repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
sarahgrogan/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
larsbutler/swift
swift/common/middleware/xprofile.py
8
9623
# Copyright (c) 2010-2012 OpenStack, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ Profiling middleware for Swift Servers. The current implementation is based on eventlet aware profiler.(For the future, more profilers could be added in to collect more data for analysis.) Profiling all incoming requests and accumulating cpu timing statistics information for performance tuning and optimization. An mini web UI is also provided for profiling data analysis. It can be accessed from the URL as below. Index page for browse profile data:: http://SERVER_IP:PORT/__profile__ List all profiles to return profile ids in json format:: http://SERVER_IP:PORT/__profile__/ http://SERVER_IP:PORT/__profile__/all Retrieve specific profile data in different formats:: http://SERVER_IP:PORT/__profile__/PROFILE_ID?format=[default|json|csv|ods] http://SERVER_IP:PORT/__profile__/current?format=[default|json|csv|ods] http://SERVER_IP:PORT/__profile__/all?format=[default|json|csv|ods] Retrieve metrics from specific function in json format:: http://SERVER_IP:PORT/__profile__/PROFILE_ID/NFL?format=json http://SERVER_IP:PORT/__profile__/current/NFL?format=json http://SERVER_IP:PORT/__profile__/all/NFL?format=json NFL is defined by concatenation of file name, function name and the first line number. e.g.:: account.py:50(GETorHEAD) or with full path: opt/stack/swift/swift/proxy/controllers/account.py:50(GETorHEAD) A list of URL examples: http://localhost:8080/__profile__ (proxy server) http://localhost:6200/__profile__/all (object server) http://localhost:6201/__profile__/current (container server) http://localhost:6202/__profile__/12345?format=json (account server) The profiling middleware can be configured in paste file for WSGI servers such as proxy, account, container and object servers. Please refer to the sample configuration files in etc directory. The profiling data is provided with four formats such as binary(by default), json, csv and odf spreadsheet which requires installing odfpy library. sudo pip install odfpy There's also a simple visualization capability which is enabled by using matplotlib toolkit. it is also required to be installed if you want to use it to visualize statistic data. sudo apt-get install python-matplotlib """ import os import sys import time from eventlet import greenthread, GreenPool, patcher import eventlet.green.profile as eprofile import six from six.moves import urllib from swift import gettext_ as _ from swift.common.utils import get_logger, config_true_value from swift.common.swob import Request from x_profile.exceptions import NotFoundException, MethodNotAllowed,\ ProfileException from x_profile.html_viewer import HTMLViewer from x_profile.profile_model import ProfileLog DEFAULT_PROFILE_PREFIX = '/tmp/log/swift/profile/default.profile' # unwind the iterator; it may call start_response, do lots of work, etc PROFILE_EXEC_EAGER = """ app_iter = self.app(environ, start_response) app_iter_ = list(app_iter) if hasattr(app_iter, 'close'): app_iter.close() """ # don't unwind the iterator (don't consume resources) PROFILE_EXEC_LAZY = """ app_iter_ = self.app(environ, start_response) """ thread = patcher.original('thread') # non-monkeypatched module needed # This monkey patch code fix the problem of eventlet profile tool # which can not accumulate profiling results across multiple calls # of runcalls and runctx. def new_setup(self): self._has_setup = True self.cur = None self.timings = {} self.current_tasklet = greenthread.getcurrent() self.thread_id = thread.get_ident() self.simulate_call("profiler") def new_runctx(self, cmd, globals, locals): if not getattr(self, '_has_setup', False): self._setup() try: return self.base.runctx(self, cmd, globals, locals) finally: self.TallyTimings() def new_runcall(self, func, *args, **kw): if not getattr(self, '_has_setup', False): self._setup() try: return self.base.runcall(self, func, *args, **kw) finally: self.TallyTimings() class ProfileMiddleware(object): def __init__(self, app, conf): self.app = app self.logger = get_logger(conf, log_route='profile') self.log_filename_prefix = conf.get('log_filename_prefix', DEFAULT_PROFILE_PREFIX) dirname = os.path.dirname(self.log_filename_prefix) # Notes: this effort may fail due to permission denied. # it is better to be created and authorized to current # user in advance. if not os.path.exists(dirname): os.makedirs(dirname) self.dump_interval = float(conf.get('dump_interval', 5.0)) self.dump_timestamp = config_true_value(conf.get( 'dump_timestamp', 'no')) self.flush_at_shutdown = config_true_value(conf.get( 'flush_at_shutdown', 'no')) self.path = conf.get('path', '__profile__').replace('/', '') self.unwind = config_true_value(conf.get('unwind', 'no')) self.profile_module = conf.get('profile_module', 'eventlet.green.profile') self.profiler = get_profiler(self.profile_module) self.profile_log = ProfileLog(self.log_filename_prefix, self.dump_timestamp) self.viewer = HTMLViewer(self.path, self.profile_module, self.profile_log) self.dump_pool = GreenPool(1000) self.last_dump_at = None def __del__(self): if self.flush_at_shutdown: self.profile_log.clear(str(os.getpid())) def _combine_body_qs(self, request): wsgi_input = request.environ['wsgi.input'] query_dict = request.params qs_in_body = wsgi_input.read() query_dict.update(urllib.parse.parse_qs(qs_in_body, keep_blank_values=True, strict_parsing=False)) return query_dict def dump_checkpoint(self): current_time = time.time() if self.last_dump_at is None or self.last_dump_at +\ self.dump_interval < current_time: self.dump_pool.spawn_n(self.profile_log.dump_profile, self.profiler, os.getpid()) self.last_dump_at = current_time def __call__(self, environ, start_response): request = Request(environ) path_entry = request.path_info.split('/') # hijack favicon request sent by browser so that it doesn't # invoke profiling hook and contaminate the data. if path_entry[1] == 'favicon.ico': start_response('200 OK', []) return '' elif path_entry[1] == self.path: try: self.dump_checkpoint() query_dict = self._combine_body_qs(request) content, headers = self.viewer.render(request.url, request.method, path_entry, query_dict, self.renew_profile) start_response('200 OK', headers) if isinstance(content, six.text_type): content = content.encode('utf-8') return [content] except MethodNotAllowed as mx: start_response('405 Method Not Allowed', []) return '%s' % mx except NotFoundException as nx: start_response('404 Not Found', []) return '%s' % nx except ProfileException as pf: start_response('500 Internal Server Error', []) return '%s' % pf except Exception as ex: start_response('500 Internal Server Error', []) return _('Error on render profiling results: %s') % ex else: _locals = locals() code = self.unwind and PROFILE_EXEC_EAGER or\ PROFILE_EXEC_LAZY self.profiler.runctx(code, globals(), _locals) app_iter = _locals['app_iter_'] self.dump_checkpoint() return app_iter def renew_profile(self): self.profiler = get_profiler(self.profile_module) def get_profiler(profile_module): if profile_module == 'eventlet.green.profile': eprofile.Profile._setup = new_setup eprofile.Profile.runctx = new_runctx eprofile.Profile.runcall = new_runcall # hacked method to import profile module supported in python 2.6 __import__(profile_module) return sys.modules[profile_module].Profile() def filter_factory(global_conf, **local_conf): conf = global_conf.copy() conf.update(local_conf) def profile_filter(app): return ProfileMiddleware(app, conf) return profile_filter
apache-2.0
mojoboss/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
sinhrks/pandas-ml
pandas_ml/skaccessors/test/test_grid_search.py
1
2125
#!/usr/bin/env python import numpy as np import pandas as pd import sklearn.datasets as datasets import sklearn.grid_search as gs import pandas_ml as pdml import pandas_ml.util.testing as tm class TestGridSearch(tm.TestCase): def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.grid_search.GridSearchCV, gs.GridSearchCV) self.assertIs(df.grid_search.ParameterGrid, gs.ParameterGrid) self.assertIs(df.grid_search.ParameterSampler, gs.ParameterSampler) self.assertIs(df.grid_search.RandomizedSearchCV, gs.RandomizedSearchCV) def test_grid_search(self): tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100]}, {'kernel': ['linear'], 'C': [1, 10, 100]}] df = pdml.ModelFrame(datasets.load_digits()) cv = df.grid_search.GridSearchCV(df.svm.SVC(C=1), tuned_parameters, cv=5) with tm.RNGContext(1): df.fit(cv) result = df.grid_search.describe(cv) expected = pd.DataFrame({'mean': [0.97161937, 0.9476906, 0.97273233, 0.95937674, 0.97273233, 0.96271564, 0.94936004, 0.94936004, 0.94936004], 'std': [0.01546977, 0.0221161, 0.01406514, 0.02295168, 0.01406514, 0.01779749, 0.01911084, 0.01911084, 0.01911084], 'C': [1, 1, 10, 10, 100, 100, 1, 10, 100], 'gamma': [0.001, 0.0001, 0.001, 0.0001, 0.001, 0.0001, np.nan, np.nan, np.nan], 'kernel': ['rbf'] * 6 + ['linear'] * 3}, columns=['mean', 'std', 'C', 'gamma', 'kernel']) self.assertIsInstance(result, pdml.ModelFrame) tm.assert_frame_equal(result, expected) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
bsd-3-clause
Tong-Chen/scikit-learn
examples/randomized_search.py
57
3208
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ print(__doc__) import numpy as np from time import time from operator import itemgetter from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier # get some data iris = load_digits() X, y = iris.data, iris.target # build a classifier clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores def report(grid_scores, n_top=3): top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top] for i, score in enumerate(top_scores): print("Model with rank: {0}".format(i + 1)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( score.mean_validation_score, np.std(score.cv_validation_scores))) print("Parameters: {0}".format(score.parameters)) print("") # specify parameters and distributions to sample from param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.grid_scores_) # use a full grid over all parameters param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.grid_scores_))) report(grid_search.grid_scores_)
bsd-3-clause
q1ang/scikit-learn
sklearn/mixture/tests/test_gmm.py
200
17427
import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
linebp/pandas
pandas/io/date_converters.py
10
1827
"""This module is designed for community supported date conversion functions""" from pandas.compat import range, map import numpy as np import pandas._libs.lib as lib def parse_date_time(date_col, time_col): date_col = _maybe_cast(date_col) time_col = _maybe_cast(time_col) return lib.try_parse_date_and_time(date_col, time_col) def parse_date_fields(year_col, month_col, day_col): year_col = _maybe_cast(year_col) month_col = _maybe_cast(month_col) day_col = _maybe_cast(day_col) return lib.try_parse_year_month_day(year_col, month_col, day_col) def parse_all_fields(year_col, month_col, day_col, hour_col, minute_col, second_col): year_col = _maybe_cast(year_col) month_col = _maybe_cast(month_col) day_col = _maybe_cast(day_col) hour_col = _maybe_cast(hour_col) minute_col = _maybe_cast(minute_col) second_col = _maybe_cast(second_col) return lib.try_parse_datetime_components(year_col, month_col, day_col, hour_col, minute_col, second_col) def generic_parser(parse_func, *cols): N = _check_columns(cols) results = np.empty(N, dtype=object) for i in range(N): args = [c[i] for c in cols] results[i] = parse_func(*args) return results def _maybe_cast(arr): if not arr.dtype.type == np.object_: arr = np.array(arr, dtype=object) return arr def _check_columns(cols): if not len(cols): raise AssertionError("There must be at least 1 column") head, tail = cols[0], cols[1:] N = len(head) for i, n in enumerate(map(len, tail)): if n != N: raise AssertionError('All columns must have the same length: {0}; ' 'column {1} has length {2}'.format(N, i, n)) return N
bsd-3-clause
likithkailas/StreamingSystems
python/pyspark/sql/dataframe.py
1
61492
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import warnings import random if sys.version >= '3': basestring = unicode = str long = int from functools import reduce else: from itertools import imap as map from pyspark import copy_func, since from pyspark.rdd import RDD, _load_from_socket, ignore_unicode_prefix from pyspark.serializers import BatchedSerializer, PickleSerializer, UTF8Deserializer from pyspark.storagelevel import StorageLevel from pyspark.traceback_utils import SCCallSiteSync from pyspark.sql.types import _parse_datatype_json_string from pyspark.sql.column import Column, _to_seq, _to_list, _to_java_column from pyspark.sql.readwriter import DataFrameWriter from pyspark.sql.streaming import DataStreamWriter from pyspark.sql.types import * __all__ = ["DataFrame", "DataFrameNaFunctions", "DataFrameStatFunctions"] class DataFrame(object): """A distributed collection of data grouped into named columns. A :class:`DataFrame` is equivalent to a relational table in Spark SQL, and can be created using various functions in :class:`SQLContext`:: people = sqlContext.read.parquet("...") Once created, it can be manipulated using the various domain-specific-language (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. To select a column from the data frame, use the apply method:: ageCol = people.age A more concrete example:: # To create DataFrame using SQLContext people = sqlContext.read.parquet("...") department = sqlContext.read.parquet("...") people.filter(people.age > 30).join(department, people.deptId == department.id) \\ .groupBy(department.name, "gender").agg({"salary": "avg", "age": "max"}) .. versionadded:: 1.3 """ def __init__(self, jdf, sql_ctx): self._jdf = jdf self.sql_ctx = sql_ctx self._sc = sql_ctx and sql_ctx._sc self.is_cached = False self._schema = None # initialized lazily self._lazy_rdd = None @property @since(1.3) def rdd(self): """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. """ if self._lazy_rdd is None: jrdd = self._jdf.javaToPython() self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) return self._lazy_rdd @property @since("1.3.1") def na(self): """Returns a :class:`DataFrameNaFunctions` for handling missing values. """ return DataFrameNaFunctions(self) @property @since(1.4) def stat(self): """Returns a :class:`DataFrameStatFunctions` for statistic functions. """ return DataFrameStatFunctions(self) @ignore_unicode_prefix @since(1.3) def toJSON(self, use_unicode=True): """Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. >>> df.toJSON().first() u'{"age":2,"name":"Alice"}' """ rdd = self._jdf.toJSON() return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode)) @since(1.3) def registerTempTable(self, name): """Registers this RDD as a temporary table using the given name. The lifetime of this temporary table is tied to the :class:`SQLContext` that was used to create this :class:`DataFrame`. >>> df.registerTempTable("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") .. note:: Deprecated in 2.0, use createOrReplaceTempView instead. """ self._jdf.createOrReplaceTempView(name) @since(2.0) def createTempView(self, name): """Creates a local temporary view with this DataFrame. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. >>> df.createTempView("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropTempView("people") """ self._jdf.createTempView(name) @since(2.0) def createOrReplaceTempView(self, name): """Creates or replaces a local temporary view with this DataFrame. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. >>> df.createOrReplaceTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceTempView("people") >>> df3 = spark.sql("select * from people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ self._jdf.createOrReplaceTempView(name) @since(2.1) def createGlobalTempView(self, name): """Creates a global temporary view with this DataFrame. The lifetime of this temporary view is tied to this Spark application. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. >>> df.createGlobalTempView("people") >>> df2 = spark.sql("select * from global_temp.people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createGlobalTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropGlobalTempView("people") """ self._jdf.createGlobalTempView(name) @property @since(1.4) def write(self): """ Interface for saving the content of the non-streaming :class:`DataFrame` out into external storage. :return: :class:`DataFrameWriter` """ return DataFrameWriter(self) @property @since(2.0) def writeStream(self): """ Interface for saving the content of the streaming :class:`DataFrame` out into external storage. .. note:: Experimental. :return: :class:`DataStreamWriter` """ return DataStreamWriter(self) @property @since(1.3) def schema(self): """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) """ if self._schema is None: try: self._schema = _parse_datatype_json_string(self._jdf.schema().json()) except AttributeError as e: raise Exception( "Unable to parse datatype from schema. %s" % e) return self._schema @since(1.3) def printSchema(self): """Prints out the schema in the tree format. >>> df.printSchema() root |-- age: integer (nullable = true) |-- name: string (nullable = true) <BLANKLINE> """ print(self._jdf.schema().treeString()) @since(1.3) def explain(self, extended=False): """Prints the (logical and physical) plans to the console for debugging purpose. :param extended: boolean, default ``False``. If ``False``, prints only the physical plan. >>> df.explain() == Physical Plan == Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ... """ if extended: print(self._jdf.queryExecution().toString()) else: print(self._jdf.queryExecution().simpleString()) @since(1.3) def isLocal(self): """Returns ``True`` if the :func:`collect` and :func:`take` methods can be run locally (without any Spark executors). """ return self._jdf.isLocal() @property @since(2.0) def isStreaming(self): """Returns true if this :class:`Dataset` contains one or more sources that continuously return data as it arrives. A :class:`Dataset` that reads data from a streaming source must be executed as a :class:`StreamingQuery` using the :func:`start` method in :class:`DataStreamWriter`. Methods that return a single answer, (e.g., :func:`count` or :func:`collect`) will throw an :class:`AnalysisException` when there is a streaming source present. .. note:: Experimental """ return self._jdf.isStreaming() @since(1.3) def show(self, n=20, truncate=True): """Prints the first ``n`` rows to the console. :param n: Number of rows to show. :param truncate: If set to True, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to length ``truncate`` and align cells right. >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.show(truncate=3) +---+----+ |age|name| +---+----+ | 2| Ali| | 5| Bob| +---+----+ """ if isinstance(truncate, bool) and truncate: print(self._jdf.showString(n, 20)) else: print(self._jdf.showString(n, int(truncate))) def __repr__(self): return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) @since(1.3) def count(self): """Returns the number of rows in this :class:`DataFrame`. >>> df.count() 2 """ return int(self._jdf.count()) @ignore_unicode_prefix @since(1.3) def collect(self): """Returns all the records as a list of :class:`Row`. >>> df.collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: port = self._jdf.collectToPython() return list(_load_from_socket(port, BatchedSerializer(PickleSerializer()))) @ignore_unicode_prefix @since(2.0) def toLocalIterator(self): """ Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this DataFrame. >>> list(df.toLocalIterator()) [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: port = self._jdf.toPythonIterator() return _load_from_socket(port, BatchedSerializer(PickleSerializer())) @ignore_unicode_prefix @since(1.3) def limit(self, num): """Limits the result count to the number specified. >>> df.limit(1).collect() [Row(age=2, name=u'Alice')] >>> df.limit(0).collect() [] """ jdf = self._jdf.limit(num) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def take(self, num): """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. >>> df.take(2) [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ return self.limit(num).collect() @since(1.3) def foreach(self, f): """Applies the ``f`` function to all :class:`Row` of this :class:`DataFrame`. This is a shorthand for ``df.rdd.foreach()``. >>> def f(person): ... print(person.name) >>> df.foreach(f) """ self.rdd.foreach(f) @since(1.3) def foreachPartition(self, f): """Applies the ``f`` function to each partition of this :class:`DataFrame`. This a shorthand for ``df.rdd.foreachPartition()``. >>> def f(people): ... for person in people: ... print(person.name) >>> df.foreachPartition(f) """ self.rdd.foreachPartition(f) @since(1.3) def cache(self): """Persists the :class:`DataFrame` with the default storage level (C{MEMORY_AND_DISK}). .. note:: the default storage level has changed to C{MEMORY_AND_DISK} to match Scala in 2.0. """ self.is_cached = True self._jdf.cache() return self @since(1.3) def persist(self, storageLevel=StorageLevel.MEMORY_AND_DISK): """Sets the storage level to persist the contents of the :class:`DataFrame` across operations after the first time it is computed. This can only be used to assign a new storage level if the :class:`DataFrame` does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_AND_DISK}). .. note:: the default storage level has changed to C{MEMORY_AND_DISK} to match Scala in 2.0. """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdf.persist(javaStorageLevel) return self @property @since(2.1) def storageLevel(self): """Get the :class:`DataFrame`'s current storage level. >>> df.storageLevel StorageLevel(False, False, False, False, 1) >>> df.cache().storageLevel StorageLevel(True, True, False, True, 1) >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel StorageLevel(True, False, False, False, 2) """ java_storage_level = self._jdf.storageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level @since(1.3) def unpersist(self, blocking=False): """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. note:: `blocking` default has changed to False to match Scala in 2.0. """ self.is_cached = False self._jdf.unpersist(blocking) return self @since(1.4) def coalesce(self, numPartitions): """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx) @since(1.3) def repartition(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting DataFrame is hash partitioned. ``numPartitions`` can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| | 2|Alice| | 5| Bob| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) else: return DataFrame( self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (basestring, Column)): cols = (numPartitions, ) + cols return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int or Column") @since(1.3) def distinct(self): """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. >>> df.distinct().count() 2 """ return DataFrame(self._jdf.distinct(), self.sql_ctx) @since(1.3) def sample(self, withReplacement, fraction, seed=None): """Returns a sampled subset of this :class:`DataFrame`. >>> df.sample(False, 0.5, 42).count() 2 """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd = self._jdf.sample(withReplacement, fraction, long(seed)) return DataFrame(rdd, self.sql_ctx) @since(1.5) def sampleBy(self, col, fractions, seed=None): """ Returns a stratified sample without replacement based on the fraction given on each stratum. :param col: column that defines strata :param fractions: sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. :param seed: random seed :return: a new DataFrame that represents the stratified sample >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 5| | 1| 9| +---+-----+ """ if not isinstance(col, str): raise ValueError("col must be a string, but got %r" % type(col)) if not isinstance(fractions, dict): raise ValueError("fractions must be a dict but got %r" % type(fractions)) for k, v in fractions.items(): if not isinstance(k, (float, int, long, basestring)): raise ValueError("key must be float, int, long, or string, but got %r" % type(k)) fractions[k] = float(v) seed = seed if seed is not None else random.randint(0, sys.maxsize) return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx) @since(1.4) def randomSplit(self, weights, seed=None): """Randomly splits this :class:`DataFrame` with the provided weights. :param weights: list of doubles as weights with which to split the DataFrame. Weights will be normalized if they don't sum up to 1.0. :param seed: The seed for sampling. >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 1 >>> splits[1].count() 3 """ for w in weights: if w < 0.0: raise ValueError("Weights must be positive. Found weight value: %s" % w) seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), long(seed)) return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array] @property @since(1.3) def dtypes(self): """Returns all column names and their data types as a list. >>> df.dtypes [('age', 'int'), ('name', 'string')] """ return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields] @property @since(1.3) def columns(self): """Returns all column names as a list. >>> df.columns ['age', 'name'] """ return [f.name for f in self.schema.fields] @ignore_unicode_prefix @since(1.3) def alias(self, alias): """Returns a new :class:`DataFrame` with an alias set. >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age").collect() [Row(name=u'Bob', name=u'Bob', age=5), Row(name=u'Alice', name=u'Alice', age=2)] """ assert isinstance(alias, basestring), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx) @ignore_unicode_prefix @since(2.1) def crossJoin(self, other): """Returns the cartesian product with another :class:`DataFrame`. :param other: Right side of the cartesian product. >>> df.select("age", "name").collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df2.select("name", "height").collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85)] >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() [Row(age=2, name=u'Alice', height=80), Row(age=2, name=u'Alice', height=85), Row(age=5, name=u'Bob', height=80), Row(age=5, name=u'Bob', height=85)] """ jdf = self._jdf.crossJoin(other._jdf) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def join(self, other, on=None, how=None): """Joins with another :class:`DataFrame`, using the given join expression. :param other: Right side of the join :param on: a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. :param how: str, default 'inner'. One of `inner`, `outer`, `left_outer`, `right_outer`, `leftsemi`. The following performs a full outer join between ``df1`` and ``df2``. >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> df.join(df2, 'name', 'outer').select('name', 'height').collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name=u'Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name=u'Bob', age=5)] """ if on is not None and not isinstance(on, list): on = [on] if on is not None: if isinstance(on[0], basestring): on = self._jseq(on) else: assert isinstance(on[0], Column), "on should be Column or list of Column" on = reduce(lambda x, y: x.