False, bbox_to_anchor=(1.0, 1.1) ) fig.tight_layout() figpath = 'figures/{}_{}_boxplots.png'.format(prefix, parameter.replace(', ', '')) fig.savefig(figpath, dpi=600, bbox_inches='tight', transparent=True) plt.close(fig) def bmpStatSummary(datacollection): stat_dict = {} def getNStudies(loc): return loc.filtered_data.index.get_level_values('bmp').unique().shape[0] for ds in datacollection.datasets: key = (ds.definition['parameter'], ds.definition['category']) stat_dict[key] = {} for n, loc in zip(['In', 'Out'], [ds.influent, ds.effluent]): stat_dict[key][('N', n)] = loc.N stat_dict[key][('N-Studies', n)] = getNStudies(loc) stat_dict[key][('25th', n)] = loc.pctl25 stat_dict[key][('Median', n)] = loc.median stat_dict[key][('Median CI low', n)] = loc.median_conf_interval[0] stat_dict[key][('Median CI high', n)] = loc.median_conf_interval[1] stat_dict[key][('75th', n)] = loc.pctl75 stat_df = pandas.DataFrame(stat_dict).T full_index = pandas.MultiIndex.from_product([ stat_df.index.get_level_values(0).unique(), stat_df.index.get_level_values(1).unique(), ], names=['Parameter', 'BMP Type']) return stat_df.reindex(full_index)
bsd-3-clause
camallen/aggregation
experimental/dkMeansPaper/dk1.py
2
3219
#!/usr/bin/env python __author__ = 'greghines' import numpy as np import os import pymongo import sys import cPickle as pickle import bisect import csv import matplotlib.pyplot as plt import random import math import urllib import matplotlib.cbook as cbook from scipy.stats.stats import pearsonr from scipy.stats import beta def index(a, x): 'Locate the leftmost value exactly equal to x' i = bisect.bisect_left(a, x) if i != len(a) and a[i] == x: return i raise ValueError if os.path.exists("/home/ggdhines"): sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/clusteringAlg") sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/classifier") else: sys.path.append("/home/greg/github/reduction/experimental/clusteringAlg") sys.path.append("/home/greg/github/reduction/experimental/classifier") #from divisiveDBSCAN import DivisiveDBSCAN from divisiveDBSCAN_multi import DivisiveDBSCAN from divisiveKmeans import DivisiveKmeans from divisiveKmeans_2 import DivisiveKmeans_2 from kMeans import KMeans #from kMedoids import KMedoids #from agglomerativeClustering import agglomerativeClustering from quadTree import Node if os.path.exists("/home/ggdhines"): base_directory = "/home/ggdhines" else: base_directory = "/home/greg" client = pymongo.MongoClient() client = pymongo.MongoClient() db = client['penguin_2014-10-22'] collection = db["penguin_classifications"] collection2 = db["penguin_subjects"] count = 0 for subject_index,subject in enumerate(collection2.find({"metadata.path":{"$regex" : ".*BAILa2014a.*"}})): path = subject["metadata"]["path"] #print path if not("BAILa2014a" in path): continue if count == 100: break print count count += 1 user_markings = [] user_ips = [] big_list = [] zooniverse_id = subject["zooniverse_id"] for r in collection.find({"subjects" : {"$elemMatch": {"zooniverse_id":zooniverse_id}}}): ip = r["user_ip"] n = 0 xy_list = [] try: if isinstance(r["annotations"][1]["value"],dict): for marking in r["annotations"][1]["value"].values(): if marking["value"] in ["adult","chick"]: x,y = (float(marking["x"]),float(marking["y"])) if (x,y,ip) in big_list: print "--" continue big_list.append((x,y,ip)) user_markings.append((x,y)) user_ips.append(ip) except KeyError: print r["annotations"] user_identified_condors,clusters,users = DivisiveKmeans(1).fit2(user_markings,user_ips,debug=True) #user_identified_condors,clusters,users = DivisiveKmeans_2(1).fit2(user_markings,user_ips,debug=True) #user_identified_condors,clusters,users = KMedoids(1).fit2(user_markings,user_ips,debug=True) #user_identified_condors = agglomerativeClustering(zip(user_markings,user_ips)) quadRoot = Node(0,0,1000,750) for (m,u) in zip(user_markings,user_ips): quadRoot.__add_point__((m,u)) quadRoot.__ward_traverse__() break
apache-2.0
exa-analytics/exatomic
exatomic/qe/psp/jobfile.py
2
3543
## -*- coding: utf-8 -*- ## Copyright (c) 2015-2020, Exa Analytics Development Team ## Distributed under the terms of the Apache License 2.0 #""" #PSLibrary Job File ###################### #Job files (extension '.job') are used inside the `pslibrary`_ package to house #input data for pseudopotential generation using the atomic sub-package ('ld1.x') #within the `Quantum ESPRESSO`_ quantum chemistry suite of tools. See for example, #`this`_ job file. # #.. _pslibrary: https://github.com/dalcorso/pslibrary #.. _Quantum ESPRESSO: https://github.com/QEF/q-e #.. _this: https://github.com/dalcorso/pslibrary/blob/master/paw_ps_collection.job #""" #import re #import numpy as np #import pandas as pd #from exa import isotopes, Sections, Parser, TypedProperty, DataFrame # # #class Element(Parser): # """A single element's input file in the composite job file.""" # _key_config = "config" # _key_ae_dct = {} # _key_mrk = "[" # _key_resplit = re.compile("([1-9]*)([spdfghjklmn])([0-9-.]*)") # _key_symbol = "title" # _key_zed = "zed" # _key_ps = "/" # _key_ps_cols = ("n", "l_sym", "nps", "l", "occupation", # "energy", "rcut_nc", "rcut", "misc") # _key_ps_dtypes = [np.int64, "O", np.int64, np.int64, np.float64, # np.float64, np.float64, np.float64, np.float64] # ae = TypedProperty(DataFrame) # ps = TypedProperty(DataFrame) # z = TypedProperty(int) # symbol = TypedProperty(str) # # def _parse(self): # if str(self[0]).startswith("#"): # return # found = self.find(self._key_config, self._key_symbol, # self._key_zed, self._key_ps) # config = found[self._key_config][-1][1].split("=")[1] # config = config.replace("'", "").replace(",", "").split(" ") # nvals = [] # angmoms = [] # occs = [] # for item in config: # if "[" in item: # continue # try: # nval, angmom, occ = self._key_resplit.match(item.lower()).groups() # nvals.append(nval) # angmoms.append(angmom) # occs.append(occ) # except AttributeError: # pass # self.ae = pd.DataFrame.from_dict({'n': nvals, 'l': angmoms, 'occupation': occs}) # self.symbol = found[self._key_symbol][-1][1].split("=")[1].replace("'", "").replace(",", "").title() # element = getattr(isotopes, self.symbol) # self.z = element.Z # ps = [] # for line in self[found[self._key_ps][-1][0]:]: # if "#" in line: # continue # ls = line.split() # if len(ls) > 7: # dat = list(self._key_resplit.match(ls[0].lower()).groups())[:-1] # dat += ls[1:] # ps.append(dat) # self.ps = pd.DataFrame(ps, columns=self._key_ps_cols) # for i, col in enumerate(self.ps.columns): # self.ps[col] = self.ps[col].astype(self._key_ps_dtypes[i]) # # #class PSLJobFile(Sections): # """Input 'job' file in the pslibrary""" # name = "pslibrary job file" # description = "Parser for pslibrary input files" # _key_sep = "EOF" # _key_parser = Element # # def _parse(self): # """Parse input data from pslibrary""" # delims = self.find(self._key_sep, text=False)[self._key_sep] # starts = delims[::2] # ends = delims[1::2] # names = [self._key_parser]*len(ends) # self._sections_helper(parser=names, start=starts, end=ends)
apache-2.0
hennersz/pySpace
basemap/examples/contour_demo.py
4
4103
from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib.pyplot as plt import sys # examples of filled contour plots on map projections. # read in data on lat/lon grid. hgt = np.loadtxt('500hgtdata.gz') lons = np.loadtxt('500hgtlons.gz') lats = np.loadtxt('500hgtlats.gz') lons, lats = np.meshgrid(lons, lats) # create new figure fig=plt.figure() # setup of sinusoidal basemap m = Basemap(resolution='c',projection='sinu',lon_0=0) # make a filled contour plot. # create contour lines CS1 = m.contour(lons,lats,hgt,15,linewidths=0.5,colors='k',latlon=True) # fill between contour lines. CS2 =\ m.contourf(lons,lats,hgt,CS1.levels,cmap=plt.cm.jet,extend='both',latlon=True) m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(-60.,90,30.) m.drawparallels(parallels,labels=[1,0,0,0]) meridians = np.arange(-360.,360.,30.) m.drawmeridians(meridians) plt.title('Sinusoidal Filled Contour Demo') sys.stdout.write('plotting with sinusoidal basemap ...\n') # create new figure fig=plt.figure() # setup of mollweide basemap m = Basemap(resolution='c',projection='moll',lon_0=0) # make a filled contour plot. CS1 = m.contour(lons,lats,hgt,15,linewidths=0.5,colors='k',latlon=True) CS2 =\ m.contourf(lons,lats,hgt,CS1.levels,cmap=plt.cm.jet,extend='both',latlon=True) m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(-60.,90,30.) m.drawparallels(parallels,labels=[1,0,0,0]) meridians = np.arange(-360.,360.,30.) m.drawmeridians(meridians) plt.title('Mollweide Filled Contour Demo') sys.stdout.write('plotting with mollweide basemap ...\n') # create new figure fig=plt.figure() # set up Robinson map projection. m = Basemap(resolution='c',projection='robin',lon_0=0) # make a filled contour plot. CS1 = m.contour(lons,lats,hgt,15,linewidths=0.5,colors='k',latlon=True) CS2 = m.contourf(lons,lats,hgt,CS1.levels,cmap=plt.cm.jet,extend='both',latlon=True) m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(-60.,90,30.) m.drawparallels(parallels,labels=[1,0,0,0]) meridians = np.arange(-360.,360.,60.) m.drawmeridians(meridians,labels=[0,0,0,1]) plt.title('Robinson Filled Contour Demo') sys.stdout.write('plotting with robinson basemap ...\n') # create new figure fig=plt.figure() # set up map projection (azimuthal equidistant). m = Basemap(projection='npaeqd',lon_0=-90,boundinglat=15.,resolution='c') # make a filled contour plot. x, y = m(lons, lats) CS1 = m.contour(x,y,hgt,15,linewidths=0.5,colors='k') CS2 = m.contourf(x,y,hgt,CS2.levels,cmap=plt.cm.jet,extend='both') m.colorbar(CS2,pad='12%') # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(0.,80,20.) m.drawparallels(parallels,labels=[0,0,1,1]) meridians = np.arange(10.,360.,20.) m.drawmeridians(meridians,labels=[1,1,1,1]) plt.title('Azimuthal Equidistant Filled Contour Demo',y=1.075) sys.stdout.write('plotting with azimuthal equidistant basemap ...\n') # create new figure fig=plt.figure() # setup of orthographic basemap m = Basemap(resolution='c',projection='ortho',\ lat_0=45.,lon_0=-120.) # make a filled contour plot. x, y = m(lons, lats) CS1 = m.contour(x,y,hgt,15,linewidths=0.5,colors='k') CS2 = m.contourf(x,y,hgt,CS1.levels,cmap=plt.cm.jet,extend='both') m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.fillcontinents() m.drawmapboundary() # draw parallels and meridians. parallels = np.arange(-80.,90,20.) m.drawparallels(parallels) meridians = np.arange(-360.,360.,20.) m.drawmeridians(meridians) plt.title('Orthographic Filled Contour Demo') sys.stdout.write('plotting with orthographic basemap ..\n') plt.show()
gpl-3.0
kiszk/spark
python/pyspark/sql/types.py
3
65904
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import decimal import time import datetime import calendar import json import re import base64 from array import array import ctypes if sys.version >= "3": long = int basestring = unicode = str from py4j.protocol import register_input_converter from py4j.java_gateway import JavaClass from pyspark import SparkContext from pyspark.serializers import CloudPickleSerializer __all__ = [ "DataType", "NullType", "StringType", "BinaryType", "BooleanType", "DateType", "TimestampType", "DecimalType", "DoubleType", "FloatType", "ByteType", "IntegerType", "LongType", "ShortType", "ArrayType", "MapType", "StructField", "StructType"] class DataType(object): """Base class for data types.""" def __repr__(self): return self.__class__.__name__ def __hash__(self): return hash(str(self)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) @classmethod def typeName(cls): return cls.__name__[:-4].lower() def simpleString(self): return self.typeName() def jsonValue(self): return self.typeName() def json(self): return json.dumps(self.jsonValue(), separators=(',', ':'), sort_keys=True) def needConversion(self): """ Does this type need to conversion between Python object and internal SQL object. This is used to avoid the unnecessary conversion for ArrayType/MapType/StructType. """ return False def toInternal(self, obj): """ Converts a Python object into an internal SQL object. """ return obj def fromInternal(self, obj): """ Converts an internal SQL object into a native Python object. """ return obj # This singleton pattern does not work with pickle, you will get # another object after pickle and unpickle class DataTypeSingleton(type): """Metaclass for DataType""" _instances = {} def __call__(cls): if cls not in cls._instances: cls._instances[cls] = super(DataTypeSingleton, cls).__call__() return cls._instances[cls] class NullType(DataType): """Null type. The data type representing None, used for the types that cannot be inferred. """ __metaclass__ = DataTypeSingleton class AtomicType(DataType): """An internal type used to represent everything that is not null, UDTs, arrays, structs, and maps.""" class NumericType(AtomicType): """Numeric data types. """ class IntegralType(NumericType): """Integral data types. """ __metaclass__ = DataTypeSingleton class FractionalType(NumericType): """Fractional data types. """ class StringType(AtomicType): """String data type. """ __metaclass__ = DataTypeSingleton class BinaryType(AtomicType): """Binary (byte array) data type. """ __metaclass__ = DataTypeSingleton class BooleanType(AtomicType): """Boolean data type. """ __metaclass__ = DataTypeSingleton class DateType(AtomicType): """Date (datetime.date) data type. """ __metaclass__ = DataTypeSingleton EPOCH_ORDINAL = datetime.datetime(1970, 1, 1).toordinal() def needConversion(self): return True def toInternal(self, d): if d is not None: return d.toordinal() - self.EPOCH_ORDINAL def fromInternal(self, v): if v is not None: return datetime.date.fromordinal(v + self.EPOCH_ORDINAL) class TimestampType(AtomicType): """Timestamp (datetime.datetime) data type. """ __metaclass__ = DataTypeSingleton def needConversion(self): return True def toInternal(self, dt): if dt is not None: seconds = (calendar.timegm(dt.utctimetuple()) if dt.tzinfo else time.mktime(dt.timetuple())) return int(seconds) * 1000000 + dt.microsecond def fromInternal(self, ts): if ts is not None: # using int to avoid precision loss in float return datetime.datetime.fromtimestamp(ts // 1000000).replace(microsecond=ts % 1000000) class DecimalType(FractionalType): """Decimal (decimal.Decimal) data type. The DecimalType must have fixed precision (the maximum total number of digits) and scale (the number of digits on the right of dot). For example, (5, 2) can support the value from [-999.99 to 999.99]. The precision can be up to 38, the scale must be less or equal to precision. When create a DecimalType, the default precision and scale is (10, 0). When infer schema from decimal.Decimal objects, it will be DecimalType(38, 18). :param precision: the maximum total number of digits (default: 10) :param scale: the number of digits on right side of dot. (default: 0) """ def __init__(self, precision=10, scale=0): self.precision = precision self.scale = scale self.hasPrecisionInfo = True # this is public API def simpleString(self): return "decimal(%d,%d)" % (self.precision, self.scale) def jsonValue(self): return "decimal(%d,%d)" % (self.precision, self.scale) def __repr__(self): return "DecimalType(%d,%d)" % (self.precision, self.scale) class DoubleType(FractionalType): """Double data type, representing double precision floats. """ __metaclass__ = DataTypeSingleton class FloatType(FractionalType): """Float data type, representing single precision floats. """ __metaclass__ = DataTypeSingleton class ByteType(IntegralType): """Byte data type, i.e. a signed integer in a single byte. """ def simpleString(self): return 'tinyint' class IntegerType(IntegralType): """Int data type, i.e. a signed 32-bit integer. """ def simpleString(self): return 'int' class LongType(IntegralType): """Long data type, i.e. a signed 64-bit integer. If the values are beyond the range of [-9223372036854775808, 9223372036854775807], please use :class:`DecimalType`. """ def simpleString(self): return 'bigint' class ShortType(IntegralType): """Short data type, i.e. a signed 16-bit integer. """ def simpleString(self): return 'smallint' class ArrayType(DataType): """Array data type. :param elementType: :class:`DataType` of each element in the array. :param containsNull: boolean, whether the array can contain null (None) values. """ def __init__(self, elementType, containsNull=True): """ >>> ArrayType(StringType()) == ArrayType(StringType(), True) True >>> ArrayType(StringType(), False) == ArrayType(StringType()) False """ assert isinstance(elementType, DataType),\ "elementType %s should be an instance of %s" % (elementType, DataType) self.elementType = elementType self.containsNull = containsNull def simpleString(self): return 'array<%s>' % self.elementType.simpleString() def __repr__(self): return "ArrayType(%s,%s)" % (self.elementType, str(self.containsNull).lower()) def jsonValue(self): return {"type": self.typeName(), "elementType": self.elementType.jsonValue(), "containsNull": self.containsNull} @classmethod def fromJson(cls, json): return ArrayType(_parse_datatype_json_value(json["elementType"]), json["containsNull"]) def needConversion(self): return self.elementType.needConversion() def toInternal(self, obj): if not self.needConversion(): return obj return obj and [self.elementType.toInternal(v) for v in obj] def fromInternal(self, obj): if not self.needConversion(): return obj return obj and [self.elementType.fromInternal(v) for v in obj] class MapType(DataType): """Map data type. :param keyType: :class:`DataType` of the keys in the map. :param valueType: :class:`DataType` of the values in the map. :param valueContainsNull: indicates whether values can contain null (None) values. Keys in a map data type are not allowed to be null (None). """ def __init__(self, keyType, valueType, valueContainsNull=True): """ >>> (MapType(StringType(), IntegerType()) ... == MapType(StringType(), IntegerType(), True)) True >>> (MapType(StringType(), IntegerType(), False) ... == MapType(StringType(), FloatType())) False """ assert isinstance(keyType, DataType),\ "keyType %s should be an instance of %s" % (keyType, DataType) assert isinstance(valueType, DataType),\ "valueType %s should be an instance of %s" % (valueType, DataType) self.keyType = keyType self.valueType = valueType self.valueContainsNull = valueContainsNull def simpleString(self): return 'map<%s,%s>' % (self.keyType.simpleString(), self.valueType.simpleString()) def __repr__(self): return "MapType(%s,%s,%s)" % (self.keyType, self.valueType, str(self.valueContainsNull).lower()) def jsonValue(self): return {"type": self.typeName(), "keyType": self.keyType.jsonValue(), "valueType": self.valueType.jsonValue(), "valueContainsNull": self.valueContainsNull} @classmethod def fromJson(cls, json): return MapType(_parse_datatype_json_value(json["keyType"]), _parse_datatype_json_value(json["valueType"]), json["valueContainsNull"]) def needConversion(self): return self.keyType.needConversion() or self.valueType.needConversion() def toInternal(self, obj): if not self.needConversion(): return obj return obj and dict((self.keyType.toInternal(k), self.valueType.toInternal(v)) for k, v in obj.items()) def fromInternal(self, obj): if not self.needConversion(): return obj return obj and dict((self.keyType.fromInternal(k), self.valueType.fromInternal(v)) for k, v in obj.items()) class StructField(DataType): """A field in :class:`StructType`. :param name: string, name of the field. :param dataType: :class:`DataType` of the field. :param nullable: boolean, whether the field can be null (None) or not. :param metadata: a dict from string to simple type that can be toInternald to JSON automatically """ def __init__(self, name, dataType, nullable=True, metadata=None): """ >>> (StructField("f1", StringType(), True) ... == StructField("f1", StringType(), True)) True >>> (StructField("f1", StringType(), True) ... == StructField("f2", StringType(), True)) False """ assert isinstance(dataType, DataType),\ "dataType %s should be an instance of %s" % (dataType, DataType) assert isinstance(name, basestring), "field name %s should be string" % (name) if not isinstance(name, str): name = name.encode('utf-8') self.name = name self.dataType = dataType self.nullable = nullable self.metadata = metadata or {} def simpleString(self): return '%s:%s' % (self.name, self.dataType.simpleString()) def __repr__(self): return "StructField(%s,%s,%s)" % (self.name, self.dataType, str(self.nullable).lower()) def jsonValue(self): return {"name": self.name, "type": self.dataType.jsonValue(), "nullable": self.nullable, "metadata": self.metadata} @classmethod def fromJson(cls, json): return StructField(json["name"], _parse_datatype_json_value(json["type"]), json["nullable"], json["metadata"]) def needConversion(self): return self.dataType.needConversion() def toInternal(self, obj): return self.dataType.toInternal(obj) def fromInternal(self, obj): return self.dataType.fromInternal(obj) def typeName(self): raise TypeError( "StructField does not have typeName. " "Use typeName on its type explicitly instead.") class StructType(DataType): """Struct type, consisting of a list of :class:`StructField`. This is the data type representing a :class:`Row`. Iterating a :class:`StructType` will iterate its :class:`StructField`\\s. A contained :class:`StructField` can be accessed by name or position. >>> struct1 = StructType([StructField("f1", StringType(), True)]) >>> struct1["f1"] StructField(f1,StringType,true) >>> struct1[0] StructField(f1,StringType,true) """ def __init__(self, fields=None): """ >>> struct1 = StructType([StructField("f1", StringType(), True)]) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True >>> struct1 = StructType([StructField("f1", StringType(), True)]) >>> struct2 = StructType([StructField("f1", StringType(), True), ... StructField("f2", IntegerType(), False)]) >>> struct1 == struct2 False """ if not fields: self.fields = [] self.names = [] else: self.fields = fields self.names = [f.name for f in fields] assert all(isinstance(f, StructField) for f in fields),\ "fields should be a list of StructField" # Precalculated list of fields that need conversion with fromInternal/toInternal functions self._needConversion = [f.needConversion() for f in self] self._needSerializeAnyField = any(self._needConversion) def add(self, field, data_type=None, nullable=True, metadata=None): """ Construct a StructType by adding new elements to it to define the schema. The method accepts either: a) A single parameter which is a StructField object. b) Between 2 and 4 parameters as (name, data_type, nullable (optional), metadata(optional). The data_type parameter may be either a String or a DataType object. >>> struct1 = StructType().add("f1", StringType(), True).add("f2", StringType(), True, None) >>> struct2 = StructType([StructField("f1", StringType(), True), \\ ... StructField("f2", StringType(), True, None)]) >>> struct1 == struct2 True >>> struct1 = StructType().add(StructField("f1", StringType(), True)) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True >>> struct1 = StructType().add("f1", "string", True) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True :param field: Either the name of the field or a StructField object :param data_type: If present, the DataType of the StructField to create :param nullable: Whether the field to add should be nullable (default True) :param metadata: Any additional metadata (default None) :return: a new updated StructType """ if isinstance(field, StructField): self.fields.append(field) self.names.append(field.name) else: if isinstance(field, str) and data_type is None: raise ValueError("Must specify DataType if passing name of struct_field to create.") if isinstance(data_type, str): data_type_f = _parse_datatype_json_value(data_type) else: data_type_f = data_type self.fields.append(StructField(field, data_type_f, nullable, metadata)) self.names.append(field) # Precalculated list of fields that need conversion with fromInternal/toInternal functions self._needConversion = [f.needConversion() for f in self] self._needSerializeAnyField = any(self._needConversion) return self def __iter__(self): """Iterate the fields""" return iter(self.fields) def __len__(self): """Return the number of fields.""" return len(self.fields) def __getitem__(self, key): """Access fields by name or slice.""" if isinstance(key, str): for field in self: if field.name == key: return field raise KeyError('No StructField named {0}'.format(key)) elif isinstance(key, int): try: return self.fields[key] except IndexError: raise IndexError('StructType index out of range') elif isinstance(key, slice): return StructType(self.fields[key]) else: raise TypeError('StructType keys should be strings, integers or slices') def simpleString(self): return 'struct<%s>' % (','.join(f.simpleString() for f in self)) def __repr__(self): return ("StructType(List(%s))" % ",".join(str(field) for field in self)) def jsonValue(self): return {"type": self.typeName(), "fields": [f.jsonValue() for f in self]} @classmethod def fromJson(cls, json): return StructType([StructField.fromJson(f) for f in json["fields"]]) def fieldNames(self): """ Returns all field names in a list. >>> struct = StructType([StructField("f1", StringType(), True)]) >>> struct.fieldNames() ['f1'] """ return list(self.names) def needConversion(self): # We need convert Row()/namedtuple into tuple() return True def toInternal(self, obj): if obj is None: return if self._needSerializeAnyField: # Only calling toInternal function for fields that need conversion if isinstance(obj, dict): return tuple(f.toInternal(obj.get(n)) if c else obj.get(n) for n, f, c in zip(self.names, self.fields, self._needConversion)) elif isinstance(obj, (tuple, list)): return tuple(f.toInternal(v) if c else v for f, v, c in zip(self.fields, obj, self._needConversion)) elif hasattr(obj, "__dict__"): d = obj.__dict__ return tuple(f.toInternal(d.get(n)) if c else d.get(n) for n, f, c in zip(self.names, self.fields, self._needConversion)) else: raise ValueError("Unexpected tuple %r with StructType" % obj) else: if isinstance(obj, dict): return tuple(obj.get(n) for n in self.names) elif isinstance(obj, Row) and getattr(obj, "__from_dict__", False): return tuple(obj[n] for n in self.names) elif isinstance(obj, (list, tuple)): return tuple(obj) elif hasattr(obj, "__dict__"): d = obj.__dict__ return tuple(d.get(n) for n in self.names) else: raise ValueError("Unexpected tuple %r with StructType" % obj) def fromInternal(self, obj): if obj is None: return if isinstance(obj, Row): # it's already converted by pickler return obj if self._needSerializeAnyField: # Only calling fromInternal function for fields that need conversion values = [f.fromInternal(v) if c else v for f, v, c in zip(self.fields, obj, self._needConversion)] else: values = obj return _create_row(self.names, values) class UserDefinedType(DataType): """User-defined type (UDT). .. note:: WARN: Spark Internal Use Only """ @classmethod def typeName(cls): return cls.__name__.lower() @classmethod def sqlType(cls): """ Underlying SQL storage type for this UDT. """ raise NotImplementedError("UDT must implement sqlType().") @classmethod def module(cls): """ The Python module of the UDT. """ raise NotImplementedError("UDT must implement module().") @classmethod def scalaUDT(cls): """ The class name of the paired Scala UDT (could be '', if there is no corresponding one). """ return '' def needConversion(self): return True @classmethod def _cachedSqlType(cls): """ Cache the sqlType() into class, because it's heavy used in `toInternal`. """ if not hasattr(cls, "_cached_sql_type"): cls._cached_sql_type = cls.sqlType() return cls._cached_sql_type def toInternal(self, obj): if obj is not None: return self._cachedSqlType().toInternal(self.serialize(obj)) def fromInternal(self, obj): v = self._cachedSqlType().fromInternal(obj) if v is not None: return self.deserialize(v) def serialize(self, obj): """ Converts the a user-type object into a SQL datum. """ raise NotImplementedError("UDT must implement toInternal().") def deserialize(self, datum): """ Converts a SQL datum into a user-type object. """ raise NotImplementedError("UDT must implement fromInternal().") def simpleString(self): return 'udt' def json(self): return json.dumps(self.jsonValue(), separators=(',', ':'), sort_keys=True) def jsonValue(self): if self.scalaUDT(): assert self.module() != '__main__', 'UDT in __main__ cannot work with ScalaUDT' schema = { "type": "udt", "class": self.scalaUDT(), "pyClass": "%s.%s" % (self.module(), type(self).__name__), "sqlType": self.sqlType().jsonValue() } else: ser = CloudPickleSerializer() b = ser.dumps(type(self)) schema = { "type": "udt", "pyClass": "%s.%s" % (self.module(), type(self).__name__), "serializedClass": base64.b64encode(b).decode('utf8'), "sqlType": self.sqlType().jsonValue() } return schema @classmethod def fromJson(cls, json): pyUDT = str(json["pyClass"]) # convert unicode to str split = pyUDT.rfind(".") pyModule = pyUDT[:split] pyClass = pyUDT[split+1:] m = __import__(pyModule, globals(), locals(), [pyClass]) if not hasattr(m, pyClass): s = base64.b64decode(json['serializedClass'].encode('utf-8')) UDT = CloudPickleSerializer().loads(s) else: UDT = getattr(m, pyClass) return UDT() def __eq__(self, other): return type(self) == type(other) _atomic_types = [StringType, BinaryType, BooleanType, DecimalType, FloatType, DoubleType, ByteType, ShortType, IntegerType, LongType, DateType, TimestampType, NullType] _all_atomic_types = dict((t.typeName(), t) for t in _atomic_types) _all_complex_types = dict((v.typeName(), v) for v in [ArrayType, MapType, StructType]) _FIXED_DECIMAL = re.compile(r"decimal\(\s*(\d+)\s*,\s*(-?\d+)\s*\)") def _parse_datatype_string(s): """ Parses the given data type string to a :class:`DataType`. The data type string format equals to :class:`DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`ByteType`. We can also use ``int`` as a short name for :class:`IntegerType`. Since Spark 2.3, this also supports a schema in a DDL-formatted string and case-insensitive strings. >>> _parse_datatype_string("int ") IntegerType >>> _parse_datatype_string("INT ") IntegerType >>> _parse_datatype_string("a: byte, b: decimal( 16 , 8 ) ") StructType(List(StructField(a,ByteType,true),StructField(b,DecimalType(16,8),true))) >>> _parse_datatype_string("a DOUBLE, b STRING") StructType(List(StructField(a,DoubleType,true),StructField(b,StringType,true))) >>> _parse_datatype_string("a: array< short>") StructType(List(StructField(a,ArrayType(ShortType,true),true))) >>> _parse_datatype_string(" map<string , string > ") MapType(StringType,StringType,true) >>> # Error cases >>> _parse_datatype_string("blabla") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("a: int,") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("array<int") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("map<int, boolean>>") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... """ sc = SparkContext._active_spark_context def from_ddl_schema(type_str): return _parse_datatype_json_string( sc._jvm.org.apache.spark.sql.types.StructType.fromDDL(type_str).json()) def from_ddl_datatype(type_str): return _parse_datatype_json_string( sc._jvm.org.apache.spark.sql.api.python.PythonSQLUtils.parseDataType(type_str).json()) try: # DDL format, "fieldname datatype, fieldname datatype". return from_ddl_schema(s) except Exception as e: try: # For backwards compatibility, "integer", "struct<fieldname: datatype>" and etc. return from_ddl_datatype(s) except: try: # For backwards compatibility, "fieldname: datatype, fieldname: datatype" case. return from_ddl_datatype("struct<%s>" % s.strip()) except: raise e def _parse_datatype_json_string(json_string): """Parses the given data type JSON string. >>> import pickle >>> def check_datatype(datatype): ... pickled = pickle.loads(pickle.dumps(datatype)) ... assert datatype == pickled ... scala_datatype = spark._jsparkSession.parseDataType(datatype.json()) ... python_datatype = _parse_datatype_json_string(scala_datatype.json()) ... assert datatype == python_datatype >>> for cls in _all_atomic_types.values(): ... check_datatype(cls()) >>> # Simple ArrayType. >>> simple_arraytype = ArrayType(StringType(), True) >>> check_datatype(simple_arraytype) >>> # Simple MapType. >>> simple_maptype = MapType(StringType(), LongType()) >>> check_datatype(simple_maptype) >>> # Simple StructType. >>> simple_structtype = StructType([ ... StructField("a", DecimalType(), False), ... StructField("b", BooleanType(), True), ... StructField("c", LongType(), True), ... StructField("d", BinaryType(), False)]) >>> check_datatype(simple_structtype) >>> # Complex StructType. >>> complex_structtype = StructType([ ... StructField("simpleArray", simple_arraytype, True), ... StructField("simpleMap", simple_maptype, True), ... StructField("simpleStruct", simple_structtype, True), ... StructField("boolean", BooleanType(), False), ... StructField("withMeta", DoubleType(), False, {"name": "age"})]) >>> check_datatype(complex_structtype) >>> # Complex ArrayType. >>> complex_arraytype = ArrayType(complex_structtype, True) >>> check_datatype(complex_arraytype) >>> # Complex MapType. >>> complex_maptype = MapType(complex_structtype, ... complex_arraytype, False) >>> check_datatype(complex_maptype) >>> # Decimal with negative scale. >>> check_datatype(DecimalType(1,-1)) """ return _parse_datatype_json_value(json.loads(json_string)) def _parse_datatype_json_value(json_value): if not isinstance(json_value, dict): if json_value in _all_atomic_types.keys(): return _all_atomic_types[json_value]() elif json_value == 'decimal': return DecimalType() elif _FIXED_DECIMAL.match(json_value): m = _FIXED_DECIMAL.match(json_value) return DecimalType(int(m.group(1)), int(m.group(2))) else: raise ValueError("Could not parse datatype: %s" % json_value) else: tpe = json_value["type"] if tpe in _all_complex_types: return _all_complex_types[tpe].fromJson(json_value) elif tpe == 'udt': return UserDefinedType.fromJson(json_value) else: raise ValueError("not supported type: %s" % tpe) # Mapping Python types to Spark SQL DataType _type_mappings = { type(None): NullType, bool: BooleanType, int: LongType, float: DoubleType, str: StringType, bytearray: BinaryType, decimal.Decimal: DecimalType, datetime.date: DateType, datetime.datetime: TimestampType, datetime.time: TimestampType, } if sys.version < "3": _type_mappings.update({ unicode: StringType, long: LongType, }) # Mapping Python array types to Spark SQL DataType # We should be careful here. The size of these types in python depends on C # implementation. We need to make sure that this conversion does not lose any # precision. Also, JVM only support signed types, when converting unsigned types, # keep in mind that it required 1 more bit when stored as singed types. # # Reference for C integer size, see: # ISO/IEC 9899:201x specification, chapter 5.2.4.2.1 Sizes of integer types <limits.h>. # Reference for python array typecode, see: # https://docs.python.org/2/library/array.html # https://docs.python.org/3.6/library/array.html # Reference for JVM's supported integral types: # http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.3.1 _array_signed_int_typecode_ctype_mappings = { 'b': ctypes.c_byte, 'h': ctypes.c_short, 'i': ctypes.c_int, 'l': ctypes.c_long, } _array_unsigned_int_typecode_ctype_mappings = { 'B': ctypes.c_ubyte, 'H': ctypes.c_ushort, 'I': ctypes.c_uint, 'L': ctypes.c_ulong } def _int_size_to_type(size): """ Return the Catalyst datatype from the size of integers. """ if size <= 8: return ByteType if size <= 16: return ShortType if size <= 32: return IntegerType if size <= 64: return LongType # The list of all supported array typecodes is stored here _array_type_mappings = { # Warning: Actual properties for float and double in C is not specified in C. # On almost every system supported by both python and JVM, they are IEEE 754 # single-precision binary floating-point format and IEEE 754 double-precision # binary floating-point format. And we do assume the same thing here for now. 'f': FloatType, 'd': DoubleType } # compute array typecode mappings for signed integer types for _typecode in _array_signed_int_typecode_ctype_mappings.keys(): size = ctypes.sizeof(_array_signed_int_typecode_ctype_mappings[_typecode]) * 8 dt = _int_size_to_type(size) if dt is not None: _array_type_mappings[_typecode] = dt # compute array typecode mappings for unsigned integer types for _typecode in _array_unsigned_int_typecode_ctype_mappings.keys(): # JVM does not have unsigned types, so use signed types that is at least 1 # bit larger to store size = ctypes.sizeof(_array_unsigned_int_typecode_ctype_mappings[_typecode]) * 8 + 1 dt = _int_size_to_type(size) if dt is not None: _array_type_mappings[_typecode] = dt # Type code 'u' in Python's array is deprecated since version 3.3, and will be # removed in version 4.0. See: https://docs.python.org/3/library/array.html if sys.version_info[0] < 4: _array_type_mappings['u'] = StringType # Type code 'c' are only available at python 2 if sys.version_info[0] < 3: _array_type_mappings['c'] = StringType # SPARK-21465: # In python2, array of 'L' happened to be mistakenly partially supported. To # avoid breaking user's code, we should keep this partial support. Below is a # dirty hacking to keep this partial support and make the unit test passes import platform if sys.version_info[0] < 3 and platform.python_implementation() != 'PyPy': if 'L' not in _array_type_mappings.keys(): _array_type_mappings['L'] = LongType _array_unsigned_int_typecode_ctype_mappings['L'] = ctypes.c_uint def _infer_type(obj): """Infer the DataType from obj """ if obj is None: return NullType() if hasattr(obj, '__UDT__'): return obj.__UDT__ dataType = _type_mappings.get(type(obj)) if dataType is DecimalType: # the precision and scale of `obj` may be different from row to row. return DecimalType(38, 18) elif dataType is not None: return dataType() if isinstance(obj, dict): for key, value in obj.items(): if key is not None and value is not None: return MapType(_infer_type(key), _infer_type(value), True) return MapType(NullType(), NullType(), True) elif isinstance(obj, list): for v in obj: if v is not None: return ArrayType(_infer_type(obj[0]), True) return ArrayType(NullType(), True) elif isinstance(obj, array): if obj.typecode in _array_type_mappings: return ArrayType(_array_type_mappings[obj.typecode](), False) else: raise TypeError("not supported type: array(%s)" % obj.typecode) else: try: return _infer_schema(obj) except TypeError: raise TypeError("not supported type: %s" % type(obj)) def _infer_schema(row, names=None): """Infer the schema from dict/namedtuple/object""" if isinstance(row, dict): items = sorted(row.items()) elif isinstance(row, (tuple, list)): if hasattr(row, "__fields__"): # Row items = zip(row.__fields__, tuple(row)) elif hasattr(row, "_fields"): # namedtuple items = zip(row._fields, tuple(row)) else: if names is None: names = ['_%d' % i for i in range(1, len(row) + 1)] elif len(names) < len(row): names.extend('_%d' % i for i in range(len(names) + 1, len(row) + 1)) items = zip(names, row) elif hasattr(row, "__dict__"): # object items = sorted(row.__dict__.items()) else: raise TypeError("Can not infer schema for type: %s" % type(row)) fields = [StructField(k, _infer_type(v), True) for k, v in items] return StructType(fields) def _has_nulltype(dt): """ Return whether there is NullType in `dt` or not """ if isinstance(dt, StructType): return any(_has_nulltype(f.dataType) for f in dt.fields) elif isinstance(dt, ArrayType): return _has_nulltype((dt.elementType)) elif isinstance(dt, MapType): return _has_nulltype(dt.keyType) or _has_nulltype(dt.valueType) else: return isinstance(dt, NullType) def _merge_type(a, b, name=None): if name is None: new_msg = lambda msg: msg new_name = lambda n: "field %s" % n else: new_msg = lambda msg: "%s: %s" % (name, msg) new_name = lambda n: "field %s in %s" % (n, name) if isinstance(a, NullType): return b elif isinstance(b, NullType): return a elif type(a) is not type(b): # TODO: type cast (such as int -> long) raise TypeError(new_msg("Can not merge type %s and %s" % (type(a), type(b)))) # same type if isinstance(a, StructType): nfs = dict((f.name, f.dataType) for f in b.fields) fields = [StructField(f.name, _merge_type(f.dataType, nfs.get(f.name, NullType()), name=new_name(f.name))) for f in a.fields] names = set([f.name for f in fields]) for n in nfs: if n not in names: fields.append(StructField(n, nfs[n])) return StructType(fields) elif isinstance(a, ArrayType): return ArrayType(_merge_type(a.elementType, b.elementType, name='element in array %s' % name), True) elif isinstance(a, MapType): return MapType(_merge_type(a.keyType, b.keyType, name='key of map %s' % name), _merge_type(a.valueType, b.valueType, name='value of map %s' % name), True) else: return a def _need_converter(dataType): if isinstance(dataType, StructType): return True elif isinstance(dataType, ArrayType): return _need_converter(dataType.elementType) elif isinstance(dataType, MapType): return _need_converter(dataType.keyType) or _need_converter(dataType.valueType) elif isinstance(dataType, NullType): return True else: return False def _create_converter(dataType): """Create a converter to drop the names of fields in obj """ if not _need_converter(dataType): return lambda x: x if isinstance(dataType, ArrayType): conv = _create_converter(dataType.elementType) return lambda row: [conv(v) for v in row] elif isinstance(dataType, MapType): kconv = _create_converter(dataType.keyType) vconv = _create_converter(dataType.valueType) return lambda row: dict((kconv(k), vconv(v)) for k, v in row.items()) elif isinstance(dataType, NullType): return lambda x: None elif not isinstance(dataType, StructType): return lambda x: x # dataType must be StructType names = [f.name for f in dataType.fields] converters = [_create_converter(f.dataType) for f in dataType.fields] convert_fields = any(_need_converter(f.dataType) for f in dataType.fields) def convert_struct(obj): if obj is None: return if isinstance(obj, (tuple, list)): if convert_fields: return tuple(conv(v) for v, conv in zip(obj, converters)) else: return tuple(obj) if isinstance(obj, dict): d = obj elif hasattr(obj, "__dict__"): # object d = obj.__dict__ else: raise TypeError("Unexpected obj type: %s" % type(obj)) if convert_fields: return tuple([conv(d.get(name)) for name, conv in zip(names, converters)]) else: return tuple([d.get(name) for name in names]) return convert_struct _acceptable_types = { BooleanType: (bool,), ByteType: (int, long), ShortType: (int, long), IntegerType: (int, long), LongType: (int, long), FloatType: (float,), DoubleType: (float,), DecimalType: (decimal.Decimal,), StringType: (str, unicode), BinaryType: (bytearray,), DateType: (datetime.date, datetime.datetime), TimestampType: (datetime.datetime,), ArrayType: (list, tuple, array), MapType: (dict,), StructType: (tuple, list, dict), } def _make_type_verifier(dataType, nullable=True, name=None): """ Make a verifier that checks the type of obj against dataType and raises a TypeError if they do not match. This verifier also checks the value of obj against datatype and raises a ValueError if it's not within the allowed range, e.g. using 128 as ByteType will overflow. Note that, Python float is not checked, so it will become infinity when cast to Java float if it overflows. >>> _make_type_verifier(StructType([]))(None) >>> _make_type_verifier(StringType())("") >>> _make_type_verifier(LongType())(0) >>> _make_type_verifier(LongType())(1 << 64) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... >>> _make_type_verifier(ArrayType(ShortType()))(list(range(3))) >>> _make_type_verifier(ArrayType(StringType()))(set()) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TypeError:... >>> _make_type_verifier(MapType(StringType(), IntegerType()))({}) >>> _make_type_verifier(StructType([]))(()) >>> _make_type_verifier(StructType([]))([]) >>> _make_type_verifier(StructType([]))([1]) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... >>> # Check if numeric values are within the allowed range. >>> _make_type_verifier(ByteType())(12) >>> _make_type_verifier(ByteType())(1234) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... >>> _make_type_verifier(ByteType(), False)(None) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... >>> _make_type_verifier( ... ArrayType(ShortType(), False))([1, None]) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... >>> _make_type_verifier(MapType(StringType(), IntegerType()))({None: 1}) Traceback (most recent call last): ... ValueError:... >>> schema = StructType().add("a", IntegerType()).add("b", StringType(), False) >>> _make_type_verifier(schema)((1, None)) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError:... """ if name is None: new_msg = lambda msg: msg new_name = lambda n: "field %s" % n else: new_msg = lambda msg: "%s: %s" % (name, msg) new_name = lambda n: "field %s in %s" % (n, name) def verify_nullability(obj): if obj is None: if nullable: return True else: raise ValueError(new_msg("This field is not nullable, but got None")) else: return False _type = type(dataType) def assert_acceptable_types(obj): assert _type in _acceptable_types, \ new_msg("unknown datatype: %s for object %r" % (dataType, obj)) def verify_acceptable_types(obj): # subclass of them can not be fromInternal in JVM if type(obj) not in _acceptable_types[_type]: raise TypeError(new_msg("%s can not accept object %r in type %s" % (dataType, obj, type(obj)))) if isinstance(dataType, StringType): # StringType can work with any types verify_value = lambda _: _ elif isinstance(dataType, UserDefinedType): verifier = _make_type_verifier(dataType.sqlType(), name=name) def verify_udf(obj): if not (hasattr(obj, '__UDT__') and obj.__UDT__ == dataType): raise ValueError(new_msg("%r is not an instance of type %r" % (obj, dataType))) verifier(dataType.toInternal(obj)) verify_value = verify_udf elif isinstance(dataType, ByteType): def verify_byte(obj): assert_acceptable_types(obj) verify_acceptable_types(obj) if obj < -128 or obj > 127: raise ValueError(new_msg("object of ByteType out of range, got: %s" % obj)) verify_value = verify_byte elif isinstance(dataType, ShortType): def verify_short(obj): assert_acceptable_types(obj) verify_acceptable_types(obj) if obj < -32768 or obj > 32767: raise ValueError(new_msg("object of ShortType out of range, got: %s" % obj)) verify_value = verify_short elif isinstance(dataType, IntegerType): def verify_integer(obj): assert_acceptable_types(obj) verify_acceptable_types(obj) if obj < -2147483648 or obj > 2147483647: raise ValueError( new_msg("object of IntegerType out of range, got: %s" % obj)) verify_value = verify_integer elif isinstance(dataType, LongType): def verify_long(obj): assert_acceptable_types(obj) verify_acceptable_types(obj) if obj < -9223372036854775808 or obj > 9223372036854775807: raise ValueError( new_msg("object of LongType out of range, got: %s" % obj)) verify_value = verify_long elif isinstance(dataType, ArrayType): element_verifier = _make_type_verifier( dataType.elementType, dataType.containsNull, name="element in array %s" % name) def verify_array(obj): assert_acceptable_types(obj) verify_acceptable_types(obj) for i in obj: element_verifier(i) verify_value = verify_array elif isinstance(dataType, MapType): key_verifier = _make_type_verifier(dataType.keyType, False, name="key of map %s" % name) value_verifier = _make_type_verifier( dataType.valueType, dataType.valueContainsNull, name="value of map %s" % name) def verify_map(obj): assert_acceptable_types(obj) verify_acceptable_types(obj) for k, v in obj.items(): key_verifier(k) value_verifier(v) verify_value = verify_map elif isinstance(dataType, StructType): verifiers = [] for f in dataType.fields: verifier = _make_type_verifier(f.dataType, f.nullable, name=new_name(f.name)) verifiers.append((f.name, verifier)) def verify_struct(obj): assert_acceptable_types(obj) if isinstance(obj, dict): for f, verifier in verifiers: verifier(obj.get(f)) elif isinstance(obj, Row) and getattr(obj, "__from_dict__", False): # the order in obj could be different than dataType.fields for f, verifier in verifiers: verifier(obj[f]) elif isinstance(obj, (tuple, list)): if len(obj) != len(verifiers): raise ValueError( new_msg("Length of object (%d) does not match with " "length of fields (%d)" % (len(obj), len(verifiers)))) for v, (_, verifier) in zip(obj, verifiers): verifier(v) elif hasattr(obj, "__dict__"): d = obj.__dict__ for f, verifier in verifiers: verifier(d.get(f)) else: raise TypeError(new_msg("StructType can not accept object %r in type %s" % (obj, type(obj)))) verify_value = verify_struct else: def verify_default(obj): assert_acceptable_types(obj) verify_acceptable_types(obj) verify_value = verify_default def verify(obj): if not verify_nullability(obj): verify_value(obj) return verify # This is used to unpickle a Row from JVM def _create_row_inbound_converter(dataType): return lambda *a: dataType.fromInternal(a) def _create_row(fields, values): row = Row(*values) row.__fields__ = fields return row class Row(tuple): """ A row in :class:`DataFrame`. The fields in it can be accessed: * like attributes (``row.key``) * like dictionary values (``row[key]``) ``key in row`` will search through row keys. Row can be used to create a row object by using named arguments, the fields will be sorted by names. It is not allowed to omit a named argument to represent the value is None or missing. This should be explicitly set to None in this case. >>> row = Row(name="Alice", age=11) >>> row Row(age=11, name='Alice') >>> row['name'], row['age'] ('Alice', 11) >>> row.name, row.age ('Alice', 11) >>> 'name' in row True >>> 'wrong_key' in row False Row also can be used to create another Row like class, then it could be used to create Row objects, such as >>> Person = Row("name", "age") >>> Person <Row('name', 'age')> >>> 'name' in Person True >>> 'wrong_key' in Person False >>> Person("Alice", 11) Row(name='Alice', age=11) This form can also be used to create rows as tuple values, i.e. with unnamed fields. Beware that such Row objects have different equality semantics: >>> row1 = Row("Alice", 11) >>> row2 = Row(name="Alice", age=11) >>> row1 == row2 False >>> row3 = Row(a="Alice", b=11) >>> row1 == row3 True """ def __new__(self, *args, **kwargs): if args and kwargs: raise ValueError("Can not use both args " "and kwargs to create Row") if kwargs: # create row objects names = sorted(kwargs.keys()) row = tuple.__new__(self, [kwargs[n] for n in names]) row.__fields__ = names row.__from_dict__ = True return row else: # create row class or objects return tuple.__new__(self, args) def asDict(self, recursive=False): """ Return as an dict :param recursive: turns the nested Row as dict (default: False). >>> Row(name="Alice", age=11).asDict() == {'name': 'Alice', 'age': 11} True >>> row = Row(key=1, value=Row(name='a', age=2)) >>> row.asDict() == {'key': 1, 'value': Row(age=2, name='a')} True >>> row.asDict(True) == {'key': 1, 'value': {'name': 'a', 'age': 2}} True """ if not hasattr(self, "__fields__"): raise TypeError("Cannot convert a Row class into dict") if recursive: def conv(obj): if isinstance(obj, Row): return obj.asDict(True) elif isinstance(obj, list): return [conv(o) for o in obj] elif isinstance(obj, dict): return dict((k, conv(v)) for k, v in obj.items()) else: return obj return dict(zip(self.__fields__, (conv(o) for o in self))) else: return dict(zip(self.__fields__, self)) def __contains__(self, item): if hasattr(self, "__fields__"): return item in self.__fields__ else: return super(Row, self).__contains__(item) # let object acts like class def __call__(self, *args): """create new Row object""" if len(args) > len(self): raise ValueError("Can not create Row with fields %s, expected %d values " "but got %s" % (self, len(self), args)) return _create_row(self, args) def __getitem__(self, item): if isinstance(item, (int, slice)): return super(Row, self).__getitem__(item) try: # it will be slow when it has many fields, # but this will not be used in normal cases idx = self.__fields__.index(item) return super(Row, self).__getitem__(idx) except IndexError: raise KeyError(item) except ValueError: raise ValueError(item) def __getattr__(self, item): if item.startswith("__"): raise AttributeError(item) try: # it will be slow when it has many fields, # but this will not be used in normal cases idx = self.__fields__.index(item) return self[idx] except IndexError: raise AttributeError(item) except ValueError: raise AttributeError(item) def __setattr__(self, key, value): if key != '__fields__' and key != "__from_dict__": raise Exception("Row is read-only") self.__dict__[key] = value def __reduce__(self): """Returns a tuple so Python knows how to pickle Row.""" if hasattr(self, "__fields__"): return (_create_row, (self.__fields__, tuple(self))) else: return tuple.__reduce__(self) def __repr__(self): """Printable representation of Row used in Python REPL.""" if hasattr(self, "__fields__"): return "Row(%s)" % ", ".join("%s=%r" % (k, v) for k, v in zip(self.__fields__, tuple(self))) else: return "<Row(%s)>" % ", ".join("%r" % field for field in self) class DateConverter(object): def can_convert(self, obj): return isinstance(obj, datetime.date) def convert(self, obj, gateway_client): Date = JavaClass("java.sql.Date", gateway_client) return Date.valueOf(obj.strftime("%Y-%m-%d")) class DatetimeConverter(object): def can_convert(self, obj): return isinstance(obj, datetime.datetime) def convert(self, obj, gateway_client): Timestamp = JavaClass("java.sql.Timestamp", gateway_client) seconds = (calendar.timegm(obj.utctimetuple()) if obj.tzinfo else time.mktime(obj.timetuple())) t = Timestamp(int(seconds) * 1000) t.setNanos(obj.microsecond * 1000) return t # datetime is a subclass of date, we should register DatetimeConverter first register_input_converter(DatetimeConverter()) register_input_converter(DateConverter()) def to_arrow_type(dt): """ Convert Spark data type to pyarrow type """ import pyarrow as pa if type(dt) == BooleanType: arrow_type = pa.bool_() elif type(dt) == ByteType: arrow_type = pa.int8() elif type(dt) == ShortType: arrow_type = pa.int16() elif type(dt) == IntegerType: arrow_type = pa.int32() elif type(dt) == LongType: arrow_type = pa.int64() elif type(dt) == FloatType: arrow_type = pa.float32() elif type(dt) == DoubleType: arrow_type = pa.float64() elif type(dt) == DecimalType: arrow_type = pa.decimal128(dt.precision, dt.scale) elif type(dt) == StringType: arrow_type = pa.string() elif type(dt) == BinaryType: arrow_type = pa.binary() elif type(dt) == DateType: arrow_type = pa.date32() elif type(dt) == TimestampType: # Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read arrow_type = pa.timestamp('us', tz='UTC') elif type(dt) == ArrayType: if type(dt.elementType) in [StructType, TimestampType]: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) arrow_type = pa.list_(to_arrow_type(dt.elementType)) elif type(dt) == StructType: if any(type(field.dataType) == StructType for field in dt): raise TypeError("Nested StructType not supported in conversion to Arrow") fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in dt] arrow_type = pa.struct(fields) else: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) return arrow_type def to_arrow_schema(schema): """ Convert a schema from Spark to Arrow """ import pyarrow as pa fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in schema] return pa.schema(fields) def from_arrow_type(at): """ Convert pyarrow type to Spark data type. """ import pyarrow.types as types if types.is_boolean(at): spark_type = BooleanType() elif types.is_int8(at): spark_type = ByteType() elif types.is_int16(at): spark_type = ShortType() elif types.is_int32(at): spark_type = IntegerType() elif types.is_int64(at): spark_type = LongType() elif types.is_float32(at): spark_type = FloatType() elif types.is_float64(at): spark_type = DoubleType() elif types.is_decimal(at): spark_type = DecimalType(precision=at.precision, scale=at.scale) elif types.is_string(at): spark_type = StringType() elif types.is_binary(at): spark_type = BinaryType() elif types.is_date32(at): spark_type = DateType() elif types.is_timestamp(at): spark_type = TimestampType() elif types.is_list(at): if types.is_timestamp(at.value_type): raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) spark_type = ArrayType(from_arrow_type(at.value_type)) elif types.is_struct(at): if any(types.is_struct(field.type) for field in at): raise TypeError("Nested StructType not supported in conversion from Arrow: " + str(at)) return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in at]) else: raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) return spark_type def from_arrow_schema(arrow_schema): """ Convert schema from Arrow to Spark. """ return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in arrow_schema]) def _get_local_timezone(): """ Get local timezone using pytz with environment variable, or dateutil. If there is a 'TZ' environment variable, pass it to pandas to use pytz and use it as timezone string, otherwise use the special word 'dateutil/:' which means that pandas uses dateutil and it reads system configuration to know the system local timezone. See also: - https://github.com/pandas-dev/pandas/blob/0.19.x/pandas/tslib.pyx#L1753 - https://github.com/dateutil/dateutil/blob/2.6.1/dateutil/tz/tz.py#L1338 """ import os return os.environ.get('TZ', 'dateutil/:') def _check_series_localize_timestamps(s, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone. If the input series is not a timestamp series, then the same series is returned. If the input series is a timestamp series, then a converted series is returned. :param s: pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series that have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64tz_dtype tz = timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(tz).dt.tz_localize(None) else: return s def _check_dataframe_localize_timestamps(pdf, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone :param pdf: pandas.DataFrame :param timezone: the timezone to convert. if None then use local timezone :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() for column, series in pdf.iteritems(): pdf[column] = _check_series_localize_timestamps(series, timezone) return pdf def _check_series_convert_timestamps_internal(s, timezone): """ Convert a tz-naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage :param s: a pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64_dtype(s.dtype): # When tz_localize a tz-naive timestamp, the result is ambiguous if the tz-naive # timestamp is during the hour when the clock is adjusted backward during due to # daylight saving time (dst). # E.g., for America/New_York, the clock is adjusted backward on 2015-11-01 2:00 to # 2015-11-01 1:00 from dst-time to standard time, and therefore, when tz_localize # a tz-naive timestamp 2015-11-01 1:30 with America/New_York timezone, it can be either # dst time (2015-01-01 1:30-0400) or standard time (2015-11-01 1:30-0500). # # Here we explicit choose to use standard time. This matches the default behavior of # pytz. # # Here are some code to help understand this behavior: # >>> import datetime # >>> import pandas as pd # >>> import pytz # >>> # >>> t = datetime.datetime(2015, 11, 1, 1, 30) # >>> ts = pd.Series([t]) # >>> tz = pytz.timezone('America/New_York') # >>> # >>> ts.dt.tz_localize(tz, ambiguous=True) # 0 2015-11-01 01:30:00-04:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> ts.dt.tz_localize(tz, ambiguous=False) # 0 2015-11-01 01:30:00-05:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> str(tz.localize(t)) # '2015-11-01 01:30:00-05:00' tz = timezone or _get_local_timezone() return s.dt.tz_localize(tz, ambiguous=False).dt.tz_convert('UTC') elif is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert('UTC') else: return s def _check_series_convert_timestamps_localize(s, from_timezone, to_timezone): """ Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param from_timezone: the timezone to convert from. if None then use local timezone :param to_timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() import pandas as pd from pandas.api.types import is_datetime64tz_dtype, is_datetime64_dtype from_tz = from_timezone or _get_local_timezone() to_tz = to_timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(to_tz).dt.tz_localize(None) elif is_datetime64_dtype(s.dtype) and from_tz != to_tz: # `s.dt.tz_localize('tzlocal()')` doesn't work properly when including NaT. return s.apply( lambda ts: ts.tz_localize(from_tz, ambiguous=False).tz_convert(to_tz).tz_localize(None) if ts is not pd.NaT else pd.NaT) else: return s def _check_series_convert_timestamps_local_tz(s, timezone): """ Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive """ return _check_series_convert_timestamps_localize(s, None, timezone) def _check_series_convert_timestamps_tz_local(s, timezone): """ Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param timezone: the timezone to convert from. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive """ return _check_series_convert_timestamps_localize(s, timezone, None) def _test(): import doctest from pyspark.context import SparkContext from pyspark.sql import SparkSession globs = globals() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['spark'] = SparkSession.builder.getOrCreate() (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
Jwuthri/Mozinor
mozinor/pipeline.py
1
5062
# -*- coding: utf-8 -*- """ Created on July 2017 @author: JulienWuthrich """ import logging import datetime import pydotplus from io import StringIO import numpy as np import pandas as pd from sklearn.tree import export_graphviz from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from mozinor.config.classifiers import * from mozinor.config.regressors import * from mozinor.config.params import * from mozinor.config.explain import * from mozinor.settings import logger class EvaluateModels(object): def __init__(self, X_train, y_train, X_test, y_test, is_regression, fast=True): self.X_train = X_train self.y_train = y_train self.X_test = X_test self.y_test = y_test self.is_regression = is_regression self.fast = fast self.setPipeline() self.setOptimalNeighbors() self.setOptimalTrees() def setPipeline(self): if self.is_regression: if self.fast: self.pipeline = Fast_Regressors else: self.pipeline = Regressors else: if self.fast: self.pipeline = Fast_Classifiers else: self.pipeline = Classifiers def setOptimalNeighbors(self): logger.log("Optimal number of clusters", logging.INFO) print(Elbow) self.optimal_neighbors = OptimalNeighbors(self.X_train).compute() def setOptimalTrees(self): logger.log("Optimal number of trees", logging.INFO) print(OobError) self.optimal_trees = OptimalTrees( self.X_train, self.y_train, self.is_regression ).compute() def instanciateEstimator(self, estimator, params): query = 'from {} import {}' cquery = query.format(params.get("import"), estimator) exec(cquery) return eval(estimator) def updateDict(self, dictionary, key): dcopy = dict(dictionary) del dcopy[key] return dcopy def updateParams(self, estimator, params): logger.log("Estimator {}".format(estimator), logging.INFO) params = self.updateDict(params, "import") if estimator in ["KNeighborsClassifier", "KNeighborsRegressor"]: params["n_neighbors"] = [self.optimal_neighbors] if "show" in params: print(params.get("show")) del params["show"] return params def _getBestParams(self, cv): logger.log(" Best params => {}".format(str(cv.best_params_)), logging.INFO) logger.log(" Best Score => {0:.3f}".format(abs(cv.best_score_)), logging.INFO) return cv def getBestParams(self, cv): X_train = np.array(self.X_train) y_train = np.array(self.y_train.ix[:,0]) cv.fit(X_train, y_train) return self._getBestParams(cv) def buildRandomizedSearchCV(self, estimator_cls, params): cv = RandomizedSearchCV( estimator=estimator_cls(), param_distributions=params, n_iter=10, cv=3, verbose=1, n_jobs=1 ) return self.getBestParams(cv) def buildGridSearchCV(self, estimator_cls, params): cv = GridSearchCV( estimator=estimator_cls(), param_grid=params, verbose=1, n_jobs=1 ) return self.getBestParams(cv) def runPipe(self, estimator_cls, params): try: return self.buildRandomizedSearchCV(estimator_cls, params) except Exception: return self.buildGridSearchCV(estimator_cls, params) def showDecisionTree(self, cv): dot_data = StringIO() export_graphviz( cv.best_estimator_, out_file=dot_data, feature_names=list(self.X_train.columns), filled=True, rounded=True, special_characters=True ) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) filename = str(datetime.datetime.now()).replace(" ", "") + ".png" graph.write_png(filename) logger.log("Check the decision tree: {}".format(filename), logging.INFO) def _makePipe(self, estimator, params): estimator_cls = self.instanciateEstimator(estimator, params) params = self.updateParams(estimator, params) cv = self.runPipe(estimator_cls, params) if estimator in ["DecisionTreeClassifier", "DecisionTreeRegressor"]: self.showDecisionTree(cv) return { "best_estimator_": cv.best_estimator_, "best_score_": abs(cv.best_score_), "best_params_": cv.best_params_ } def makePipe(self, estimator, params): try: return self._makePipe(estimator, params) except Exception: return { "best_estimator_": estimator, "best_score_": 0 } def evaluate(self): d_model_score = dict() for estimator, params in self.pipeline.items(): d_model_score[estimator] = self.makePipe(estimator, params) return d_model_score
mit
bzero/statsmodels
statsmodels/sandbox/panel/panelmod.py
27
14526
""" Sandbox Panel Estimators References ----------- Baltagi, Badi H. `Econometric Analysis of Panel Data.` 4th ed. Wiley, 2008. """ from __future__ import print_function from statsmodels.compat.python import range, reduce from statsmodels.tools.tools import categorical from statsmodels.regression.linear_model import GLS, WLS import numpy as np __all__ = ["PanelModel"] from pandas import LongPanel, __version__ def group(X): """ Returns unique numeric values for groups without sorting. Examples -------- >>> X = np.array(['a','a','b','c','b','c']) >>> group(X) >>> g array([ 0., 0., 1., 2., 1., 2.]) """ uniq_dict = {} group = np.zeros(len(X)) for i in range(len(X)): if not X[i] in uniq_dict: uniq_dict.update({X[i] : len(uniq_dict)}) group[i] = uniq_dict[X[i]] return group def repanel_cov(groups, sigmas): '''calculate error covariance matrix for random effects model Parameters ---------- groups : array, (nobs, nre) or (nobs,) array of group/category observations sigma : array, (nre+1,) array of standard deviations of random effects, last element is the standard deviation of the idiosyncratic error Returns ------- omega : array, (nobs, nobs) covariance matrix of error omegainv : array, (nobs, nobs) inverse covariance matrix of error omegainvsqrt : array, (nobs, nobs) squareroot inverse covariance matrix of error such that omega = omegainvsqrt * omegainvsqrt.T Notes ----- This does not use sparse matrices and constructs nobs by nobs matrices. Also, omegainvsqrt is not sparse, i.e. elements are non-zero ''' if groups.ndim == 1: groups = groups[:,None] nobs, nre = groups.shape omega = sigmas[-1]*np.eye(nobs) for igr in range(nre): group = groups[:,igr:igr+1] groupuniq = np.unique(group) dummygr = sigmas[igr] * (group == groupuniq).astype(float) omega += np.dot(dummygr, dummygr.T) ev, evec = np.linalg.eigh(omega) #eig doesn't work omegainv = np.dot(evec, (1/ev * evec).T) omegainvhalf = evec/np.sqrt(ev) return omega, omegainv, omegainvhalf class PanelData(LongPanel): pass class PanelModel(object): """ An abstract statistical model class for panel (longitudinal) datasets. Parameters --------- endog : array-like or str If a pandas object is used then endog should be the name of the endogenous variable as a string. # exog # panel_arr # time_arr panel_data : pandas.LongPanel object Notes ----- If a pandas object is supplied it is assumed that the major_axis is time and that the minor_axis has the panel variable. """ def __init__(self, endog=None, exog=None, panel=None, time=None, xtnames=None, equation=None, panel_data=None): if panel_data == None: # if endog == None and exog == None and panel == None and \ # time == None: # raise ValueError("If pandel_data is False then endog, exog, \ #panel_arr, and time_arr cannot be None.") self.initialize(endog, exog, panel, time, xtnames, equation) # elif aspandas != False: # if not isinstance(endog, str): # raise ValueError("If a pandas object is supplied then endog \ #must be a string containing the name of the endogenous variable") # if not isinstance(aspandas, LongPanel): # raise ValueError("Only pandas.LongPanel objects are supported") # self.initialize_pandas(endog, aspandas, panel_name) def initialize(self, endog, exog, panel, time, xtnames, equation): """ Initialize plain array model. See PanelModel """ #TODO: for now, we are going assume a constant, and then make the first #panel the base, add a flag for this.... # get names names = equation.split(" ") self.endog_name = names[0] exog_names = names[1:] # this makes the order matter in the array self.panel_name = xtnames[0] self.time_name = xtnames[1] novar = exog.var(0) == 0 if True in novar: cons_index = np.where(novar == 1)[0][0] # constant col. num exog_names.insert(cons_index, 'cons') self._cons_index = novar # used again in fit_fixed self.exog_names = exog_names self.endog = np.squeeze(np.asarray(endog)) exog = np.asarray(exog) self.exog = exog self.panel = np.asarray(panel) self.time = np.asarray(time) self.paneluniq = np.unique(panel) self.timeuniq = np.unique(time) #TODO: this structure can possibly be extracted somewhat to deal with #names in general #TODO: add some dimension checks, etc. # def initialize_pandas(self, endog, aspandas): # """ # Initialize pandas objects. # # See PanelModel. # """ # self.aspandas = aspandas # endog = aspandas[endog].values # self.endog = np.squeeze(endog) # exog_name = aspandas.columns.tolist() # exog_name.remove(endog) # self.exog = aspandas.filterItems(exog_name).values #TODO: can the above be simplified to slice notation? # if panel_name != None: # self.panel_name = panel_name # self.exog_name = exog_name # self.endog_name = endog # self.time_arr = aspandas.major_axis #TODO: is time always handled correctly in fromRecords? # self.panel_arr = aspandas.minor_axis #TODO: all of this might need to be refactored to explicitly rely (internally) # on the pandas LongPanel structure for speed and convenience. # not sure this part is finished... #TODO: doesn't conform to new initialize def initialize_pandas(self, panel_data, endog_name, exog_name): self.panel_data = panel_data endog = panel_data[endog_name].values # does this create a copy? self.endog = np.squeeze(endog) if exog_name == None: exog_name = panel_data.columns.tolist() exog_name.remove(endog_name) self.exog = panel_data.filterItems(exog_name).values # copy? self._exog_name = exog_name self._endog_name = endog_name self._timeseries = panel_data.major_axis # might not need these self._panelseries = panel_data.minor_axis #TODO: this could be pulled out and just have a by kwd that takes # the panel or time array #TODO: this also needs to be expanded for 'twoway' def _group_mean(self, X, index='oneway', counts=False, dummies=False): """ Get group means of X by time or by panel. index default is panel """ if index == 'oneway': Y = self.panel uniq = self.paneluniq elif index == 'time': Y = self.time uniq = self.timeuniq else: raise ValueError("index %s not understood" % index) #TODO: use sparse matrices dummy = (Y == uniq[:,None]).astype(float) if X.ndim > 1: mean = np.dot(dummy,X)/dummy.sum(1)[:,None] else: mean = np.dot(dummy,X)/dummy.sum(1) if counts == False and dummies == False: return mean elif counts == True and dummies == False: return mean, dummy.sum(1) elif counts == True and dummies == True: return mean, dummy.sum(1), dummy elif counts == False and dummies == True: return mean, dummy #TODO: Use kwd arguments or have fit_method methods? def fit(self, model=None, method=None, effects='oneway'): """ method : LSDV, demeaned, MLE, GLS, BE, FE, optional model : between fixed random pooled [gmm] effects : oneway time twoway femethod : demeaned (only one implemented) WLS remethod : swar - amemiya nerlove walhus Notes ------ This is unfinished. None of the method arguments work yet. Only oneway effects should work. """ if method: # get rid of this with default method = method.lower() model = model.lower() if method and method not in ["lsdv", "demeaned", "mle", "gls", "be", "fe"]: # get rid of if method with default raise ValueError("%s not a valid method" % method) # if method == "lsdv": # self.fit_lsdv(model) if model == 'pooled': return GLS(self.endog, self.exog).fit() if model == 'between': return self._fit_btwn(method, effects) if model == 'fixed': return self._fit_fixed(method, effects) # def fit_lsdv(self, effects): # """ # Fit using least squares dummy variables. # # Notes # ----- # Should only be used for small `nobs`. # """ # pdummies = None # tdummies = None def _fit_btwn(self, method, effects): # group mean regression or WLS if effects != "twoway": endog = self._group_mean(self.endog, index=effects) exog = self._group_mean(self.exog, index=effects) else: raise ValueError("%s effects is not valid for the between \ estimator" % s) befit = GLS(endog, exog).fit() return befit def _fit_fixed(self, method, effects): endog = self.endog exog = self.exog demeantwice = False if effects in ["oneway","twoways"]: if effects == "twoways": demeantwice = True effects = "oneway" endog_mean, counts = self._group_mean(endog, index=effects, counts=True) exog_mean = self._group_mean(exog, index=effects) counts = counts.astype(int) endog = endog - np.repeat(endog_mean, counts) exog = exog - np.repeat(exog_mean, counts, axis=0) if demeantwice or effects == "time": endog_mean, dummies = self._group_mean(endog, index="time", dummies=True) exog_mean = self._group_mean(exog, index="time") # This allows unbalanced panels endog = endog - np.dot(endog_mean, dummies) exog = exog - np.dot(dummies.T, exog_mean) fefit = GLS(endog, exog[:,-self._cons_index]).fit() #TODO: might fail with one regressor return fefit class SURPanel(PanelModel): pass class SEMPanel(PanelModel): pass class DynamicPanel(PanelModel): pass if __name__ == "__main__": import pandas from pandas import LongPanel import statsmodels.api as sm import numpy.lib.recfunctions as nprf data = sm.datasets.grunfeld.load() # Baltagi doesn't include American Steel endog = data.endog[:-20] fullexog = data.exog[:-20] # fullexog.sort(order=['firm','year']) panel_arr = nprf.append_fields(fullexog, 'investment', endog, float, usemask=False) panel_panda = LongPanel.fromRecords(panel_arr, major_field='year', minor_field='firm') # the most cumbersome way of doing it as far as preprocessing by hand exog = fullexog[['value','capital']].view(float).reshape(-1,2) exog = sm.add_constant(exog, prepend=False) panel = group(fullexog['firm']) year = fullexog['year'] panel_mod = PanelModel(endog, exog, panel, year, xtnames=['firm','year'], equation='invest value capital') # note that equation doesn't actually do anything but name the variables panel_ols = panel_mod.fit(model='pooled') panel_be = panel_mod.fit(model='between', effects='oneway') panel_fe = panel_mod.fit(model='fixed', effects='oneway') panel_bet = panel_mod.fit(model='between', effects='time') panel_fet = panel_mod.fit(model='fixed', effects='time') panel_fe2 = panel_mod.fit(model='fixed', effects='twoways') #see also Baltagi (3rd edt) 3.3 THE RANDOM EFFECTS MODEL p.35 #for explicit formulas for spectral decomposition #but this works also for unbalanced panel # #I also just saw: 9.4.2 The Random Effects Model p.176 which is #partially almost the same as I did # #this needs to use sparse matrices for larger datasets # #""" # #import numpy as np # groups = np.array([0,0,0,1,1,2,2,2]) nobs = groups.shape[0] groupuniq = np.unique(groups) periods = np.array([0,1,2,1,2,0,1,2]) perioduniq = np.unique(periods) dummygr = (groups[:,None] == groupuniq).astype(float) dummype = (periods[:,None] == perioduniq).astype(float) sigma = 1. sigmagr = np.sqrt(2.) sigmape = np.sqrt(3.) #dummyall = np.c_[sigma*np.ones((nobs,1)), sigmagr*dummygr, # sigmape*dummype] #exclude constant ? dummyall = np.c_[sigmagr*dummygr, sigmape*dummype] # omega is the error variance-covariance matrix for the stacked # observations omega = np.dot(dummyall, dummyall.T) + sigma* np.eye(nobs) print(omega) print(np.linalg.cholesky(omega)) ev, evec = np.linalg.eigh(omega) #eig doesn't work omegainv = np.dot(evec, (1/ev * evec).T) omegainv2 = np.linalg.inv(omega) omegacomp = np.dot(evec, (ev * evec).T) print(np.max(np.abs(omegacomp - omega))) #check #print(np.dot(omegainv,omega) print(np.max(np.abs(np.dot(omegainv,omega) - np.eye(nobs)))) omegainvhalf = evec/np.sqrt(ev) #not sure whether ev shouldn't be column print(np.max(np.abs(np.dot(omegainvhalf,omegainvhalf.T) - omegainv))) # now we can use omegainvhalf in GLS (instead of the cholesky) sigmas2 = np.array([sigmagr, sigmape, sigma]) groups2 = np.column_stack((groups, periods)) omega_, omegainv_, omegainvhalf_ = repanel_cov(groups2, sigmas2) print(np.max(np.abs(omega_ - omega))) print(np.max(np.abs(omegainv_ - omegainv))) print(np.max(np.abs(omegainvhalf_ - omegainvhalf))) # notation Baltagi (3rd) section 9.4.1 (Fixed Effects Model) Pgr = reduce(np.dot,[dummygr, np.linalg.inv(np.dot(dummygr.T, dummygr)),dummygr.T]) Qgr = np.eye(nobs) - Pgr # within group effect: np.dot(Qgr, groups) # but this is not memory efficient, compared to groupstats print(np.max(np.abs(np.dot(Qgr, groups))))
bsd-3-clause
bthirion/scikit-learn
examples/cluster/plot_segmentation_toy.py
91
3522
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 # We use a mask that limits to the foreground: the problem that we are # interested in here is not separating the objects from the background, # but separating them one from the other. mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
kazemakase/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
78
4510
#!/usr/bin/python # -*- coding: utf-8 -*- """ =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ print(__doc__) # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.cross_validation import cross_val_score from sklearn.grid_search import GridSearchCV ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA() fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
sensbio/sensbiotk
examples/simple_rotation/simple_rotation_martin.py
1
4137
# -*- coding: utf-8 -*- """ Reconstruction angles example comparison """ import numpy as np from sensbiotk.algorithms import martin_ahrs import sensbiotk.algorithms.mahony_ahrs as mahony from sensbiotk.io.iofox import load_foxcsvfile from sensbiotk.io.ahrs import save_ahrs_csvfile import sensbiotk.calib.calib as calib from sensbiotk.transforms3d.eulerangles import quat2euler from sensbiotk.transforms3d.eulerangles import quat2euler2 from sensbiotk.transforms3d.quaternions import quat2mat from visual import * import scipy.io import matplotlib.pyplot as plt DATACALIBFILE = "data/simple_rotation_v2/CALIB.csv" #CALIBFILE= "data/simple_rotation_v2/CalibrationFileIMU5.txt" #DATAFILE = "data/simple_rotation_v2/ROT90_Y.csv" CALIBFILE= "data/simple_rotation/CalibrationFileIMU4.txt" DATAFILE = "data/simple_rotation/90_around_x.csv" def plot_quat(title, timu, qw, qx, qy, qz): """ Plot quaternion """ plt.figure() plt.title(title+" Quaternion") plt.plot(timu, qw) plt.plot(timu, qx) plt.plot(timu, qy) plt.plot(timu, qz) plt.legend(('qw', 'qx', 'qy', 'qz')) return def plot_euler(title, time, phi, theta, psi): """ Plot euler angles """ plt.figure() plt.title(title+" Euler angles") plt.plot(time, phi*180/math.pi) plt.plot(time, theta*180/math.pi) plt.plot(time, psi*180/math.pi) plt.legend(('e_x', 'e_y', 'e_z')) return def calib_param(compute = False): """ Load or compute calibration parameters """ if compute == True : [params_acc, params_mag, params_gyr] = \ calib.compute(imuNumber=5 ,filepath=DATACALIBFILE, param = 3) else: [params_acc, params_mag, params_gyr] = \ calib.load_param(CALIBFILE) return [params_acc, params_mag, params_gyr] def normalize_data(data, param_calib): """ normalize_data """ scale = param_calib[1:4,:] bias = param_calib[0,:] data_n = np.transpose(np.dot(scale,np.transpose((data-np.transpose(bias))))) return data_n def run_example(typ_filter = "martin"): """ run example : "mahony" or "martin" """ # Compute (True) or load (False [params_acc, params_mag, params_gyr] = calib_param(compute = False) # Load the recording data [time_imu, accx, accy, accz, mx, my, mz, gyrx, gyry, gyrz] = \ load_foxcsvfile(DATAFILE) acc_imu = np.column_stack([accx, accy, accz]) mag_imu = np.column_stack([mx, my, mz]) gyr_imu = np.column_stack([gyrx, gyry, gyrz]) # Init output quat = np.zeros((len(acc_imu),4)) euler = np.zeros((len(acc_imu),3)) observer = martin_ahrs.martin_ahrs() # Computation loop for i in range(0,len(acc_imu)): # Applies the Scale and Offset to data acc_imu[i,:] = normalize_data(acc_imu[i,:], params_acc) mag_imu[i,:] = normalize_data(mag_imu[i,:], params_mag) gyr_imu[i,:] = normalize_data(gyr_imu[i,:], params_gyr) # Filter call if i == 0: if typ_filter == "mahony": quat[0,:]=[1, 0, 0, 0] else: quat[0]=observer.init_observer(np.hstack([acc_imu[0,:],mag_imu[0,:], gyr_imu[0,:]])) else: if typ_filter == "mahony": quat[i]= mahony.update(quat[i-1],np.hstack([acc_imu[i,:],mag_imu[i,:], gyr_imu[i,:]])) euler[i]=quat2euler(quat[i]) else: quat[i]=observer.update(np.hstack([acc_imu[i,:],mag_imu[i,:], gyr_imu[i,:]]), 0.005) euler[i]=quat2euler(quat[i]) #Plot results plot_quat(typ_filter, time_imu,\ quat[:,0], quat[:,1], quat[:,2], quat[:,3]) if typ_filter == "mahony": plot_euler(typ_filter, time_imu,\ euler[:,2], euler[:,1], euler[:,0]) else: plot_euler(typ_filter, time_imu,\ euler[:,2], euler[:,1], euler[:,0]) if __name__ == '__main__': run_example("martin") run_example("mahony") plt.show()
gpl-3.0
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/numpy/core/tests/test_multiarray.py
9
223106
from __future__ import division, absolute_import, print_function import collections import tempfile import sys import shutil import warnings import operator import io import itertools if sys.version_info[0] >= 3: import builtins else: import __builtin__ as builtins from decimal import Decimal import numpy as np from nose import SkipTest from numpy.compat import asbytes, getexception, strchar, unicode, sixu from test_print import in_foreign_locale from numpy.core.multiarray_tests import ( test_neighborhood_iterator, test_neighborhood_iterator_oob, test_pydatamem_seteventhook_start, test_pydatamem_seteventhook_end, test_inplace_increment, get_buffer_info, test_as_c_array ) from numpy.testing import ( TestCase, run_module_suite, assert_, assert_raises, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, assert_array_less, runstring, dec ) # Need to test an object that does not fully implement math interface from datetime import timedelta if sys.version_info[:2] > (3, 2): # In Python 3.3 the representation of empty shape, strides and suboffsets # is an empty tuple instead of None. # http://docs.python.org/dev/whatsnew/3.3.html#api-changes EMPTY = () else: EMPTY = None class TestFlags(TestCase): def setUp(self): self.a = np.arange(10) def test_writeable(self): mydict = locals() self.a.flags.writeable = False self.assertRaises(ValueError, runstring, 'self.a[0] = 3', mydict) self.assertRaises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0 def test_otherflags(self): assert_equal(self.a.flags.carray, True) assert_equal(self.a.flags.farray, False) assert_equal(self.a.flags.behaved, True) assert_equal(self.a.flags.fnc, False) assert_equal(self.a.flags.forc, True) assert_equal(self.a.flags.owndata, True) assert_equal(self.a.flags.writeable, True) assert_equal(self.a.flags.aligned, True) assert_equal(self.a.flags.updateifcopy, False) def test_string_align(self): a = np.zeros(4, dtype=np.dtype('|S4')) assert_(a.flags.aligned) # not power of two are accessed bytewise and thus considered aligned a = np.zeros(5, dtype=np.dtype('|S4')) assert_(a.flags.aligned) def test_void_align(self): a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) assert_(a.flags.aligned) class TestHash(TestCase): # see #3793 def test_int(self): for st, ut, s in [(np.int8, np.uint8, 8), (np.int16, np.uint16, 16), (np.int32, np.uint32, 32), (np.int64, np.uint64, 64)]: for i in range(1, s): assert_equal(hash(st(-2**i)), hash(-2**i), err_msg="%r: -2**%d" % (st, i)) assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (st, i - 1)) assert_equal(hash(st(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (st, i)) i = max(i - 1, 1) assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (ut, i - 1)) assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (ut, i)) class TestAttributes(TestCase): def setUp(self): self.one = np.arange(10) self.two = np.arange(20).reshape(4, 5) self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) def test_attributes(self): assert_equal(self.one.shape, (10,)) assert_equal(self.two.shape, (4, 5)) assert_equal(self.three.shape, (2, 5, 6)) self.three.shape = (10, 3, 2) assert_equal(self.three.shape, (10, 3, 2)) self.three.shape = (2, 5, 6) assert_equal(self.one.strides, (self.one.itemsize,)) num = self.two.itemsize assert_equal(self.two.strides, (5*num, num)) num = self.three.itemsize assert_equal(self.three.strides, (30*num, 6*num, num)) assert_equal(self.one.ndim, 1) assert_equal(self.two.ndim, 2) assert_equal(self.three.ndim, 3) num = self.two.itemsize assert_equal(self.two.size, 20) assert_equal(self.two.nbytes, 20*num) assert_equal(self.two.itemsize, self.two.dtype.itemsize) assert_equal(self.two.base, np.arange(20)) def test_dtypeattr(self): assert_equal(self.one.dtype, np.dtype(np.int_)) assert_equal(self.three.dtype, np.dtype(np.float_)) assert_equal(self.one.dtype.char, 'l') assert_equal(self.three.dtype.char, 'd') self.assertTrue(self.three.dtype.str[0] in '<>') assert_equal(self.one.dtype.str[1], 'i') assert_equal(self.three.dtype.str[1], 'f') def test_int_subclassing(self): # Regression test for https://github.com/numpy/numpy/pull/3526 numpy_int = np.int_(0) if sys.version_info[0] >= 3: # On Py3k int_ should not inherit from int, because it's not fixed-width anymore assert_equal(isinstance(numpy_int, int), False) else: # Otherwise, it should inherit from int... assert_equal(isinstance(numpy_int, int), True) # ... and fast-path checks on C-API level should also work from numpy.core.multiarray_tests import test_int_subclass assert_equal(test_int_subclass(numpy_int), True) def test_stridesattr(self): x = self.one def make_array(size, offset, strides): return np.ndarray(size, buffer=x, dtype=int, offset=offset*x.itemsize, strides=strides*x.itemsize) assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(ValueError, make_array, 8, 3, 1) assert_equal(make_array(8, 3, 0), np.array([3]*8)) # Check behavior reported in gh-2503: self.assertRaises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) make_array(0, 0, 10) def test_set_stridesattr(self): x = self.one def make_array(size, offset, strides): try: r = np.ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize) except: raise RuntimeError(getexception()) r.strides = strides = strides*x.itemsize return r assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(RuntimeError, make_array, 8, 3, 1) # Check that the true extent of the array is used. # Test relies on as_strided base not exposing a buffer. x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) def set_strides(arr, strides): arr.strides = strides self.assertRaises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize)) # Test for offset calculations: x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], shape=(10,), strides=(-1,)) self.assertRaises(ValueError, set_strides, x[::-1], -1) a = x[::-1] a.strides = 1 a[::2].strides = 2 def test_fill(self): for t in "?bhilqpBHILQPfdgFDGO": x = np.empty((3, 2, 1), t) y = np.empty((3, 2, 1), t) x.fill(1) y[...] = 1 assert_equal(x, y) def test_fill_max_uint64(self): x = np.empty((3, 2, 1), dtype=np.uint64) y = np.empty((3, 2, 1), dtype=np.uint64) value = 2**64 - 1 y[...] = value x.fill(value) assert_array_equal(x, y) def test_fill_struct_array(self): # Filling from a scalar x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') x.fill(x[0]) assert_equal(x['f1'][1], x['f1'][0]) # Filling from a tuple that can be converted # to a scalar x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) x.fill((3.5, -2)) assert_array_equal(x['a'], [3.5, 3.5]) assert_array_equal(x['b'], [-2, -2]) class TestArrayConstruction(TestCase): def test_array(self): d = np.ones(6) r = np.array([d, d]) assert_equal(r, np.ones((2, 6))) d = np.ones(6) tgt = np.ones((2, 6)) r = np.array([d, d]) assert_equal(r, tgt) tgt[1] = 2 r = np.array([d, d + 1]) assert_equal(r, tgt) d = np.ones(6) r = np.array([[d, d]]) assert_equal(r, np.ones((1, 2, 6))) d = np.ones(6) r = np.array([[d, d], [d, d]]) assert_equal(r, np.ones((2, 2, 6))) d = np.ones((6, 6)) r = np.array([d, d]) assert_equal(r, np.ones((2, 6, 6))) d = np.ones((6, )) r = np.array([[d, d + 1], d + 2]) assert_equal(len(r), 2) assert_equal(r[0], [d, d + 1]) assert_equal(r[1], d + 2) tgt = np.ones((2, 3), dtype=np.bool) tgt[0, 2] = False tgt[1, 0:2] = False r = np.array([[True, True, False], [False, False, True]]) assert_equal(r, tgt) r = np.array([[True, False], [True, False], [False, True]]) assert_equal(r, tgt.T) def test_array_empty(self): assert_raises(TypeError, np.array) def test_array_copy_false(self): d = np.array([1, 2, 3]) e = np.array(d, copy=False) d[1] = 3 assert_array_equal(e, [1, 3, 3]) e = np.array(d, copy=False, order='F') d[1] = 4 assert_array_equal(e, [1, 4, 3]) e[2] = 7 assert_array_equal(d, [1, 4, 7]) def test_array_copy_true(self): d = np.array([[1,2,3], [1, 2, 3]]) e = np.array(d, copy=True) d[0, 1] = 3 e[0, 2] = -7 assert_array_equal(e, [[1, 2, -7], [1, 2, 3]]) assert_array_equal(d, [[1, 3, 3], [1, 2, 3]]) e = np.array(d, copy=True, order='F') d[0, 1] = 5 e[0, 2] = 7 assert_array_equal(e, [[1, 3, 7], [1, 2, 3]]) assert_array_equal(d, [[1, 5, 3], [1,2,3]]) def test_array_cont(self): d = np.ones(10)[::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.ascontiguousarray(d).flags.f_contiguous) assert_(np.asfortranarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) d = np.ones((10, 10))[::2,::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) class TestAssignment(TestCase): def test_assignment_broadcasting(self): a = np.arange(6).reshape(2, 3) # Broadcasting the input to the output a[...] = np.arange(3) assert_equal(a, [[0, 1, 2], [0, 1, 2]]) a[...] = np.arange(2).reshape(2, 1) assert_equal(a, [[0, 0, 0], [1, 1, 1]]) # For compatibility with <= 1.5, a limited version of broadcasting # the output to the input. # # This behavior is inconsistent with NumPy broadcasting # in general, because it only uses one of the two broadcasting # rules (adding a new "1" dimension to the left of the shape), # applied to the output instead of an input. In NumPy 2.0, this kind # of broadcasting assignment will likely be disallowed. a[...] = np.arange(6)[::-1].reshape(1, 2, 3) assert_equal(a, [[5, 4, 3], [2, 1, 0]]) # The other type of broadcasting would require a reduction operation. def assign(a, b): a[...] = b assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3)) def test_assignment_errors(self): # Address issue #2276 class C: pass a = np.zeros(1) def assign(v): a[0] = v assert_raises((AttributeError, TypeError), assign, C()) assert_raises(ValueError, assign, [1]) class TestDtypedescr(TestCase): def test_construction(self): d1 = np.dtype('i4') assert_equal(d1, np.dtype(np.int32)) d2 = np.dtype('f8') assert_equal(d2, np.dtype(np.float64)) def test_byteorders(self): self.assertNotEqual(np.dtype('<i4'), np.dtype('>i4')) self.assertNotEqual(np.dtype([('a', '<i4')]), np.dtype([('a', '>i4')])) class TestZeroRank(TestCase): def setUp(self): self.d = np.array(0), np.array('x', object) def test_ellipsis_subscript(self): a, b = self.d self.assertEqual(a[...], 0) self.assertEqual(b[...], 'x') self.assertTrue(a[...].base is a) # `a[...] is a` in numpy <1.9. self.assertTrue(b[...].base is b) # `b[...] is b` in numpy <1.9. def test_empty_subscript(self): a, b = self.d self.assertEqual(a[()], 0) self.assertEqual(b[()], 'x') self.assertTrue(type(a[()]) is a.dtype.type) self.assertTrue(type(b[()]) is str) def test_invalid_subscript(self): a, b = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[0], b) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], b) def test_ellipsis_subscript_assignment(self): a, b = self.d a[...] = 42 self.assertEqual(a, 42) b[...] = '' self.assertEqual(b.item(), '') def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 self.assertEqual(a, 42) b[()] = '' self.assertEqual(b.item(), '') def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v self.assertRaises(IndexError, assign, a, 0, 42) self.assertRaises(IndexError, assign, b, 0, '') self.assertRaises(ValueError, assign, a, (), '') def test_newaxis(self): a, b = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_constructor(self): x = np.ndarray(()) x[()] = 5 self.assertEqual(x[()], 5) y = np.ndarray((), buffer=x) y[()] = 6 self.assertEqual(x[()], 6) def test_output(self): x = np.array(2) self.assertRaises(ValueError, np.add, x, [1], x) class TestScalarIndexing(TestCase): def setUp(self): self.d = np.array([0, 1])[0] def test_ellipsis_subscript(self): a = self.d self.assertEqual(a[...], 0) self.assertEqual(a[...].shape, ()) def test_empty_subscript(self): a = self.d self.assertEqual(a[()], 0) self.assertEqual(a[()].shape, ()) def test_invalid_subscript(self): a = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) def test_invalid_subscript_assignment(self): a = self.d def assign(x, i, v): x[i] = v self.assertRaises(TypeError, assign, a, 0, 42) def test_newaxis(self): a = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_overlapping_assignment(self): # With positive strides a = np.arange(4) a[:-1] = a[1:] assert_equal(a, [1, 2, 3, 3]) a = np.arange(4) a[1:] = a[:-1] assert_equal(a, [0, 0, 1, 2]) # With positive and negative strides a = np.arange(4) a[:] = a[::-1] assert_equal(a, [3, 2, 1, 0]) a = np.arange(6).reshape(2, 3) a[::-1,:] = a[:, ::-1] assert_equal(a, [[5, 4, 3], [2, 1, 0]]) a = np.arange(6).reshape(2, 3) a[::-1, ::-1] = a[:, ::-1] assert_equal(a, [[3, 4, 5], [0, 1, 2]]) # With just one element overlapping a = np.arange(5) a[:3] = a[2:] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[2:] = a[:3] assert_equal(a, [0, 1, 0, 1, 2]) a = np.arange(5) a[2::-1] = a[2:] assert_equal(a, [4, 3, 2, 3, 4]) a = np.arange(5) a[2:] = a[2::-1] assert_equal(a, [0, 1, 2, 1, 0]) a = np.arange(5) a[2::-1] = a[:1:-1] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[:1:-1] = a[2::-1] assert_equal(a, [0, 1, 0, 1, 2]) class TestCreation(TestCase): def test_from_attribute(self): class x(object): def __array__(self, dtype=None): pass self.assertRaises(ValueError, np.array, x()) def test_from_string(self): types = np.typecodes['AllInteger'] + np.typecodes['Float'] nstr = ['123', '123'] result = np.array([123, 123], dtype=int) for type in types: msg = 'String conversion for %s' % type assert_equal(np.array(nstr, dtype=type), result, err_msg=msg) def test_void(self): arr = np.array([], dtype='V') assert_equal(arr.dtype.kind, 'V') def test_zeros(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((13,), dtype=dt) assert_equal(np.count_nonzero(d), 0) # true for ieee floats assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='4i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4, (2,4)i4') assert_equal(np.count_nonzero(d), 0) @dec.slow def test_zeros_big(self): # test big array as they might be allocated different by the sytem types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((30 * 1024**2,), dtype=dt) assert_(not d.any()) def test_zeros_obj(self): # test initialization from PyLong(0) d = np.zeros((13,), dtype=object) assert_array_equal(d, [0] * 13) assert_equal(np.count_nonzero(d), 0) def test_zeros_obj_obj(self): d = np.zeros(10, dtype=[('k', object, 2)]) assert_array_equal(d['k'], 0) def test_zeros_like_like_zeros(self): # test zeros_like returns the same as zeros for c in np.typecodes['All']: if c == 'V': continue d = np.zeros((3,3), dtype=c) assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) # explicitly check some special cases d = np.zeros((3,3), dtype='S5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='U5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='f4,f4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) def test_empty_unicode(self): # don't throw decode errors on garbage memory for i in range(5, 100, 5): d = np.empty(i, dtype='U') str(d) def test_sequence_non_homogenous(self): assert_equal(np.array([4, 2**80]).dtype, np.object) assert_equal(np.array([4, 2**80, 4]).dtype, np.object) assert_equal(np.array([2**80, 4]).dtype, np.object) assert_equal(np.array([2**80] * 3).dtype, np.object) assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, np.complex) assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, np.complex) assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, np.complex) @dec.skipif(sys.version_info[0] >= 3) def test_sequence_long(self): assert_equal(np.array([long(4), long(4)]).dtype, np.long) assert_equal(np.array([long(4), 2**80]).dtype, np.object) assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object) assert_equal(np.array([2**80, long(4)]).dtype, np.object) def test_non_sequence_sequence(self): """Should not segfault. Class Fail breaks the sequence protocol for new style classes, i.e., those derived from object. Class Map is a mapping type indicated by raising a ValueError. At some point we may raise a warning instead of an error in the Fail case. """ class Fail(object): def __len__(self): return 1 def __getitem__(self, index): raise ValueError() class Map(object): def __len__(self): return 1 def __getitem__(self, index): raise KeyError() a = np.array([Map()]) assert_(a.shape == (1,)) assert_(a.dtype == np.dtype(object)) assert_raises(ValueError, np.array, [Fail()]) def test_no_len_object_type(self): # gh-5100, want object array from iterable object without len() class Point2: def __init__(self): pass def __getitem__(self, ind): if ind in [0, 1]: return ind else: raise IndexError() d = np.array([Point2(), Point2(), Point2()]) assert_equal(d.dtype, np.dtype(object)) class TestStructured(TestCase): def test_subarray_field_access(self): a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))]) a['a'] = np.arange(60).reshape(3, 5, 2, 2) # Since the subarray is always in C-order, a transpose # does not swap the subarray: assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3)) # In Fortran order, the subarray gets appended # like in all other cases, not prepended as a special case b = a.copy(order='F') assert_equal(a['a'].shape, b['a'].shape) assert_equal(a.T['a'].shape, a.T.copy()['a'].shape) def test_subarray_comparison(self): # Check that comparisons between record arrays with # multi-dimensional field types work properly a = np.rec.fromrecords( [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])], dtype=[('a', ('f4', 3)), ('b', np.object), ('c', ('i4', (2, 2)))]) b = a.copy() assert_equal(a == b, [True, True]) assert_equal(a != b, [False, False]) b[1].b = 'c' assert_equal(a == b, [True, False]) assert_equal(a != b, [False, True]) for i in range(3): b[0].a = a[0].a b[0].a[i] = 5 assert_equal(a == b, [False, False]) assert_equal(a != b, [True, True]) for i in range(2): for j in range(2): b = a.copy() b[0].c[i, j] = 10 assert_equal(a == b, [False, True]) assert_equal(a != b, [True, False]) # Check that broadcasting with a subarray works a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))]) b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that broadcasting Fortran-style arrays with a subarray work a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F') b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that incompatible sub-array shapes don't result to broadcasting x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) # Check that structured arrays that are different only in # byte-order work a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')]) b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')]) assert_equal(a == b, [False, True]) def test_casting(self): # Check that casting a structured array to change its byte order # works a = np.array([(1,)], dtype=[('a', '<i4')]) assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe')) b = a.astype([('a', '>i4')]) assert_equal(b, a.byteswap().newbyteorder()) assert_equal(a['a'][0], b['a'][0]) # Check that equality comparison works on structured arrays if # they are 'equiv'-castable a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')]) b = np.array([(42, 5), (1, 10)], dtype=[('b', '>f8'), ('a', '<i4')]) assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) assert_equal(a == b, [True, True]) # Check that 'equiv' casting can reorder fields and change byte # order assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) c = a.astype(b.dtype, casting='equiv') assert_equal(a == c, [True, True]) # Check that 'safe' casting can change byte order and up-cast # fields t = [('a', '<i8'), ('b', '>f8')] assert_(np.can_cast(a.dtype, t, casting='safe')) c = a.astype(t, casting='safe') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that 'same_kind' casting can change byte order and # change field widths within a "kind" t = [('a', '<i4'), ('b', '>f4')] assert_(np.can_cast(a.dtype, t, casting='same_kind')) c = a.astype(t, casting='same_kind') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that casting fails if the casting rule should fail on # any of the fields t = [('a', '>i8'), ('b', '<f4')] assert_(not np.can_cast(a.dtype, t, casting='safe')) assert_raises(TypeError, a.astype, t, casting='safe') t = [('a', '>i2'), ('b', '<f8')] assert_(not np.can_cast(a.dtype, t, casting='equiv')) assert_raises(TypeError, a.astype, t, casting='equiv') t = [('a', '>i8'), ('b', '<i2')] assert_(not np.can_cast(a.dtype, t, casting='same_kind')) assert_raises(TypeError, a.astype, t, casting='same_kind') assert_(not np.can_cast(a.dtype, b.dtype, casting='no')) assert_raises(TypeError, a.astype, b.dtype, casting='no') # Check that non-'unsafe' casting can't change the set of field names for casting in ['no', 'safe', 'equiv', 'same_kind']: t = [('a', '>i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) def test_objview(self): # https://github.com/numpy/numpy/issues/3286 a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')]) a[['a', 'b']] # TypeError? # https://github.com/numpy/numpy/issues/3253 dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')]) dat2[['B', 'A']] # TypeError? def test_setfield(self): # https://github.com/numpy/numpy/issues/3126 struct_dt = np.dtype([('elem', 'i4', 5),]) dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)]) x = np.zeros(1, dt) x[0]['field'] = np.ones(10, dtype='i4') x[0]['struct'] = np.ones(1, dtype=struct_dt) assert_equal(x[0]['field'], np.ones(10, dtype='i4')) def test_setfield_object(self): # make sure object field assignment with ndarray value # on void scalar mimics setitem behavior b = np.zeros(1, dtype=[('x', 'O')]) # next line should work identically to b['x'][0] = np.arange(3) b[0]['x'] = np.arange(3) assert_equal(b[0]['x'], np.arange(3)) #check that broadcasting check still works c = np.zeros(1, dtype=[('x', 'O', 5)]) def testassign(): c[0]['x'] = np.arange(3) assert_raises(ValueError, testassign) class TestBool(TestCase): def test_test_interning(self): a0 = np.bool_(0) b0 = np.bool_(False) self.assertTrue(a0 is b0) a1 = np.bool_(1) b1 = np.bool_(True) self.assertTrue(a1 is b1) self.assertTrue(np.array([True])[0] is a1) self.assertTrue(np.array(True)[()] is a1) def test_sum(self): d = np.ones(101, dtype=np.bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) d = np.frombuffer(b'\xff\xff' * 100, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) def check_count_nonzero(self, power, length): powers = [2 ** i for i in range(length)] for i in range(2**power): l = [(i & x) != 0 for x in powers] a = np.array(l, dtype=np.bool) c = builtins.sum(l) self.assertEqual(np.count_nonzero(a), c) av = a.view(np.uint8) av *= 3 self.assertEqual(np.count_nonzero(a), c) av *= 4 self.assertEqual(np.count_nonzero(a), c) av[av != 0] = 0xFF self.assertEqual(np.count_nonzero(a), c) def test_count_nonzero(self): # check all 12 bit combinations in a length 17 array # covers most cases of the 16 byte unrolled code self.check_count_nonzero(12, 17) @dec.slow def test_count_nonzero_all(self): # check all combinations in a length 17 array # covers all cases of the 16 byte unrolled code self.check_count_nonzero(17, 17) def test_count_nonzero_unaligned(self): # prevent mistakes as e.g. gh-4060 for o in range(7): a = np.zeros((18,), dtype=np.bool)[o+1:] a[:o] = True self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) a = np.ones((18,), dtype=np.bool)[o+1:] a[:o] = False self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) class TestMethods(TestCase): def test_round(self): def check_round(arr, expected, *round_args): assert_equal(arr.round(*round_args), expected) # With output array out = np.zeros_like(arr) res = arr.round(*round_args, out=out) assert_equal(out, expected) assert_equal(out, res) check_round(np.array([1.2, 1.5]), [1, 2]) check_round(np.array(1.5), 2) check_round(np.array([12.2, 15.5]), [10, 20], -1) check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) # Complex rounding check_round(np.array([4.5 + 1.5j]), [4 + 2j]) check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) def test_transpose(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) self.assertRaises(ValueError, lambda: a.transpose(0)) self.assertRaises(ValueError, lambda: a.transpose(0, 0)) self.assertRaises(ValueError, lambda: a.transpose(0, 1, 2)) def test_sort(self): # test ordering for floats and complex containing nans. It is only # necessary to check the lessthan comparison, so sorts that # only follow the insertion sort path are sufficient. We only # test doubles and complex doubles as the logic is the same. # check doubles msg = "Test real sort order with nans" a = np.array([np.nan, 1, 0]) b = np.sort(a) assert_equal(b, a[::-1], msg) # check complex msg = "Test complex sort order with nans" a = np.zeros(9, dtype=np.complex128) a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0] a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0] b = np.sort(a) assert_equal(b, a[::-1], msg) # all c scalar sorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test complex sorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex sort, real part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex sort, imag part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) # test sorting of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) c = arr.copy() c.sort() msg = 'byte-swapped complex sort, dtype={0}'.format(dt) assert_equal(c, arr, msg) # test string sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "string sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test unicode sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "unicode sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test object array sorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test record array sorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test datetime64 sorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test timedelta64 sorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # check axis handling. This should be the same for all type # specific sorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 0], [3, 2]]) c = np.array([[2, 3], [0, 1]]) d = a.copy() d.sort(axis=0) assert_equal(d, b, "test sort with axis=0") d = a.copy() d.sort(axis=1) assert_equal(d, c, "test sort with axis=1") d = a.copy() d.sort() assert_equal(d, c, "test sort with default axis") # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array sort with axis={0}'.format(axis) assert_equal(np.sort(a, axis=axis), a, msg) msg = 'test empty array sort with axis=None' assert_equal(np.sort(a, axis=None), a.ravel(), msg) def test_copy(self): def assert_fortran(arr): assert_(arr.flags.fortran) assert_(arr.flags.f_contiguous) assert_(not arr.flags.c_contiguous) def assert_c(arr): assert_(not arr.flags.fortran) assert_(not arr.flags.f_contiguous) assert_(arr.flags.c_contiguous) a = np.empty((2, 2), order='F') # Test copying a Fortran array assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_fortran(a.copy('A')) # Now test starting with a C array. a = np.empty((2, 2), order='C') assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_c(a.copy('A')) def test_sort_order(self): # Test sorting an array with fields x1 = np.array([21, 32, 14]) x2 = np.array(['my', 'first', 'name']) x3 = np.array([3.1, 4.5, 6.2]) r = np.rec.fromarrays([x1, x2, x3], names='id,word,number') r.sort(order=['id']) assert_equal(r.id, np.array([14, 21, 32])) assert_equal(r.word, np.array(['name', 'my', 'first'])) assert_equal(r.number, np.array([6.2, 3.1, 4.5])) r.sort(order=['word']) assert_equal(r.id, np.array([32, 21, 14])) assert_equal(r.word, np.array(['first', 'my', 'name'])) assert_equal(r.number, np.array([4.5, 3.1, 6.2])) r.sort(order=['number']) assert_equal(r.id, np.array([21, 32, 14])) assert_equal(r.word, np.array(['my', 'first', 'name'])) assert_equal(r.number, np.array([3.1, 4.5, 6.2])) if sys.byteorder == 'little': strtype = '>i2' else: strtype = '<i2' mydtype = [('name', strchar + '5'), ('col2', strtype)] r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)], dtype=mydtype) r.sort(order='col2') assert_equal(r['col2'], [1, 3, 255, 258]) assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)], dtype=mydtype)) def test_argsort(self): # all c scalar argsorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), a, msg) assert_equal(b.copy().argsort(kind=kind), b, msg) # test complex argsorts. These use the same code as the scalars # but the compare fuction differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) # test argsort of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) msg = 'byte-swapped complex argsort, dtype={0}'.format(dt) assert_equal(arr.argsort(), np.arange(len(arr), dtype=np.intp), msg) # test string argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "string argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test unicode argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "unicode argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test object array argsorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "object argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test structured array argsorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "structured array argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test datetime64 argsorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test timedelta64 argsorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # check axis handling. This should be the same for all type # specific argsorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 1], [0, 0]]) c = np.array([[1, 0], [1, 0]]) assert_equal(a.copy().argsort(axis=0), b) assert_equal(a.copy().argsort(axis=1), c) assert_equal(a.copy().argsort(), c) # using None is known fail at this point #assert_equal(a.copy().argsort(axis=None, c) # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argsort with axis={0}'.format(axis) assert_equal(np.argsort(a, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argsort with axis=None' assert_equal(np.argsort(a, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) # check that stable argsorts are stable r = np.arange(100) # scalars a = np.zeros(100) assert_equal(a.argsort(kind='m'), r) # complex a = np.zeros(100, dtype=np.complex) assert_equal(a.argsort(kind='m'), r) # string a = np.array(['aaaaaaaaa' for i in range(100)]) assert_equal(a.argsort(kind='m'), r) # unicode a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode) assert_equal(a.argsort(kind='m'), r) def test_sort_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.sort, kind=k) assert_raises(ValueError, d.argsort, kind=k) def test_searchsorted(self): # test for floats and complex containing nans. The logic is the # same for all float types so only test double types for now. # The search sorted routines use the compare functions for the # array type, so this checks if that is consistent with the sort # order. # check double a = np.array([0, 1, np.nan]) msg = "Test real searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(3), msg) msg = "Test real searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 4), msg) # check double complex a = np.zeros(9, dtype=np.complex128) a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] msg = "Test complex searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(9), msg) msg = "Test complex searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 10), msg) msg = "Test searchsorted with little endian, side='l'" a = np.array([0, 128], dtype='<i4') b = a.searchsorted(np.array(128, dtype='<i4')) assert_equal(b, 1, msg) msg = "Test searchsorted with big endian, side='l'" a = np.array([0, 128], dtype='>i4') b = a.searchsorted(np.array(128, dtype='>i4')) assert_equal(b, 1, msg) # Check 0 elements a = np.ones(0) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 0]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 0, 0]) a = np.ones(1) # Check 1 element b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 1]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 1, 1]) # Check all elements equal a = np.ones(2) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 2]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 2, 2]) # Test searching unaligned array a = np.arange(10) aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) unaligned[:] = a # Test searching unaligned array b = unaligned.searchsorted(a, 'l') assert_equal(b, a) b = unaligned.searchsorted(a, 'r') assert_equal(b, a + 1) # Test searching for unaligned keys b = a.searchsorted(unaligned, 'l') assert_equal(b, a) b = a.searchsorted(unaligned, 'r') assert_equal(b, a + 1) # Test smart resetting of binsearch indices a = np.arange(5) b = a.searchsorted([6, 5, 4], 'l') assert_equal(b, [5, 5, 4]) b = a.searchsorted([6, 5, 4], 'r') assert_equal(b, [5, 5, 5]) # Test all type specific binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.arange(2, dtype=dt) out = np.arange(2) else: a = np.arange(0, 5, dtype=dt) out = np.arange(5) b = a.searchsorted(a, 'l') assert_equal(b, out) b = a.searchsorted(a, 'r') assert_equal(b, out + 1) def test_searchsorted_unicode(self): # Test searchsorted on unicode strings. # 1.6.1 contained a string length miscalculation in # arraytypes.c.src:UNICODE_compare() which manifested as # incorrect/inconsistent results from searchsorted. a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'], dtype=np.unicode) ind = np.arange(len(a)) assert_equal([a.searchsorted(v, 'left') for v in a], ind) assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1) assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind) assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1) def test_searchsorted_with_sorter(self): a = np.array([5, 2, 1, 3, 4]) s = np.argsort(a) assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3))) assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6]) # bounds check assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3]) a = np.random.rand(300) s = a.argsort() b = np.sort(a) k = np.linspace(0, 1, 20) assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s)) a = np.array([0, 1, 2, 3, 5]*20) s = a.argsort() k = [0, 1, 2, 3, 5] expected = [0, 20, 40, 60, 80] assert_equal(a.searchsorted(k, side='l', sorter=s), expected) expected = [20, 40, 60, 80, 100] assert_equal(a.searchsorted(k, side='r', sorter=s), expected) # Test searching unaligned array keys = np.arange(10) a = keys.copy() np.random.shuffle(s) s = a.argsort() aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) # Test searching unaligned array unaligned[:] = a b = unaligned.searchsorted(keys, 'l', s) assert_equal(b, keys) b = unaligned.searchsorted(keys, 'r', s) assert_equal(b, keys + 1) # Test searching for unaligned keys unaligned[:] = keys b = a.searchsorted(unaligned, 'l', s) assert_equal(b, keys) b = a.searchsorted(unaligned, 'r', s) assert_equal(b, keys + 1) # Test all type specific indirect binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.array([1, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([1, 0], dtype=np.int16) out = np.array([1, 0]) else: a = np.array([3, 4, 1, 2, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([4, 2, 3, 0, 1], dtype=np.int16) out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) # Test non-contiguous sorter array a = np.array([3, 4, 1, 2, 0]) srt = np.empty((10,), dtype=np.intp) srt[1::2] = -1 srt[::2] = [4, 2, 3, 0, 1] s = srt[::2] out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) def test_searchsorted_return_type(self): # Functions returning indices should always return base ndarrays class A(np.ndarray): pass a = np.arange(5).view(A) b = np.arange(1, 3).view(A) s = np.arange(5).view(A) assert_(not isinstance(a.searchsorted(b, 'l'), A)) assert_(not isinstance(a.searchsorted(b, 'r'), A)) assert_(not isinstance(a.searchsorted(b, 'l', s), A)) assert_(not isinstance(a.searchsorted(b, 'r', s), A)) def test_argpartition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.argpartition, 10) assert_raises(ValueError, d.argpartition, -11) # Test also for generic type argpartition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.argpartition, 10) assert_raises(ValueError, d_obj.argpartition, -11) def test_partition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.partition, 10) assert_raises(ValueError, d.partition, -11) # Test also for generic type partition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.partition, 10) assert_raises(ValueError, d_obj.partition, -11) def test_partition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array partition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), a, msg) msg = 'test empty array partition with axis=None' assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg) def test_argpartition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argpartition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argpartition with axis=None' assert_equal(np.partition(a, 0, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) def test_partition(self): d = np.arange(10) assert_raises(TypeError, np.partition, d, 2, kind=1) assert_raises(ValueError, np.partition, d, 2, kind="nonsense") assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense") assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense") assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense") for k in ("introselect",): d = np.array([]) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(np.argpartition(d, 0, kind=k), d) d = np.ones((1)) assert_array_equal(np.partition(d, 0, kind=k)[0], d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # kth not modified kth = np.array([30, 15, 5]) okth = kth.copy() np.partition(np.arange(40), kth) assert_array_equal(kth, okth) for r in ([2, 1], [1, 2], [1, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) assert_array_equal(d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.ones((50)) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # sorted d = np.arange((49)) self.assertEqual(np.partition(d, 5, kind=k)[5], 5) self.assertEqual(np.partition(d, 15, kind=k)[15], 15) assert_array_equal(d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k)) assert_array_equal(d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k)) # rsorted d = np.arange((47))[::-1] self.assertEqual(np.partition(d, 6, kind=k)[6], 6) self.assertEqual(np.partition(d, 16, kind=k)[16], 16) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k)) assert_array_equal(np.partition(d, -16, kind=k), np.partition(d, 31, kind=k)) assert_array_equal(d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k)) # median of 3 killer, O(n^2) on pure median 3 pivot quickselect # exercises the median of median of 5 code used to keep O(n) d = np.arange(1000000) x = np.roll(d, d.size // 2) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) d = np.arange(1000001) x = np.roll(d, d.size // 2 + 1) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) # max d = np.ones(10) d[1] = 4 assert_equal(np.partition(d, (2, -1))[-1], 4) assert_equal(np.partition(d, (2, -1))[2], 1) assert_equal(d[np.argpartition(d, (2, -1))][-1], 4) assert_equal(d[np.argpartition(d, (2, -1))][2], 1) d[1] = np.nan assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1])) assert_(np.isnan(np.partition(d, (2, -1))[-1])) # equal elements d = np.arange((47)) % 7 tgt = np.sort(np.arange((47)) % 7) np.random.shuffle(d) for i in range(d.size): self.assertEqual(np.partition(d, i, kind=k)[i], tgt[i]) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9]) kth = [0, 3, 19, 20] assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7)) assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7)) d = np.array([2, 1]) d.partition(0, kind=k) assert_raises(ValueError, d.partition, 2) assert_raises(ValueError, d.partition, 3, axis=1) assert_raises(ValueError, np.partition, d, 2) assert_raises(ValueError, np.partition, d, 2, axis=1) assert_raises(ValueError, d.argpartition, 2) assert_raises(ValueError, d.argpartition, 3, axis=1) assert_raises(ValueError, np.argpartition, d, 2) assert_raises(ValueError, np.argpartition, d, 2, axis=1) d = np.arange(10).reshape((2, 5)) d.partition(1, axis=0, kind=k) d.partition(4, axis=1, kind=k) np.partition(d, 1, axis=0, kind=k) np.partition(d, 4, axis=1, kind=k) np.partition(d, 1, axis=None, kind=k) np.partition(d, 9, axis=None, kind=k) d.argpartition(1, axis=0, kind=k) d.argpartition(4, axis=1, kind=k) np.argpartition(d, 1, axis=0, kind=k) np.argpartition(d, 4, axis=1, kind=k) np.argpartition(d, 1, axis=None, kind=k) np.argpartition(d, 9, axis=None, kind=k) assert_raises(ValueError, d.partition, 2, axis=0) assert_raises(ValueError, d.partition, 11, axis=1) assert_raises(TypeError, d.partition, 2, axis=None) assert_raises(ValueError, np.partition, d, 9, axis=1) assert_raises(ValueError, np.partition, d, 11, axis=None) assert_raises(ValueError, d.argpartition, 2, axis=0) assert_raises(ValueError, d.argpartition, 11, axis=1) assert_raises(ValueError, np.argpartition, d, 9, axis=1) assert_raises(ValueError, np.argpartition, d, 11, axis=None) td = [(dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16)] for dt, s in td: aae = assert_array_equal at = self.assertTrue d = np.arange(s, dtype=dt) np.random.shuffle(d) d1 = np.tile(np.arange(s, dtype=dt), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) for i in range(d.size): p = np.partition(d, i, kind=k) self.assertEqual(p[i], i) # all before are smaller assert_array_less(p[:i], p[i]) # all after are larger assert_array_less(p[i], p[i + 1:]) aae(p, d[np.argpartition(d, i, kind=k)]) p = np.partition(d1, i, axis=1, kind=k) aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:, :i].T <= p[:, i]).all(), msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T)) at((p[:, i + 1:].T > p[:, i]).all(), msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T)) aae(p, d1[np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k)]) p = np.partition(d0, i, axis=0, kind=k) aae(p[i,:], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:i,:] <= p[i,:]).all(), msg="%d: %r <= %r" % (i, p[i,:], p[:i,:])) at((p[i + 1:,:] > p[i,:]).all(), msg="%d: %r < %r" % (i, p[i,:], p[:, i + 1:])) aae(p, d0[np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None,:]]) # check inplace dc = d.copy() dc.partition(i, kind=k) assert_equal(dc, np.partition(d, i, kind=k)) dc = d0.copy() dc.partition(i, axis=0, kind=k) assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) dc = d1.copy() dc.partition(i, axis=1, kind=k) assert_equal(dc, np.partition(d1, i, axis=1, kind=k)) def assert_partitioned(self, d, kth): prev = 0 for k in np.sort(kth): assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k) assert_((d[k:] >= d[k]).all(), msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k])) prev = k + 1 def test_partition_iterative(self): d = np.arange(17) kth = (0, 1, 2, 429, 231) assert_raises(ValueError, d.partition, kth) assert_raises(ValueError, d.argpartition, kth) d = np.arange(10).reshape((2, 5)) assert_raises(ValueError, d.partition, kth, axis=0) assert_raises(ValueError, d.partition, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=None) d = np.array([3, 4, 2, 1]) p = np.partition(d, (0, 3)) self.assert_partitioned(p, (0, 3)) self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3)) assert_array_equal(p, np.partition(d, (-3, -1))) assert_array_equal(p, d[np.argpartition(d, (-3, -1))]) d = np.arange(17) np.random.shuffle(d) d.partition(range(d.size)) assert_array_equal(np.arange(17), d) np.random.shuffle(d) assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))]) # test unsorted kth d = np.arange(17) np.random.shuffle(d) keys = np.array([1, 3, 8, -2]) np.random.shuffle(d) p = np.partition(d, keys) self.assert_partitioned(p, keys) p = d[np.argpartition(d, keys)] self.assert_partitioned(p, keys) np.random.shuffle(keys) assert_array_equal(np.partition(d, keys), p) assert_array_equal(d[np.argpartition(d, keys)], p) # equal kth d = np.arange(20)[::-1] self.assert_partitioned(np.partition(d, [5]*4), [5]) self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]), [5]*4 + [6, 13]) self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5]) self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])], [5]*4 + [6, 13]) d = np.arange(12) np.random.shuffle(d) d1 = np.tile(np.arange(12), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) kth = (1, 6, 7, -1) p = np.partition(d1, kth, axis=1) pa = d1[np.arange(d1.shape[0])[:, None], d1.argpartition(kth, axis=1)] assert_array_equal(p, pa) for i in range(d1.shape[0]): self.assert_partitioned(p[i,:], kth) p = np.partition(d0, kth, axis=0) pa = d0[np.argpartition(d0, kth, axis=0), np.arange(d0.shape[1])[None,:]] assert_array_equal(p, pa) for i in range(d0.shape[1]): self.assert_partitioned(p[:, i], kth) def test_partition_cdtype(self): d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k]) def test_partition_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.partition, 2, kind=k) assert_raises(ValueError, d.argpartition, 2, kind=k) def test_partition_fuzz(self): # a few rounds of random data testing for j in range(10, 30): for i in range(1, j - 2): d = np.arange(j) np.random.shuffle(d) d = d % np.random.randint(2, 30) idx = np.random.randint(d.size) kth = [0, idx, i, i + 1] tgt = np.sort(d)[kth] assert_array_equal(np.partition(d, kth)[kth], tgt, err_msg="data: %r\n kth: %r" % (d, kth)) def test_argpartition_gh5524(self): # A test for functionality of argpartition on lists. d = [6,7,3,2,9,0] p = np.argpartition(d,1) self.assert_partitioned(np.array(d)[p],[1]) def test_flatten(self): x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32) x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32) y0 = np.array([1, 2, 3, 4, 5, 6], np.int32) y0f = np.array([1, 4, 2, 5, 3, 6], np.int32) y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32) y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32) assert_equal(x0.flatten(), y0) assert_equal(x0.flatten('F'), y0f) assert_equal(x0.flatten('F'), x0.T.flatten()) assert_equal(x1.flatten(), y1) assert_equal(x1.flatten('F'), y1f) assert_equal(x1.flatten('F'), x1.T.flatten()) def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b)) def test_dot_override(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_diagonal(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.diagonal(), [0, 5, 10]) assert_equal(a.diagonal(0), [0, 5, 10]) assert_equal(a.diagonal(1), [1, 6, 11]) assert_equal(a.diagonal(-1), [4, 9]) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.diagonal(), [[0, 6], [1, 7]]) assert_equal(b.diagonal(0), [[0, 6], [1, 7]]) assert_equal(b.diagonal(1), [[2], [3]]) assert_equal(b.diagonal(-1), [[4], [5]]) assert_raises(ValueError, b.diagonal, axis1=0, axis2=0) assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]]) assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]]) assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]]) # Order of axis argument doesn't matter: assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]]) def test_diagonal_view_notwriteable(self): # this test is only for 1.9, the diagonal view will be # writeable in 1.10. a = np.eye(3).diagonal() assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diagonal(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diag(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) def test_diagonal_memleak(self): # Regression test for a bug that crept in at one point a = np.zeros((100, 100)) assert_(sys.getrefcount(a) < 50) for i in range(100): a.diagonal() assert_(sys.getrefcount(a) < 50) def test_put(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] for dt in icodes + fcodes + 'O': tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt.reshape(2, 3)) for dt in '?': tgt = np.array([False, True, False, True, False, True], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt.reshape(2, 3)) # check must be writeable a = np.zeros(6) a.flags.writeable = False assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5]) def test_ravel(self): a = np.array([[0, 1], [2, 3]]) assert_equal(a.ravel(), [0, 1, 2, 3]) assert_(not a.ravel().flags.owndata) assert_equal(a.ravel('F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='C'), [0, 1, 2, 3]) assert_equal(a.ravel(order='F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='A'), [0, 1, 2, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_equal(a.ravel(order='K'), [0, 1, 2, 3]) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) a = np.array([[0, 1], [2, 3]], order='F') assert_equal(a.ravel(), [0, 1, 2, 3]) assert_equal(a.ravel(order='A'), [0, 2, 1, 3]) assert_equal(a.ravel(order='K'), [0, 2, 1, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) assert_equal(a.ravel(order='A'), a.reshape(-1, order='A')) a = np.array([[0, 1], [2, 3]])[::-1, :] assert_equal(a.ravel(), [2, 3, 0, 1]) assert_equal(a.ravel(order='C'), [2, 3, 0, 1]) assert_equal(a.ravel(order='F'), [2, 0, 3, 1]) assert_equal(a.ravel(order='A'), [2, 3, 0, 1]) # 'K' doesn't reverse the axes of negative strides assert_equal(a.ravel(order='K'), [2, 3, 0, 1]) assert_(a.ravel(order='K').flags.owndata) # Test simple 1-d copy behaviour: a = np.arange(10)[::2] assert_(a.ravel('K').flags.owndata) assert_(a.ravel('C').flags.owndata) assert_(a.ravel('F').flags.owndata) # Not contiguous and 1-sized axis with non matching stride a = np.arange(2**3 * 2)[::2] a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('K'), np.arange(0, 15, 2)) # contiguous and 1-sized axis with non matching stride works: a = np.arange(2**3) a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel(order='K'), np.arange(2**3)) # Test negative strides (not very interesting since non-contiguous): a = np.arange(4)[::-1].reshape(2, 2) assert_(a.ravel(order='C').flags.owndata) assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('C'), [3, 2, 1, 0]) assert_equal(a.ravel('K'), [3, 2, 1, 0]) # 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING): a = np.array([[1]]) a.strides = (123, 432) # If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing # them up on purpose: if np.ones(1).strides == (8,): assert_(np.may_share_memory(a.ravel('K'), a)) assert_equal(a.ravel('K').strides, (a.dtype.itemsize,)) for order in ('C', 'F', 'A', 'K'): # 0-d corner case: a = np.array(0) assert_equal(a.ravel(order), [0]) assert_(np.may_share_memory(a.ravel(order), a)) # Test that certain non-inplace ravels work right (mostly) for 'K': b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2) a = b[..., ::2] assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28]) a = b[::2, ...] assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14]) def test_ravel_subclass(self): class ArraySubclass(np.ndarray): pass a = np.arange(10).view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) a = np.arange(10)[::2].view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) def test_swapaxes(self): a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy() idx = np.indices(a.shape) assert_(a.flags['OWNDATA']) b = a.copy() # check exceptions assert_raises(ValueError, a.swapaxes, -5, 0) assert_raises(ValueError, a.swapaxes, 4, 0) assert_raises(ValueError, a.swapaxes, 0, -5) assert_raises(ValueError, a.swapaxes, 0, 4) for i in range(-4, 4): for j in range(-4, 4): for k, src in enumerate((a, b)): c = src.swapaxes(i, j) # check shape shape = list(src.shape) shape[i] = src.shape[j] shape[j] = src.shape[i] assert_equal(c.shape, shape, str((i, j, k))) # check array contents i0, i1, i2, i3 = [dim-1 for dim in c.shape] j0, j1, j2, j3 = [dim-1 for dim in src.shape] assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]], c[idx[i0], idx[i1], idx[i2], idx[i3]], str((i, j, k))) # check a view is always returned, gh-5260 assert_(not c.flags['OWNDATA'], str((i, j, k))) # check on non-contiguous input array if k == 1: b = c def test_conjugate(self): a = np.array([1-1j, 1+1j, 23+23.0j]) ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 23+23.0j], 'F') ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1, 2, 3]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1.0, 2.0, 3.0]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 1, 2.0], object) ac = a.conj() assert_equal(ac, [k.conjugate() for k in a]) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1, 2.0, 'f'], object) assert_raises(AttributeError, lambda: a.conj()) assert_raises(AttributeError, lambda: a.conjugate()) class TestBinop(object): def test_inplace(self): # test refcount 1 inplace conversion assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]), [0.5, 1.0]) d = np.array([0.5, 0.5])[::2] assert_array_almost_equal(d * (d * np.array([1.0, 2.0])), [0.25, 0.5]) a = np.array([0.5]) b = np.array([0.5]) c = a + b c = a - b c = a * b c = a / b assert_equal(a, b) assert_almost_equal(c, 1.) c = a + b * 2. / b * a - a / b assert_equal(a, b) assert_equal(c, 0.5) # true divide a = np.array([5]) b = np.array([3]) c = (a * a) / b assert_almost_equal(c, 25 / 3) assert_equal(a, 5) assert_equal(b, 3) def test_extension_incref_elide(self): # test extension (e.g. cython) calling PyNumber_* slots without # increasing the reference counts # # def incref_elide(a): # d = input.copy() # refcount 1 # return d, d + d # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide d = np.ones(5) orig, res = incref_elide(d) # the return original should not be changed to an inplace operation assert_array_equal(orig, d) assert_array_equal(res, d + d) def test_extension_incref_elide_stack(self): # scanning if the refcount == 1 object is on the python stack to check # that we are called directly from python is flawed as object may still # be above the stack pointer and we have no access to the top of it # # def incref_elide_l(d): # return l[4] + l[4] # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide_l # padding with 1 makes sure the object on the stack is not overwriten l = [1, 1, 1, 1, np.ones(5)] res = incref_elide_l(l) # the return original should not be changed to an inplace operation assert_array_equal(l[4], np.ones(5)) assert_array_equal(res, l[4] + l[4]) def test_ufunc_override_rop_precedence(self): # Check that __rmul__ and other right-hand operations have # precedence over __numpy_ufunc__ # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return ops = { '__add__': ('__radd__', np.add, True), '__sub__': ('__rsub__', np.subtract, True), '__mul__': ('__rmul__', np.multiply, True), '__truediv__': ('__rtruediv__', np.true_divide, True), '__floordiv__': ('__rfloordiv__', np.floor_divide, True), '__mod__': ('__rmod__', np.remainder, True), '__divmod__': ('__rdivmod__', None, False), '__pow__': ('__rpow__', np.power, True), '__lshift__': ('__rlshift__', np.left_shift, True), '__rshift__': ('__rrshift__', np.right_shift, True), '__and__': ('__rand__', np.bitwise_and, True), '__xor__': ('__rxor__', np.bitwise_xor, True), '__or__': ('__ror__', np.bitwise_or, True), '__ge__': ('__le__', np.less_equal, False), '__gt__': ('__lt__', np.less, False), '__le__': ('__ge__', np.greater_equal, False), '__lt__': ('__gt__', np.greater, False), '__eq__': ('__eq__', np.equal, False), '__ne__': ('__ne__', np.not_equal, False), } class OtherNdarraySubclass(np.ndarray): pass class OtherNdarraySubclassWithOverride(np.ndarray): def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def check(op_name, ndsubclass): rop_name, np_op, has_iop = ops[op_name] if has_iop: iop_name = '__i' + op_name[2:] iop = getattr(operator, iop_name) if op_name == "__divmod__": op = divmod else: op = getattr(operator, op_name) # Dummy class def __init__(self, *a, **kw): pass def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def __op__(self, *other): return "op" def __rop__(self, *other): return "rop" if ndsubclass: bases = (np.ndarray,) else: bases = (object,) dct = {'__init__': __init__, '__numpy_ufunc__': __numpy_ufunc__, op_name: __op__} if op_name != rop_name: dct[rop_name] = __rop__ cls = type("Rop" + rop_name, bases, dct) # Check behavior against both bare ndarray objects and a # ndarray subclasses with and without their own override obj = cls((1,), buffer=np.ones(1,)) arr_objs = [np.array([1]), np.array([2]).view(OtherNdarraySubclass), np.array([3]).view(OtherNdarraySubclassWithOverride), ] for arr in arr_objs: err_msg = "%r %r" % (op_name, arr,) # Check that ndarray op gives up if it sees a non-subclass if not isinstance(obj, arr.