__and__(y), on) on = on._jc if on is None and how is None: jdf = self._jdf.join(other._jdf) else: if how is None: how = "inner" assert isinstance(how, basestring), "how should be basestring" jdf = self._jdf.join(other._jdf, on, how) return DataFrame(jdf, self.sql_ctx) @since(1.6) def sortWithinPartitions(self, *cols, **kwargs): """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). :param cols: list of :class:`Column` or column names to sort by. :param ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def sort(self, *cols, **kwargs): """Returns a new :class:`DataFrame` sorted by the specified column(s). :param cols: list of :class:`Column` or column names to sort by. :param ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. >>> df.sort(df.age.desc()).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> df.sort("age", ascending=False).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> df.orderBy(df.age.desc()).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> from pyspark.sql.functions import * >>> df.sort(asc("age")).collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df.orderBy(desc("age"), "name").collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] """ jdf = self._jdf.sort(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) orderBy = sort def _jseq(self, cols, converter=None): """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sql_ctx._sc, cols, converter) def _jmap(self, jm): """Return a JVM Scala Map from a dict""" return _to_scala_map(self.sql_ctx._sc, jm) def _jcols(self, *cols): """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column) def _sort_cols(self, cols, kwargs): """ Return a JVM Seq of Columns that describes the sort order """ if not cols: raise ValueError("should sort by at least one column") if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(c) for c in cols] ascending = kwargs.get('ascending', True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) return self._jseq(jcols) @since("1.3.1") def describe(self, *cols): """Computes statistics for numeric and string columns. This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. .. note:: This function is meant for exploratory data analysis, as we make no \ guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.describe(['age']).show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def head(self, n=None): """Returns the first ``n`` rows. Note that this method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. :param n: int, default 1. Number of rows to return. :return: If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. >>> df.head() Row(age=2, name=u'Alice') >>> df.head(1) [Row(age=2, name=u'Alice')] """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n) @ignore_unicode_prefix @since(1.3) def first(self): """Returns the first row as a :class:`Row`. >>> df.first() Row(age=2, name=u'Alice') """ return self.head() @ignore_unicode_prefix @since(1.3) def __getitem__(self, item): """Returns the column as a :class:`Column`. >>> df.select(df['age']).collect() [Row(age=2), Row(age=5)] >>> df[ ["name", "age"]].collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df[ df.age > 3 ].collect() [Row(age=5, name=u'Bob')] >>> df[df[0] > 3].collect() [Row(age=5, name=u'Bob')] """ if isinstance(item, basestring): jc = self._jdf.apply(item) return Column(jc) elif isinstance(item, Column): return self.filter(item) elif isinstance(item, (list, tuple)): return self.select(*item) elif isinstance(item, int): jc = self._jdf.apply(self.columns[item]) return Column(jc) else: raise TypeError("unexpected item type: %s" % type(item)) @since(1.3) def __getattr__(self, name): """Returns the :class:`Column` denoted by ``name``. >>> df.select(df.age).collect() [Row(age=2), Row(age=5)] """ if name not in self.columns: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) jc = self._jdf.apply(name) return Column(jc) @ignore_unicode_prefix @since(1.3) def select(self, *cols): """Projects a set of expressions and returns a new :class:`DataFrame`. :param cols: list of column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current DataFrame. >>> df.select('*').collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df.select('name', 'age').collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)] """ jdf = self._jdf.select(self._jcols(*cols)) return DataFrame(jdf, self.sql_ctx) @since(1.3) def selectExpr(self, *expr): """Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] """ if len(expr) == 1 and isinstance(expr[0], list): expr = expr[0] jdf = self._jdf.selectExpr(self._jseq(expr)) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def filter(self, condition): """Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. :param condition: a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. >>> df.filter(df.age > 3).collect() [Row(age=5, name=u'Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name=u'Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name=u'Bob')] >>> df.where("age = 2").collect() [Row(age=2, name=u'Alice')] """ if isinstance(condition, basestring): jdf = self._jdf.filter(condition) elif isinstance(condition, Column): jdf = self._jdf.filter(condition._jc) else: raise TypeError("condition should be string or Column") return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def groupBy(self, *cols): """Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. :param cols: list of columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name=u'Alice', age=2, count=1), Row(name=u'Bob', age=5, count=1)] """ jgd = self._jdf.groupBy(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self.sql_ctx) @since(1.4) def rollup(self, *cols): """ Create a multi-dimensional rollup for the current :class:`DataFrame` using the specified columns, so we can run aggregation on them. >>> df.rollup("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.rollup(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self.sql_ctx) @since(1.4) def cube(self, *cols): """ Create a multi-dimensional cube for the current :class:`DataFrame` using the specified columns, so we can run aggregation on them. >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| | null| 2| 1| | null| 5| 1| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.cube(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self.sql_ctx) @since(1.3) def agg(self, *exprs): """ Aggregate on the entire :class:`DataFrame` without groups (shorthand for ``df.groupBy.agg()``). >>> df.agg({"age": "max"}).collect() [Row(max(age)=5)] >>> from pyspark.sql import functions as F >>> df.agg(F.min(df.age)).collect() [Row(min(age)=2)] """ return self.groupBy().agg(*exprs) @since(2.0) def union(self, other): """ Return a new :class:`DataFrame` containing union of rows in this frame and another frame. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by a distinct. """ return DataFrame(self._jdf.union(other._jdf), self.sql_ctx) @since(1.3) def unionAll(self, other): """ Return a new :class:`DataFrame` containing union of rows in this frame and another frame. .. note:: Deprecated in 2.0, use union instead. """ return self.union(other) @since(1.3) def intersect(self, other): """ Return a new :class:`DataFrame` containing rows only in both this frame and another frame. This is equivalent to `INTERSECT` in SQL. """ return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) @since(1.3) def subtract(self, other): """ Return a new :class:`DataFrame` containing rows in this frame but not in another frame. This is equivalent to `EXCEPT` in SQL. """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) @since(1.4) def dropDuplicates(self, subset=None): """Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| | 10| 80|Alice| +---+------+-----+ >>> df.dropDuplicates(['name', 'height']).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| +---+------+-----+ """ if subset is None: jdf = self._jdf.dropDuplicates() else: jdf = self._jdf.dropDuplicates(self._jseq(subset)) return DataFrame(jdf, self.sql_ctx) @since("1.3.1") def dropna(self, how='any', thresh=None, subset=None): """Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. :param how: 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. :param thresh: int, default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. :param subset: optional list of column names to consider. >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+ """ if how is not None and how not in ['any', 'all']: raise ValueError("how ('" + how + "') should be 'any' or 'all'") if subset is None: subset = self.columns elif isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") if thresh is None: thresh = len(subset) if how == 'any' else 1 return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx) @since("1.3.1") def fillna(self, value, subset=None): """Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. :param value: int, long, float, string, or dict. Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, long, float, or string. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+ """ if not isinstance(value, (float, int, long, basestring, dict)): raise ValueError("value should be a float, int, long, string, or dict") if isinstance(value, (int, long)): value = float(value) if isinstance(value, dict): return DataFrame(self._jdf.na().fill(value), self.sql_ctx) elif subset is None: return DataFrame(self._jdf.na().fill(value), self.sql_ctx) else: if isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx) @since(1.4) def replace(self, to_replace, value, subset=None): """Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. :param to_replace: int, long, float, string, or list. Value to be replaced. If the value is a dict, then `value` is ignored and `to_replace` must be a mapping from column name (string) to replacement value. The value to be replaced must be an int, long, float, or string. :param value: int, long, float, string, or list. Value to use to replace holes. The replacement value must be an int, long, float, or string. If `value` is a list or tuple, `value` should be of the same length with `to_replace`. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+ """ if not isinstance(to_replace, (float, int, long, basestring, list, tuple, dict)): raise ValueError( "to_replace should be a float, int, long, string, list, tuple, or dict") if not isinstance(value, (float, int, long, basestring, list, tuple)): raise ValueError("value should be a float, int, long, string, list, or tuple") rep_dict = dict() if isinstance(to_replace, (float, int, long, basestring)): to_replace = [to_replace] if isinstance(to_replace, tuple): to_replace = list(to_replace) if isinstance(value, tuple): value = list(value) if isinstance(to_replace, list) and isinstance(value, list): if len(to_replace) != len(value): raise ValueError("to_replace and value lists should be of the same length") rep_dict = dict(zip(to_replace, value)) elif isinstance(to_replace, list) and isinstance(value, (float, int, long, basestring)): rep_dict = dict([(tr, value) for tr in to_replace]) elif isinstance(to_replace, dict): rep_dict = to_replace if subset is None: return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) elif isinstance(subset, basestring): subset = [subset] if not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") return DataFrame( self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx) @since(2.0) def approxQuantile(self, col, probabilities, relativeError): """ Calculates the approximate quantiles of a numerical column of a DataFrame. The result of this algorithm has the following deterministic bound: If the DataFrame has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the DataFrame so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[http://dx.doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. :param col: the name of the numerical column :param probabilities: a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. :param relativeError: The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. :return: the approximate quantiles at the given probabilities """ if not isinstance(col, str): raise ValueError("col should be a string.") if not isinstance(probabilities, (list, tuple)): raise ValueError("probabilities should be a list or tuple") if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int, long)) or p < 0 or p > 1: raise ValueError("probabilities should be numerical (float, int, long) in [0,1].") probabilities = _to_list(self._sc, probabilities) if not isinstance(relativeError, (float, int, long)) or relativeError < 0: raise ValueError("relativeError should be numerical (float, int, long) >= 0.") relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) return list(jaq) @since(1.4) def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a DataFrame as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. :param col1: The name of the first column :param col2: The name of the second column :param method: The correlation method. Currently only supports "pearson" """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") if not method: method = "pearson" if not method == "pearson": raise ValueError("Currently only the calculation of the Pearson Correlation " + "coefficient is supported.") return self._jdf.stat().corr(col1, col2, method) @since(1.4) def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. :param col1: The name of the first column :param col2: The name of the second column """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") return self._jdf.stat().cov(col1, col2) @since(1.4) def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. :param col1: The name of the first column. Distinct items will make the first item of each row. :param col2: The name of the second column. Distinct items will make the column names of the DataFrame. """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx) @since(1.4) def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. note:: This function is meant for exploratory data analysis, as we make no \ guarantee about the backward compatibility of the schema of the resulting DataFrame. :param cols: Names of the columns to calculate frequent items for as a list or tuple of strings. :param support: The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4. """ if isinstance(cols, tuple): cols = list(cols) if not isinstance(cols, list): raise ValueError("cols must be a list or tuple of column names as strings.") if not support: support = 0.01 return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx) @ignore_unicode_prefix @since(1.3) def withColumn(self, colName, col): """ Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. :param colName: string, name of the new column. :param col: a :class:`Column` expression for the new column. >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)] """ assert isinstance(col, Column), "col should be Column" return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx) @ignore_unicode_prefix @since(1.3) def withColumnRenamed(self, existing, new): """Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. :param existing: string, name of the existing column to rename. :param col: string, new name of the column. >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name=u'Alice'), Row(age2=5, name=u'Bob')] """ return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx) @since(1.4) @ignore_unicode_prefix def drop(self, *cols): """Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). :param cols: a string name of the column to drop, or a :class:`Column` to drop, or a list of string name of the columns to drop. >>> df.drop('age').collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.drop(df.age).collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name=u'Bob', height=85)] >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() [Row(name=u'Bob')] """ if len(cols) == 1: col = cols[0] if isinstance(col, basestring): jdf = self._jdf.drop(col) elif isinstance(col, Column): jdf = self._jdf.drop(col._jc) else: raise TypeError("col should be a string or a Column") else: for col in cols: if not isinstance(col, basestring): raise TypeError("each col in the param list should be a string") jdf = self._jdf.drop(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix def toDF(self, *cols): """Returns a new class:`DataFrame` that with new specified column names :param cols: list of new column names (string) >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2=u'Alice'), Row(f1=5, f2=u'Bob')] """ jdf = self._jdf.toDF(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) @since(1.3) def toPandas(self): """Returns the contents of this :class:`DataFrame` as Pandas ``pandas.DataFrame``. Note that this method should only be used if the resulting Pandas's DataFrame is expected to be small, as all the data is loaded into the driver's memory. This is only available if Pandas is installed and available. >>> df.toPandas() # doctest: +SKIP age name 0 2 Alice 1 5 Bob """ import pandas as pd return pd.DataFrame.from_records(self.collect(), columns=self.columns) ########################################################################################## # Pandas compatibility ########################################################################################## groupby = copy_func( groupBy, sinceversion=1.4, doc=":func:`groupby` is an alias for :func:`groupBy`.") drop_duplicates = copy_func( dropDuplicates, sinceversion=1.4, doc=":func:`drop_duplicates` is an alias for :func:`dropDuplicates`.") where = copy_func( filter, sinceversion=1.3, doc=":func:`where` is an alias for :func:`filter`.") def _to_scala_map(sc, jm): """ Convert a dict into a JVM Map. """ return sc._jvm.PythonUtils.toScalaMap(jm) class DataFrameNaFunctions(object): """Functionality for working with missing data in :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def drop(self, how='any', thresh=None, subset=None): return self.df.dropna(how=how, thresh=thresh, subset=subset) drop.__doc__ = DataFrame.dropna.__doc__ def fill(self, value, subset=None): return self.df.fillna(value=value, subset=subset) fill.__doc__ = DataFrame.fillna.__doc__ def replace(self, to_replace, value, subset=None): return self.df.replace(to_replace, value, subset) replace.__doc__ = DataFrame.replace.__doc__ class DataFrameStatFunctions(object): """Functionality for statistic functions with :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def approxQuantile(self, col, probabilities, relativeError): return self.df.approxQuantile(col, probabilities, relativeError) approxQuantile.__doc__ = DataFrame.approxQuantile.__doc__ def corr(self, col1, col2, method=None): return self.df.corr(col1, col2, method) corr.__doc__ = DataFrame.corr.__doc__ def cov(self, col1, col2): return self.df.cov(col1, col2) cov.__doc__ = DataFrame.cov.__doc__ def crosstab(self, col1, col2): return self.df.crosstab(col1, col2) crosstab.__doc__ = DataFrame.crosstab.__doc__ def freqItems(self, cols, support=None): return self.df.freqItems(cols, support) freqItems.__doc__ = DataFrame.freqItems.__doc__ def sampleBy(self, col, fractions, seed=None): return self.df.sampleBy(col, fractions, seed) sampleBy.__doc__ = DataFrame.sampleBy.__doc__ def _test(): import doctest from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext, SparkSession import pyspark.sql.dataframe globs = pyspark.sql.dataframe.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['spark'] = SparkSession(sc) globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')])\ .toDF(StructType([StructField('age', IntegerType()), StructField('name', StringType())])) globs['df2'] = sc.parallelize([Row(name='Tom', height=80), Row(name='Bob', height=85)]).toDF() globs['df3'] = sc.parallelize([Row(name='Alice', age=2), Row(name='Bob', age=5)]).toDF() globs['df4'] = sc.parallelize([Row(name='Alice', age=10, height=80), Row(name='Bob', age=5, height=None), Row(name='Tom', age=None, height=None), Row(name=None, age=None, height=None)]).toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.dataframe, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
apache-2.0
basnijholt/holoviews
holoviews/plotting/plotly/__init__.py
2
3501