__class__): assert_equal(getattr(arr, op_name)(obj), NotImplemented, err_msg=err_msg) # Check that the Python binops have priority assert_equal(op(obj, arr), "op", err_msg=err_msg) if op_name == rop_name: assert_equal(op(arr, obj), "op", err_msg=err_msg) else: assert_equal(op(arr, obj), "rop", err_msg=err_msg) # Check that Python binops have priority also for in-place ops if has_iop: assert_equal(getattr(arr, iop_name)(obj), NotImplemented, err_msg=err_msg) if op_name != "__pow__": # inplace pow requires the other object to be # integer-like? assert_equal(iop(arr, obj), "rop", err_msg=err_msg) # Check that ufunc call __numpy_ufunc__ normally if np_op is not None: assert_raises(AssertionError, np_op, arr, obj, err_msg=err_msg) assert_raises(AssertionError, np_op, obj, arr, err_msg=err_msg) # Check all binary operations for op_name in sorted(ops.keys()): yield check, op_name, True yield check, op_name, False def test_ufunc_override_rop_simple(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5864 return # Check parts of the binary op overriding behavior in an # explicit test case that is easier to understand. class SomeClass(object): def __numpy_ufunc__(self, *a, **kw): return "ufunc" def __mul__(self, other): return 123 def __rmul__(self, other): return 321 def __rsub__(self, other): return "no subs for me" def __gt__(self, other): return "yep" def __lt__(self, other): return "nope" class SomeClass2(SomeClass, np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if ufunc is np.multiply or ufunc is np.bitwise_and: return "ufunc" else: inputs = list(inputs) inputs[i] = np.asarray(self) func = getattr(ufunc, method) r = func(*inputs, **kw) if 'out' in kw: return r else: x = self.__class__(r.shape, dtype=r.dtype) x[...] = r return x class SomeClass3(SomeClass2): def __rsub__(self, other): return "sub for me" arr = np.array([0]) obj = SomeClass() obj2 = SomeClass2((1,), dtype=np.int_) obj2[0] = 9 obj3 = SomeClass3((1,), dtype=np.int_) obj3[0] = 4 # obj is first, so should get to define outcome. assert_equal(obj * arr, 123) # obj is second, but has __numpy_ufunc__ and defines __rmul__. assert_equal(arr * obj, 321) # obj is second, but has __numpy_ufunc__ and defines __rsub__. assert_equal(arr - obj, "no subs for me") # obj is second, but has __numpy_ufunc__ and defines __lt__. assert_equal(arr > obj, "nope") # obj is second, but has __numpy_ufunc__ and defines __gt__. assert_equal(arr < obj, "yep") # Called as a ufunc, obj.__numpy_ufunc__ is used. assert_equal(np.multiply(arr, obj), "ufunc") # obj is second, but has __numpy_ufunc__ and defines __rmul__. arr *= obj assert_equal(arr, 321) # obj2 is an ndarray subclass, so CPython takes care of the same rules. assert_equal(obj2 * arr, 123) assert_equal(arr * obj2, 321) assert_equal(arr - obj2, "no subs for me") assert_equal(arr > obj2, "nope") assert_equal(arr < obj2, "yep") # Called as a ufunc, obj2.__numpy_ufunc__ is called. assert_equal(np.multiply(arr, obj2), "ufunc") # Also when the method is not overridden. assert_equal(arr & obj2, "ufunc") arr *= obj2 assert_equal(arr, 321) obj2 += 33 assert_equal(obj2[0], 42) assert_equal(obj2.sum(), 42) assert_(isinstance(obj2, SomeClass2)) # Obj3 is subclass that defines __rsub__. CPython calls it. assert_equal(arr - obj3, "sub for me") assert_equal(obj2 - obj3, "sub for me") # obj3 is a subclass that defines __rmul__. CPython calls it. assert_equal(arr * obj3, 321) # But not here, since obj3.__rmul__ is obj2.__rmul__. assert_equal(obj2 * obj3, 123) # And of course, here obj3.__mul__ should be called. assert_equal(obj3 * obj2, 123) # obj3 defines __numpy_ufunc__ but obj3.__radd__ is obj2.__radd__. # (and both are just ndarray.__radd__); see #4815. res = obj2 + obj3 assert_equal(res, 46) assert_(isinstance(res, SomeClass2)) # Since obj3 is a subclass, it should have precedence, like CPython # would give, even though obj2 has __numpy_ufunc__ and __radd__. # See gh-4815 and gh-5747. res = obj3 + obj2 assert_equal(res, 46) assert_(isinstance(res, SomeClass3)) def test_ufunc_override_normalize_signature(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return # gh-5674 class SomeClass(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') class TestCAPI(TestCase): def test_IsPythonScalar(self): from numpy.core.multiarray_tests import IsPythonScalar assert_(IsPythonScalar(b'foobar')) assert_(IsPythonScalar(1)) assert_(IsPythonScalar(2**80)) assert_(IsPythonScalar(2.)) assert_(IsPythonScalar("a")) class TestSubscripting(TestCase): def test_test_zero_rank(self): x = np.array([1, 2, 3]) self.assertTrue(isinstance(x[0], np.int_)) if sys.version_info[0] < 3: self.assertTrue(isinstance(x[0], int)) self.assertTrue(type(x[0, ...]) is np.ndarray) class TestPickling(TestCase): def test_roundtrip(self): import pickle carray = np.array([[2, 9], [7, 0], [3, 8]]) DATA = [ carray, np.transpose(carray), np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int), ('c', float)]) ] for a in DATA: assert_equal(a, pickle.loads(a.dumps()), err_msg="%r" % a) def _loads(self, obj): if sys.version_info[0] >= 3: return np.loads(obj, encoding='latin1') else: return np.loads(obj) # version 0 pickles, using protocol=2 to pickle # version 0 doesn't have a version field def test_version0_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) # version 1 pickles, using protocol=2 to pickle def test_version1_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) def test_subarray_int_shape(self): s = "cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb." a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)]) p = self._loads(asbytes(s)) assert_equal(a, p) class TestFancyIndexing(TestCase): def test_list(self): x = np.ones((1, 1)) x[:, [0]] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, [0]] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_tuple(self): x = np.ones((1, 1)) x[:, (0,)] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, (0,)] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) assert_array_equal(x[m], np.array([2])) def test_mask2(self): x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) assert_array_equal(x[m], np.array([[5, 6, 7, 8]])) assert_array_equal(x[m2], np.array([2, 5])) assert_array_equal(x[m3], np.array([2])) def test_assign_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) x[m] = 5 assert_array_equal(x, np.array([1, 5, 3, 4])) def test_assign_mask2(self): xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) x = xorig.copy() x[m] = 10 assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]])) x = xorig.copy() x[m2] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]])) x = xorig.copy() x[m3] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]])) class TestStringCompare(TestCase): def test_string(self): g1 = np.array(["This", "is", "example"]) g2 = np.array(["This", "was", "example"]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) def test_mixed(self): g1 = np.array(["spam", "spa", "spammer", "and eggs"]) g2 = "spam" assert_array_equal(g1 == g2, [x == g2 for x in g1]) assert_array_equal(g1 != g2, [x != g2 for x in g1]) assert_array_equal(g1 < g2, [x < g2 for x in g1]) assert_array_equal(g1 > g2, [x > g2 for x in g1]) assert_array_equal(g1 <= g2, [x <= g2 for x in g1]) assert_array_equal(g1 >= g2, [x >= g2 for x in g1]) def test_unicode(self): g1 = np.array([sixu("This"), sixu("is"), sixu("example")]) g2 = np.array([sixu("This"), sixu("was"), sixu("example")]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) class TestArgmax(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 1), ([complex(1, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(1, 1)], 2), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 5), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2015-11-20T12:20:59'), np.datetime64('1932-09-23T10:10:13'), np.datetime64('2014-10-10T03:50:30')], 3), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 4), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 0), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 3), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 0), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 1), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 2), ([False, False, False, False, True], 4), ([False, False, False, True, False], 3), ([True, False, False, False, False], 0), ([True, False, True, False, False], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 3), #(['zz', 'a', 'aa', 'a'], 0), #(['aa', 'z', 'zz', 'a'], 2), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amax = a.max(i) aargmax = a.argmax(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmax(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], np.max(arr), err_msg="%r" % arr) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmax(-1, out=out) assert_equal(out, a.argmax(-1)) def test_argmax_unicode(self): d = np.zeros(6031, dtype='<U9') d[5942] = "as" assert_equal(d.argmax(), 5942) def test_np_vs_ndarray(self): # make sure both ndarray.argmax and numpy.argmax support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.zeros(3, dtype=int) assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0)) assert_equal(out1, out2) class TestArgmin(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(0, 1)], 2), ([complex(1, 0), complex(0, 2), complex(1, 1)], 1), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 0), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2014-11-20T12:20:59'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 4), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 1), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 2), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 0), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 1), ([True, True, True, True, False], 4), ([True, True, True, False, True], 3), ([False, True, True, True, True], 0), ([False, True, False, True, True], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 0), #(['zz', 'a', 'aa', 'a'], 1), #(['aa', 'z', 'zz', 'a'], 3), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amin = a.min(i) aargmin = a.argmin(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmin(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmin(arr)], np.min(arr), err_msg="%r" % arr) def test_minimum_signed_integers(self): a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64) assert_equal(np.argmin(a), 1) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmin(-1, out=out) assert_equal(out, a.argmin(-1)) def test_argmin_unicode(self): d = np.ones(6031, dtype='<U9') d[6001] = "0" assert_equal(d.argmin(), 6001) def test_np_vs_ndarray(self): # make sure both ndarray.argmin and numpy.argmin support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.ones(2, dtype=int) assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.ones(3, dtype=int) assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0)) assert_equal(out1, out2) class TestMinMax(TestCase): def test_scalar(self): assert_raises(ValueError, np.amax, 1, 1) assert_raises(ValueError, np.amin, 1, 1) assert_equal(np.amax(1, axis=0), 1) assert_equal(np.amin(1, axis=0), 1) assert_equal(np.amax(1, axis=None), 1) assert_equal(np.amin(1, axis=None), 1) def test_axis(self): assert_raises(ValueError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3) def test_datetime(self): # NaTs are ignored for dtype in ('m8[s]', 'm8[Y]'): a = np.arange(10).astype(dtype) a[3] = 'NaT' assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[9]) a[0] = 'NaT' assert_equal(np.amin(a), a[1]) assert_equal(np.amax(a), a[9]) a.fill('NaT') assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[0]) class TestNewaxis(TestCase): def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250*sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250*sk) class TestClip(TestCase): def _check_range(self, x, cmin, cmax): assert_(np.all(x >= cmin)) assert_(np.all(x <= cmax)) def _clip_type(self, type_group, array_max, clip_min, clip_max, inplace=False, expected_min=None, expected_max=None): if expected_min is None: expected_min = clip_min if expected_max is None: expected_max = clip_max for T in np.sctypes[type_group]: if sys.byteorder == 'little': byte_orders = ['=', '>'] else: byte_orders = ['<', '='] for byteorder in byte_orders: dtype = np.dtype(T).newbyteorder(byteorder) x = (np.random.random(1000) * array_max).astype(dtype) if inplace: x.clip(clip_min, clip_max, x) else: x = x.clip(clip_min, clip_max) byteorder = '=' if x.dtype.byteorder == '|': byteorder = '|' assert_equal(x.dtype.byteorder, byteorder) self._check_range(x, expected_min, expected_max) return x def test_basic(self): for inplace in [False, True]: self._clip_type( 'float', 1024, -12.8, 100.2, inplace=inplace) self._clip_type( 'float', 1024, 0, 0, inplace=inplace) self._clip_type( 'int', 1024, -120, 100.5, inplace=inplace) self._clip_type( 'int', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, -120, 100, inplace=inplace, expected_min=0) def test_record_array(self): rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) y = rec['x'].clip(-0.3, 0.5) self._check_range(y, -0.3, 0.5) def test_max_or_min(self): val = np.array([0, 1, 2, 3, 4, 5, 6, 7]) x = val.clip(3) assert_(np.all(x >= 3)) x = val.clip(min=3) assert_(np.all(x >= 3)) x = val.clip(max=4) assert_(np.all(x <= 4)) class TestPutmask(object): def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_(np.all(x[mask] == T(val))) assert_(x.dtype == T) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(1000)*100 mask = x < 40 for val in [-100, 0, 15]: for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T), T, mask, val def test_mask_size(self): assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) np.putmask(x, [True, False, True], -1) assert_array_equal(x, [-1, 2, -1]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) np.putmask(rec['x'], [True, False], 10) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [2, 4]) assert_array_equal(rec['z'], [3, 3]) np.putmask(rec['y'], [True, False], 11) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [11, 4]) assert_array_equal(rec['z'], [3, 3]) def test_masked_array(self): ## x = np.array([1,2,3]) ## z = np.ma.array(x,mask=[True,False,False]) ## np.putmask(z,[True,True,True],3) pass class TestTake(object): def tst_basic(self, x): ind = list(range(x.shape[0])) assert_array_equal(x.take(ind, axis=0), x) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(24)*100 x.shape = 2, 3, 4 for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T) def test_raise(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_raises(IndexError, x.take, [0, 1, 2], axis=0) assert_raises(IndexError, x.take, [-3], axis=0) assert_array_equal(x.take([-1], axis=0)[0], x[1]) def test_clip(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0]) assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1]) def test_wrap(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1]) assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0]) assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1]) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) assert_array_equal(x.take([0, 2, 1]), [1, 3, 2]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) rec1 = rec.take([1]) assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0) class TestLexsort(TestCase): def test_basic(self): a = [1, 2, 1, 3, 1, 5] b = [0, 4, 5, 6, 2, 3] idx = np.lexsort((b, a)) expected_idx = np.array([0, 4, 2, 1, 3, 5]) assert_array_equal(idx, expected_idx) x = np.vstack((b, a)) idx = np.lexsort(x) assert_array_equal(idx, expected_idx) assert_array_equal(x[1][idx], np.sort(x[1])) def test_datetime(self): a = np.array([0,0,0], dtype='datetime64[D]') b = np.array([2,1,0], dtype='datetime64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) a = np.array([0,0,0], dtype='timedelta64[D]') b = np.array([2,1,0], dtype='timedelta64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) class TestIO(object): """Test tofile, fromfile, tobytes, and fromstring""" def setUp(self): shape = (2, 4, 3) rand = np.random.random self.x = rand(shape) + rand(shape).astype(np.complex)*1j self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan] self.dtype = self.x.dtype self.tempdir = tempfile.mkdtemp() self.filename = tempfile.mktemp(dir=self.tempdir) def tearDown(self): shutil.rmtree(self.tempdir) def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool_) y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_) assert_array_equal(v, y) def test_uint64_fromstring(self): d = np.fromstring("9923372036854775807 104783749223640", dtype=np.uint64, sep=' ') e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e) def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=' ') e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e) def test_empty_files_binary(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename) assert_(y.size == 0, "Array not empty") def test_empty_files_text(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename, sep=" ") assert_(y.size == 0, "Array not empty") def test_roundtrip_file(self): f = open(self.filename, 'wb') self.x.tofile(f) f.close() # NB. doesn't work with flush+seek, due to use of C stdio f = open(self.filename, 'rb') y = np.fromfile(f, dtype=self.dtype) f.close() assert_array_equal(y, self.x.flat) def test_roundtrip_filename(self): self.x.tofile(self.filename) y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_roundtrip_binary_str(self): s = self.x.tobytes() y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flat) s = self.x.tobytes('F') y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flatten('F')) def test_roundtrip_str(self): x = self.x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") # NB. str imbues less precision nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5) def test_roundtrip_repr(self): x = self.x.real.ravel() s = "@".join(map(repr, x)) y = np.fromstring(s, sep="@") assert_array_equal(x, y) def test_file_position_after_fromfile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.close() for mode in ['rb', 'r+b']: err_msg = "%d %s" % (size, mode) f = open(self.filename, mode) f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def test_file_position_after_tofile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: err_msg = "%d" % (size,) f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.seek(10) f.write(b'12') np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) f = open(self.filename, 'r+b') f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def _check_from(self, s, value, **kw): y = np.fromstring(asbytes(s), **kw) assert_array_equal(y, value) f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, **kw) assert_array_equal(y, value) def test_nan(self): self._check_from( "nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], sep=' ') def test_inf(self): self._check_from( "inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], sep=' ') def test_numbers(self): self._check_from("1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ') def test_binary(self): self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', np.array([1, 2, 3, 4]), dtype='<f4') @dec.slow # takes > 1 minute on mechanical hard drive def test_big_binary(self): """Test workarounds for 32-bit limited fwrite, fseek, and ftell calls in windows. These normally would hang doing something like this. See http://projects.scipy.org/numpy/ticket/1660""" if sys.platform != 'win32': return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass def test_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], sep=',') def test_counted_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], count=4, sep=',') self._check_from('1,2,3,4', [1., 2., 3.], count=3, sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',') def test_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ') def test_counted_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3], count=3, dtype=int, sep=' ') def test_ascii(self): self._check_from('1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',') def test_malformed(self): self._check_from('1.234 1,234', [1.234, 1.], sep=' ') def test_long_sep(self): self._check_from('1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_') def test_dtype(self): v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from('1,2,3,4', v, sep=',', dtype=np.int_) def test_dtype_bool(self): # can't use _check_from because fromstring can't handle True/False v = np.array([True, False, True, False], dtype=np.bool_) s = '1,0,-2.3,0' f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, sep=',', dtype=np.bool_) assert_(y.dtype == '?') assert_array_equal(y, v) def test_tofile_sep(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.0,3.51,4.0') def test_tofile_format(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',', format='%.2f') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.00,3.51,4.00') def test_locale(self): in_foreign_locale(self.test_numbers)() in_foreign_locale(self.test_nan)() in_foreign_locale(self.test_inf)() in_foreign_locale(self.test_counted_string)() in_foreign_locale(self.test_ascii)() in_foreign_locale(self.test_malformed)() in_foreign_locale(self.test_tofile_sep)() in_foreign_locale(self.test_tofile_format)() class TestFromBuffer(object): def tst_basic(self, buffer, expected, kwargs): assert_array_equal(np.frombuffer(buffer,**kwargs), expected) def test_ip_basic(self): for byteorder in ['<', '>']: for dtype in [float, int, np.complex]: dt = np.dtype(dtype).newbyteorder(byteorder) x = (np.random.random((4, 7))*5).astype(dt) buf = x.tobytes() yield self.tst_basic, buf, x.flat, {'dtype':dt} def test_empty(self): yield self.tst_basic, asbytes(''), np.array([]), {} class TestFlat(TestCase): def setUp(self): a0 = np.arange(20.0) a = a0.reshape(4, 5) a0.shape = (4, 5) a.flags.writeable = False self.a = a self.b = a[::2, ::2] self.a0 = a0 self.b0 = a0[::2, ::2] def test_contiguous(self): testpassed = False try: self.a.flat[12] = 100.0 except ValueError: testpassed = True assert testpassed assert self.a.flat[12] == 12.0 def test_discontiguous(self): testpassed = False try: self.b.flat[4] = 100.0 except ValueError: testpassed = True assert testpassed assert self.b.flat[4] == 12.0 def test___array__(self): c = self.a.flat.__array__() d = self.b.flat.__array__() e = self.a0.flat.__array__() f = self.b0.flat.__array__() assert c.flags.writeable is False assert d.flags.writeable is False assert e.flags.writeable is True assert f.flags.writeable is True assert c.flags.updateifcopy is False assert d.flags.updateifcopy is False assert e.flags.updateifcopy is False assert f.flags.updateifcopy is True assert f.base is self.b0 class TestResize(TestCase): def test_basic(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) x.resize((5, 5)) assert_array_equal(x.flat[:9], np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat) assert_array_equal(x[9:].flat, 0) def test_check_reference(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) y = x self.assertRaises(ValueError, x.resize, (5, 1)) del y # avoid pyflakes unused variable warning. def test_int_shape(self): x = np.eye(3) x.resize(3) assert_array_equal(x, np.eye(3)[0,:]) def test_none_shape(self): x = np.eye(3) x.resize(None) assert_array_equal(x, np.eye(3)) x.resize() assert_array_equal(x, np.eye(3)) def test_invalid_arguements(self): self.assertRaises(TypeError, np.eye(3).resize, 'hi') self.assertRaises(ValueError, np.eye(3).resize, -1) self.assertRaises(TypeError, np.eye(3).resize, order=1) self.assertRaises(TypeError, np.eye(3).resize, refcheck='hi') def test_freeform_shape(self): x = np.eye(3) x.resize(3, 2, 1) assert_(x.shape == (3, 2, 1)) def test_zeros_appended(self): x = np.eye(3) x.resize(2, 3, 3) assert_array_equal(x[0], np.eye(3)) assert_array_equal(x[1], np.zeros((3, 3))) def test_obj_obj(self): # check memory is initialized on resize, gh-4857 a = np.ones(10, dtype=[('k', object, 2)]) a.resize(15,) assert_equal(a.shape, (15,)) assert_array_equal(a['k'][-5:], 0) assert_array_equal(a['k'][:-5], 1) class TestRecord(TestCase): def test_field_rename(self): dt = np.dtype([('f', float), ('i', int)]) dt.names = ['p', 'q'] assert_equal(dt.names, ['p', 'q']) if sys.version_info[0] >= 3: def test_bytes_fields(self): # Bytes are not allowed in field names and not recognized in titles # on Py3 assert_raises(TypeError, np.dtype, [(asbytes('a'), int)]) assert_raises(TypeError, np.dtype, [(('b', asbytes('a')), int)]) dt = np.dtype([((asbytes('a'), 'b'), int)]) assert_raises(ValueError, dt.__getitem__, asbytes('a')) x = np.array([(1,), (2,), (3,)], dtype=dt) assert_raises(IndexError, x.__getitem__, asbytes('a')) y = x[0] assert_raises(IndexError, y.__getitem__, asbytes('a')) else: def test_unicode_field_titles(self): # Unicode field titles are added to field dict on Py2 title = unicode('b') dt = np.dtype([((title, 'a'), int)]) dt[title] dt['a'] x = np.array([(1,), (2,), (3,)], dtype=dt) x[title] x['a'] y = x[0] y[title] y['a'] def test_unicode_field_names(self): # Unicode field names are not allowed on Py2 title = unicode('b') assert_raises(TypeError, np.dtype, [(title, int)]) assert_raises(TypeError, np.dtype, [(('a', title), int)]) def test_field_names(self): # Test unicode and 8-bit / byte strings can be used a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) is_py3 = sys.version_info[0] >= 3 if is_py3: funcs = (str,) # byte string indexing fails gracefully assert_raises(IndexError, a.__setitem__, asbytes('f1'), 1) assert_raises(IndexError, a.__getitem__, asbytes('f1')) assert_raises(IndexError, a['f1'].__setitem__, asbytes('sf1'), 1) assert_raises(IndexError, a['f1'].__getitem__, asbytes('sf1')) else: funcs = (str, unicode) for func in funcs: b = a.copy() fn1 = func('f1') b[fn1] = 1 assert_equal(b[fn1], 1) fnn = func('not at all') assert_raises(ValueError, b.__setitem__, fnn, 1) assert_raises(ValueError, b.__getitem__, fnn) b[0][fn1] = 2 assert_equal(b[fn1], 2) # Subfield assert_raises(IndexError, b[0].__setitem__, fnn, 1) assert_raises(IndexError, b[0].__getitem__, fnn) # Subfield fn3 = func('f3') sfn1 = func('sf1') b[fn3][sfn1] = 1 assert_equal(b[fn3][sfn1], 1) assert_raises(ValueError, b[fn3].__setitem__, fnn, 1) assert_raises(ValueError, b[fn3].__getitem__, fnn) # multiple Subfields fn2 = func('f2') b[fn2] = 3 assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2)) assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,))) # view of subfield view/copy assert_equal(b[['f1', 'f2']][0].view(('i4', 2)).tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].view(('i4', 2)).tolist(), (3, 2)) view_dtype = [('f1', 'i4'), ('f3', [('', 'i4')])] assert_equal(b[['f1', 'f3']][0].view(view_dtype).tolist(), (2, (1,))) # non-ascii unicode field indexing is well behaved if not is_py3: raise SkipTest('non ascii unicode field indexing skipped; ' 'raises segfault on python 2.x') else: assert_raises(ValueError, a.__setitem__, sixu('\u03e0'), 1) assert_raises(ValueError, a.__getitem__, sixu('\u03e0')) def test_field_names_deprecation(self): def collect_warnings(f, *args, **kwargs): with warnings.catch_warnings(record=True) as log: warnings.simplefilter("always") f(*args, **kwargs) return [w.category for w in log] a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) a['f1'][0] = 1 a['f2'][0] = 2 a['f3'][0] = (3,) b = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) b['f1'][0] = 1 b['f2'][0] = 2 b['f3'][0] = (3,) # All the different functions raise a warning, but not an error, and # 'a' is not modified: assert_equal(collect_warnings(a[['f1', 'f2']].__setitem__, 0, (10, 20)), [FutureWarning]) assert_equal(a, b) # Views also warn subset = a[['f1', 'f2']] subset_view = subset.view() assert_equal(collect_warnings(subset_view['f1'].__setitem__, 0, 10), [FutureWarning]) # But the write goes through: assert_equal(subset['f1'][0], 10) # Only one warning per multiple field indexing, though (even if there # are multiple views involved): assert_equal(collect_warnings(subset['f1'].__setitem__, 0, 10), []) def test_record_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') a.flags.writeable = False b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')]) b.flags.writeable = False c = np.array([(1, 2), (3, 4)], dtype='i1,i2') c.flags.writeable = False self.assertTrue(hash(a[0]) == hash(a[1])) self.assertTrue(hash(a[0]) == hash(b[0])) self.assertTrue(hash(a[0]) != hash(b[1])) self.assertTrue(hash(c[0]) == hash(a[0]) and c[0] == a[0]) def test_record_no_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') self.assertRaises(TypeError, hash, a[0]) def test_empty_structure_creation(self): # make sure these do not raise errors (gh-5631) np.array([()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) class TestView(TestCase): def test_basic(self): x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=[('r', np.int8), ('g', np.int8), ('b', np.int8), ('a', np.int8)]) # We must be specific about the endianness here: y = x.view(dtype='<i4') # ... and again without the keyword. z = x.view('<i4') assert_array_equal(y, z) assert_array_equal(y, [67305985, 134678021]) def _mean(a, **args): return a.mean(**args) def _var(a, **args): return a.var(**args) def _std(a, **args): return a.std(**args) class TestStats(TestCase): funcs = [_mean, _var, _std] def setUp(self): np.random.seed(range(3)) self.rmat = np.random.random((4, 5)) self.cmat = self.rmat + 1j * self.rmat self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat]) self.omat = self.omat.reshape(4, 5) def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1)) def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out) def test_dtype_from_input(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] # object type for f in self.funcs: mat = np.array([[Decimal(1)]*3]*3) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = type(f(mat, axis=None)) assert_(res is Decimal) # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. #for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes['AllFloat']: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt) def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt) def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): A = np.zeros((0, 3)) for f in self.funcs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(A, axis=axis)).all()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(A, axis=axis), np.zeros([])) def test_mean_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt) def test_var_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) def test_std_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: tgt = np.sqrt(_var(mat, axis=axis)) res = _std(mat, axis=axis) assert_almost_equal(res, tgt) def test_subclass(self): class TestArray(np.ndarray): def __new__(cls, data, info): result = np.array(data) result = result.view(cls) result.info = info return result def __array_finalize__(self, obj): self.info = getattr(obj, "info", '') dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') res = dat.mean(1) assert_(res.info == dat.info) res = dat.std(1) assert_(res.info == dat.info) res = dat.var(1) assert_(res.info == dat.info) class TestVdot(TestCase): def test_basic(self): dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger'] dt_complex = np.typecodes['Complex'] # test real a = np.eye(3) for dt in dt_numeric + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test complex a = np.eye(3) * 1j for dt in dt_complex + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test boolean b = np.eye(3, dtype=np.bool) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), True) def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res) def test_vdot_uncontiguous(self): for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a, b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy()), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy(), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy('F'), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy('F')), np.vdot(a.flatten(), b.flatten())) class TestDot(TestCase): def setUp(self): np.random.seed(128) self.A = np.random.rand(4, 2) self.b1 = np.random.rand(2, 1) self.b2 = np.random.rand(2) self.b3 = np.random.rand(1, 2) self.b4 = np.random.rand(4) self.N = 7 def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec(self): A, b1 = self.A, self.b1 res = np.dot(A, b1) tgt = np.array([[0.32114320], [0.04889721], [0.15696029], [0.33612621]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec2(self): A, b2 = self.A, self.b2 res = np.dot(A, b2) tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat(self): A, b4 = self.A, self.b4 res = np.dot(b4, A) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat2(self): b3, A = self.b3, self.A res = np.dot(b3, A.transpose()) tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat3(self): A, b4 = self.A, self.b4 res = np.dot(A.transpose(), b4) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecouter(self): b1, b3 = self.b1, self.b3 res = np.dot(b1, b3) tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecinner(self): b1, b3 = self.b1, self.b3 res = np.dot(b3, b1) tgt = np.array([[ 0.23129668]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect1(self): b1 = np.ones((3, 1)) b2 = [5.3] res = np.dot(b1, b2) tgt = np.array([5.3, 5.3, 5.3]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect2(self): b1 = np.ones((3, 1)).transpose() b2 = [6.2] res = np.dot(b2, b1) tgt = np.array([6.2, 6.2, 6.2]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar(self): np.random.seed(100) b1 = np.random.rand(1, 1) b2 = np.random.rand(1, 4) res = np.dot(b1, b2) tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar2(self): np.random.seed(100) b1 = np.random.rand(4, 1) b2 = np.random.rand(1, 1) res = np.dot(b1, b2) tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N) def test_all(self): dims = [(), (1,), (1, 1)] dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): b1 = np.zeros(dim1) b2 = np.zeros(dim2) res = np.dot(b1, b2) tgt = np.zeros(dim) assert_(res.shape == tgt.shape) assert_almost_equal(res, tgt, decimal=self.N) def test_vecobject(self): class Vec(object): def __init__(self, sequence=None): if sequence is None: sequence = [] self.array = np.array(sequence) def __add__(self, other): out = Vec() out.array = self.array + other.array return out def __sub__(self, other): out = Vec() out.array = self.array - other.array return out def __mul__(self, other): # with scalar out = Vec(self.array.copy()) out.array *= other return out def __rmul__(self, other): return self*other U_non_cont = np.transpose([[1., 1.], [1., 2.]]) U_cont = np.ascontiguousarray(U_non_cont) x = np.array([Vec([1., 0.]), Vec([0., 1.])]) zeros = np.array([Vec([0., 0.]), Vec([0., 0.])]) zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x) assert_equal(zeros[0].array, zeros_test[0].array) assert_equal(zeros[1].array, zeros_test[1].array) def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r) def test_dot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.dot(a, a) # integer arrays are exact assert_equal(np.dot(a, b), res) assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) def test_dot_scalar_and_matrix_of_objects(self): # Ticket #2469 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.dot(arr, 3), desired) assert_equal(np.dot(3, arr), desired) def test_dot_override(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_accelerate_framework_sgemv_fix(self): def aligned_array(shape, align, dtype, order='C'): d = dtype(0) N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order) def as_aligned(arr, align, dtype, order='C'): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15,32), (10000,), (200,89), ('C','F')) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == 'F': assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired) class MatmulCommon(): """Common tests for '@' operator and numpy.matmul. Do not derive from TestCase to avoid nose running it. """ # Should work with these types. Will want to add # "O" at some point types = "?bhilqBHILQefdgFDG" def test_exceptions(self): dims = [ ((1,), (2,)), # mismatched vector vector ((2, 1,), (2,)), # mismatched matrix vector ((2,), (1, 2)), # mismatched vector matrix ((1, 2), (3, 1)), # mismatched matrix matrix ((1,), ()), # vector scalar ((), (1)), # scalar vector ((1, 1), ()), # matrix scalar ((), (1, 1)), # scalar matrix ((2, 2, 1), (3, 1, 2)), # cannot broadcast ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) assert_raises(ValueError, self.matmul, a, b) def test_shapes(self): dims = [ ((1, 1), (2, 1, 1)), # broadcast first argument ((2, 1, 1), (1, 1)), # broadcast second argument ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) res = self.matmul(a, b) assert_(res.shape == (2, 1, 1)) # vector vector returns scalars. for dt in self.types: a = np.ones((2,), dtype=dt) b = np.ones((2,), dtype=dt) c = self.matmul(a, b) assert_(np.array(c).shape == ()) def test_result_types(self): mat = np.ones((1,1)) vec = np.ones((1,)) for dt in self.types: m = mat.astype(dt) v = vec.astype(dt) for arg in [(m, v), (v, m), (m, m)]: res = self.matmul(*arg) assert_(res.dtype == dt) # vector vector returns scalars res = self.matmul(v, v) assert_(type(res) is np.dtype(dt).type) def test_vector_vector_values(self): vec = np.array([1, 2]) tgt = 5 for dt in self.types[1:]: v1 = vec.astype(dt) res = self.matmul(v1, v1) assert_equal(res, tgt) # boolean type vec = np.array([True, True], dtype='?') res = self.matmul(vec, vec) assert_equal(res, True) def test_vector_matrix_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([7, 10]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(v, m1) assert_equal(res, tgt1) res = self.matmul(v, m2) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_vector_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([5, 11]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(m1, v) assert_equal(res, tgt1) res = self.matmul(m2, v) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_matrix_values(self): mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.array([[1, 0], [1, 1]]) mat12 = np.stack([mat1, mat2], axis=0) mat21 = np.stack([mat2, mat1], axis=0) tgt11 = np.array([[7, 10], [15, 22]]) tgt12 = np.array([[3, 2], [7, 4]]) tgt21 = np.array([[1, 2], [4, 6]]) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) for dt in self.types[1:]: m1 = mat1.astype(dt) m2 = mat2.astype(dt) m12 = mat12.astype(dt) m21 = mat21.astype(dt) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) # boolean type m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_) m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_) m12 = np.stack([m1, m2], axis=0) m21 = np.stack([m2, m1], axis=0) tgt11 = m1 tgt12 = m1 tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) def test_numpy_ufunc_override(self): # Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844 return class A(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A([1, 2]) b = B([1, 2]) c = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") assert_raises(TypeError, self.matmul, b, c) class TestMatmul(MatmulCommon, TestCase): matmul = np.matmul def test_out_arg(self): a = np.ones((2, 2), dtype=np.float) b = np.ones((2, 2), dtype=np.float) tgt = np.full((2,2), 2, dtype=np.float) # test as positional argument msg = "out positional argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out) assert_array_equal(out, tgt, err_msg=msg) # test as keyword argument msg = "out keyword argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out=out) assert_array_equal(out, tgt, err_msg=msg) # test out with not allowed type cast (safe casting) # einsum and cblas raise different error types, so # use Exception. msg = "out argument with illegal cast" out = np.zeros((2, 2), dtype=np.int32) assert_raises(Exception, self.matmul, a, b, out=out) # skip following tests for now, cblas does not allow non-contiguous # outputs and consistency with dot would require same type, # dimensions, subtype, and c_contiguous. # test out with allowed type cast # msg = "out argument with allowed cast" # out = np.zeros((2, 2), dtype=np.complex128) # self.matmul(a, b, out=out) # assert_array_equal(out, tgt, err_msg=msg) # test out non-contiguous # msg = "out argument with non-contiguous layout" # c = np.zeros((2, 2, 2), dtype=np.float) # self.matmul(a, b, out=c[..., 0]) # assert_array_equal(c, tgt, err_msg=msg) if sys.version_info[:2] >= (3, 5): class TestMatmulOperator(MatmulCommon, TestCase): import operator matmul = operator.matmul def test_array_priority_override(self): class A(object): __array_priority__ = 1000 def __matmul__(self, other): return "A" def __rmatmul__(self, other): return "A" a = A() b = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") def test_matmul_inplace(): # It would be nice to support in-place matmul eventually, but for now # we don't have a working implementation, so better just to error out # and nudge people to writing "a = a @ b". a = np.eye(3) b = np.eye(3) assert_raises(TypeError, a.__imatmul__, b) import operator assert_raises(TypeError, operator.imatmul, a, b) # we avoid writing the token `exec` so as not to crash python 2's # parser exec_ = getattr(builtins, "exec") assert_raises(TypeError, exec_, "a @= b", globals(), locals()) class TestInner(TestCase): def test_inner_scalar_and_matrix_of_objects(self): # Ticket #4482 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.inner(arr, 3), desired) assert_equal(np.inner(3, arr), desired) def test_vecself(self): # Ticket 844. # Inner product of a vector with itself segfaults or give # meaningless result a = np.zeros(shape=(1, 80), dtype=np.float64) p = np.inner(a, a) assert_almost_equal(p, 0, decimal=14) class TestSummarization(TestCase): def test_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ..., 998 999 1000]' assert_(str(A) == strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_(repr(A) == reprA) def test_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ..., 498 499 500]\n' \ ' [ 501 502 503 ..., 999 1000 1001]]' assert_(str(A) == strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_(repr(A) == reprA) class TestChoose(TestCase): def setUp(self): self.x = 2*np.ones((3,), dtype=int) self.y = 3*np.ones((3,), dtype=int) self.x2 = 2*np.ones((2, 3), dtype=int) self.y2 = 3*np.ones((2, 3), dtype=int) self.ind = [0, 0, 1] def test_basic(self): A = np.choose(self.ind, (self.x, self.y)) assert_equal(A, [2, 2, 3]) def test_broadcast1(self): A = np.choose(self.ind, (self.x2, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) def test_broadcast2(self): A = np.choose(self.ind, (self.x, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) # TODO: test for multidimensional NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4} class TestNeighborhoodIter(TestCase): # Simple, 2d tests def _test_simple2d(self, dt): # Test zero and one padding for simple data type x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt), np.array([[0, 0, 0], [0, 1, 0]], dtype=dt), np.array([[0, 0, 1], [0, 2, 3]], dtype=dt), np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt), np.array([[1, 1, 1], [0, 1, 1]], dtype=dt), np.array([[1, 0, 1], [1, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt), np.array([[4, 4, 4], [0, 1, 4]], dtype=dt), np.array([[4, 0, 1], [4, 2, 3]], dtype=dt), np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple2d(self): self._test_simple2d(np.float) def test_simple2d_object(self): self._test_simple2d(Decimal) def _test_mirror2d(self, dt): x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt), np.array([[0, 1, 1], [0, 1, 1]], dtype=dt), np.array([[0, 0, 1], [2, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror']) assert_array_equal(l, r) def test_mirror2d(self): self._test_mirror2d(np.float) def test_mirror2d_object(self): self._test_mirror2d(Decimal) # Simple, 1d tests def _test_simple(self, dt): # Test padding with constant values x = np.linspace(1, 5, 5).astype(dt) r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]] l = test_neighborhood_iterator(x, [-1, 1], x[4], NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple_float(self): self._test_simple(np.float) def test_simple_object(self): self._test_simple(Decimal) # Test mirror modes def _test_mirror(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[1], NEIGH_MODE['mirror']) self.assertTrue([i.dtype == dt for i in l]) assert_array_equal(l, r) def test_mirror(self): self._test_mirror(np.float) def test_mirror_object(self): self._test_mirror(Decimal) # Circular mode def _test_circular(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[0], NEIGH_MODE['circular']) assert_array_equal(l, r) def test_circular(self): self._test_circular(np.float) def test_circular_object(self): self._test_circular(Decimal) # Test stacking neighborhood iterators class TestStackedNeighborhoodIter(TestCase): # Simple, 1d test: stacking 2 constant-padded neigh iterators def test_simple_const(self): dt = np.float64 # Test zero and one padding for simple data type x = np.array([1, 2, 3], dtype=dt) r = [np.array([0], dtype=dt), np.array([0], dtype=dt), np.array([1], dtype=dt), np.array([2], dtype=dt), np.array([3], dtype=dt), np.array([0], dtype=dt), np.array([0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([1, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one']) assert_array_equal(l, r) # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # mirror padding def test_simple_mirror(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 1], dtype=dt), np.array([1, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 3], dtype=dt), np.array([3, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # circular padding def test_simple_circular(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 3, 1], dtype=dt), np.array([3, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 1], dtype=dt), np.array([3, 1, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator # being strictly within the array def test_simple_strict_within(self): dt = np.float64 # Stacking zero on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) class TestWarnings(object): def test_complex_warning(self): x = np.array([1, 2]) y = np.array([1-2j, 1+2j]) with warnings.catch_warnings(): warnings.simplefilter("error", np.ComplexWarning) assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y) assert_equal(x, [1, 2]) class TestMinScalarType(object): def test_usigned_shortshort(self): dt = np.min_scalar_type(2**8-1) wanted = np.dtype('uint8') assert_equal(wanted, dt) def test_usigned_short(self): dt = np.min_scalar_type(2**16-1) wanted = np.dtype('uint16') assert_equal(wanted, dt) def test_usigned_int(self): dt = np.min_scalar_type(2**32-1) wanted = np.dtype('uint32') assert_equal(wanted, dt) def test_usigned_longlong(self): dt = np.min_scalar_type(2**63-1) wanted = np.dtype('uint64') assert_equal(wanted, dt) def test_object(self): dt = np.min_scalar_type(2**64) wanted = np.dtype('O') assert_equal(wanted, dt) if sys.version_info[:2] == (2, 6): from numpy.core.multiarray import memorysimpleview as memoryview from numpy.core._internal import _dtype_from_pep3118 class TestPEP3118Dtype(object): def _check(self, spec, wanted): dt = np.dtype(wanted) if isinstance(wanted, list) and isinstance(wanted[-1], tuple): if wanted[-1][0] == '': names = list(dt.names) names[-1] = '' dt.names = tuple(names) assert_equal(_dtype_from_pep3118(spec), dt, err_msg="spec %r != dtype %r" % (spec, wanted)) def test_native_padding(self): align = np.dtype('i').alignment for j in range(8): if j == 0: s = 'bi' else: s = 'b%dxi' % j self._check('@'+s, {'f0': ('i1', 0), 'f1': ('i', align*(1 + j//align))}) self._check('='+s, {'f0': ('i1', 0), 'f1': ('i', 1+j)}) def test_native_padding_2(self): # Native padding should work also for structs and sub-arrays self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)}) self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)}) def test_trailing_padding(self): # Trailing padding should be included, *and*, the item size # should match the alignment if in aligned mode align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('ix', [('f0', 'i'), ('', VV(1))]) self._check('ixx', [('f0', 'i'), ('', VV(2))]) self._check('ixxx', [('f0', 'i'), ('', VV(3))]) self._check('ixxxx', [('f0', 'i'), ('', VV(4))]) self._check('i7x', [('f0', 'i'), ('', VV(7))]) self._check('^ix', [('f0', 'i'), ('', 'V1')]) self._check('^ixx', [('f0', 'i'), ('', 'V2')]) self._check('^ixxx', [('f0', 'i'), ('', 'V3')]) self._check('^ixxxx', [('f0', 'i'), ('', 'V4')]) self._check('^i7x', [('f0', 'i'), ('', 'V7')]) def test_native_padding_3(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt) dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt) def test_padding_with_array_inside_struct(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt) def test_byteorder_inside_struct(self): # The byte order after @T{=i} should be '=', not '@'. # Check this by noting the absence of native alignment. self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0), 'f1': ('i', 5)}) def test_intra_padding(self): # Natively aligned sub-arrays may require some internal padding align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('(3)T{ix}', ({'f0': ('i', 0), '': (VV(1), 4)}, (3,))) class TestNewBufferProtocol(object): def _check_roundtrip(self, obj): obj = np.asarray(obj) x = memoryview(obj) y = np.asarray(x) y2 = np.array(x) assert_(not y.flags.owndata) assert_(y2.flags.owndata) assert_equal(y.dtype, obj.dtype) assert_equal(y.shape, obj.shape) assert_array_equal(obj, y) assert_equal(y2.dtype, obj.dtype) assert_equal(y2.shape, obj.shape) assert_array_equal(obj, y2) def test_roundtrip(self): x = np.array([1, 2, 3, 4, 5], dtype='i4') self._check_roundtrip(x) x = np.array([[1, 2], [3, 4]], dtype=np.float64) self._check_roundtrip(x) x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] self._check_roundtrip(x) dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes('xxx'), True, 1.0)], dtype=dt) self._check_roundtrip(x) x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))]) self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i4') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i4') self._check_roundtrip(x) # check long long can be represented as non-native x = np.array([1, 2, 3], dtype='>q') self._check_roundtrip(x) # Native-only data types can be passed through the buffer interface # only in native byte order if sys.byteorder == 'little': x = np.array([1, 2, 3], dtype='>g') assert_raises(ValueError, self._check_roundtrip, x) x = np.array([1, 2, 3], dtype='<g') self._check_roundtrip(x) else: x = np.array([1, 2, 3], dtype='>g') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<g') assert_raises(ValueError, self._check_roundtrip, x) def test_roundtrip_half(self): half_list = [ 1.0, -2.0, 6.5504 * 10**4, # (max half precision) 2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal) 2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal) 0.0, -0.0, float('+inf'), float('-inf'), 0.333251953125, # ~= 1/3 ] x = np.array(half_list, dtype='>e') self._check_roundtrip(x) x = np.array(half_list, dtype='<e') self._check_roundtrip(x) def test_roundtrip_single_types(self): for typ in np.typeDict.values(): dtype = np.dtype(typ) if dtype.char in 'Mm': # datetimes cannot be used in buffers continue if dtype.char == 'V': # skip void continue x = np.zeros(4, dtype=dtype) self._check_roundtrip(x) if dtype.char not in 'qQgG': dt = dtype.newbyteorder('<') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) dt = dtype.newbyteorder('>') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) def test_roundtrip_scalar(self): # Issue #4015. self._check_roundtrip(0) def test_export_simple_1d(self): x = np.array([1, 2, 3, 4, 5], dtype='i') y = memoryview(x) assert_equal(y.format, 'i') assert_equal(y.shape, (5,)) assert_equal(y.ndim, 1) assert_equal(y.strides, (4,)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_simple_nd(self): x = np.array([[1, 2], [3, 4]], dtype=np.float64) y = memoryview(x) assert_equal(y.format, 'd') assert_equal(y.shape, (2, 2)) assert_equal(y.ndim, 2) assert_equal(y.strides, (16, 8)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 8) def test_export_discontiguous(self): x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] y = memoryview(x) assert_equal(y.format, 'f') assert_equal(y.shape, (3, 3)) assert_equal(y.ndim, 2) assert_equal(y.strides, (36, 4)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_record(self): dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes(' '), True, 1.0)], dtype=dt) y = memoryview(x) assert_equal(y.shape, (1,)) assert_equal(y.ndim, 1) assert_equal(y.suboffsets, EMPTY) sz = sum([np.dtype(b).itemsize for a, b in dt]) if np.dtype('l').itemsize == 4: assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') else: assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') # Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides if not (np.ones(1).strides[0] == np.iinfo(np.intp).max): assert_equal(y.strides, (sz,)) assert_equal(y.itemsize, sz) def test_export_subarray(self): x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))]) y = memoryview(x) assert_equal(y.format, 'T{(2,2)i:a:}') assert_equal(y.shape, EMPTY) assert_equal(y.ndim, 0) assert_equal(y.strides, EMPTY) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 16) def test_export_endian(self): x = np.array([1, 2, 3], dtype='>i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, '>i') else: assert_equal(y.format, 'i') x = np.array([1, 2, 3], dtype='<i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, 'i') else: assert_equal(y.format, '<i') def test_export_flags(self): # Check SIMPLE flag, see also gh-3613 (exception should be BufferError) assert_raises(ValueError, get_buffer_info, np.arange(5)[::2], ('SIMPLE',)) def test_padding(self): for j in range(8): x = np.array([(1,), (2,)], dtype={'f0': (int, j)}) self._check_roundtrip(x) def test_reference_leak(self): count_1 = sys.getrefcount(np.core._internal) a = np.zeros(4) b = memoryview(a) c = np.asarray(b) count_2 = sys.getrefcount(np.core._internal) assert_equal(count_1, count_2) del c # avoid pyflakes unused variable warning. def test_padded_struct_array(self): dt1 = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1) self._check_roundtrip(x1) dt2 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2) self._check_roundtrip(x2) dt3 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3) self._check_roundtrip(x3) def test_relaxed_strides(self): # Test that relaxed strides are converted to non-relaxed c = np.ones((1, 10, 10), dtype='i8') # Check for NPY_RELAXED_STRIDES_CHECKING: if np.ones((10, 1), order="C").flags.f_contiguous: c.strides = (-1, 80, 8) assert memoryview(c).strides == (800, 80, 8) # Writing C-contiguous data to a BytesIO buffer should work fd = io.BytesIO() fd.write(c.data) fortran = c.T assert memoryview(fortran).strides == (8, 80, 800) arr = np.ones((1, 10)) if arr.flags.f_contiguous: shape, strides = get_buffer_info(arr, ['F_CONTIGUOUS']) assert_(strides[0] == 8) arr = np.ones((10, 1), order='F') shape, strides = get_buffer_info(arr, ['C_CONTIGUOUS']) assert_(strides[-1] == 8) class TestArrayAttributeDeletion(object): def test_multiarray_writable_attributes_deletion(self): """ticket #2046, should not seqfault, raise AttributeError""" a = np.ones(2) attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_not_writable_attributes_deletion(self): a = np.ones(2) attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base", "ctypes", "T", "__array_interface__", "__array_struct__", "__array_priority__", "__array_finalize__"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_writable_attribute_deletion(self): a = np.ones(2).flags attr = ['updateifcopy', 'aligned', 'writeable'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_not_writable_attribute_deletion(self): a = np.ones(2).flags attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran", "owndata", "fnc", "forc", "behaved", "carray", "farray", "num"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_array_interface(): # Test scalar coercion within the array interface class Foo(object): def __init__(self, value): self.value = value self.iface = {'typestr': '=f8'} def __float__(self): return float(self.value) @property def __array_interface__(self): return self.iface f = Foo(0.5) assert_equal(np.array(f), 0.5) assert_equal(np.array([f]), [0.5]) assert_equal(np.array([f, f]), [0.5, 0.5]) assert_equal(np.array(f).dtype, np.dtype('=f8')) # Test various shape definitions f.iface['shape'] = () assert_equal(np.array(f), 0.5) f.iface['shape'] = None assert_raises(TypeError, np.array, f) f.iface['shape'] = (1, 1) assert_equal(np.array(f), [[0.5]]) f.iface['shape'] = (2,) assert_raises(ValueError, np.array, f) # test scalar with no shape class ArrayLike(object): array = np.array(1) __array_interface__ = array.__array_interface__ assert_equal(np.array(ArrayLike()), 1) def test_flat_element_deletion(): it = np.ones(3).flat try: del it[1] del it[1:2] except TypeError: pass except: raise AssertionError def test_scalar_element_deletion(): a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')]) assert_raises(ValueError, a[0].__delitem__, 'x') class TestMemEventHook(TestCase): def test_mem_seteventhook(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src test_pydatamem_seteventhook_start() # force an allocation and free of a numpy array # needs to be larger then limit of small memory cacher in ctors.c a = np.zeros(1000) del a test_pydatamem_seteventhook_end() class TestMapIter(TestCase): def test_mapiter(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src a = np.arange(12).reshape((3, 4)).astype(float) index = ([1, 1, 2, 0], [0, 0, 2, 3]) vals = [50, 50, 30, 16] test_inplace_increment(a, index, vals) assert_equal(a, [[0.00, 1., 2.0, 19.], [104., 5., 6.0, 7.0], [8.00, 9., 40., 11.]]) b = np.arange(6).astype(float) index = (np.array([1, 2, 0]),) vals = [50, 4, 100.1] test_inplace_increment(b, index, vals) assert_equal(b, [100.1, 51., 6., 3., 4., 5.]) class TestAsCArray(TestCase): def test_1darray(self): array = np.arange(24, dtype=np.double) from_c = test_as_c_array(array, 3) assert_equal(array[3], from_c) def test_2darray(self): array = np.arange(24, dtype=np.double).reshape(3, 8) from_c = test_as_c_array(array, 2, 4) assert_equal(array[2, 4], from_c) def test_3darray(self): array = np.arange(24, dtype=np.double).reshape(2, 3, 4) from_c = test_as_c_array(array, 1, 2, 3) assert_equal(array[1, 2, 3], from_c) class TestConversion(TestCase): def test_array_scalar_relational_operation(self): #All integer for dt1 in np.typecodes['AllInteger']: assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in np.typecodes['AllInteger']: assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Unsigned integers for dt1 in 'BHILQP': assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,)) #unsigned vs signed for dt2 in 'bhilqp': assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Signed integers and floats for dt1 in 'bhlqp' + np.typecodes['Float']: assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in 'bhlqp' + np.typecodes['Float']: assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) class TestWhere(TestCase): def test_basic(self): dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128, np.longdouble, np.clongdouble] for dt in dts: c = np.ones(53, dtype=np.bool) assert_equal(np.where( c, dt(0), dt(1)), dt(0)) assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) assert_equal(np.where(True, dt(0), dt(1)), dt(0)) assert_equal(np.where(False, dt(0), dt(1)), dt(1)) d = np.ones_like(c).astype(dt) e = np.zeros_like(d) r = d.astype(dt) c[7] = False r[7] = e[7] assert_equal(np.where(c, e, e), e) assert_equal(np.where(c, d, e), r) assert_equal(np.where(c, d, e[0]), r) assert_equal(np.where(c, d[0], e), r) assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) def test_exotic(self): # object assert_array_equal(np.where(True, None, None), np.array(None)) # zero sized m = np.array([], dtype=bool).reshape(0, 3) b = np.array([], dtype=np.float64).reshape(0, 3) assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3)) # object cast d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313, 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013, 1.267, 0.229, -1.39, 0.487]) nan = float('NaN') e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan, 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'], dtype=object) m = np.array([0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0], dtype=bool) r = e[:] r[np.where(m)] = d[np.where(m)] assert_array_equal(np.where(m, d, e), r) r = e[:] r[np.where(~m)] = d[np.where(~m)] assert_array_equal(np.where(m, e, d), r) assert_array_equal(np.where(m, e, e), e) # minimal dtype result with NaN scalar (e.g required by pandas) d = np.array([1., 2.], dtype=np.float32) e = float('NaN') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('-Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) # also check upcast e = float(1e150) assert_equal(np.where(True, d, e).dtype, np.float64) def test_ndim(self): c = [True, False] a = np.zeros((2, 25)) b = np.ones((2, 25)) r = np.where(np.array(c)[:,np.newaxis], a, b) assert_array_equal(r[0], a[0]) assert_array_equal(r[1], b[0]) a = a.T b = b.T r = np.where(c, a, b) assert_array_equal(r[:,0], a[:,0]) assert_array_equal(r[:,1], b[:,0]) def test_dtype_mix(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) a = np.uint32(1) b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) a = a.astype(np.float32) b = b.astype(np.int64) assert_equal(np.where(c, a, b), r) # non bool mask c = c.astype(np.int) c[c != 0] = 34242324 assert_equal(np.where(c, a, b), r) # invert tmpmask = c != 0 c[c == 0] = 41247212 c[tmpmask] = 0 assert_equal(np.where(c, b, a), r) def test_foreign(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) a = np.ones(1, dtype='>i4') b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) b = b.astype('>f8') assert_equal(np.where(c, a, b), r) a = a.astype('<i4') assert_equal(np.where(c, a, b), r) c = c.astype('>i4') assert_equal(np.where(c, a, b), r) def test_error(self): c = [True, True] a = np.ones((4, 5)) b = np.ones((5, 5)) assert_raises(ValueError, np.where, c, a, a) assert_raises(ValueError, np.where, c[0], a, b) def test_string(self): # gh-4778 check strings are properly filled with nulls a = np.array("abc") b = np.array("x" * 753) assert_equal(np.where(True, a, b), "abc") assert_equal(np.where(False, b, a), "abc") # check native datatype sized strings a = np.array("abcd") b = np.array("x" * 8) assert_equal(np.where(True, a, b), "abcd") assert_equal(np.where(False, b, a), "abcd") class TestSizeOf(TestCase): def test_empty_array(self): x = np.array([]) assert_(sys.getsizeof(x) > 0) def check_array(self, dtype): elem_size = dtype(0).itemsize for length in [10, 50, 100, 500]: x = np.arange(length, dtype=dtype) assert_(sys.getsizeof(x) > length * elem_size) def test_array_int32(self): self.check_array(np.int32) def test_array_int64(self): self.check_array(np.int64) def test_array_float32(self): self.check_array(np.float32) def test_array_float64(self): self.check_array(np.float64) def test_view(self): d = np.ones(100) assert_(sys.getsizeof(d[...]) < sys.getsizeof(d)) def test_reshape(self): d = np.ones(100) assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy())) def test_resize(self): d = np.ones(100) old = sys.getsizeof(d) d.resize(50) assert_(old > sys.getsizeof(d)) d.resize(150) assert_(old < sys.getsizeof(d)) def test_error(self): d = np.ones(100) assert_raises(TypeError, d.__sizeof__, "a") class TestHashing(TestCase): def test_arrays_not_hashable(self): x = np.ones(3) assert_raises(TypeError, hash, x) def test_collections_hashable(self): x = np.array([]) self.assertFalse(isinstance(x, collections.Hashable)) from numpy.core._internal import _view_is_safe class TestObjViewSafetyFuncs(TestCase): def test_view_safety(self): psize = np.dtype('p').itemsize # creates dtype but with extra character code - for missing 'p' fields def mtype(s): n, offset, fields = 0, 0, [] for c in s.split(','): # subarrays won't work if c != '-': fields.append(('f{0}'.format(n), c, offset)) n += 1 offset += np.dtype(c).itemsize if c != '-' else psize names, formats, offsets = zip(*fields) return np.dtype({'names': names, 'formats': formats, 'offsets': offsets, 'itemsize': offset}) # test nonequal itemsizes with objects: # these should succeed: _view_is_safe(np.dtype('O,p,O,p'), np.dtype('O,p,O,p,O,p')) _view_is_safe(np.dtype('O,O'), np.dtype('O,O,O')) # these should fail: assert_raises(TypeError, _view_is_safe, np.dtype('O,O,p'), np.dtype('O,O')) assert_raises(TypeError, _view_is_safe, np.dtype('O,O,p'), np.dtype('O,p')) assert_raises(TypeError, _view_is_safe, np.dtype('O,O,p'), np.dtype('p,O')) # test nonequal itemsizes with missing fields: # these should succeed: _view_is_safe(mtype('-,p,-,p'), mtype('-,p,-,p,-,p')) _view_is_safe(np.dtype('p,p'), np.dtype('p,p,p')) # these should fail: assert_raises(TypeError, _view_is_safe, mtype('p,p,-'), mtype('p,p')) assert_raises(TypeError, _view_is_safe, mtype('p,p,-'), mtype('p,-')) assert_raises(TypeError, _view_is_safe, mtype('p,p,-'), mtype('-,p')) # scans through positions at which we can view a type def scanView(d1, otype): goodpos = [] for shift in range(d1.itemsize - np.dtype(otype).itemsize+1): d2 = np.dtype({'names': ['f0'], 'formats': [otype], 'offsets': [shift], 'itemsize': d1.itemsize}) try: _view_is_safe(d1, d2) except TypeError: pass else: goodpos.append(shift) return goodpos # test partial overlap with object field assert_equal(scanView(np.dtype('p,O,p,p,O,O'), 'p'), [0] + list(range(2*psize, 3*psize+1))) assert_equal(scanView(np.dtype('p,O,p,p,O,O'), 'O'), [psize, 4*psize, 5*psize]) # test partial overlap with missing field assert_equal(scanView(mtype('p,-,p,p,-,-'), 'p'), [0] + list(range(2*psize, 3*psize+1))) # test nested structures with objects: nestedO = np.dtype([('f0', 'p'), ('f1', 'p,O,p')]) assert_equal(scanView(nestedO, 'p'), list(range(psize+1)) + [3*psize]) assert_equal(scanView(nestedO, 'O'), [2*psize]) # test nested structures with missing fields: nestedM = np.dtype([('f0', 'p'), ('f1', mtype('p,-,p'))]) assert_equal(scanView(nestedM, 'p'), list(range(psize+1)) + [3*psize]) # test subarrays with objects subarrayO = np.dtype('p,(2,3)O,p') assert_equal(scanView(subarrayO, 'p'), [0, 7*psize]) assert_equal(scanView(subarrayO, 'O'), list(range(psize, 6*psize+1, psize))) #test dtype with overlapping fields overlapped = np.dtype({'names': ['f0', 'f1', 'f2', 'f3'], 'formats': ['p', 'p', 'p', 'p'], 'offsets': [0, 1, 3*psize-1, 3*psize], 'itemsize': 4*psize}) assert_equal(scanView(overlapped, 'p'), [0, 1, 3*psize-1, 3*psize]) class TestArrayPriority(TestCase): # This will go away when __array_priority__ is settled, meanwhile # it serves to check unintended changes. op = operator binary_ops = [ op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod, op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt, op.ge, op.lt, op.le, op.ne, op.eq ] if sys.version_info[0] < 3: binary_ops.append(op.div) class Foo(np.ndarray): __array_priority__ = 100. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Bar(np.ndarray): __array_priority__ = 101. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Other(object): __array_priority__ = 1000. def _all(self, other): return self.__class__() __add__ = __radd__ = _all __sub__ = __rsub__ = _all __mul__ = __rmul__ = _all __pow__ = __rpow__ = _all __div__ = __rdiv__ = _all __mod__ = __rmod__ = _all __truediv__ = __rtruediv__ = _all __floordiv__ = __rfloordiv__ = _all __and__ = __rand__ = _all __xor__ = __rxor__ = _all __or__ = __ror__ = _all __lshift__ = __rlshift__ = _all __rshift__ = __rrshift__ = _all __eq__ = _all __ne__ = _all __gt__ = _all __ge__ = _all __lt__ = _all __le__ = _all def test_ndarray_subclass(self): a = np.array([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_ndarray_other(self): a = np.array([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) def test_subclass_subclass(self): a = self.Foo([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_subclass_other(self): a = self.Foo([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) class TestBytestringArrayNonzero(TestCase): def test_empty_bstring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.str)) def test_whitespace_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_bstring_array_is_truthy(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0 \0' self.assertTrue(a) class TestUnicodeArrayNonzero(TestCase): def test_empty_ustring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.unicode)) def test_whitespace_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_ustring_array_is_truthy(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0 \0' self.assertTrue(a) if __name__ == "__main__": run_module_suite()
gpl-2.0
sonnyhu/scipy
doc/source/tutorial/stats/plots/kde_plot4.py
142
1457
from functools import partial import numpy as np from scipy import stats import matplotlib.pyplot as plt def my_kde_bandwidth(obj, fac=1./5): """We use Scott's Rule, multiplied by a constant factor.""" return np.power(obj.n, -1./(obj.d+4)) * fac loc1, scale1, size1 = (-2, 1, 175) loc2, scale2, size2 = (2, 0.2, 50) x2 = np.concatenate([np.random.normal(loc=loc1, scale=scale1, size=size1), np.random.normal(loc=loc2, scale=scale2, size=size2)]) x_eval = np.linspace(x2.min() - 1, x2.max() + 1, 500) kde = stats.gaussian_kde(x2) kde2 = stats.gaussian_kde(x2, bw_method='silverman') kde3 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.2)) kde4 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.5)) pdf = stats.norm.pdf bimodal_pdf = pdf(x_eval, loc=loc1, scale=scale1) * float(size1) / x2.size + \ pdf(x_eval, loc=loc2, scale=scale2) * float(size2) / x2.size fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) ax.plot(x2, np.zeros(x2.shape), 'b+', ms=12) ax.plot(x_eval, kde(x_eval), 'k-', label="Scott's Rule") ax.plot(x_eval, kde2(x_eval), 'b-', label="Silverman's Rule") ax.plot(x_eval, kde3(x_eval), 'g-', label="Scott * 0.2") ax.plot(x_eval, kde4(x_eval), 'c-', label="Scott * 0.5") ax.plot(x_eval, bimodal_pdf, 'r--', label="Actual PDF") ax.set_xlim([x_eval.min(), x_eval.max()]) ax.legend(loc=2) ax.set_xlabel('x') ax.set_ylabel('Density') plt.show()
bsd-3-clause
Chilipp/psyplot_gui
psyplot_gui/help_explorer.py
1
40518
# -*- coding: utf-8 -*- """Help explorer widget supplying a simple web browser and a plain text help viewer""" import sys import os.path as osp from collections import namedtuple from itertools import chain import re import six import types import inspect import shutil from psyplot.docstring import indent, docstrings from psyplot.compat.pycompat import OrderedDict from psyplot.utils import _temp_bool_prop from psyplot_gui.config.rcsetup import rcParams from psyplot_gui.compat.qtcompat import ( QWidget, QHBoxLayout, QFrame, QVBoxLayout, QWebEngineView, QToolButton, QIcon, QtCore, QComboBox, Qt, QSortFilterProxyModel, isstring, asstring, QCompleter, QStandardItemModel, QPlainTextEdit, QAction, QMenu, with_qt5, QtGui) from psyplot_gui.common import get_icon, DockMixin, PyErrorMessage from IPython.core.oinspect import signature, getdoc import logging from psyplot_gui.common import get_module_path, StreamToLogger, \ is_running_tests from tempfile import mkdtemp try: from sphinx.application import Sphinx from sphinx.util import get_module_source try: from psyplot.sphinxext.extended_napoleon import ( ExtendedNumpyDocstring as NumpyDocstring, ExtendedGoogleDocstring as GoogleDocstring) except ImportError: from sphinx.ext.napoleon import NumpyDocstring, GoogleDocstring with_sphinx = True except ImportError: with_sphinx = False if six.PY2: from urlparse import urlparse else: from urllib.parse import urlparse try: import pathlib def file2html(fname): return pathlib.Path(fname).as_uri() except ImportError: def file2html(fname): return 'file://' + fname def html2file(url): p = urlparse(asstring(url)) # skip the first '/' on windows platform return osp.abspath(osp.join(p.netloc, p.path[int(sys.platform == 'win32'):])) _viewers = OrderedDict() logger = logging.getLogger(__name__) class UrlCombo(QComboBox): """A editable ComboBox with autocompletion""" def __init__(self, *args, **kwargs): super(UrlCombo, self).__init__(*args, **kwargs) self.setInsertPolicy(self.InsertAtTop) self.setFocusPolicy(Qt.StrongFocus) self.setEditable(True) self.completer = QCompleter(self) # always show all completions self.completer.setCompletionMode(QCompleter.UnfilteredPopupCompletion) self.pFilterModel = QSortFilterProxyModel(self) self.pFilterModel.setFilterCaseSensitivity(Qt.CaseInsensitive) self.completer.setPopup(self.completer.popup()) self.setCompleter(self.completer) self.lineEdit().textEdited[str].connect( self.pFilterModel.setFilterFixedString) self.completer.activated.connect(self.add_text_on_top) self.setModel(QStandardItemModel()) def setModel(self, model): """Reimplemented to also set the model of the filter and completer""" super(UrlCombo, self).setModel(model) self.pFilterModel.setSourceModel(model) self.completer.setModel(self.pFilterModel) def add_text_on_top(self, text=None, block=False): """Add the given text as the first item""" if text is None: text = self.currentText() ind = self.findText(text) if block: self.blockSignals(True) if ind == -1: self.insertItem(0, text) elif ind != 0: self.removeItem(ind) self.insertItem(0, text) self.setCurrentIndex(0) if block: self.blockSignals(False) # replace keyPressEvent to always insert the selected item at the top def keyPressEvent(self, event): """Handle key press events""" if event.key() == Qt.Key_Return or event.key() == Qt.Key_Enter: self.add_text_on_top() else: QComboBox.keyPressEvent(self, event) class UrlBrowser(QFrame): """Very simple browser with session history and autocompletion based upon the :class:`PyQt5.QtWebEngineWidgets.QWebEngineView` class Warnings -------- This class is known to crash under PyQt4 when new web page domains are loaded. Hence it should be handled with care""" completed = _temp_bool_prop( 'completed', "Boolean whether the html page loading is completed.", default=True) url_like_re = re.compile('^\w+://') doc_urls = OrderedDict([ ('startpage', 'https://startpage.com/'), ('psyplot', 'http://psyplot.readthedocs.org/en/latest/'), ('pyplot', 'http://matplotlib.org/api/pyplot_api.html'), ('seaborn', 'http://stanford.edu/~mwaskom/software/seaborn/api.html'), ('cartopy', 'http://scitools.org.uk/cartopy/docs/latest/index.html'), ('xarray', 'http://xarray.pydata.org/en/stable/'), ('pandas', 'http://pandas.pydata.org/pandas-docs/stable/'), ('numpy', 'https://docs.scipy.org/doc/numpy/reference/routines.html'), ]) #: The initial url showed in the webview. If None, nothing will be #: displayed default_url = None #: adress line tb_url = None #: button to go to previous url bt_back = None #: button to go to next url bt_ahead = None #: refresh the current url bt_refresh = None #: button to go lock to the current url bt_lock = None #: button to disable browsing in www bt_url_lock = None #: The upper part of the browser containing all the buttons button_box = None #: The upper most layout aranging the button box and the html widget vbox = None #: default value for :attr:`bt_lock`. Is set during browser #: initialization bt_lock_default = None #: default value for :attr:`bt_url_lock`. Is set during browser #: initialization bt_url_lock_default = None def __init__(self, *args, **kwargs): super(UrlBrowser, self).__init__(*args, **kwargs) # --------------------------------------------------------------------- # ---------------------------- upper buttons -------------------------- # --------------------------------------------------------------------- # adress line self.tb_url = UrlCombo(self) # button to go to previous url self.bt_back = QToolButton(self) # button to go to next url self.bt_ahead = QToolButton(self) # refresh the current url self.bt_refresh = QToolButton(self) # button to go lock to the current url self.bt_lock = QToolButton(self) # button to disable browsing in www self.bt_url_lock = QToolButton(self) # ---------------------------- buttons settings ----------------------- self.bt_back.setIcon(QIcon(get_icon('previous.png'))) self.bt_back.setToolTip('Go back one page') self.bt_ahead.setIcon(QIcon(get_icon('next.png'))) self.bt_back.setToolTip('Go forward one page') self.bt_refresh.setIcon(QIcon(get_icon('refresh.png'))) self.bt_refresh.setToolTip('Refresh the current page') self.bt_lock.setCheckable(True) self.bt_url_lock.setCheckable(True) if not with_qt5 and rcParams['help_explorer.online'] is None: # We now that the browser can crash with Qt4, therefore we disable # the browing in the internet self.bt_url_lock.click() rcParams['help_explorer.online'] = False elif rcParams['help_explorer.online'] is False: self.bt_url_lock.click() elif rcParams['help_explorer.online'] is None: rcParams['help_explorer.online'] = True rcParams.connect('help_explorer.online', self.update_url_lock_from_rc) self.bt_url_lock.clicked.connect(self.toogle_url_lock) self.bt_lock.clicked.connect(self.toogle_lock) # tooltip and icons of lock and url_lock are set in toogle_lock and # toogle_url_lock self.toogle_lock() self.toogle_url_lock() # --------------------------------------------------------------------- # --------- initialization and connection of the web view ------------- # --------------------------------------------------------------------- #: The actual widget showing the html content self.html = QWebEngineView(parent=self) self.html.loadStarted.connect(self.completed) self.html.loadFinished.connect(self.completed) self.tb_url.currentIndexChanged[str].connect(self.browse) self.bt_back.clicked.connect(self.html.back) self.bt_ahead.clicked.connect(self.html.forward) self.bt_refresh.clicked.connect(self.html.reload) self.html.urlChanged.connect(self.url_changed) # --------------------------------------------------------------------- # ---------------------------- layouts -------------------------------- # --------------------------------------------------------------------- # The upper part of the browser containing all the buttons self.button_box = button_box = QHBoxLayout() button_box.addWidget(self.bt_back) button_box.addWidget(self.bt_ahead) button_box.addWidget(self.tb_url) button_box.addWidget(self.bt_refresh) button_box.addWidget(self.bt_lock) button_box.addWidget(self.bt_url_lock) # The upper most layout aranging the button box and the html widget self.vbox = vbox = QVBoxLayout() self.vbox.setContentsMargins(0, 0, 0, 0) vbox.addLayout(button_box) vbox.addWidget(self.html) self.setLayout(vbox) if self.default_url is not None: self.tb_url.addItem(self.default_url) self.bt_lock_default = bool(self.bt_lock.isChecked()) self.bt_url_lock_default = bool(self.bt_url_lock.isChecked()) def browse(self, url): """Make a web browse on the given url and show the page on the Webview widget. """ if self.bt_lock.isChecked(): return if not self.url_like_re.match(url): url = 'https://' + url if self.bt_url_lock.isChecked() and url.startswith('http'): return if not self.completed: logger.debug('Stopping current load...') self.html.stop() self.completed = True logger.debug('Loading %s', url) # we use :meth:`PyQt5.QtWebEngineWidgets.QWebEngineView.setUrl` instead # of :meth:`PyQt5.QtWebEngineWidgets.QWebEngineView.load` because that # changes the url directly and is more useful for unittests self.html.setUrl(QtCore.QUrl(url)) def url_changed(self, url): """Triggered when the url is changed to update the adress line""" try: url = url.toString() except AttributeError: pass logger.debug('url changed to %s', url) try: self.tb_url.setCurrentText(url) except AttributeError: # Qt4 self.tb_url.setEditText(url) self.tb_url.add_text_on_top(url, block=True) def update_url_lock_from_rc(self, online): if (online and self.bt_url_lock.isChecked() or not online and not self.bt_url_lock.isChecked()): self.bt_url_lock.click() def toogle_url_lock(self): """Disable (or enable) the loading of web pages in www""" bt = self.bt_url_lock offline = bt.isChecked() bt.setIcon(QIcon(get_icon( 'world_red.png' if offline else 'world.png'))) online_message = "Go online" if not with_qt5: online_message += ("\nWARNING: This mode is unstable under Qt4 " "and might result in a complete program crash!") bt.setToolTip(online_message if offline else "Offline mode") if rcParams['help_explorer.online'] is offline: rcParams['help_explorer.online'] = not offline def toogle_lock(self): """Disable (or enable) the changing of the current webpage""" bt = self.bt_lock bt.setIcon(QIcon(get_icon( 'lock.png' if bt.isChecked() else 'lock_open.png'))) bt.setToolTip("Unlock" if bt.isChecked() else "Lock to current page") class HelpMixin(object): """Base class for providing help on an object""" #: Object containing the necessary fields to describe an object given to #: the help widget. The descriptor is set up by the :meth:`describe_object` #: method. object_descriptor = namedtuple('ObjectDescriptor', ['obj', 'name']) #: :class:`bool` determining whether the documentation of an object can be #: shown or not can_document_object = True #: :class:`bool` determining whether this class can show restructured text can_show_rst = True @docstrings.get_sectionsf('HelpMixin.show_help') @docstrings.dedent def show_help(self, obj, oname='', files=None): """ Show the rst documentation for the given object Parameters ---------- obj: object The object to get the documentation for oname: str The name to use for the object in the documentation files: list of str A path to additional files that shall be used to process the docs""" descriptor = self.describe_object(obj, oname) doc = self.get_doc(descriptor) return self.show_rst(doc, descriptor=descriptor, files=files) def header(self, descriptor, sig): """Format the header and include object name and signature `sig` Returns ------- str The header for the documentation""" bars = '=' * len(descriptor.name + sig) return bars + '\n' + descriptor.name + sig + '\n' + bars + '\n' def describe_object(self, obj, oname=''): """Return an instance of the :attr:`object_descriptor` class Returns ------- :attr:`object_descriptor` The descriptor containing the information on the object""" return self.object_descriptor(obj, oname) def get_doc(self, descriptor): """Get the documentation of the object in the given `descriptor` Parameters ---------- descriptor: instance of :attr:`object_descriptor` The descriptor containig the information on the specific object Returns ------- str The header and documentation of the object in the descriptor Notes ----- This method uses the :func:`IPython.core.oinspect.getdoc` function to get the documentation and the :func:`IPython.core.oinspect.signature` function to get the signature. Those function (different from the inspect module) do not fail when the object is not saved""" obj = descriptor.obj oname = descriptor.name sig = '' obj_sig = obj if callable(obj): if inspect.isclass(obj): oname = oname or obj.__name__ obj_sig = getattr(obj, '__init__', obj) elif six.PY2 and type(obj) is types.InstanceType: obj_sig = getattr(obj, '__call__', obj) try: sig = str(signature(obj_sig)) sig = re.sub('^\(\s*self,\s*', '(', sig) except: logger.debug('Failed to get signature from %s!' % (obj, ), exc_info=True) oname = oname or type(oname).__name__ head = self.header(descriptor, sig) lines = [] ds = getdoc(obj) if ds: lines.append('') lines.append(ds) if inspect.isclass(obj) and hasattr(obj, '__init__'): init_ds = getdoc(obj.__init__) if init_ds is not None: lines.append('\n' + init_ds) elif hasattr(obj, '__call__'): call_ds = getdoc(obj.__call__) if call_ds and call_ds != getdoc(object.__call__): lines.append('\n' + call_ds) doc = self.process_docstring(lines, descriptor) return head + '\n' + doc def process_docstring(self, lines, descriptor): """Make final modification on the rst lines Returns ------- str The docstring""" return '\n'.join(lines) @docstrings.get_sectionsf('HelpMixin.show_rst') @docstrings.dedent def show_rst(self, text, oname='', descriptor=None, files=None): """ Abstract method which needs to be implemented by th widget to show restructured text Parameters ---------- text: str The text to show oname: str The object name descriptor: instance of :attr:`object_descriptor` The object descriptor holding the informations files: list of str A path to additional files that shall be used to display the docs Returns ------- bool True if the text is displayed """ return False @docstrings.get_sectionsf('HelpMixin.show_intro') def show_intro(self, text=''): """ Show an intro message Parameters ---------- s: str A string in reStructured Text format to show""" title = 'Welcome to psyplot!' title += '\n' + '-' * len(title) + '\n\n' self.show_rst(title + text, 'intro') class TextHelp(QFrame, HelpMixin): """Class to show plain text rst docstrings""" def __init__(self, *args, **kwargs): super(TextHelp, self).__init__(*args, **kwargs) self.vbox = QVBoxLayout() self.vbox.setContentsMargins(0, 0, 0, 0) #: The :class:`PyQt5.QtWidgets.QPlainTextEdit` instance used for #: displaying the documentation self.editor = QPlainTextEdit(parent=self) self.editor.setFont(QtGui.QFont('Courier New')) self.vbox.addWidget(self.editor) self.setLayout(self.vbox) def show_rst(self, text, *args, **kwargs): """Show the given text in the editor window Parameters ---------- text: str The text to show ``*args,**kwargs`` Are ignored""" self.editor.clear() self.editor.insertPlainText(text) return True class UrlHelp(UrlBrowser, HelpMixin): """Class to convert rst docstrings to html and show browsers""" #: Object containing the necessary fields to describe an object given to #: the help widget. The descriptor is set up by the :meth:`describe_object` #: method and contains an additional objtype attribute object_descriptor = namedtuple( 'ObjectDescriptor', ['obj', 'name', 'objtype']) can_document_object = with_sphinx can_show_rst = with_sphinx #: menu button with different urls bt_url_menus = None #: sphinx_thread = None def __init__(self, *args, **kwargs): self._temp_dir = 'sphinx_dir' not in kwargs self.sphinx_dir = kwargs.pop('sphinx_dir', mkdtemp(prefix='psyplot_')) self.build_dir = osp.join(self.sphinx_dir, '_build', 'html') super(UrlHelp, self).__init__(*args, **kwargs) self.error_msg = PyErrorMessage(self) if with_sphinx: self.sphinx_thread = SphinxThread(self.sphinx_dir) self.sphinx_thread.html_ready[str].connect(self.browse) self.sphinx_thread.html_error[str].connect( self.error_msg.showTraceback) self.sphinx_thread.html_error[str].connect(logger.debug) rcParams.connect('help_explorer.render_docs_parallel', self.reset_sphinx) rcParams.connect('help_explorer.use_intersphinx', self.reset_sphinx) rcParams.connect('help_explorer.online', self.reset_sphinx) self.bt_connect_console = QToolButton(self) self.bt_connect_console.setCheckable(True) if rcParams['console.connect_to_help']: self.bt_connect_console.setIcon(QIcon(get_icon( 'ipython_console.png'))) self.bt_connect_console.click() else: self.bt_connect_console.setIcon(QIcon(get_icon( 'ipython_console_t.png'))) self.bt_connect_console.clicked.connect(self.toogle_connect_console) rcParams.connect('console.connect_to_help', self.update_connect_console) self.toogle_connect_console() # menu button with different urls self.bt_url_menus = QToolButton(self) self.bt_url_menus.setIcon(QIcon(get_icon('docu_button.png'))) self.bt_url_menus.setToolTip('Browse documentations') self.bt_url_menus.setPopupMode(QToolButton.InstantPopup) docu_menu = QMenu(self) for name, url in six.iteritems(self.doc_urls): def to_url(b, url=url): self.browse(url) action = QAction(name, self) action.triggered.connect(to_url) docu_menu.addAction(action) self.bt_url_menus.setMenu(docu_menu) self.button_box.addWidget(self.bt_connect_console) self.button_box.addWidget(self.bt_url_menus) # toogle the lock again to set the bt_url_menus enabled state self.toogle_url_lock() def update_connect_console(self, connect): if (connect and not self.bt_connect_console.isChecked() or not connect and self.bt_connect_console.isChecked()): self.bt_connect_console.click() def toogle_connect_console(self): """Disable (or enable) the loading of web pages in www""" bt = self.bt_connect_console connect = bt.isChecked() bt.setIcon(QIcon(get_icon( 'ipython_console.png' if connect else 'ipython_console_t.png'))) bt.setToolTip("%sonnect the console to the help explorer" % ( "Don't c" if connect else "C")) if rcParams['console.connect_to_help'] is not connect: rcParams['console.connect_to_help'] = connect def reset_sphinx(self, value): """Method that is called if the configuration changes""" if with_sphinx and hasattr(self.sphinx_thread, 'app'): del self.sphinx_thread.app @docstrings.dedent def show_help(self, obj, oname='', files=None): """ Render the rst docu for the given object with sphinx and show it Parameters ---------- %(HelpMixin.show_help.parameters)s """ if self.bt_lock.isChecked(): return return super(UrlHelp, self).show_help(obj, oname=oname, files=files) @docstrings.dedent def show_intro(self, text=''): """ Show the intro text in the explorer Parameters ---------- %(HelpMixin.show_intro.parameters)s""" if self.sphinx_thread is not None: with open(self.sphinx_thread.index_file, 'a') as f: f.write('\n' + text.strip() + '\n\n' + 'Table of Contents\n' '=================\n\n.. toctree::\n') self.sphinx_thread.render(None, None) def show_rst(self, text, oname='', descriptor=None, files=None): """Render restructured text with sphinx and show it Parameters ---------- %(HelpMixin.show_rst.parameters)s""" if self.bt_lock.isChecked() or self.sphinx_thread is None: return False if not oname and descriptor: oname = descriptor.name for f in files or []: shutil.copyfile(f, osp.join(self.sphinx_dir, osp.basename(f))) self.sphinx_thread.render(text, oname) return True def describe_object(self, obj, oname=''): """Describe an object using additionaly the object type from the :meth:`get_objtype` method Returns ------- instance of :attr:`object_descriptor` The descriptor of the object""" return self.object_descriptor(obj, oname, self.get_objtype(obj)) def browse(self, url): """Reimplemented to add file paths to the url string""" url = asstring(url) html_file = osp.join(self.sphinx_dir, '_build', 'html', url + '.html') if osp.exists(html_file): url = file2html(html_file) super(UrlHelp, self).browse(url) def toogle_url_lock(self): """Disable (or enable) the loading of web pages in www""" super(UrlHelp, self).toogle_url_lock() # enable or disable documentation button bt = self.bt_url_lock offline = bt.isChecked() try: self.bt_url_menus.setEnabled(not offline) except AttributeError: # not yet initialized pass def url_changed(self, url): """Reimplemented to remove file paths from the url string""" try: url = asstring(url.toString()) except AttributeError: pass if url.startswith('file://'): fname = html2file(url) if osp.samefile(self.build_dir, osp.commonprefix([ fname, self.build_dir])): url = osp.splitext(osp.basename(fname))[0] super(UrlHelp, self).url_changed(url) def header(self, descriptor, sig): return '%(name)s\n%(bars)s\n\n.. py:%(type)s:: %(name)s%(sig)s\n' % { 'name': descriptor.name, 'bars': '-' * len(descriptor.name), 'type': descriptor.objtype, 'sig': sig} def get_objtype(self, obj): """Get the object type of the given object and determine wheter the object is considered a class, a module, a function, method or data Parameters ---------- obj: object Returns ------- str One out of {'class', 'module', 'function', 'method', 'data'}""" if inspect.isclass(obj): return 'class' if inspect.ismodule(obj): return 'module' if inspect.isfunction(obj) or isinstance(obj, type(all)): return 'function' if inspect.ismethod(obj) or isinstance(obj, type(str.upper)): return 'method' return 'data' def is_importable(self, modname): """Determine whether members of the given module can be documented with sphinx by using the :func:`sphinx.util.get_module_source` function Parameters ---------- modname: str The __name__ attribute of the module to import Returns ------- bool True if sphinx can import the module""" try: get_module_source(modname) return True except Exception: return False def get_doc(self, descriptor): """Reimplemented to (potentially) use the features from sphinx.ext.autodoc""" obj = descriptor.obj if inspect.ismodule(obj): module = obj else: module = inspect.getmodule(obj) if module is not None and (re.match('__.*__', module.__name__) or not self.is_importable(module.__name__)): module = None isclass = inspect.isclass(obj) # If the module is available, we try to use autodoc if module is not None: doc = '.. currentmodule:: ' + module.__name__ + '\n\n' # a module --> use automodule if inspect.ismodule(obj): doc += self.header(descriptor, '') doc += '.. automodule:: ' + obj.__name__ # an importable class --> use autoclass elif isclass and getattr(module, obj.__name__, None) is not None: doc += self.header(descriptor, '') doc += '.. autoclass:: ' + obj.__name__ # an instance and the class can be imported # --> use super get_doc and autoclass for the tyoe elif descriptor.objtype == 'data' and getattr( module, type(obj).__name__, None) is not None: doc += '\n\n'.join([ super(UrlHelp, self).get_doc(descriptor), "Class docstring\n===============", '.. autoclass:: ' + type(obj).__name__]) # an instance --> use super get_doc for instance and the type elif descriptor.objtype == 'data': cls_doc = super(UrlHelp, self).get_doc(self.describe_object( type(obj), type(obj).__name__)) doc += '\n\n'.join([ super(UrlHelp, self).get_doc(descriptor), "Class docstring\n===============", cls_doc]) # a function or method --> use super get_doc else: doc += super(UrlHelp, self).get_doc(descriptor) # otherwise the object has been defined in this session else: # an instance --> use super get_doc for instance and the type if descriptor.objtype == 'data': cls_doc = super(UrlHelp, self).get_doc(self.describe_object( type(obj), type(obj).__name__)) doc = '\n\n'.join([ super(UrlHelp, self).get_doc(descriptor), "Class docstring\n===============", cls_doc]) # a function or method --> use super get_doc else: doc = super(UrlHelp, self).get_doc(descriptor) return doc.rstrip() + '\n' def process_docstring(self, lines, descriptor): """Process the lines with the napoleon sphinx extension""" lines = list(chain(*(l.splitlines() for l in lines))) lines = NumpyDocstring( lines, what=descriptor.objtype, name=descriptor.name, obj=descriptor.obj).lines() lines = GoogleDocstring( lines, what=descriptor.objtype, name=descriptor.name, obj=descriptor.obj).lines() return indent(super(UrlHelp, self).process_docstring( lines, descriptor)) def close(self, *args, **kwargs): if kwargs.pop('force', False) or ( not is_running_tests() and self.sphinx_thread is not None): try: del self.sphinx_thread.app except AttributeError: pass shutil.rmtree(self.build_dir, ignore_errors=True) if self._temp_dir: shutil.rmtree(self.sphinx_dir, ignore_errors=True) del self.sphinx_thread return super(UrlHelp, self).close(*args, **kwargs) elif is_running_tests(): self.bt_url_lock.setChecked(self.bt_url_lock_default) self.bt_lock.setChecked(self.bt_lock_default) else: return super(UrlHelp, self).close(*args, **kwargs) class SphinxThread(QtCore.QThread): """A thread to render sphinx documentation in a separate process""" #: A signal to be emitted when the rendering finished. The url is the #: file location html_ready = QtCore.pyqtSignal(str) html_error = QtCore.pyqtSignal(str) def __init__(self, outdir, html_text_no_doc=''): super(SphinxThread, self).__init__() self.doc = None self.name = None self.html_text_no_doc = html_text_no_doc self.outdir = outdir self.index_file = osp.join(self.outdir, 'psyplot.rst') self.confdir = osp.join(get_module_path(__name__), 'sphinx_supp') shutil.copyfile(osp.join(self.confdir, 'psyplot.rst'), osp.join(self.outdir, 'psyplot.rst')) self.build_dir = osp.join(self.outdir, '_build', 'html') def render(self, doc, name): """Render the given rst string and save the file as ``name + '.rst'`` Parameters ---------- doc: str The rst docstring name: str the name to use for the file""" if self.wait(): self.doc = doc self.name = name # start rendering in separate process if rcParams['help_explorer.render_docs_parallel']: self.start() else: self.run() def run(self): """Create the html file. When called the first time, it may take a while because the :class:`sphinx.application.Sphinx` app is build, potentially with intersphinx When finished, the html_ready signal is emitted""" if not hasattr(self, 'app'): from IPython.core.history import HistoryAccessor # to avoid history access conflicts between different threads, # we disable the ipython history HistoryAccessor.enabled.default_value = False self.app = Sphinx(self.outdir, self.confdir, self.build_dir, osp.join(self.outdir, '_build', 'doctrees'), 'html', status=StreamToLogger(logger, logging.DEBUG), warning=StreamToLogger(logger, logging.DEBUG)) if self.name is not None: docfile = osp.abspath(osp.join(self.outdir, self.name + '.rst')) if docfile == self.index_file: self.name += '1' docfile = osp.abspath( osp.join(self.outdir, self.name + '.rst')) html_file = osp.abspath(osp.join( self.outdir, '_build', 'html', self.name + '.html')) if not osp.exists(docfile): with open(self.index_file, 'a') as f: f.write('\n ' + self.name) with open(docfile, 'w') as f: f.write(self.doc) else: html_file = osp.abspath(osp.join( self.outdir, '_build', 'html', 'psyplot.html')) try: self.app.build(None, []) except Exception: msg = 'Error while building sphinx document %s' % ( self.name) self.html_error.emit('<b>' + msg + '</b>') logger.debug(msg) else: self.html_ready.emit(file2html(html_file)) class HelpExplorer(QWidget, DockMixin): """A widget for showing the documentation. It behaves somewhat similar to spyders object inspector plugin and can show restructured text either as html (if sphinx is installed) or as plain text. It furthermore has a browser to show html content Warnings -------- The :class:`HelpBrowser` class is known to crash under PyQt4 when new web page domains are loaded. Hence you should disable the browsing to different remote websites and even disable intersphinx""" #: The viewer classes used by the help explorer. :class:`HelpExplorer` #: instances replace this attribute with the corresponding HelpMixin #: instance viewers = OrderedDict([('HTML help', UrlHelp), ('Plain text', TextHelp)]) if not rcParams['help_explorer.use_webengineview']: del viewers['HTML help'] def __init__(self, *args, **kwargs): super(HelpExplorer, self).__init__(*args, **kwargs) self.vbox = vbox = QVBoxLayout() self.combo = QComboBox(parent=self) vbox.addWidget(self.combo) if _viewers: self.viewers = _viewers.copy() for w in self.viewers.values(): w.setParent(self) else: self.viewers = OrderedDict( [(key, cls(parent=self)) for key, cls in six.iteritems( self.viewers)]) # save the UrlHelp because QWebEngineView creates child processes # that are not properly closed by PyQt and as such use too much # memory if is_running_tests(): for key, val in self.viewers.items(): _viewers[key] = val for key, ini in six.iteritems(self.viewers): self.combo.addItem(key) ini.hide() vbox.addWidget(ini) self.viewer = next(six.itervalues(self.viewers)) self.viewer.show() self.combo.currentIndexChanged[str].connect(self.set_viewer) self.setLayout(vbox) def set_viewer(self, name): """Sets the current documentation viewer Parameters ---------- name: str or object A string must be one of the :attr:`viewers` attribute. An object can be one of the values in the :attr:`viewers` attribute""" if isstring(name) and asstring(name) not in self.viewers: raise ValueError("Don't have a viewer named %s" % (name, )) elif not isstring(name): viewer = name else: name = asstring(name) viewer = self.viewers[name] self.viewer.hide() self.viewer = viewer self.viewer.show() if (isstring(name) and not self.combo.currentText() == name): self.combo.setCurrentIndex(list(self.viewers).index(name)) @docstrings.dedent def show_help(self, obj, oname='', files=None): """ Show the documentaion of the given object We first try to use the current viewer based upon it's :attr:`HelpMixin.can_document_object` attribute. If this does not work, we check the other viewers Parameters ---------- %(HelpMixin.show_help.parameters)s""" oname = asstring(oname) ret = None if self.viewer.can_document_object: try: ret = self.viewer.show_help(obj, oname=oname, files=files) except Exception: logger.debug("Could not document %s with %s viewer!", oname, self.combo.currentText(), exc_info=True) else: curr_i = self.combo.currentIndex() for i, (viewername, viewer) in enumerate( six.iteritems(self.viewers)): if i != curr_i and viewer.can_document_object: self.set_viewer(viewername) self.combo.blockSignals(True) self.combo.setCurrentIndex(i) self.combo.blockSignals(False) try: ret = viewer.show_help(obj, oname=oname, files=files) except Exception: logger.debug("Could not document %s with %s viewer!", oname, viewername, exc_info=True) if ret: self.parent().raise_() return ret @docstrings.dedent def show_rst(self, text, oname='', files=None): """ Show restructured text We first try to use the current viewer based upon it's :attr:`HelpMixin.can_show_rst` attribute. If this does not work, we check the other viewers Parameters ---------- %(HelpMixin.show_rst.parameters)s""" ret = None if self.viewer.can_show_rst: ret = self.viewer.show_rst(text, oname=oname, files=files) else: for viewer in six.itervalues(self.viewers): if viewer.can_show_rst: self.set_viewer(viewer) ret = viewer.show_rst(text, oname=oname, files=files) break if ret: self.parent().raise_() return ret @docstrings.dedent def show_intro(self, text=''): """ Show an intro text We first try to use the current viewer based upon it's :attr:`HelpMixin.can_show_rst` attribute. If this does not work, we check the other viewers Parameters ---------- %(HelpMixin.show_intro.parameters)s""" found = False for i, viewer in enumerate(six.itervalues(self.viewers)): viewer.show_intro(text) if not found and viewer.can_show_rst: if i: self.set_viewer(viewer) found = True def close(self, *args, **kwargs): try: self.viewers['HTML help'].close(*args, **kwargs) except (KeyError, AttributeError): pass return super(HelpExplorer, self).close(*args, **kwargs)
gpl-2.0
jreback/pandas
pandas/tests/extension/base/setitem.py
1
11423
import numpy as np import pytest import pandas as pd import pandas._testing as tm from .base import BaseExtensionTests class BaseSetitemTests(BaseExtensionTests): def test_setitem_scalar_series(self, data, box_in_series): if box_in_series: data = pd.Series(data) data[0] = data[1] assert data[0] == data[1] def test_setitem_sequence(self, data, box_in_series): if box_in_series: data = pd.Series(data) original = data.copy() data[[0, 1]] = [data[1], data[0]] assert data[0] == original[1] assert data[1] == original[0] def test_setitem_sequence_mismatched_length_raises(self, data, as_array): ser = pd.Series(data) original = ser.copy() value = [data[0]] if as_array: value = data._from_sequence(value) xpr = "cannot set using a {} indexer with a different length" with pytest.raises(ValueError, match=xpr.format("list-like")): ser[[0, 1]] = value # Ensure no modifications made before the exception self.assert_series_equal(ser, original) with pytest.raises(ValueError, match=xpr.format("slice")): ser[slice(3)] = value self.assert_series_equal(ser, original) def test_setitem_empty_indexer(self, data, box_in_series): if box_in_series: data = pd.Series(data) original = data.copy() data[np.array([], dtype=int)] = [] self.assert_equal(data, original) def test_setitem_sequence_broadcasts(self, data, box_in_series): if box_in_series: data = pd.Series(data) data[[0, 1]] = data[2] assert data[0] == data[2] assert data[1] == data[2] @pytest.mark.parametrize("setter", ["loc", "iloc"]) def test_setitem_scalar(self, data, setter): arr = pd.Series(data) setter = getattr(arr, setter) setter[0] = data[1] assert arr[0] == data[1] def test_setitem_loc_scalar_mixed(self, data): df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) df.loc[0, "B"] = data[1] assert df.loc[0, "B"] == data[1] def test_setitem_loc_scalar_single(self, data): df = pd.DataFrame({"B": data}) df.loc[10, "B"] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_loc_scalar_multiple_homogoneous(self, data): df = pd.DataFrame({"A": data, "B": data}) df.loc[10, "B"] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_iloc_scalar_mixed(self, data): df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) df.iloc[0, 1] = data[1] assert df.loc[0, "B"] == data[1] def test_setitem_iloc_scalar_single(self, data): df = pd.DataFrame({"B": data}) df.iloc[10, 0] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_iloc_scalar_multiple_homogoneous(self, data): df = pd.DataFrame({"A": data, "B": data}) df.iloc[10, 1] = data[1] assert df.loc[10, "B"] == data[1] @pytest.mark.parametrize( "mask", [ np.array([True, True, True, False, False]), pd.array([True, True, True, False, False], dtype="boolean"), pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"), ], ids=["numpy-array", "boolean-array", "boolean-array-na"], ) def test_setitem_mask(self, data, mask, box_in_series): arr = data[:5].copy() expected = arr.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[mask] = data[0] self.assert_equal(expected, arr) def test_setitem_mask_raises(self, data, box_in_series): # wrong length mask = np.array([True, False]) if box_in_series: data = pd.Series(data) with pytest.raises(IndexError, match="wrong length"): data[mask] = data[0] mask = pd.array(mask, dtype="boolean") with pytest.raises(IndexError, match="wrong length"): data[mask] = data[0] def test_setitem_mask_boolean_array_with_na(self, data, box_in_series): mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean") mask[:3] = True mask[3:5] = pd.NA if box_in_series: data = pd.Series(data) data[mask] = data[0] assert (data[:3] == data[0]).all() @pytest.mark.parametrize( "idx", [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])], ids=["list", "integer-array", "numpy-array"], ) def test_setitem_integer_array(self, data, idx, box_in_series): arr = data[:5].copy() expected = data.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[idx] = arr[0] self.assert_equal(arr, expected) @pytest.mark.parametrize( "idx, box_in_series", [ ([0, 1, 2, pd.NA], False), pytest.param( [0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948") ), (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False), (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False), ], ids=["list-False", "list-True", "integer-array-False", "integer-array-True"], ) def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series): arr = data.copy() # TODO(xfail) this raises KeyError about labels not found (it tries label-based) # for list of labels with Series if box_in_series: arr = pd.Series(data, index=[tm.rands(4) for _ in range(len(data))]) msg = "Cannot index with an integer indexer containing NA values" with pytest.raises(ValueError, match=msg): arr[idx] = arr[0] @pytest.mark.parametrize("as_callable", [True, False]) @pytest.mark.parametrize("setter", ["loc", None]) def test_setitem_mask_aligned(self, data, as_callable, setter): ser = pd.Series(data) mask = np.zeros(len(data), dtype=bool) mask[:2] = True if as_callable: mask2 = lambda x: mask else: mask2 = mask if setter: # loc target = getattr(ser, setter) else: # Series.__setitem__ target = ser target[mask2] = data[5:7] ser[mask2] = data[5:7] assert ser[0] == data[5] assert ser[1] == data[6] @pytest.mark.parametrize("setter", ["loc", None]) def test_setitem_mask_broadcast(self, data, setter): ser = pd.Series(data) mask = np.zeros(len(data), dtype=bool) mask[:2] = True if setter: # loc target = getattr(ser, setter) else: # __setitem__ target = ser target[mask] = data[10] assert ser[0] == data[10] assert ser[1] == data[10] def test_setitem_expand_columns(self, data): df = pd.DataFrame({"A": data}) result = df.copy() result["B"] = 1 expected = pd.DataFrame({"A": data, "B": [1] * len(data)}) self.assert_frame_equal(result, expected) result = df.copy() result.loc[:, "B"] = 1 self.assert_frame_equal(result, expected) # overwrite with new type result["B"] = data expected = pd.DataFrame({"A": data, "B": data}) self.assert_frame_equal(result, expected) def test_setitem_expand_with_extension(self, data): df = pd.DataFrame({"A": [1] * len(data)}) result = df.copy() result["B"] = data expected = pd.DataFrame({"A": [1] * len(data), "B": data}) self.assert_frame_equal(result, expected) result = df.copy() result.loc[:, "B"] = data self.assert_frame_equal(result, expected) def test_setitem_frame_invalid_length(self, data): df = pd.DataFrame({"A": [1] * len(data)}) xpr = ( rf"Length of values \({len(data[:5])}\) " rf"does not match length of index \({len(df)}\)" ) with pytest.raises(ValueError, match=xpr): df["B"] = data[:5] @pytest.mark.xfail(reason="GH#20441: setitem on extension types.") def test_setitem_tuple_index(self, data): s = pd.Series(data[:2], index=[(0, 0), (0, 1)]) expected = pd.Series(data.take([1, 1]), index=s.index) s[(0, 1)] = data[1] self.assert_series_equal(s, expected) def test_setitem_slice(self, data, box_in_series): arr = data[:5].copy() expected = data.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[:3] = data[0] self.assert_equal(arr, expected) def test_setitem_loc_iloc_slice(self, data): arr = data[:5].copy() s = pd.Series(arr, index=["a", "b", "c", "d", "e"]) expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index) result = s.copy() result.iloc[:3] = data[0] self.assert_equal(result, expected) result = s.copy() result.loc[:"c"] = data[0] self.assert_equal(result, expected) def test_setitem_slice_mismatch_length_raises(self, data): arr = data[:5] with pytest.raises(ValueError): arr[:1] = arr[:2] def test_setitem_slice_array(self, data): arr = data[:5].copy() arr[:5] = data[-5:] self.assert_extension_array_equal(arr, data[-5:]) def test_setitem_scalar_key_sequence_raise(self, data): arr = data[:5].copy() with pytest.raises(ValueError): arr[0] = arr[[0, 1]] def test_setitem_preserves_views(self, data): # GH#28150 setitem shouldn't swap the underlying data view1 = data.view() view2 = data[:] data[0] = data[1] assert view1[0] == data[1] assert view2[0] == data[1] def test_setitem_dataframe_column_with_index(self, data): # https://github.com/pandas-dev/pandas/issues/32395 df = expected = pd.DataFrame({"data": pd.Series(data)}) result = pd.DataFrame(index=df.index) result.loc[df.index, "data"] = df["data"] self.assert_frame_equal(result, expected) def test_setitem_dataframe_column_without_index(self, data): # https://github.com/pandas-dev/pandas/issues/32395 df = expected = pd.DataFrame({"data": pd.Series(data)}) result = pd.DataFrame(index=df.index) result.loc[:, "data"] = df["data"] self.assert_frame_equal(result, expected) def test_setitem_series_with_index(self, data): # https://github.com/pandas-dev/pandas/issues/32395 ser = expected = pd.Series(data, name="data") result = pd.Series(index=ser.index, dtype=object, name="data") result.loc[ser.index] = ser self.assert_series_equal(result, expected) def test_setitem_series_without_index(self, data): # https://github.com/pandas-dev/pandas/issues/32395 ser = expected = pd.Series(data, name="data") result = pd.Series(index=ser.index, dtype=object, name="data") result.loc[:] = ser self.assert_series_equal(result, expected)
bsd-3-clause
bloyl/mne-python
mne/preprocessing/tests/test_ica.py
4
57315
# Author: Denis Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) from contextlib import nullcontext from itertools import product import os import os.path as op import shutil from unittest import SkipTest import pytest import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose, assert_equal) from scipy import stats, linalg from scipy.io import loadmat, savemat import matplotlib.pyplot as plt from mne import (Epochs, read_events, pick_types, create_info, EpochsArray, EvokedArray, Annotations, pick_channels_regexp, make_ad_hoc_cov) from mne.cov import read_cov from mne.preprocessing import (ICA as _ICA, ica_find_ecg_events, ica_find_eog_events, read_ica) from mne.preprocessing.ica import (get_score_funcs, corrmap, _sort_components, _ica_explained_variance, read_ica_eeglab) from mne.io import read_raw_fif, Info, RawArray, read_raw_ctf, read_raw_eeglab from mne.io.pick import _DATA_CH_TYPES_SPLIT, get_channel_type_constants from mne.io.eeglab.eeglab import _check_load_mat from mne.rank import _compute_rank_int from mne.utils import catch_logging, requires_sklearn from mne.datasets import testing from mne.event import make_fixed_length_events data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') test_cov_name = op.join(data_dir, 'test-cov.fif') test_base_dir = testing.data_path(download=False) ctf_fname = op.join(test_base_dir, 'CTF', 'testdata_ctf.ds') fif_fname = op.join(test_base_dir, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif') eeglab_fname = op.join(test_base_dir, 'EEGLAB', 'test_raw.set') eeglab_montage = op.join(test_base_dir, 'EEGLAB', 'test_chans.locs') ctf_fname2 = op.join(test_base_dir, 'CTF', 'catch-alp-good-f.ds') event_id, tmin, tmax = 1, -0.2, 0.2 # if stop is too small pca may fail in some cases, but we're okay on this file start, stop = 0, 6 score_funcs_unsuited = ['pointbiserialr', 'ansari'] def ICA(*args, **kwargs): """Fix the random state in tests.""" if 'random_state' not in kwargs: kwargs['random_state'] = 0 return _ICA(*args, **kwargs) def _skip_check_picard(method): if method == 'picard': try: import picard # noqa, analysis:ignore except Exception as exp: raise SkipTest("Picard is not installed (%s)." % (exp,)) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_ica_full_data_recovery(method): """Test recovery of full data when no source is rejected.""" # Most basic recovery _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() raw.info['projs'] = [] events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:10] epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=None, preload=True) evoked = epochs.average() n_channels = 5 data = raw._data[:n_channels].copy() data_epochs = epochs.get_data() data_evoked = evoked.data raw.set_annotations(Annotations([0.5], [0.5], ['BAD'])) methods = [method] for method in methods: stuff = [(2, n_channels, True), (2, n_channels // 2, False)] for n_components, n_pca_components, ok in stuff: ica = ICA(n_components=n_components, random_state=0, method=method, max_iter=1) kwargs = dict(exclude=[], n_pca_components=n_pca_components) picks = list(range(n_channels)) with pytest.warns(UserWarning, match=None): # sometimes warns ica.fit(raw, picks=picks) _assert_ica_attributes(ica, raw.get_data(picks)) raw2 = ica.apply(raw.copy(), **kwargs) if ok: assert_allclose(data[:n_channels], raw2._data[:n_channels], rtol=1e-10, atol=1e-15) else: diff = np.abs(data[:n_channels] - raw2._data[:n_channels]) assert (np.max(diff) > 1e-14) ica = ICA(n_components=n_components, method=method, random_state=0) with pytest.warns(None): # sometimes warns ica.fit(epochs, picks=picks) _assert_ica_attributes(ica, epochs.get_data(picks)) epochs2 = ica.apply(epochs.copy(), **kwargs) data2 = epochs2.get_data()[:, :n_channels] if ok: assert_allclose(data_epochs[:, :n_channels], data2, rtol=1e-10, atol=1e-15) else: diff = np.abs(data_epochs[:, :n_channels] - data2) assert (np.max(diff) > 1e-14) evoked2 = ica.apply(evoked.copy(), **kwargs) data2 = evoked2.data[:n_channels] if ok: assert_allclose(data_evoked[:n_channels], data2, rtol=1e-10, atol=1e-15) else: diff = np.abs(evoked.data[:n_channels] - data2) assert (np.max(diff) > 1e-14) with pytest.raises(ValueError, match='Invalid value'): ICA(method='pizza-decomposision') @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_ica_simple(method): """Test that ICA recovers the unmixing matrix in a simple case.""" if method == "fastica": try: import sklearn # noqa: F401 except ImportError: raise SkipTest("scikit-learn not installed") _skip_check_picard(method) n_components = 3 n_samples = 1000 rng = np.random.RandomState(0) S = rng.laplace(size=(n_components, n_samples)) A = rng.randn(n_components, n_components) data = np.dot(A, S) info = create_info(data.shape[-2], 1000., 'eeg') cov = make_ad_hoc_cov(info) ica = ICA(n_components=n_components, method=method, random_state=0, noise_cov=cov) with pytest.warns(RuntimeWarning, match='No average EEG.*'): ica.fit(RawArray(data, info)) transform = ica.unmixing_matrix_ @ ica.pca_components_ @ A amari_distance = np.mean(np.sum(np.abs(transform), axis=1) / np.max(np.abs(transform), axis=1) - 1.) assert amari_distance < 0.1 def test_warnings(): """Test that ICA warns on certain input data conditions.""" raw = read_raw_fif(raw_fname).crop(0, 5).load_data() events = read_events(event_name) epochs = Epochs(raw, events=events, baseline=None, preload=True) ica = ICA(n_components=2, max_iter=1, method='infomax', random_state=0) # not high-passed epochs.info['highpass'] = 0. with pytest.warns(RuntimeWarning, match='should be high-pass filtered'): ica.fit(epochs) # baselined epochs.info['highpass'] = 1. epochs.baseline = (epochs.tmin, 0) with pytest.warns(RuntimeWarning, match='epochs.*were baseline-corrected'): ica.fit(epochs) # cleaning baseline-corrected data epochs.info['highpass'] = 1. epochs.baseline = None ica.fit(epochs) epochs.baseline = (epochs.tmin, 0) with pytest.warns(RuntimeWarning, match='consider baseline-correcting.*' 'again'): ica.apply(epochs) @requires_sklearn @pytest.mark.parametrize('n_components', (None, 0.9999, 8, 9, 10)) @pytest.mark.parametrize('n_pca_components', [8, 9, 0.9999, 10]) @pytest.mark.filterwarnings('ignore:FastICA did not converge.*:UserWarning') def test_ica_noop(n_components, n_pca_components, tmpdir): """Test that our ICA is stable even with a bad max_pca_components.""" data = np.random.RandomState(0).randn(10, 1000) info = create_info(10, 1000., 'eeg') raw = RawArray(data, info) raw.set_eeg_reference() raw.info['highpass'] = 1.0 # fake high-pass filtering assert np.linalg.matrix_rank(raw.get_data()) == 9 kwargs = dict(n_components=n_components, verbose=True) if isinstance(n_components, int) and \ isinstance(n_pca_components, int) and \ n_components > n_pca_components: return ica = ICA(**kwargs) ica.n_pca_components = n_pca_components # backward compat if n_components == 10 and n_pca_components == 0.9999: with pytest.raises(RuntimeError, match='.*requires.*PCA.*'): ica.fit(raw) return if n_components == 10 and n_pca_components == 10: ctx = pytest.warns(RuntimeWarning, match='.*unstable.*integer <= 9') bad = True # pinv will fail elif n_components == 0.9999 and n_pca_components == 8: ctx = pytest.raises(RuntimeError, match='requires 9 PCA values.*but') bad = 'exit' else: bad = False # pinv will not fail ctx = nullcontext() with ctx: ica.fit(raw) assert ica._max_pca_components is None if bad == 'exit': return raw_new = ica.apply(raw.copy()) # 8 components is not a no-op; "bad" means our pinv has failed if n_pca_components == 8 or bad: assert ica.n_pca_components == n_pca_components assert not np.allclose(raw.get_data(), raw_new.get_data(), atol=0) return assert_allclose(raw.get_data(), raw_new.get_data(), err_msg='Id failure') _assert_ica_attributes(ica, data) # and with I/O fname = tmpdir.join('temp-ica.fif') ica.save(fname) ica = read_ica(fname) raw_new = ica.apply(raw.copy()) assert_allclose(raw.get_data(), raw_new.get_data(), err_msg='I/O failure') _assert_ica_attributes(ica) @requires_sklearn @pytest.mark.parametrize("method, max_iter_default", [("fastica", 1000), ("infomax", 500), ("picard", 500)]) def test_ica_max_iter_(method, max_iter_default): """Test that ICA.max_iter is set to the right defaults.""" _skip_check_picard(method) # check that new defaults come out for 'auto' ica = ICA(n_components=3, method=method, max_iter='auto') assert ica.max_iter == max_iter_default # check that user input comes out unchanged ica = ICA(n_components=3, method=method, max_iter=2000) assert ica.max_iter == 2000 with pytest.raises(ValueError, match='Invalid'): ICA(max_iter='foo') with pytest.raises(TypeError, match='must be an instance'): ICA(max_iter=1.) @requires_sklearn @pytest.mark.parametrize("method", ["infomax", "fastica", "picard"]) def test_ica_n_iter_(method, tmpdir): """Test that ICA.n_iter_ is set after fitting.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() n_components = 3 max_iter = 1 ica = ICA(n_components=n_components, max_iter=max_iter, method=method, random_state=0) if method == 'infomax': ica.fit(raw) else: with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw) assert ica.method == method assert_equal(ica.n_iter_, max_iter) # Test I/O roundtrip. output_fname = tmpdir.join('test_ica-ica.fif') _assert_ica_attributes(ica, raw.get_data('data'), limits=(5, 110)) ica.save(output_fname) ica = read_ica(output_fname) assert ica.method == method _assert_ica_attributes(ica) assert_equal(ica.n_iter_, max_iter) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_ica_rank_reduction(method): """Test recovery ICA rank reduction.""" _skip_check_picard(method) # Most basic recovery raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:10] n_components = 5 for n_pca_components in [6, 10]: with pytest.warns(UserWarning, match='did not converge'): ica = ICA(n_components=n_components, method=method, max_iter=1).fit(raw, picks=picks) rank_before = _compute_rank_int(raw.copy().pick(picks), proj=False) assert_equal(rank_before, len(picks)) raw_clean = ica.apply(raw.copy(), n_pca_components=n_pca_components) rank_after = _compute_rank_int(raw_clean.copy().pick(picks), proj=False) # interaction between ICA rejection and PCA components difficult # to preduct. Rank_after often seems to be 1 higher then # n_pca_components assert (n_components < n_pca_components <= rank_after <= rank_before) # This is a lot of parameters but they interact so they matter. Also they in # total take < 2 sec on a workstation. @pytest.mark.parametrize('n_pca_components', (None, 0.999999)) @pytest.mark.parametrize('proj', (True, False)) @pytest.mark.parametrize('cov', (False, True)) @pytest.mark.parametrize('meg', ('mag', True, False)) @pytest.mark.parametrize('eeg', (False, True)) def test_ica_projs(n_pca_components, proj, cov, meg, eeg): """Test that ICA handles projections properly.""" if cov and not proj: # proj is always done with cov return if not meg and not eeg: # no channels return raw = read_raw_fif(raw_fname).crop(0.5, stop).pick_types( meg=meg, eeg=eeg) raw.pick(np.arange(0, len(raw.ch_names), 5)) # just for speed raw.info.normalize_proj() assert 10 < len(raw.ch_names) < 75 if eeg: raw.set_eeg_reference(projection=True) raw.load_data() raw._data -= raw._data.mean(-1, keepdims=True) raw_data = raw.get_data() assert len(raw.info['projs']) > 0 assert not raw.proj raw_fit = raw.copy() kwargs = dict(atol=1e-12 if eeg else 1e-20, rtol=1e-8) if proj: raw_fit.apply_proj() fit_data = raw_fit.get_data() if proj: assert not np.allclose(raw_fit.get_data(), raw_data, **kwargs) else: assert np.allclose(raw_fit.get_data(), raw_data, **kwargs) assert raw_fit.proj == proj if cov: noise_cov = make_ad_hoc_cov(raw.info) else: noise_cov = None # infomax here just so we don't require sklearn ica = ICA(max_iter=1, noise_cov=noise_cov, method='infomax', n_components=10) with pytest.warns(None): # convergence ica.fit(raw_fit) if cov: assert ica.pre_whitener_.shape == (len(raw.ch_names),) * 2 else: assert ica.pre_whitener_.shape == (len(raw.ch_names), 1) with catch_logging() as log: raw_apply = ica.apply( raw_fit.copy(), n_pca_components=n_pca_components, verbose=True) log = log.getvalue() print(log) # very useful for debugging, might as well leave it in if proj: assert 'Applying projection' in log else: assert 'Applying projection' not in log assert_allclose(raw_apply.get_data(), fit_data, **kwargs) raw_apply = ica.apply(raw.copy()) apply_data = raw_apply.get_data() assert_allclose(apply_data, fit_data, **kwargs) if proj: assert not np.allclose(apply_data, raw_data, **kwargs) else: assert_allclose(apply_data, raw_data, **kwargs) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_ica_reset(method): """Test ICA resetting.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:10] run_time_attrs = ( 'pre_whitener_', 'unmixing_matrix_', 'mixing_matrix_', 'n_components_', 'n_samples_', 'pca_components_', 'pca_explained_variance_', 'pca_mean_', 'n_iter_' ) with pytest.warns(UserWarning, match='did not converge'): ica = ICA( n_components=3, method=method, max_iter=1).fit(raw, picks=picks) assert (all(hasattr(ica, attr) for attr in run_time_attrs)) assert ica.labels_ is not None ica._reset() assert (not any(hasattr(ica, attr) for attr in run_time_attrs)) assert ica.labels_ is not None @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) @pytest.mark.parametrize('n_components', (2, 0.6)) @pytest.mark.parametrize('noise_cov', (False, True)) @pytest.mark.parametrize('n_pca_components', [20]) def test_ica_core(method, n_components, noise_cov, n_pca_components): """Test ICA on raw and epochs.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(0, stop).load_data() # The None cases help reveal bugs but are time consuming. if noise_cov: noise_cov = read_cov(test_cov_name) noise_cov['projs'] = [] # avoid warnings else: noise_cov = None events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[::4] raw.pick(picks[::4]) raw.del_proj() del picks epochs = Epochs(raw, events[:4], event_id, tmin, tmax, baseline=None, preload=True) # test essential core functionality # Test ICA raw ica = ICA(noise_cov=noise_cov, n_components=n_components, method=method, max_iter=1) with pytest.raises(ValueError, match='Cannot check for channels of t'): 'meg' in ica print(ica) # to test repr # test fit checker with pytest.raises(RuntimeError, match='No fit available'): ica.get_sources(raw) with pytest.raises(RuntimeError, match='No fit available'): ica.get_sources(epochs) # Test error upon empty epochs fitting with pytest.raises(RuntimeError, match='none were found'): ica.fit(epochs[0:0]) # test decomposition with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw) repr(ica) # to test repr assert ('mag' in ica) # should now work without error # test re-fit unmixing1 = ica.unmixing_matrix_ with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw) assert_array_almost_equal(unmixing1, ica.unmixing_matrix_) raw_sources = ica.get_sources(raw) # test for #3804 assert_equal(raw_sources._filenames, [None]) print(raw_sources) # test for gh-6271 (scaling of ICA traces) fig = raw_sources.plot() assert len(fig.mne.ax_main.lines) in (4, 8) for line in fig.mne.ax_main.lines: y = line.get_ydata() if len(y) > 2: # actual data, not markers assert np.ptp(y) < 15 plt.close('all') sources = raw_sources[:, :][0] assert (sources.shape[0] == ica.n_components_) # test preload filter raw3 = raw.copy() raw3.preload = False with pytest.raises(RuntimeError, match='to be loaded'): ica.apply(raw3) ####################################################################### # test epochs decomposition ica = ICA(noise_cov=noise_cov, n_components=n_components, method=method) with pytest.warns(None): # sometimes warns ica.fit(epochs) _assert_ica_attributes(ica, epochs.get_data(), limits=(0.2, 20)) data = epochs.get_data()[:, 0, :] n_samples = np.prod(data.shape) assert_equal(ica.n_samples_, n_samples) print(ica) # to test repr sources = ica.get_sources(epochs).get_data() assert (sources.shape[1] == ica.n_components_) with pytest.raises(ValueError, match='target do not have the same nu'): ica.score_sources(epochs, target=np.arange(1)) # test preload filter epochs3 = epochs.copy() epochs3.preload = False with pytest.raises(RuntimeError, match='requires epochs data to be l'): ica.apply(epochs3) # test for bug with whitener updating _pre_whitener = ica.pre_whitener_.copy() epochs._data[:, 0, 10:15] *= 1e12 ica.apply(epochs.copy()) assert_array_equal(_pre_whitener, ica.pre_whitener_) # test expl. var threshold leading to empty sel ica.n_components = 0.1 with pytest.raises(RuntimeError, match='One PCA component captures most'): ica.fit(epochs) offender = 1, 2, 3, with pytest.raises(ValueError, match='Data input must be of Raw'): ica.get_sources(offender) with pytest.raises(TypeError, match='must be an instance of'): ica.fit(offender) with pytest.raises(TypeError, match='must be an instance of'): ica.apply(offender) # gh-7868 ica.n_pca_components = 3 ica.n_components = None with pytest.raises(ValueError, match='pca_components.*is greater'): ica.fit(epochs, picks=[0, 1]) ica.n_pca_components = None ica.n_components = 3 with pytest.raises(ValueError, match='n_components.*cannot be greater'): ica.fit(epochs, picks=[0, 1]) @pytest.fixture def short_raw_epochs(): """Get small data.""" raw = read_raw_fif(raw_fname).crop(0, 5).load_data() raw.pick_channels(set(raw.ch_names[::10]) | set( ['EOG 061', 'MEG 1531', 'MEG 1441', 'MEG 0121'])) assert 'eog' in raw raw.del_proj() # avoid warnings raw.set_annotations(Annotations([0.5], [0.5], ['BAD'])) raw.resample(100) # XXX This breaks the tests :( # raw.info['bads'] = [raw.ch_names[1]] # Create epochs that have different channels from raw events = make_fixed_length_events(raw) picks = pick_types(raw.info, meg=True, eeg=True, eog=False)[:-1] epochs = Epochs(raw, events, None, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, proj=False) assert len(epochs) == 3 epochs_eog = Epochs(raw, epochs.events, event_id, tmin, tmax, picks=('meg', 'eog'), baseline=(None, 0), preload=True) return raw, epochs, epochs_eog @requires_sklearn @pytest.mark.slowtest @pytest.mark.parametrize("method", ["picard", "fastica"]) def test_ica_additional(method, tmpdir, short_raw_epochs): """Test additional ICA functionality.""" _skip_check_picard(method) raw, epochs, epochs_eog = short_raw_epochs few_picks = np.arange(5) # test if n_components=None works ica = ICA(n_components=None, method=method, max_iter=1) with pytest.warns(UserWarning, match='did not converge'): ica.fit(epochs) _assert_ica_attributes(ica, epochs.get_data('data'), limits=(0.05, 20)) test_cov = read_cov(test_cov_name) ica = ICA(noise_cov=test_cov, n_components=3, method=method) assert (ica.info is None) with pytest.warns(RuntimeWarning, match='normalize_proj'): ica.fit(raw, picks=few_picks) _assert_ica_attributes(ica, raw.get_data(np.arange(5)), limits=(1, 90)) assert (isinstance(ica.info, Info)) assert (ica.n_components_ < 5) ica = ICA(n_components=3, method=method, max_iter=1) with pytest.raises(RuntimeError, match='No fit'): ica.save('') with pytest.warns(Warning, match='converge'): ica.fit(raw, np.arange(1, 6)) _assert_ica_attributes( ica, raw.get_data(np.arange(1, 6))) # check Kuiper index threshold assert_allclose(ica._get_ctps_threshold(), 0.5) with pytest.raises(TypeError, match='str or numeric'): ica.find_bads_ecg(raw, threshold=None) with pytest.warns(RuntimeWarning, match='is longer than the signal'): ica.find_bads_ecg(raw, threshold=0.25) # check invalid `measure` with pytest.warns(RuntimeWarning, match='longer'): with pytest.raises(ValueError, match='Unknown measure'): ica.find_bads_ecg(raw, method='correlation', measure='unknown', threshold='auto') # check passing a ch_name to find_bads_ecg with pytest.warns(RuntimeWarning, match='longer'): _, scores_1 = ica.find_bads_ecg(raw, threshold='auto') with pytest.warns(RuntimeWarning, match='longer'): _, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1], threshold='auto') assert scores_1[0] != scores_2[0] # test corrmap ica2 = ica.copy() ica3 = ica.copy() corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True, ch_type="mag") with pytest.raises(RuntimeError, match='No component detected'): corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False,) corrmap([ica, ica2], (0, 0), threshold=0.5, plot=False, show=False) assert (ica.labels_["blinks"] == ica2.labels_["blinks"]) assert (0 in ica.labels_["blinks"]) # test retrieval of component maps as arrays components = ica.get_components() template = components[:, 0] EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s') corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True, ch_type="mag") assert (ica2.labels_["blinks"] == ica3.labels_["blinks"]) plt.close('all') # No match bad_ica = ica2.copy() bad_ica.mixing_matrix_[:] = 0. with pytest.warns(RuntimeWarning, match='divide'): with catch_logging() as log: corrmap([ica, bad_ica], (0, 0), threshold=0.5, plot=False, show=False, verbose=True) log = log.getvalue() assert 'No maps selected' in log # make sure a single threshold in a list works corrmap([ica, ica3], template, threshold=[0.5], label='blinks', plot=False, ch_type="mag") ica_different_channels = ICA(n_components=2, max_iter=1) with pytest.warns(Warning, match='converge'): ica_different_channels.fit(raw, picks=[2, 3, 4, 5]) pytest.raises(ValueError, corrmap, [ica_different_channels, ica], (0, 0)) # test warnings on bad filenames ica_badname = tmpdir.join('test-bad-name.fif.gz') with pytest.warns(RuntimeWarning, match='-ica.fif'): ica.save(ica_badname) with pytest.warns(RuntimeWarning, match='-ica.fif'): read_ica(ica_badname) # test decim ica = ICA(n_components=3, method=method, max_iter=1) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw, picks=few_picks) _assert_ica_attributes(ica) assert raw_._data.shape[1] == n_samples # test expl var with pytest.raises(ValueError, match=r".*1.0 \(exclusive\).*"): ICA(n_components=1., method=method) with pytest.raises(ValueError, match="Selecting one component"): ICA(n_components=1, method=method) ica = ICA(n_components=4, method=method, max_iter=1) with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw) _assert_ica_attributes(ica) assert ica.n_components_ == 4 ica_var = _ica_explained_variance(ica, raw, normalize=True) assert (np.all(ica_var[:-1] >= ica_var[1:])) # test ica sorting ica.exclude = [0] ica.labels_ = dict(blink=[0], think=[1]) ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True) assert_equal(ica_sorted.exclude, [3]) assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2])) # epochs extraction from raw fit pytest.raises(RuntimeError, ica.get_sources, epochs) # test filtering ica_raw = ica.get_sources(raw) d1 = ica_raw._data[0].copy() ica_raw.filter(4, 20, fir_design='firwin2') assert_equal(ica_raw.info['lowpass'], 20.) assert_equal(ica_raw.info['highpass'], 4.) assert ((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() ica_raw.notch_filter([10], trans_bandwidth=10, fir_design='firwin') assert ((d1 != ica_raw._data[0]).any()) test_ica_fname = tmpdir.join('test-ica.fif') ica.n_pca_components = 2 ica.method = 'fake' ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert (ica.n_pca_components == ica_read.n_pca_components) assert_equal(ica.method, ica_read.method) assert_equal(ica.labels_, ica_read.labels_) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ pre_whitener_') def f(x, y): return getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', 'pre_whitener_']: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert (ica.ch_names == ica_read.ch_names) assert (isinstance(ica_read.info, Info)) sources = ica.get_sources(raw)[:, :][0] sources2 = ica_read.get_sources(raw)[:, :][0] assert_array_almost_equal(sources, sources2) _raw1 = ica.apply(raw.copy(), exclude=[1]) _raw2 = ica_read.apply(raw.copy(), exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) ica = ICA(n_components=2, method=method, max_iter=1) with pytest.warns(None): # ICA does not converge ica.fit(raw, picks=few_picks) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(raw, target='EOG 061', score_func=func, start=0, stop=10) assert (ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(raw, start=0, stop=50, score_func=stats.skew) # check exception handling pytest.raises(ValueError, ica.score_sources, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # variance, kurtosis params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) # Make sure detect_artifacts marks the right components. # For int criterion, the doc says "E.g. range(2) would return the two # sources with the highest score". Assert that's what it does. # Only test for skew, since it's always the same code. ica.exclude = [] ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=None, eog_ch=None, skew_criterion=0, var_criterion=None, kurt_criterion=None) assert np.abs(scores[ica.exclude]) == np.max(np.abs(scores)) evoked = epochs.average() evoked_data = evoked.data.copy() raw_data = raw[:][0].copy() epochs_data = epochs.get_data().copy() with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_ecg(raw, method='ctps', threshold='auto') assert_equal(len(scores), ica.n_components_) with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_ecg(raw, method='correlation', threshold='auto') assert_equal(len(scores), ica.n_components_) with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(epochs, method='ctps', threshold='auto') assert_equal(len(scores), ica.n_components_) pytest.raises(ValueError, ica.find_bads_ecg, epochs.average(), method='ctps', threshold='auto') pytest.raises(ValueError, ica.find_bads_ecg, raw, method='crazy-coupling') with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202 with pytest.warns(RuntimeWarning, match='longer'): idx, scores = ica.find_bads_eog(raw) assert (isinstance(scores, list)) assert_equal(len(scores[0]), ica.n_components_) idx, scores = ica.find_bads_eog(evoked, ch_name='MEG 1441') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(evoked, method='correlation', threshold='auto') assert_equal(len(scores), ica.n_components_) assert_array_equal(raw_data, raw[:][0]) assert_array_equal(epochs_data, epochs.get_data()) assert_array_equal(evoked_data, evoked.data) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(epochs_eog, target='EOG 061', score_func=func) assert (ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(epochs, score_func=stats.skew) # check exception handling pytest.raises(ValueError, ica.score_sources, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.score_sources(raw, target='MEG 1531', score_func='pearsonr') with pytest.warns(RuntimeWarning, match='longer'): ecg_events = ica_find_ecg_events( raw, sources[np.abs(ecg_scores).argmax()]) assert (ecg_events.ndim == 2) # eog functionality eog_scores = ica.score_sources(raw, target='EOG 061', score_func='pearsonr') with pytest.warns(RuntimeWarning, match='longer'): eog_events = ica_find_eog_events( raw, sources[np.abs(eog_scores).argmax()]) assert (eog_events.ndim == 2) # Test ica fiff export assert raw.last_samp - raw.first_samp + 1 == raw.n_times assert raw.n_times > 100 ica_raw = ica.get_sources(raw, start=0, stop=100) assert ica_raw.n_times == 100 assert ica_raw.last_samp - ica_raw.first_samp + 1 == 100 assert_equal(len(ica_raw._filenames), 1) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert (ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = read_raw_fif(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.get_sources(epochs) assert (ica_epochs.events.shape == epochs.events.shape) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert (ica.n_components_ == len(ica_chans)) assert (ica.n_components_ == ica_epochs.get_data().shape[1]) assert (ica_epochs._raw is None) assert (ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 2], [0.9, 5], [1, 1]]: ncomps_ = ica._check_n_pca_components(ncomps) assert (ncomps_ == expected) ica = ICA(method=method) with pytest.warns(None): # sometimes does not converge ica.fit(raw, picks=few_picks) _assert_ica_attributes(ica, raw.get_data(few_picks)) with pytest.warns(RuntimeWarning, match='longer'): ica.find_bads_ecg(raw, threshold='auto') ica.find_bads_eog(epochs, ch_name='MEG 0121') assert_array_equal(raw_data, raw[:][0]) raw.drop_channels(raw.ch_names[:2]) with pytest.raises(RuntimeError, match='match fitted'): with pytest.warns(RuntimeWarning, match='longer'): ica.find_bads_eog(raw) with pytest.raises(RuntimeError, match='match fitted'): with pytest.warns(RuntimeWarning, match='longer'): ica.find_bads_ecg(raw, threshold='auto') @requires_sklearn @pytest.mark.slowtest @pytest.mark.parametrize('method, cov', [ ('picard', None), ('picard', test_cov_name), ('fastica', None), ]) def test_ica_cov(method, cov, tmpdir, short_raw_epochs): """Test ICA with cov.""" _skip_check_picard(method) raw, epochs, epochs_eog = short_raw_epochs if cov is not None: cov = read_cov(cov) # test reading and writing test_ica_fname = tmpdir.join('test-ica.fif') kwargs = dict(n_pca_components=4) ica = ICA(noise_cov=cov, n_components=2, method=method, max_iter=1) with pytest.warns(None): # ICA does not converge ica.fit(raw, picks=np.arange(10)) _assert_ica_attributes(ica) sources = ica.get_sources(epochs).get_data() assert (ica.mixing_matrix_.shape == (2, 2)) assert (ica.unmixing_matrix_.shape == (2, 2)) assert (ica.pca_components_.shape == (10, 10)) assert (sources.shape[1] == ica.n_components_) for exclude in [[], [0], np.array([1, 2, 3])]: ica.exclude = exclude ica.labels_ = {'foo': [0]} ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert (list(ica.exclude) == ica_read.exclude) assert_equal(ica.labels_, ica_read.labels_) ica.apply(raw.copy(), **kwargs) ica.exclude = [] ica.apply(raw.copy(), exclude=[1], **kwargs) assert (ica.exclude == []) ica.exclude = [0, 1] ica.apply(raw.copy(), exclude=[1], **kwargs) assert (ica.exclude == [0, 1]) ica_raw = ica.get_sources(raw) assert (ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) @requires_sklearn @pytest.mark.parametrize("method", ("fastica", "picard", "infomax")) @pytest.mark.parametrize("idx", (None, -1, slice(2), [0, 1])) @pytest.mark.parametrize("ch_name", (None, 'MEG 1531')) def test_detect_artifacts_replacement_of_run_ica(method, idx, ch_name): """Test replacement workflow for run_ica() function.