from __future__ import absolute_import, division, unicode_literals from ...core.options import Store, Cycle, Options from ...core import (Overlay, NdOverlay, Layout, NdLayout, GridSpace, GridMatrix, config) from ...element import * # noqa (Element import for registration) from .renderer import PlotlyRenderer from .annotation import * # noqa (API import) from .element import * # noqa (API import) from .chart import * # noqa (API import) from .chart3d import * # noqa (API import) from .raster import * # noqa (API import) from .plot import * # noqa (API import) from .stats import * # noqa (API import) from .tabular import * # noqa (API import) from ...core.util import LooseVersion, VersionError import plotly if LooseVersion(plotly.__version__) < '3.4.0': raise VersionError( "The plotly extension requires a plotly version >=3.4.0, " "please upgrade from plotly %s to a more recent version." % plotly.__version__, plotly.__version__, '3.4.0') Store.renderers['plotly'] = PlotlyRenderer.instance() if len(Store.renderers) == 1: Store.set_current_backend('plotly') Store.register({Points: ScatterPlot, Scatter: ScatterPlot, Curve: CurvePlot, Area: AreaPlot, Spread: SpreadPlot, ErrorBars: ErrorBarsPlot, # Statistics elements Bivariate: BivariatePlot, Distribution: DistributionPlot, Bars: BarPlot, BoxWhisker: BoxWhiskerPlot, Violin: ViolinPlot, # Raster plots Raster: RasterPlot, Image: RasterPlot, HeatMap: HeatMapPlot, QuadMesh: QuadMeshPlot, # 3D Plot Scatter3D: Scatter3DPlot, Surface: SurfacePlot, Path3D: Path3DPlot, TriSurface: TriSurfacePlot, Trisurface: TriSurfacePlot, # Alias, remove in 2.0 # Tabular Table: TablePlot, ItemTable: TablePlot, # Annotations Labels: LabelPlot, # Container Plots Overlay: OverlayPlot, NdOverlay: OverlayPlot, Layout: LayoutPlot, NdLayout: LayoutPlot, GridSpace: GridPlot, GridMatrix: GridPlot}, backend='plotly') options = Store.options(backend='plotly') dflt_cmap = 'hot' if config.style_17 else 'fire' point_size = np.sqrt(6) # Matches matplotlib default Cycle.default_cycles['default_colors'] = ['#30a2da', '#fc4f30', '#e5ae38', '#6d904f', '#8b8b8b'] # Charts options.Curve = Options('style', color=Cycle(), line_width=2) options.ErrorBars = Options('style', color='black') options.Scatter = Options('style', color=Cycle()) options.Points = Options('style', color=Cycle()) options.Area = Options('style', color=Cycle(), line_width=2) options.Spread = Options('style', color=Cycle(), line_width=2) options.TriSurface = Options('style', cmap='viridis') # Rasters options.Image = Options('style', cmap=dflt_cmap) options.Raster = Options('style', cmap=dflt_cmap) options.QuadMesh = Options('style', cmap=dflt_cmap) options.HeatMap = Options('style', cmap='RdBu_r')
bsd-3-clause
Sharpie/python-kitchensink
ks/time/_pandas.py
1
1754
# -*- coding: utf-8 -*- """ ks.time.util ~~~~~~~~~~~~ Utility functions for dealing with Pandas timestamps. :copyright: (c) 2010 -- 2012 by Charlie Sharpsteen :license: BSD """ from pandas import date_range, Timestamp from pandas.tseries.frequencies import to_offset def split_to_ranges(start, end, freq = 'D', tz = None, round = True): """ Generates a list of intervals that spans a given time period. Parameters ---------- start : string or datetime-like, Left bound for generating dates end : string or datetime-like, Right bound for generating dates freq : string or DateOffset, default 'D' (calendar daily) Frequency strings can have multiples, e.g. '5H' tz : string or None Time zone name for returning localized DatetimeIndex, for example Asia/Beijing round: boolean, default True specifies whether the end date is rounded up such that the last interval is of length 'freq' or left as-is thus generating an irregular final interval but allowing the set of intervals to exactly represent the timespan between start and end. """ # Coerce start and end to Timestamp objects and freq to a DateOffset object start = Timestamp(start) end = Timestamp(end) freq = to_offset(freq) # Calculate timestamps that bracket time periods of length freq. breaks = [d for d in date_range(start, end, freq = freq, tz = tz)] # Extend if necessary so that the end timestamp is included. if breaks[-1] < end: if round: breaks.append(breaks[-1] + freq) else: breaks.append(end) # Generate the list of intervals. return zip(breaks[:-1], breaks[1:])
mit
raghavrv/scikit-learn
sklearn/cluster/birch.py
11
23640
# Authors: Manoj Kumar <[email protected]> # Alexandre Gramfort <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy import sparse from math import sqrt from ..metrics.pairwise import euclidean_distances from ..base import TransformerMixin, ClusterMixin, BaseEstimator from ..externals.six.moves import xrange from ..utils import check_array from ..utils.extmath import row_norms, safe_sparse_dot from ..utils.validation import check_is_fitted from ..exceptions import NotFittedError from .hierarchical import AgglomerativeClustering def _iterate_sparse_X(X): """This little hack returns a densified row when iterating over a sparse matrix, instead of constructing a sparse matrix for every row that is expensive. """ n_samples = X.shape[0] X_indices = X.indices X_data = X.data X_indptr = X.indptr for i in xrange(n_samples): row = np.zeros(X.shape[1]) startptr, endptr = X_indptr[i], X_indptr[i + 1] nonzero_indices = X_indices[startptr:endptr] row[nonzero_indices] = X_data[startptr:endptr] yield row def _split_node(node, threshold, branching_factor): """The node has to be split if there is no place for a new subcluster in the node. 1. Two empty nodes and two empty subclusters are initialized. 2. The pair of distant subclusters are found. 3. The properties of the empty subclusters and nodes are updated according to the nearest distance between the subclusters to the pair of distant subclusters. 4. The two nodes are set as children to the two subclusters. """ new_subcluster1 = _CFSubcluster() new_subcluster2 = _CFSubcluster() new_node1 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_node2 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_subcluster1.child_ = new_node1 new_subcluster2.child_ = new_node2 if node.is_leaf: if node.prev_leaf_ is not None: node.prev_leaf_.next_leaf_ = new_node1 new_node1.prev_leaf_ = node.prev_leaf_ new_node1.next_leaf_ = new_node2 new_node2.prev_leaf_ = new_node1 new_node2.next_leaf_ = node.next_leaf_ if node.next_leaf_ is not None: node.next_leaf_.prev_leaf_ = new_node2 dist = euclidean_distances( node.centroids_, Y_norm_squared=node.squared_norm_, squared=True) n_clusters = dist.shape[0] farthest_idx = np.unravel_index( dist.argmax(), (n_clusters, n_clusters)) node1_dist, node2_dist = dist[[farthest_idx]] node1_closer = node1_dist < node2_dist for idx, subcluster in enumerate(node.subclusters_): if node1_closer[idx]: new_node1.append_subcluster(subcluster) new_subcluster1.update(subcluster) else: new_node2.append_subcluster(subcluster) new_subcluster2.update(subcluster) return new_subcluster1, new_subcluster2 class _CFNode(object): """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : array-like list of subclusters for a particular CFNode. prev_leaf_ : _CFNode prev_leaf. Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray, shape (branching_factor + 1, n_features) manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray, shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray view of ``init_centroids_``. squared_norm_ : ndarray view of ``init_sq_norm_``. """ def __init__(self, threshold, branching_factor, is_leaf, n_features): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features)) self.init_sq_norm_ = np.zeros((branching_factor + 1)) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[:n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[:n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2. dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster( subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = \ self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = \ self.subclusters_[closest_index].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accommodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster( subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = \ closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = \ closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True class _CFSubcluster(object): """Each subcluster in a CFNode is called a CFSubcluster. A CFSubcluster can have a CFNode has its child. Parameters ---------- linear_sum : ndarray, shape (n_features,), optional Sample. This is kept optional to allow initialization of empty subclusters. Attributes ---------- n_samples_ : int Number of samples that belong to each subcluster. linear_sum_ : ndarray Linear sum of all the samples in a subcluster. Prevents holding all sample data in memory. squared_sum_ : float Sum of the squared l2 norms of all samples belonging to a subcluster. centroid_ : ndarray Centroid of the subcluster. Prevent recomputing of centroids when ``CFNode.centroids_`` is called. child_ : _CFNode Child Node of the subcluster. Once a given _CFNode is set as the child of the _CFNode, it is set to ``self.child_``. sq_norm_ : ndarray Squared norm of the subcluster. Used to prevent recomputing when pairwise minimum distances are computed. """ def __init__(self, linear_sum=None): if linear_sum is None: self.n_samples_ = 0 self.squared_sum_ = 0.0 self.linear_sum_ = 0 else: self.n_samples_ = 1 self.centroid_ = self.linear_sum_ = linear_sum self.squared_sum_ = self.sq_norm_ = np.dot( self.linear_sum_, self.linear_sum_) self.child_ = None def update(self, subcluster): self.n_samples_ += subcluster.n_samples_ self.linear_sum_ += subcluster.linear_sum_ self.squared_sum_ += subcluster.squared_sum_ self.centroid_ = self.linear_sum_ / self.n_samples_ self.sq_norm_ = np.dot(self.centroid_, self.centroid_) def merge_subcluster(self, nominee_cluster, threshold): """Check if a cluster is worthy enough to be merged. If yes then merge. """ new_ss = self.squared_sum_ + nominee_cluster.squared_sum_ new_ls = self.linear_sum_ + nominee_cluster.linear_sum_ new_n = self.n_samples_ + nominee_cluster.n_samples_ new_centroid = (1 / new_n) * new_ls new_norm = np.dot(new_centroid, new_centroid) dot_product = (-2 * new_n) * new_norm sq_radius = (new_ss + dot_product) / new_n + new_norm if sq_radius <= threshold ** 2: (self.n_samples_, self.linear_sum_, self.squared_sum_, self.centroid_, self.sq_norm_) = \ new_n, new_ls, new_ss, new_centroid, new_norm return True return False @property def radius(self): """Return radius of the subcluster""" dot_product = -2 * np.dot(self.linear_sum_, self.centroid_) return sqrt( ((self.squared_sum_ + dot_product) / self.n_samples_) + self.sq_norm_) class Birch(BaseEstimator, TransformerMixin, ClusterMixin): """Implements the Birch clustering algorithm. It is a memory-efficient, online-learning algorithm provided as an alternative to :class:`MiniBatchKMeans`. It constructs a tree data structure with the cluster centroids being read off the leaf. These can be either the final cluster centroids or can be provided as input to another clustering algorithm such as :class:`AgglomerativeClustering`. Read more in the :ref:`User Guide <birch>`. Parameters ---------- threshold : float, default 0.5 The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. Setting this value to be very low promotes splitting and vice-versa. branching_factor : int, default 50 Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then that node is split into two nodes with the subclusters redistributed in each. The parent subcluster of that node is removed and two new subclusters are added as parents of the 2 split nodes. n_clusters : int, instance of sklearn.cluster model, default 3 Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. - `None` : the final clustering step is not performed and the subclusters are returned as they are. - `sklearn.cluster` Estimator : If a model is provided, the model is fit treating the subclusters as new samples and the initial data is mapped to the label of the closest subcluster. - `int` : the model fit is :class:`AgglomerativeClustering` with `n_clusters` set to be equal to the int. compute_labels : bool, default True Whether or not to compute labels for each fit. copy : bool, default True Whether or not to make a copy of the given data. If set to False, the initial data will be overwritten. Attributes ---------- root_ : _CFNode Root of the CFTree. dummy_leaf_ : _CFNode Start pointer to all the leaves. subcluster_centers_ : ndarray, Centroids of all subclusters read directly from the leaves. subcluster_labels_ : ndarray, Labels assigned to the centroids of the subclusters after they are clustered globally. labels_ : ndarray, shape (n_samples,) Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data. Examples -------- >>> from sklearn.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1]) References ---------- * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/archive/p/jbirch Notes ----- The tree data structure consists of nodes with each node consisting of a number of subclusters. The maximum number of subclusters in a node is determined by the branching factor. Each subcluster maintains a linear sum, squared sum and the number of samples in that subcluster. In addition, each subcluster can also have a node as its child, if the subcluster is not a member of a leaf node. For a new point entering the root, it is merged with the subcluster closest to it and the linear sum, squared sum and the number of samples of that subcluster are updated. This is done recursively till the properties of the leaf node are updated. """ def __init__(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True): self.threshold = threshold self.branching_factor = branching_factor self.n_clusters = n_clusters self.compute_labels = compute_labels self.copy = copy def fit(self, X, y=None): """ Build a CF Tree for the input data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. """ self.fit_, self.partial_fit_ = True, False return self._fit(X) def _fit(self, X): X = check_array(X, accept_sparse='csr', copy=self.copy) threshold = self.threshold branching_factor = self.branching_factor if branching_factor <= 1: raise ValueError("Branching_factor should be greater than one.") n_samples, n_features = X.shape # If partial_fit is called for the first time or fit is called, we # start a new tree. partial_fit = getattr(self, 'partial_fit_') has_root = getattr(self, 'root_', None) if getattr(self, 'fit_') or (partial_fit and not has_root): # The first root is the leaf. Manipulate this object throughout. self.root_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) # To enable getting back subclusters. self.dummy_leaf_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) self.dummy_leaf_.next_leaf_ = self.root_ self.root_.prev_leaf_ = self.dummy_leaf_ # Cannot vectorize. Enough to convince to use cython. if not sparse.issparse(X): iter_func = iter else: iter_func = _iterate_sparse_X for sample in iter_func(X): subcluster = _CFSubcluster(linear_sum=sample) split = self.root_.insert_cf_subcluster(subcluster) if split: new_subcluster1, new_subcluster2 = _split_node( self.root_, threshold, branching_factor) del self.root_ self.root_ = _CFNode(threshold, branching_factor, is_leaf=False, n_features=n_features) self.root_.append_subcluster(new_subcluster1) self.root_.append_subcluster(new_subcluster2) centroids = np.concatenate([ leaf.centroids_ for leaf in self._get_leaves()]) self.subcluster_centers_ = centroids self._global_clustering(X) return self def _get_leaves(self): """ Retrieve the leaves of the CF Node. Returns ------- leaves : array-like List of the leaf nodes. """ leaf_ptr = self.dummy_leaf_.next_leaf_ leaves = [] while leaf_ptr is not None: leaves.append(leaf_ptr) leaf_ptr = leaf_ptr.next_leaf_ return leaves def partial_fit(self, X=None, y=None): """ Online learning. Prevents rebuilding of CFTree from scratch. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features), None Input data. If X is not provided, only the global clustering step is done. """ self.partial_fit_, self.fit_ = True, False if X is None: # Perform just the final global clustering step. self._global_clustering() return self else: self._check_fit(X) return self._fit(X) def _check_fit(self, X): is_fitted = hasattr(self, 'subcluster_centers_') # Called by partial_fit, before fitting. has_partial_fit = hasattr(self, 'partial_fit_') # Should raise an error if one does not fit before predicting. if not (is_fitted or has_partial_fit): raise NotFittedError("Fit training data before predicting") if is_fitted and X.shape[1] != self.subcluster_centers_.shape[1]: raise ValueError( "Training data and predicted data do " "not have same number of features.") def predict(self, X): """ Predict data using the ``centroids_`` of subclusters. Avoid computation of the row norms of X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- labels : ndarray, shape(n_samples) Labelled data. """ X = check_array(X, accept_sparse='csr') self._check_fit(X) reduced_distance = safe_sparse_dot(X, self.subcluster_centers_.T) reduced_distance *= -2 reduced_distance += self._subcluster_norms return self.subcluster_labels_[np.argmin(reduced_distance, axis=1)] def transform(self, X): """ Transform X into subcluster centroids dimension. Each dimension represents the distance from the sample point to each cluster centroid. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters) Transformed data. """ check_is_fitted(self, 'subcluster_centers_') return euclidean_distances(X, self.subcluster_centers_) def _global_clustering(self, X=None): """ Global clustering for the subclusters obtained after fitting """ clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, int): clusterer = AgglomerativeClustering( n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True elif (clusterer is not None and not hasattr(clusterer, 'fit_predict')): raise ValueError("n_clusters should be an instance of " "ClusterMixin or an int") # To use in predict to avoid recalculation. self._subcluster_norms = row_norms( self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by Birch is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters)) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict( self.subcluster_centers_) if compute_labels: self.labels_ = self.predict(X)
bsd-3-clause
mmottahedi/neuralnilm_prototype
scripts/e155.py
2
6834
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from neuralnilm.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for LSTM e110 * Back to Uniform(5) for LSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single LSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd LSTM layer e142 diff AND power e144 diff and power and max power is 5900 e145 Uniform(25) for first layer e146 gradient clip and use peepholes e147 * try again with new code e148 * learning rate 0.1 e150 * Same as e149 but without peepholes and using LSTM not BLSTM e151 * Max pooling """ def set_subsample_target(net, epoch): net.source.subsample_target = 5 net.source.input_padding = 4 net.source.seq_length = 1500 net.generate_validation_data_and_set_shapes() def exp_a(name): # 151d but training for much longer and skip prob = 0.7 source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5, 5, 5, 5, 5], max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1504, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, n_seq_per_batch=25, include_diff=True ) net = Net( experiment_name=name, source=source, save_plot_interval=2000, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=.1, clip_range=(-1, 1)), layers_config=[ { 'type': BLSTMLayer, 'num_units': 60, 'W_in_to_cell': Uniform(25), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ], layer_changes={ 10001: { 'remove_from': -3, 'callback': set_subsample_target, 'new_layers': [ { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 80, 'filter_length': 5, 'stride': 1, 'nonlinearity': sigmoid, 'W': Uniform(1) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': FeaturePoolLayer, 'ds': 5, # number of feature maps to be pooled together 'axis': 1 # pool over the time axis }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] }, 20001: { 'remove_from': -3, 'new_layers': [ { 'type': BLSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(1), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ] } } ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: print("EXCEPTION:", exception) import ipdb; ipdb.set_trace() if __name__ == "__main__": main()
mit
Python4AstronomersAndParticlePhysicists/PythonWorkshop-ICE
examples/use_system_latex/plot.py
1
1122
import matplotlib.pyplot as plt import numpy as np formula = ( r'$\displaystyle ' r'N = \int_{E_\text{min}}^{E_\text{max}} ' r'\int_0^A' r'\int_{t_\text{min}}^{t_\text{max}} ' r' Φ_0 \left(\frac{E}{\SI{1}{\GeV}}\right)^{\!\!-γ}' r' \, \symup{d}A \, \symup{d}t \, \symup{d}E' r'$' ) def power_law_spectrum(energy, normalisation, spectral_index): return normalisation * energy**(-spectral_index) bin_edges = np.logspace(2, 5, 15) bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:]) plt.errorbar( np.log10(bin_centers), power_law_spectrum(bin_centers, 1e-12, 2.5), xerr=[np.log10(bin_centers) - np.log10(bin_edges[:-1]), np.log10(bin_edges[1:]) - np.log10(bin_centers)], yerr=0.2 * power_law_spectrum(bin_centers, 1e-12, 2.5), linestyle='', ) plt.xlabel(r'$\log_{10}\bigl(E \mathbin{/} \si{\giga\electronvolt}\bigr)$') plt.ylabel( r'$Φ' r'\mathbin{/}' r'\si{\per\GeV\per\second\per\steradian\per\meter\squared}$' ) plt.text(0.1, 0.1, formula, transform=plt.gca().transAxes) plt.yscale('log') plt.tight_layout(pad=0) plt.savefig('build/plot.pdf')
mit
furgerf/kaggle-projects
cancer/mxlearn.py
1
3281
import numpy as np import dicom import glob # from matplotlib import pyplot as plt import os import cv2 import mxnet as mx import pandas as pd from sklearn import cross_validation import xgboost as xgb def get_extractor(): model = mx.model.FeedForward.load('model/resnet-50', 0, ctx=mx.cpu(), numpy_batch_size=1) fea_symbol = model.symbol.get_internals()["flatten0_output"] feature_extractor = mx.model.FeedForward(ctx=mx.cpu(), symbol=fea_symbol, numpy_batch_size=64, arg_params=model.arg_params, aux_params=model.aux_params, allow_extra_params=True) return feature_extractor def get_3d_data(path): slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)] slices.sort(key=lambda x: int(x.InstanceNumber)) return np.stack([s.pixel_array for s in slices]) def get_data_id(path): sample_image = get_3d_data(path) sample_image[sample_image == -2000] = 0 # f, plots = plt.subplots(4, 5, sharex='col', sharey='row', figsize=(10, 8)) batch = [] cnt = 0 dx = 40 ds = 512 for i in range(0, sample_image.shape[0] - 3, 3): tmp = [] for j in range(3): img = sample_image[i + j] img = 255.0 / np.amax(img) * img img = cv2.equalizeHist(img.astype(np.uint8)) img = img[dx: ds - dx, dx: ds - dx] img = cv2.resize(img, (224, 224)) tmp.append(img) tmp = np.array(tmp) batch.append(np.array(tmp)) # if cnt < 20: # plots[cnt // 5, cnt % 5].axis('off') # plots[cnt // 5, cnt % 5].imshow(np.swapaxes(tmp, 0, 2)) # cnt += 1 # plt.show() batch = np.array(batch) return batch def calc_features(): net = get_extractor() for folder in glob.glob('stage1/*'): batch = get_data_id(folder) feats = net.predict(batch) print(feats.shape) np.save(folder, feats) def train_xgboost(): df = pd.read_csv('data/stage1_labels.csv') print(df.head()) x = np.array([np.mean(np.load('stage1/%s.npy' % str(id)), axis=0) for id in df['id'].tolist()]) y = df['cancer'].as_matrix() trn_x, val_x, trn_y, val_y = cross_validation.train_test_split(x, y, random_state=42, stratify=y, test_size=0.20) clf = xgb.XGBRegressor(max_depth=10, n_estimators=1500, min_child_weight=9, learning_rate=0.05, nthread=8, subsample=0.80, colsample_bytree=0.80, seed=4242) clf.fit(trn_x, trn_y, eval_set=[(val_x, val_y)], verbose=True, eval_metric='logloss', early_stopping_rounds=50) return clf def make_submit(): clf = train_xgboost() df = pd.read_csv('data/stage1_sample_submission.csv') x = np.array([np.mean(np.load('stage1/%s.npy' % str(id)), axis=0) for id in df['id'].tolist()]) pred = clf.predict(x) df['cancer'] = pred df.to_csv('subm1.csv', index=False) print(df.head()) if __name__ == '__main__': calc_features() make_submit()
apache-2.0
PG-TUe/tpot
tutorials/MAGIC Gamma Telescope/tpot_MAGIC_Gamma_Telescope_pipeline.py
1
1041
import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, make_union from sklearn.tree import DecisionTreeClassifier from tpot.builtins import StackingEstimator # NOTE: Make sure that the class is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1).values training_features, testing_features, training_target, testing_target = \ train_test_split(features, tpot_data['target'].values, random_state=42) # Score on the training set was:0.853347788745 exported_pipeline = make_pipeline( StackingEstimator(estimator=LogisticRegression(C=10.0, dual=False, penalty="l2")), DecisionTreeClassifier(criterion="gini", max_depth=7, min_samples_leaf=5, min_samples_split=7) ) exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features)