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() ica = ICA(n_components=2, method=method) ica.fit(raw) ica.detect_artifacts(raw, start_find=0, stop_find=5, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_ica_reject_buffer(method): """Test ICA data raw buffer rejection.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') raw._data[2, 1000:1005] = 5e-12 ica = ICA(n_components=3, method=method) with catch_logging() as drop_log: ica.fit(raw, picks[:5], reject=dict(mag=2.5e-12), decim=2, tstep=0.01, verbose=True, reject_by_annotation=False) assert (raw._data[:5, ::2].shape[1] - 4 == ica.n_samples_) log = [line for line in drop_log.getvalue().split('\n') if 'detected' in line] assert_equal(len(log), 1) _assert_ica_attributes(ica) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_ica_twice(method): """Test running ICA twice.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() raw.pick(raw.ch_names[::10]) picks = pick_types(raw.info, meg='grad', exclude='bads') n_components = 0.99 n_pca_components = 0.9999 if method == 'fastica': ctx = pytest.warns(None) # convergence, sometimes else: ctx = nullcontext() ica1 = ICA(n_components=n_components, method=method) with ctx: ica1.fit(raw, picks=picks, decim=3) raw_new = ica1.apply(raw, n_pca_components=n_pca_components) ica2 = ICA(n_components=n_components, method=method) with ctx: ica2.fit(raw_new, picks=picks, decim=3) assert_equal(ica1.n_components_, ica2.n_components_) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard", "infomax"]) def test_fit_params(method, tmpdir): """Test fit_params for ICA.""" _skip_check_picard(method) fit_params = {} # test no side effects ICA(fit_params=fit_params, method=method) assert fit_params == {} # Test I/O roundtrip. # Only picard and infomax support the "extended" keyword, so limit the # tests to those. if method in ['picard', 'infomax']: tmpdir = str(tmpdir) output_fname = op.join(tmpdir, 'test_ica-ica.fif') raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() n_components = 3 max_iter = 1 fit_params = dict(extended=True) ica = ICA(fit_params=fit_params, n_components=n_components, max_iter=max_iter, method=method) fit_params_after_instantiation = ica.fit_params if method == 'infomax': ica.fit(raw) else: with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw) ica.save(output_fname) ica = read_ica(output_fname) assert ica.fit_params == fit_params_after_instantiation @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) @pytest.mark.parametrize("allow_ref_meg", [True, False]) def test_bad_channels(method, allow_ref_meg): """Test exception when unsupported channels are used.""" _skip_check_picard(method) chs = list(get_channel_type_constants()) info = create_info(len(chs), 500, chs) rng = np.random.RandomState(0) data = rng.rand(len(chs), 50) raw = RawArray(data, info) data = rng.rand(100, len(chs), 50) epochs = EpochsArray(data, info) # fake high-pass filtering raw.info['highpass'] = 1.0 epochs.info['highpass'] = 1.0 n_components = 0.9 data_chs = list(_DATA_CH_TYPES_SPLIT + ('eog',)) if allow_ref_meg: data_chs.append('ref_meg') chs_bad = list(set(chs) - set(data_chs)) ica = ICA(n_components=n_components, method=method, allow_ref_meg=allow_ref_meg) for inst in [raw, epochs]: for ch in chs_bad: if allow_ref_meg: # Test case for only bad channels picks_bad1 = pick_types(inst.info, meg=False, ref_meg=False, **{str(ch): True}) # Test case for good and bad channels picks_bad2 = pick_types(inst.info, meg=True, ref_meg=True, **{str(ch): True}) else: # Test case for only bad channels picks_bad1 = pick_types(inst.info, meg=False, **{str(ch): True}) # Test case for good and bad channels picks_bad2 = pick_types(inst.info, meg=True, **{str(ch): True}) pytest.raises(ValueError, ica.fit, inst, picks=picks_bad1) pytest.raises(ValueError, ica.fit, inst, picks=picks_bad2) pytest.raises(ValueError, ica.fit, inst, picks=[]) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_eog_channel(method): """Test that EOG channel is included when performing ICA.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname, preload=True) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=True, ecg=False, eog=True, exclude='bads') epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=None, preload=True, proj=False) n_components = 0.9 ica = ICA(n_components=n_components, method=method) # Test case for MEG and EOG data. Should have EOG channel for inst in [raw, epochs]: picks1a = pick_types(inst.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:4] picks1b = pick_types(inst.info, meg=False, stim=False, ecg=False, eog=True, exclude='bads') picks1 = np.append(picks1a, picks1b) ica.fit(inst, picks=picks1) assert (any('EOG' in ch for ch in ica.ch_names)) _assert_ica_attributes(ica, inst.get_data(picks1), limits=(0.8, 600)) # Test case for MEG data. Should have no EOG channel for inst in [raw, epochs]: picks1 = pick_types(inst.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:5] ica.fit(inst, picks=picks1) _assert_ica_attributes(ica) assert not any('EOG' in ch for ch in ica.ch_names) @requires_sklearn @pytest.mark.parametrize("method", ["fastica", "picard"]) def test_n_components_none(method, tmpdir): """Test n_components=None.""" _skip_check_picard(method) raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() events = read_events(event_name) picks = pick_types(raw.info, eeg=True, meg=False)[::5] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) n_components = None random_state = 12345 output_fname = tmpdir.join('test_ica-ica.fif') ica = ICA(method=method, n_components=n_components, random_state=random_state) with pytest.warns(None): ica.fit(epochs) _assert_ica_attributes(ica) ica.save(output_fname) ica = read_ica(output_fname) _assert_ica_attributes(ica) assert ica.n_pca_components is None assert ica.n_components is None assert ica.n_components_ == len(picks) @requires_sklearn @testing.requires_testing_data def test_ica_ctf(): """Test run ICA computation on ctf data with/without compensation.""" method = 'fastica' raw = read_raw_ctf(ctf_fname, preload=True) picks = sorted(set(range(0, len(raw.ch_names), 10)) | set(pick_types(raw.info, ref_meg=True))) raw.pick(picks) events = make_fixed_length_events(raw, 99999) for comp in [0, 1]: raw.apply_gradient_compensation(comp) epochs = Epochs(raw, events=events, tmin=-0.2, tmax=0.2, baseline=None, preload=True) evoked = epochs.average() # test fit for inst in [raw, epochs]: ica = ICA(n_components=2, max_iter=2, method=method) with pytest.warns(UserWarning, match='did not converge'): ica.fit(inst) _assert_ica_attributes(ica) # test apply and get_sources for inst in [raw, epochs, evoked]: ica.apply(inst.copy()) ica.get_sources(inst) # test mixed compensation case raw.apply_gradient_compensation(0) ica = ICA(n_components=2, max_iter=2, method=method) with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw) _assert_ica_attributes(ica) raw.apply_gradient_compensation(1) epochs = Epochs(raw, events=events, tmin=-0.2, tmax=0.2, baseline=None, preload=True) evoked = epochs.average() for inst in [raw, epochs, evoked]: with pytest.raises(RuntimeError, match='Compensation grade of ICA'): ica.apply(inst.copy()) with pytest.raises(RuntimeError, match='Compensation grade of ICA'): ica.get_sources(inst) @requires_sklearn @testing.requires_testing_data def test_ica_labels(): """Test ICA labels.""" # The CTF data are uniquely well suited to testing the ICA.find_bads_ # methods raw = read_raw_ctf(ctf_fname, preload=True) raw.pick_channels(raw.ch_names[:300:10] + raw.ch_names[300:]) # set the appropriate EEG channels to EOG and ECG rename = {'EEG057': 'eog', 'EEG058': 'eog', 'EEG059': 'ecg'} for key in rename: assert key in raw.ch_names raw.set_channel_types(rename) ica = ICA(n_components=4, max_iter=2, method='fastica', allow_ref_meg=True) with pytest.warns(UserWarning, match='did not converge'): ica.fit(raw) _assert_ica_attributes(ica) ica.find_bads_eog(raw, l_freq=None, h_freq=None) picks = list(pick_types(raw.info, meg=False, eog=True)) for idx, ch in enumerate(picks): assert '{}/{}/{}'.format('eog', idx, raw.ch_names[ch]) in ica.labels_ assert 'eog' in ica.labels_ for key in ('ecg', 'ref_meg', 'ecg/ECG-MAG'): assert key not in ica.labels_ ica.find_bads_ecg(raw, l_freq=None, h_freq=None, method='correlation', threshold='auto') picks = list(pick_types(raw.info, meg=False, ecg=True)) for idx, ch in enumerate(picks): assert '{}/{}/{}'.format('ecg', idx, raw.ch_names[ch]) in ica.labels_ for key in ('ecg', 'eog'): assert key in ica.labels_ for key in ('ref_meg', 'ecg/ECG-MAG'): assert key not in ica.labels_ # derive reference ICA components and append them to raw ica_rf = ICA(n_components=2, max_iter=2, allow_ref_meg=True) with pytest.warns(UserWarning, match='did not converge'): ica_rf.fit(raw.copy().pick_types(meg=False, ref_meg=True)) icacomps = ica_rf.get_sources(raw) # rename components so they are auto-detected by find_bads_ref icacomps.rename_channels({c: 'REF_' + c for c in icacomps.ch_names}) # and add them to raw raw.add_channels([icacomps]) ica.find_bads_ref(raw, l_freq=None, h_freq=None, method="separate") picks = pick_channels_regexp(raw.ch_names, 'REF_ICA*') for idx, ch in enumerate(picks): assert '{}/{}/{}'.format('ref_meg', idx, raw.ch_names[ch]) in ica.labels_ ica.find_bads_ref(raw, l_freq=None, h_freq=None, method="together") assert 'ref_meg' in ica.labels_ for key in ('ecg', 'eog', 'ref_meg'): assert key in ica.labels_ assert 'ecg/ECG-MAG' not in ica.labels_ ica.find_bads_ecg(raw, l_freq=None, h_freq=None, threshold='auto') for key in ('ecg', 'eog', 'ref_meg', 'ecg/ECG-MAG'): assert key in ica.labels_ @requires_sklearn @testing.requires_testing_data @pytest.mark.parametrize('fname, grade', [ (fif_fname, None), (eeglab_fname, None), (ctf_fname2, 0), (ctf_fname2, 1), ]) def test_ica_eeg(fname, grade): """Test ICA on EEG.""" method = 'fastica' if fname.endswith('.fif'): raw = read_raw_fif(fif_fname) raw.pick(raw.ch_names[::5]).load_data() raw.info.normalize_proj() elif fname.endswith('.set'): raw = read_raw_eeglab(input_fname=eeglab_fname, preload=True) else: with pytest.warns(RuntimeWarning, match='MISC channel'): raw = read_raw_ctf(ctf_fname2) raw.pick(raw.ch_names[:30] + raw.ch_names[30::10]).load_data() if grade is not None: raw.apply_gradient_compensation(grade) events = make_fixed_length_events(raw, 99999, start=0, stop=0.3, duration=0.1) picks_meg = pick_types(raw.info, meg=True, eeg=False, ref_meg=False)[:2] picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2] picks_all = [] picks_all.extend(picks_meg) picks_all.extend(picks_eeg) epochs = Epochs(raw, events=events, tmin=-0.1, tmax=0.1, baseline=None, preload=True, proj=False) evoked = epochs.average() for picks in [picks_meg, picks_eeg, picks_all]: if len(picks) == 0: continue # test fit for inst in [raw, epochs]: ica = ICA(n_components=2, max_iter=2, method=method) with pytest.warns(None): ica.fit(inst, picks=picks, verbose=True) _assert_ica_attributes(ica) # test apply and get_sources for inst in [raw, epochs, evoked]: ica.apply(inst) ica.get_sources(inst) @testing.requires_testing_data def test_read_ica_eeglab(): """Test read_ica_eeglab function.""" fname = op.join(test_base_dir, "EEGLAB", "test_raw.set") fname_cleaned_matlab = op.join(test_base_dir, "EEGLAB", "test_raw.cleaned.set") raw = read_raw_eeglab(fname, preload=True) raw_eeg = _check_load_mat(fname, None) raw_cleaned_matlab = read_raw_eeglab(fname_cleaned_matlab, preload=True) mark_to_remove = ["manual"] comp_info = raw_eeg.marks["comp_info"] if len(comp_info["flags"].shape) > 1: ind_comp_to_drop = [np.where(flags)[0] for flags, label in zip(comp_info["flags"], comp_info["label"]) if label in mark_to_remove] ind_comp_to_drop = np.unique(np.concatenate(ind_comp_to_drop)) else: ind_comp_to_drop = np.where(comp_info["flags"])[0] ica = read_ica_eeglab(fname) _assert_ica_attributes(ica) raw_cleaned = ica.apply(raw.copy(), exclude=ind_comp_to_drop) assert_allclose(raw_cleaned_matlab.get_data(), raw_cleaned.get_data(), rtol=1e-05, atol=1e-08) @testing.requires_testing_data def test_read_ica_eeglab_mismatch(tmpdir): """Test read_ica_eeglab function when there is a mismatch.""" fname_orig = op.join(test_base_dir, "EEGLAB", "test_raw.set") base = op.basename(fname_orig)[:-3] shutil.copyfile(fname_orig[:-3] + 'fdt', tmpdir.join(base + 'fdt')) fname = tmpdir.join(base) data = loadmat(fname_orig) w = data['EEG']['icaweights'][0][0] w[:] = np.random.RandomState(0).randn(*w.shape) savemat(str(fname), data, appendmat=False) assert op.isfile(fname) with pytest.warns(RuntimeWarning, match='Mismatch.*removal.*icawinv.*'): ica = read_ica_eeglab(fname) _assert_ica_attributes(ica) ica_correct = read_ica_eeglab(fname_orig) attrs = [attr for attr in dir(ica_correct) if attr.endswith('_') and not attr.startswith('_')] assert 'mixing_matrix_' in attrs assert 'unmixing_matrix_' in attrs assert ica.labels_ == ica_correct.labels_ == {} attrs.pop(attrs.index('labels_')) for attr in attrs: a, b = getattr(ica, attr), getattr(ica_correct, attr) assert_allclose(a, b, rtol=1e-12, atol=1e-12, err_msg=attr) def _assert_ica_attributes(ica, data=None, limits=(1.0, 70)): """Assert some attributes of ICA objects.""" __tracebackhide__ = True # This tests properties, but also serves as documentation of # the shapes these arrays can obtain and how they obtain them # Pre-whitener n_ch = len(ica.ch_names) assert ica.pre_whitener_.shape == ( n_ch, n_ch if ica.noise_cov is not None else 1) # PCA n_pca = ica.pca_components_.shape[0] assert ica.pca_components_.shape == (n_pca, n_ch), 'PCA shape' assert_allclose(np.dot(ica.pca_components_, ica.pca_components_.T), np.eye(n_pca), atol=1e-6, err_msg='PCA orthogonality') assert ica.pca_mean_.shape == (n_ch,) # Mixing/unmixing assert ica.unmixing_matrix_.shape == (ica.n_components_,) * 2, \ 'Unmixing shape' assert ica.mixing_matrix_.shape == (ica.n_components_,) * 2, \ 'Mixing shape' mix_unmix = np.dot(ica.mixing_matrix_, ica.unmixing_matrix_) s = linalg.svdvals(ica.unmixing_matrix_) nz = len(s) - (s > s[0] * 1e-12).sum() want = np.eye(ica.n_components_) want[:nz] = 0 assert_allclose(mix_unmix, want, atol=1e-6, err_msg='Mixing as pinv') assert ica.pca_explained_variance_.shape[0] >= \ ica.unmixing_matrix_.shape[1] # our PCA components should be unit vectors (the variances get put into # the unmixing_matrix_ to make it a whitener) norms = np.linalg.norm(ica.pca_components_, axis=1) assert_allclose(norms, 1.) # let's check the whitening if data is not None: if data.ndim == 3: data = data.transpose(1, 0, 2).reshape(data.shape[1], -1) data = ica._transform_raw(RawArray(data, ica.info), 0, None) norms = np.linalg.norm(data, axis=1) # at least close to normal assert norms.min() > limits[0], 'Not roughly unity' assert norms.max() < limits[1], 'Not roughly unity' @pytest.mark.parametrize("ch_type", ["dbs", "seeg"]) def test_ica_ch_types(ch_type): """Test ica with different channel types.""" # gh-8739 data = np.random.RandomState(0).randn(10, 1000) info = create_info(10, 1000., ch_type) raw = RawArray(data, info) events = make_fixed_length_events(raw, 99999, start=0, stop=0.3, duration=0.1) epochs = Epochs(raw, events=events, tmin=-0.1, tmax=0.1, baseline=None, preload=True, proj=False) evoked = epochs.average() # test fit method = 'infomax' for inst in [raw, epochs]: ica = ICA(n_components=2, max_iter=2, method=method) with pytest.warns(None): ica.fit(inst, verbose=True) _assert_ica_attributes(ica) # test apply and get_sources for inst in [raw, epochs, evoked]: ica.apply(inst) ica.get_sources(inst)
bsd-3-clause
dribnet/dagbldr
examples/faces_conditional_vae/flying_conditional_faces.py
3
5177
import argparse import numpy as np import os from dagbldr.datasets import fetch_fer from dagbldr.utils import convert_to_one_hot from dagbldr.utils import load_checkpoint, interpolate_between_points, make_gif parser = argparse.ArgumentParser() parser.add_argument("saved_functions_file", help="Saved pickle file from vae training") parser.add_argument("--seed", "-s", help="random seed for path calculation", action="store", default=1979, type=int) args = parser.parse_args() if not os.path.exists(args.saved_functions_file): raise ValueError("Please provide a valid path for saved pickle file!") checkpoint_dict = load_checkpoint(args.saved_functions_file) encode_function = checkpoint_dict["encode_function"] decode_function = checkpoint_dict["decode_function"] predict_function = checkpoint_dict["predict_function"] fer = fetch_fer() data = fer["data"] valid_indices = fer["valid_indices"] valid_data = data[valid_indices] mean_norm = fer["mean0"] pca_tf = fer["pca_matrix"] X = valid_data - mean_norm X = np.dot(X, pca_tf.T) y = fer["target"][valid_indices] n_classes = len(set(y)) random_state = np.random.RandomState(args.seed) # number of samples n_plot_samples = 5 # tfd dimensions width = 48 height = 48 # Get random data samples ind = np.arange(len(X)) random_state.shuffle(ind) sample_X = X[ind[:n_plot_samples]] sample_y = y[ind[:n_plot_samples]] def gen_samples(X, y): mu, log_sig = encode_function(X) # No noise at test time - repeat y twice because y_pred is needed for Theano # But it is not used unless y_sym is all -1 out, = np.dot(decode_function(mu + np.exp(log_sig), y), pca_tf) + mean_norm return out # VAE specific plotting import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt all_pred_y, = predict_function(X) all_pred_y = np.argmax(all_pred_y, axis=1) accuracy = np.mean(all_pred_y.ravel() == y.ravel()) f, axarr = plt.subplots(n_plot_samples, 2) n_correct_to_show = n_plot_samples // 2 n_incorrect_to_show = n_plot_samples - n_correct_to_show correct_ind = np.where(all_pred_y == y)[0] incorrect_ind = np.where(all_pred_y != y)[0] random_state.shuffle(correct_ind) random_state.shuffle(incorrect_ind) c = correct_ind[:n_correct_to_show] i = incorrect_ind[:n_incorrect_to_show] X_corr = X[c] X_incorr = X[i] X_stack = np.vstack((X_corr, X_incorr)) y_corr = convert_to_one_hot(y[c], n_classes) y_incorr = convert_to_one_hot(y[i], n_classes) y_stack = np.vstack((y_corr, y_incorr)) generated_X = gen_samples(X_stack, y_stack) predicted_y = convert_to_one_hot(np.hstack((all_pred_y[c], all_pred_y[i])), n_classes=n_classes) for n, (X_i, y_i, sx_i, sy_i) in enumerate( zip(np.dot(X_stack, pca_tf) + mean_norm, y_stack, generated_X, predicted_y)): axarr[n, 0].matshow(X_i.reshape(width, height), cmap="gray") axarr[n, 1].matshow(sx_i.reshape(width, height), cmap="gray") axarr[n, 0].axis('off') axarr[n, 1].axis('off') y_a = np.argmax(y_i) sy_a = np.argmax(sy_i) axarr[n, 0].text(0, 7, str(y_a), color='green') if y_a == sy_a: axarr[n, 1].text(0, 7, str(sy_a), color='green') else: axarr[n, 1].text(0, 7, str(sy_a), color='red') f.suptitle("Validation accuracy: %s" % str(accuracy)) plt.savefig('vae_reconstruction.png') plt.close() # Style plotting f, axarr = plt.subplots(n_plot_samples, n_classes + 1) for n, (X_i, y_i) in enumerate(zip(sample_X, convert_to_one_hot(sample_y, n_classes))): orig_X = np.dot(X_i[None], pca_tf) + mean_norm axarr[n, 0].matshow(orig_X.reshape(width, height), cmap="gray") axarr[n, 0].axis('off') fixed_mu, fixed_sigma = encode_function(X_i[None]) all_mu = fixed_mu * np.ones((n_classes, fixed_mu.shape[1])).astype( "float32") all_sigma = fixed_sigma * np.ones((n_classes, fixed_sigma.shape[1])).astype( "float32") all_classes = np.eye(n_classes).astype('int32') all_recs, = np.dot(decode_function(all_mu + np.exp(all_sigma), all_classes), pca_tf) + mean_norm for j in range(1, n_classes + 1): axarr[n, j].matshow(all_recs[j - 1].reshape(width, height), cmap="gray") axarr[n, j].axis('off') f.suptitle("Style variation by changing conditional") plt.savefig('vae_style.png') plt.close() # Calculate noisy linear path between points in space mus, log_sigmas = encode_function(sample_X) n_steps = 20 mu_path = interpolate_between_points(mus, n_steps=n_steps) log_sigma_path = interpolate_between_points(log_sigmas, n_steps=n_steps) # Noisy path across space from one point to another path_X = mu_path + np.exp(log_sigma_path) path_y = np.zeros((len(path_X), n_classes), dtype="int32") for i in range(n_plot_samples): path_y[i * n_steps:(i + 1) * n_steps] = sample_y[i] out, = np.dot(decode_function(path_X, path_y), pca_tf) + mean_norm text_y = [str(np.argmax(path_y[i])) for i in range(len(path_y))] color_y = ["white"] * len(text_y) make_gif(out, "vae_code.gif", width, height, list_text_per_frame=text_y, list_text_per_frame_color=color_y, delay=1, grayscale=True)
bsd-3-clause
MechCoder/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
19
4761
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n // 2] Y_train = Y[:n // 2] X_test = X[n // 2:] Y_test = Y[n // 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components plt.figure(figsize=(12, 8)) plt.subplot(221) plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.subplot(224) plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y plt.subplot(222) plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") plt.xlabel("X comp. 1") plt.ylabel("X comp. 2") plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.subplot(223) plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") plt.xlabel("Y comp. 1") plt.ylabel("Y comp. 2") plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coef_ with B print("Estimated B") print(np.round(pls2.coef_, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of components exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coef_, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = cca.transform(X_train, Y_train) X_test_r, Y_test_r = cca.transform(X_test, Y_test)
bsd-3-clause
antepsis/anteplahmacun
sympy/plotting/tests/test_plot.py
16
9867
from sympy import (pi, sin, cos, Symbol, Integral, Sum, sqrt, log, oo, LambertW, I, meijerg, exp_polar, Max, Piecewise) from sympy.plotting import (plot, plot_parametric, plot3d_parametric_line, plot3d, plot3d_parametric_surface) from sympy.plotting.plot import unset_show from sympy.utilities.pytest import skip, raises from sympy.plotting.experimental_lambdify import lambdify from sympy.external import import_module from sympy.core.decorators import wraps from tempfile import NamedTemporaryFile import os import sys import warnings class MockPrint(object): def write(self, s): pass def flush(self): pass encoding = 'utf-8' def disable_print(func, *args, **kwargs): @wraps(func) def wrapper(*args, **kwargs): sys.stdout = MockPrint() func(*args, **kwargs) sys.stdout = sys.__stdout__ return wrapper unset_show() # XXX: We could implement this as a context manager instead # That would need rewriting the plot_and_save() function # entirely class TmpFileManager: tmp_files = [] @classmethod def tmp_file(cls, name=''): cls.tmp_files.append(NamedTemporaryFile(prefix=name, suffix='.png').name) return cls.tmp_files[-1] @classmethod def cleanup(cls): map(os.remove, cls.tmp_files) def plot_and_save(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') z = Symbol('z') ### # Examples from the 'introduction' notebook ### p = plot(x) p = plot(x*sin(x), x*cos(x)) p.extend(p) p[0].line_color = lambda a: a p[1].line_color = 'b' p.title = 'Big title' p.xlabel = 'the x axis' p[1].label = 'straight line' p.legend = True p.aspect_ratio = (1, 1) p.xlim = (-15, 20) p.save(tmp_file('%s_basic_options_and_colors' % name)) p._backend.close() p.extend(plot(x + 1)) p.append(plot(x + 3, x**2)[1]) p.save(tmp_file('%s_plot_extend_append' % name)) p[2] = plot(x**2, (x, -2, 3)) p.save(tmp_file('%s_plot_setitem' % name)) p._backend.close() p = plot(sin(x), (x, -2*pi, 4*pi)) p.save(tmp_file('%s_line_explicit' % name)) p._backend.close() p = plot(sin(x)) p.save(tmp_file('%s_line_default_range' % name)) p._backend.close() p = plot((x**2, (x, -5, 5)), (x**3, (x, -3, 3))) p.save(tmp_file('%s_line_multiple_range' % name)) p._backend.close() raises(ValueError, lambda: plot(x, y)) p = plot(Piecewise((1, x > 0), (0, True)),(x,-1,1)) p.save(tmp_file('%s_plot_piecewise' % name)) p._backend.close() #parametric 2d plots. #Single plot with default range. plot_parametric(sin(x), cos(x)).save(tmp_file()) #Single plot with range. p = plot_parametric(sin(x), cos(x), (x, -5, 5)) p.save(tmp_file('%s_parametric_range' % name)) p._backend.close() #Multiple plots with same range. p = plot_parametric((sin(x), cos(x)), (x, sin(x))) p.save(tmp_file('%s_parametric_multiple' % name)) p._backend.close() #Multiple plots with different ranges. p = plot_parametric((sin(x), cos(x), (x, -3, 3)), (x, sin(x), (x, -5, 5))) p.save(tmp_file('%s_parametric_multiple_ranges' % name)) p._backend.close() #depth of recursion specified. p = plot_parametric(x, sin(x), depth=13) p.save(tmp_file('%s_recursion_depth' % name)) p._backend.close() #No adaptive sampling. p = plot_parametric(cos(x), sin(x), adaptive=False, nb_of_points=500) p.save(tmp_file('%s_adaptive' % name)) p._backend.close() #3d parametric plots p = plot3d_parametric_line(sin(x), cos(x), x) p.save(tmp_file('%s_3d_line' % name)) p._backend.close() p = plot3d_parametric_line( (sin(x), cos(x), x, (x, -5, 5)), (cos(x), sin(x), x, (x, -3, 3))) p.save(tmp_file('%s_3d_line_multiple' % name)) p._backend.close() p = plot3d_parametric_line(sin(x), cos(x), x, nb_of_points=30) p.save(tmp_file('%s_3d_line_points' % name)) p._backend.close() # 3d surface single plot. p = plot3d(x * y) p.save(tmp_file('%s_surface' % name)) p._backend.close() # Multiple 3D plots with same range. p = plot3d(-x * y, x * y, (x, -5, 5)) p.save(tmp_file('%s_surface_multiple' % name)) p._backend.close() # Multiple 3D plots with different ranges. p = plot3d( (x * y, (x, -3, 3), (y, -3, 3)), (-x * y, (x, -3, 3), (y, -3, 3))) p.save(tmp_file('%s_surface_multiple_ranges' % name)) p._backend.close() # Single Parametric 3D plot p = plot3d_parametric_surface(sin(x + y), cos(x - y), x - y) p.save(tmp_file('%s_parametric_surface' % name)) p._backend.close() # Multiple Parametric 3D plots. p = plot3d_parametric_surface( (x*sin(z), x*cos(z), z, (x, -5, 5), (z, -5, 5)), (sin(x + y), cos(x - y), x - y, (x, -5, 5), (y, -5, 5))) p.save(tmp_file('%s_parametric_surface' % name)) p._backend.close() ### # Examples from the 'colors' notebook ### p = plot(sin(x)) p[0].line_color = lambda a: a p.save(tmp_file('%s_colors_line_arity1' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_line_arity2' % name)) p._backend.close() p = plot(x*sin(x), x*cos(x), (x, 0, 10)) p[0].line_color = lambda a: a p.save(tmp_file('%s_colors_param_line_arity1' % name)) p[0].line_color = lambda a, b: a p.save(tmp_file('%s_colors_param_line_arity2a' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_param_line_arity2b' % name)) p._backend.close() p = plot3d_parametric_line(sin(x) + 0.1*sin(x)*cos(7*x), cos(x) + 0.1*cos(x)*cos(7*x), 0.1*sin(7*x), (x, 0, 2*pi)) p[0].line_color = lambda a: sin(4*a) p.save(tmp_file('%s_colors_3d_line_arity1' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_3d_line_arity2' % name)) p[0].line_color = lambda a, b, c: c p.save(tmp_file('%s_colors_3d_line_arity3' % name)) p._backend.close() p = plot3d(sin(x)*y, (x, 0, 6*pi), (y, -5, 5)) p[0].surface_color = lambda a: a p.save(tmp_file('%s_colors_surface_arity1' % name)) p[0].surface_color = lambda a, b: b p.save(tmp_file('%s_colors_surface_arity2' % name)) p[0].surface_color = lambda a, b, c: c p.save(tmp_file('%s_colors_surface_arity3a' % name)) p[0].surface_color = lambda a, b, c: sqrt((a - 3*pi)**2 + b**2) p.save(tmp_file('%s_colors_surface_arity3b' % name)) p._backend.close() p = plot3d_parametric_surface(x * cos(4 * y), x * sin(4 * y), y, (x, -1, 1), (y, -1, 1)) p[0].surface_color = lambda a: a p.save(tmp_file('%s_colors_param_surf_arity1' % name)) p[0].surface_color = lambda a, b: a*b p.save(tmp_file('%s_colors_param_surf_arity2' % name)) p[0].surface_color = lambda a, b, c: sqrt(a**2 + b**2 + c**2) p.save(tmp_file('%s_colors_param_surf_arity3' % name)) p._backend.close() ### # Examples from the 'advanced' notebook ### # XXX: This raises the warning "The evaluation of the expression is # problematic. We are trying a failback method that may still work. Please # report this as a bug." It has to use the fallback because using evalf() # is the only way to evaluate the integral. We should perhaps just remove # that warning. with warnings.catch_warnings(record=True) as w: i = Integral(log((sin(x)**2 + 1)*sqrt(x**2 + 1)), (x, 0, y)) p = plot(i, (y, 1, 5)) p.save(tmp_file('%s_advanced_integral' % name)) p._backend.close() # Make sure no other warnings were raised assert len(w) == 1 assert issubclass(w[-1].category, UserWarning) assert "The evaluation of the expression is problematic" in str(w[0].message) s = Sum(1/x**y, (x, 1, oo)) p = plot(s, (y, 2, 10)) p.save(tmp_file('%s_advanced_inf_sum' % name)) p._backend.close() p = plot(Sum(1/x, (x, 1, y)), (y, 2, 10), show=False) p[0].only_integers = True p[0].steps = True p.save(tmp_file('%s_advanced_fin_sum' % name)) p._backend.close() ### # Test expressions that can not be translated to np and generate complex # results. ### plot(sin(x) + I*cos(x)).save(tmp_file()) plot(sqrt(sqrt(-x))).save(tmp_file()) plot(LambertW(x)).save(tmp_file()) plot(sqrt(LambertW(x))).save(tmp_file()) #Characteristic function of a StudentT distribution with nu=10 plot((meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(-I*pi)/2) + meijerg(((1/2,), ()), ((5, 0, 1/2), ()), 5*x**2 * exp_polar(I*pi)/2)) / (48 * pi), (x, 1e-6, 1e-2)).save(tmp_file()) def test_matplotlib(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") # Tests for exception handling in experimental_lambdify def test_experimental_lambify(): x = Symbol('x') f = lambdify([x], Max(x, 5)) # XXX should f be tested? If f(2) is attempted, an # error is raised because a complex produced during wrapping of the arg # is being compared with an int. assert Max(2, 5) == 5 assert Max(5, 7) == 7 x = Symbol('x-3') f = lambdify([x], x + 1) assert f(1) == 2 @disable_print def test_append_issue_7140(): x = Symbol('x') p1 = plot(x) p2 = plot(x**2) p3 = plot(x + 2) # append a series p2.append(p1[0]) assert len(p2._series) == 2 with raises(TypeError): p1.append(p2) with raises(TypeError): p1.append(p2._series)
bsd-3-clause
beepee14/scikit-learn
sklearn/feature_selection/__init__.py
244
1088
""" The :mod:`sklearn.feature_selection` module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm. """ from .univariate_selection import chi2 from .univariate_selection import f_classif from .univariate_selection import f_oneway from .univariate_selection import f_regression from .univariate_selection import SelectPercentile from .univariate_selection import SelectKBest from .univariate_selection import SelectFpr from .univariate_selection import SelectFdr from .univariate_selection import SelectFwe from .univariate_selection import GenericUnivariateSelect from .variance_threshold import VarianceThreshold from .rfe import RFE from .rfe import RFECV __all__ = ['GenericUnivariateSelect', 'RFE', 'RFECV', 'SelectFdr', 'SelectFpr', 'SelectFwe', 'SelectKBest', 'SelectPercentile', 'VarianceThreshold', 'chi2', 'f_classif', 'f_oneway', 'f_regression']
bsd-3-clause
shikhardb/scikit-learn
sklearn/tests/test_common.py
4
15884
""" General tests for all estimators in sklearn. """ # Authors: Andreas Mueller <[email protected]> # Gael Varoquaux [email protected] # License: BSD 3 clause from __future__ import print_function import os import warnings import sys import pkgutil from sklearn.externals.six import PY3 from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_false, clean_warning_registry from sklearn.utils.testing import all_estimators from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_in from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings import sklearn from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_classification from sklearn.cluster.bicluster import BiclusterMixin from sklearn.cross_validation import train_test_split from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils.estimator_checks import ( check_dtype_object, check_parameters_default_constructible, check_estimator_sparse_data, check_estimators_dtypes, check_transformer, check_clustering, check_clusterer_compute_labels_predict, check_regressors_int, check_regressors_train, check_regressors_pickle, check_transformer_pickle, check_transformers_unfitted, check_estimators_empty_data_messages, check_estimators_nan_inf, check_estimators_unfitted, check_classifiers_one_label, check_classifiers_train, check_classifiers_classes, check_classifiers_input_shapes, check_classifiers_pickle, check_class_weight_classifiers, check_class_weight_auto_classifiers, check_class_weight_auto_linear_classifier, check_estimators_overwrite_params, check_estimators_partial_fit_n_features, check_sparsify_coefficients, check_classifier_data_not_an_array, check_regressor_data_not_an_array, check_transformer_data_not_an_array, check_transformer_n_iter, check_fit_score_takes_y, check_non_transformer_estimators_n_iter, check_regressors_no_decision_function, check_pipeline_consistency, CROSS_DECOMPOSITION) def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ("Base estimators such as {0} should not be included" " in all_estimators").format(name) assert_false(name.lower().startswith('base'), msg=msg) def test_all_estimators(): # Test that estimators are default-constructible, clonable # and have working repr. estimators = all_estimators(include_meta_estimators=True) # Meta sanity-check to make sure that the estimator introspection runs # properly assert_greater(len(estimators), 0) for name, Estimator in estimators: # some can just not be sensibly default constructed yield check_parameters_default_constructible, name, Estimator def test_non_meta_estimators(): # input validation etc for non-meta estimators estimators = all_estimators() for name, Estimator in estimators: if issubclass(Estimator, BiclusterMixin): continue if name.endswith("HMM") or name.startswith("_"): continue yield check_estimators_dtypes, name, Estimator yield check_fit_score_takes_y, name, Estimator yield check_dtype_object, name, Estimator # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages, name, Estimator if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency, name, Estimator if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf, name, Estimator if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params, name, Estimator if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients, name, Estimator yield check_estimator_sparse_data, name, Estimator def test_transformers(): # test if transformers do something sensible on training set # also test all shapes / shape errors transformers = all_estimators(type_filter='transformer') for name, Transformer in transformers: # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message yield check_transformer_pickle, name, Transformer if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array, name, Transformer # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer']: # basic tests yield check_transformer, name, Transformer yield check_transformers_unfitted, name, Transformer def test_clustering(): # test if clustering algorithms do something sensible # also test all shapes / shape errors clustering = all_estimators(type_filter='cluster') for name, Alg in clustering: # test whether any classifier overwrites his init parameters during fit yield check_clusterer_compute_labels_predict, name, Alg if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering, name, Alg yield check_estimators_partial_fit_n_features, name, Alg def test_classifiers(): # test if classifiers can cope with non-consecutive classes classifiers = all_estimators(type_filter='classifier') for name, Classifier in classifiers: # test classfiers can handle non-array data yield check_classifier_data_not_an_array, name, Classifier # test classifiers trained on a single label always return this label yield check_classifiers_one_label, name, Classifier yield check_classifiers_classes, name, Classifier yield check_classifiers_pickle, name, Classifier yield check_estimators_partial_fit_n_features, name, Classifier # basic consistency testing yield check_classifiers_train, name, Classifier if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. # test if classifiers can cope with y.shape = (n_samples, 1) yield check_classifiers_input_shapes, name, Classifier # test if NotFittedError is raised yield check_estimators_unfitted, name, Classifier def test_regressors(): regressors = all_estimators(type_filter='regressor') # TODO: test with intercept # TODO: test with multiple responses for name, Regressor in regressors: # basic testing yield check_regressors_train, name, Regressor yield check_regressor_data_not_an_array, name, Regressor yield check_estimators_partial_fit_n_features, name, Regressor yield check_regressors_no_decision_function, name, Regressor # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_regressors_pickle, name, Regressor if name != 'CCA': # check that the regressor handles int input yield check_regressors_int, name, Regressor # Test if NotFittedError is raised yield check_estimators_unfitted, name, Regressor def test_configure(): # Smoke test the 'configure' step of setup, this tests all the # 'configure' functions in the setup.pys in the scikit cwd = os.getcwd() setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..')) setup_filename = os.path.join(setup_path, 'setup.py') if not os.path.exists(setup_filename): return try: os.chdir(setup_path) old_argv = sys.argv sys.argv = ['setup.py', 'config'] clean_warning_registry() with warnings.catch_warnings(): # The configuration spits out warnings when not finding # Blas/Atlas development headers warnings.simplefilter('ignore', UserWarning) if PY3: with open('setup.py') as f: exec(f.read(), dict(__name__='__main__')) else: execfile('setup.py', dict(__name__='__main__')) finally: sys.argv = old_argv os.chdir(cwd) def test_class_weight_classifiers(): # test that class_weight works and that the semantics are consistent classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): classifiers = [c for c in classifiers if 'class_weight' in c[1]().get_params().keys()] for name, Classifier in classifiers: if name == "NuSVC": # the sparse version has a parameter that doesn't do anything continue if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! continue yield check_class_weight_classifiers, name, Classifier def test_class_weight_auto_classifiers(): # Test that class_weight="auto" improves f1-score # This test is broken; its success depends on: # * a rare fortuitous RNG seed for make_classification; and # * the use of binary F1 over a seemingly arbitrary positive class for two # datasets, and weighted average F1 for the third. # Its expectations need to be clarified and reimplemented. raise SkipTest('This test requires redefinition') classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): classifiers = [c for c in classifiers if 'class_weight' in c[1]().get_params().keys()] for n_classes, weights in zip([2, 3], [[.8, .2], [.8, .1, .1]]): # create unbalanced dataset X, y = make_classification(n_classes=n_classes, n_samples=200, n_features=10, weights=weights, random_state=0, n_informative=n_classes) X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) for name, Classifier in classifiers: if (name != "NuSVC" # the sparse version has a parameter that doesn't do anything and not name.startswith("RidgeClassifier") # RidgeClassifier behaves unexpected # FIXME! and not name.endswith("NB")): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! yield (check_class_weight_auto_classifiers, name, Classifier, X_train, y_train, X_test, y_test, weights) def test_class_weight_auto_linear_classifiers(): classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): linear_classifiers = [ (name, clazz) for name, clazz in classifiers if 'class_weight' in clazz().get_params().keys() and issubclass(clazz, LinearClassifierMixin)] for name, Classifier in linear_classifiers: if name == "LogisticRegressionCV": # Contrary to RidgeClassifierCV, LogisticRegressionCV use actual # CV folds and fit a model for each CV iteration before averaging # the coef. Therefore it is expected to not behave exactly as the # other linear model. continue yield check_class_weight_auto_linear_classifier, name, Classifier @ignore_warnings def test_import_all_consistency(): # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.', onerror=lambda _: None) submods = [modname for _, modname, _ in pkgs] for modname in submods + ['sklearn']: if ".tests." in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, '__all__', ()): if getattr(package, name, None) is None: raise AttributeError( "Module '{0}' has no attribute '{1}'".format( modname, name)) def test_root_import_all_completeness(): EXCEPTIONS = ('utils', 'tests', 'base', 'setup') for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__, onerror=lambda _: None): if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS: continue assert_in(modname, sklearn.__all__) def test_non_transformer_estimators_n_iter(): # Test that all estimators of type which are non-transformer # and which have an attribute of max_iter, return the attribute # of n_iter atleast 1. for est_type in ['regressor', 'classifier', 'cluster']: regressors = all_estimators(type_filter=est_type) for name, Estimator in regressors: # LassoLars stops early for the default alpha=1.0 for # the iris dataset. if name == 'LassoLars': estimator = Estimator(alpha=0.) else: estimator = Estimator() if hasattr(estimator, "max_iter"): # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV']): continue # Tested in test_transformer_n_iter below elif (name in CROSS_DECOMPOSITION or name in ['LinearSVC', 'LogisticRegression']): continue else: # Multitask models related to ENet cannot handle # if y is mono-output. yield (check_non_transformer_estimators_n_iter, name, estimator, 'Multi' in name) def test_transformer_n_iter(): transformers = all_estimators(type_filter='transformer') for name, Estimator in transformers: estimator = Estimator() # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if hasattr(estimator, "max_iter") and name not in external_solver: yield check_transformer_n_iter, name, estimator
bsd-3-clause
robertnishihara/ray
python/ray/tune/examples/pbt_dcgan_mnist/common.py
1
7732
import ray import os import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils import numpy as np from torch.autograd import Variable from torch.nn import functional as F from scipy.stats import entropy import matplotlib.pyplot as plt import matplotlib.animation as animation # Training parameters dataroot = ray.utils.get_user_temp_dir() + os.sep workers = 2 batch_size = 64 image_size = 32 # Number of channels in the training images. For color images this is 3 nc = 1 # Size of z latent vector (i.e. size of generator input) nz = 100 # Size of feature maps in generator ngf = 32 # Size of feature maps in discriminator ndf = 32 # Beta1 hyperparam for Adam optimizers beta1 = 0.5 # iterations of actual training in each Trainable _train train_iterations_per_step = 5 MODEL_PATH = os.path.expanduser("~/.ray/models/mnist_cnn.pt") def get_data_loader(): dataset = dset.MNIST( root=dataroot, download=True, transform=transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize((0.5, ), (0.5, )), ])) # Create the dataloader dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=workers) return dataloader # __GANmodel_begin__ # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) # Generator Code class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.main = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d(nz, ngf * 4, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh()) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False), nn.Sigmoid()) def forward(self, input): return self.main(input) # __GANmodel_end__ # __INCEPTION_SCORE_begin__ class Net(nn.Module): """ LeNet for MNist classification, used for inception_score """ def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def inception_score(imgs, mnist_model_ref, batch_size=32, splits=1): N = len(imgs) dtype = torch.FloatTensor dataloader = torch.utils.data.DataLoader(imgs, batch_size=batch_size) cm = ray.get(mnist_model_ref) # Get the mnist model from Ray object store. up = nn.Upsample(size=(28, 28), mode="bilinear").type(dtype) def get_pred(x): x = up(x) x = cm(x) return F.softmax(x).data.cpu().numpy() preds = np.zeros((N, 10)) for i, batch in enumerate(dataloader, 0): batch = batch.type(dtype) batchv = Variable(batch) batch_size_i = batch.size()[0] preds[i * batch_size:i * batch_size + batch_size_i] = get_pred(batchv) # Now compute the mean kl-div split_scores = [] for k in range(splits): part = preds[k * (N // splits):(k + 1) * (N // splits), :] py = np.mean(part, axis=0) scores = [] for i in range(part.shape[0]): pyx = part[i, :] scores.append(entropy(pyx, py)) split_scores.append(np.exp(np.mean(scores))) return np.mean(split_scores), np.std(split_scores) # __INCEPTION_SCORE_end__ def train(netD, netG, optimG, optimD, criterion, dataloader, iteration, device, mnist_model_ref): real_label = 1 fake_label = 0 for i, data in enumerate(dataloader, 0): if i >= train_iterations_per_step: break netD.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size, ), real_label, device=device) output = netD(real_cpu).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimD.step() netG.zero_grad() label.fill_(real_label) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimG.step() is_score, is_std = inception_score(fake, mnist_model_ref) # Output training stats if iteration % 10 == 0: print("[%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z))" ": %.4f / %.4f \tInception score: %.4f" % (iteration, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2, is_score)) return errG.item(), errD.item(), is_score def plot_images(dataloader): # Plot some training images real_batch = next(iter(dataloader)) plt.figure(figsize=(8, 8)) plt.axis("off") plt.title("Original Images") plt.imshow( np.transpose( vutils.make_grid(real_batch[0][:64], padding=2, normalize=True).cpu(), (1, 2, 0))) plt.show() def demo_gan(checkpoint_paths): img_list = [] fixed_noise = torch.randn(64, nz, 1, 1) for netG_path in checkpoint_paths: loadedG = Generator() loadedG.load_state_dict(torch.load(netG_path)["netGmodel"]) with torch.no_grad(): fake = loadedG(fixed_noise).detach().cpu() img_list.append(vutils.make_grid(fake, padding=2, normalize=True)) fig = plt.figure(figsize=(8, 8)) plt.axis("off") ims = [[plt.imshow(np.transpose(i, (1, 2, 0)), animated=True)] for i in img_list] ani = animation.ArtistAnimation( fig, ims, interval=1000, repeat_delay=1000, blit=True) ani.save("./generated.gif", writer="imagemagick", dpi=72) plt.show()
apache-2.0
soylentdeen/BlurryApple
Control/tiptilt.py
1
1849
import scipy import numpy import pyfits import matplotlib.pyplot as pyplot from scipy.linalg import * import datetime import os import re datadir = '/home/deen/Data/GRAVITY/InteractionMatrices/' #datafiles = os.listdir(datadir) #datafiles = ["HODM_HighSNR_IM.fits", "HODM_HighSNR_IM_1.fits", "HODM_HighSNR_IM_2.fits", "HODM_HighSNR_IM_3.fits", "HODM_HighSNR_IM_4.fits", "HODM_HighSNR_IM_5.fits", "HODM_HighSNR_IM_6.fits", "HODM_HighSNR_IM_7.fits", "HODM_HighSNR_IM_8.fits"] datafiles = ["HODM_rapid_016.fits","HODM_rapid_017.fits","HODM_rapid_018.fits","HODM_rapid_019.fits","HODM_rapid_020.fits","HODM_rapid_021.fits","HODM_rapid_022.fits","HODM_rapid_023.fits"] fig = pyplot.figure(0) fig.clear() ax1=fig.add_axes([0.1, 0.15, 0.8, 0.4]) ax2=fig.add_axes([0.1, 0.55, 0.8, 0.4]) dates = [] amplitudes = [] tips = [] tilts = [] for df in datafiles: #if ((df.find('TT') == -1) & (df.find("rapid") != -1)): if True:#if ((df.find('TT') == -1) & (df.find("IM") != -1) & (df.find("fits") != -1)): measdf = datadir+df meas = pyfits.getdata(measdf) head = pyfits.getheader(measdf) dates.append(datetime.datetime.strptime(head["DATE"], "%Y-%m-%dT%H:%M:%S.%f")) amplitudes.append(head["AMPLITUDE"]) meas = scipy.matrix(meas) U,S,V = svd(meas) tips.append(V[1,:]) tilts.append(V[2,:]) dates = numpy.array(dates) chronology = dates.argsort() for i in chronology: #ax1.plot(tips[i], label = dates[i].strftime("Day %j")) ax1.plot(tips[i], label = "A = "+str(amplitudes[i])) ax2.plot(tilts[i]) box = ax1.get_position() ax1.set_position([box.x0, box.y0+box.height*0.2, box.width, box.height*0.80]) ax1.legend(ncol=4, loc='upper center', bbox_to_anchor=(0.5, -0.05)) ax1.text(2, 0.25, 'Tip') ax2.text(2, 0.25, 'Tilt') fig.show() fig.savefig("tiptilt_evolution.png")
gpl-2.0
eric-haibin-lin/mxnet
example/neural_collaborative_filtering/core/load.py
4
2606
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from collections import namedtuple import pandas as pd RatingData = namedtuple('RatingData', ['items', 'users', 'ratings', 'min_date', 'max_date']) def describe_ratings(ratings): info = RatingData(items=len(ratings['item_id'].unique()), users=len(ratings['user_id'].unique()), ratings=len(ratings), min_date=ratings['timestamp'].min(), max_date=ratings['timestamp'].max()) print("{ratings} ratings on {items} items from {users} users" " from {min_date} to {max_date}" .format(**(info._asdict()))) return info def process_movielens(ratings, sort=True): ratings['timestamp'] = pd.to_datetime(ratings['timestamp'], unit='s') if sort: ratings.sort_values(by='timestamp', inplace=True) describe_ratings(ratings) return ratings def load_ml_1m(filename, sort=True): names = ['user_id', 'item_id', 'rating', 'timestamp'] ratings = pd.read_csv(filename, sep='::', names=names, engine='python') return process_movielens(ratings, sort=sort) def load_ml_20m(filename, sort=True): ratings = pd.read_csv(filename) ratings['timestamp'] = pd.to_datetime(ratings['timestamp'], unit='s') names = {'userId': 'user_id', 'movieId': 'item_id'} ratings.rename(columns=names, inplace=True) return process_movielens(ratings, sort=sort) DATASETS = [k.replace('load_', '') for k in locals().keys() if "load_" in k] def get_dataset_name(filename): for dataset in DATASETS: if dataset in filename.replace('-', '_').lower(): return dataset raise NotImplementedError def implicit_load(filename, sort=True): func = globals()["load_" + get_dataset_name(filename)] return func(filename, sort=sort)
apache-2.0
stochasticHydroTools/RotationalDiffusion
single_non_sphere/non_sphere.py
1
8764
from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('..') from quaternion_integrator.quaternion import Quaternion num_blobs = 7 A = 0.265*np.sqrt(3./2.) # radius of blob in um VISCOSITY = 8.9e-4 TOTAL_WEIGHT = 1.*0.0000000002*(9.8*1e6) # weight of entire boomerang particle WEIGHT = [TOTAL_WEIGHT/num_blobs for i in range(num_blobs)] # weight of individual blobs KT = 300.*1.3806488e-5 REPULSION_STRENGTH = 7.5 * KT DEBYE_LENGTH = 0.5*A max_height = KT/TOTAL_WEIGHT*12 + A + 4.*DEBYE_LENGTH class InvalidProbability(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def non_sphere_GB(location, orientation): ''' Return exp(-U/kT) for the given location and orientation.''' r_vectors = get_boomerang_r_vectors(location, orientation) # Add gravity to potential. #for k in range(len(r_vectors)): # if r_vectors[k][2] < A: # return 0.0 U = 0. for k in range(len(r_vectors)): if r_vectors[k][2] < A: return 0.0 U += WEIGHT[k] * r_vectors[k][2] h = r_vectors[k][2] # Add repulsion to potential. U += ( REPULSION_STRENGTH * np.exp(-1.*(h -A)/DEBYE_LENGTH) / (h-A) ) #U *= REPULSION_STRENGTH #U += np.sum(WEIGHT[0]*r_vectors[:,2]) return np.exp(-1. * U/KT) def get_boomerang_r_vectors(location, orientation, blob_distance = .525): '''Get the vectors of the 7 blobs used to discretize the boomerang. 7 O 6 O 5 O O-O-O-O 4 3 2 1 The location is the location of the Blob at the apex. Initial configuration is in the x-y plane, with arm 1-2-3 pointing in the positive x direction, and arm 4-5-6 pointing in the positive y direction. Seperation between blobs is currently hard coded at 0.525 um Donev: Even if you hard code a value (which I recommend against -- you will learn some new programming skills trying to figure out how to pass this as an argument. Ask Floren -- python supports optional arguments with default values. He has had to do something like this. But even if hard-coded, write const=0.525 and then use const in the code. This way you can change it with one-line. It is a really really bad idea to hard-code values like this.. ''' num_blobs = 7 initial_configuration = [ np.array([3*blob_distance, 0., 0.]), np.array([2*blob_distance, 0., 0.]), np.array([blob_distance, 0., 0.]), np.array([0., 0., 0.]), np.array([0., blob_distance, 0.]), np.array([0., 2*blob_distance, 0.]), np.array([0., 3*blob_distance, 0.])] rotation_matrix = orientation.rotation_matrix() rotated_configuration = [np.dot(rotation_matrix,vec) + location for vec in initial_configuration] #rotated_configuration = [] #for vec in initial_configuration: # rotated_configuration.append(np.dot(rotation_matrix, vec) # + location) return rotated_configuration def generate_non_sphere_partition(partition_steps): partitionZ = 0. #for i in range(100): # new_location = [0., 0., np.random.uniform(A, max_height)] # partitionZ += non_sphere_GB(location,new_location) orientation = Quaternion([0,0,0,0]) new_location = np.array([0., 0., 0.]) for i in range(partition_steps): orientation.random_orientation() new_location[2] = np.random.uniform(A, max_height) sample = non_sphere_GB(new_location, orientation) if sample > partitionZ: partitionZ = sample return partitionZ def non_sphere_rejection(partitionZ): # generate heights and their corresponding probabilities until a height passes unrejected orientation = Quaternion([0.,0.,0.,0.]) new_location = np.array([0., 0., 0.]) while True: orientation.random_orientation() new_location[2] = np.random.uniform(A, max_height-A) acceptance_prob = non_sphere_GB(new_location, orientation) / partitionZ if acceptance_prob > 1: raise InvalidProbability('Acceptance Probability is greater than 1') if np.random.uniform(0., 1.) < acceptance_prob: # the rejection part of the algorithm. return [new_location, orientation] # calculate an num_points numbver of points given by directly computing the Gibbs-Boltzmann distribution # P(h) = exp(-U(h)/KT) / integral(exp(U(h)/KT)dh) # calculated using the trapezoidal rule # Donev: Explain to me in person what this does def analytical_distribution_non_sphere(num_points): # heights are sampled evenly from the chosen bounds, using linspace # because linspace includes starting value A, the first index in x is ignored # if x[0] is included, then in the calculation of potential energy U, h-A = 0 # and an exception will be thrown # x = np.linspace(A, max_height, num_points) # orientations = [] # for i in range(num_points): # theta = np.random.normal(0., 1., 4) # orientations.append(Quaternion(theta/np.linalg.norm(theta))) # y = [] # deltaX = x[1] - x[0] # numerator, denominator = 0., 0. # # # add the bounds to the integral value # # ignore x[0] = A # integral = 0.5*(non_sphere_GB([0., 0., x[1]], orientations[0]) + # non_sphere_GB([0., 0., max_height], orientations[num_points-1])) # # iterate over the rest of the heights # for k in range(2, num_points): # integral += non_sphere_GB([0., 0., x[k]], orientations[k]) # # multiply by the change in x to complete the integral calculation # integral *= deltaX # # # now that we have the partition function that the integral represents # # we can calculate all the y positions of the distribution # # again ignore x[0] = A # j = 0 # for h in x[1:]: # numerator = non_sphere_GB([0., 0., h], orientations[j]) # y.append(numerator/integral) # j+=1 x = np.linspace(A, max_height, num_points) y = np.zeros(num_points-1, dtype = float) num_angles = 1000 deltaX = x[1] - x[0] integral = .0 firstBar, lastBar = 0., 0. orientation = Quaternion([0,0,0,0]) # create a quaternion object for i in range(num_angles): orientation.random_orientation() firstBar += non_sphere_GB([0, 0, x[1]], orientation) firstBar /= num_angles for i in range(num_angles): orientation.random_orientation() lastBar += non_sphere_GB([0, 0, x[num_points-1]], orientation) lastBar /= num_angles integral += (firstBar + lastBar) *.5 sample_GB = np.zeros(num_angles, dtype = float) for i in range(2, num_points-1): for j in range(num_angles): orientation.random_orientation() sample_GB[j] = non_sphere_GB(np.array([0, 0, x[i]]), orientation) integral += np.average(sample_GB) integral *= deltaX for i in range(x[1:].size): numerator = 0. for j in range(num_angles): orientation.random_orientation() numerator += non_sphere_GB([0., 0., x[i+1]], orientation) numerator /= num_angles y[i] = (numerator/integral) return x[1:], y # generate the histogram of the heights by reading in the heights from the given file to x # and plot the analytical distribution curve given by x and y # bar width h chosen to be approximately n_steps^(-1/5) # so for 1,000,000 steps, 357 bars are used for max_height ~ 22.5 um def plot_distribution(locationsFile, analytical_x, analytical_y, n_steps, color): heights = np.loadtxt(locationsFile, float) # the hist function returned a 3rd item and I'm not sure how best to handle it yet # so there is a throwaway variable trash numBars = int(max_height // (n_steps**(-1/5.))) binValue, xBinLocations, trash = plt.hist(heights, numBars, normed=1, facecolor=color, alpha=0.75) plt.hist(heights, numBars, normed=1, facecolor=color, alpha=0.75) # add error bars to histogram Nx = # samples in bin h = bin width # N = total number of samples generated # error bar length = (4 * sqrt(Nx)) / (h*N) binWidth = xBinLocations[1] - xBinLocations[0] xError, yError, confidence = [], [], [] for i in range(binValue.size): xError.append( (xBinLocations[i+1]+xBinLocations[i]) / 2) # center bin i yError.append(binValue[i]) # height of bin i numSamples = binWidth * binValue[i] * n_steps # samples in bin i confidence.append( (4 * np.sqrt(numSamples)) / (binWidth * n_steps)) #plt.errorbar(xError,yError,yerr=confidence,fmt='r.') # p, q = [], [] # skip = 1000 # size = 100000 # for i in range(0, size-skip, skip): # average = 0. # for j in range(i,i+skip): # average += analytical_y[j] # #print j # average /= float(skip) # #print("%f %f" % (analytical_x[i], average)) # p.append(analytical_x[i]) # q.append(average) plt.plot(analytical_x, analytical_y, 'b.-', linewidth=1.5) #plt.plot(p, q, 'b-', linewidth=2) plt.title('Probability distribution of the height z of a single boomerang near a wall\n' + 'Green: histogram of sampled heights Blue: GB distribution') plt.xlabel('z (microns)') plt.ylabel('P(z)') plt.axis([0, 12.5, 0, .35]) plt.show()
gpl-3.0
massmutual/scikit-learn
examples/covariance/plot_covariance_estimation.py
250
5070
""" ======================================================================= Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood ======================================================================= When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the :class:`sklearn.covariance.EmpiricalCovariance`. It is unbiased, i.e. it converges to the true (population) covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in :ref:`shrunk_covariance` estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the bias-variance trade-off. Here we compare 3 approaches: * Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage parameters. * A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter (minimizing a MSE criterion), yielding the :class:`sklearn.covariance.LedoitWolf` covariance estimate. * An improvement of the Ledoit-Wolf shrinkage, the :class:`sklearn.covariance.OAS`, proposed by Chen et al. Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small samples. To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We also show the choices by cross-validation, or with the LedoitWolf and OAS estimates. Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most computationally costly. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \ log_likelihood, empirical_covariance from sklearn.grid_search import GridSearchCV ############################################################################### # Generate sample data n_features, n_samples = 40, 20 np.random.seed(42) base_X_train = np.random.normal(size=(n_samples, n_features)) base_X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(base_X_train, coloring_matrix) X_test = np.dot(base_X_test, coloring_matrix) ############################################################################### # Compute the likelihood on test data # spanning a range of possible shrinkage coefficient values shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test) for s in shrinkages] # under the ground-truth model, which we would not have access to in real # settings real_cov = np.dot(coloring_matrix.T, coloring_matrix) emp_cov = empirical_covariance(X_train) loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov)) ############################################################################### # Compare different approaches to setting the parameter # GridSearch for an optimal shrinkage coefficient tuned_parameters = [{'shrinkage': shrinkages}] cv = GridSearchCV(ShrunkCovariance(), tuned_parameters) cv.fit(X_train) # Ledoit-Wolf optimal shrinkage coefficient estimate lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) # OAS coefficient estimate oa = OAS() loglik_oa = oa.fit(X_train).score(X_test) ############################################################################### # Plot results fig = plt.figure() plt.title("Regularized covariance: likelihood and shrinkage coefficient") plt.xlabel('Regularizaton parameter: shrinkage coefficient') plt.ylabel('Error: negative log-likelihood on test data') # range shrinkage curve plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood") plt.plot(plt.xlim(), 2 * [loglik_real], '--r', label="Real covariance likelihood") # adjust view lik_max = np.amax(negative_logliks) lik_min = np.amin(negative_logliks) ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0])) ymax = lik_max + 10. * np.log(lik_max - lik_min) xmin = shrinkages[0] xmax = shrinkages[-1] # LW likelihood plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta', linewidth=3, label='Ledoit-Wolf estimate') # OAS likelihood plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple', linewidth=3, label='OAS estimate') # best CV estimator likelihood plt.vlines(cv.best_estimator_.shrinkage, ymin, -cv.best_estimator_.score(X_test), color='cyan', linewidth=3, label='Cross-validation best estimate') plt.ylim(ymin, ymax) plt.xlim(xmin, xmax) plt.legend() plt.show()
bsd-3-clause
cactusbin/nyt
matplotlib/examples/pylab_examples/pie_demo2.py
6
1620
""" Make a pie charts of varying size - see http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pie for the docstring. This example shows a basic pie charts with labels optional features, like autolabeling the percentage, offsetting a slice with "explode" and adding a shadow, in different sizes. """ import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec # Some data labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' fracs = [15, 30, 45, 10] explode=(0, 0.05, 0, 0) # Make square figures and axes the_grid = GridSpec(2, 2) plt.subplot(the_grid[0, 0], aspect=1) plt.pie(fracs, labels=labels, autopct='%1.1f%%', shadow=True) plt.subplot(the_grid[0, 1], aspect=1) plt.pie(fracs, explode=explode, labels=labels, autopct='%.0f%%', shadow=True) plt.subplot(the_grid[1, 0], aspect=1) patches, texts, autotexts = plt.pie(fracs, labels=labels, autopct='%.0f%%', shadow=True, radius=0.5) # Make the labels on the small plot easier to read. for t in texts: t.set_size('smaller') for t in autotexts: t.set_size('x-small') autotexts[0].set_color('y') plt.subplot(the_grid[1, 1], aspect=1) patches, texts, autotexts = plt.pie(fracs, explode=explode, labels=labels, autopct='%.0f%%', shadow=False, radius=0.5) # Turn off shadow for tiny plot # with exploded slice. for t in texts: t.set_size('smaller') for t in autotexts: t.set_size('x-small') autotexts[0].set_color('y') plt.show()
unlicense
Titan-C/scikit-learn
sklearn/preprocessing/tests/test_data.py
12
75601