lgpl-3.0
roxyboy/scikit-learn
examples/cluster/plot_cluster_iris.py
350
2593
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show()
bsd-3-clause
ilo10/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
martinwicke/tensorflow
tensorflow/examples/learn/iris_val_based_early_stopping.py
25
2816
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with early stopping.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil from sklearn import datasets from sklearn import metrics from sklearn.cross_validation import train_test_split import tensorflow as tf from tensorflow.contrib import learn def clean_folder(folder): """Cleans the given folder if it exists.""" try: shutil.rmtree(folder) except OSError: pass def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) x_train, x_val, y_train, y_val = train_test_split( x_train, y_train, test_size=0.2, random_state=42) val_monitor = learn.monitors.ValidationMonitor( x_val, y_val, early_stopping_rounds=200) model_dir = '/tmp/iris_model' clean_folder(model_dir) # classifier with early stopping on training data classifier1 = learn.DNNClassifier( feature_columns=learn.infer_real_valued_columns_from_input(x_train), hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir) classifier1.fit(x=x_train, y=y_train, steps=2000) predictions1 = list(classifier1.predict(x_test, as_iterable=True)) score1 = metrics.accuracy_score(y_test, predictions1) model_dir = '/tmp/iris_model_val' clean_folder(model_dir) # classifier with early stopping on validation data, save frequently for # monitor to pick up new checkpoints. classifier2 = learn.DNNClassifier( feature_columns=learn.infer_real_valued_columns_from_input(x_train), hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir, config=tf.contrib.learn.RunConfig(save_checkpoints_secs=1)) classifier2.fit(x=x_train, y=y_train, steps=2000, monitors=[val_monitor]) predictions2 = list(classifier2.predict(x_test, as_iterable=True)) score2 = metrics.accuracy_score(y_test, predictions2) # In many applications, the score is improved by using early stopping print('score1: ', score1) print('score2: ', score2) print('score2 > score1: ', score2 > score1) if __name__ == '__main__': tf.app.run()
apache-2.0
GGoussar/scikit-image
doc/examples/transform/plot_swirl.py
7
2712
""" ===== Swirl ===== Image swirling is a non-linear image deformation that creates a whirlpool effect. This example describes the implementation of this transform in ``skimage``, as well as the underlying warp mechanism. Image warping ------------- When applying a geometric transformation on an image, we typically make use of a reverse mapping, i.e., for each pixel in the output image, we compute its corresponding position in the input. The reason is that, if we were to do it the other way around (map each input pixel to its new output position), some pixels in the output may be left empty. On the other hand, each output coordinate has exactly one corresponding location in (or outside) the input image, and even if that position is non-integer, we may use interpolation to compute the corresponding image value. Performing a reverse mapping ---------------------------- To perform a geometric warp in ``skimage``, you simply need to provide the reverse mapping to the ``skimage.transform.warp`` function. E.g., consider the case where we would like to shift an image 50 pixels to the left. The reverse mapping for such a shift would be:: def shift_left(xy): xy[:, 0] += 50 return xy The corresponding call to warp is:: from skimage.transform import warp warp(image, shift_left) The swirl transformation ------------------------ Consider the coordinate :math:`(x, y)` in the output image. The reverse mapping for the swirl transformation first computes, relative to a center :math:`(x_0, y_0)`, its polar coordinates, .. math:: \\theta = \\arctan(y/x) \\rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}, and then transforms them according to .. math:: r = \ln(2) \, \mathtt{radius} / 5 \phi = \mathtt{rotation} s = \mathtt{strength} \\theta' = \phi + s \, e^{-\\rho / r + \\theta} where ``strength`` is a parameter for the amount of swirl, ``radius`` indicates the swirl extent in pixels, and ``rotation`` adds a rotation angle. The transformation of ``radius`` into :math:`r` is to ensure that the transformation decays to :math:`\\approx 1/1000^{\mathsf{th}}` within the specified radius. """ import matplotlib.pyplot as plt from skimage import data from skimage.transform import swirl image = data.checkerboard() swirled = swirl(image, rotation=0, strength=10, radius=120) fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, figsize=(8, 3), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'}) ax0.imshow(image, cmap=plt.cm.gray, interpolation='none') ax0.axis('off') ax1.imshow(swirled, cmap=plt.cm.gray, interpolation='none') ax1.axis('off') plt.show()
bsd-3-clause
wmvanvliet/mne-python
examples/visualization/plot_publication_figure.py
10
11215
""" .. _ex-publication-figure: =================================== Make figures more publication ready =================================== In this example, we show several use cases to take MNE plots and customize them for a more publication-ready look. """ # Authors: Eric Larson <[email protected]> # Daniel McCloy <[email protected]> # Stefan Appelhoff <[email protected]> # # License: BSD (3-clause) ############################################################################### # Imports # ------- # We are importing everything we need for this example: import os.path as op import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import (make_axes_locatable, ImageGrid, inset_locator) import mne ############################################################################### # Evoked plot with brain activation # --------------------------------- # # Suppose we want a figure with an evoked plot on top, and the brain activation # below, with the brain subplot slightly bigger than the evoked plot. Let's # start by loading some :ref:`example data <sample-dataset>`. data_path = mne.datasets.sample.data_path() subjects_dir = op.join(data_path, 'subjects') fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-eeg-lh.stc') fname_evoked = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif') evoked = mne.read_evokeds(fname_evoked, 'Left Auditory') evoked.pick_types(meg='grad').apply_baseline((None, 0.)) max_t = evoked.get_peak()[1] stc = mne.read_source_estimate(fname_stc) ############################################################################### # During interactive plotting, we might see figures like this: evoked.plot() stc.plot(views='lat', hemi='split', size=(800, 400), subject='sample', subjects_dir=subjects_dir, initial_time=max_t, time_viewer=False, show_traces=False) ############################################################################### # To make a publication-ready figure, first we'll re-plot the brain on a white # background, take a screenshot of it, and then crop out the white margins. # While we're at it, let's change the colormap, set custom colormap limits and # remove the default colorbar (so we can add a smaller, vertical one later): colormap = 'viridis' clim = dict(kind='value', lims=[4, 8, 12]) # Plot the STC, get the brain image, crop it: brain = stc.plot(views='lat', hemi='split', size=(800, 400), subject='sample', subjects_dir=subjects_dir, initial_time=max_t, background='w', colorbar=False, clim=clim, colormap=colormap, time_viewer=False, show_traces=False) screenshot = brain.screenshot() brain.close() ############################################################################### # Now let's crop out the white margins and the white gap between hemispheres. # The screenshot has dimensions ``(h, w, 3)``, with the last axis being R, G, B # values for each pixel, encoded as integers between ``0`` and ``255``. ``(255, # 255, 255)`` encodes a white pixel, so we'll detect any pixels that differ # from that: nonwhite_pix = (screenshot != 255).any(-1) nonwhite_row = nonwhite_pix.any(1) nonwhite_col = nonwhite_pix.any(0) cropped_screenshot = screenshot[nonwhite_row][:, nonwhite_col] # before/after results fig = plt.figure(figsize=(4, 4)) axes = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.5) for ax, image, title in zip(axes, [screenshot, cropped_screenshot], ['Before', 'After']): ax.imshow(image) ax.set_title('{} cropping'.format(title)) ############################################################################### # A lot of figure settings can be adjusted after the figure is created, but # many can also be adjusted in advance by updating the # :data:`~matplotlib.rcParams` dictionary. This is especially useful when your # script generates several figures that you want to all have the same style: # Tweak the figure style plt.rcParams.update({ 'ytick.labelsize': 'small', 'xtick.labelsize': 'small', 'axes.labelsize': 'small', 'axes.titlesize': 'medium', 'grid.color': '0.75', 'grid.linestyle': ':', }) ############################################################################### # Now let's create our custom figure. There are lots of ways to do this step. # Here we'll create the figure and the subplot axes in one step, specifying # overall figure size, number and arrangement of subplots, and the ratio of # subplot heights for each row using :mod:`GridSpec keywords # <matplotlib.gridspec>`. Other approaches (using # :func:`~matplotlib.pyplot.subplot2grid`, or adding each axes manually) are # shown commented out, for reference. # sphinx_gallery_thumbnail_number = 4 # figsize unit is inches fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(4.5, 3.), gridspec_kw=dict(height_ratios=[3, 4])) # alternate way #1: using subplot2grid # fig = plt.figure(figsize=(4.5, 3.)) # axes = [plt.subplot2grid((7, 1), (0, 0), rowspan=3), # plt.subplot2grid((7, 1), (3, 0), rowspan=4)] # alternate way #2: using figure-relative coordinates # fig = plt.figure(figsize=(4.5, 3.)) # axes = [fig.add_axes([0.125, 0.58, 0.775, 0.3]), # left, bot., width, height # fig.add_axes([0.125, 0.11, 0.775, 0.4])] # we'll put the evoked plot in the upper axes, and the brain below evoked_idx = 0 brain_idx = 1 # plot the evoked in the desired subplot, and add a line at peak activation evoked.plot(axes=axes[evoked_idx]) peak_line = axes[evoked_idx].axvline(max_t, color='#66CCEE', ls='--') # custom legend axes[evoked_idx].legend( [axes[evoked_idx].lines[0], peak_line], ['MEG data', 'Peak time'], frameon=True, columnspacing=0.1, labelspacing=0.1, fontsize=8, fancybox=True, handlelength=1.8) # remove the "N_ave" annotation axes[evoked_idx].texts = [] # Remove spines and add grid axes[evoked_idx].grid(True) axes[evoked_idx].set_axisbelow(True) for key in ('top', 'right'): axes[evoked_idx].spines[key].set(visible=False) # Tweak the ticks and limits axes[evoked_idx].set( yticks=np.arange(-200, 201, 100), xticks=np.arange(-0.2, 0.51, 0.1)) axes[evoked_idx].set( ylim=[-225, 225], xlim=[-0.2, 0.5]) # now add the brain to the lower axes axes[brain_idx].imshow(cropped_screenshot) axes[brain_idx].axis('off') # add a vertical colorbar with the same properties as the 3D one divider = make_axes_locatable(axes[brain_idx]) cax = divider.append_axes('right', size='5%', pad=0.2) cbar = mne.viz.plot_brain_colorbar(cax, clim, colormap, label='Activation (F)') # tweak margins and spacing fig.subplots_adjust( left=0.15, right=0.9, bottom=0.01, top=0.9, wspace=0.1, hspace=0.5) # add subplot labels for ax, label in zip(axes, 'AB'): ax.text(0.03, ax.get_position().ymax, label, transform=fig.transFigure, fontsize=12, fontweight='bold', va='top', ha='left') ############################################################################### # Custom timecourse with montage inset # ------------------------------------ # # Suppose we want a figure with some mean timecourse extracted from a number of # sensors, and we want a smaller panel within the figure to show a head outline # with the positions of those sensors clearly marked. # If you are familiar with MNE, you know that this is something that # :func:`mne.viz.plot_compare_evokeds` does, see an example output in # :ref:`ex-hf-sef-data` at the bottom. # # In this part of the example, we will show you how to achieve this result on # your own figure, without having to use :func:`mne.viz.plot_compare_evokeds`! # # Let's start by loading some :ref:`example data <sample-dataset>`. data_path = mne.datasets.sample.data_path() fname_raw = op.join(data_path, "MEG", "sample", "sample_audvis_raw.fif") raw = mne.io.read_raw_fif(fname_raw) # For the sake of the example, we focus on EEG data raw.pick_types(meg=False, eeg=True) ############################################################################### # Let's make a plot. # channels to plot: to_plot = [f"EEG {i:03}" for i in range(1, 5)] # get the data for plotting in a short time interval from 10 to 20 seconds start = int(raw.info['sfreq'] * 10) stop = int(raw.info['sfreq'] * 20) data, times = raw.get_data(picks=to_plot, start=start, stop=stop, return_times=True) # Scale the data from the MNE internal unit V to µV data *= 1e6 # Take the mean of the channels mean = np.mean(data, axis=0) # make a figure fig, ax = plt.subplots(figsize=(4.5, 3)) # plot some EEG data ax.plot(times, mean) ############################################################################### # So far so good. Now let's add the smaller figure within the figure to show # exactly, which sensors we used to make the timecourse. # For that, we use an "inset_axes" that we plot into our existing axes. # The head outline with the sensor positions can be plotted using the # `~mne.io.Raw` object that is the source of our data. # Specifically, that object already contains all the sensor positions, # and we can plot them using the ``plot_sensors`` method. # recreate the figure (only necessary for our documentation server) fig, ax = plt.subplots(figsize=(4.5, 3)) ax.plot(times, mean) axins = inset_locator.inset_axes(ax, width="30%", height="30%", loc=2) # pick_channels() edits the raw object in place, so we'll make a copy here # so that our raw object stays intact for potential later analysis raw.copy().pick_channels(to_plot).plot_sensors(title="", axes=axins) ############################################################################### # That looks nice. But the sensor dots are way too big for our taste. Luckily, # all MNE-Python plots use Matplotlib under the hood and we can customize # each and every facet of them. # To make the sensor dots smaller, we need to first get a handle on them to # then apply a ``*.set_*`` method on them. # If we inspect our axes we find the objects contained in our plot: print(axins.get_children()) ############################################################################### # That's quite a a lot of objects, but we know that we want to change the # sensor dots, and those are most certainly a "PathCollection" object. # So let's have a look at how many "collections" we have in the axes. print(axins.collections) ############################################################################### # There is only one! Those must be the sensor dots we were looking for. # We finally found exactly what we needed. Sometimes this can take a bit of # experimentation. sensor_dots = axins.collections[0] # Recreate the figure once more; shrink the sensor dots; add axis labels fig, ax = plt.subplots(figsize=(4.5, 3)) ax.plot(times, mean) axins = inset_locator.inset_axes(ax, width="30%", height="30%", loc=2) raw.copy().pick_channels(to_plot).plot_sensors(title="", axes=axins) sensor_dots = axins.collections[0] sensor_dots.set_sizes([1]) # add axis labels, and adjust bottom figure margin to make room for them ax.set(xlabel="Time (s)", ylabel="Amplitude (µV)") fig.subplots_adjust(bottom=0.2)
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/spyderlib/widgets/sourcecode/asfsadf.py
2
2207
import cv2 import numpy as np from matplotlib import pyplot as plt import os from desktopmagic.screengrab_win32 import getScreenAsImage as getMultiScreenAsImage from PIL import Image import os from pytank.Core.Classes import ScriptSettings import re ############################################### lastdur = os.getcwd() atext = "Configurator.media.Click(threshold = .75,xoffset = 100)" # self.get_selected_text() #atext = self.get_selected_text() folderpath = "C:\Elan_Tools\ImageScripter\ProgramData\SystemFiles\Python\Lib\site-packages\pytank\User\UserData\Applications\\" alist = atext.split('.') theapp = alist[0] print("App->") print(theapp) print('') theimage = alist[1] + '.png' print("Image->") print(theimage) print('') theAction = alist[2] print("Action->") print(theAction) print('') ####################################### print("Threshold->") if 'threshold' in atext: spit_on_thresh = atext.split("threshold") print(spit_on_thresh[1]) #threshold = spit_on_thresh[1].replace('= ','') #print(threshold) #threshold = float(threshold.replace(')','')) #print(threshold) #################################### ''' imagepath = folderpath + theapp + '\\' + theapp + '_' + theimage print("Path of Image->") print(imagepath) print('') if os.path.exists(imagepath): os.chdir(r"C:\Elan_Tools\Data\Playground") def Save_Multi_Monitor_ScreenShot(): im = getMultiScreenAsImage() name_Of_Image = 'templet.png' im.save(name_Of_Image, format='png') Save_Multi_Monitor_ScreenShot() ######################################################################## img_rgb = cv2.imread("templet.png") img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) template = cv2.imread(imagepath, 0) w, h = template.shape[::-1] res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) threshold = ScriptSettings.Threshold loc = np.where(res >= threshold) for pt in zip(*loc[::-1]): cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2) cv2.imwrite("res.png", img_rgb) if os.path.exists("res.png"): img = Image.open("res.png") img.show() else: print('pass image') '''
gpl-3.0
eladnoor/proteomaps
src/amino_acid_distribution/aa_biosynthesis_pathways.py
1
1764
import matplotlib.pyplot as plt import numpy as np import csv from download_aa_sequences import calculate_aa_dist_per_proteome as csp from download_aa_sequences import normalize_aa_dist as nd AA_LETTERS = sorted("ACEDGFIHKMLNQPSRTWVY") aa_biosythesis_reader = csv.reader(open('aa_biosynthesis.csv'), delimiter='\t') for row in aa_biosythesis_reader: print row[0,:] #bio_path_UPID = [] #aa_dist_csv_reader = csv.reader(open('aa_dist_by_UP_ID.csv'), delimiter='\t') ## skip the first header row #aa_dist_csv_reader.next() # #load_UPID_to_aa_dist # # #UPID_aa_dist = {} #aa_dist_path_genomic = np.zeros((1, len(AA_LETTERS))) #for row in aa_dist_csv_reader: # if row[0] in bio_path_UPID: # UPID_aa_dist[row[0]] = np.array([float(x) for x in row[1:]]) # distribution = [float(x) for x in row[1:len(AA_LETTERS)+1]] # aa_dist_path_genomic += distribution #aa_dist_path_genomic_normed = aa_dist_path_genomic/sum(aa_dist_path_genomic) #a = csp('Ecoli_19_Conditions_Proteomics.csv', UPID_aa_dist) ##print a #a_normed = nd(a,20) # #AA_PATH = sorted(['P_'+ x for x in AA_LETTERS], reverse=True) #plt.clf() #plt.imshow(a_normed, interpolation="nearest") #plt.colorbar() #plt.show() #N = len(AA_LETTERS) #ind = np.arange(N) # the x locations for the groups #width = 0.1 # the width of the bars #ax = plt.axes() #ax.set_ylabel('Relative abundance') #ax.set_title('Lysine (K) biosynthesis pathway') #ax.set_xticks(ind+width) #ax.set_xticklabels((AA_LETTERS)) #ax.set_yticks(ind+width) #ax.set_yticklabels((AA_PATH)) #fig = plt.figure() #rects1 = ax.bar(ind, aa_dist_path_genomic_normed.T, width, color='b') ##rects2 = ax.bar(ind+width,aa_dist_path_proteomic_normed.T , width, color='g') ## add some ##ax.legend( (rects1[0]),('Proteome'))
mit
cactusbin/nyt
matplotlib/examples/pylab_examples/line_collection.py
12
1511
import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib.colors import colorConverter import numpy as np # In order to efficiently plot many lines in a single set of axes, # Matplotlib has the ability to add the lines all at once. Here is a # simple example showing how it is done. x = np.arange(100) # Here are many sets of y to plot vs x ys = x[:50, np.newaxis] + x[np.newaxis, :] segs = np.zeros((50, 100, 2), float) segs[:,:,1] = ys segs[:,:,0] = x # Mask some values to test masked array support: segs = np.ma.masked_where((segs > 50) & (segs < 60), segs) # We need to set the plot limits. ax = plt.axes() ax.set_xlim(x.min(), x.max()) ax.set_ylim(ys.min(), ys.max()) # colors is sequence of rgba tuples # linestyle is a string or dash tuple. Legal string values are # solid|dashed|dashdot|dotted. The dash tuple is (offset, onoffseq) # where onoffseq is an even length tuple of on and off ink in points. # If linestyle is omitted, 'solid' is used # See matplotlib.collections.LineCollection for more information line_segments = LineCollection(segs, linewidths = (0.5,1,1.5,2), colors = [colorConverter.to_rgba(i) \ for i in ('b','g','r','c','m','y','k')], linestyle = 'solid') ax.add_collection(line_segments) ax.set_title('Line collection with masked arrays') plt.show()
unlicense
nansencenter/DAPPER
examples/basic_3b.py
1
2827
# ## Present the results generated in example basic_3a # import matplotlib.pyplot as plt import numpy as np import dapper as dpr save_as = dpr.rc.dirs.data / "basic_3" # save_as /= "run_2020-11-11__20-36-36" save_as /= dpr.find_latest_run(save_as) # + # Load xps = dpr.load_xps(save_as) # Prints all # dpr.xpList(xps).print_avrgs(statkeys=["rmse.a","rmv.a"]) # - # Associate each control variable with a coordinate/dimension xp_dict = dpr.xpSpace.from_list(xps) # Single out (highlight) particular settings. # Note: Must use infl=1.01 (not 1) to reproduce "no infl" scores in Ref[1], # as well as rot=True (better scores can be obtained without rot). highlight = xp_dict.label_xSection highlight('NO-infl' , ('infl'), da_method='LETKF', infl=1.01, rot=True) highlight('NO-infl/loc', ('infl'), da_method='EnKF' , infl=1.01, rot=True) # Print, with columns: `inner`. Also try setting `outer=None`. tunable = {'loc_rad', 'infl', 'xB', 'rot'} axes = dict(outer="F", inner="N", mean="seed", optim=tunable) xp_dict.print("rmse.a", axes, subcols=False) def get_style(coord): """Quick and dirty styling.""" S = dpr.default_styles(coord, True) if coord.da_method == "EnKF": upd_a = getattr(coord, "upd_a", None) if upd_a == "PertObs": S.c = "C2" elif upd_a == "Sqrt": S.c = "C1" elif coord.da_method == "LETKF": S.c = "C3" if getattr(coord, "rot", False): S.marker = "+" Const = getattr(coord, "Const", False) if str(Const).startswith("NO-"): S.ls = "--" S.marker = None S.label = Const return S # Plot tables = xp_dict.plot('rmse.a', axes, get_style, title2=save_as) dpr.default_fig_adjustments(tables) plt.pause(.1) # #### Plot with color gradient # Remove experiments we don't want to plot here xps = [xp for xp in xps if getattr(xp, "Const", None) == None] xp_dict = dpr.xpSpace.from_list(xps) # Setup mapping: loc_rad --> color gradient graded = "loc_rad" axes["optim"] -= {graded} grades = xp_dict.tickz(graded) # cmap, sm = dpr.discretize_cmap(cm.Reds, len(grades), .2) cmap, sm = dpr.discretize_cmap(plt.cm.rainbow, len(grades)) def get_style_with_gradient(coord): S = get_style(coord) if coord.da_method == "LETKF": grade = dpr.rel_index(getattr(coord, graded), grades, 1) S.c = cmap(grade) S.marker = None S.label = dpr.make_label(coord, exclude=[graded]) return S # + # Plot tables = xp_dict.plot('rmse.a', axes, get_style_with_gradient, title2=save_as) dpr.default_fig_adjustments(tables) # Colorbar cb = tables.fig.colorbar(sm, ax=tables[-1].panels[0], label=graded) cb.set_ticks(np.arange(len(grades))) cb.set_ticklabels(grades) plt.pause(.1) # - # #### Excercise: # Make a `get_style()` that works well with `graded = "infl"`.