# Authors: # # Giorgio Patrini # # License: BSD 3 clause from __future__ import division import warnings import numpy as np import numpy.linalg as la from scipy import sparse from distutils.version import LooseVersion from sklearn.utils import gen_batches from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import skip_if_32bit from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _transform_selected from sklearn.preprocessing.data import _handle_zeros_in_scale from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import OneHotEncoder from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import minmax_scale from sklearn.preprocessing.data import QuantileTransformer from sklearn.preprocessing.data import quantile_transform from sklearn.preprocessing.data import MaxAbsScaler from sklearn.preprocessing.data import maxabs_scale from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.exceptions import DataConversionWarning from sklearn.pipeline import Pipeline from sklearn.model_selection import cross_val_predict from sklearn.svm import SVR from sklearn import datasets iris = datasets.load_iris() # Make some data to be used many times rng = np.random.RandomState(0) n_features = 30 n_samples = 1000 offsets = rng.uniform(-1, 1, size=n_features) scales = rng.uniform(1, 10, size=n_features) X_2d = rng.randn(n_samples, n_features) * scales + offsets X_1row = X_2d[0, :].reshape(1, n_features) X_1col = X_2d[:, 0].reshape(n_samples, 1) X_list_1row = X_1row.tolist() X_list_1col = X_1col.tolist() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def _check_dim_1axis(a): if isinstance(a, list): return np.array(a).shape[0] return a.shape[0] def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size, n_samples_seen): if batch_stop != n: assert_equal((i + 1) * chunk_size, n_samples_seen) else: assert_equal(i * chunk_size + (batch_stop - batch_start), n_samples_seen) def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) assert_equal(interact.powers_.shape, (interact.n_output_features_, interact.n_input_features_)) def test_polynomial_feature_names(): X = np.arange(30).reshape(10, 3) poly = PolynomialFeatures(degree=2, include_bias=True).fit(X) feature_names = poly.get_feature_names() assert_array_equal(['1', 'x0', 'x1', 'x2', 'x0^2', 'x0 x1', 'x0 x2', 'x1^2', 'x1 x2', 'x2^2'], feature_names) poly = PolynomialFeatures(degree=3, include_bias=False).fit(X) feature_names = poly.get_feature_names(["a", "b", "c"]) assert_array_equal(['a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2', 'b c', 'c^2', 'a^3', 'a^2 b', 'a^2 c', 'a b^2', 'a b c', 'a c^2', 'b^3', 'b^2 c', 'b c^2', 'c^3'], feature_names) # test some unicode poly = PolynomialFeatures(degree=1, include_bias=True).fit(X) feature_names = poly.get_feature_names( [u"\u0001F40D", u"\u262E", u"\u05D0"]) assert_array_equal([u"1", u"\u0001F40D", u"\u262E", u"\u05D0"], feature_names) def test_standard_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_almost_equal(scaler.mean_, X.ravel()) assert_almost_equal(scaler.scale_, np.ones(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.std(axis=0), np.zeros_like(n_features)) else: assert_almost_equal(scaler.mean_, X.mean()) assert_almost_equal(scaler.scale_, X.std()) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones(5).reshape(5, 1) scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_almost_equal(scaler.mean_, 1.) assert_almost_equal(scaler.scale_, 1.) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), .0) assert_equal(scaler.n_samples_seen_, X.shape[0]) def test_scale_1d(): # 1-d inputs X_list = [1., 3., 5., 0.] X_arr = np.array(X_list) for X in [X_list, X_arr]: X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(), 0.0) assert_array_almost_equal(X_scaled.std(), 1.0) assert_array_equal(scale(X, with_mean=False, with_std=False), X) @skip_if_32bit def test_standard_scaler_numerical_stability(): # Test numerical stability of scaling # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.zeros(8, dtype=np.float64) + np.log(1e-5, dtype=np.float64) if LooseVersion(np.__version__) >= LooseVersion('1.9'): # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) else: w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.zeros(10, dtype=np.float64) + np.log(1e-5, dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.ones(10, dtype=np.float64) * 1e-100 x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.ones(10, dtype=np.float64) * 1e100 w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) n_features = 5 n_samples = 4 X = rng.randn(n_samples, n_features) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_equal(scaler.n_samples_seen_, n_samples) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert_true(X_scaled is not X) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0]) # Check that the data hasn't been modified assert_true(X_scaled is not X) X_scaled = scaler.fit(X).transform(X, copy=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is X) X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) def test_handle_zeros_in_scale(): s1 = np.array([0, 1, 2, 3]) s2 = _handle_zeros_in_scale(s1, copy=True) assert_false(s1[0] == s2[0]) assert_array_equal(s1, np.array([0, 1, 2, 3])) assert_array_equal(s2, np.array([1, 1, 2, 3])) def test_minmax_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MinMaxScaler().fit(X[batch0]) scaler_incr = MinMaxScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std until the end of partial fits, and scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = StandardScaler(with_std=False).fit(X) scaler_incr = StandardScaler(with_std=False) for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_) assert_equal(scaler_batch.var_, scaler_incr.var_) # Nones assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_incr = StandardScaler().partial_fit(X[batch0]) if chunk_size == 1: assert_array_almost_equal(np.zeros(n_features, dtype=np.float64), scaler_incr.var_) assert_array_almost_equal(np.ones(n_features, dtype=np.float64), scaler_incr.scale_) else: assert_array_almost_equal(np.var(X[batch0], axis=0), scaler_incr.var_) assert_array_almost_equal(np.std(X[batch0], axis=0), scaler_incr.scale_) # no constants # Test std until the end of partial fits, and scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit_numerical_stability(): # Test if the incremental computation introduces significative errors # for large datasets with values of large magniture rng = np.random.RandomState(0) n_features = 2 n_samples = 100 offsets = rng.uniform(-1e15, 1e15, size=n_features) scales = rng.uniform(1e3, 1e6, size=n_features) X = rng.randn(n_samples, n_features) * scales + offsets scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() for chunk in X: scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features)) # Regardless of abs values, they must not be more diff 6 significant digits tol = 10 ** (-6) assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol) assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol) # NOTE Be aware that for much larger offsets std is very unstable (last # assert) while mean is OK. # Sparse input size = (100, 3) scale = 1e20 X = rng.randint(0, 2, size).astype(np.float64) * scale X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) for X in [X_csr, X_csc]: # with_mean=False is required with sparse input scaler = StandardScaler(with_mean=False).fit(X) scaler_incr = StandardScaler(with_mean=False) for chunk in X: # chunk = sparse.csr_matrix(data_chunks) scaler_incr = scaler_incr.partial_fit(chunk) # Regardless of magnitude, they must not differ more than of 6 digits tol = 10 ** (-6) assert_true(scaler.mean_ is not None) assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol) def test_partial_fit_sparse_input(): # Check that sparsity is not destroyed X = np.array([[1.], [0.], [0.], [5.]]) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) for X in [X_csr, X_csc]: X_null = null_transform.partial_fit(X).transform(X) assert_array_equal(X_null.data, X.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_null.data) assert_array_equal(X_orig.data, X.data) def test_standard_scaler_trasform_with_partial_fit(): # Check some postconditions after applying partial_fit and transform X = X_2d[:100, :] scaler_incr = StandardScaler() for i, batch in enumerate(gen_batches(X.shape[0], 1)): X_sofar = X[:(i + 1), :] chunks_copy = X_sofar.copy() scaled_batch = StandardScaler().fit_transform(X_sofar) scaler_incr = scaler_incr.partial_fit(X[batch]) scaled_incr = scaler_incr.transform(X_sofar) assert_array_almost_equal(scaled_batch, scaled_incr) assert_array_almost_equal(X_sofar, chunks_copy) # No change right_input = scaler_incr.inverse_transform(scaled_incr) assert_array_almost_equal(X_sofar, right_input) zero = np.zeros(X.shape[1]) epsilon = np.nextafter(0, 1) assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal assert_array_less(zero, scaler_incr.scale_ + epsilon) # (i+1) because the Scaler has been already fitted assert_equal((i + 1), scaler_incr.n_samples_seen_) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MinMaxScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(X_scaled.min(axis=0), np.zeros(n_features)) assert_array_almost_equal(X_scaled.max(axis=0), np.zeros(n_features)) else: assert_array_almost_equal(X_scaled.min(axis=0), .0) assert_array_almost_equal(X_scaled.max(axis=0), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones(5).reshape(5, 1) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # Function interface X_1d = X_1row.ravel() min_ = X_1d.min() max_ = X_1d.max() assert_array_almost_equal((X_1d - min_) / (max_ - min_), minmax_scale(X_1d, copy=True)) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) assert_raises(ValueError, StandardScaler().fit, X_csc) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) X_csc_copy = X_csc.copy() StandardScaler(with_mean=False, copy=False).fit(X_csc) assert_array_equal(X_csc.toarray(), X_csc_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) assert_raises(ValueError, scale, X_csc, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csc) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) assert_raises(ValueError, scaler.transform, X_csc) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) X_transformed_csc = sparse.csc_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csc) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [[np.nan, 5, 6, 7, 8]] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) X = [[np.inf, 5, 6, 7, 8]] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) def test_robust_scaler_2d_arrays(): # Test robust scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) def test_robust_scaler_transform_one_row_csr(): # Check RobustScaler on transforming csr matrix with one row rng = np.random.RandomState(0) X = rng.randn(4, 5) single_row = np.array([[0.1, 1., 2., 0., -1.]]) scaler = RobustScaler(with_centering=False) scaler = scaler.fit(X) row_trans = scaler.transform(sparse.csr_matrix(single_row)) row_expected = single_row / scaler.scale_ assert_array_almost_equal(row_trans.toarray(), row_expected) row_scaled_back = scaler.inverse_transform(row_trans) assert_array_almost_equal(single_row, row_scaled_back.toarray()) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_iris_quantiles(): X = iris.data scaler = RobustScaler(quantile_range=(10, 90)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(10, 90), axis=0) q_range = q[1] - q[0] assert_array_almost_equal(q_range, 1) def test_quantile_transform_iris(): X = iris.data # uniform output distribution transformer = QuantileTransformer(n_quantiles=30) X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # normal output distribution transformer = QuantileTransformer(n_quantiles=30, output_distribution='normal') X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure it is possible to take the inverse of a sparse matrix # which contain negative value; this is the case in the iris dataset X_sparse = sparse.csc_matrix(X) X_sparse_tran = transformer.fit_transform(X_sparse) X_sparse_tran_inv = transformer.inverse_transform(X_sparse_tran) assert_array_almost_equal(X_sparse.A, X_sparse_tran_inv.A) def test_quantile_transform_check_error(): X = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [2, 4, 0, 0, 6, 8, 0, 10, 0, 0], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) X = sparse.csc_matrix(X) X_neg = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [-2, 4, 0, 0, 6, 8, 0, 10, 0, 0], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) X_neg = sparse.csc_matrix(X_neg) assert_raises_regex(ValueError, "Invalid value for 'n_quantiles': 0.", QuantileTransformer(n_quantiles=0).fit, X) assert_raises_regex(ValueError, "Invalid value for 'subsample': 0.", QuantileTransformer(subsample=0).fit, X) assert_raises_regex(ValueError, "The number of quantiles cannot be" " greater than the number of samples used. Got" " 1000 quantiles and 10 samples.", QuantileTransformer(subsample=10).fit, X) transformer = QuantileTransformer(n_quantiles=10) assert_raises_regex(ValueError, "QuantileTransformer only accepts " "non-negative sparse matrices.", transformer.fit, X_neg) transformer.fit(X) assert_raises_regex(ValueError, "QuantileTransformer only accepts " "non-negative sparse matrices.", transformer.transform, X_neg) X_bad_feat = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) assert_raises_regex(ValueError, "X does not have the same number of " "features as the previously fitted data. Got 2" " instead of 3.", transformer.transform, X_bad_feat) assert_raises_regex(ValueError, "X does not have the same number of " "features as the previously fitted data. Got 2" " instead of 3.", transformer.inverse_transform, X_bad_feat) transformer = QuantileTransformer(n_quantiles=10, output_distribution='rnd') # check that an error is raised at fit time assert_raises_regex(ValueError, "'output_distribution' has to be either" " 'normal' or 'uniform'. Got 'rnd' instead.", transformer.fit, X) # check that an error is raised at transform time transformer.output_distribution = 'uniform' transformer.fit(X) X_tran = transformer.transform(X) transformer.output_distribution = 'rnd' assert_raises_regex(ValueError, "'output_distribution' has to be either" " 'normal' or 'uniform'. Got 'rnd' instead.", transformer.transform, X) # check that an error is raised at inverse_transform time assert_raises_regex(ValueError, "'output_distribution' has to be either" " 'normal' or 'uniform'. Got 'rnd' instead.", transformer.inverse_transform, X_tran) def test_quantile_transform_sparse_ignore_zeros(): X = np.array([[0, 1], [0, 0], [0, 2], [0, 2], [0, 1]]) X_sparse = sparse.csc_matrix(X) transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) # dense case -> warning raise assert_warns_message(UserWarning, "'ignore_implicit_zeros' takes effect" " only with sparse matrix. This parameter has no" " effect.", transformer.fit, X) X_expected = np.array([[0, 0], [0, 0], [0, 1], [0, 1], [0, 0]]) X_trans = transformer.fit_transform(X_sparse) assert_almost_equal(X_expected, X_trans.A) # consider the case where sparse entries are missing values and user-given # zeros are to be considered X_data = np.array([0, 0, 1, 0, 2, 2, 1, 0, 1, 2, 0]) X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]) X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8]) X_sparse = sparse.csc_matrix((X_data, (X_row, X_col))) X_trans = transformer.fit_transform(X_sparse) X_expected = np.array([[0., 0.5], [0., 0.], [0., 1.], [0., 1.], [0., 0.5], [0., 0.], [0., 0.5], [0., 1.], [0., 0.]]) assert_almost_equal(X_expected, X_trans.A) transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) X_data = np.array([-1, -1, 1, 0, 0, 0, 1, -1, 1]) X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1]) X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6]) X_sparse = sparse.csc_matrix((X_data, (X_row, X_col))) X_trans = transformer.fit_transform(X_sparse) X_expected = np.array([[0, 1], [0, 0.375], [0, 0.375], [0, 0.375], [0, 1], [0, 0], [0, 1]]) assert_almost_equal(X_expected, X_trans.A) assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A) # check in conjunction with subsampling transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5, subsample=8, random_state=0) X_trans = transformer.fit_transform(X_sparse) assert_almost_equal(X_expected, X_trans.A) assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A) def test_quantile_transform_dense_toy(): X = np.array([[0, 2, 2.6], [25, 4, 4.1], [50, 6, 2.3], [75, 8, 9.5], [100, 10, 0.1]]) transformer = QuantileTransformer(n_quantiles=5) transformer.fit(X) # using the a uniform output, each entry of X should be map between 0 and 1 # and equally spaced X_trans = transformer.fit_transform(X) X_expected = np.tile(np.linspace(0, 1, num=5), (3, 1)).T assert_almost_equal(np.sort(X_trans, axis=0), X_expected) X_test = np.array([ [-1, 1, 0], [101, 11, 10], ]) X_expected = np.array([ [0, 0, 0], [1, 1, 1], ]) assert_array_almost_equal(transformer.transform(X_test), X_expected) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) def test_quantile_transform_subsampling(): # Test that subsampling the input yield to a consistent results We check # that the computed quantiles are almost mapped to a [0, 1] vector where # values are equally spaced. The infinite norm is checked to be smaller # than a given threshold. This is repeated 5 times. # dense support n_samples = 1000000 n_quantiles = 1000 X = np.sort(np.random.sample((n_samples, 1)), axis=0) ROUND = 5 inf_norm_arr = [] for random_state in range(ROUND): transformer = QuantileTransformer(random_state=random_state, n_quantiles=n_quantiles, subsample=n_samples // 10) transformer.fit(X) diff = (np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)) inf_norm = np.max(np.abs(diff)) assert_true(inf_norm < 1e-2) inf_norm_arr.append(inf_norm) # each random subsampling yield a unique approximation to the expected # linspace CDF assert_equal(len(np.unique(inf_norm_arr)), len(inf_norm_arr)) # sparse support # TODO: rng should be seeded once we drop support for older versions of # scipy (< 0.13) that don't support seeding. X = sparse.rand(n_samples, 1, density=.99, format='csc') inf_norm_arr = [] for random_state in range(ROUND): transformer = QuantileTransformer(random_state=random_state, n_quantiles=n_quantiles, subsample=n_samples // 10) transformer.fit(X) diff = (np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)) inf_norm = np.max(np.abs(diff)) assert_true(inf_norm < 1e-1) inf_norm_arr.append(inf_norm) # each random subsampling yield a unique approximation to the expected # linspace CDF assert_equal(len(np.unique(inf_norm_arr)), len(inf_norm_arr)) def test_quantile_transform_sparse_toy(): X = np.array([[0., 2., 0.], [25., 4., 0.], [50., 0., 2.6], [0., 0., 4.1], [0., 6., 0.], [0., 8., 0.], [75., 0., 2.3], [0., 10., 0.], [0., 0., 9.5], [100., 0., 0.1]]) X = sparse.csc_matrix(X) transformer = QuantileTransformer(n_quantiles=10) transformer.fit(X) X_trans = transformer.fit_transform(X) assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.) assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) transformer_dense = QuantileTransformer(n_quantiles=10).fit( X.toarray()) X_trans = transformer_dense.transform(X) assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.) assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.) X_trans_inv = transformer_dense.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) def test_quantile_transform_axis1(): X = np.array([[0, 25, 50, 75, 100], [2, 4, 6, 8, 10], [2.6, 4.1, 2.3, 9.5, 0.1]]) X_trans_a0 = quantile_transform(X.T, axis=0, n_quantiles=5) X_trans_a1 = quantile_transform(X, axis=1, n_quantiles=5) assert_array_almost_equal(X_trans_a0, X_trans_a1.T) def test_quantile_transform_bounds(): # Lower and upper bounds are manually mapped. We checked that in the case # of a constant feature and binary feature, the bounds are properly mapped. X_dense = np.array([[0, 0], [0, 0], [1, 0]]) X_sparse = sparse.csc_matrix(X_dense) # check sparse and dense are consistent X_trans = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_dense) assert_array_almost_equal(X_trans, X_dense) X_trans_sp = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_sparse) assert_array_almost_equal(X_trans_sp.A, X_dense) assert_array_almost_equal(X_trans, X_trans_sp.A) # check the consistency of the bounds by learning on 1 matrix # and transforming another X = np.array([[0, 1], [0, 0.5], [1, 0]]) X1 = np.array([[0, 0.1], [0, 0.5], [1, 0.1]]) transformer = QuantileTransformer(n_quantiles=3).fit(X) X_trans = transformer.transform(X1) assert_array_almost_equal(X_trans, X1) # check that values outside of the range learned will be mapped properly. X = np.random.random((1000, 1)) transformer = QuantileTransformer() transformer.fit(X) assert_equal(transformer.transform(-10), transformer.transform(np.min(X))) assert_equal(transformer.transform(10), transformer.transform(np.max(X))) assert_equal(transformer.inverse_transform(-10), transformer.inverse_transform( np.min(transformer.references_))) assert_equal(transformer.inverse_transform(10), transformer.inverse_transform( np.max(transformer.references_))) def test_quantile_transform_and_inverse(): # iris dataset X = iris.data transformer = QuantileTransformer(n_quantiles=1000, random_state=0) X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) def test_robust_scaler_invalid_range(): for range_ in [ (-1, 90), (-2, -3), (10, 101), (100.5, 101), (90, 50), ]: scaler = RobustScaler(quantile_range=range_) assert_raises_regex(ValueError, 'Invalid quantile range: \(', scaler.fit, iris.data) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert_false(np.any(np.isnan(X_scaled))) X_csr_scaled = scale(X_csr, with_mean=False) assert_false(np.any(np.isnan(X_csr_scaled.data))) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # null scale X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True) assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray()) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): # Check RobustScaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_maxabs_scaler_zero_variance_features(): # Check MaxAbsScaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # function interface X_trans = maxabs_scale(X) assert_array_almost_equal(X_trans, X_expected) # sparse data X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_trans_csr = scaler.fit_transform(X_csr) X_trans_csc = scaler.fit_transform(X_csc) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans_csr.A, X_expected) assert_array_almost_equal(X_trans_csc.A, X_expected) X_trans_csr_inv = scaler.inverse_transform(X_trans_csr) X_trans_csc_inv = scaler.inverse_transform(X_trans_csc) assert_array_almost_equal(X, X_trans_csr_inv.A) assert_array_almost_equal(X, X_trans_csc_inv.A) def test_maxabs_scaler_large_negative_value(): # Check MaxAbsScaler on toy data with a large negative value X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) def test_maxabs_scaler_transform_one_row_csr(): # Check MaxAbsScaler on transforming csr matrix with one row X = sparse.csr_matrix([[0.5, 1., 1.]]) scaler = MaxAbsScaler() scaler = scaler.fit(X) X_trans = scaler.transform(X) X_expected = sparse.csr_matrix([[1., 1., 1.]]) assert_array_almost_equal(X_trans.toarray(), X_expected.toarray()) X_scaled_back = scaler.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_scaled_back.toarray()) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_maxabs_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MaxAbsScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), np.ones(n_features)) else: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones(5).reshape(5, 1) scaler = MaxAbsScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # function interface X_1d = X_1row.ravel() max_abs = np.abs(X_1d).max() assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True)) def test_maxabs_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d[:100, :] n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() scaler_incr_csr = MaxAbsScaler() scaler_incr_csc = MaxAbsScaler() for batch in gen_batches(n, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) X_csr = sparse.csr_matrix(X[batch]) scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr) X_csc = sparse.csc_matrix(X[batch]) scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csc.max_abs_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr_csr.n_samples_seen_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr_csc.n_samples_seen_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MaxAbsScaler().fit(X[batch0]) scaler_incr = MaxAbsScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std until the end of partial fits, and scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() # Clean estimator for i, batch in enumerate(gen_batches(n, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert_true(X_norm is not X) X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert_true(X_norm is X) X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') rs = np.random.RandomState(0) X_dense = rs.randn(10, 5) X_sparse = sparse.csr_matrix(X_dense) ones = np.ones((10)) for X in (X_dense, X_sparse): for dtype in (np.float32, np.float64): for norm in ('l1', 'l2'): X = X.astype(dtype) X_norm = normalize(X, norm=norm) assert_equal(X_norm.dtype, dtype) X_norm = toarray(X_norm) if norm == 'l1': row_sums = np.abs(X_norm).sum(axis=1) else: X_norm_squared = X_norm**2 row_sums = X_norm_squared.sum(axis=1) assert_array_almost_equal(row_sums, ones) # Test return_norm X_dense = np.array([[3.0, 0, 4.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]]) for norm in ('l1', 'l2', 'max'): _, norms = normalize(X_dense, norm=norm, return_norm=True) if norm == 'l1': assert_array_almost_equal(norms, np.array([7.0, 1.0, 5.0])) elif norm == 'l2': assert_array_almost_equal(norms, np.array([5.0, 1.0, 3.60555127])) else: assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) X_sparse = sparse.csr_matrix(X_dense) for norm in ('l1', 'l2'): assert_raises(NotImplementedError, normalize, X_sparse, norm=norm, return_norm=True) _, norms = normalize(X_sparse, norm='max', return_norm=True) assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert_true(X_bin is not X) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert_true(X_bin is not X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert_true(X_bin is X) binarizer = Binarizer(copy=False) X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64) X_bin = binarizer.transform(X_float) if init is not list: assert_true(X_bin is X_float) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_cv_pipeline_precomputed(): # Cross-validate a regression on four coplanar points with the same # value. Use precomputed kernel to ensure Pipeline with KernelCenterer # is treated as a _pairwise operation. X = np.array([[3, 0, 0], [0, 3, 0], [0, 0, 3], [1, 1, 1]]) y_true = np.ones((4,)) K = X.dot(X.T) kcent = KernelCenterer() pipeline = Pipeline([("kernel_centerer", kcent), ("svr", SVR())]) # did the pipeline set the _pairwise attribute? assert_true(pipeline._pairwise) # test cross-validation, score should be almost perfect # NB: this test is pretty vacuous -- it's mainly to test integration # of Pipeline and KernelCenterer y_pred = cross_val_predict(pipeline, K, y_true, cv=2) assert_array_almost_equal(y_true, y_pred) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csc(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csr(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_one_hot_encoder_sparse(): # Test OneHotEncoder's fit and transform. X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder() # discover max values automatically X_trans = enc.fit_transform(X).toarray() assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, [[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]]) # max value given as 3 enc = OneHotEncoder(n_values=4) X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 4 * 3)) assert_array_equal(enc.feature_indices_, [0, 4, 8, 12]) # max value given per feature enc = OneHotEncoder(n_values=[3, 2, 2]) X = [[1, 0, 1], [0, 1, 1]] X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 3 + 2 + 2)) assert_array_equal(enc.n_values_, [3, 2, 2]) # check that testing with larger feature works: X = np.array([[2, 0, 1], [0, 1, 1]]) enc.transform(X) # test that an error is raised when out of bounds: X_too_large = [[0, 2, 1], [0, 1, 1]] assert_raises(ValueError, enc.transform, X_too_large) error_msg = "unknown categorical feature present \[2\] during transform." assert_raises_regex(ValueError, error_msg, enc.transform, X_too_large) assert_raises(ValueError, OneHotEncoder(n_values=2).fit_transform, X) # test that error is raised when wrong number of features assert_raises(ValueError, enc.transform, X[:, :-1]) # test that error is raised when wrong number of features in fit # with prespecified n_values assert_raises(ValueError, enc.fit, X[:, :-1]) # test exception on wrong init param assert_raises(TypeError, OneHotEncoder(n_values=np.int).fit, X) enc = OneHotEncoder() # test negative input to fit assert_raises(ValueError, enc.fit, [[0], [-1]]) # test negative input to transform enc.fit([[0], [1]]) assert_raises(ValueError, enc.transform, [[0], [-1]]) def test_one_hot_encoder_dense(): # check for sparse=False X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder(sparse=False) # discover max values automatically X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, np.array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]])) def _check_transform_selected(X, X_expected, sel): for M in (X, sparse.csr_matrix(X)): Xtr = _transform_selected(M, Binarizer().transform, sel) assert_array_equal(toarray(Xtr), X_expected) def test_transform_selected(): X = [[3, 2, 1], [0, 1, 1]] X_expected = [[1, 2, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0]) _check_transform_selected(X, X_expected, [True, False, False]) X_expected = [[1, 1, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0, 1, 2]) _check_transform_selected(X, X_expected, [True, True, True]) _check_transform_selected(X, X_expected, "all") _check_transform_selected(X, X, []) _check_transform_selected(X, X, [False, False, False]) def test_transform_selected_copy_arg(): # transformer that alters X def _mutating_transformer(X): X[0, 0] = X[0, 0] + 1 return X original_X = np.asarray([[1, 2], [3, 4]]) expected_Xtr = [[2, 2], [3, 4]] X = original_X.copy() Xtr = _transform_selected(X, _mutating_transformer, copy=True, selected='all') assert_array_equal(toarray(X), toarray(original_X)) assert_array_equal(toarray(Xtr), expected_Xtr) def _run_one_hot(X, X2, cat): enc = OneHotEncoder(categorical_features=cat) Xtr = enc.fit_transform(X) X2tr = enc.transform(X2) return Xtr, X2tr def _check_one_hot(X, X2, cat, n_features): ind = np.where(cat)[0] # With mask A, B = _run_one_hot(X, X2, cat) # With indices C, D = _run_one_hot(X, X2, ind) # Check shape assert_equal(A.shape, (2, n_features)) assert_equal(B.shape, (1, n_features)) assert_equal(C.shape, (2, n_features)) assert_equal(D.shape, (1, n_features)) # Check that mask and indices give the same results assert_array_equal(toarray(A), toarray(C)) assert_array_equal(toarray(B), toarray(D)) def test_one_hot_encoder_categorical_features(): X = np.array([[3, 2, 1], [0, 1, 1]]) X2 = np.array([[1, 1, 1]]) cat = [True, False, False] _check_one_hot(X, X2, cat, 4) # Edge case: all non-categorical cat = [False, False, False] _check_one_hot(X, X2, cat, 3) # Edge case: all categorical cat = [True, True, True] _check_one_hot(X, X2, cat, 5) def test_one_hot_encoder_unknown_transform(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) y = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown='error') oh.fit(X) assert_raises(ValueError, oh.transform, y) # Test the ignore option, ignores unknown features. oh = OneHotEncoder(handle_unknown='ignore') oh.fit(X) assert_array_equal( oh.transform(y).toarray(), np.array([[0., 0., 0., 0., 1., 0., 0.]])) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown='42') oh.fit(X) assert_raises(ValueError, oh.transform, y) def test_fit_cold_start(): X = iris.data X_2d = X[:, :2] # Scalers that have a partial_fit method scalers = [StandardScaler(with_mean=False, with_std=False), MinMaxScaler(), MaxAbsScaler()] for scaler in scalers: scaler.fit_transform(X) # with a different shape, this may break the scaler unless the internal # state is reset scaler.fit_transform(X_2d) def test_quantile_transform_valid_axis(): X = np.array([[0, 25, 50, 75, 100], [2, 4, 6, 8, 10], [2.6, 4.1, 2.3, 9.5, 0.1]]) assert_raises_regex(ValueError, "axis should be either equal to 0 or 1" ". Got axis=2", quantile_transform, X.T, axis=2)
bsd-3-clause
jorik041/scikit-learn
examples/hetero_feature_union.py
288
6236
""" ============================================= Feature Union with Heterogeneous Data Sources ============================================= Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions) 2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines. This example demonstrates how to use :class:`sklearn.feature_extraction.FeatureUnion` on a dataset containing different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights) using a FeatureUnion and finally train a classifier on the combined set of features. The choice of features is not particularly helpful, but serves to illustrate the technique. """ # Author: Matt Terry <[email protected]> # # License: BSD 3 clause from __future__ import print_function import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import fetch_20newsgroups from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.svm import SVC class ItemSelector(BaseEstimator, TransformerMixin): """For data grouped by feature, select subset of data at a provided key. The data is expected to be stored in a 2D data structure, where the first index is over features and the second is over samples. i.e. >> len(data[key]) == n_samples Please note that this is the opposite convention to sklearn feature matrixes (where the first index corresponds to sample). ItemSelector only requires that the collection implement getitem (data[key]). Examples include: a dict of lists, 2D numpy array, Pandas DataFrame, numpy record array, etc. >> data = {'a': [1, 5, 2, 5, 2, 8], 'b': [9, 4, 1, 4, 1, 3]} >> ds = ItemSelector(key='a') >> data['a'] == ds.transform(data) ItemSelector is not designed to handle data grouped by sample. (e.g. a list of dicts). If your data is structured this way, consider a transformer along the lines of `sklearn.feature_extraction.DictVectorizer`. Parameters ---------- key : hashable, required The key corresponding to the desired value in a mappable. """ def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key] class TextStats(BaseEstimator, TransformerMixin): """Extract features from each document for DictVectorizer""" def fit(self, x, y=None): return self def transform(self, posts): return [{'length': len(text), 'num_sentences': text.count('.')} for text in posts] class SubjectBodyExtractor(BaseEstimator, TransformerMixin): """Extract the subject & body from a usenet post in a single pass. Takes a sequence of strings and produces a dict of sequences. Keys are `subject` and `body`. """ def fit(self, x, y=None): return self def transform(self, posts): features = np.recarray(shape=(len(posts),), dtype=[('subject', object), ('body', object)]) for i, text in enumerate(posts): headers, _, bod = text.partition('\n\n') bod = strip_newsgroup_footer(bod) bod = strip_newsgroup_quoting(bod) features['body'][i] = bod prefix = 'Subject:' sub = '' for line in headers.split('\n'): if line.startswith(prefix): sub = line[len(prefix):] break features['subject'][i] = sub return features pipeline = Pipeline([ # Extract the subject & body ('subjectbody', SubjectBodyExtractor()), # Use FeatureUnion to combine the features from subject and body ('union', FeatureUnion( transformer_list=[ # Pipeline for pulling features from the post's subject line ('subject', Pipeline([ ('selector', ItemSelector(key='subject')), ('tfidf', TfidfVectorizer(min_df=50)), ])), # Pipeline for standard bag-of-words model for body ('body_bow', Pipeline([ ('selector', ItemSelector(key='body')), ('tfidf', TfidfVectorizer()), ('best', TruncatedSVD(n_components=50)), ])), # Pipeline for pulling ad hoc features from post's body ('body_stats', Pipeline([ ('selector', ItemSelector(key='body')), ('stats', TextStats()), # returns a list of dicts ('vect', DictVectorizer()), # list of dicts -> feature matrix ])), ], # weight components in FeatureUnion transformer_weights={ 'subject': 0.8, 'body_bow': 0.5, 'body_stats': 1.0, }, )), # Use a SVC classifier on the combined features ('svc', SVC(kernel='linear')), ]) # limit the list of categories to make running this exmaple faster. categories = ['alt.atheism', 'talk.religion.misc'] train = fetch_20newsgroups(random_state=1, subset='train', categories=categories, ) test = fetch_20newsgroups(random_state=1, subset='test', categories=categories, ) pipeline.fit(train.data, train.target) y = pipeline.predict(test.data) print(classification_report(y, test.target))
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/test_msgpack/test_unpack.py
9
1993
from io import BytesIO import sys from pandas.msgpack import Unpacker, packb, OutOfData, ExtType import pandas.util.testing as tm import nose class TestUnpack(tm.TestCase): def test_unpack_array_header_from_file(self): f = BytesIO(packb([1, 2, 3, 4])) unpacker = Unpacker(f) assert unpacker.read_array_header() == 4 assert unpacker.unpack() == 1 assert unpacker.unpack() == 2 assert unpacker.unpack() == 3 assert unpacker.unpack() == 4 self.assertRaises(OutOfData, unpacker.unpack) def test_unpacker_hook_refcnt(self): if not hasattr(sys, 'getrefcount'): raise nose.SkipTest('no sys.getrefcount()') result = [] def hook(x): result.append(x) return x basecnt = sys.getrefcount(hook) up = Unpacker(object_hook=hook, list_hook=hook) assert sys.getrefcount(hook) >= basecnt + 2 up.feed(packb([{}])) up.feed(packb([{}])) assert up.unpack() == [{}] assert up.unpack() == [{}] assert result == [{}, [{}], {}, [{}]] del up assert sys.getrefcount(hook) == basecnt def test_unpacker_ext_hook(self): class MyUnpacker(Unpacker): def __init__(self): super(MyUnpacker, self).__init__(ext_hook=self._hook, encoding='utf-8') def _hook(self, code, data): if code == 1: return int(data) else: return ExtType(code, data) unpacker = MyUnpacker() unpacker.feed(packb({'a': 1}, encoding='utf-8')) assert unpacker.unpack() == {'a': 1} unpacker.feed(packb({'a': ExtType(1, b'123')}, encoding='utf-8')) assert unpacker.unpack() == {'a': 123} unpacker.feed(packb({'a': ExtType(2, b'321')}, encoding='utf-8')) assert unpacker.unpack() == {'a': ExtType(2, b'321')}
gpl-3.0
izaid/dynd-python
dynd/benchmarks/benchrun.py
8
5322
""" Benchrun is a Python script for defining and running performance benchmarks. It allows you to run a benchmark for different versions of the code and for different values of an input parameter, and automatically generates tables that compare the results. A benchmark is defined by creating a subclass of Benchmark. The subclass should define a method run() that executes the code to be timed and returns the elapsed time in seconds (as a float), or None if the benchmark should be skipped. This file was originally taken from https://code.google.com/p/benchrun/ under the MIT License, but has been modified since. """ from __future__ import print_function import math import sys if sys.platform=='win32': from time import clock else: from time import time as clock # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/302478 def combinations(*seqin): def rloop(seqin,comb): if seqin: for item in seqin[0]: newcomb = comb + [item] for item in rloop(seqin[1:],newcomb): yield item else: yield comb return rloop(seqin,[]) def _mean(n = 10): def wrap(func): def wrapper(*args, **kwds): results = [func(*args, **kwds) for i in range(n)] return math.fsum(results) / n return wrapper return wrap def mean(callable_or_value): if callable(callable_or_value): return _mean()(callable_or_value) return _mean(callable_or_value) def _median(n = 10): def wrap(func): def wrapper(*args, **kwds): results = sorted(func(*args, **kwds) for i in range(n)) i = n // 2 if n % 2 == 1: return results[i] return (results[i - 1] + results[i]) / 2.0 return wrapper return wrap def median(callable_or_value): if callable(callable_or_value): return _median()(callable_or_value) return _median(callable_or_value) class Benchmark: sort_by = [] reference = None def __init__(self): self.pnames = [] self.pvalues = [] self.results = [] self.results_dict = {} for pname in self.parameters: value = getattr(self, pname) self.pnames.append(pname) self.pvalues.append(value) self.pcombos = list(combinations(*self.pvalues)) if self.reference: self.reference_param = self.reference[0] self.reference_value = self.reference[1] def time_all(self): """Run benchmark for all versions and parameters.""" for params in self.pcombos: args = dict(zip(self.pnames, params)) t = self.run(**args) self.results.append(tuple(params) + (t,)) self.results_dict[tuple(params)] = t def sort_results(self): sort_keys = [] for name in self.sort_by: sort_keys += [self.pnames.index(name)] for i, name in enumerate(self.pnames): if i not in sort_keys: sort_keys += [i] def key(v): return list(v[i] for i in sort_keys) self.results.sort(key=key) def get_factor(self, pvalues, time): if not self.reference or not time: return None pvalues = list(pvalues) i = self.pnames.index(self.reference_param) if pvalues[i] == self.reference_value: return None else: pvalues[i] = self.reference_value ref = self.results_dict[tuple(pvalues)] if ref == None: return None return ref / time def print_result(self): """Run benchmark for all versions and parameters and print results in tabular form to the standard output.""" self.time_all() self.sort_results() print("=" * 78) print() print(self.__class__.__name__) print(self.__doc__, "\n") colwidth = 15 reftimes = {} ts = "seconds" if self.reference: ts += " (x faster than " + (str(self.reference_value)) + ")" print(" ", " ".join([str(r).ljust(colwidth) for r in self.pnames + [ts]])) print("-"*79) rows = [] for vals in self.results: pvalues = vals[:-1] time = vals[-1] if time == None: stime = "(n/a)" else: stime = "%.8f" % time factor = self.get_factor(pvalues, time) if factor != None: stime += (" (%.2f)" % factor) vals = pvalues + (stime,) row = [str(val).ljust(colwidth) for val in vals] print(" ", " ".join(row)) print() def plot_result(self, loglog = False): import matplotlib import matplotlib.pyplot self.time_all() self.sort_results() if loglog: from matplotlib.pyplot import loglog as plot else: from matplotlib.pyplot import plot plot(*zip(*self.results), label = self.__class__.__name__, marker = "o", linestyle = '--', linewidth = 2) matplotlib.pyplot.xlabel(self.pnames[0]) matplotlib.pyplot.ylabel("seconds") matplotlib.pyplot.legend(loc = 2, markerscale = 0)
bsd-2-clause
jones139/OpenSeizureDetector
fitbit_version/sd/sd/main.py
2
7082
from __future__ import print_function import datetime import os import sys import time import uuid import logging import logging.handlers logger = logging.getLogger(__name__) import requests #from .conversation import Conversation from .config import Config, ConfigError from .tracker import FitbitClient from .utils import a2x from . import dongle as dgl import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import Image FitBitUUID = uuid.UUID('{ADAB0000-6E7D-4601-BDA2-BFFAA68956BA}') def syncAllTrackers(config): logger.debug('%s initialising', os.path.basename(sys.argv[0])) dongle = dgl.FitBitDongle(config.logSize) if not dongle.setup(): logger.error("No dongle connected, aborting") return fitbit = FitbitClient(dongle) if not fitbit.disconnect(): logger.error("Dirty state, not able to start synchronisation.") fitbit.exhaust() return if not fitbit.getDongleInfo(): logger.warning('Failed to get connected Fitbit dongle information') logger.info('Discovering trackers to synchronize') trackers = [t for t in fitbit.discover(FitBitUUID)] logger.info('%d trackers discovered', len(trackers)) for tracker in trackers: logger.debug('Discovered tracker with ID %s', a2x(tracker.id, delim="")) for tracker in trackers: trackerid = a2x(tracker.id, delim="") if (trackerid=="3C971E6292CA"): logger.info('Attempting to synchronize tracker %s', trackerid) logger.debug('Establishing link with tracker') if not (fitbit.establishLink(tracker) and fitbit.toggleTxPipe(True) and fitbit.initializeAirlink(tracker)): logger.warning('Unable to connect with tracker %s. Skipping', trackerid) tracker.status = 'Unable to establish a connection.' yield tracker continue # create output directory if necessary dirname = os.path.expanduser(os.path.join(config.dumpDir, trackerid)) if not os.path.exists(dirname): logger.debug("Creating non-existent directory for dumps %s", dirname) os.makedirs(dirname) # Collect several dumps in rapid succession. dumparr = [] for ndump in range(0,300): logger.info('Getting data from tracker') dump = fitbit.getDump(fitbit.MICRODUMP) if dump is None: logger.error("Error downloading the dump from tracker") tracker.status = "Failed to download the dump" yield tracker continue filename = os.path.join(dirname, 'dump-%d-%d.txt' % (int(time.time()),ndump)) #dump.toFile(filename) dumparr.append(dump.data) dumparr_np = np.array(dumparr) print(dumparr_np.shape) img = Image.fromarray(dumparr_np.astype(np.uint8)) img.save("image.png") dumparr_np = dumparr_np/255. print(dumparr_np) imgplot = plt.imshow(dumparr_np) plt.show() logger.debug('Disconnecting from tracker') if not (fitbit.terminateAirlink() and fitbit.toggleTxPipe(False) and fitbit.ceaseLink()): logger.warning('Error while disconnecting from tracker %s', trackerid) tracker.status += " (Error disconnecting)" yield tracker PERMISSION_DENIED_HELP = """ To be able to run the fitbit utility as a non-privileged user, you first should install a 'udev rule' that lower the permissions needed to access the fitbit dongle. In order to do so, as root, create the file /etc/udev/rules.d/99-fitbit.rules with the following content (in one line): SUBSYSTEM=="usb", ATTR{idVendor}=="%(VID)x", ATTR{idProduct}=="%(PID)x", SYMLINK+="fitbit", MODE="0666" The dongle must then be removed and reinserted to receive the new permissions.""" % { 'VID': dgl.FitBitDongle.VID, 'PID': dgl.FitBitDongle.PID} def sync(config): statuses = [] try: for tracker in syncAllTrackers(config): statuses.append("Tracker: %s: %s" % (a2x(tracker.id, ''), tracker.status)) except dgl.PermissionDeniedException: print(PERMISSION_DENIED_HELP) return print('\n'.join(statuses)) def main(): """ This is the entry point """ # Set the null handler to avoid complaining about no handler presents logging.getLogger("sd").addHandler(logging.NullHandler()) try: config = Config() config.parseSystemConfig() config.parseUserConfig() # This gives us the config file name config.parseArgs() if config.rcConfigName: config.load(config.rcConfigName) # We need to re-apply our arguments as last config.applyArgs() except ConfigError as e: print(e, file=sys.stderr) sys.exit(os.EX_CONFIG) # --- All logging actions before this line are not active --- # This means that the whole Config parsing is not logged because we don't # know which logLevel we should use. if config.syslog: # Syslog messages must have the time/name first. format = ('%(asctime)s ' + 'sd' + ': ' '%(levelname)s: %(module)s: %(message)s') # TODO: Make address into a config option. handler = logging.handlers.SysLogHandler( address='/dev/log', facility=logging.handlers.SysLogHandler.LOG_DAEMON) handler.setFormatter(logging.Formatter(fmt=format)) core_logger = logging.getLogger('sd') core_logger.handlers = [] core_logger.addHandler(handler) core_logger.setLevel(config.logLevel) else: format = '%(asctime)s:%(levelname)s: %(message)s' logging.basicConfig(format=format, level=config.logLevel) # --- All logger actions from now on will be effective --- logger.debug("Configuration: %s", config) #ui = InteractiveUI(config.hardcoded_ui) try: sync(config) except: logger.critical("# A serious error happened, which is probably due to a") logger.critical("# programming error. Please open a new issue with the following") logger.critical("# information on the galileo bug tracker:") logger.critical("# https://bitbucket.org/benallard/galileo/issues/new") if hasattr(dgl, 'log'): logger.critical('# Last communications:') for comm in dgl.log.getData(): dir, dat = comm logger.critical('# %s %s' % ({dgl.IN: '<', dgl.OUT: '>'}.get(dir, '-'), a2x(dat or []))) logger.critical("#", exc_info=True) sys.exit(os.EX_SOFTWARE)
gpl-3.0
dandanvidi/kvivo_max
scripts/catalytic_rates.py
3
14326
import pandas as pd from cobra.io.sbml import create_cobra_model_from_sbml_file from cobra.manipulation.modify import convert_to_irreversible import numpy as np from model_addons import add_to_model from copy import deepcopy class rates(object): def __init__(self): self.model = create_cobra_model_from_sbml_file("../data/iJO1366.xml") # Modify model convert_to_irreversible(self.model) self.rxns = dict([(r.id, r) for r in self.model.reactions]) self.genes = dict([(g.id, g) for g in self.model.genes]) add_to_model(self.model) self.include_specific_isozmyes() self.gc = pd.DataFrame.from_csv("../data/growth_conditions.csv") flux = pd.DataFrame.from_csv('../data/flux[mmol_gCDW_h].csv') self.v = self._convert_mmol_gCDW_h_to_mmol_gCDW_s(flux) # PPKr_reverse reaction is used for ATP generation from ADP # in the FBA model. Nevertheless, acording to EcoCyc, it is used to # to generate polyP (inorganic phosphate) chains from ATP and it is not # part of the oxidative phosphorilation, thus removed from rate calculations if 'PPKr_reverse' in self.v.index: self.v.drop('PPKr_reverse', axis=0, inplace=True) self.enzymatic_reactions = self._enzymatic_reactions() self.homomeric_reactions = self.reactions_by_homomeric_enzymes() proteins_copies_fL = pd.DataFrame.from_csv('../data/meta_abundance[copies_fL].csv') self.proteins_mmol_gCDW = self._convert_copies_fL_to_mmol_gCDW(proteins_copies_fL) self.E = self.map_expression_by_reaction() self.kapp = self.get_kapp() # per subunit self.SA = self.get_specific_activity() self.kcat = pd.DataFrame.from_csv("../data/kcat_data.csv") self.p_per_as = (self.kcat['polypeptides per complex'] / self.kcat['catalytic sites per complex']) self.kmax = self.get_kmax(self.kapp) self.SAmax = self.get_maximum_specific_activity(self.SA) def include_specific_isozmyes(self): ''' Possible add-ons to the list of unique homomeric enzymes obtained by the function "reactions_to_unique_enzyme". These isoenzymes are known to have only one active isoenzyme across all tested conditions and therefore were manually added ''' pairs = [ ('METS','b3829'),# metE - cobalamin-independent homocysteine transmethylase - The aerobic enzyme - the other isoenzyme operates under anaerobic conditions ('HCO3E','b0126'),# can - carbonic anhydrase ('PFK','b3916'), # 6-phosphofructokinase - pfkB accounts for above 90% of enzymatic activity (EcoCyc) ('RPI','b2914'), # ribose-5-phosphate isomerase A ('RPE', 'b3386') # ribulose-5-phosphate 3-epimerase - other isozyme is according to predicted activity. ] for (r,g) in pairs: self.rxns[r]._genes = [self.model.genes.get_by_id(g)] self.rxns[r].gene_reaction_rule = '('+g+')' def _enzymatic_reactions(self): ''' Returns a list of cobra Reaction objects catalyzed by enzymes. ''' reactions = filter(lambda r:len(r.genes)>=1, self.model.reactions) genes = [list(r.genes) for r in reactions] return dict(zip(reactions,genes)) def reactions_by_unique_enzyme(self): ''' Returns a list of reactions (as cobra REACTION objects) in the model catalyzed by unique enzymes. Enzymes can either be homomeric or hetorometic complexes. ''' one_enzyme_reac = filter(lambda r: 'or' not in r.gene_reaction_rule, self.enzymatic_reactions.keys()) genes = [list(r.genes) for r in one_enzyme_reac] return dict(zip(one_enzyme_reac,genes)) def reactions_by_homomeric_enzymes(self): ''' Returns a list of reactions (as cobra REACTION objects) in the model catalyzed by unique enzymes which are composed of a single polypeptide chain, i.e., unique homomeric enzymes. ''' homomers = filter(lambda r: len(r.genes)==1, self.enzymatic_reactions.keys()) genes = [list(r.genes)[0] for r in homomers] return dict(zip(homomers,genes)) def _convert_copies_fL_to_mmol_gCDW(self, expression_data): ''' Convertes the units of proteomics data (usually reported in copies per fL of cytoplasm) to units of mmol per gCDW. This unit conversion is performed to match flux units from metabolic models (usually given in mmol/gCDW/h) ''' rho = 1100 # average cell density gr/liter DW_fraction = 0.3 # fraction of DW of cells Avogadro = 6.02214129 # Avogadro's number "exponent-less" expression_data[expression_data<10] = np.nan expression_data /= (Avogadro*1e5) expression_data /= (rho * DW_fraction) return expression_data def _convert_mmol_gCDW_h_to_mmol_gCDW_s(self, flux_data): ''' Convertes the units of flux data (usually reported in mmol/gCDW/h) to units of mmol/gCDW per second. This unit conversion is performed to allow calculation of turnover rates in units of s^-1, as traditioanlly excepted. ''' flux_data /= 3600 return flux_data def _convert_mmol_gCDW_to_mg_gCDW(self, expression_data): genes = set(self.genes.keys()) & (set(expression_data.index)) mass = [self.genes[g].MW for g in genes] MW = pd.Series(index=genes, data=mass) return expression_data.loc[MW.index].mul(MW, axis=0) def map_expression_by_reaction(self): gc = self.v.columns & self.proteins_mmol_gCDW.columns tmp = {k.id:v.id for k,v in self.reactions_by_homomeric_enzymes().iteritems()} E = pd.DataFrame(index=tmp.keys(),columns=gc) for i in E.index: if tmp[i] in self.proteins_mmol_gCDW.index: E.loc[i] = self.proteins_mmol_gCDW.loc[tmp[i]] E.dropna(how='all', inplace=True) return E def get_kapp(self): ''' Calculates the catalytic rate of a single subunit of a homomeric enzyme for a given reaction, by dividing the flux through the reaction by the abundance of the polypeptide chain that comprises the enzyme. Arguments: flux [mmol/gCDW/s] proteomics [mmol/gCDW] Returns: pandas dataframe with catalytic rates per polypeptide chain in units of s^-1. Rows are reactions, columns are conditions ''' rate = self.v.div(self.E) rate.replace([0, np.inf, -np.inf], np.nan, inplace=True) rate.dropna(how='all', inplace=True) return rate def get_kmax(self, kapp, minimal_conditions=5): ''' Take the maximum rate of a given enzyme-reaction pair across all conditions. Arguments: catalytic rate of enzyme-reaction pairs across conditions as a pandas dataframe. Rows are reactions, columns are conditions Returns: Maximal rate for each enzyme-reaction pair, the condition in which it was found, the metabolic pathway associated with the reaction and the carbon source on which the cells were grown. Notice that maximal rates are given per polypeptide chain and per active site in two seperate columns. Rate units are s^-1. ''' kapp.dropna(thresh=minimal_conditions, inplace=True) kmax = pd.DataFrame(index=kapp.index) subsystems =[self.rxns[r].subsystem for r in kmax.index] genes = [list(self.rxns[r].genes)[0].id for r in kmax.index] names = [list(self.rxns[r].genes)[0].name for r in kmax.index] kmax.index.name = 'reaction' kmax['bnumber'] = genes kmax['primary gene name (uniprot)'] = names kmax['kmax per chain [s^-1]'] = kapp.max(axis=1) tmp = self.kapp.loc[kmax.index].mul(self.p_per_as[kmax.index], axis=0) kmax['kmax per active site [s-1]'] = tmp.max(axis=1) kmax['subsystem'] = subsystems kmax['condition'] = kapp.idxmax(axis=1) return kmax def get_specific_activity(self): ''' Calculates the specific activity in units of umol/mg/min for all reactions in the model. The sum of all associated polypeptide chains is used as the molecular weight of the enzyme and the flux through the reaction is divided by this weight. Notice that if a reaction can be carried by several different enzymes, i.e., isoenzymes, the returned values are a weighted average of the rate of the enzymes by their mass. Arguments: flux [mmol/gCDW/s] proteomics [mmol/gCDW] Returns: pandas dataframe with specific activeites of enzymes in units of umol/mg/min. Rows are reactions, columns are conditions ''' weighted_mass = self._convert_mmol_gCDW_to_mg_gCDW(self.proteins_mmol_gCDW) reactions = map(lambda x: x.id, self.enzymatic_reactions) SA = pd.DataFrame(index=reactions, columns=self.gc.index) for r in self.enzymatic_reactions: genes = map(lambda x: x.id, r.genes) try: SA.loc[r.id] = self.v.loc[r.id] / weighted_mass.loc[genes].sum() except KeyError: continue SA.replace([0, np.inf, -np.inf], np.nan, inplace=True) SA.dropna(how='all', inplace=True) return SA * 1000 * 60 def get_maximum_specific_activity(self, specific_activity, minimal_conditions=5): ''' Take the maximum rate of a given enzyme-reaction pair across all conditions. Arguments: specific activities of enzyme-reaction pairs across conditions as a pandas dataframe. Rows are reactions, columns are conditions Returns: Maximal specific activity for each enzyme-reaction pair, the condition in which it was found, the metabolic pathway associated with the reaction and the carbon source on which the cells were grown. Notice that maximal specific activities are given for the sum of all associated enzymes, thus represent the weighted average of the specific activites of the isoenzymes. Being a weighted average, it means that the values underestimate the maximal potential rate. ''' specific_activity.dropna(thresh=minimal_conditions, inplace=True) SAmax = pd.DataFrame(index=specific_activity.index) reactions = map(self.model.reactions.get_by_id, SAmax.index) subsystems = map(lambda r: r.subsystem, reactions) SAmax['max specific activity [umol/mg/min]'] = specific_activity.max(axis=1) SAmax['subsystem'] = subsystems SAmax['condition'] = specific_activity.idxmax(axis=1) return SAmax def get_second_max(self): ''' Finds the second maximal kapp value by reaction Arguments: self Returns: Pandas Series with reactions as index and snd max as values ''' rate = self.kapp.mul(self.p_per_as, axis=0) rate.dropna(how='all', inplace=True) second = pd.Series(index=rate.index) for r in rate.index: array = sorted(rate.loc[r]) second[r] = array[-2] return second def _perform_pFBA(self, model, cs='glc', gr=1, ur=10): from cobra.flux_analysis.parsimonious import optimize_minimal_flux rxns = dict([(r.id, r) for r in model.reactions]) rxns['EX_glc_e'].lower_bound = 0 # uptake of carbon source reaction is initialized try: rxns['EX_' + cs + '_e'].lower_bound = -ur # redefine sole carbon source uptake reaction in mmol/gr/h except: print cs, ur rxns['EX_glc_e'].lower_bound = -ur rxns['Ec_biomass_iJO1366_core_53p95M'].upper_bound = gr print "solving pFBA", optimize_minimal_flux(model, already_irreversible=True) flux_dist = pd.DataFrame(model.solution.x_dict.items()).set_index(0) return flux_dist def _overwrite_pFBA_file(self): reactions = [r.id for r in self.model.reactions] fluxes = pd.DataFrame(index=reactions, columns=self.gc.index) for c in self.gc.iterrows(): gr = c[1]['growth rate [h-1]'] cs = c[1]['media_key'] ur = c[1]['uptake rate [mmol gCDW-1 h-1]'] if np.isnan(ur): ur = 18.5 model = deepcopy(self.model) fluxes[c[0]] = self._perform_pFBA(model, cs, gr, ur) print "- %s" %c[0] fluxes.index.name = 'reaction' ''' export results ''' fluxes.to_csv('../data/flux[mmol_gCDW_h].csv') if __name__ == "__main__": R = rates() kcat = R.kcat['kcat per active site [s-1]'].dropna() kmax = R.kmax['kmax per active site [s-1]'].dropna() index = kcat.index & kmax.index kcat = kcat[index] kmax = kmax[index] from scipy import stats pearson = stats.pearsonr(np.log(kcat), np.log(kmax)) spearman = stats.spearmanr(kcat, kmax) kendal = stats.kendalltau(kcat, kmax)
mit
mtpain/metacorps
projects/common/analysis.py
1
12228
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd from collections import OrderedDict, Counter from copy import deepcopy from datetime import datetime, timedelta from urllib.parse import urlparse from .export_project import ProjectExporter from app.models import IatvCorpus DEFAULT_FACET_WORDS = [ 'attack', 'hit', 'beat', 'grenade', 'slap', 'knock', 'jugular', 'smack', 'strangle', 'slug', ] def get_project_data_frame(project_name): ''' Convenience method for creating a newly initialized instance of the Analyzer class. Currently the only argument is year since the projects all contain a year. In the future we may want to match some other unique element of a title, or create some other kind of wrapper to search all Project names in the metacorps database. Arguments: project_name (str): name of project to be exported to an Analyzer with DataFrame representation included as an attribute ''' if type(project_name) is int: project_name = str('Viomet Sep-Nov ' + str(project_name)) def is_url(s): return urlparse(project_name).hostname is not None if is_url(project_name) or os.path.exists(project_name): ret = pd.read_csv(project_name, na_values='', parse_dates=['start_localtime']) return ret return ProjectExporter(project_name).export_dataframe() def _select_range_and_pivot_subj_obj(date_range, counts_df, subj_obj): rng_sub = counts_df[ date_range[0] <= counts_df.start_localtime ][ counts_df.start_localtime <= date_range[1] ] rng_sub_sum = rng_sub.groupby(['network', subj_obj]).agg(sum) ret = rng_sub_sum.reset_index().pivot( index='network', columns=subj_obj, values='counts' ) return ret def _count_daily_subj_obj(df, sub_obj): subs = df[['start_localtime', 'network', 'subjects', 'objects']] subs.subjects = subs.subjects.map(lambda s: s.strip().lower()) subs.objects = subs.objects.map(lambda s: s.strip().lower()) try: trcl = subs[ (subs[sub_obj].str.contains('hillary clinton') | subs[sub_obj].str.contains('donald trump')) & subs[sub_obj].str.contains('/').map(lambda b: not b) & subs[sub_obj].str.contains('campaign').map(lambda b: not b) ] except KeyError: raise RuntimeError('sub_obj must be "subjects" or "objects"') c = trcl.groupby(['start_localtime', 'network', sub_obj]).size() ret_df = c.to_frame() ret_df.columns = ['counts'] ret_df.reset_index(inplace=True) # cleanup anything like 'republican nominee' ret_df.loc[ :, sub_obj ][ ret_df[sub_obj].str.contains('donald trump') ] = 'donald trump' ret_df.loc[ :, sub_obj ][ ret_df[sub_obj].str.contains('hillary clinton') ] = 'hillary clinton' return ret_df def _count_by_start_localtime(df, column_list=['program_name', 'network', 'facet_word']): ''' Count the number of instances grouped by column_list. Adds a 'counts' column. Arguments: df (pandas.DataFrame): Analyzer.df attribute from Analyzer class column_list (list): list of columns on which to groupby then count Returns: (pandas.DataFrame) counts per start_localtime of tuples with types given in column_list ''' all_cols = ['start_localtime'] + column_list subs = df[all_cols] c = subs.groupby(all_cols).size() ret_df = c.to_frame() ret_df.columns = ['counts'] ret_df.reset_index(inplace=True) return ret_df def shows_per_date(date_index, iatv_corpus, by_network=False): ''' Arguments: date_index (pandas.DatetimeIndex): Full index of dates covered by data iatv_corpus (app.models.IatvCorpus): Obtained, e.g., using `iatv_corpus = IatvCorpus.objects.get(name='Viomet Sep-Nov 2016')` by_network (bool): whether or not to do a faceted daily count by network Returns: (pandas.Series) if by_network is False, (pandas.DataFrame) if by_network is true. ''' if type(iatv_corpus) is str: iatv_corpus = IatvCorpus.objects(name=iatv_corpus)[0] docs = iatv_corpus.documents n_dates = len(date_index) if not by_network: # get all date/show name tuples & remove show re-runs from same date prog_dates = set( [ (d.program_name, d.start_localtime.date()) for d in docs ] ) # count total number of shows on each date # note we count the second entry of the tuples, which is just the # date, excluding program name shows_per_date = Counter(el[1] for el in prog_dates) spd_series = pd.Series( index=date_index, data={'counts': np.zeros(n_dates)} ).sort_index() for date in shows_per_date: spd_series.loc[date] = shows_per_date[date] return spd_series else: # get all date/network/show name tuples # & remove show re-runs from same date prog_dates = set( [ (d.program_name, d.network, d.start_localtime.date()) for d in docs ] ) # count total number of shows on each date for each network # note we count the second entry of the tuples, which is just the # date, excluding program name shows_per_network_per_date = Counter(el[1:] for el in prog_dates) n_dates = len(date_index) spd_frame = pd.DataFrame( index=date_index, data={ 'MSNBCW': np.zeros(n_dates), 'CNNW': np.zeros(n_dates), 'FOXNEWSW': np.zeros(n_dates) } ) for tup in shows_per_network_per_date: spd_frame.loc[tup[1]][tup[0]] = shows_per_network_per_date[tup] return spd_frame def daily_metaphor_counts(df, date_index, by=None): ''' Given an Analyzer.df, creates a pivot table with date_index as index. Will group by the column names given in by. First deals with hourly data in order to build a common index with hourly data, which is the data's original format. Arguments: df (pandas.DataFrame) by (list(str)) date_index (pandas.core.indexes.datetimes.DatetimeIndex): e.g. `pd.date_range('2016-09-01', '2016-11-30', freq='D')` ''' # get initial counts by localtime if by is None: by = [] counts = _count_by_start_localtime(df, column_list=by) groupby_spec = [counts.start_localtime.dt.date, *counts[by]] counts_gb = counts.groupby(groupby_spec).sum().reset_index() ret = pd.pivot_table(counts_gb, index='start_localtime', values='counts', columns=by, aggfunc='sum').fillna(0) return ret def daily_frequency(df, date_index, iatv_corpus, by=None): if by is not None and 'network' in by: spd = shows_per_date(date_index, iatv_corpus, by_network=True) daily = daily_metaphor_counts(df, date_index, by=by) ret = daily.div(spd, axis='rows') elif by is None: spd = shows_per_date(date_index, iatv_corpus) daily = daily_metaphor_counts(df, date_index, by=by) ret = daily.div(spd, axis='rows') ret.columns = ['freq'] else: spd = shows_per_date(date_index, iatv_corpus) daily = daily_metaphor_counts(df, date_index, by=by) ret = daily.div(spd, axis='rows') return ret class SubjectObjectData: ''' Container for timeseries of instances of a specified subject, object, or subject-object pair. For example, we may look for all instances where Donald Trump is the subject of metaphorical violence, irrespective of the object. We also may want to see where he is the object, no matter who is the subject. Or, we may want to search for pairs, say, all instances where Hillary Clinton is the subject of metaphorical violence and Donald Trump is the object of metaphorical violence, or vice-versa. from_analyzer_df is currently the most likely constructor to be used ''' def __init__(self, data_frame, subj, obj, partition_infos=None): self.data_frame = data_frame self.subject = subj self.object = obj self.partition_infos = partition_infos self.partition_data_frame = None @classmethod def from_analyzer_df(cls, analyzer_df, subj=None, obj=None, subj_contains=True, obj_contains=True, date_range=None): ''' Given an Analyzer instance's DataFrame, calculate the frequency of metaphorical violence with a given subject, object, or a subject-object pair. Returns: (SubjectObjectData) an initialized class. The data_frame attribute will be filled with by-network counts of the specified subj/obj configuration. ''' if date_range is None: pd.date_range('2016-09-01', '2016-11-30', freq='D') pre = analyzer_df.fillna('') def _match_checker(df, subj, obj, subj_contains, obj_contains): ''' Returns list of booleans for selecting subject and object matches ''' if subj is None and obj is None: raise RuntimeError('subj and obj cannot both be None') if subj is not None: if subj_contains: retSubj = list(df.subjects.str.contains(subj)) else: retSubj = list(df.subjects == subj) if obj is None: ret = retSubj # TODO could probably combine these, but now not clear how if obj is not None: if obj_contains: retObj = list(df.objects.str.contains(obj)) else: retObj = list(df.objects == obj) if subj is None: ret = retObj else: ret = [rs and ro for rs, ro in zip(retSubj, retObj)] return ret chooser = _match_checker(pre, subj, obj, subj_contains, obj_contains) pre = pre[ chooser ] # then do counts or frequencies as normal, since you have just # subset the relevant rows. counts_df = pd.DataFrame( index=date_range, data=0.0, columns=pd.Index(['MSNBCW', 'CNNW', 'FOXNEWSW'], name='network') ) # there might be columns missing, so we have to insert into above zeros to_insert_df = daily_metaphor_counts(pre, date_range, by=['network']) for network in ['MSNBCW', 'CNNW', 'FOXNEWSW']: if network in to_insert_df.columns: for row in to_insert_df.itertuples(): counts_df.loc[row.Index][network] = \ row.__getattribute__(network) return cls(counts_df, subj, obj) def partition(self, partition_infos): pass def facet_word_count(analyzer_df, facet_word_index, by_network=True): ''' Count the number of times each facet word has been used. If by_network is True, compute the usage of each word by network. Arguments: analyzer_df (pandas.DataFrame): dataframe of the IatvCorpus annotations by_network (bool): group each partition's word counts by network? Returns: (pandas.DataFrame) or (pandas.Series) of counts depending on by_network ''' if by_network: return analyzer_df.groupby( ['network', 'facet_word'] ).size().unstack(level=0)[ ['MSNBCW', 'CNNW', 'FOXNEWSW'] ].loc[facet_word_index].fillna(0.0) else: return analyzer_df.groupby( ['facet_word'] ).size().loc[facet_word_index].fillna(0.0)
bsd-3-clause
shahankhatch/scikit-learn
sklearn/gaussian_process/gaussian_process.py
78
34552