mit
juliandewit/kaggle_ndsb2017
step3_predict_nodules.py
2
18258
import settings import helpers import sys import os import glob import random import pandas import ntpath import cv2 import numpy from typing import List, Tuple from keras.optimizers import Adam, SGD from keras.layers import Input, Convolution2D, MaxPooling2D, UpSampling2D, merge, Convolution3D, MaxPooling3D, UpSampling3D, LeakyReLU, BatchNormalization, Flatten, Dense, Dropout, ZeroPadding3D, AveragePooling3D, Activation from keras.models import Model, load_model, model_from_json from keras.metrics import binary_accuracy, binary_crossentropy, mean_squared_error, mean_absolute_error from keras import backend as K from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter import math # limit memory usage.. import tensorflow as tf from keras.backend.tensorflow_backend import set_session import step2_train_nodule_detector config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=config)) # zonder aug, 10:1 99 train, 97 test, 0.27 cross entropy, before commit 573 # 3 pools istead of 4 gives (bigger end layer) gives much worse validation accuray + logloss .. strange ? # 32 x 32 x 32 lijkt het beter te doen dan 48 x 48 x 48.. K.set_image_dim_ordering("tf") CUBE_SIZE = step2_train_nodule_detector.CUBE_SIZE MEAN_PIXEL_VALUE = settings.MEAN_PIXEL_VALUE_NODULE NEGS_PER_POS = 20 P_TH = 0.6 PREDICT_STEP = 12 USE_DROPOUT = False def prepare_image_for_net3D(img): img = img.astype(numpy.float32) img -= MEAN_PIXEL_VALUE img /= 255. img = img.reshape(1, img.shape[0], img.shape[1], img.shape[2], 1) return img def filter_patient_nodules_predictions(df_nodule_predictions: pandas.DataFrame, patient_id, view_size, luna16=False): src_dir = settings.LUNA_16_TRAIN_DIR2D2 if luna16 else settings.NDSB3_EXTRACTED_IMAGE_DIR patient_mask = helpers.load_patient_images(patient_id, src_dir, "*_m.png") delete_indices = [] for index, row in df_nodule_predictions.iterrows(): z_perc = row["coord_z"] y_perc = row["coord_y"] center_x = int(round(row["coord_x"] * patient_mask.shape[2])) center_y = int(round(y_perc * patient_mask.shape[1])) center_z = int(round(z_perc * patient_mask.shape[0])) mal_score = row["diameter_mm"] start_y = center_y - view_size / 2 start_x = center_x - view_size / 2 nodule_in_mask = False for z_index in [-1, 0, 1]: img = patient_mask[z_index + center_z] start_x = int(start_x) start_y = int(start_y) view_size = int(view_size) img_roi = img[start_y:start_y+view_size, start_x:start_x + view_size] if img_roi.sum() > 255: # more than 1 pixel of mask. nodule_in_mask = True if not nodule_in_mask: print("Nodule not in mask: ", (center_x, center_y, center_z)) if mal_score > 0: mal_score *= -1 df_nodule_predictions.loc[index, "diameter_mm"] = mal_score else: if center_z < 30: print("Z < 30: ", patient_id, " center z:", center_z, " y_perc: ", y_perc) if mal_score > 0: mal_score *= -1 df_nodule_predictions.loc[index, "diameter_mm"] = mal_score if (z_perc > 0.75 or z_perc < 0.25) and y_perc > 0.85: print("SUSPICIOUS FALSEPOSITIVE: ", patient_id, " center z:", center_z, " y_perc: ", y_perc) if center_z < 50 and y_perc < 0.30: print("SUSPICIOUS FALSEPOSITIVE OUT OF RANGE: ", patient_id, " center z:", center_z, " y_perc: ", y_perc) df_nodule_predictions.drop(df_nodule_predictions.index[delete_indices], inplace=True) return df_nodule_predictions def filter_nodule_predictions(only_patient_id=None): src_dir = settings.NDSB3_NODULE_DETECTION_DIR for csv_index, csv_path in enumerate(glob.glob(src_dir + "*.csv")): file_name = ntpath.basename(csv_path) patient_id = file_name.replace(".csv", "") print(csv_index, ": ", patient_id) if only_patient_id is not None and patient_id != only_patient_id: continue df_nodule_predictions = pandas.read_csv(csv_path) filter_patient_nodules_predictions(df_nodule_predictions, patient_id, CUBE_SIZE) df_nodule_predictions.to_csv(csv_path, index=False) def make_negative_train_data_based_on_predicted_luna_nodules(): src_dir = settings.LUNA_NODULE_DETECTION_DIR pos_labels_dir = settings.LUNA_NODULE_LABELS_DIR keep_dist = CUBE_SIZE + CUBE_SIZE / 2 total_false_pos = 0 for csv_index, csv_path in enumerate(glob.glob(src_dir + "*.csv")): file_name = ntpath.basename(csv_path) patient_id = file_name.replace(".csv", "") # if not "273525289046256012743471155680" in patient_id: # continue df_nodule_predictions = pandas.read_csv(csv_path) pos_annos_manual = None manual_path = settings.MANUAL_ANNOTATIONS_LABELS_DIR + patient_id + ".csv" if os.path.exists(manual_path): pos_annos_manual = pandas.read_csv(manual_path) filter_patient_nodules_predictions(df_nodule_predictions, patient_id, CUBE_SIZE, luna16=True) pos_labels = pandas.read_csv(pos_labels_dir + patient_id + "_annos_pos_lidc.csv") print(csv_index, ": ", patient_id, ", pos", len(pos_labels)) patient_imgs = helpers.load_patient_images(patient_id, settings.LUNA_16_TRAIN_DIR2D2, "*_m.png") for nod_pred_index, nod_pred_row in df_nodule_predictions.iterrows(): if nod_pred_row["diameter_mm"] < 0: continue nx, ny, nz = helpers.percentage_to_pixels(nod_pred_row["coord_x"], nod_pred_row["coord_y"], nod_pred_row["coord_z"], patient_imgs) diam_mm = nod_pred_row["diameter_mm"] for label_index, label_row in pos_labels.iterrows(): px, py, pz = helpers.percentage_to_pixels(label_row["coord_x"], label_row["coord_y"], label_row["coord_z"], patient_imgs) dist = math.sqrt(math.pow(nx - px, 2) + math.pow(ny - py, 2) + math.pow(nz- pz, 2)) if dist < keep_dist: if diam_mm >= 0: diam_mm *= -1 df_nodule_predictions.loc[nod_pred_index, "diameter_mm"] = diam_mm break if pos_annos_manual is not None: for index, label_row in pos_annos_manual.iterrows(): px, py, pz = helpers.percentage_to_pixels(label_row["x"], label_row["y"], label_row["z"], patient_imgs) diameter = label_row["d"] * patient_imgs[0].shape[1] # print((pos_coord_x, pos_coord_y, pos_coord_z)) # print(center_float_rescaled) dist = math.sqrt(math.pow(px - nx, 2) + math.pow(py - ny, 2) + math.pow(pz - nz, 2)) if dist < (diameter + 72): # make sure we have a big margin if diam_mm >= 0: diam_mm *= -1 df_nodule_predictions.loc[nod_pred_index, "diameter_mm"] = diam_mm print("#Too close", (nx, ny, nz)) break df_nodule_predictions.to_csv(csv_path, index=False) df_nodule_predictions = df_nodule_predictions[df_nodule_predictions["diameter_mm"] >= 0] df_nodule_predictions.to_csv(pos_labels_dir + patient_id + "_candidates_falsepos.csv", index=False) total_false_pos += len(df_nodule_predictions) print("Total false pos:", total_false_pos) def predict_cubes(model_path, continue_job, only_patient_id=None, luna16=False, magnification=1, flip=False, train_data=True, holdout_no=-1, ext_name="", fold_count=2): if luna16: dst_dir = settings.LUNA_NODULE_DETECTION_DIR else: dst_dir = settings.NDSB3_NODULE_DETECTION_DIR if not os.path.exists(dst_dir): os.makedirs(dst_dir) holdout_ext = "" # if holdout_no is not None: # holdout_ext = "_h" + str(holdout_no) if holdout_no >= 0 else "" flip_ext = "" if flip: flip_ext = "_flip" dst_dir += "predictions" + str(int(magnification * 10)) + holdout_ext + flip_ext + "_" + ext_name + "/" if not os.path.exists(dst_dir): os.makedirs(dst_dir) sw = helpers.Stopwatch.start_new() model = step2_train_nodule_detector.get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=model_path) if not luna16: if train_data: labels_df = pandas.read_csv("resources/stage1_labels.csv") labels_df.set_index(["id"], inplace=True) else: labels_df = pandas.read_csv("resources/stage2_sample_submission.csv") labels_df.set_index(["id"], inplace=True) patient_ids = [] for file_name in os.listdir(settings.NDSB3_EXTRACTED_IMAGE_DIR): if not os.path.isdir(settings.NDSB3_EXTRACTED_IMAGE_DIR + file_name): continue patient_ids.append(file_name) all_predictions_csv = [] for patient_index, patient_id in enumerate(reversed(patient_ids)): if not luna16: if patient_id not in labels_df.index: continue if "metadata" in patient_id: continue if only_patient_id is not None and only_patient_id != patient_id: continue if holdout_no is not None and train_data: patient_fold = helpers.get_patient_fold(patient_id) patient_fold %= fold_count if patient_fold != holdout_no: continue print(patient_index, ": ", patient_id) csv_target_path = dst_dir + patient_id + ".csv" if continue_job and only_patient_id is None: if os.path.exists(csv_target_path): continue patient_img = helpers.load_patient_images(patient_id, settings.NDSB3_EXTRACTED_IMAGE_DIR, "*_i.png", []) if magnification != 1: patient_img = helpers.rescale_patient_images(patient_img, (1, 1, 1), magnification) patient_mask = helpers.load_patient_images(patient_id, settings.NDSB3_EXTRACTED_IMAGE_DIR, "*_m.png", []) if magnification != 1: patient_mask = helpers.rescale_patient_images(patient_mask, (1, 1, 1), magnification, is_mask_image=True) # patient_img = patient_img[:, ::-1, :] # patient_mask = patient_mask[:, ::-1, :] step = PREDICT_STEP CROP_SIZE = CUBE_SIZE # CROP_SIZE = 48 predict_volume_shape_list = [0, 0, 0] for dim in range(3): dim_indent = 0 while dim_indent + CROP_SIZE < patient_img.shape[dim]: predict_volume_shape_list[dim] += 1 dim_indent += step predict_volume_shape = (predict_volume_shape_list[0], predict_volume_shape_list[1], predict_volume_shape_list[2]) predict_volume = numpy.zeros(shape=predict_volume_shape, dtype=float) print("Predict volume shape: ", predict_volume.shape) done_count = 0 skipped_count = 0 batch_size = 128 batch_list = [] batch_list_coords = [] patient_predictions_csv = [] cube_img = None annotation_index = 0 for z in range(0, predict_volume_shape[0]): for y in range(0, predict_volume_shape[1]): for x in range(0, predict_volume_shape[2]): #if cube_img is None: cube_img = patient_img[z * step:z * step+CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step+CROP_SIZE] cube_mask = patient_mask[z * step:z * step+CROP_SIZE, y * step:y * step + CROP_SIZE, x * step:x * step+CROP_SIZE] if cube_mask.sum() < 2000: skipped_count += 1 else: if flip: cube_img = cube_img[:, :, ::-1] if CROP_SIZE != CUBE_SIZE: cube_img = helpers.rescale_patient_images2(cube_img, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) # helpers.save_cube_img("c:/tmp/cube.png", cube_img, 8, 4) # cube_mask = helpers.rescale_patient_images2(cube_mask, (CUBE_SIZE, CUBE_SIZE, CUBE_SIZE)) img_prep = prepare_image_for_net3D(cube_img) batch_list.append(img_prep) batch_list_coords.append((z, y, x)) if len(batch_list) % batch_size == 0: batch_data = numpy.vstack(batch_list) p = model.predict(batch_data, batch_size=batch_size) for i in range(len(p[0])): p_z = batch_list_coords[i][0] p_y = batch_list_coords[i][1] p_x = batch_list_coords[i][2] nodule_chance = p[0][i][0] predict_volume[p_z, p_y, p_x] = nodule_chance if nodule_chance > P_TH: p_z = p_z * step + CROP_SIZE / 2 p_y = p_y * step + CROP_SIZE / 2 p_x = p_x * step + CROP_SIZE / 2 p_z_perc = round(p_z / patient_img.shape[0], 4) p_y_perc = round(p_y / patient_img.shape[1], 4) p_x_perc = round(p_x / patient_img.shape[2], 4) diameter_mm = round(p[1][i][0], 4) # diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round(2 * step / patient_img.shape[2], 4) diameter_perc = round(diameter_mm / patient_img.shape[2], 4) nodule_chance = round(nodule_chance, 4) patient_predictions_csv_line = [annotation_index, p_x_perc, p_y_perc, p_z_perc, diameter_perc, nodule_chance, diameter_mm] patient_predictions_csv.append(patient_predictions_csv_line) all_predictions_csv.append([patient_id] + patient_predictions_csv_line) annotation_index += 1 batch_list = [] batch_list_coords = [] done_count += 1 if done_count % 10000 == 0: print("Done: ", done_count, " skipped:", skipped_count) df = pandas.DataFrame(patient_predictions_csv, columns=["anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) filter_patient_nodules_predictions(df, patient_id, CROP_SIZE * magnification) df.to_csv(csv_target_path, index=False) # cols = ["anno_index", "nodule_chance", "diamete_mm"] + ["f" + str(i) for i in range(64)] # df_features = pandas.DataFrame(patient_features_csv, columns=cols) # for index, row in df.iterrows(): # if row["diameter_mm"] < 0: # print("Dropping") # anno_index = row["anno_index"] # df_features.drop(df_features[df_features["anno_index"] == anno_index].index, inplace=True) # # df_features.to_csv(csv_target_path_features, index=False) # df = pandas.DataFrame(all_predictions_csv, columns=["patient_id", "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) # df.to_csv("c:/tmp/tmp2.csv", index=False) print(predict_volume.mean()) print("Done in : ", sw.get_elapsed_seconds(), " seconds") if __name__ == "__main__": CONTINUE_JOB = True only_patient_id = None # "ebd601d40a18634b100c92e7db39f585" if not CONTINUE_JOB or only_patient_id is not None: for file_path in glob.glob("c:/tmp/*.*"): if not os.path.isdir(file_path): remove_file = True if only_patient_id is not None: if only_patient_id not in file_path: remove_file = False remove_file = False if remove_file: os.remove(file_path) if True: for magnification in [1, 1.5, 2]: # predict_cubes("models/model_luna16_full__fs_best.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=True, holdout_no=None, ext_name="luna16_fs") predict_cubes("models/model_luna16_full__fs_best.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=False, holdout_no=None, ext_name="luna16_fs") if True: for version in [2, 1]: for holdout in [0, 1]: for magnification in [1, 1.5, 2]: # predict_cubes("models/model_luna_posnegndsb_v" + str(version) + "__fs_h" + str(holdout) + "_end.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=True, holdout_no=holdout, ext_name="luna_posnegndsb_v" + str(version), fold_count=2) if holdout == 0: predict_cubes("models/model_luna_posnegndsb_v" + str(version) + "__fs_h" + str(holdout) + "_end.hd5", CONTINUE_JOB, only_patient_id=only_patient_id, magnification=magnification, flip=False, train_data=False, holdout_no=holdout, ext_name="luna_posnegndsb_v" + str(version), fold_count=2)
mit
mklauser/tardis
tardis/io/config_reader.py
1
44501
# Module to read the rather complex config data # Currently the configuration file is documented in # tardis/data/example_configuration.ini import logging import os import pprint import copy from astropy import constants, units as u import astropy.utils import numpy as np import pandas as pd import yaml from model_reader import read_density_file, calculate_density_after_time, read_abundances_file from tardis import atomic from tardis.util import species_string_to_tuple, parse_quantity, element_symbol2atomic_number pp = pprint.PrettyPrinter(indent=4) logger = logging.getLogger(__name__) data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../data')) #File parsers for different file formats: density_structure_fileparser = {} inv_ni56_efolding_time = 1 / (8.8 * u.day) inv_co56_efolding_time = 1 / (113.7 * u.day) inv_cr48_efolding_time = 1 / (1.29602 * u.day) inv_v48_efolding_time = 1 / (23.0442 * u.day) inv_fe52_efolding_time = 1 / (0.497429 * u.day) inv_mn52_efolding_time = 1 / (0.0211395 * u.day) class ConfigurationError(ValueError): pass def parse_quantity_linspace(quantity_linspace_dictionary, add_one=True): """ parse a dictionary of the following kind {'start': 5000 km/s, 'stop': 10000 km/s, 'num': 1000} Parameters: ----------- quantity_linspace_dictionary: ~dict add_one: boolean, default: True Returns: -------- ~np.array """ start = parse_quantity(quantity_linspace_dictionary['start']) stop = parse_quantity(quantity_linspace_dictionary['stop']) try: stop = stop.to(start.unit) except u.UnitsError: raise ConfigurationError('"start" and "stop" keyword must be compatible quantities') num = quantity_linspace_dictionary['num'] if add_one: num += 1 return np.linspace(start.value, stop.value, num=num) * start.unit def parse_spectral_bin(spectral_bin_boundary_1, spectral_bin_boundary_2): spectral_bin_boundary_1 = parse_quantity(spectral_bin_boundary_1).to('Angstrom', u.spectral()) spectral_bin_boundary_2 = parse_quantity(spectral_bin_boundary_2).to('Angstrom', u.spectral()) spectrum_start_wavelength = min(spectral_bin_boundary_1, spectral_bin_boundary_2) spectrum_end_wavelength = max(spectral_bin_boundary_1, spectral_bin_boundary_2) return spectrum_start_wavelength, spectrum_end_wavelength def calc_exponential_density(velocities, v_0, rho0): """ This function computes the exponential density profile. :param velocities: Array like velocity profile. :param rho0: rho at v0 :param velocity_0: the velocity at the inner shell :param a: proportionality constant :return: Array like density profile """ densities = rho0 * np.exp(-(velocities / v_0)) return densities def calc_power_law_density(velocities, velocity_0, rho_0, exponent): """ This function computes a descret exponential density profile. :math:`\\rho = \\rho_0 \\times \\left( \\frac{v_0}{v} \\right)^n` Parameters ---------- velocities : Array like list velocities in km/s velocity_0 : ~float Velocity at the inner boundary rho_0 : ~float density at velocity_0 exponent : ~float exponent used in the powerlaw Returns ------- Array like density structure """ densities = rho_0 * np.power((velocity_0 / velocities), exponent) return densities def parse_model_file_section(model_setup_file_dict, time_explosion): def parse_artis_model_setup_files(model_file_section_dict, time_explosion): ###### Reading the structure part of the ARTIS file pair structure_fname = model_file_section_dict['structure_fname'] for i, line in enumerate(file(structure_fname)): if i == 0: no_of_shells = np.int64(line.strip()) elif i == 1: time_of_model = u.Quantity(float(line.strip()), 'day').to('s') elif i == 2: break artis_model_columns = ['velocities', 'mean_densities_0', 'ni56_fraction', 'co56_fraction', 'fe52_fraction', 'cr48_fraction'] artis_model = np.recfromtxt(structure_fname, skip_header=2, usecols=(1, 2, 4, 5, 6, 7), unpack=True, dtype=[(item, np.float64) for item in artis_model_columns]) #converting densities from log(g/cm^3) to g/cm^3 and stretching it to the current ti velocities = u.Quantity(np.append([0], artis_model['velocities']), 'km/s').to('cm/s') mean_densities_0 = u.Quantity(10 ** artis_model['mean_densities_0'], 'g/cm^3') mean_densities = calculate_density_after_time(mean_densities_0, time_of_model, time_explosion) #Verifying information if len(mean_densities) == no_of_shells: logger.debug('Verified ARTIS model structure file %s (no_of_shells=length of dataset)', structure_fname) else: raise ConfigurationError( 'Error in ARTIS file %s - Number of shells not the same as dataset length' % structure_fname) v_inner = velocities[:-1] v_outer = velocities[1:] volumes = (4 * np.pi / 3) * (time_of_model ** 3) * ( v_outer ** 3 - v_inner ** 3) masses = (volumes * mean_densities_0 / constants.M_sun).to(1) logger.info('Read ARTIS configuration file %s - found %d zones with total mass %g Msun', structure_fname, no_of_shells, sum(masses.value)) if 'v_lowest' in model_file_section_dict: v_lowest = parse_quantity(model_file_section_dict['v_lowest']).to('cm/s').value min_shell = v_inner.value.searchsorted(v_lowest) else: min_shell = 1 if 'v_highest' in model_file_section_dict: v_highest = parse_quantity(model_file_section_dict['v_highest']).to('cm/s').value max_shell = v_outer.value.searchsorted(v_highest) else: max_shell = no_of_shells artis_model = artis_model[min_shell:max_shell] v_inner = v_inner[min_shell:max_shell] v_outer = v_outer[min_shell:max_shell] mean_densities = mean_densities[min_shell:max_shell] ###### Reading the abundance part of the ARTIS file pair abundances_fname = model_file_section_dict['abundances_fname'] abundances = pd.DataFrame(np.loadtxt(abundances_fname)[min_shell:max_shell, 