# -*- coding: utf-8 -*- # Author: Vincent Dubourg <[email protected]> # (mostly translation, see implementation details) # Licence: BSD 3 clause from __future__ import print_function import numpy as np from scipy import linalg, optimize from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import check_random_state, check_array, check_X_y from ..utils.validation import check_is_fitted from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Read more in the :ref:`User Guide <gaussian_process>`. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood estimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- theta_ : array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). reduced_likelihood_function_value_ : array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations of the output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ # Run input checks self._check_params() self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X, y = check_X_y(X, y, multi_output=True, y_numeric=True) self.y_ndim_ = y.ndim if y.ndim == 1: y = y[:, np.newaxis] # Check shapes of DOE & observations n_samples, n_features = X.shape _, n_targets = y.shape # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple input features cannot have the same" " target value.") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the " "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simultaneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like, shape (n_samples, ) or (n_samples, n_targets) An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape (n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared Error at x. """ check_is_fitted(self, "X") # Check input shapes X = check_array(X) n_eval, _ = X.shape n_samples, n_features = self.X.shape n_samples_y, n_targets = self.y.shape # Run input checks self._check_params(n_samples) if X.shape[1] != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " "should match the number of features used " "for fit() " "which is %d.") % (X.shape[1], n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).reshape(n_eval, n_targets) if self.y_ndim_ == 1: y = y.ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " "at instantiation. Need to recompute " "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = linalg.solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = linalg.solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T, lower=True) else: # Ordinary Kriging u = np.zeros((n_targets, n_eval)) MSE = np.dot(self.sigma2.reshape(n_targets, 1), (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0))[np.newaxis, :]) MSE = np.sqrt((MSE ** 2.).sum(axis=0) / n_targets) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. if self.y_ndim_ == 1: MSE = MSE.ravel() return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ check_is_fitted(self, "X") if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = linalg.solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = linalg.solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = linalg.solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = linalg.solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print("The chosen optimizer is: " + str(self.optimizer)) if self.random_start > 1: print(str(self.random_start) + " random starts are required.") percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function( theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t, i=i: log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t, i=i: np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = (np.log10(self.thetaL) + self.random_state.rand(*self.theta0.shape) * np.log10(self.thetaU / self.thetaL)) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0).ravel(), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print("%s completed" % (5 * percent_completed)) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = check_array(self.theta0.min()) self.thetaL = check_array(self.thetaL.min()) self.thetaU = check_array(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print("Proceeding along dimension %d..." % (i + 1)) self.theta0 = check_array(theta_iso) self.thetaL = check_array(thetaL[0, i]) self.thetaU = check_array(thetaU[0, i]) def corr_cut(t, d): return corr(check_array(np.hstack([optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError("This optimizer ('%s') is not " "implemented yet. Please contribute!" % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError("regr should be one of %s or callable, " "%s was given." % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = np.atleast_2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError("corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = np.atleast_2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = np.atleast_2d(self.thetaL) self.thetaU = np.atleast_2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if self.optimizer not in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
lamblin/pylearn2
pylearn2/scripts/plot_monitor.py
3
9384
#!/usr/bin/env python """ usage: plot_monitor.py model_1.pkl model_2.pkl ... model_n.pkl Loads any number of .pkl files produced by train.py. Extracts all of their monitoring channels and prompts the user to select a subset of them to be plotted. """ from __future__ import print_function __authors__ = "Ian Goodfellow, Harm Aarts" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import gc import numpy as np import sys from theano.compat.six.moves import input, xrange from pylearn2.utils import serial from theano.printing import _TagGenerator from pylearn2.utils.string_utils import number_aware_alphabetical_key from pylearn2.utils import contains_nan, contains_inf import argparse channels = {} def unique_substring(s, other, min_size=1): """ .. todo:: WRITEME """ size = min(len(s), min_size) while size <= len(s): for pos in xrange(0,len(s)-size+1): rval = s[pos:pos+size] fail = False for o in other: if o.find(rval) != -1: fail = True break if not fail: return rval size += 1 # no unique substring return s def unique_substrings(l, min_size=1): """ .. todo:: WRITEME """ return [unique_substring(s, [x for x in l if x is not s], min_size) for s in l] def main(): """ .. todo:: WRITEME """ parser = argparse.ArgumentParser() parser.add_argument("--out") parser.add_argument("model_paths", nargs='+') parser.add_argument("--yrange", help='The y-range to be used for plotting, e.g. 0:1') options = parser.parse_args() model_paths = options.model_paths if options.out is not None: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt print('generating names...') model_names = [model_path.replace('.pkl', '!') for model_path in model_paths] model_names = unique_substrings(model_names, min_size=10) model_names = [model_name.replace('!','') for model_name in model_names] print('...done') for i, arg in enumerate(model_paths): try: model = serial.load(arg) except Exception: if arg.endswith('.yaml'): print(sys.stderr, arg + " is a yaml config file," + "you need to load a trained model.", file=sys.stderr) quit(-1) raise this_model_channels = model.monitor.channels if len(sys.argv) > 2: postfix = ":" + model_names[i] else: postfix = "" for channel in this_model_channels: channels[channel+postfix] = this_model_channels[channel] del model gc.collect() while True: # Make a list of short codes for each channel so user can specify them # easily tag_generator = _TagGenerator() codebook = {} sorted_codes = [] for channel_name in sorted(channels, key = number_aware_alphabetical_key): code = tag_generator.get_tag() codebook[code] = channel_name codebook['<'+channel_name+'>'] = channel_name sorted_codes.append(code) x_axis = 'example' print('set x_axis to example') if len(channels.values()) == 0: print("there are no channels to plot") break # If there is more than one channel in the monitor ask which ones to # plot prompt = len(channels.values()) > 1 if prompt: # Display the codebook for code in sorted_codes: print(code + '. ' + codebook[code]) print() print("Put e, b, s or h in the list somewhere to plot " + "epochs, batches, seconds, or hours, respectively.") response = input('Enter a list of channels to plot ' + \ '(example: A, C,F-G, h, <test_err>) or q to quit' + \ ' or o for options: ') if response == 'o': print('1: smooth all channels') print('any other response: do nothing, go back to plotting') response = input('Enter your choice: ') if response == '1': for channel in channels.values(): k = 5 new_val_record = [] for i in xrange(len(channel.val_record)): new_val = 0. count = 0. for j in xrange(max(0, i-k), i+1): new_val += channel.val_record[j] count += 1. new_val_record.append(new_val / count) channel.val_record = new_val_record continue if response == 'q': break #Remove spaces response = response.replace(' ','') #Split into list codes = response.split(',') final_codes = set([]) for code in codes: if code == 'e': x_axis = 'epoch' continue elif code == 'b': x_axis = 'batche' elif code == 's': x_axis = 'second' elif code == 'h': x_axis = 'hour' elif code.startswith('<'): assert code.endswith('>') final_codes.add(code) elif code.find('-') != -1: #The current list element is a range of codes rng = code.split('-') if len(rng) != 2: print("Input not understood: "+code) quit(-1) found = False for i in xrange(len(sorted_codes)): if sorted_codes[i] == rng[0]: found = True break if not found: print("Invalid code: "+rng[0]) quit(-1) found = False for j in xrange(i,len(sorted_codes)): if sorted_codes[j] == rng[1]: found = True break if not found: print("Invalid code: "+rng[1]) quit(-1) final_codes = final_codes.union(set(sorted_codes[i:j+1])) else: #The current list element is just a single code final_codes = final_codes.union(set([code])) # end for code in codes else: final_codes ,= set(codebook.keys()) colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] styles = list(colors) styles += [color+'--' for color in colors] styles += [color+':' for color in colors] fig = plt.figure() ax = plt.subplot(1,1,1) # plot the requested channels for idx, code in enumerate(sorted(final_codes)): channel_name= codebook[code] channel = channels[channel_name] y = np.asarray(channel.val_record) if contains_nan(y): print(channel_name + ' contains NaNs') if contains_inf(y): print(channel_name + 'contains infinite values') if x_axis == 'example': x = np.asarray(channel.example_record) elif x_axis == 'batche': x = np.asarray(channel.batch_record) elif x_axis == 'epoch': try: x = np.asarray(channel.epoch_record) except AttributeError: # older saved monitors won't have epoch_record x = np.arange(len(channel.batch_record)) elif x_axis == 'second': x = np.asarray(channel.time_record) elif x_axis == 'hour': x = np.asarray(channel.time_record) / 3600. else: assert False ax.plot( x, y, styles[idx % len(styles)], marker = '.', # add point margers to lines label = channel_name) plt.xlabel('# '+x_axis+'s') ax.ticklabel_format( scilimits = (-3,3), axis = 'both') handles, labels = ax.get_legend_handles_labels() lgd = ax.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5,-0.1)) # 0.046 is the size of 1 legend box fig.subplots_adjust(bottom=0.11 + 0.046 * len(final_codes)) if(options.yrange is not None): ymin, ymax = map(float, options.yrange.split(':')) plt.ylim(ymin, ymax) if options.out is None: plt.show() else: plt.savefig(options.out) if not prompt: break if __name__ == "__main__": main()
bsd-3-clause
sho-87/python-machine-learning
CNN/mnist_lasagne.py
1
10782
from __future__ import print_function import sys import os import time import lasagne import numpy as np import matplotlib.pyplot as plt import theano import theano.tensor as T from pylab import cm, imshow, show def load_dataset(): # We first define a download function, supporting both Python 2 and 3. if sys.version_info[0] == 2: from urllib import urlretrieve else: from urllib.request import urlretrieve def download(filename, source='http://yann.lecun.com/exdb/mnist/'): print("Downloading %s" % filename) urlretrieve(source + filename, filename) # We then define functions for loading MNIST images and labels. # For convenience, they also download the requested files if needed. import gzip def load_mnist_images(filename): if not os.path.exists(filename): download(filename) # Read the inputs in Yann LeCun's binary format. with gzip.open(filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) # The inputs are vectors now, we reshape them to monochrome 2D images, # following the shape convention: (examples, channels, rows, columns) data = data.reshape(-1, 1, 28, 28) # The inputs come as bytes, we convert them to float32 in range [0,1]. # (Actually to range [0, 255/256], for compatibility to the version # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.) return data / np.float32(256) def load_mnist_labels(filename): if not os.path.exists(filename): download(filename) # Read the labels in Yann LeCun's binary format. with gzip.open(filename, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=8) # The labels are vectors of integers now, that's exactly what we want. return data # We can now download and read the training and test set images and labels. X_train = load_mnist_images('train-images-idx3-ubyte.gz') y_train = load_mnist_labels('train-labels-idx1-ubyte.gz') X_test = load_mnist_images('t10k-images-idx3-ubyte.gz') y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz') # We reserve the last 10000 training examples for validation. X_train, X_val = X_train[:-10000], X_train[-10000:] y_train, y_val = y_train[:-10000], y_train[-10000:] # We just return all the arrays in order, as expected in main(). return X_train, y_train, X_val, y_val, X_test, y_test def build_cnn(input_var=None): l_in = lasagne.layers.InputLayer(shape=(None, 1, 28, 28), input_var=input_var) l_c1 = lasagne.layers.Conv2DLayer( l_in, num_filters=32, filter_size=(5, 5), nonlinearity=lasagne.nonlinearities.rectify, W=lasagne.init.GlorotUniform()) l_p1 = lasagne.layers.MaxPool2DLayer(l_c1, pool_size=(2, 2)) l_c2 = lasagne.layers.Conv2DLayer( l_p1, num_filters=32, filter_size=(5, 5), nonlinearity=lasagne.nonlinearities.rectify) l_p2 = lasagne.layers.MaxPool2DLayer(l_c2, pool_size=(2, 2)) # A fully-connected layer of 256 units with 50% dropout on its inputs: l_fc = lasagne.layers.DenseLayer( lasagne.layers.dropout(l_p2, p=.5), num_units=256, nonlinearity=lasagne.nonlinearities.rectify) # And, finally, the 10-unit output layer with 50% dropout on its inputs: l_out = lasagne.layers.DenseLayer( lasagne.layers.dropout(l_fc, p=.5), num_units=10, nonlinearity=lasagne.nonlinearities.softmax) return l_out # ############################# Batch iterator ############################### # This is just a simple helper function iterating over training data in # mini-batches of a particular size, optionally in random order. It assumes # data is available as numpy arrays. For big datasets, you could load numpy # arrays as memory-mapped files (np.load(..., mmap_mode='r')), or write your # own custom data iteration function. For small datasets, you can also copy # them to GPU at once for slightly improved performance. This would involve # several changes in the main program, though, and is not demonstrated here. # Notice that this function returns only mini-batches of size `batchsize`. # If the size of the data is not a multiple of `batchsize`, it will not # return the last (remaining) mini-batch. def iterate_minibatches(inputs, targets, batchsize, shuffle=False): assert len(inputs) == len(targets) if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) for start_idx in range(0, len(inputs) - batchsize + 1, batchsize): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield inputs[excerpt], targets[excerpt] def main(model='cnn', batch_size=500, num_epochs=500): # Prepare Theano variables for inputs and targets input_var = T.tensor4('inputs') target_var = T.ivector('targets') print("Building model and compiling functions...") network = build_cnn(input_var) # Create a loss expression for training, i.e., a scalar objective we want # to minimize (for our multi-class problem, it is the cross-entropy loss): prediction = lasagne.layers.get_output(network) loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) loss = loss.mean() # We could add some weight decay as well here, see lasagne.regularization. train_acc = T.mean(T.eq(T.argmax(prediction, axis=1), target_var), dtype=theano.config.floatX) # Create update expressions for training params = lasagne.layers.get_all_params(network, trainable=True) updates = lasagne.updates.nesterov_momentum( loss, params, learning_rate=0.01, momentum=0.9) # Create a loss expression for validation/testing. The crucial difference # here is that we do a deterministic forward pass through the network, # disabling dropout layers. test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = lasagne.objectives.categorical_crossentropy(test_prediction, target_var) test_loss = test_loss.mean() # Create an expression for the classification accuracy: test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_fn = theano.function([input_var, target_var], [loss, train_acc], updates=updates) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function([input_var, target_var], [test_loss, test_acc]) # Finally, launch the training loop. print("Starting training...") # We iterate over epochs: for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: train_err = 0 train_acc = 0 train_batches = 0 start_time = time.time() for batch in iterate_minibatches(X_train, y_train, batch_size, shuffle=True): inputs, targets = batch err, acc = train_fn(inputs, targets) train_err += err train_acc += acc train_batches += 1 # And a full pass over the validation data: val_err = 0 val_acc = 0 val_batches = 0 for batch in iterate_minibatches(X_val, y_val, batch_size, shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) val_err += err val_acc += acc val_batches += 1 # Then we print the results for this epoch: print("Epoch {} of {} took {:.3f}s".format( epoch + 1, num_epochs, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err / train_batches)) print(" training accuracy:\t\t{:.2f} %".format( train_acc / train_batches * 100)) print(" validation loss:\t\t{:.6f}".format(val_err / val_batches)) print(" validation accuracy:\t\t{:.2f} %".format( val_acc / val_batches * 100)) # After training, we compute and print the test error: test_err = 0 test_acc = 0 test_batches = 0 for batch in iterate_minibatches(X_test, y_test, batch_size, shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) test_err += err test_acc += acc test_batches += 1 print("Final results:") print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches)) print(" test accuracy:\t\t{:.2f} %".format( test_acc / test_batches * 100)) # Optionally, you could now dump the network weights to a file like this: # np.savez('model.npz', *lasagne.layers.get_all_param_values(network)) # # And load them again later on like this: # with np.load('model.npz') as f: # param_values = [f['arr_%d' % i] for i in range(len(f.files))] # lasagne.layers.set_all_param_values(network, param_values) all_layers = lasagne.layers.get_all_param_values(network) return all_layers # Load the dataset print("Loading data...") X_train, y_train, X_val, y_val, X_test, y_test = load_dataset() # Run the model weights = main(batch_size=50, num_epochs=5) c1_kernels = weights[0] # Plot single example image_num = np.random.randint(0, X_train.shape[0]) image_label = y_train[image_num] image_array = X_train[image_num][0] image_2d = np.reshape(image_array, (28, 28)) image_4d = image_2d.reshape(1, 1, 28, 28) imshow(image_2d, cmap=cm.gray) show() print("Label: {}".format(image_label)) # Plot layer 1 kernels fig = plt.figure() fig.suptitle("Kernels") for j in range(len(c1_kernels)): ax = fig.add_subplot(6, 6, j+1) ax.matshow(c1_kernels[j][0], cmap=cm.gray) plt.xticks(np.array([])) plt.yticks(np.array([])) plt.tight_layout() fig.subplots_adjust(top=0.90) plt.show() # Plot activation maps x = T.tensor4().astype(theano.config.floatX) conv_out = T.nnet.conv2d(input=x, filters=c1_kernels) get_activity = theano.function([x], conv_out) activation = get_activity(image_4d) fig = plt.figure() fig.suptitle("Feature Maps") for j in range(len(c1_kernels)): ax = fig.add_subplot(6, 6, j+1) ax.matshow(activation[0][j], cmap=cm.gray) plt.xticks(np.array([])) plt.yticks(np.array([])) plt.tight_layout() fig.subplots_adjust(top=0.90) plt.show()
mit
a2takashi/kaggle-challenge
Titanic/pre_process.py
1
5701
# -*- coding: utf-8 -*- """ Created on Fri Dec 23 22:32:16 2016 @author: takashi """ import numpy as np import pandas as pd pd.set_option("expand_frame_repr", False) pd.set_option( "max_columns", 16) pd.set_option( "max_rows", 8) FILE_PATH_TRAIN_DATA = "train.csv" FILE_PATH_PREDICT_DATA = "test.csv" #KEYS_FOR_ML = ["Survived", "Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"] KEYS_FOR_ML = ["Survived", "Pclass", "Sex", "Age", "SibSp", "Parch", "Fare"] KEYS_FOR_NORM = [ "Age", "SibSp", "Parch", "Fare"] BINARIZED_CAT_DICT = {"Sex": ["male", "female"], "Pclass": [ 1, 2, 3], "Embarked": ["C","Q","S"], } def load_titanic_csv(csv_file_path): """ Import a Titanic csv file as Pandas DataFrame instance. Parameters: csv_file_path: file path of data for Kaggle Titanic Compe Returns: raw_df: """ raw_df = pd.read_csv(csv_file_path, header=0, index_col="PassengerId") if not "Survived" in raw_df.keys(): raw_df["Survived"] = np.NaN return raw_df def txt_w_border(txt): BORDER_CHARS = 15 * "#" ret_txt = " ".join(["\n", BORDER_CHARS, txt, BORDER_CHARS]) return ret_txt def print_info(df, start=0, end=4, details=1): """ Print some information of the input dataframe. Parameters: df: Dataframe to print its info start: start index for sample end: last index for sample Returns: sample_df: The first max 10 dataframe """ print txt_w_border("Info") print df.info() if details>1: print txt_w_border("Statistics") print df.describe(percentiles=[]) if details>2: try: sample_df = df[start:end].copy() print txt_w_border("Samples, " + str(start) + " to " + str(end)) except: sample_df = df.head() print txt_w_border("Samples, df.head") print sample_df return None def filter_cols(df): """ Pick up by keyword list. Parameters: df: Dataframe (Option) keys: Keyword list Returns: filt_col_df: Filtered dataframe """ comm_keys = list( set(df.keys()) & set(KEYS_FOR_ML) ) filt_col_df = df.copy()[comm_keys] return filt_col_df def binarize(df): """ Binarize categorial dataframe. Parameters: df: Dataframe Returns: out_df: Numerized dataframe """ comm_keys = list( set(df.keys()) & set(BINARIZED_CAT_DICT.keys()) ) ret_df = df.copy() for key in comm_keys: val = BINARIZED_CAT_DICT[key] ret_df[key] = ret_df[key].astype("category") ret_df[key] = ret_df[key].cat.set_categories(val) ret_df = pd.get_dummies(ret_df, columns=comm_keys, drop_first=True).astype("float") return ret_df def normalize(df): """ Nomarize dataframe without NaN. Fill NaN with kw["key_of_fillna"]. Add NaN col Parameters: df: Dataframe (Option) key_of_fillna Returns: out_df: Nomarized dataframe """ comm_keys = list( set(df.keys()) & set(KEYS_FOR_NORM) ) ret_df = df.copy() t = ret_df[comm_keys] ret_df[comm_keys] = (t - t.mean()) / t.std() return ret_df def add_null_flag_cols(df, del_single_cat_cols=False): keys_of_null_cols = [ k + "_null" for k in df.keys()] ret_df = df.copy() ret_df[keys_of_null_cols] = ret_df[df.keys()].isnull() if del_single_cat_cols: ret_df = pd.get_dummies(ret_df, columns=keys_of_null_cols, drop_first=True) return ret_df def merge_SibSp_Parch_to_FamSize(df): ret_df = df.copy() ret_df["FamSize"] = ret_df["SibSp"] + ret_df["Parch"] ret_df.drop(["SibSp","Parch"], axis=1, inplace=True) return ret_df def pre_proc_per_df(df, del_single_cat_cols=False): ret_df = df.copy() # print txt_w_border("Merging SibSp and Parch to FamSize") # ret_df = merge_SibSp_Parch_to_FamSize(ret_df) print txt_w_border("Filtering " + str(KEYS_FOR_ML)) ret_df = filter_cols(ret_df) print txt_w_border("Adding null flag columns") ret_df = add_null_flag_cols(ret_df, del_single_cat_cols) print txt_w_border("Binarizing " + str(BINARIZED_CAT_DICT.keys())) ret_df = binarize(ret_df) print txt_w_border("Nomarizing " + str(KEYS_FOR_NORM)) ret_df = normalize(ret_df) key_of_fill = 0. print txt_w_border("Filling null with " + str(key_of_fill)) ret_df = ret_df.fillna(key_of_fill) return ret_df def pre_proc_all(): print txt_w_border("Importing " + FILE_PATH_TRAIN_DATA) raw_train_df = load_titanic_csv(FILE_PATH_TRAIN_DATA) print txt_w_border("Importing " + FILE_PATH_PREDICT_DATA) raw_test_df = load_titanic_csv(FILE_PATH_PREDICT_DATA) raw_all_df = pd.concat([raw_train_df, raw_test_df]) t_df = pre_proc_per_df(raw_all_df, del_single_cat_cols=True) def split_train_target(df, tf_surv): temp_df = df[df.Survived_null_True==tf_surv] target_df = temp_df[["Survived"]].copy() train_df = temp_df.drop(["Survived", "Survived_null_True"], axis=1) return train_df, target_df train_df, train_target_df = split_train_target(t_df, tf_surv=False) test_df, test_target_df = split_train_target(t_df, tf_surv=True) return train_df, train_target_df, test_df, test_target_df if __name__=="__main__": train_df, train_target_df, test_df, test_target_df = pre_proc_all()
mit
ycaihua/scikit-learn
sklearn/externals/joblib/__init__.py
35
4382
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://packages.python.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ __version__ = '0.8.4' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
rew4332/tensorflow
tensorflow/examples/skflow/iris_custom_model.py
5
2554
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for Iris plant dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics import tensorflow as tf from tensorflow.contrib import layers from tensorflow.contrib import learn def my_model(features, target): """DNN with three hidden layers, and dropout of 0.1 probability.""" # Convert the target to a one-hot tensor of shape (length of features, 3) and # with a on-value of 1 for each one-hot vector of length 3. target = tf.one_hot(target, 3, 1, 0) # Create three fully connected layers respectively of size 10, 20, and 10 with # each layer having a dropout probability of 0.1. normalizer_fn = layers.dropout normalizer_params = {'keep_prob': 0.9} features = layers.stack(features, layers.fully_connected, [10, 20, 10], normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) # Create two tensors respectively for prediction and loss. prediction, loss = ( tf.contrib.learn.models.logistic_regression(features, target) ) # Create a tensor for training op. train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return {'class': tf.argmax(prediction, 1), 'prob': prediction}, loss, train_op def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = learn.Estimator(model_fn=my_model) classifier.fit(x_train, y_train, steps=1000) y_predicted = classifier.predict(x_test) score = metrics.accuracy_score(y_test, y_predicted['class']) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
pstjohn/decay-methods
high_throughput/outliers_all.py
1
2056
import numpy as np from methods.HTExperiment import Experiment zhang = Experiment('zhang').split() library = zhang.scaled_blfit_p.join(zhang.names_p) well_breakdown = library.well.str.extract( '(?P<well_row>[A-Za-z]{1})(?P<well_col>\d{1,2})') library = library.drop('well', 1).join(well_breakdown) library = library[library.Gene_ID.str.contains(r'0\d{1,6}$')] def prune_outliers(df, max_dist=6, keys=None): """ Function to return a dataframe in which none of the elements of 'keys' fall between -max_dist < df.key < max_dist """ if keys == None: keys = ['decay', 'amplitude', 'period'] return df[((df.loc[:,keys] < max_dist) & (df.loc[:,keys] > -max_dist)).all(1)] library = prune_outliers(library, max_dist=8).loc[ :, ['amplitude', 'decay', 'period', 'phase', 'Gene_ID']] control = prune_outliers(zhang.scaled_blfit_c, max_dist=8) # means = library.groupby('Gene_ID').mean() from sklearn.covariance import EllipticEnvelope, MinCovDet from scipy.stats import chi2 x_train = control.loc[:, ['amplitude', 'decay', 'period', 'phase']] S = MinCovDet().fit(x_train) control_mean = S.location_ inv_cov = np.linalg.pinv(S.covariance_) # control_mean = x_train.mean() # inv_cov = np.linalg.pinv(x_train.cov()) def hotelling_tsquared(x): """ Function to test the perturbed population x (all with the same Gene ID) against the control population in x_test, assuming equal covariances """ pert_mean = x.drop(['Gene_ID'], 1).mean() mean_diff = control_mean - pert_mean T2 = mean_diff.dot(len(x)*inv_cov).dot(mean_diff) return 1 - chi2.cdf(T2, 2) pvals = library.groupby('Gene_ID').apply(hotelling_tsquared) pert_means = library.groupby('Gene_ID').mean() alpha = 0.01 print " Total genes considered: {0:d}".format(len(pvals)) print " Number of insignificant hits: {0:d}".format(sum(pvals > alpha)) print " Number of significant hits: {0:d}".format(sum(pvals <= alpha)) print "Percentage of significant hits: {0:0.2f}".format(100*float(sum(pvals <= alpha))/len(pvals))
gpl-3.0
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/pandas/io/sas/sasreader.py
6
2448
""" Read SAS sas7bdat or xport files. """ from pandas import compat def read_sas(filepath_or_buffer, format=None, index=None, encoding=None, chunksize=None, iterator=False): """ Read SAS files stored as either XPORT or SAS7BDAT format files. Parameters ---------- filepath_or_buffer : string or file-like object Path to the SAS file. format : string {'xport', 'sas7bdat'} or None If None, file format is inferred. If 'xport' or 'sas7bdat', uses the corresponding format. index : identifier of index column, defaults to None Identifier of column that should be used as index of the DataFrame. encoding : string, default is None Encoding for text data. If None, text data are stored as raw bytes. chunksize : int Read file `chunksize` lines at a time, returns iterator. iterator : bool, defaults to False If True, returns an iterator for reading the file incrementally. Returns ------- DataFrame if iterator=False and chunksize=None, else SAS7BDATReader or XportReader """ if format is None: buffer_error_msg = ("If this is a buffer object rather " "than a string name, you must specify " "a format string") if not isinstance(filepath_or_buffer, compat.string_types): raise ValueError(buffer_error_msg) try: fname = filepath_or_buffer.lower() if fname.endswith(".xpt"): format = "xport" elif fname.endswith(".sas7bdat"): format = "sas7bdat" else: raise ValueError("unable to infer format of SAS file") except: pass if format.lower() == 'xport': from pandas.io.sas.sas_xport import XportReader reader = XportReader(filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize) elif format.lower() == 'sas7bdat': from pandas.io.sas.sas7bdat import SAS7BDATReader reader = SAS7BDATReader(filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize) else: raise ValueError('unknown SAS format') if iterator or chunksize: return reader data = reader.read() reader.close() return data
mit
macks22/gensim
gensim/sklearn_api/tfidf.py
1
1952
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Scikit learn interface for gensim for easy use of gensim with scikit-learn Follows scikit-learn API conventions """ from sklearn.base import TransformerMixin, BaseEstimator from sklearn.exceptions import NotFittedError import gensim from gensim.models import TfidfModel class TfIdfTransformer(TransformerMixin, BaseEstimator): """ Base Tf-Idf module """ def __init__(self, id2word=None, dictionary=None, wlocal=gensim.utils.identity, wglobal=gensim.models.tfidfmodel.df2idf, normalize=True): """ Sklearn wrapper for Tf-Idf model. """ self.gensim_model = None self.id2word = id2word self.dictionary = dictionary self.wlocal = wlocal self.wglobal = wglobal self.normalize = normalize def fit(self, X, y=None): """ Fit the model according to the given training data. """ self.gensim_model = TfidfModel(corpus=X, id2word=self.id2word, dictionary=self.dictionary, wlocal=self.wlocal, wglobal=self.wglobal, normalize=self.normalize) return self def transform(self, docs): """ Return the transformed documents after multiplication with the tf-idf matrix. """ if self.gensim_model is None: raise NotFittedError( "This model has not been fitted yet. Call 'fit' with appropriate arguments before using this method." ) # input as python lists check = lambda x: [x] if isinstance(x[0], tuple) else x docs = check(docs) X = [[] for _ in range(0, len(docs))] for k, v in enumerate(docs): transformed_doc = self.gensim_model[v] X[k] = transformed_doc return X
lgpl-2.1
bloyl/mne-python
tutorials/stats-source-space/60_cluster_rmANOVA_spatiotemporal.py
18
12326
""" ====================================================================== Repeated measures ANOVA on source data with spatio-temporal clustering ====================================================================== This example illustrates how to make use of the clustering functions for arbitrary, self-defined contrasts beyond standard t-tests. In this case we will tests if the differences in evoked responses between stimulation modality (visual VS auditory) depend on the stimulus location (left vs right) for a group of subjects (simulated here using one subject's data). For this purpose we will compute an interaction effect using a repeated measures ANOVA. The multiple comparisons problem is addressed with a cluster-level permutation test across space and time. """ # Authors: Alexandre Gramfort <[email protected]> # Eric Larson <[email protected]> # Denis Engemannn <[email protected]> # # License: BSD (3-clause) import os.path as op import numpy as np from numpy.random import randn import matplotlib.pyplot as plt import mne from mne.stats import (spatio_temporal_cluster_test, f_threshold_mway_rm, f_mway_rm, summarize_clusters_stc) from mne.minimum_norm import apply_inverse, read_inverse_operator from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters # -------------- data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' subjects_dir = data_path + '/subjects' src_fname = subjects_dir + '/fsaverage/bem/fsaverage-ico-5-src.fif' tmin = -0.2 tmax = 0.3 # Use a lower tmax to reduce multiple comparisons # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) ############################################################################### # Read epochs for all channels, removing a bad one # ------------------------------------------------ raw.info['bads'] += ['MEG 2443'] picks = mne.pick_types(raw.info, meg=True, eog=True, exclude='bads') # we'll load all four conditions that make up the 'two ways' of our ANOVA event_id = dict(l_aud=1, r_aud=2, l_vis=3, r_vis=4) reject = dict(grad=1000e-13, mag=4000e-15, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, preload=True) # Equalize trial counts to eliminate bias (which would otherwise be # introduced by the abs() performed below) epochs.equalize_event_counts(event_id) ############################################################################### # Transform to source space # ------------------------- fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE, sLORETA, or eLORETA) inverse_operator = read_inverse_operator(fname_inv) # we'll only use one hemisphere to speed up this example # instead of a second vertex array we'll pass an empty array sample_vertices = [inverse_operator['src'][0]['vertno'], np.array([], int)] # Let's average and compute inverse, then resample to speed things up conditions = [] for cond in ['l_aud', 'r_aud', 'l_vis', 'r_vis']: # order is important evoked = epochs[cond].average() evoked.resample(50, npad='auto') condition = apply_inverse(evoked, inverse_operator, lambda2, method) # Let's only deal with t > 0, cropping to reduce multiple comparisons condition.crop(0, None) conditions.append(condition) tmin = conditions[0].tmin tstep = conditions[0].tstep * 1000 # convert to milliseconds ############################################################################### # Transform to common cortical space # ---------------------------------- # # Normally you would read in estimates across several subjects and morph them # to the same cortical space (e.g. fsaverage). For example purposes, we will # simulate this by just having each "subject" have the same response (just # noisy in source space) here. # # We'll only consider the left hemisphere in this tutorial. n_vertices_sample, n_times = conditions[0].lh_data.shape n_subjects = 7 print('Simulating data for %d subjects.' % n_subjects) # Let's make sure our results replicate, so set the seed. np.random.seed(0) X = randn(n_vertices_sample, n_times, n_subjects, 4) * 10 for ii, condition in enumerate(conditions): X[:, :, :, ii] += condition.lh_data[:, :, np.newaxis] ############################################################################### # It's a good idea to spatially smooth the data, and for visualization # purposes, let's morph these to fsaverage, which is a grade 5 ICO source space # with vertices 0:10242 for each hemisphere. Usually you'd have to morph # each subject's data separately, but here since all estimates are on # 'sample' we can use one morph matrix for all the heavy lifting. # Read the source space we are morphing to (just left hemisphere) src = mne.read_source_spaces(src_fname) fsave_vertices = [src[0]['vertno'], []] morph_mat = mne.compute_source_morph( src=inverse_operator['src'], subject_to='fsaverage', spacing=fsave_vertices, subjects_dir=subjects_dir, smooth=20).morph_mat morph_mat = morph_mat[:, :n_vertices_sample] # just left hemi from src n_vertices_fsave = morph_mat.shape[0] # We have to change the shape for the dot() to work properly X = X.reshape(n_vertices_sample, n_times * n_subjects * 4) print('Morphing data.') X = morph_mat.dot(X) # morph_mat is a sparse matrix X = X.reshape(n_vertices_fsave, n_times, n_subjects, 4) ############################################################################### # Now we need to prepare the group matrix for the ANOVA statistic. To make the # clustering function work correctly with the ANOVA function X needs to be a # list of multi-dimensional arrays (one per condition) of shape: samples # (subjects) x time x space. # # First we permute dimensions, then split the array into a list of conditions # and discard the empty dimension resulting from the split using numpy squeeze. X = np.transpose(X, [2, 1, 0, 3]) # X = [np.squeeze(x) for x in np.split(X, 4, axis=-1)] ############################################################################### # Prepare function for arbitrary contrast # --------------------------------------- # As our ANOVA function is a multi-purpose tool we need to apply a few # modifications to integrate it with the clustering function. This # includes reshaping data, setting default arguments and processing # the return values. For this reason we'll write a tiny dummy function. # # We will tell the ANOVA how to interpret the data matrix in terms of # factors. This is done via the factor levels argument which is a list # of the number factor levels for each factor. factor_levels = [2, 2] ############################################################################### # Finally we will pick the interaction effect by passing 'A:B'. # (this notation is borrowed from the R formula language). # As an aside, note that in this particular example, we cannot use the A*B # notation which return both the main and the interaction effect. The reason # is that the clustering function expects ``stat_fun`` to return a 1-D array. # To get clusters for both, you must create a loop. effects = 'A:B' # Tell the ANOVA not to compute p-values which we don't need for clustering return_pvals = False # a few more convenient bindings n_times = X[0].shape[1] n_conditions = 4 ############################################################################### # A ``stat_fun`` must deal with a variable number of input arguments. # # Inside the clustering function each condition will be passed as flattened # array, necessitated by the clustering procedure. The ANOVA however expects an # input array of dimensions: subjects X conditions X observations (optional). # # The following function catches the list input and swaps the first and the # second dimension, and finally calls ANOVA. # # .. note:: For further details on this ANOVA function consider the # corresponding # :ref:`time-frequency tutorial <tut-timefreq-twoway-anova>`. def stat_fun(*args): # get f-values only. return f_mway_rm(np.swapaxes(args, 1, 0), factor_levels=factor_levels, effects=effects, return_pvals=return_pvals)[0] ############################################################################### # Compute clustering statistic # ---------------------------- # # To use an algorithm optimized for spatio-temporal clustering, we # just pass the spatial adjacency matrix (instead of spatio-temporal). # as we only have one hemisphere we need only need half the adjacency print('Computing adjacency.') adjacency = mne.spatial_src_adjacency(src[:1]) # Now let's actually do the clustering. Please relax, on a small # notebook and one single thread only this will take a couple of minutes ... pthresh = 0.0005 f_thresh = f_threshold_mway_rm(n_subjects, factor_levels, effects, pthresh) # To speed things up a bit we will ... n_permutations = 128 # ... run fewer permutations (reduces sensitivity) print('Clustering.') T_obs, clusters, cluster_p_values, H0 = clu = \ spatio_temporal_cluster_test(X, adjacency=adjacency, n_jobs=1, threshold=f_thresh, stat_fun=stat_fun, n_permutations=n_permutations, buffer_size=None) # Now select the clusters that are sig. at p < 0.05 (note that this value # is multiple-comparisons corrected). good_cluster_inds = np.where(cluster_p_values < 0.05)[0] ############################################################################### # Visualize the clusters # ---------------------- print('Visualizing clusters.') # Now let's build a convenient representation of each cluster, where each # cluster becomes a "time point" in the SourceEstimate stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') # Let's actually plot the first "time point" in the SourceEstimate, which # shows all the clusters, weighted by duration subjects_dir = op.join(data_path, 'subjects') # The brighter the color, the stronger the interaction between # stimulus modality and stimulus location brain = stc_all_cluster_vis.plot(subjects_dir=subjects_dir, views='lat', time_label='temporal extent (ms)', clim=dict(kind='value', lims=[0, 1, 40])) brain.save_image('cluster-lh.png') brain.show_view('medial') ############################################################################### # Finally, let's investigate interaction effect by reconstructing the time # courses: inds_t, inds_v = [(clusters[cluster_ind]) for ii, cluster_ind in enumerate(good_cluster_inds)][0] # first cluster times = np.arange(X[0].shape[1]) * tstep * 1e3 plt.figure() colors = ['y', 'b', 'g', 'purple'] event_ids = ['l_aud', 'r_aud', 'l_vis', 'r_vis'] for ii, (condition, color, eve_id) in enumerate(zip(X, colors, event_ids)): # extract time course at cluster vertices condition = condition[:, :, inds_v] # normally we would normalize values across subjects but # here we use data from the same subject so we're good to just # create average time series across subjects and vertices. mean_tc = condition.mean(axis=2).mean(axis=0) std_tc = condition.std(axis=2).std(axis=0) plt.plot(times, mean_tc.T, color=color, label=eve_id) plt.fill_between(times, mean_tc + std_tc, mean_tc - std_tc, color='gray', alpha=0.5, label='') ymin, ymax = mean_tc.min() - 5, mean_tc.max() + 5 plt.xlabel('Time (ms)') plt.ylabel('Activation (F-values)') plt.xlim(times[[0, -1]]) plt.ylim(ymin, ymax) plt.fill_betweenx((ymin, ymax), times[inds_t[0]], times[inds_t[-1]], color='orange', alpha=0.3) plt.legend() plt.title('Interaction between stimulus-modality and location.') plt.show()
bsd-3-clause
anntzer/scipy
scipy/special/_precompute/lambertw.py
12
2001
"""Compute a Pade approximation for the principle branch of the Lambert W function around 0 and compare it to various other approximations. """ import numpy as np try: import mpmath import matplotlib.pyplot as plt # type: ignore[import] except ImportError: pass def lambertw_pade(): derivs = [mpmath.diff(mpmath.lambertw, 0, n=n) for n in range(6)] p, q = mpmath.pade(derivs, 3, 2) return p, q def main(): print(__doc__) with mpmath.workdps(50): p, q = lambertw_pade() p, q = p[::-1], q[::-1] print("p = {}".format(p)) print("q = {}".format(q)) x, y = np.linspace(-1.5, 1.5, 75), np.linspace(-1.5, 1.5, 75) x, y = np.meshgrid(x, y) z = x + 1j*y lambertw_std = [] for z0 in z.flatten(): lambertw_std.append(complex(mpmath.lambertw(z0))) lambertw_std = np.array(lambertw_std).reshape(x.shape) fig, axes = plt.subplots(nrows=3, ncols=1) # Compare Pade approximation to true result p = np.array([float(p0) for p0 in p]) q = np.array([float(q0) for q0 in q]) pade_approx = np.polyval(p, z)/np.polyval(q, z) pade_err = abs(pade_approx - lambertw_std) axes[0].pcolormesh(x, y, pade_err) # Compare two terms of asymptotic series to true result asy_approx = np.log(z) - np.log(np.log(z)) asy_err = abs(asy_approx - lambertw_std) axes[1].pcolormesh(x, y, asy_err) # Compare two terms of the series around the branch point to the # true result p = np.sqrt(2*(np.exp(1)*z + 1)) series_approx = -1 + p - p**2/3 series_err = abs(series_approx - lambertw_std) im = axes[2].pcolormesh(x, y, series_err) fig.colorbar(im, ax=axes.ravel().tolist()) plt.show() fig, ax = plt.subplots(nrows=1, ncols=1) pade_better = pade_err < asy_err im = ax.pcolormesh(x, y, pade_better) t = np.linspace(-0.3, 0.3) ax.plot(-2.5*abs(t) - 0.2, t, 'r') fig.colorbar(im, ax=ax) plt.show() if __name__ == '__main__': main()
bsd-3-clause
kkk669/mxnet
docs/conf.py
20
6941
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # -*- coding: utf-8 -*- import sys, os, re, subprocess import mock from recommonmark import parser curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) libpath = os.path.join(curr_path, '../python/') sys.path.insert(0, libpath) sys.path.insert(0, curr_path) # -- mock out modules MOCK_MODULES = ['scipy', 'scipy.sparse', 'sklearn'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.2' # General information about the project. project = u'mxnet' author = u'%s developers' % project copyright = u'2015-2017, %s' % author github_doc_root = 'https://github.com/dmlc/mxnet/tree/master/docs/' doc_root = 'http://mxnet.io/' # add markdown parser source_parsers = { '.md': parser.CommonMarkParser, '.Rmd': parser.CommonMarkParser } # Version information. # from mxnet import libinfo # version = libinfo.__version__ # release = libinfo.__version__ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.napoleon', 'sphinx.ext.mathjax', 'breathe', 'mxdoc' ] # Use breathe to include doxygen documents breathe_projects = {'mxnet' : 'doxygen/xml/'} breathe_default_project = 'mxnet' autodoc_member_order = 'bysource' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. # source_suffix = '.rst' source_suffix = ['.rst', '.md', '.Rmd'] # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. # Version and release are passed from CMake. #version = None # The full version, including alpha/beta/rc tags. #release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['virtualenv'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] suppress_warnings = [ 'image.nonlocal_uri', ] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'mxnet-theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['_static'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': 'relations.html' } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'formatdoc'
apache-2.0
LiaoPan/scikit-learn
sklearn/linear_model/coordinate_descent.py
42
73973
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Gael Varoquaux <[email protected]> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data, sparse_center_data from ..utils import check_array, check_X_y, deprecated from ..utils.validation import check_random_state from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_mean, _, X_std = sparse_center_data(X, y, fit_intercept, normalize) mean_dot = X_mean * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_std[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) if Xy is not None: Xy = check_array(Xy, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.zeros(n_features) # X should be normalized and fit already. X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=np.float64) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=np.float64) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1])) else: coef_ = np.asfortranarray(coef_init) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): precompute = check_array(precompute, 'csc', dtype=np.float64, order='F') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like") coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if self.precompute == 'auto': warnings.warn("Setting precompute to 'auto', was found to be " "slower even when n_samples > n_features. Hence " "it will be removed in 0.18.", DeprecationWarning, stacklevel=2) X, y = check_X_y(X, y, accept_sparse='csc', dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ return self._decision_function(X) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_mean = np.atleast_1d(y_mean) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_std) coefs[:, nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean[:, np.newaxis] - np.dot(X_mean, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = np.asarray(y, dtype=np.float64) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if not np.may_share_memory(reference_to_old_X.data, X.data): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=np.float64) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = check_array(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_mean, y_mean, X_std) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automaticlly. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
alexvmarch/exa
exa/util/mpl.py
2
6838
# -*- coding: utf-8 -*- # Copyright (c) 2015-2018, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 """ Matplotlib Utilities ############################### """ import seaborn as sns import numpy as np #from mpl_toolkits.mplot3d import Axes3D legend = {'legend.frameon': True, 'legend.facecolor': 'white', 'legend.fancybox': True, 'patch.facecolor': 'white', 'patch.edgecolor': 'black'} axis = {'axes.formatter.useoffset': False} mpl_legend = {'legend.frameon': True, 'legend.facecolor': 'white', 'legend.edgecolor': 'black'} mpl_mathtext = {'mathtext.default': 'rm'} mpl_save = {'savefig.format': 'pdf', 'savefig.bbox': 'tight', 'savefig.transparent': True, 'savefig.pad_inches': 0.1, 'pdf.compression': 9} mpl_rc = mpl_legend mpl_rc.update(mpl_mathtext) mpl_rc.update(mpl_save) sns.set(context='poster', style='white', palette='colorblind', font_scale=1.3, font='serif', rc=mpl_rc) def _gen_projected(nxplot, nyplot, projection, figargs): total = nxplot * nyplot fig = sns.mpl.pyplot.figure(**figargs) kwargs = {'projection': projection} axs = [fig.add_subplot(nxplot, nyplot, i, **kwargs) for i in range(1, total + 1)] return fig, axs def _gen_shared(nxplot, nyplot, sharex, sharey, figargs): fig, axs = sns.mpl.pyplot.subplots(nxplot, nyplot, sharex=sharex, sharey=sharey, **figargs) axs = fig.get_axes() return fig, axs def _gen_figure(nxplot=1, nyplot=1, figargs=None, projection=None, sharex='none', joinx=False, sharey='none', joiny=False, x=None, nxlabel=None, xlabels=None, nxdecimal=None, xmin=None, xmax=None, y=None, nylabel=None, ylabels=None, nydecimal=None, ymin=None, ymax=None, z=None, nzlabel=None, zlabels=None, nzdecimal=None, zmin=None, zmax=None, r=None, nrlabel=None, rlabels=None, nrdecimal=None, rmin=None, rmax=None, t=None, ntlabel=None, tlabels=None, fontsize=20): """ Returns a figure object with as much customization as provided. """ figargs = {} if figargs is None else figargs if projection is not None: fig, axs = _gen_projected(nxplot, nyplot, projection, figargs) else: fig, axs = _gen_shared(nxplot, nyplot, sharex, sharey, figargs) adj = {} if joinx: adj.update({'hspace': 0}) if joiny: adj.update({'wspace': 0}) fig.subplots_adjust(**adj) data = {} if projection is None: data = {'x': x, 'y': y} elif projection == '3d': data = {'x': x, 'y': y, 'z': z} elif projection == 'polar': data = {'r': r, 't': t} methods = {} for ax in axs: if 'x' in data: methods['x'] = (ax.set_xlim, ax.set_xticks, ax.set_xticklabels, nxlabel, xlabels, nxdecimal, xmin, xmax) if 'y' in data: methods['y'] = (ax.set_ylim, ax.set_yticks, ax.set_yticklabels, nylabel, ylabels, nydecimal, ymin, ymax) if 'z' in data: methods['z'] = (ax.set_zlim, ax.set_zticks, ax.set_zticklabels, nzlabel, zlabels, nzdecimal, zmin, zmax) if 'r' in data: methods['r'] = (ax.set_rlim, ax.set_rticks, ax.set_rgrids, nrlabel, rlabels, nrdecimal, rmin, rmax) if 't' in data: methods['t'] = (ax.set_thetagrids, ntlabel, tlabels) for dim, arr in data.items(): if dim == 't': grids, nlabel, labls = methods[dim] if ntlabel is not None: theta = np.arange(0, 2 * np.pi, 2 * np.pi / ntlabel) if labls is not None: grids(np.degrees(theta), labls, fontsize=fontsize) else: grids(np.degrees(theta), fontsize=fontsize) else: lim, ticks, labels, nlabel, labls, decs, mins, maxs = methods[dim] if arr is not None: amin = mins if mins is not None else arr.min() amax = maxs if maxs is not None else arr.max() lim((amin, amax)) elif mins is not None and maxs is not None: if nlabel is not None: ticks(np.linspace(amin, amax, nlabel)) if decs is not None: sub = "{{:.{}f}}".format(decs).format labels([sub(i) for i in np.linspace(amin, amax, nlabel)]) if labls is not None: labels(labls) ax.tick_params(axis=dim, labelsize=fontsize) return fig def _plot_surface(x, y, z, nxlabel, nylabel, nzlabel, method, figargs, axargs): fig = _gen_figure(x=x, y=y, z=z, nxlabel=nxlabel, nylabel=nylabel, nzlabel=nzlabel, figargs=figargs, projection='3d') ax = fig.get_axes()[0] convenience = {'wireframe': ax.plot_wireframe, 'contour': ax.contour, 'contourf': ax.contourf, 'trisurf': ax.plot_trisurf, 'scatter': ax.scatter, 'line': ax.plot} if method not in convenience.keys(): raise Exception('Method must be in {}.'.format(convenience.keys())) sx, sy = np.meshgrid(x, y) if method in ['trisurf', 'scatter', 'line']: if method == 'line': axargs = {key: val for key, val in axargs.items() if key != 'cmap'} convenience[method](sx.flatten(), sy.flatten(), z.flatten(), **axargs) else: convenience[method](sx, sy, z, **axargs) return fig def _plot_contour(x, y, z, vmin, vmax, cbarlabel, ncbarlabel, ncbardecimal, nxlabel, nylabel, method, colorbar, figargs, axargs): fig = _gen_figure(x=x, y=y, nxlabel=nxlabel, nylabel=nylabel, figargs=figargs) ax = fig.get_axes()[0] convenience = {'contour': ax.contour, 'contourf': ax.contourf, 'pcolormesh': ax.pcolormesh, 'pcolor': ax.pcolor} if method not in convenience.keys(): raise Exception('method must be in {}'.format(convenience.keys())) t = convenience[method](x, y, z, **axargs) cbar = fig.colorbar(t) if colorbar else None if cbar is not None and cbarlabel is not None: cbar.set_label(cbarlabel) if cbar is not None and ncbarlabel is not None: newticks = np.linspace(vmin, vmax, ncbarlabel) cbar.set_ticks(newticks) if ncbardecimal is not None: fmt = '{{:.{}f}}'.format(ncbardecimal).format cbar.set_ticklabels([fmt(i) for i in newticks]) return fig, cbar
apache-2.0
goodfeli/pylearn2
pylearn2/sandbox/cuda_convnet/bench.py
44
3589
__authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" from pylearn2.testing.skip import skip_if_no_gpu skip_if_no_gpu() import numpy as np from theano.compat.six.moves import xrange from theano import shared from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs from theano.tensor.nnet.conv import conv2d from theano import function import time import matplotlib.pyplot as plt def make_funcs(batch_size, rows, cols, channels, filter_rows, num_filters): rng = np.random.RandomState([2012,10,9]) filter_cols = filter_rows base_image_value = rng.uniform(-1., 1., (channels, rows, cols, batch_size)).astype('float32') base_filters_value = rng.uniform(-1., 1., (channels, filter_rows, filter_cols, num_filters)).astype('float32') images = shared(base_image_value) filters = shared(base_filters_value, name='filters') # bench.py should always be run in gpu mode so we should not need a gpu_from_host here output = FilterActs()(images, filters) output_shared = shared( output.eval() ) cuda_convnet = function([], updates = { output_shared : output } ) cuda_convnet.name = 'cuda_convnet' images_bc01v = base_image_value.transpose(3,0,1,2) filters_bc01v = base_filters_value.transpose(3,0,1,2) filters_bc01v = filters_bc01v[:,:,::-1,::-1] images_bc01 = shared(images_bc01v) filters_bc01 = shared(filters_bc01v) output_conv2d = conv2d(images_bc01, filters_bc01, border_mode='valid', image_shape = images_bc01v.shape, filter_shape = filters_bc01v.shape) output_conv2d_shared = shared(output_conv2d.eval()) baseline = function([], updates = { output_conv2d_shared : output_conv2d } ) baseline.name = 'baseline' return cuda_convnet, baseline def bench(f): for i in xrange(3): f() trials = 10 t1 = time.time() for i in xrange(trials): f() t2 = time.time() return (t2-t1)/float(trials) def get_speedup( *args, **kwargs): cuda_convnet, baseline = make_funcs(*args, **kwargs) return bench(baseline) / bench(cuda_convnet) def get_time_per_10k_ex( *args, **kwargs): cuda_convnet, baseline = make_funcs(*args, **kwargs) batch_size = kwargs['batch_size'] return 10000 * bench(cuda_convnet) / float(batch_size) def make_batch_size_plot(yfunc, yname, batch_sizes, rows, cols, channels, filter_rows, num_filters): speedups = [] for batch_size in batch_sizes: speedup = yfunc(batch_size = batch_size, rows = rows, cols = cols, channels = channels, filter_rows = filter_rows, num_filters = num_filters) speedups.append(speedup) plt.plot(batch_sizes, speedups) plt.title("cuda-convnet benchmark") plt.xlabel("Batch size") plt.ylabel(yname) plt.show() make_batch_size_plot(get_speedup, "Speedup factor", batch_sizes = [1,2,5,25,32,50,63,64,65,96,100,127,128,129,159,160,161,191,192,193,200,255,256,257], rows = 32, cols = 32, channels = 64, filter_rows = 7, num_filters = 64) """ make_batch_size_plot(get_time_per_10k_ex, "Time per 10k examples", batch_sizes = [1,2,5,25,32,50,63,64,65,96,100,127,128,129,159,160,161,191,192,193,200,255,256,257], rows = 32, cols = 32, channels = 3, filter_rows = 5, num_filters = 64) """
bsd-3-clause
joernhees/scikit-learn
examples/ensemble/plot_random_forest_regression_multioutput.py
46
2640
""" ============================================================ Comparing random forests and the multi-output meta estimator ============================================================ An example to compare multi-output regression with random forest and the :ref:`multioutput.MultiOutputRegressor <multiclass>` meta-estimator. This example illustrates the use of the :ref:`multioutput.MultiOutputRegressor <multiclass>` meta-estimator to perform multi-output regression. A random forest regressor is used, which supports multi-output regression natively, so the results can be compared. The random forest regressor will only ever predict values within the range of observations or closer to zero for each of the targets. As a result the predictions are biased towards the centre of the circle. Using a single underlying feature the model learns both the x and y coordinate as output. """ print(__doc__) # Author: Tim Head <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(600, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y += (0.5 - rng.rand(*y.shape)) X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=400, random_state=4) max_depth = 30 regr_multirf = MultiOutputRegressor(RandomForestRegressor(max_depth=max_depth, random_state=0)) regr_multirf.fit(X_train, y_train) regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2) regr_rf.fit(X_train, y_train) # Predict on new data y_multirf = regr_multirf.predict(X_test) y_rf = regr_rf.predict(X_test) # Plot the results plt.figure() s = 50 a = 0.4 plt.scatter(y_test[:, 0], y_test[:, 1], c="navy", s=s, marker="s", alpha=a, label="Data") plt.scatter(y_multirf[:, 0], y_multirf[:, 1], c="cornflowerblue", s=s, alpha=a, label="Multi RF score=%.2f" % regr_multirf.score(X_test, y_test)) plt.scatter(y_rf[:, 0], y_rf[:, 1], c="c", s=s, marker="^", alpha=a, label="RF score=%.2f" % regr_rf.score(X_test, y_test)) plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("target 1") plt.ylabel("target 2") plt.title("Comparing random forests and the multi-output meta estimator") plt.legend() plt.show()
bsd-3-clause
bgris/ODL_bgris
lib/python3.5/site-packages/matplotlib/backends/backend_gtkagg.py
10
4369
""" Render to gtk from agg """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import matplotlib from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.backends.backend_gtk import gtk, FigureManagerGTK, FigureCanvasGTK,\ show, draw_if_interactive,\ error_msg_gtk, PIXELS_PER_INCH, backend_version, \ NavigationToolbar2GTK from matplotlib.backends._gtkagg import agg_to_gtk_drawable DEBUG = False class NavigationToolbar2GTKAgg(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKAgg(fig) class FigureManagerGTKAgg(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKAgg (canvas, self.window) else: toolbar = None return toolbar def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if DEBUG: print('backend_gtkagg.new_figure_manager') FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTKAgg(figure) return FigureManagerGTKAgg(canvas, num) if DEBUG: print('backend_gtkagg.new_figure_manager done') class FigureCanvasGTKAgg(FigureCanvasGTK, FigureCanvasAgg): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(FigureCanvasAgg.filetypes) def configure_event(self, widget, event=None): if DEBUG: print('FigureCanvasGTKAgg.configure_event') if widget.window is None: return try: del self.renderer except AttributeError: pass w,h = widget.window.get_size() if w==1 or h==1: return # empty fig # compute desired figure size in inches dpival = self.figure.dpi winch = w/dpival hinch = h/dpival self.figure.set_size_inches(winch, hinch, forward=False) self._need_redraw = True self.resize_event() if DEBUG: print('FigureCanvasGTKAgg.configure_event end') return True def _render_figure(self, pixmap, width, height): if DEBUG: print('FigureCanvasGTKAgg.render_figure') FigureCanvasAgg.draw(self) if DEBUG: print('FigureCanvasGTKAgg.render_figure pixmap', pixmap) #agg_to_gtk_drawable(pixmap, self.renderer._renderer, None) buf = self.buffer_rgba() ren = self.get_renderer() w = int(ren.width) h = int(ren.height) pixbuf = gtk.gdk.pixbuf_new_from_data( buf, gtk.gdk.COLORSPACE_RGB, True, 8, w, h, w*4) pixmap.draw_pixbuf(pixmap.new_gc(), pixbuf, 0, 0, 0, 0, w, h, gtk.gdk.RGB_DITHER_NONE, 0, 0) if DEBUG: print('FigureCanvasGTKAgg.render_figure done') def blit(self, bbox=None): if DEBUG: print('FigureCanvasGTKAgg.blit', self._pixmap) agg_to_gtk_drawable(self._pixmap, self.renderer._renderer, bbox) x, y, w, h = self.allocation self.window.draw_drawable (self.style.fg_gc[self.state], self._pixmap, 0, 0, 0, 0, w, h) if DEBUG: print('FigureCanvasGTKAgg.done') def print_png(self, filename, *args, **kwargs): # Do this so we can save the resolution of figure in the PNG file agg = self.switch_backends(FigureCanvasAgg) return agg.print_png(filename, *args, **kwargs) """\ Traceback (most recent call last): File "/home/titan/johnh/local/lib/python2.3/site-packages/matplotlib/backends/backend_gtk.py", line 304, in expose_event self._render_figure(self._pixmap, w, h) File "/home/titan/johnh/local/lib/python2.3/site-packages/matplotlib/backends/backend_gtkagg.py", line 77, in _render_figure pixbuf = gtk.gdk.pixbuf_new_from_data( ValueError: data length (3156672) is less then required by the other parameters (3160608) """ FigureCanvas = FigureCanvasGTKAgg FigureManager = FigureManagerGTKAgg
gpl-3.0
jseabold/statsmodels
statsmodels/datasets/longley/data.py
4
1924
"""Longley dataset""" from statsmodels.datasets import utils as du __docformat__ = 'restructuredtext' COPYRIGHT = """This is public domain.""" TITLE = __doc__ SOURCE = """ The classic 1967 Longley Data http://www.itl.nist.gov/div898/strd/lls/data/Longley.shtml :: Longley, J.W. (1967) "An Appraisal of Least Squares Programs for the Electronic Comptuer from the Point of View of the User." Journal of the American Statistical Association. 62.319, 819-41. """ DESCRSHORT = """""" DESCRLONG = """The Longley dataset contains various US macroeconomic variables that are known to be highly collinear. It has been used to appraise the accuracy of least squares routines.""" NOTE = """:: Number of Observations - 16 Number of Variables - 6 Variable name definitions:: TOTEMP - Total Employment GNPDEFL - GNP deflator GNP - GNP UNEMP - Number of unemployed ARMED - Size of armed forces POP - Population YEAR - Year (1947 - 1962) """ def load(as_pandas=None): """ Load the Longley data and return a Dataset class. Parameters ---------- as_pandas : bool Flag indicating whether to return pandas DataFrames and Series or numpy recarrays and arrays. If True, returns pandas. Returns ------- Dataset See DATASET_PROPOSAL.txt for more information. """ return du.as_numpy_dataset(load_pandas(), as_pandas=as_pandas) def load_pandas(): """ Load the Longley data and return a Dataset class. Returns ------- Dataset See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_pandas(data, endog_idx=0) def _get_data(): data = du.load_csv(__file__, 'longley.csv') data = data.iloc[:, [1, 2, 3, 4, 5, 6, 7]].astype(float) return data
bsd-3-clause
mjgrav2001/scikit-learn
sklearn/setup.py
225
2856
import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) config.add_subpackage('__check_build') config.add_subpackage('svm') config.add_subpackage('datasets') config.add_subpackage('datasets/tests') config.add_subpackage('feature_extraction') config.add_subpackage('feature_extraction/tests') config.add_subpackage('cluster') config.add_subpackage('cluster/tests') config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('decomposition') config.add_subpackage('decomposition/tests') config.add_subpackage("ensemble") config.add_subpackage("ensemble/tests") config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('utils') config.add_subpackage('utils/tests') config.add_subpackage('externals') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('neighbors') config.add_subpackage('neural_network') config.add_subpackage('preprocessing') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('semi_supervised') config.add_subpackage("tree") config.add_subpackage("tree/tests") config.add_subpackage('metrics/tests') config.add_subpackage('metrics/cluster') config.add_subpackage('metrics/cluster/tests') # add cython extension module for isotonic regression config.add_extension( '_isotonic', sources=['_isotonic.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
amolkahat/pandas
asv_bench/benchmarks/io/excel.py
5
1173
import numpy as np from pandas import DataFrame, date_range, ExcelWriter, read_excel from pandas.compat import BytesIO import pandas.util.testing as tm class Excel(object): params = ['openpyxl', 'xlsxwriter', 'xlwt'] param_names = ['engine'] def setup(self, engine): N = 2000 C = 5 self.df = DataFrame(np.random.randn(N, C), columns=['float{}'.format(i) for i in range(C)], index=date_range('20000101', periods=N, freq='H')) self.df['object'] = tm.makeStringIndex(N) self.bio_read = BytesIO() self.writer_read = ExcelWriter(self.bio_read, engine=engine) self.df.to_excel(self.writer_read, sheet_name='Sheet1') self.writer_read.save() self.bio_read.seek(0) def time_read_excel(self, engine): read_excel(self.bio_read) def time_write_excel(self, engine): bio_write = BytesIO() bio_write.seek(0) writer_write = ExcelWriter(bio_write, engine=engine) self.df.to_excel(writer_write, sheet_name='Sheet1') writer_write.save() from ..pandas_vb_common import setup # noqa: F401
bsd-3-clause
ycaihua/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
JeanKossaifi/scikit-learn
sklearn/utils/multiclass.py
45
12390
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from __future__ import division from collections import Sequence from itertools import chain from scipy.sparse import issparse from scipy.sparse.base import spmatrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from ..externals.six import string_types from .validation import check_array from ..utils.fixes import bincount from ..utils.fixes import array_equal def _unique_multiclass(y): if hasattr(y, '__array__'): return np.unique(np.asarray(y)) else: return set(y) def _unique_indicator(y): return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1]) _FN_UNIQUE_LABELS = { 'binary': _unique_multiclass, 'multiclass': _unique_multiclass, 'multilabel-indicator': _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes, Returns ------- out : numpy array of shape [n_unique_labels] An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError('No argument has been passed.') # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == set(["binary", "multiclass"]): ys_types = set(["multiclass"]) if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if (label_type == "multilabel-indicator" and len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1] for y in ys)) > 1): raise ValueError("Multi-label binary indicator input with " "different numbers of labels") # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1): raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == 'f' and np.all(y.astype(int) == y) def is_multilabel(y): """ Check if ``y`` is in a multilabel format. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- out : bool, Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel([[1], [0, 2], []]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ if hasattr(y, '__array__'): y = np.asarray(y) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return (len(y.data) == 0 or np.unique(y.data).size == 1 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(np.unique(y.data)))) else: labels = np.unique(y) return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(labels)) def type_of_target(y): """Determine the type of data indicated by target `y` Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multiclass-multioutput' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, string_types)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], string_types)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], string_types)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary' # [1, 2] or [["a"], ["b"]] def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, 'classes_', None) is None and classes is None: raise ValueError("classes must be passed on the first call " "to partial_fit.") elif classes is not None: if getattr(clf, 'classes_', None) is not None: if not array_equal(clf.classes_, unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_)) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data Parameters ---------- y : array like or sparse matrix of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape = (n_samples,), optional Sample weights. Returns ------- classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. n_classes : list of integrs of size n_outputs Number of classes in each column class_prior : list of size n_outputs of arrays of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = np.asarray(sample_weight)[col_nonzero] zeros_samp_weight_sum = (np.sum(sample_weight) - np.sum(nz_samp_weight)) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]], return_inverse=True) class_prior_k = bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its wieght with the wieght # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implict zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior)