1:].transpose(), index=np.arange(1, 31)) ni_stable = abundances.ix[28] - artis_model['ni56_fraction'] co_stable = abundances.ix[27] - artis_model['co56_fraction'] fe_stable = abundances.ix[26] - artis_model['fe52_fraction'] mn_stable = abundances.ix[25] - 0.0 cr_stable = abundances.ix[24] - artis_model['cr48_fraction'] v_stable = abundances.ix[23] - 0.0 ti_stable = abundances.ix[22] - 0.0 abundances.ix[28] = ni_stable abundances.ix[28] += artis_model['ni56_fraction'] * np.exp(-(time_explosion* inv_ni56_efolding_time).to(1).value) abundances.ix[27] = co_stable abundances.ix[27] += artis_model['co56_fraction'] * np.exp(-(time_explosion* inv_co56_efolding_time).to(1).value) abundances.ix[27] += (inv_ni56_efolding_time * artis_model['ni56_fraction'] / (inv_ni56_efolding_time - inv_co56_efolding_time)) * \ (np.exp(-(inv_co56_efolding_time * time_explosion).to(1).value) - np.exp(-(inv_ni56_efolding_time * time_explosion).to(1).value)) abundances.ix[26] = fe_stable abundances.ix[26] += artis_model['fe52_fraction'] * np.exp(-(time_explosion * inv_fe52_efolding_time).to(1).value) abundances.ix[26] += ((artis_model['co56_fraction'] * inv_ni56_efolding_time - artis_model['co56_fraction'] * inv_co56_efolding_time + artis_model['ni56_fraction'] * inv_ni56_efolding_time - artis_model['ni56_fraction'] * inv_co56_efolding_time - artis_model['co56_fraction'] * inv_ni56_efolding_time * np.exp(-(inv_co56_efolding_time * time_explosion).to(1).value) + artis_model['co56_fraction'] * inv_co56_efolding_time * np.exp(-(inv_co56_efolding_time * time_explosion).to(1).value) - artis_model['ni56_fraction'] * inv_ni56_efolding_time * np.exp(-(inv_co56_efolding_time * time_explosion).to(1).value) + artis_model['ni56_fraction'] * inv_co56_efolding_time * np.exp(-(inv_ni56_efolding_time * time_explosion).to(1).value)) / (inv_ni56_efolding_time - inv_co56_efolding_time)) abundances.ix[25] = mn_stable abundances.ix[25] += (inv_fe52_efolding_time * artis_model['fe52_fraction'] / (inv_fe52_efolding_time - inv_mn52_efolding_time)) * \ (np.exp(-(inv_mn52_efolding_time * time_explosion).to(1).value) - np.exp(-(inv_fe52_efolding_time * time_explosion).to(1).value)) abundances.ix[24] = cr_stable abundances.ix[24] += artis_model['cr48_fraction'] * np.exp(-(time_explosion* inv_cr48_efolding_time).to(1).value) abundances.ix[24] += ((artis_model['fe52_fraction'] * inv_fe52_efolding_time - artis_model['fe52_fraction'] * inv_mn52_efolding_time - artis_model['fe52_fraction'] * inv_fe52_efolding_time * np.exp(-(inv_mn52_efolding_time * time_explosion).to(1).value) + artis_model['fe52_fraction'] * inv_mn52_efolding_time * np.exp(-(inv_fe52_efolding_time * time_explosion).to(1).value)) / (inv_fe52_efolding_time - inv_mn52_efolding_time)) abundances.ix[23] = v_stable abundances.ix[23] += (inv_cr48_efolding_time * artis_model['cr48_fraction'] / (inv_cr48_efolding_time - inv_v48_efolding_time)) * \ (np.exp(-(inv_v48_efolding_time * time_explosion).to(1).value) - np.exp(-(inv_cr48_efolding_time * time_explosion).to(1).value)) abundances.ix[22] = ti_stable abundances.ix[22] += ((artis_model['cr48_fraction'] * inv_cr48_efolding_time - artis_model['cr48_fraction'] * inv_v48_efolding_time - artis_model['cr48_fraction'] * inv_cr48_efolding_time * np.exp(-(inv_v48_efolding_time * time_explosion).to(1).value) + artis_model['cr48_fraction'] * inv_v48_efolding_time * np.exp(-(inv_cr48_efolding_time * time_explosion).to(1).value)) / (inv_cr48_efolding_time - inv_v48_efolding_time)) if 'split_shells' in model_file_section_dict: split_shells = int(model_file_section_dict['split_shells']) else: split_shells = 1 if split_shells > 1: logger.info('Increasing the number of shells by a factor of %s' % split_shells) no_of_shells = len(v_inner) velocities = np.linspace(v_inner[0], v_outer[-1], no_of_shells * split_shells + 1) v_inner = velocities[:-1] v_outer = velocities[1:] old_mean_densities = mean_densities mean_densities = np.empty(no_of_shells*split_shells) * old_mean_densities.unit new_abundance_data = np.empty((abundances.values.shape[0], no_of_shells * split_shells)) for i in xrange(split_shells): mean_densities[i::split_shells] = old_mean_densities new_abundance_data[:,i::split_shells] = abundances.values abundances = pd.DataFrame(new_abundance_data, index=abundances.index) #def parser_simple_ascii_model return v_inner, v_outer, mean_densities, abundances model_file_section_parser = {} model_file_section_parser['artis'] = parse_artis_model_setup_files try: parser = model_file_section_parser[model_setup_file_dict['type']] except KeyError: raise ConfigurationError('In abundance file section only types %s are allowed (supplied %s) ' % (model_file_section_parser.keys(), model_file_section_parser['type'])) return parser(model_setup_file_dict, time_explosion) def parse_density_file_section(density_file_dict, time_explosion): density_file_parser = {} def parse_artis_density(density_file_dict, time_explosion): density_file = density_file_dict['name'] for i, line in enumerate(file(density_file)): if i == 0: no_of_shells = np.int64(line.strip()) elif i == 1: time_of_model = u.Quantity(float(line.strip()), 'day').to('s') elif i == 2: break velocities, mean_densities_0 = np.recfromtxt(density_file, skip_header=2, usecols=(1, 2), unpack=True) #converting densities from log(g/cm^3) to g/cm^3 and stretching it to the current ti velocities = u.Quantity(np.append([0], velocities), 'km/s').to('cm/s') mean_densities_0 = u.Quantity(10 ** mean_densities_0, 'g/cm^3') mean_densities = calculate_density_after_time(mean_densities_0, time_of_model, time_explosion) #Verifying information if len(mean_densities) == no_of_shells: logger.debug('Verified ARTIS file %s (no_of_shells=length of dataset)', density_file) else: raise ConfigurationError( 'Error in ARTIS file %s - Number of shells not the same as dataset length' % density_file) min_shell = 1 max_shell = no_of_shells v_inner = velocities[:-1] v_outer = velocities[1:] volumes = (4 * np.pi / 3) * (time_of_model ** 3) * ( v_outer ** 3 - v_inner ** 3) masses = (volumes * mean_densities_0 / constants.M_sun).to(1) logger.info('Read ARTIS configuration file %s - found %d zones with total mass %g Msun', density_file, no_of_shells, sum(masses.value)) if 'v_lowest' in density_file_dict: v_lowest = parse_quantity(density_file_dict['v_lowest']).to('cm/s').value min_shell = v_inner.value.searchsorted(v_lowest) else: min_shell = 1 if 'v_highest' in density_file_dict: v_highest = parse_quantity(density_file_dict['v_highest']).to('cm/s').value max_shell = v_outer.value.searchsorted(v_highest) else: max_shell = no_of_shells v_inner = v_inner[min_shell:max_shell] v_outer = v_outer[min_shell:max_shell] mean_densities = mean_densities[min_shell:max_shell] return v_inner, v_outer, mean_densities, min_shell, max_shell density_file_parser['artis'] = parse_artis_density try: parser = density_file_parser[density_file_dict['type']] except KeyError: raise ConfigurationError('In abundance file section only types %s are allowed (supplied %s) ' % (density_file_parser.keys(), density_file_dict['type'])) return parser(density_file_dict, time_explosion) def parse_density_section(density_dict, v_inner, v_outer, time_explosion): density_parser = {} #Parse density uniform def parse_uniform(density_dict, v_inner, v_outer, time_explosion): no_of_shells = len(v_inner) return parse_quantity(density_dict['value']).to('g cm^-3') * np.ones(no_of_shells) density_parser['uniform'] = parse_uniform #Parse density branch85 w7 def parse_branch85(density_dict, v_inner, v_outer, time_explosion): time_0 = density_dict.pop('time_0', 19.9999584) if isinstance(time_0, basestring): time_0 = parse_quantity(time_0).to('s') else: time_0 *= u.s logger.debug('time_0 not supplied for density branch85 - using sensible default %g', time_0) density_coefficient = density_dict.pop('density_coefficient', None) if density_coefficient is None: density_coefficient = 3e29 * u.Unit('g/cm^3') logger.debug('density_coefficient not supplied for density type branch85 - using sensible default %g', density_coefficient) else: density_coefficient = parse_quantity(density_coefficient) velocities = 0.5 * (v_inner + v_outer) densities = density_coefficient * (velocities.value * 1e-5) ** -7 densities = calculate_density_after_time(densities, time_0, time_explosion) return densities density_parser['branch85_w7'] = parse_branch85 def parse_power_law(density_dict, v_inner, v_outer, time_explosion): time_0 = density_dict.pop('time_0', 19.9999584) if isinstance(time_0, basestring): time_0 = parse_quantity(time_0).to('s').value else: logger.debug('time_0 not supplied for density branch85 - using sensible default %g', time_0) try: rho_0 = density_dict.pop('rho_0') if isinstance(rho_0, basestring): rho_0 = parse_quantity(rho_0).to('g/cm^3').value else: raise KeyError except KeyError: rho_0 = 1e-2 logger.warning('rho_o was not given in the config! Using %g', rho_0) try: exponent = density_dict.pop('exponent') except KeyError: exponent = 2 logger.warning('exponent was not given in the config file! Using %f', exponent) velocities = 0.5 * (v_inner + v_outer) densities = calc_power_law_density(velocities, v_inner[0], rho_0, exponent) densities = u.Quantity(densities, 'g/cm^3') return densities density_parser['power_law'] = parse_power_law def parse_exponential(density_dict, v_inner, v_outer, time_explosion): time_0 = density_dict.pop('time_0', 19.9999584) if isinstance(time_0, basestring): time_0 = parse_quantity(time_0).to('s').value else: logger.debug('time_0 not supplied for density branch85 - using sensible default %g', time_0) try: rho_0 = density_dict.pop('rho_0') if isinstance(rho_0, basestring): rho_0 = parse_quantity(rho_0).to('g/cm^3').value else: raise KeyError except KeyError: rho_0 = 1e-2 logger.warning('rho_o was not given in the config! Using %g', rho_0) try: v_0 = density_dict.pop('v_0') if isinstance(v_0, basestring): v_0 = parse_quantity(v_0).to('km/s').value except KeyError: v_0 = 1 logger.warning('v_0 was not given in the config file! Using %f km/s', v_0) velocities = 0.5 * (v_inner + v_outer) densities = calc_exponential_density(velocities, v_0, rho_0) densities = u.Quantity(densities, 'g/cm^3') return densities density_parser['exponential'] = parse_exponential try: parser = density_parser[density_dict['type']] except KeyError: raise ConfigurationError('In density section only types %s are allowed (supplied %s) ' % (density_parser.keys(), density_dict['type'])) return parser(density_dict, v_inner, v_outer, time_explosion) def parse_abundance_file_section(abundance_file_dict, abundances, min_shell, max_shell): abundance_file_parser = {} def parse_artis(abundance_file_dict, abundances, min_shell, max_shell): #### ---- debug ---- time_of_model = 0.0 #### fname = abundance_file_dict['name'] max_atom = 30 logger.info("Parsing ARTIS Abundance section from shell %d to %d", min_shell, max_shell) abundances.values[:max_atom, :] = np.loadtxt(fname)[min_shell:max_shell, 1:].transpose() return abundances abundance_file_parser['artis'] = parse_artis try: parser = abundance_file_parser[abundance_file_dict['type']] except KeyError: raise ConfigurationError('In abundance file section only types %s are allowed (supplied %s) ' % (abundance_file_parser.keys(), abundance_file_dict['type'])) return parser(abundance_file_dict, abundances, min_shell, max_shell) def parse_supernova_section(supernova_dict): """ Parse the supernova section Parameters ---------- supernova_dict: dict YAML parsed supernova dict Returns ------- config_dict: dict """ config_dict = {} #parse luminosity luminosity_value, luminosity_unit = supernova_dict['luminosity_requested'].strip().split() if luminosity_unit == 'log_lsun': config_dict['luminosity_requested'] = 10 ** (float(luminosity_value) + np.log10(constants.L_sun.cgs.value)) * u.erg / u.s else: config_dict['luminosity_requested'] = (float(luminosity_value) * u.Unit(luminosity_unit)).to('erg/s') config_dict['time_explosion'] = parse_quantity(supernova_dict['time_explosion']).to('s') if 'distance' in supernova_dict: config_dict['distance'] = parse_quantity(supernova_dict['distance']) else: config_dict['distance'] = None if 'luminosity_wavelength_start' in supernova_dict: config_dict['luminosity_nu_end'] = parse_quantity(supernova_dict['luminosity_wavelength_start']).\ to('Hz', u.spectral()) else: config_dict['luminosity_nu_end'] = np.inf * u.Hz if 'luminosity_wavelength_end' in supernova_dict: config_dict['luminosity_nu_start'] = parse_quantity(supernova_dict['luminosity_wavelength_end']).\ to('Hz', u.spectral()) else: config_dict['luminosity_nu_start'] = 0.0 * u.Hz return config_dict def calculate_w7_branch85_densities(velocities, time_explosion, time_0=19.9999584, density_coefficient=3e29): """ Generated densities from the fit to W7 in Branch 85 page 620 (citation missing) Parameters ---------- velocities : `~numpy.ndarray` velocities in cm/s time_explosion : `float` time since explosion needed to descale density with expansion time_0 : `float` time in seconds of the w7 model - default 19.999, no reason to change density_coefficient : `float` coefficient for the polynomial - obtained by fitting to W7, no reason to change """ densities = density_coefficient * (velocities * 1e-5) ** -7 densities = calculate_density_after_time(densities, time_0, time_explosion) return densities[1:] class TARDISConfigurationNameSpace(object): def __init__(self, config_dict): self.config_dict = config_dict def __getattr__(self, item): if item in self.config_dict: config_item = self.config_dict[item] if isinstance(config_item, dict): setattr(self, item, TARDISConfigurationNameSpace(config_item)) return getattr(self, item) else: return self.config_dict[item] else: return super(TARDISConfigurationNameSpace, self).__getattribute__(item) def __getitem__(self, item): return self.config_dict.__getitem__(item) def get(self, k, d=None): return self.config_dict.get(k, d) def __repr__(self): return pp.pformat(self.config_dict) def __dir__(self): return self.__dict__.keys() + self.config_dict.keys() class TARDISConfiguration(TARDISConfigurationNameSpace): """ Tardis configuration class """ @classmethod def from_yaml(cls, fname, test_parser=False): try: yaml_dict = yaml.load(file(fname)) except IOError as e: logger.critical('No config file named: %s', fname) raise e tardis_config_version = yaml_dict.get('tardis_config_version', None) if tardis_config_version != 'v1.0': raise ConfigurationError('Currently only tardis_config_version v1.0 supported') return cls.from_config_dict(yaml_dict, test_parser=test_parser) @classmethod def from_config_dict(cls, raw_dict, atom_data=None, test_parser=False): """ Reading in from a YAML file and commandline args. Preferring commandline args when given Parameters ---------- fname : filename for the yaml file args : namespace object Not implemented Yet Returns ------- `tardis.config_reader.TARDISConfiguration` """ config_dict = {} raw_dict = copy.deepcopy(raw_dict) #First let's see if we can find an atom_db anywhere: if test_parser: atom_data = None elif 'atom_data' in raw_dict.keys(): atom_data_fname = raw_dict['atom_data'] config_dict['atom_data_fname'] = atom_data_fname else: raise ConfigurationError('No atom_data key found in config or command line') if atom_data is None and not test_parser: logger.info('Reading Atomic Data from %s', atom_data_fname) atom_data = atomic.AtomData.from_hdf5(atom_data_fname) else: atom_data = atom_data #Parsing supernova dictionary config_dict['supernova'] = parse_supernova_section(raw_dict['supernova']) #Parsing the model section model_section = raw_dict.pop('model') v_inner = None v_outer = None mean_densities = None abundances = None if 'file' in model_section: v_inner, v_outer, mean_densities, abundances = parse_model_file_section(model_section.pop('file'), config_dict['supernova']['time_explosion']) no_of_shells = len(v_inner) structure_config_dict = {} if 'structure' in model_section: #Trying to figure out the structure (number of shells) structure_section = model_section.pop('structure') inner_boundary_index, outer_boundary_index = None, None try: structure_section_type = structure_section['type'] except KeyError: raise ConfigurationError('Structure section requires "type" keyword') if structure_section_type == 'specific': velocities = parse_quantity_linspace(structure_section['velocity']).to('cm/s') v_inner, v_outer = velocities[:-1], velocities[1:] mean_densities = parse_density_section(structure_section['density'], v_inner, v_outer, config_dict['supernova']['time_explosion']) elif structure_section_type == 'file': v_inner_boundary, v_outer_boundary = structure_section.get('v_inner_boundary', 0 * u.km/u.s), \ structure_section.get('v_outer_boundary', np.inf * u.km/u.s) if not hasattr(v_inner_boundary, 'unit'): v_inner_boundary = parse_quantity(v_inner_boundary) if not hasattr(v_outer_boundary, 'unit'): v_outer_boundary = parse_quantity(v_outer_boundary) v_inner, v_outer, mean_densities, inner_boundary_index, outer_boundary_index =\ read_density_file(structure_section['filename'], structure_section['filetype'], config_dict['supernova']['time_explosion'], v_inner_boundary, v_outer_boundary) else: raise ConfigurationError('structure section required in configuration file') r_inner = config_dict['supernova']['time_explosion'] * v_inner r_outer = config_dict['supernova']['time_explosion'] * v_outer r_middle = 0.5 * (r_inner + r_outer) structure_config_dict['v_inner'] = v_inner structure_config_dict['v_outer'] = v_outer structure_config_dict['mean_densities'] = mean_densities no_of_shells = len(v_inner) structure_config_dict['no_of_shells'] = no_of_shells structure_config_dict['r_inner'] = r_inner structure_config_dict['r_outer'] = r_outer structure_config_dict['r_middle'] = r_middle structure_config_dict['volumes'] = (4. / 3) * np.pi * (r_outer ** 3 - r_inner ** 3) config_dict['structure'] = structure_config_dict #Now that the structure section is parsed we move on to the abundances abundances_section = model_section.pop('abundances') abundances_type = abundances_section.pop('type') if abundances_type == 'uniform': abundances = pd.DataFrame(columns=np.arange(no_of_shells), index=pd.Index(np.arange(1, 120), name='atomic_number'), dtype=np.float64) for element_symbol_string in abundances_section: z = element_symbol2atomic_number(element_symbol_string) abundances.ix[z] = float(abundances_section[element_symbol_string]) elif abundances_type == 'file': index, abundances = read_abundances_file(abundances_section['filename'], abundances_section['filetype'], inner_boundary_index, outer_boundary_index) if len(index) != no_of_shells: raise ConfigurationError('The abundance file specified has not the same number of cells' 'as the specified density profile') abundances = abundances.replace(np.nan, 0.0) abundances = abundances[abundances.sum(axis=1) > 0] norm_factor = abundances.sum(axis=0) if np.any(np.abs(norm_factor - 1) > 1e-12): logger.warning("Abundances have not been normalized to 1. - normalizing") abundances /= norm_factor config_dict['abundances'] = abundances ########### DOING PLASMA SECTION ############### plasma_section = raw_dict.pop('plasma') plasma_config_dict = {} if plasma_section['ionization'] not in ('nebular', 'lte'): raise ConfigurationError('plasma_type only allowed to be "nebular" or "lte"') plasma_config_dict['ionization'] = plasma_section['ionization'] if plasma_section['excitation'] not in ('dilute-lte', 'lte'): raise ConfigurationError('plasma_type only allowed to be "nebular" or "lte"') plasma_config_dict['excitation'] = plasma_section['excitation'] if plasma_section['radiative_rates_type'] not in ('dilute-blackbody', 'detailed'): raise ConfigurationError('radiative_rates_types must be either "dilute-blackbody" or "detailed"') plasma_config_dict['radiative_rates_type'] = plasma_section['radiative_rates_type'] if plasma_section['line_interaction_type'] not in ('scatter', 'downbranch', 'macroatom'): raise ConfigurationError('radiative_rates_types must be either "scatter", "downbranch", or "macroatom"') plasma_config_dict['line_interaction_type'] = plasma_section['line_interaction_type'] if 'w_epsilon' in plasma_section: plasma_config_dict['w_epsilon'] = plasma_section['w_epsilon'] else: logger.warn('"w_epsilon" not specified in plasma section - setting it to 1e-10') plasma_config_dict['w_epsilon'] = 1e-10 if 'delta_treatment' in plasma_section: plasma_config_dict['delta_treatment'] = plasma_section['delta_treatment'] else: logger.warn('"delta_treatment" not specified in plasma section - defaulting to None') plasma_config_dict['delta_treatment'] = None if 'initial_t_inner' in plasma_section: plasma_config_dict['t_inner'] = parse_quantity(plasma_section['initial_t_inner']).to('K') else: plasma_config_dict['t_inner'] = (((config_dict['supernova']['luminosity_requested'] / \ (4 * np.pi * r_inner[0]**2 * constants.sigma_sb))**.5)**.5).to('K') logger.info('"initial_t_inner" is not specified in the plasma section - ' 'initializing to %s with given luminosity', plasma_config_dict['t_inner']) if 'initial_t_rads' in plasma_section: if isinstance('initial_t_rads', basestring): uniform_t_rads = parse_quantity(plasma_section['initial_t_rads']) plasma_config_dict['t_rads'] = u.Quantity(np.ones(no_of_shells) * uniform_t_rads.value, u.K) elif astropy.utils.isiterable(plasma_section['initial_t_rads']): assert len(plasma_section['initial_t_rads']) == no_of_shells plasma_config_dict['t_rads'] = u.Quantity(plasma_section['initial_t_rads'], u.K) else: logger.info('No "initial_t_rads" specified - initializing with 10000 K') plasma_config_dict['t_rads'] = u.Quantity(np.ones(no_of_shells) * 10000., u.K) ##### NLTE subsection of Plasma start nlte_config_dict = {} nlte_species = [] if 'nlte' in plasma_section: nlte_section = plasma_section['nlte'] if 'species' in nlte_section: nlte_species_list = nlte_section.pop('species') for species_string in nlte_species_list: nlte_species.append(species_string_to_tuple(species_string)) nlte_config_dict['species'] = nlte_species nlte_config_dict['species_string'] = nlte_species_list nlte_config_dict.update(nlte_section) if 'coronal_approximation' not in nlte_section: logger.debug('NLTE "coronal_approximation" not specified in NLTE section - defaulting to False') nlte_config_dict['coronal_approximation'] = False if 'classical_nebular' not in nlte_section: logger.debug('NLTE "classical_nebular" not specified in NLTE section - defaulting to False') nlte_config_dict['classical_nebular'] = False elif nlte_section: #checks that the dictionary is not empty logger.warn('No "species" given - ignoring other NLTE options given:\n%s', pp.pformat(nlte_section)) if not nlte_config_dict: nlte_config_dict['species'] = [] plasma_config_dict['nlte'] = nlte_config_dict #^^^^^^^ NLTE subsection of Plasma end config_dict['plasma'] = plasma_config_dict #^^^^^^^^^^^^^^ End of Plasma Section ##### Monte Carlo Section montecarlo_section = raw_dict.pop('montecarlo') montecarlo_config_dict = {} #PARSING convergence section convergence_variables = ['t_inner', 't_rad', 'w'] convergence_config_dict = {} if 'convergence_strategy' in montecarlo_section: convergence_section = montecarlo_section.pop('convergence_strategy') if 'lock_t_inner_cycles' in convergence_section: lock_t_inner_cycles = convergence_section['lock_t_inner_cycles'] logger.info('lock_t_inner_cycles set to %d cycles', lock_t_inner_cycles) else: lock_t_inner_cycles = None if 't_inner_update_exponent' in convergence_section: t_inner_update_exponent = convergence_section['t_inner_update_exponent'] logger.info('t_inner update exponent set to %g', t_inner_update_exponent) else: t_inner_update_exponent = None if convergence_section['type'] == 'damped': convergence_config_dict['type'] == 'damped' global_damping_constant = convergence_section['damping_constant'] for convergence_variable in convergence_variables: convergence_parameter_name = convergence_variable current_convergence_parameters = {} convergence_config_dict[convergence_parameter_name] = current_convergence_parameters if convergence_variable in convergence_section: current_convergence_parameters['damping_constant'] \ = convergence_section[convergence_variable]['damping_constant'] else: current_convergence_parameters['damping_constant'] = global_damping_constant elif convergence_section['type'] == 'specific': convergence_config_dict['type'] = 'specific' global_convergence_parameters = {} global_convergence_parameters['damping_constant'] = convergence_section['damping_constant'] global_convergence_parameters['threshold'] = convergence_section['threshold'] global_convergence_parameters['fraction'] = convergence_section['fraction'] for convergence_variable in convergence_variables: convergence_parameter_name = convergence_variable current_convergence_parameters = {} convergence_config_dict[convergence_parameter_name] = current_convergence_parameters if convergence_variable in convergence_section: for param in global_convergence_parameters.keys(): if param == 'fraction' and convergence_variable == 't_inner': continue if param in convergence_section[convergence_variable]: current_convergence_parameters[param] = convergence_section[convergence_variable][param] else: current_convergence_parameters[param] = global_convergence_parameters[param] else: convergence_config_dict[convergence_parameter_name] = global_convergence_parameters.copy() global_convergence_parameters['hold'] = convergence_section['hold'] convergence_config_dict['global_convergence_parameters'] = global_convergence_parameters else: raise ValueError("convergence criteria unclear %s", convergence_section['type']) else: lock_t_inner_cycles = None t_inner_update_exponent = None logger.warning('No convergence criteria selected - just damping by 0.5 for w, t_rad and t_inner') convergence_config_dict['type'] = 'damped' for convergence_variable in convergence_variables: convergence_parameter_name = convergence_variable convergence_config_dict[convergence_parameter_name] = dict(damping_constant=0.5) if lock_t_inner_cycles is None: logger.warning('t_inner update lock cycles not set - defaulting to 1') lock_t_inner_cycles = 1 if t_inner_update_exponent is None: logger.warning('t_inner update exponent not set - defaulting to -0.5') t_inner_update_exponent = -0.5 convergence_config_dict['lock_t_inner_cycles'] = lock_t_inner_cycles convergence_config_dict['t_inner_update_exponent'] = t_inner_update_exponent montecarlo_config_dict['convergence'] = convergence_config_dict ###### END of convergence section reading if 'last_no_of_packets' not in montecarlo_section: montecarlo_section['last_no_of_packets'] = None if 'no_of_virtual_packets' not in montecarlo_section: montecarlo_section['no_of_virtual_packets'] = 0 montecarlo_config_dict.update(montecarlo_section) disable_electron_scattering = plasma_section.get('disable_electron_scattering', False) if disable_electron_scattering is False: logger.info("Electron scattering switched on") montecarlo_config_dict['sigma_thomson'] =6.652486e-25 / (u.cm**2) else: logger.warn('Disabling electron scattering - this is not physical') montecarlo_config_dict['sigma_thomson'] = 1e-200 / (u.cm**2) montecarlo_config_dict['enable_reflective_inner_boundary'] = False montecarlo_config_dict['inner_boundary_albedo'] = 0.0 if 'inner_boundary_albedo' in montecarlo_section: montecarlo_config_dict['inner_boundary_albedo'] = montecarlo_section['inner_boundary_albedo'] if 'enable_reflective_inner_boundary' not in montecarlo_section: logger.warn('inner_boundary_albedo set, however enable_reflective_inner_boundary option not specified ' '- defaulting to reflective inner boundary') montecarlo_config_dict['enable_reflective_inner_boundary'] = True if 'enable_reflective_inner_boundary' in montecarlo_section: montecarlo_config_dict['enable_reflective_inner_boundary'] = montecarlo_section['enable_reflective_inner_boundary'] if montecarlo_section['enable_reflective_inner_boundary'] == True and 'inner_boundary_albedo' not in montecarlo_section: logger.warn('enabled reflective inner boundary, but "inner_boundary_albedo" not set - defaulting to 0.5') montecarlo_config_dict['inner_boundary_albedo'] = 0.5 if 'black_body_sampling' in montecarlo_section: black_body_sampling_section = montecarlo_section.pop('black_body_sampling') sampling_start, sampling_end = parse_spectral_bin(black_body_sampling_section['start'], black_body_sampling_section['stop']) montecarlo_config_dict['black_body_sampling']['start'] = sampling_start montecarlo_config_dict['black_body_sampling']['end'] = sampling_end montecarlo_config_dict['black_body_sampling']['samples'] = np.int64(black_body_sampling_section['num']) else: logger.warn('No "black_body_sampling" section in config file - using defaults of ' '50 - 200000 Angstrom (1e6 samples)') montecarlo_config_dict['black_body_sampling'] = {} montecarlo_config_dict['black_body_sampling']['start'] = 50 * u.angstrom montecarlo_config_dict['black_body_sampling']['end'] = 200000 * u.angstrom montecarlo_config_dict['black_body_sampling']['samples'] = np.int64(1e6) config_dict['montecarlo'] = montecarlo_config_dict ##### End of MonteCarlo section ##### spectrum section ###### spectrum_section = raw_dict.pop('spectrum') spectrum_config_dict = {} spectrum_frequency = parse_quantity_linspace(spectrum_section).to('Hz', u.spectral()) if spectrum_frequency[0] > spectrum_frequency[1]: spectrum_frequency = spectrum_frequency[::-1] spectrum_config_dict['start'] = parse_quantity(spectrum_section['start']) spectrum_config_dict['end'] = parse_quantity(spectrum_section['stop']) spectrum_config_dict['bins'] = spectrum_section['num'] spectrum_frequency = np.linspace(spectrum_config_dict['end'].to('Hz', u.spectral()).value, spectrum_config_dict['start'].to('Hz', u.spectral()).value, num=spectrum_config_dict['bins'] + 1) * u.Hz spectrum_config_dict['frequency'] = spectrum_frequency.to('Hz') config_dict['spectrum'] = spectrum_config_dict return cls(config_dict, atom_data) def __init__(self, config_dict, atom_data): super(TARDISConfiguration, self).__init__(config_dict) self.atom_data = atom_data selected_atomic_numbers = self.abundances.index if atom_data is not None: self.number_densities = (self.abundances * self.structure.mean_densities.to('g/cm^3').value) self.number_densities = self.number_densities.div(self.atom_data.atom_data.mass.ix[selected_atomic_numbers], axis=0) else: logger.critical('atom_data is None, only sensible for testing the parser')
bsd-3-clause
Juanlu001/PyFME
examples/example_005_stationary_turn_during_ascent.py
1
4221
# -*- coding: utf-8 -*- """ Python Flight Mechanics Engine (PyFME). Copyright (c) AeroPython Development Team. Distributed under the terms of the MIT License. Example ------- Cessna 172, ISA1976 integrated with Flat Earth (Euler angles). Example with trimmed aircraft: stationary, turn during ascent. The main purpose of this example is to check if the aircraft trimmed in a given state maintains the trimmed flight condition. """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from pyfme.aircrafts import Cessna172 from pyfme.environment.environment import Environment from pyfme.environment.atmosphere import ISA1976 from pyfme.environment.gravity import VerticalConstant from pyfme.environment.wind import NoWind from pyfme.models.systems import EulerFlatEarth from pyfme.simulator import BatchSimulation from pyfme.utils.trimmer import steady_state_flight_trimmer aircraft = Cessna172() atmosphere = ISA1976() gravity = VerticalConstant() wind = NoWind() environment = Environment(atmosphere, gravity, wind) # Initial conditions. TAS = 45 # m/s h0 = 3000 # m psi0 = 1.0 # rad x0, y0 = 0, 0 # m turn_rate = 0.25 # rad/s gamma0 = 0.05 # rad system = EulerFlatEarth(lat=0, lon=0, h=h0, psi=psi0, x_earth=x0, y_earth=y0) not_trimmed_controls = {'delta_elevator': 0.05, 'delta_aileron': 0.01 * np.sign(turn_rate), 'delta_rudder': 0.01 * np.sign(turn_rate), 'delta_t': 0.5} controls2trim = ['delta_elevator', 'delta_aileron', 'delta_rudder', 'delta_t'] trimmed_ac, trimmed_sys, trimmed_env, results = steady_state_flight_trimmer( aircraft, system, environment, TAS=TAS, controls_0=not_trimmed_controls, controls2trim=controls2trim, gamma=gamma0, turn_rate=turn_rate, verbose=1) #print(results) print() print('delta_elevator = ',"%8.4f" % np.rad2deg(results['delta_elevator']), 'deg') print('delta_aileron = ', "%8.4f" % np.rad2deg(results['delta_aileron']), 'deg') print('delta_rudder = ', "%8.4f" % np.rad2deg(results['delta_rudder']), 'deg') print('delta_t = ', "%8.4f" % results['delta_t'], '%') print() print('alpha = ', "%8.4f" % np.rad2deg(results['alpha']), 'deg') print('beta = ', "%8.4f" % np.rad2deg(results['beta']), 'deg') print() print('u = ', "%8.4f" % results['u'], 'm/s') print('v = ', "%8.4f" % results['v'], 'm/s') print('w = ', "%8.4f" % results['w'], 'm/s') print() print('psi = ', "%8.4f" % np.rad2deg(psi0), 'deg') print('theta = ', "%8.4f" % np.rad2deg(results['theta']), 'deg') print('phi = ', "%8.4f" % np.rad2deg(results['phi']), 'deg') print() print('p =', "%8.4f" % results['p'], 'rad/s') print('q =', "%8.4f" % results['q'], 'rad/s') print('r =', "%8.4f" % results['r'], 'rad/s') print() my_simulation = BatchSimulation(trimmed_ac, trimmed_sys, trimmed_env) tfin = 80 # seconds N = tfin * 100 + 1 time = np.linspace(0, tfin, N) initial_controls = trimmed_ac.controls controls = {} for control_name, control_value in initial_controls.items(): controls[control_name] = np.ones_like(time) * control_value my_simulation.set_controls(time, controls) par_list = ['x_earth', 'y_earth', 'height', 'psi', 'theta', 'phi', 'u', 'v', 'w', 'v_north', 'v_east', 'v_down', 'p', 'q', 'r', 'alpha', 'beta', 'TAS', 'F_xb', 'F_yb', 'F_zb', 'M_xb', 'M_yb', 'M_zb'] my_simulation.set_par_dict(par_list) my_simulation.run_simulation() # print(my_simulation.par_dict) plt.style.use('ggplot') for ii in range(len(par_list) // 3): three_params = par_list[3 * ii:3 * ii + 3] fig, ax = plt.subplots(3, 1, sharex=True) for jj, par in enumerate(three_params): ax[jj].plot(time, my_simulation.par_dict[par]) ax[jj].set_ylabel(par) ax[jj].set_xlabel('time (s)') fig = plt.figure() ax = Axes3D(fig) ax.plot(my_simulation.par_dict['x_earth'], my_simulation.par_dict['y_earth'], my_simulation.par_dict['height']) ax.plot(my_simulation.par_dict['x_earth'], my_simulation.par_dict['y_earth'], my_simulation.par_dict['height'] * 0) ax.set_xlabel('x_earth') ax.set_ylabel('y_earth') ax.set_zlabel('z_earth') plt.show()
mit
mlhhu2017/identifyDigit
r.weishaupt/mnist_utils.py
1
4405
# Import required packages import numpy as np; import idx2numpy as idx; import matplotlib.pyplot as plt; def loadset(data, labels): """ Loads data and labels from given paths. Arguments: data [string] -- Path to data file labels [string] -- Path to labels file Return: [2-tuple:np.array] -- Returns tuple of numpy-arrays, first one is the data set, second one is the label set """ return tuple(map(idx.convert_from_file, [data, labels])); def showimg(img, plotsize=[3,3]): """ Plots a single image as grayscaled pixel map through matplotlib.pyplot. Arguments: img [np.array] -- Matrix of integers to be interpreted as pixels of an image plotsize [list(integer)] -- Sets the size of the plot for the image. Return: [void] """ # Create new canvas and plot image without axes fig = plt.figure(figsize=plotsize); plt.imshow(img, cmap="gray"); plt.axis("off"); def showimgset(imgs, y = None, dim = 28, plotsize=[10,5]): """ Plots a set of n images positioned in a y*x-grid through matplotlib.pyplot. Arguments: imgs [np.array] -- List of n images y [int] -- Number of rows, defaults to ceil(sqrt(n)) dim [int] -- The dimension of a single image is dim x dim, defaults to 28 plotsize [list(integer)] -- Sets the size of the plot for the set of images. Return: [void] """ # Number of images recieved k = len(imgs); # At least one image is required if k < 1: raise ValueError("No image given!"); # Did we recieve a value for y? if y == None: # Calculate default value y = int(np.ceil(np.sqrt(k))); # Calculate x value based on y x = int(np.ceil(k / y)); # Are there enough images given? if k != x*y: # Fill up with black images imgs = np.concatenate((imgs, np.zeros((x*y-k, dim, dim)))); # Reshape to (y*28)x(x*28)-array imgmap = np.vstack([np.hstack(imgs[j*x:(j+1)*x]) for j in range(y)]); # Create new canvas, plot image map fig = plt.figure(figsize=plotsize); plt.imshow(imgmap, cmap="gray"); plt.axis("off"); def getdigit(digit, data, labels): """ Returns the first image representing a digit of type num. Data and labels must be in the same order! Arguments: digit [integer] -- Type of digit to be returned data [np.array] -- List of all digits labels [np.array] -- List of all labels Return: [np.array] -- Returns a single image as np.array """ # Search for first occurence of digit in labels i = 0; while True: # Did we find the right one? if labels[i] == digit: break; # Check next one i += 1; # Return corresponding image return data[i]; def getalldigits(digit, data, labels, n=None): """ Returns list of n images all representing the searched digit. Arguments: digit [integer] -- Type of digit to be returned data [np.array] -- List of all digits labels [np.array] -- List of all labels n [integer] -- Amount of digits to be returned, defaults to all Return: [np.array] - List of images representing given digit """ # Return all entries in data where corresponding labels entry is digit.# return data[np.where(labels == digit)[0][:n]] def showconfmatrix(matrix, labels, plotsize=[10,10]): """ Plots a confusion matrix based on the given input matrix. Arguments: matrix [np.array] -- A nxn array of frequency counts labels [np.array] -- An array of n labels plotsize [list(integer)] -- Sets the size of the plot for the image. Return: [void] """ # Save matrix shape x, y = matrix.shape; # Create new canvas fig = plt.figure(figsize=plotsize); # Add suplot to canvas ax = fig.add_subplot(111); # Display matrix img = ax.imshow(matrix, cmap=plt.cm.Pastel2); # Add labels to fields for i in range(x): for j in range(y): ax.annotate(str(matrix[i][j]), xy=(j,i), horizontalalignment="center", verticalalignment="center"); # Add color bar to the right cb = fig.colorbar(img); # Add labels to the axes plt.xticks(range(x), labels[:x]); plt.yticks(range(y), labels[:y]);
mit
soylentdeen/BlurryApple
Alignment/grid_finder.py
1
1380
import pyfits import numpy import scipy import matplotlib.pyplot as pyplot #Calculates the nominal x and y positions for the images of the lenslet array def generate_model(npeaks, height, fwhm, spacing): feature_width = int(npeaks*spacing+4*fwhm) feature_x = numpy.arange(feature_width) feature_y = numpy.zeros(feature_width) for i in range(npeaks): c = (i+1)*spacing feature_y += height*numpy.exp(-(feature_x-c)**2.0/(2.0*fwhm/2.4)**2.0) return feature_x, feature_y def find_centers(n, collapse, h, fwhm, spacing): x, y = generate_model(n, h, fwhm, spacing) y_corr = scipy.correlate(collapse, y) x_corr = scipy.linspace(0, len(y_corr)-1, num=len(y_corr)) peak = x_corr[numpy.argsort(y_corr)[-1]] centers = [] for i in range(n): centers.append((i+1)*spacing+peak) return numpy.array(centers) nx = 20 ny = 21 df = 'clocking_image.fits' data = pyfits.getdata(df) xcollapse = data.sum(axis=0) ycollapse = data.sum(axis=1) fwhm = 2.5 spacing = 8.1 height = 0.75*numpy.max(xcollapse) xcenters = find_centers(nx, xcollapse, height, fwhm, spacing) ycenters = find_centers(ny, ycollapse, height, fwhm, spacing) outfile = open('subaperture_positions.dat', 'w') for xc in xcenters: outfile.write("%.1f " % xc) outfile.write("\n") for yc in ycenters: outfile.write("%.1f " % yc) outfile.close()