bsd-3-clause
kingtaurus/cs224d
assignment3/codebase_release/rnn.py
1
16026
import sys import os import random import numpy as np import matplotlib.pyplot as plt import math import time import itertools import shutil import tensorflow as tf import tree as tr from utils import Vocab from collections import OrderedDict import seaborn as sns sns.set_style('whitegrid') def initialize_uninitialized_vars(session): uninitialized = [ var for var in tf.all_variables() if not session.run(tf.is_variable_initialized(var)) ] session.run(tf.initialize_variables(uninitialized)) def variable_summaries(variable, name): with tf.name_scope("summaries"): mean = tf.reduce_mean(variable) tf.summary.scalar('mean/' + name, mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_sum(tf.square(variable - mean))) tf.summary.scalar('stddev/' + name, stddev) tf.summary.scalar('max/' + name, tf.reduce_max(variable)) tf.summary.scalar('min/' + name, tf.reduce_min(variable)) tf.summary.histogram(name, variable) RESET_AFTER = 50 class Config(object): """Holds model hyperparams and data information. Model objects are passed a Config() object at instantiation. """ embed_size = 50 label_size = 2 early_stopping = 2 anneal_threshold = 0.99 anneal_by = 1.5 max_epochs = 30 lr = 0.01 l2 = 0.02 model_name = 'rnn_embed=%d_l2=%f_lr=%f.weights'%(embed_size, l2, lr) class RNN_Model(): def load_data(self): """Loads train/dev/test data and builds vocabulary.""" self.train_data, self.dev_data, self.test_data = tr.simplified_data(700, 100, 200) # build vocab from training data self.vocab = Vocab() train_sents = [t.get_words() for t in self.train_data] self.vocab.construct(list(itertools.chain.from_iterable(train_sents))) def inference(self, tree, predict_only_root=False): """For a given tree build the RNN models computation graph up to where it may be used for inference. Args: tree: a Tree object on which to build the computation graph for the RNN Returns: softmax_linear: Output tensor with the computed logits. """ node_tensors = self.add_model(tree.root) if predict_only_root: node_tensors = node_tensors[tree.root] else: node_tensors = [tensor for node, tensor in node_tensors.items() if node.label!=2] node_tensors = tf.concat(0, node_tensors) return self.add_projections(node_tensors) def add_model_vars(self): ''' You model contains the following parameters: embedding: tensor(vocab_size, embed_size) W1: tensor(2* embed_size, embed_size) b1: tensor(1, embed_size) U: tensor(embed_size, output_size) bs: tensor(1, output_size) Hint: Add the tensorflow variables to the graph here and *reuse* them while building the compution graphs for composition and projection for each tree Hint: Use a variable_scope "Composition" for the composition layer, and "Projection") for the linear transformations preceding the softmax. ''' with tf.variable_scope('Composition'): ### YOUR CODE HERE #initializer=initializer=tf.random_normal_initializer(0,3) embedding = tf.get_variable("embedding", [self.vocab.total_words, self.config.embed_size]) W1 = tf.get_variable("W1", [2 * self.config.embed_size, self.config.embed_size]) b1 = tf.get_variable("b1", [1, self.config.embed_size]) variable_summaries(embedding, embedding.name) variable_summaries(W1, W1.name) variable_summaries(b1, b1.name) ### END YOUR CODE with tf.variable_scope('Projection'): ### YOUR CODE HERE U = tf.get_variable("U", [self.config.embed_size, self.config.label_size]) bs = tf.get_variable("bs", [1, self.config.label_size]) variable_summaries(U, U.name) variable_summaries(bs, bs.name) ### END YOUR CODE def add_model(self, node): """Recursively build the model to compute the phrase embeddings in the tree Hint: Refer to tree.py and vocab.py before you start. Refer to the model's vocab with self.vocab Hint: Reuse the "Composition" variable_scope here Hint: Store a node's vector representation in node.tensor so it can be used by it's parent Hint: If node is a leaf node, it's vector representation is just that of the word vector (see tf.gather()). Args: node: a Node object Returns: node_tensors: Dict: key = Node, value = tensor(1, embed_size) """ with tf.variable_scope('Composition', reuse=True): ### YOUR CODE HERE embedding = tf.get_variable("embedding") W1 = tf.get_variable("W1") b1 = tf.get_variable("b1") l2_loss = tf.nn.l2_loss(W1) + tf.nn.l2_loss(b1) tf.add_to_collection(name="l2_loss", value=l2_loss) ### END YOUR CODE W_split = tf.split(0, 2, W1) W_left = W_split[0] W_right = W_split[1] node_tensors = OrderedDict() curr_node_tensor = None if node.isLeaf: ### YOUR CODE HERE word_id = self.vocab.encode(node.word) curr_node_tensor = tf.expand_dims(tf.gather(embedding, word_id),0) ### END YOUR CODE else: node_tensors.update(self.add_model(node.left)) node_tensors.update(self.add_model(node.right)) ### YOUR CODE HERE #tf.concat(0,[node_tensors[node.left], node_tensors[node.right]]) #This operation could be done without the split call above #curr_node_tensor = tf.nn.relu(tf.matmul(child_tensor, W1) + b1) curr_node_tensor = tf.matmul(node_tensors[node.left], W_left) + tf.matmul(node_tensors[node.right], W_right) + b1 ### END YOUR CODE node_tensors[node] = curr_node_tensor return node_tensors def add_projections(self, node_tensors): """Add projections to the composition vectors to compute the raw sentiment scores Hint: Reuse the "Projection" variable_scope here Args: node_tensors: tensor(?, embed_size) Returns: output: tensor(?, label_size) """ logits = None ### YOUR CODE HERE with tf.variable_scope("Projection", reuse=True): U = tf.get_variable("U") bs = tf.get_variable("bs") logits = tf.matmul(node_tensors, U) + bs ### END YOUR CODE return logits def loss(self, logits, labels): """Adds loss ops to the computational graph. Hint: Use sparse_softmax_cross_entropy_with_logits Hint: Remember to add l2_loss (see tf.nn.l2_loss) Args: logits: tensor(num_nodes, output_size) labels: python list, len = num_nodes Returns: loss: tensor 0-D """ loss = None # YOUR CODE HERE l2_loss = self.config.l2 * tf.get_collection("l2_loss")[0] objective_loss = tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)) loss = objective_loss + l2_loss tf.summary.scalar("loss_l2", l2_loss) tf.summary.scalar("loss_objective", tf.reduce_sum(objective_loss)) tf.summary.scalar("loss_total", loss) # END YOUR CODE return loss def training(self, loss): """Sets up the training Ops. Creates an optimizer and applies the gradients to all trainable variables. The Op returned by this function is what must be passed to the `sess.run()` call to cause the model to train. See https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Optimizer for more information. Hint: Use tf.train.GradientDescentOptimizer for this model. Calling optimizer.minimize() will return a train_op object. Args: loss: tensor 0-D Returns: train_op: tensorflow op for training. """ train_op = None # YOUR CODE HERE optimizer = tf.train.GradientDescentOptimizer(self.config.lr) #optimizer = tf.train.AdamOptimizer(self.config.lr) train_op = optimizer.minimize(loss) # END YOUR CODE return train_op def predictions(self, y): """Returns predictions from sparse scores Args: y: tensor(?, label_size) Returns: predictions: tensor(?,1) """ predictions = None # YOUR CODE HERE predictions = tf.argmax(y, dimension=1) # END YOUR CODE return predictions def __init__(self, config): self.config = config self.load_data() self.merged_summaries = None self.summary_writer = None def predict(self, trees, weights_path, get_loss = False): """Make predictions from the provided model.""" results = [] losses = [] for i in range(int(math.ceil(len(trees)/float(RESET_AFTER)))): with tf.Graph().as_default(), tf.Session() as sess: self.add_model_vars() saver = tf.train.Saver() saver.restore(sess, weights_path) for tree in trees[i*RESET_AFTER: (i+1)*RESET_AFTER]: logits = self.inference(tree, True) predictions = self.predictions(logits) root_prediction = sess.run(predictions)[0] if get_loss: root_label = tree.root.label loss = sess.run(self.loss(logits, [root_label])) losses.append(loss) results.append(root_prediction) return results, losses def run_epoch(self, new_model = False, verbose=True, epoch=0): step = 0 loss_history = [] while step < len(self.train_data): with tf.Graph().as_default(), tf.Session() as sess: self.add_model_vars() if new_model: init = tf.global_variables_initializer() sess.run(init) new_model = False else: saver = tf.train.Saver() saver.restore(sess, './weights/%s.temp'%self.config.model_name) for r_step in range(RESET_AFTER): if step>=len(self.train_data): break tree = self.train_data[step] logits = self.inference(tree) labels = [l for l in tree.labels if l!=2] loss = self.loss(logits, labels) train_op = self.training(loss) #initialize_uninitialized_vars(sess) if r_step == 0: self.merged_summaries = tf.summary.merge_all() # self.summary_writer = tf.train.SummaryWriter("tree_rnn_log/", sess.graph) if step == 0 and epoch == 0: self.summary_writer = tf.summary.FileWriter("tree_rnn_log/", sess.graph) loss, _, merged = sess.run([loss, train_op, self.merged_summaries]) if step % (RESET_AFTER//2): self.summary_writer.add_summary(merged, epoch * len(self.train_data) + step) loss_history.append(loss) if verbose: sys.stdout.write('\r{} / {} : loss = {}'.format( step, len(self.train_data), np.mean(loss_history))) sys.stdout.flush() step+=1 saver = tf.train.Saver() if not os.path.exists("./weights"): os.makedirs("./weights") saver.save(sess, './weights/%s.temp'%self.config.model_name, write_meta_graph=False) train_preds, _ = self.predict(self.train_data, './weights/%s.temp'%self.config.model_name) val_preds, val_losses = self.predict(self.dev_data, './weights/%s.temp'%self.config.model_name, get_loss=True) train_labels = [t.root.label for t in self.train_data] val_labels = [t.root.label for t in self.dev_data] train_acc = np.equal(train_preds, train_labels).mean() val_acc = np.equal(val_preds, val_labels).mean() print() print('Training acc (only root node): {}'.format(train_acc)) print('Valiation acc (only root node): {}'.format(val_acc)) print(self.make_conf(train_labels, train_preds)) print(self.make_conf(val_labels, val_preds)) return train_acc, val_acc, loss_history, np.mean(val_losses) def train(self, verbose=True): complete_loss_history = [] train_acc_history = [] val_acc_history = [] prev_epoch_loss = float('inf') best_val_loss = float('inf') best_val_epoch = 0 stopped = -1 for epoch in range(self.config.max_epochs): print('epoch %d'%epoch) if epoch==0: train_acc, val_acc, loss_history, val_loss = self.run_epoch(new_model=True, epoch=epoch) else: train_acc, val_acc, loss_history, val_loss = self.run_epoch(epoch=epoch) complete_loss_history.extend(loss_history) train_acc_history.append(train_acc) val_acc_history.append(val_acc) #lr annealing epoch_loss = np.mean(loss_history) if epoch_loss>prev_epoch_loss*self.config.anneal_threshold: self.config.lr/=self.config.anneal_by print('annealed lr to %f'%self.config.lr) prev_epoch_loss = epoch_loss #save if model has improved on val if val_loss < best_val_loss: shutil.copyfile('./weights/%s.temp'%self.config.model_name, './weights/%s'%self.config.model_name) best_val_loss = val_loss best_val_epoch = epoch # if model has not imprvoved for a while stop if epoch - best_val_epoch > self.config.early_stopping: stopped = epoch #break if verbose: sys.stdout.write('\r') sys.stdout.flush() print('\n\nstopped at %d\n'%stopped) return { 'loss_history': complete_loss_history, 'train_acc_history': train_acc_history, 'val_acc_history': val_acc_history, } def make_conf(self, labels, predictions): confmat = np.zeros([2, 2]) for l,p in zip(labels, predictions): confmat[l, p] += 1 return confmat def test_RNN(): """Test RNN model implementation. You can use this function to test your implementation of the Named Entity Recognition network. When debugging, set max_epochs in the Config object to 1 so you can rapidly iterate. """ config = Config() model = RNN_Model(config) start_time = time.time() stats = model.train(verbose=True) print('Training time: {}'.format(time.time() - start_time)) plt.plot(stats['loss_history']) plt.title('Loss history') plt.xlabel('Iteration') plt.ylabel('Loss') plt.savefig("loss_history.png") plt.show() print('Test') print('=-=-=') predictions, _ = model.predict(model.test_data, './weights/%s'%model.config.model_name) labels = [t.root.label for t in model.test_data] test_acc = np.equal(predictions, labels).mean() print('Test acc: {}'.format(test_acc)) if __name__ == "__main__": test_RNN()
mit
andrewnc/scikit-learn
examples/neighbors/plot_nearest_centroid.py
264
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
qifeigit/scikit-learn
examples/classification/plot_classifier_comparison.py
181
4699
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.lda import LDA from sklearn.qda import QDA h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
mayblue9/bokeh
bokeh/compat/mpl.py
32
2834
"Supporting objects and functions to convert Matplotlib objects into Bokeh." #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from warnings import warn import matplotlib.pyplot as plt from .bokeh_exporter import BokehExporter from .bokeh_renderer import BokehRenderer #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def to_bokeh(fig=None, name=None, server=None, notebook=None, pd_obj=True, xkcd=False): """ Uses bokeh to display a Matplotlib Figure. You can store a bokeh plot in a standalone HTML file, as a document in a Bokeh plot server, or embedded directly into an IPython Notebook output cell. Parameters ---------- fig: matplotlib.figure.Figure The figure to display. If None or not specified, then the current figure will be used. name: str (default=None) If this option is provided, then the Bokeh figure will be saved into this HTML file, and then a web browser will be used to display it. server: str (default=None) Fully specified URL of bokeh plot server. Default bokeh plot server URL is "http://localhost:5006" or simply "deault" notebook: bool (default=False) Return an output value from this function which represents an HTML object that the IPython notebook can display. You can also use it with a bokeh plot server just specifying the URL. pd_obj: bool (default=True) The implementation asumes you are plotting using the pandas. You have the option to turn it off (False) to plot the datetime xaxis with other non-pandas interfaces. xkcd: bool (default=False) If this option is True, then the Bokeh figure will be saved with a xkcd style. """ if name is not None: warn("Use standard output_file(...) from bokeh.io") if server is not None: warn("Use standard output_server(...) from bokeh.io") if notebook is not None: warn("Use standard output_notebook() from bokeh.io") if fig is None: fig = plt.gcf() renderer = BokehRenderer(pd_obj, xkcd) exporter = BokehExporter(renderer) exporter.run(fig) return renderer.fig
bsd-3-clause
cedar10b/travelapp
cities.py
1
2476
# -*- coding: utf-8 -*- import re import urllib2 import numpy as np import pandas as pd from bs4 import BeautifulSoup from sql_functions import * df = pd.DataFrame([], columns=['city', 'state', 'population']) # find the largest cities in the US from wikipedia url = 'https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population' page = urllib2.urlopen(url) soup = BeautifulSoup(page) table = soup.find('table', {'class': 'wikitable sortable'}) entry = {} for row in table.findAll('tr')[1:]: city = row.findAll('td')[1].contents[0] #state = row.findAll('td')[2].a.attrs['title'] state = str(row.findAll('td')[2].a) state = re.compile('>(.*?)</a>').search(state).group(1) population = row.findAll('td')[4].contents[0] population = int(population.replace(',', '')) city = city.string df = df.append({'city': city, 'state': state, 'population': population}, ignore_index=True) df.ix[df.state.values == "Hawai'i", 'state'] = 'Hawaii' df.ix[df.city.values == u"Winston\u2013Salem", 'city'] = 'Winston-Salem' # add state abbreviation state_abbr = pd.DataFrame([], columns=['state', 'state_abbr']) url = 'http://www.stateabbreviations.us/' page = urllib2.urlopen(url) soup = BeautifulSoup(page) table = soup.find('table', {'class': 'f'}) for row in table.findAll('tr')[2:]: state = str(row.findAll('td')[0].a) state = re.compile('>(.*?)</a>').search(state).group(1) abbr = row.findAll('td')[2].contents[0] state_abbr = state_abbr.append({'state': state, 'state_abbr': abbr}, ignore_index=True) df = pd.merge(df, state_abbr, on='state', how='left') df.ix[df.state == 'District of Columbia', 'state_abbr'] = 'DC' # drop SF Bay Area cities from the list -- you can drive to these cities bay_area_cities = ['San Jose', 'San Francisco', 'Sacramento', 'Oakland', 'Stockton', 'Fremont', 'Modesto'] for i in range(len(bay_area_cities)): df.drop(df[df.city == bay_area_cities[i]].index.values, inplace=True) df.set_index(pd.Index(np.arange(df.shape[0])), inplace=True) # normalize population # scale saturates above 2,500,000 and below 200,000 # the log is taken and it is normalized from 0 to 1. trunc_pop = np.where(df.population > 2500000, 2500000, df.population) trunc_pop = np.where(df.population < 200000, 200000, trunc_pop) trunc_pop = np.log(trunc_pop) trunc_pop -= trunc_pop.min() trunc_pop /= trunc_pop.max() df['norm_popul'] = trunc_pop create_table(df, 'cities')
mit
IITM-DONLAB/python-dnn
src/pythonDnn/utils/plotter.py
1
1076
import matplotlib import numpy as np import logging from pythonDnn.io_modules import create_folder_structure_if_not_exists logger = logging.getLogger(__name__) def plot(layer_output,path,layer_idx,batch_idx,img_plot_remaining,max_subplots=100): #print layer_output; matplotlib.use('Agg') import matplotlib.pyplot as plt num_examples = layer_output.__len__(); for eg_idx in xrange(num_examples): if img_plot_remaining == 0: break; save_path = path%(layer_idx,batch_idx,eg_idx) logger.debug('Plotting the feature map %d in %s'%(eg_idx,save_path)); eg_output = layer_output[eg_idx]; num_plots = min(max_subplots,eg_output.__len__()); cols = int(np.ceil(num_plots/10.0)); fig,plots = plt.subplots(10,cols); plots = plots.flatten(); for idx in xrange(num_plots): plots[idx].imshow(eg_output[idx],interpolation='nearest'); plots[idx].axis('off'); create_folder_structure_if_not_exists(save_path) # Save the full figure... fig.savefig(save_path,bbox_inches='tight') plt.close() img_plot_remaining-=1; return img_plot_remaining;
apache-2.0
ky822/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
159
10196
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
criffy/aflengine
analysis/misc/progtest.py
1
1173
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 24 21:24:48 2018 @author: chrisstrods """ import pandas as pd from os.path import dirname, abspath import re #load files d = dirname(dirname(dirname(abspath(__file__)))) progression = pd.read_csv(d+"/bench/progression.csv") quarters = pd.read_csv(d+"/bench/quarters.csv") matchprog = progression.loc[progression["matchid"] == "2017PFADEGEE"] matchq = quarters.loc[quarters["matchid"] == "2017PFADEGEE"] matchprog["hscore"] = int(re.split('.-',matchprog["score"]))[2] matchmins = matchq.iloc[0]["minutes"] + \ matchq.iloc[1]["minutes"] + \ matchq.iloc[2]["minutes"] + \ matchq.iloc[3]["minutes"] + \ int(60/(matchq.iloc[0]["seconds"] + \ matchq.iloc[1]["seconds"] + \ matchq.iloc[2]["seconds"] + \ matchq.iloc[3]["seconds"])) matchsecs = (matchq.iloc[0]["seconds"] + \ matchq.iloc[1]["seconds"] + \ matchq.iloc[2]["seconds"] + \ matchq.iloc[3]["seconds"])%60 matchlength = matchmins + (matchsecs / 60)
gpl-3.0
chaluemwut/fbserver
filtercomputation.py
1
5428
# -*- coding: UTF-8 -*- from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from database import * from crf import * import sys, os, math import numpy as np import copy from utilfile import FileUtil class InstanceFilterData(object): # print 'instanace' _instance = None _lst = [] _lstFilter = [] def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(InstanceFilterData, cls).__new__( cls, *args, **kwargs) db = Database() cls._lst = db.select_filter_el() crfWordSeg = CRFWordSegment() for x in cls._lst: if x != '': segMsg = crfWordSeg.crfpp(x) # print ' '.join(segMsg) cls._lstFilter.append(' '.join(segMsg)) return cls._instance def getFilterData(self): return self._lstFilter class CRFWordSegment(object): def process_ans(self, lst): b_str = '' ans_str = '' for line_data in lst: try : data = line_data.split('\t') b_data = data[3][:-1] if b_data == 'B': b_str = b_str + 'B' else: b_str = b_str + 'I' ans_str = ans_str+data[0] except Exception, e: b_str = b_str+'B' ans_str = ans_str+' ' return b_str, ans_str def crfpp(self, msg): crf = CRF() fileUtil = FileUtil() crf.create_file_input(msg) os.system('crf_test -m model1 crf.test.data > crf.result') lst = fileUtil.read_file('crf.result') # lst = [a for a in lst if a != u'\n'] # str_ans = reduce(lambda x,y:x+y, [a.split('\t')[0] for a in lst]) # ans = reduce(lambda x,y:x+y, [a.split('\t')[3][:-1] for a in lst]) # lst_col3 = [a.split('\t')[3][:-1] for a in lst] lst_col3, str_ans = self.process_ans(lst) lst_ans = [n for (n, e) in enumerate(lst_col3) if e == 'B'] result_lst = [] for i in range(len(lst_ans)-1): a = lst_ans[i] b = lst_ans[i+1] result_lst.append(str_ans[a:b]) result_lst.append(str_ans[b:len(str_ans)]) return result_lst class FilterComputation(object): def __init__(self): pass def findResutl(self, result): for x in result: if x > 0.4: return 'no' return 'yes' def debugResult(self, result, document): for x in range(0, len(result)): print ' d ',result[x],' -- ',document[x] def computeCos(self, message, corpus): try: crfWordSeg = CRFWordSegment() lstInput = crfWordSeg.crfpp(message) inMessage = ' '.join(lstInput) documents = copy.copy(corpus) documents.insert(0, inMessage) tfidf_vectorizer = TfidfVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform(documents) result_lst = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix) result = result_lst[0] return result except Exception as e: print e def invFBFilter(self, message): try: crfWordSeg = CRFWordSegment() lstInput = crfWordSeg.crfpp(message) inMessage = ' '.join(lstInput) insData = InstanceFilterData() lst = insData.getFilterData() documents = copy.copy(lst) documents.insert(0, inMessage) tfidf_vectorizer = TfidfVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform(documents) result_lst = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix) result = result_lst[0] map = {} for x in range(0, len(documents)): key = documents[x] value = result[x] map[key] = value # print map return map except Exception as e: print e def isFilterMessage(self, message): try: crfWordSeg = CRFWordSegment() lstInput = crfWordSeg.crfpp(message) inMessage = ' '.join(lstInput) insData = InstanceFilterData() lst = insData.getFilterData() documents = copy.copy(lst) documents.insert(0, inMessage) tfidf_vectorizer = TfidfVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform(documents) result_lst = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix) result = result_lst[0] # self.debugResult(result, documents) return self.findResutl(result[1:]) # if b: # return b, data # else: # print '******************* else' # maxIndex = max(result) # data = documents[np.where(result == maxIndex)[0][0]] # print 'data : ',data # return b, data except Exception as e: print e # u = unicode('ทดสอบ', 'utf-8') # filter = FilterComputation() # filter.isFilterMessage(u)
apache-2.0
tdhopper/scikit-learn
sklearn/decomposition/tests/test_pca.py
199
10949
import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() def test_pca(): # PCA on dense arrays pca = PCA(n_components=2) X = iris.data X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], 2) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) pca = PCA() pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: pca.n_components = n_components pca.fit(X) cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) def test_whitening(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaingin 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_almost_equal(X.std(axis=0).std(), 43.9, 1) for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA) for y in (True, False)]: # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = this_PCA(n_components=n_components, whiten=True, copy=copy) # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components)) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = this_PCA(n_components=n_components, whiten=False, copy=copy).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. def test_explained_variance(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2).fit(X) rpca = RandomizedPCA(n_components=2, random_state=42).fit(X) assert_array_almost_equal(pca.explained_variance_, rpca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 3) # compare to empirical variances X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, axis=0)) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, axis=0)) def test_pca_check_projection(): # Test that the projection of data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): # Test that the projection of data can be inverted rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): X = [[0, 1], [1, 0]] for n_components in [-1, 3]: assert_raises(ValueError, PCA(n_components).fit, X) def test_randomized_pca_check_projection(): # Test that the projection by RandomizedPCA on dense data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = RandomizedPCA(n_components=2, random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): # Test that the projection by RandomizedPCA on list data is correct X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = RandomizedPCA(n_components=1, random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): # Test that RandomizedPCA is inversible on dense data rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = RandomizedPCA(n_components=2, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = RandomizedPCA(n_components=2, whiten=True, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_almost_equal(relative_max_delta, 0.11, decimal=2) def test_pca_dim(): # Check automated dimensionality setting rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95) pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01) pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5).fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): # Test that probabilistic PCA scoring yields a reasonable score n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): # Test that probabilistic PCA correctly separated different datasets n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives the same scores if whiten=True pca = PCA(n_components=2, whiten=True) pca.fit(X) ll2 = pca.score(X) assert_almost_equal(ll1, ll2) def test_pca_score3(): # Check that probabilistic PCA selects the right model n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k) pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1)
bsd-3-clause
savitasavadi/ml_lab_ecsc_306
labwork/lab7/sci-learn/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
apache-2.0
keskitalo/healpy
healpy/projaxes.py
2
43390
# # This file is part of Healpy. # # Healpy is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # Healpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Healpy; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # # For more information about Healpy, see http://code.google.com/p/healpy # from . import projector as P from . import rotator as R from . import pixelfunc import matplotlib import matplotlib.axes import numpy as np import six from ._healpy_pixel_lib import UNSEEN pi = np.pi dtor = pi / 180.0 class SphericalProjAxes(matplotlib.axes.Axes): """Define a special Axes to take care of spherical projection. Parameters ---------- projection : a SphericalProj class or a class derived from it. type of projection rot : list or string define rotation. See rotator. coord : list or string define coordinate system. See rotator. coordprec : number of digit after floating point for coordinates display. format : format string for value display. Notes ----- Other keywords from Axes (see Axes). """ def __init__(self, ProjClass, *args, **kwds): if not issubclass(ProjClass, P.SphericalProj): raise TypeError( "First argument must be a SphericalProj class " "(or derived from)" ) self.proj = ProjClass( rot=kwds.pop("rot", None), coord=kwds.pop("coord", None), flipconv=kwds.pop("flipconv", None), **kwds.pop("arrayinfo", {}) ) kwds.setdefault("format", "%g") kwds.setdefault("coordprec", 2) kwds["aspect"] = "equal" super(SphericalProjAxes, self).__init__(*args, **kwds) self.axis("off") self.set_autoscale_on(False) xmin, xmax, ymin, ymax = self.proj.get_extent() self.set_xlim(xmin, xmax) self.set_ylim(ymin, ymax) dx, dy = self.proj.ang2xy(pi / 2.0, 1.0 * dtor, direct=True) self._segment_threshold = 16.0 * np.sqrt(dx ** 2 + dy ** 2) self._segment_step_rad = 0.1 * pi / 180 self._do_border = True self._gratdef = {} self._gratdef["local"] = False self._gratdef["dpar"] = 30.0 def set_format(self, f): """Set the format string for value display """ self._format = f return f def set_coordprec(self, n): """Set the number of digits after floating point for coord display. """ self._coordprec = n def format_coord(self, x, y): """Format the coordinate for display in status bar. Take projection into account. """ format = self._format + " at " pos = self.get_lonlat(x, y) if pos is None or np.isnan(pos).any(): return "" lon, lat = np.around(pos, decimals=self._coordprec) val = self.get_value(x, y) if val is None: format = "%s" val = "" elif type(val) is str: format = "%s @ " coordsys = self.proj.coordsysstr if coordsys != "": res = (format + "(%g, %g) in %s") % (val, lon, lat, coordsys[0:3]) else: res = (format + "lon=%g, lat=%g") % (val, lon, lat) return res def get_lonlat(self, x, y): """Get the coordinate in the coord system of the image, in lon/lat in deg. """ lon, lat = self.proj.xy2ang(x, y, lonlat=True) return lon, lat def get_value(self, x, y): """Get the value of the map at position x,y """ if len(self.get_images()) < 1: return None im = self.get_images()[-1] arr = im.get_array() i, j = self.proj.xy2ij(x, y) if i is None or j is None: return None elif arr.mask is not np.ma.nomask and arr.mask[i, j]: return "UNSEEN" else: return arr[i, j] def projmap( self, map, vec2pix_func, vmin=None, vmax=None, badval=UNSEEN, badcolor="gray", bgcolor="white", cmap=None, norm=None, rot=None, coord=None, **kwds ): """Project a map on the SphericalProjAxes. Parameters ---------- map : array-like The map to project. vec2pix_func : function The function describing the pixelisation. vmin, vmax : float, scalars min and max value to use instead of min max of the map badval : float The value of the bad pixels badcolor : str Color to use to plot bad values bgcolor : str Color to use for background cmap : a color map The colormap to use (see matplotlib.cm) rot : sequence In the form (lon, lat, psi) (unit: degree):the center of the map is at (lon, lat) and rotated by angle psi around that direction. coord : {'G', 'E', 'C', None} The coordinate system of the map ('G','E' or 'C'), rotate the map if different from the axes coord syst. Notes ----- Other keywords are transmitted to :func:`matplotlib.Axes.imshow` """ img = self.proj.projmap(map, vec2pix_func, rot=rot, coord=coord) w = ~(np.isnan(img) | np.isinf(img) | pixelfunc.mask_bad(img, badval=badval)) try: if vmin is None: vmin = img[w].min() except ValueError: vmin = 0.0 try: if vmax is None: vmax = img[w].max() except ValueError: vmax = 0.0 if vmin > vmax: vmin = vmax if vmin == vmax: vmin -= 1.0 vmax += 1.0 cm, nn = get_color_table(vmin, vmax, img[w], cmap=cmap, norm=norm, badcolor=badcolor, bgcolor=bgcolor) ext = self.proj.get_extent() img = np.ma.masked_values(img, badval) aximg = self.imshow( img, extent=ext, cmap=cm, norm=nn, interpolation="nearest", origin="lower", vmin=vmin, vmax=vmax, **kwds ) xmin, xmax, ymin, ymax = self.proj.get_extent() self.set_xlim(xmin, xmax) self.set_ylim(ymin, ymax) return img def projplot(self, *args, **kwds): """projplot is a wrapper around :func:`matplotlib.Axes.plot` to take into account the spherical projection. You can call this function as:: projplot(theta, phi) # plot a line going through points at coord (theta, phi) projplot(theta, phi, 'bo') # plot 'o' in blue at coord (theta, phi) projplot(thetaphi) # plot a line going through points at coord (thetaphi[0], thetaphi[1]) projplot(thetaphi, 'bx') # idem but with blue 'x' Parameters ---------- theta, phi : float, array-like Coordinates of point to plot. Can be put into one 2-d array, first line is then *theta* and second line is *phi*. See *lonlat* parameter for unit. fmt : str A format string (see :func:`matplotlib.Axes.plot` for details) lonlat : bool, optional If True, theta and phi are interpreted as longitude and latitude in degree, otherwise, as colatitude and longitude in radian coord : {'E', 'G', 'C', None} The coordinate system of the points, only used if the coordinate coordinate system of the Axes has been defined and in this case, a rotation is performed rot : None or sequence rotation to be applied =(lon, lat, psi) : lon, lat will be position of the new Z axis, and psi is rotation around this axis, all in degree. if None, no rotation is performed direct : bool if True, the rotation to center the projection is not taken into account Notes ----- Other keywords are passed to :func:`matplotlib.Axes.plot`. See Also -------- projscatter, projtext """ fmt = None if len(args) < 1: raise ValueError("No argument given") if len(args) == 1: theta, phi = np.asarray(args[0]) elif len(args) == 2: if type(args[1]) is str: fmt = args[1] theta, phi = np.asarray(args[0]) else: theta, phi = np.asarray(args[0]), np.asarray(args[1]) elif len(args) == 3: if type(args[2]) is not str: raise TypeError("Third argument must be a string") else: theta, phi = np.asarray(args[0]), np.asarray(args[1]) fmt = args[2] else: raise TypeError("Three args maximum") rot = kwds.pop("rot", None) if rot is not None: rot = np.array(np.atleast_1d(rot), copy=1) rot.resize(3) rot[1] = rot[1] - 90.0 coord = self.proj.mkcoord(kwds.pop("coord", None))[::-1] lonlat = kwds.pop("lonlat", False) vec = R.dir2vec(theta, phi, lonlat=lonlat) vec = (R.Rotator(rot=rot, coord=coord, eulertype="Y")).I(vec) x, y = self.proj.vec2xy(vec, direct=kwds.pop("direct", False)) x, y = self._make_segment( x, y, threshold=kwds.pop("threshold", self._segment_threshold) ) thelines = [] for xx, yy in zip(x, y): if fmt is not None: try: # works in matplotlib 1.3 and earlier linestyle, marker, color = matplotlib.axes._process_plot_format(fmt) except: # matplotlib 1.4 and later linestyle, marker, color = matplotlib.axes._axes._process_plot_format( fmt ) kwds.setdefault("linestyle", linestyle) kwds.setdefault("marker", marker) if color is not None: kwds.setdefault("color", color) l = matplotlib.lines.Line2D(xx, yy, **kwds) self.add_line(l) thelines.append(l) return thelines def projscatter(self, theta, phi=None, *args, **kwds): """Projscatter is a wrapper around :func:`matplotlib.Axes.scatter` to take into account the spherical projection. You can call this function as:: projscatter(theta, phi) # plot points at coord (theta, phi) projplot(thetaphi) # plot points at coord (thetaphi[0], thetaphi[1]) Parameters ---------- theta, phi : float, array-like Coordinates of point to plot. Can be put into one 2-d array, first line is then *theta* and second line is *phi*. See *lonlat* parameter for unit. lonlat : bool, optional If True, theta and phi are interpreted as longitude and latitude in degree, otherwise, as colatitude and longitude in radian coord : {'E', 'G', 'C', None}, optional The coordinate system of the points, only used if the coordinate coordinate system of the axes has been defined and in this case, a rotation is performed rot : None or sequence, optional rotation to be applied =(lon, lat, psi) : lon, lat will be position of the new Z axis, and psi is rotation around this axis, all in degree. if None, no rotation is performed direct : bool, optional if True, the rotation to center the projection is not taken into account Notes ----- Other keywords are passed to :func:`matplotlib.Axes.plot`. See Also -------- projplot, projtext """ save_input_data = hasattr(self.figure, "zoomtool") if save_input_data: input_data = (theta, phi, args, kwds.copy()) if phi is None: theta, phi = np.asarray(theta) else: theta, phi = np.asarray(theta), np.asarray(phi) rot = kwds.pop("rot", None) if rot is not None: rot = np.array(np.atleast_1d(rot), copy=1) rot.resize(3) rot[1] = rot[1] - 90.0 coord = self.proj.mkcoord(kwds.pop("coord", None))[::-1] lonlat = kwds.pop("lonlat", False) vec = R.dir2vec(theta, phi, lonlat=lonlat) vec = (R.Rotator(rot=rot, coord=coord, eulertype="Y")).I(vec) x, y = self.proj.vec2xy(vec, direct=kwds.pop("direct", False)) s = self.scatter(x, y, *args, **kwds) if save_input_data: if not hasattr(self, "_scatter_data"): self._scatter_data = [] self._scatter_data.append((s, input_data)) return s def projtext(self, theta, phi, s, **kwds): """Projtext is a wrapper around :func:`matplotlib.Axes.text` to take into account the spherical projection. Parameters ---------- theta, phi : float, array-like Coordinates of point to plot. Can be put into one 2-d array, first line is then *theta* and second line is *phi*. See *lonlat* parameter for unit. text : str The text to be displayed. lonlat : bool, optional If True, theta and phi are interpreted as longitude and latitude in degree, otherwise, as colatitude and longitude in radian coord : {'E', 'G', 'C', None}, optional The coordinate system of the points, only used if the coordinate coordinate system of the axes has been defined and in this case, a rotation is performed rot : None or sequence, optional rotation to be applied =(lon, lat, psi) : lon, lat will be position of the new Z axis, and psi is rotation around this axis, all in degree. if None, no rotation is performed direct : bool, optional if True, the rotation to center the projection is not taken into account Notes ----- Other keywords are passed to :func:`matplotlib.Axes.text`. See Also -------- projplot, projscatter """ if phi is None: theta, phi = np.asarray(theta) else: theta, phi = np.asarray(theta), np.asarray(phi) rot = kwds.pop("rot", None) if rot is not None: rot = np.array(np.atleast_1d(rot), copy=1) rot.resize(3) rot[1] = rot[1] - 90.0 coord = self.proj.mkcoord(kwds.pop("coord", None))[::-1] lonlat = kwds.pop("lonlat", False) vec = R.dir2vec(theta, phi, lonlat=lonlat) vec = (R.Rotator(rot=rot, coord=coord, eulertype="Y")).I(vec) x, y = self.proj.vec2xy(vec, direct=kwds.pop("direct", False)) return self.text(x, y, s, **kwds) def _make_segment(self, x, y, threshold=None): if threshold is None: threshold = self._segment_threshold x, y = np.atleast_1d(x), np.atleast_1d(y) d2 = np.sqrt((np.roll(x, 1) - x) ** 2 + (np.roll(y, 1) - y) ** 2) w = np.where(d2 > threshold)[0] # w=w[w!=0] xx = [] yy = [] if len(w) == 1: x = np.roll(x, -w[0]) y = np.roll(y, -w[0]) xx.append(x) yy.append(y) elif len(w) >= 2: xx.append(x[0 : w[0]]) yy.append(y[0 : w[0]]) for i in six.moves.xrange(len(w) - 1): xx.append(x[w[i] : w[i + 1]]) yy.append(y[w[i] : w[i + 1]]) xx.append(x[w[-1] :]) yy.append(y[w[-1] :]) else: xx.append(x) yy.append(y) return xx, yy def get_parallel_interval(self, vx, vy=None, vz=None): """Get the min and max value of theta of the parallel to cover the field of view. Input: - the normalized vector of the direction of the center of the projection, in the reference frame of the graticule. Return: - vmin,vmax : between 0 and pi, vmin<vmax, the interval of theta for the parallels crossing the field of view """ if vy is None and vz is None: vx, vy, vz = vx elif vy is None or vz is None: raise ValueError("Both vy and vz must be given or both not given") a = np.arccos(vz) fov = self.proj.get_fov() vmin = max(0.0, a - fov / 2.0) vmax = min(pi, a + fov / 2.0) return vmin, vmax def get_meridian_interval(self, vx, vy=None, vz=None): """Get the min and max value of phi of the meridians to cover the field of view. Input: - the normalized vector of the direction of the center of the projection, in the reference frame of the graticule. Return: - vmin,vmax : the interval of phi for the meridians crossing the field of view. """ if vy is None and vz is None: vx, vy, vz = vx elif vy is None or vz is None: raise ValueError("Both vy and vz must be given or both not given") fov = self.proj.get_fov() th = np.arccos(vz) if th <= fov / 2.0: # test whether north pole is visible return -np.pi, np.pi if abs(th - pi) <= fov / 2.0: # test whether south pole is visible return -np.pi, np.pi sth = np.sin(th) phi0 = np.arctan2(vy, vx) return phi0 - fov / sth / 2.0, phi0 + fov / sth / 2.0 def graticule( self, dpar=None, dmer=None, coord=None, local=None, verbose=True, **kwds ): """Draw a graticule. Input: - dpar: angular separation between parallels in degree - dmer: angular separation between meridians in degree - coord: coordinate system of the graticule ('G', 'E' or 'C') - local: if True, no rotation performed at all """ gratargs = (dpar, dmer, coord, local) gratkwds = kwds if dpar is None: dpar = self._gratdef["dpar"] if local is None: local = self._gratdef["local"] if dmer is None: dmer = dpar dpar = abs(dpar) * dtor dmer = abs(dmer) * dtor if not local: vec = R.dir2vec(self.proj.get_center()) vec0 = R.Rotator(coord=self.proj.mkcoord(coord=coord)).I(vec) else: vec = (1, 0, 0) vec0 = (1, 0, 0) u_pmin, u_pmax = kwds.pop("pmax", None), kwds.pop("pmin", None) u_mmin, u_mmax = kwds.pop("mmin", None), kwds.pop("mmax", None) if u_pmin: u_pmin = (pi / 2.0 - u_pmin * dtor) % pi if u_pmax: u_pmax = (pi / 2.0 - u_pmax * dtor) % pi if u_mmin: u_mmin = (((u_mmin + 180.0) % 360) - 180) * dtor if u_mmax: u_mmax = (((u_mmax + 180.0) % 360) - 180) * dtor pmin, pmax = self.get_parallel_interval(vec0) mmin, mmax = self.get_meridian_interval(vec0) if u_pmin: pmin = u_pmin if u_pmax: pmax = u_pmax if u_mmin: mmin = u_mmin if u_mmax: mmax = u_pmax if verbose: print( "{0} {1} {2} {3}".format( pmin / dtor, pmax / dtor, mmin / dtor, mmax / dtor ) ) if not kwds.pop("force", False): dpar, dmer = self._get_interv_graticule( pmin, pmax, dpar, mmin, mmax, dmer, verbose=verbose ) theta_list = np.around(np.arange(pmin, pmax + 0.5 * dpar, dpar) / dpar) * dpar phi_list = np.around(np.arange(mmin, mmax + 0.5 * dmer, dmer) / dmer) * dmer theta = np.arange( pmin, pmax, min((pmax - pmin) / 100.0, self._segment_step_rad) ) phi = np.arange(mmin, mmax, min((mmax - mmin) / 100.0, self._segment_step_rad)) equator = False gratlines = [] kwds.setdefault("lw", 1) kwds.setdefault("color", "k") for t in theta_list: if abs(t - pi / 2.0) < 1.0e-10: fmt = "-" equator = True elif abs(t) < 1.0e-10: # special case: north pole t = 1.0e-10 fmt = "-" elif abs(t - pi) < 1.0e-10: # special case: south pole t = pi - 1.0e-10 fmt = "-" else: fmt = ":" gratlines.append( self.projplot( phi * 0.0 + t, phi, fmt, coord=coord, direct=local, **kwds ) ) if not equator and pmin <= pi / 2.0 and pi / 2 <= pmax: gratlines.append( self.projplot( phi * 0.0 + pi / 2.0, phi, "-", coord=coord, direct=local, **kwds ) ) for p in phi_list: if abs(p) < 1.0e-10: fmt = "-" else: fmt = ":" gratlines.append( self.projplot( theta, theta * 0.0 + p, fmt, coord=coord, direct=local, **kwds ) ) # Now the borders (only useful for full sky projection) if hasattr(self, "_do_border") and self._do_border: theta = np.arange(0, 181) * dtor gratlines.append( self.projplot(theta, theta * 0 - pi, "-k", lw=1, direct=True) ) gratlines.append( self.projplot(theta, theta * 0 + 0.9999 * pi, "-k", lw=1, direct=True) ) phi = np.arange(-180, 180) * dtor gratlines.append( self.projplot(phi * 0 + 1.0e-10, phi, "-k", lw=1, direct=True) ) gratlines.append( self.projplot(phi * 0 + pi - 1.0e-10, phi, "-k", lw=1, direct=True) ) if hasattr(self, "_graticules"): self._graticules.append((gratargs, gratkwds, gratlines)) else: self._graticules = [(gratargs, gratkwds, gratlines)] return dpar, dmer def delgraticules(self): """Delete all graticules previously created on the Axes. """ if hasattr(self, "_graticules"): for dum1, dum2, g in self._graticules: for gl in g: for l in gl: if l in self.lines: self.lines.remove(l) else: print("line not in lines") del self._graticules def _get_interv_graticule(self, pmin, pmax, dpar, mmin, mmax, dmer, verbose=True): def set_prec(d, n, nn=2): arcmin = False if d / n < 1.0: d *= 60 arcmin = True nn = 1 x = d / n y = nn * x ex = np.floor(np.log10(y)) z = np.around(y / 10 ** ex) * 10 ** ex / nn if arcmin: z = 1.0 / np.around(60.0 / z) return z max_n_par = 18 max_n_mer = 36 n_par = (pmax - pmin) / dpar n_mer = (mmax - mmin) / dmer if n_par > max_n_par: dpar = set_prec((pmax - pmin) / dtor, max_n_par / 2) * dtor if n_mer > max_n_mer: dmer = set_prec((mmax - mmin) / dtor, max_n_mer / 2, nn=1) * dtor if dmer / dpar < 0.2 or dmer / dpar > 5.0: dmer = dpar = max(dmer, dpar) vdeg = int(np.floor(np.around(dpar / dtor, 10))) varcmin = (dpar / dtor - vdeg) * 60.0 if verbose: print( "The interval between parallels is {0:d} deg {1:.2f}'.".format( vdeg, varcmin ) ) vdeg = int(np.floor(np.around(dmer / dtor, 10))) varcmin = (dmer / dtor - vdeg) * 60.0 if verbose: print( "The interval between meridians is {0:d} deg {1:.2f}'.".format( vdeg, varcmin ) ) return dpar, dmer class GnomonicAxes(SphericalProjAxes): """Define a gnomonic Axes to handle gnomonic projection. Input: - rot=, coord= : define rotation and coordinate system. See rotator. - coordprec= : number of digit after floating point for coordinates display. - format= : format string for value display. Other keywords from Axes (see Axes). """ def __init__(self, *args, **kwds): kwds.setdefault("coordprec", 3) super(GnomonicAxes, self).__init__(P.GnomonicProj, *args, **kwds) self._do_border = False self._gratdef["local"] = True self._gratdef["dpar"] = 1.0 def projmap(self, map, vec2pix_func, xsize=200, ysize=None, reso=1.5, **kwds): self.proj.set_proj_plane_info(xsize=xsize, ysize=ysize, reso=reso) return super(GnomonicAxes, self).projmap(map, vec2pix_func, **kwds) class HpxGnomonicAxes(GnomonicAxes): def projmap(self, map, nest=False, **kwds): nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map)) f = lambda x, y, z: pixelfunc.vec2pix(nside, x, y, z, nest=nest) xsize = kwds.pop("xsize", 200) ysize = kwds.pop("ysize", None) reso = kwds.pop("reso", 1.5) return super(HpxGnomonicAxes, self).projmap( map, f, xsize=xsize, ysize=ysize, reso=reso, **kwds ) class MollweideAxes(SphericalProjAxes): """Define a mollweide Axes to handle mollweide projection. Input: - rot=, coord= : define rotation and coordinate system. See rotator. - coordprec= : number of digit after floating point for coordinates display. - format= : format string for value display. Other keywords from Axes (see Axes). """ def __init__(self, *args, **kwds): kwds.setdefault("coordprec", 2) super(MollweideAxes, self).__init__(P.MollweideProj, *args, **kwds) self.set_xlim(-2.01, 2.01) self.set_ylim(-1.01, 1.01) def projmap(self, map, vec2pix_func, xsize=800, **kwds): self.proj.set_proj_plane_info(xsize=xsize) img = super(MollweideAxes, self).projmap(map, vec2pix_func, **kwds) self.set_xlim(-2.01, 2.01) self.set_ylim(-1.01, 1.01) return img class HpxMollweideAxes(MollweideAxes): def projmap(self, map, nest=False, **kwds): nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map)) f = lambda x, y, z: pixelfunc.vec2pix(nside, x, y, z, nest=nest) return super(HpxMollweideAxes, self).projmap(map, f, **kwds) class CartesianAxes(SphericalProjAxes): """Define a cylindrical Axes to handle cylindrical projection. """ def __init__(self, *args, **kwds): kwds.setdefault("coordprec", 2) super(CartesianAxes, self).__init__(P.CartesianProj, *args, **kwds) self._segment_threshold = 180 self._segment_step_rad = 0.1 * pi / 180 self._do_border = True def projmap( self, map, vec2pix_func, xsize=800, ysize=None, lonra=None, latra=None, **kwds ): self.proj.set_proj_plane_info( xsize=xsize, ysize=ysize, lonra=lonra, latra=latra ) return super(CartesianAxes, self).projmap(map, vec2pix_func, **kwds) class HpxCartesianAxes(CartesianAxes): def projmap(self, map, nest=False, **kwds): nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map)) f = lambda x, y, z: pixelfunc.vec2pix(nside, x, y, z, nest=nest) return super(HpxCartesianAxes, self).projmap(map, f, **kwds) class OrthographicAxes(SphericalProjAxes): """Define an orthographic Axes to handle orthographic projection. Input: - rot=, coord= : define rotation and coordinate system. See rotator. - coordprec= : num of digits after floating point for coordinates display. - format= : format string for value display. Other keywords from Axes (see Axes). """ def __init__(self, *args, **kwds): kwds.setdefault("coordprec", 2) super(OrthographicAxes, self).__init__(P.OrthographicProj, *args, **kwds) self._segment_threshold = 0.01 self._do_border = False def projmap(self, map, vec2pix_func, xsize=800, half_sky=False, **kwds): self.proj.set_proj_plane_info(xsize=xsize, half_sky=half_sky) img = super(OrthographicAxes, self).projmap(map, vec2pix_func, **kwds) if half_sky: ratio = 1.01 else: ratio = 2.01 self.set_xlim(-ratio, ratio) self.set_ylim(-1.01, 1.01) return img class HpxOrthographicAxes(OrthographicAxes): def projmap(self, map, nest=False, **kwds): nside = pixelfunc.npix2nside(len(map)) f = lambda x, y, z: pixelfunc.vec2pix(nside, x, y, z, nest=nest) return super(HpxOrthographicAxes, self).projmap(map, f, **kwds) class AzimuthalAxes(SphericalProjAxes): """Define an Azimuthal Axes to handle azimuthal equidistant or Lambert azimuthal equal-area projections. Input: - rot=, coord= : define rotation and coordinate system. See rotator. - coordprec= : number of digit after floating point for coordinates display. - format= : format string for value display. Other keywords from Axes (see Axes). """ def __init__(self, *args, **kwds): kwds.setdefault("coordprec", 3) super(AzimuthalAxes, self).__init__(P.AzimuthalProj, *args, **kwds) self._do_border = False def projmap( self, map, vec2pix_func, xsize=200, ysize=None, reso=1.5, lamb=True, half_sky=False, **kwds ): self.proj.set_proj_plane_info( xsize=xsize, ysize=ysize, reso=reso, lamb=lamb, half_sky=half_sky ) return super(AzimuthalAxes, self).projmap(map, vec2pix_func, **kwds) class HpxAzimuthalAxes(AzimuthalAxes): def projmap(self, map, nest=False, **kwds): nside = pixelfunc.npix2nside(pixelfunc.get_map_size(map)) f = lambda x, y, z: pixelfunc.vec2pix(nside, x, y, z, nest=nest) xsize = kwds.pop("xsize", 800) ysize = kwds.pop("ysize", None) reso = kwds.pop("reso", 1.5) lamb = kwds.pop("lamb", True) return super(HpxAzimuthalAxes, self).projmap( map, f, xsize=xsize, ysize=ysize, reso=reso, lamb=lamb, **kwds ) ################################################################### # # Table color for mollview, gnomview, and orthview. # Currently defined for so that the default colormap, found in # matplotlib.rcParams['image.cmap'], the data is displayed with # values greater than vmax as the final element of the colormap, # masked indices gray, and the background set to white. # # With matplotlib.rcParams['image.cmap'] assigned to a string # corresponding to a standard matplotlib colormap, one can call # hp.mollview(m) and have the map projected in the standard way, # whereas using just, e.g., hp.mollview(m, cmap='jet') will display # the data with a non-white background. # # One can set the default colormap in the matplotlibrc file, or set # it in situ: # >>> matplotlib.rcParam['image.cmap'] = 'coolwarm' # >>> hp.mollview(m) # Note that custom colormaps can also be used, but they need to be # registered ahead fo time, as shown in # http://matplotlib.org/examples/pylab_examples/custom_cmap.html def get_color_table(vmin, vmax, val, cmap=None, norm=None, badcolor="gray", bgcolor="white"): # Create color table newcmap = create_colormap(cmap, badcolor=badcolor, bgcolor=bgcolor) if type(norm) is str: if norm.lower().startswith("log"): norm = LogNorm2(clip=False) elif norm.lower().startswith("hist"): norm = HistEqNorm(clip=False) else: norm = None if norm is None: norm = LinNorm2(clip=False) norm.vmin = vmin norm.vmax = vmax norm.autoscale_None(val) return newcmap, norm def create_colormap(cmap, badcolor="gray", bgcolor="white"): if type(cmap) == str: cmap0 = matplotlib.cm.get_cmap(cmap) elif type(cmap) in [ matplotlib.colors.LinearSegmentedColormap, matplotlib.colors.ListedColormap, ]: cmap0 = cmap else: cmap0 = matplotlib.cm.get_cmap(matplotlib.rcParams["image.cmap"]) if hasattr(cmap0, "_segmentdata"): newcm = matplotlib.colors.LinearSegmentedColormap( "newcm", cmap0._segmentdata, cmap0.N ) else: newcm = cmap0 newcm.set_over(newcm(1.0)) newcm.set_under(bgcolor) newcm.set_bad(badcolor) return newcm ################################################################## # # A Locator that gives the bounds of the interval # class BoundaryLocator(matplotlib.ticker.Locator): def __init__(self, N=2, norm=None): if N < 2: raise ValueError("Number of locs must be greater than 1") self.Nlocs = N self.norm = norm def __call__(self): if matplotlib.__version__ < "0.98": vmin, vmax = self.viewInterval.get_bounds() else: vmin, vmax = self.axis.get_view_interval() if self.norm == "log": locs = np.log10(vmin) + np.arange(self.Nlocs) * ( np.log10(vmax) - np.log10(vmin) ) / (self.Nlocs - 1.0) locs = 10 ** (locs) else: locs = vmin + np.arange(self.Nlocs) * (vmax - vmin) / (self.Nlocs - 1.0) return locs def autoscale(self): self.verify_intervals() vmin, vmax = self.dataInterval.get_bounds() if vmax < vmin: vmin, vmax = vmax, vmin if vmin == vmax: vmin -= 1 vmax += 1 return vmin, vmax ################################################################## # # A normalization class to get color table equalised by # the histogram of data # class HistEqNorm(matplotlib.colors.Normalize): def __init__(self, vmin=None, vmax=None, clip=False): matplotlib.colors.Normalize.__init__(self, vmin, vmax, clip) self.xval = None self.yval = None def __call__(self, value, clip=None): if clip is None: clip = self.clip if np.iterable(value): vtype = "array" val = np.ma.asarray(value).astype(np.float) else: vtype = "scalar" val = np.ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = float(self.vmin), float(self.vmax) if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: return 0.0 * val else: if clip: mask = np.ma.getmask(val) val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = np.ma.array( np.interp(val, self.xval, self.yval), mask=np.ma.getmask(val) ) result[np.isinf(val.data)] = -np.inf if vtype == "scalar": result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") if np.iterable(value): vtype = "array" val = np.ma.array(value) else: vtype = "scalar" val = np.ma.array([value]) result = np.ma.array( self._lininterp(val, self.yval, self.xval), mask=np.ma.getmask(val) ) result[np.isinf(val.data)] = -np.inf if vtype == "scalar": result = result[0] return result def autoscale_None(self, val): changed = False if self.vmin is None: self.vmin = val.min() changed = True if self.vmax is None: self.vmax = val.max() changed = True if changed or self.xval is None or self.yval is None: self._set_xyvals(val) def autoscale(self, val): self.vmin = val.min() self.vmax = val.max() self._set_xyvals(val) def _set_xyvals(self, val): data = np.ma.asarray(val).ravel() w = np.isinf(data.data) if data.mask is not np.ma.nomask: w = w | data.mask data2 = data.data[~w] if data2.size < 3: self.yval = np.array([0, 1], dtype=np.float) self.xval = np.array([self.vmin, self.vmax], dtype=np.float) return bins = min(data2.size // 20, 5000) if bins < 3: bins = data2.size try: # for numpy 1.1, use new bins format (left and right edges) hist, bins = np.histogram( data2, bins=bins, range=(self.vmin, self.vmax), new=True ) except TypeError: # for numpy <= 1.0 or numpy >= 1.2, no new keyword hist, bins = np.histogram(data2, bins=bins, range=(self.vmin, self.vmax)) if bins.size == hist.size + 1: # new bins format, remove last point bins = bins[:-1] hist = hist.astype(np.float) / np.float(hist.sum()) self.yval = np.concatenate([[0.0], hist.cumsum(), [1.0]]) self.xval = np.concatenate( [[self.vmin], bins + 0.5 * (bins[1] - bins[0]), [self.vmax]] ) def _lininterp(self, x, X, Y): if hasattr(x, "__len__"): xtype = "array" xx = np.asarray(x).astype(np.float) else: xtype = "scalar" xx = np.asarray([x]).astype(np.float) idx = X.searchsorted(xx) yy = xx * 0 yy[idx > len(X) - 1] = Y[-1] # over yy[idx <= 0] = Y[0] # under wok = np.where((idx > 0) & (idx < len(X))) # the good ones iok = idx[wok] yywok = Y[iok - 1] + ( (Y[iok] - Y[iok - 1]) / (X[iok] - X[iok - 1]) * (xx[wok] - X[iok - 1]) ) w = np.where(((X[iok] - X[iok - 1]) == 0)) # where are the nan ? yywok[w] = Y[iok[w] - 1] # replace by previous value wl = np.where(xx[wok] == X[0]) yywok[wl] = Y[0] wh = np.where(xx[wok] == X[-1]) yywok[wh] = Y[-1] yy[wok] = yywok if xtype == "scalar": yy = yy[0] return yy ################################################################## # # A normalization class to get logarithmic color table # class LogNorm2(matplotlib.colors.Normalize): """ Normalize a given value to the 0-1 range on a log scale """ def __call__(self, value, clip=None): if clip is None: clip = self.clip if np.iterable(value): vtype = "array" val = np.ma.asarray(value).astype(np.float) else: vtype = "scalar" val = np.ma.array([value]).astype(np.float) val = np.ma.masked_where(np.isinf(val.data), val) self.autoscale_None(val) vmin, vmax = float(self.vmin), float(self.vmax) if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin <= 0: raise ValueError("values must all be positive") elif vmin == vmax: return type(value)(0.0 * np.asarray(value)) else: if clip: mask = np.ma.getmask(val) val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (np.ma.log(val) - np.log(vmin)) / (np.log(vmax) - np.log(vmin)) result.data[result.data < 0] = 0.0 result.data[result.data > 1] = 1.0 result[np.isinf(val.data)] = -np.inf if result.mask is not np.ma.nomask: result.mask[np.isinf(val.data)] = False if vtype == "scalar": result = result[0] return result def autoscale_None(self, A): " autoscale only None-valued vmin or vmax" if self.vmin is None or self.vmax is None: val = np.ma.masked_where(np.isinf(A.data), A) matplotlib.colors.Normalize.autoscale_None(self, val) def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = float(self.vmin), float(self.vmax) if np.iterable(value): val = np.ma.asarray(value) return vmin * np.ma.power((vmax / vmin), val) else: return vmin * np.pow((vmax / vmin), value) ################################################################## # # A normalization class to get linear color table # class LinNorm2(matplotlib.colors.Normalize): """ Normalize a given value to the 0-1 range on a lin scale """ def __call__(self, value, clip=None): if clip is None: clip = self.clip if np.iterable(value): vtype = "array" val = np.ma.asarray(value).astype(np.float) else: vtype = "scalar" val = np.ma.array([value]).astype(np.float) winf = np.isinf(val.data) val = np.ma.masked_where(winf, val) self.autoscale_None(val) vmin, vmax = float(self.vmin), float(self.vmax) if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: return type(value)(0.0 * np.asarray(value)) else: if clip: mask = np.ma.getmask(val) val = np.ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (val - vmin) * (1.0 / (vmax - vmin)) result.data[result.data < 0] = 0.0 result.data[result.data > 1] = 1.0 result[winf] = -np.inf if result.mask is not np.ma.nomask: result.mask[winf] = False if vtype == "scalar": result = result[0] return result def autoscale_None(self, A): " autoscale only None-valued vmin or vmax" if self.vmin is None or self.vmax is None: val = np.ma.masked_where(np.isinf(A.data), A) matplotlib.colors.Normalize.autoscale_None(self, val) def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = float(self.vmin), float(self.vmax) if np.iterable(value): val = np.ma.asarray(value) return vmin + (vmax - vmin) * val else: return vmin + (vmax - vmin) * value
gpl-2.0
asadziach/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/feeding_functions_test.py
62
9268
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests feeding functions using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from tensorflow.contrib.learn.python.learn.dataframe.queues import feeding_functions as ff from tensorflow.python.platform import test # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def vals_to_list(a): return { key: val.tolist() if isinstance(val, np.ndarray) else val for key, val in a.items() } class _FeedingFunctionsTestCase(test.TestCase): """Tests for feeding functions.""" def testArrayFeedFnBatchOne(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 1) # cycle around a couple times for x in range(0, 100): i = x % 16 expected = { "index_placeholder": [i], "value_placeholder": [[2 * i, 2 * i + 1]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchFive(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = { "index_placeholder": [15, 0, 1, 2, 3], "value_placeholder": [[30, 31], [0, 1], [2, 3], [4, 5], [6, 7]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchTwoWithOneEpoch(self): array = np.arange(5) + 10 placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, batch_size=2, num_epochs=1) expected = { "index_placeholder": [0, 1], "value_placeholder": [10, 11] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [2, 3], "value_placeholder": [12, 13] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [4], "value_placeholder": [14] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchOneHundred(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 100) expected = { "index_placeholder": list(range(0, 16)) * 6 + list(range(0, 4)), "value_placeholder": np.arange(32).reshape([16, 2]).tolist() * 6 + [[0, 1], [2, 3], [4, 5], [6, 7]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchOneHundredWithSmallerArrayAndMultipleEpochs(self): array = np.arange(2) + 10 placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, batch_size=100, num_epochs=2) expected = { "index_placeholder": [0, 1, 0, 1], "value_placeholder": [10, 11, 10, 11], } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOne(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 1) # cycle around a couple times for x in range(0, 100): i = x % 32 expected = { "index_placeholder": [i + 96], "a_placeholder": [32 + i], "b_placeholder": [64 + i] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchFive(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = { "index_placeholder": [127, 96, 97, 98, 99], "a_placeholder": [63, 32, 33, 34, 35], "b_placeholder": [95, 64, 65, 66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchTwoWithOneEpoch(self): if not HAS_PANDAS: return array1 = np.arange(32, 37) array2 = np.arange(64, 69) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 101)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, batch_size=2, num_epochs=1) expected = { "index_placeholder": [96, 97], "a_placeholder": [32, 33], "b_placeholder": [64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [98, 99], "a_placeholder": [34, 35], "b_placeholder": [66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [100], "a_placeholder": [36], "b_placeholder": [68] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOneHundred(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 100) expected = { "index_placeholder": list(range(96, 128)) * 3 + list(range(96, 100)), "a_placeholder": list(range(32, 64)) * 3 + list(range(32, 36)), "b_placeholder": list(range(64, 96)) * 3 + list(range(64, 68)) } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOneHundredWithSmallDataArrayAndMultipleEpochs(self): if not HAS_PANDAS: return array1 = np.arange(32, 34) array2 = np.arange(64, 66) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 98)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, batch_size=100, num_epochs=2) expected = { "index_placeholder": [96, 97, 96, 97], "a_placeholder": [32, 33, 32, 33], "b_placeholder": [64, 65, 64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testOrderedDictNumpyFeedFnBatchTwoWithOneEpoch(self): a = np.arange(32, 37) b = np.arange(64, 69) x = {"a": a, "b": b} ordered_dict_x = collections.OrderedDict( sorted(x.items(), key=lambda t: t[0])) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._OrderedDictNumpyFeedFn( placeholders, ordered_dict_x, batch_size=2, num_epochs=1) expected = { "index_placeholder": [0, 1], "a_placeholder": [32, 33], "b_placeholder": [64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [2, 3], "a_placeholder": [34, 35], "b_placeholder": [66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [4], "a_placeholder": [36], "b_placeholder": [68] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testOrderedDictNumpyFeedFnLargeBatchWithSmallArrayAndMultipleEpochs(self): a = np.arange(32, 34) b = np.arange(64, 66) x = {"a": a, "b": b} ordered_dict_x = collections.OrderedDict( sorted(x.items(), key=lambda t: t[0])) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._OrderedDictNumpyFeedFn( placeholders, ordered_dict_x, batch_size=100, num_epochs=2) expected = { "index_placeholder": [0, 1, 0, 1], "a_placeholder": [32, 33, 32, 33], "b_placeholder": [64, 65, 64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) if __name__ == "__main__": test.main()
apache-2.0
spallavolu/scikit-learn
benchmarks/bench_sparsify.py
323
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
eric-haibin-lin/mxnet
docs/python_docs/python/scripts/conf.py
6
7703
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # -*- coding: utf-8 -*- import sys, os, re, subprocess from recommonmark.parser import CommonMarkParser from recommonmark.transform import AutoStructify # -- mock out modules MOCK_MODULES = ['scipy', 'scipy.sparse', 'sklearn'] # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.5.6' # General information about the project. project = u'Apache MXNet' author = u'%s developers' % project copyright = u'2015-2019, %s' % author github_doc_root = 'https://github.com/apache/incubator-mxnet/tree/master/docs/' doc_root = 'https://mxnet.apache.org/' # add markdown parser source_parsers = { '.md': CommonMarkParser, } # Version information. # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', # 'sphinxcontrib.fulltoc', 'nbsphinx', 'IPython.sphinxext.ipython_console_highlighting', # 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.napoleon', # 'sphinx.ext.mathjax', # 'sphinx.ext.viewcode', 'breathe', # 'mxdoc' 'autodocsumm', ] doctest_global_setup = ''' import mxnet as mx ''' autodoc_member_order = 'alphabetical' autodoc_default_flags = ['members', 'show-inheritance'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = ['.rst', '.ipynb', '.md', '.Rmd'] # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. # Version and release are passed from CMake. #version = None # The full version, including alpha/beta/rc tags. #release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['templates', # 'api', 'guide/modules/others', 'guide/guide', 'blog'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] suppress_warnings = [ 'image.nonlocal_uri', ] # -- Options for HTML output --------------------------------------------------- # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['../../themes/mx-theme'] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'mxtheme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'primary_color': 'blue', 'accent_color': 'deep_orange', 'show_footer': True, 'relative_url': os.environ.get('SPHINX_RELATIVE_URL', '/') } # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = '../../_static/mxnet_logo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = '../../_static/mxnet-icon.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['../../_static'] html_css_files = [ 'mxnet.css', ] html_js_files = [ 'autodoc.js' ] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': 'relations.html' } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'formatdoc' nbsphinx_execute = 'never' # let the source file format to be xxx.ipynb instead of xxx.ipynb.txt html_sourcelink_suffix = '' def setup(app): app.add_transform(AutoStructify) app.add_config_value('recommonmark_config', { }, True) app.add_javascript('google_analytics.js') import mxtheme app.add_directive('card', mxtheme.CardDirective)
apache-2.0
justincassidy/scikit-learn
sklearn/datasets/species_distributions.py
198
7923
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from io import BytesIO from os import makedirs from os.path import join from os.path import exists try: # Python 2 from urllib2 import urlopen PY2 = True except ImportError: # Python 3 from urllib.request import urlopen PY2 = False import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header[b'NODATA_value'] if nodata != -9999: print(nodata) M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY2: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') else: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
bsd-3-clause