gpl-2.0
LilithWittmann/airflow
airflow/hooks/presto_hook.py
37
2626
from builtins import str from pyhive import presto from pyhive.exc import DatabaseError from airflow.hooks.dbapi_hook import DbApiHook import logging logging.getLogger("pyhive").setLevel(logging.INFO) class PrestoException(Exception): pass class PrestoHook(DbApiHook): """ Interact with Presto through PyHive! >>> ph = PrestoHook() >>> sql = "SELECT count(1) AS num FROM airflow.static_babynames" >>> ph.get_records(sql) [[340698]] """ conn_name_attr = 'presto_conn_id' default_conn_name = 'presto_default' def get_conn(self): """Returns a connection object""" db = self.get_connection(self.presto_conn_id) return presto.connect( host=db.host, port=db.port, username=db.login, catalog=db.extra_dejson.get('catalog', 'hive'), schema=db.schema) @staticmethod def _strip_sql(sql): return sql.strip().rstrip(';') def get_records(self, hql, parameters=None): """ Get a set of records from Presto """ try: return super(PrestoHook, self).get_records( self._strip_sql(hql), parameters) except DatabaseError as e: obj = eval(str(e)) raise PrestoException(obj['message']) def get_first(self, hql, parameters=None): """ Returns only the first row, regardless of how many rows the query returns. """ try: return super(PrestoHook, self).get_first( self._strip_sql(hql), parameters) except DatabaseError as e: obj = eval(str(e)) raise PrestoException(obj['message']) def get_pandas_df(self, hql, parameters=None): """ Get a pandas dataframe from a sql query. """ import pandas cursor = self.get_cursor() cursor.execute(self._strip_sql(hql), parameters) try: data = cursor.fetchall() except DatabaseError as e: obj = eval(str(e)) raise PrestoException(obj['message']) column_descriptions = cursor.description if data: df = pandas.DataFrame(data) df.columns = [c[0] for c in column_descriptions] else: df = pandas.DataFrame() return df def run(self, hql, parameters=None): """ Execute the statement against Presto. Can be used to create views. """ return super(PrestoHook, self).run(self._strip_sql(hql), parameters) def insert_rows(self): raise NotImplemented()
apache-2.0
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/misopy/sashimi_plot/Sashimi.py
1
3552
## ## Class for representing figures ## import os import matplotlib import matplotlib.pyplot as plt from matplotlib import rc import misopy.sashimi_plot.plot_utils.plot_settings as plot_settings import misopy.sashimi_plot.plot_utils.plotting as plotting class Sashimi: """ Representation of a figure. """ def __init__(self, label, output_dir, dimensions=None, png=False, output_filename=None, settings_filename=None, event=None, chrom=None, no_posteriors=False): """ Initialize image settings. """ self.output_ext = ".pdf" if png: self.output_ext = ".png" # Plot label, will be used in creating the plot # output filename self.label = label # Set output directory self.set_output_dir(output_dir) # Plot settings self.settings_filename = settings_filename if self.settings_filename != None: self.settings = plot_settings.parse_plot_settings(settings_filename, event=event, chrom=chrom, no_posteriors=no_posteriors) else: # Load default settings if no settings filename was given self.settings = plot_settings.get_default_settings() if output_filename != None: # If explicit output filename is given to us, use it self.output_filename = output_filename else: # Otherwise, use the label and the output directory self.set_output_filename() if dimensions != None: self.dimensions = dimensions else: fig_height = self.settings["fig_height"] fig_width = self.settings["fig_width"] print "Reading dimensions from settings..." print " - Height: %.2f" %(float(fig_height)) print " - Width: %.2f" %(float(fig_width)) self.dimensions = [fig_width, fig_height] def set_output_dir(self, output_dir): self.output_dir = os.path.abspath(os.path.expanduser(output_dir)) def set_output_filename(self): plot_basename = "%s%s" %(self.label, self.output_ext) self.output_filename = os.path.join(self.output_dir, plot_basename) def setup_figure(self): print "Setting up plot using dimensions: ", self.dimensions plt.figure(figsize=self.dimensions) # If asked, use sans serif fonts font_size = self.settings["font_size"] if self.settings["sans_serif"]: print "Using sans serif fonts." plotting.make_sans_serif(font_size=font_size) def save_plot(self, plot_label=None): """ Save plot to the output directory. Determine the file type. """ if self.output_filename == None: raise Exception, "sashimi_plot does not know where to save the plot." output_fname = None if plot_label is not None: # Use custom plot label if given ext = self.output_filename.rsplit(".")[0] dirname = os.path.dirname(self.output_filename) output_fname = \ os.path.dirname(dirname, "%s.%s" %(plot_label, ext)) else: output_fname = self.output_filename print "Saving plot to: %s" %(output_fname) plt.savefig(output_fname)
apache-2.0
acbecker/solar
regress6.py
1
9889
import sys import os import numpy as np import h5py import multiprocessing import cPickle import ephem import matplotlib.pyplot as plt import types from sklearn.gaussian_process import GaussianProcess from sklearn.cross_validation import train_test_split from sklearn import metrics, linear_model, tree, ensemble # NOTE: endless empehm warnings # DeprecationWarning: PyOS_ascii_strtod and PyOS_ascii_atof are deprecated. Use PyOS_string_to_double instead. # https://github.com/brandon-rhodes/pyephem/issues/18 import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning) # NOTE, this one does cross-validation of the last 1000 points. # Instead of a random selections. Duh... fMapper = { "apcp_sfc" : "Total_precipitation", "dlwrf_sfc" : "Downward_Long-Wave_Rad_Flux", "dswrf_sfc" : "Downward_Short-Wave_Rad_Flux", "pres_msl" : "Pressure", "pwat_eatm" : "Precipitable_water", "spfh_2m" : "Specific_humidity_height_above_ground", "tcdc_eatm" : "Total_cloud_cover", "tcolc_eatm" : "Total_Column-Integrated_Condensate", "tmax_2m" : "Maximum_temperature", "tmin_2m" : "Minimum_temperature", "tmp_2m" : "Temperature_height_above_ground", "tmp_sfc" : "Temperature_surface", "ulwrf_sfc" : "Upward_Long-Wave_Rad_Flux_surface", "ulwrf_tatm" : "Upward_Long-Wave_Rad_Flux", "uswrf_sfc" : "Upward_Short-Wave_Rad_Flux" } fKeys = ("apcp_sfc", "dlwrf_sfc", "dswrf_sfc", "pres_msl", "pwat_eatm", "spfh_2m", "tcdc_eatm", "tcolc_eatm", "tmax_2m", "tmin_2m", "tmp_2m", "tmp_sfc", "ulwrf_sfc", "ulwrf_tatm", "uswrf_sfc") NPTSt = 5113 # Train NPTSp = 1796 # Predict # Minimal script for gaussian process estimation class Mesonet(object): dtimet = np.recarray((NPTSt,), dtype={"names": ("time",), "formats": ("datetime64[D]",)}) dtimep = np.recarray((NPTSp,), dtype={"names": ("time",), "formats": ("datetime64[D]",)}) def __init__(self, stid, nlat, elon, elev): self.stid = stid self.nlat = nlat self.elon = elon self.elev = elev # Measured data self.datat = np.recarray((NPTSt,), dtype={"names": ("flux", "sun_alt", "moon_phase"), "formats": (np.int64, np.float64, np.float64)}) self.datap = np.recarray((NPTSp,), dtype={"names": ("flux", "sun_alt", "moon_phase"), "formats": (np.int64, np.float64, np.float64)}) def setAstro(self, time, data): sun = ephem.Sun() moon = ephem.Moon() obs = ephem.Observer() obs.lon = (self.elon * np.pi / 180) # need radians obs.lat = (self.nlat * np.pi / 180) # need radians obs.elevation = self.elev # meters for i in range(len(time)): obs.date = str(time[i]) sun.compute(obs) moon.compute(obs) # LOGIT ASTRO TERMS # Sun Alt goes from 0 to 90 # Moon phase goes from 0 to 1 salt = float(180 / np.pi * sun.transit_alt) salt /= 90.0 mphase = moon.moon_phase data["sun_alt"][i] = np.log(salt / (1.0 - salt)) data["moon_phase"][i] = np.log(mphase / (1.0 - mphase)) def regressTest(feattr, featcv, fluxtr, fluxcv): alphas = np.logspace(-5, 1, 6, base=10) models = [] for alpha in alphas: models.append(linear_model.Ridge(normalize=True, fit_intercept=True, alpha=alpha)) models.append(linear_model.Lasso(normalize=True, fit_intercept=True, alpha=alpha)) models.append(linear_model.LassoLars(normalize=True, fit_intercept=True, alpha=alpha)) models.append(ensemble.RandomForestRegressor()) models.append(ensemble.ExtraTreesRegressor()) models.append(ensemble.AdaBoostRegressor()) models.append(ensemble.GradientBoostingRegressor(loss="lad", n_estimators=100)) models.append(ensemble.GradientBoostingRegressor(loss="lad", n_estimators=1000)) models.append(tree.DecisionTreeRegressor()) models.append(tree.ExtraTreeRegressor()) maes = [] for m in range(len(models)): model = models[m] fit = model.fit(feattr, fluxtr) preds = fit.predict(featcv) mae = metrics.mean_absolute_error(fluxcv, preds) print " MAE %d: %.1f" % (m, mae) maes.append(mae) idx = np.argsort(maes) model = models[idx[0]] print "BEST", maes[idx[0]], model return model.fit(np.vstack((feattr, featcv)), np.hstack((fluxtr, fluxcv)) ) # fit all data def sigclip(data, switch): mean = np.mean(data, axis=1) std = np.std(data, axis=1) idx = np.where(std == 0.0) std[idx] = 1e10 if switch: nsig = np.abs(data - mean[:,np.newaxis,:]) / std[:,np.newaxis,:] else: nsig = np.abs(data - mean[:,np.newaxis]) / std[:,np.newaxis] idx = np.where(nsig > 3.0) ma = np.ma.array(data) ma[idx] = np.ma.masked return ma.mean(axis=1).data if __name__ == "__main__": suffix = sys.argv[1] trainFile = "gp2_train_%s.pickle" % (suffix) predFile = "gp2_pred_%s.pickle" % (suffix) if suffix.find("logit") > -1: buff = open(trainFile, "rb") train, fmin, fmax = cPickle.load(buff) buff.close() buff = open(predFile, "rb") pred, fmin, fmax = cPickle.load(buff) buff.close() else: buff = open(trainFile, "rb") train = cPickle.load(buff) buff.close() buff = open(predFile, "rb") pred = cPickle.load(buff) buff.close() # QUESTION: do we logit the flux? Not sure, might screw up CV interpretation #pool = multiprocessing.Pool(multiprocessing.cpu_count()) #pool.map(int, range(multiprocessing.cpu_count())) # Trick to "warm up" the Pool # Need to load the positions and times of training data sdata = np.loadtxt("../station_info.csv", delimiter=",", skiprows=1, dtype = [("stid", np.str_, 4), ("nlat", np.float64), ("elon", np.float64), ("elev", np.float64)]) fields = np.loadtxt("../train.csv", skiprows=1, delimiter=",", dtype=np.int64) dates = [np.datetime64(str(x)[:4]+"-"+str(x)[4:6]+"-"+str(x)[6:8]) for x in fields[:,0]] Mesonet.dtimet = dates mesonets = {} for sidx in range(len(sdata)): s = sdata[sidx] station = Mesonet(s[0], s[1], s[2], s[3]) station.datat["flux"] = fields[:,sidx+1] mesonets[s[0]] = station # Dates of prediction data fields = np.loadtxt("../sampleSubmission.csv", skiprows=1, delimiter=",", unpack=True).astype(np.int) dates = [np.datetime64(str(x)[:4]+"-"+str(x)[4:6]+"-"+str(x)[6:8]) for x in fields[0]] Mesonet.dtimep = dates sdates = [np.str(x) for x in fields[0]] # Do we do Astro terms? useAstro = 0 if useAstro: for mesonet in mesonets.values(): mesonet.setAstro(mesonet.dtimet, mesonet.datat) mesonet.setAstro(mesonet.dtimep, mesonet.datap) nCv = 1000 nTr = NPTSt-nCv # Regress each Mesonet site on its own for mKey in mesonets.keys(): print "%s" % (mKey) feattr = np.empty((nTr, len(fKeys) + 2 * useAstro)) featcv = np.empty((nCv, len(fKeys) + 2 * useAstro)) for f in range(len(fKeys)): fKey = fKeys[f] data1 = sigclip(train[mKey].pdata[fKey].reshape((NPTSt, 11, 5)), True) data2 = sigclip(data1, False) feattr[:,f] = data2[:-nCv] featcv[:,f] = data2[-nCv:] if useAstro: feattr[:,len(fKeys)] = mesonets[mKey].datat["sun_alt"][:-nCv] feattr[:,len(fKeys)+1] = mesonets[mKey].datat["moon_phase"][:-nCv] featcv[:,len(fKeys)] = mesonets[mKey].datat["sun_alt"][-nCv:] featcv[:,len(fKeys)+1] = mesonets[mKey].datat["moon_phase"][-nCv:] fluxtr = mesonets[mKey].datat["flux"][:-nCv] fluxcv = mesonets[mKey].datat["flux"][-nCv:] regressTest(feattr, featcv, fluxtr, fluxcv) ##########3 ##########3 ##########3 ##########3 # Now regress all sites at once print "ALL" feattr = np.empty((nTr * len(mesonets.keys()), len(fKeys) + 2 * useAstro)) fluxtr = np.empty((nTr * len(mesonets.keys()))) featcv = np.empty((nCv * len(mesonets.keys()), len(fKeys) + 2 * useAstro)) fluxcv = np.empty((nCv * len(mesonets.keys()))) fIdx = 0 for mKey in mesonets.keys(): for f in range(len(fKeys)): fKey = fKeys[f] data1 = sigclip(train[mKey].pdata[fKey].reshape((NPTSt, 11, 5)), True) data2 = sigclip(data1, False) feattr[fIdx*nTr:(fIdx*nTr + nTr),f] = data2[:-nCv] featcv[fIdx*nCv:(fIdx*nCv + nCv),f] = data2[-nCv:] if useAstro: feattr[fIdx*nTr:(fIdx*nTr + nTr),len(fKeys)] = mesonets[mKey].datat["sun_alt"][:-nCv] feattr[fIdx*nTr:(fIdx*nTr + nTr),len(fKeys)+1] = mesonets[mKey].datat["moon_phase"][:-nCv] featcv[fIdx*nCv:(fIdx*nCv + nCv),len(fKeys)] = mesonets[mKey].datat["sun_alt"][-nCv:] featcv[fIdx*nCv:(fIdx*nCv + nCv),len(fKeys)+1] = mesonets[mKey].datat["moon_phase"][-nCv:] fluxtr[fIdx*nTr:(fIdx*nTr + nTr)] = mesonets[mKey].datat["flux"][:-nCv] fluxcv[fIdx*nCv:(fIdx*nCv + nCv)] = mesonets[mKey].datat["flux"][-nCv:] fIdx += 1 regressTest(feattr, featcv, fluxtr, fluxcv)
mit
nesterione/scikit-learn
examples/decomposition/plot_ica_blind_source_separation.py
349
2228
""" ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure() models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show()
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/matplotlib/container.py
3
2832
import matplotlib.cbook as cbook class Container(tuple): """ Base class for containers. """ def __repr__(self): return "<Container object of %d artists>" % (len(self)) def __new__(cls, *kl, **kwargs): return tuple.__new__(cls, kl[0]) def __init__(self, kl, label=None): self.eventson = False # fire events only if eventson self._oid = 0 # an observer id self._propobservers = {} # a dict from oids to funcs self._remove_method = None self.set_label(label) def set_remove_method(self, f): self._remove_method = f def remove(self): for c in self: c.remove() if self._remove_method: self._remove_method() def get_label(self): """ Get the label used for this artist in the legend. """ return self._label def set_label(self, s): """ Set the label to *s* for auto legend. ACCEPTS: any string """ self._label = s self.pchanged() def add_callback(self, func): """ Adds a callback function that will be called whenever one of the :class:`Artist`'s properties changes. Returns an *id* that is useful for removing the callback with :meth:`remove_callback` later. """ oid = self._oid self._propobservers[oid] = func self._oid += 1 return oid def remove_callback(self, oid): """ Remove a callback based on its *id*. .. seealso:: :meth:`add_callback` For adding callbacks """ try: del self._propobservers[oid] except KeyError: pass def pchanged(self): """ Fire an event when property changed, calling all of the registered callbacks. """ for oid, func in self._propobservers.items(): func(self) def get_children(self): return list(cbook.flatten(self)) class BarContainer(Container): def __init__(self, patches, errorbar=None, **kwargs): self.patches = patches self.errorbar = errorbar Container.__init__(self, patches, **kwargs) class ErrorbarContainer(Container): def __init__(self, lines, has_xerr=False, has_yerr=False, **kwargs): self.lines = lines self.has_xerr = has_xerr self.has_yerr = has_yerr Container.__init__(self, lines, **kwargs) class StemContainer(Container): def __init__(self, markerline_stemlines_baseline, **kwargs): markerline, stemlines, baseline = markerline_stemlines_baseline self.markerline = markerline self.stemlines = stemlines self.baseline = baseline Container.__init__(self, markerline_stemlines_baseline, **kwargs)
gpl-2.0
hofmannedv/training-python
usecases/drivers-log/distanz-m.py
1
3460
#!/usr/bin/python import fileinput import re from datetime import datetime # import external NumPy module import numpy as np import matplotlib.pyplot as plt import pandas as pd init = True # preparing the data for line in fileinput.input(): line = re.sub('\n', '', line) columns = re.split('\t+', line) if init: data = np.array([columns]) init = False else: columns[0] = datetime.strptime(columns[0], '%Y-%m-%d %H:%M:%S') columns[1] = datetime.strptime(columns[1], '%Y-%m-%d %H:%M:%S') data2 = np.array([columns]) data = np.vstack((data, data2)) monthlyRanges = np.array([ ['Ganzes Jahr', '2017-01-01 00:00:00', '2017-12-31 23:59:59'], ['Januar', '2017-01-01 00:00:00', '2017-01-31 23:59:59'], ['Februar', '2017-02-01 00:00:00', '2017-02-28 23:59:59'], ['März', '2017-03-01 00:00:00', '2017-03-31 23:59:59'], ['April', '2017-04-01 00:00:00', '2017-04-30 23:59:59'], ['Mai', '2017-05-01 00:00:00', '2017-05-31 23:59:59'], ['Juni', '2017-06-01 00:00:00', '2017-06-30 23:59:59'], ['Juli', '2017-07-01 00:00:00', '2017-07-31 23:59:59'], ['August', '2017-08-01 00:00:00', '2017-08-31 23:59:59'], ['September', '2017-09-01 00:00:00', '2017-09-30 23:59:59'], ['Oktober', '2017-10-01 00:00:00', '2017-10-31 23:59:59'], ['November', '2017-11-01 00:00:00', '2017-11-30 23:59:59'], ['Dezember', '2017-12-01 00:00:00', '2017-12-31 23:59:59'] ]) # define travel routes travelRoutes = np.array([]) for entry in data[1:]: route = np.array("%s->%s:%s" % (entry[2], entry[3], entry[4])) travelRoutes = np.hstack((travelRoutes, route)) # remove double entries travelRoutes = np.unique(travelRoutes) # print (travelRoutes) # extract descriptions for every month month = monthlyRanges[1:, 0:1] month = np.ravel(month) # print (month) # define number of travels per month # - init with zeros numberOfTravels = np.zeros((travelRoutes.size, month.size), dtype = np.int32) # print (numberOfTravels) for entry in data[1:]: # find list id for the travel route route = np.array("%s->%s:%s" % (entry[2], entry[3], entry[4])) travelRouteId = np.where(travelRoutes == route)[0][0] # extract travel data travelRouteDateFrom = entry[0] travelRouteDateTo = entry[1] monthId = 0 for entry in monthlyRanges[1:]: # extract month data range monthDateFrom = datetime.strptime(entry[1], '%Y-%m-%d %H:%M:%S') monthDateTo = datetime.strptime(entry[2], '%Y-%m-%d %H:%M:%S') # validate route for being in month range if ((travelRouteDateFrom >= monthDateFrom) and (travelRouteDateFrom <= monthDateTo)): if ((travelRouteDateTo >= monthDateFrom) and (travelRouteDateTo <= monthDateTo)): numberOfTravels[travelRouteId][monthId] += 1 break monthId += 1 # print (numberOfTravels) # define distance per entry distances = np.array([]) entryId = 0 travelDescription = [] for entry in travelRoutes: columns = re.split(':', entry) factor = int(columns[1]) distances = np.append(distances, [numberOfTravels[entryId] * factor]) entryId += 1 travelDescription.append(columns[0]) # re-arrange the distances array distances = np.reshape(distances, (travelRoutes.size,month.size)) distances = distances.swapaxes(1,0) # create data frame df = pd.DataFrame(distances, index=month, columns=pd.Index(travelDescription)) # plot the data frame as stacked, horizontal bars df.plot(kind='barh', stacked=True) # display the data frame plt.show()
gpl-2.0
hildensia/joint_dependency
joint_dependency/interpret_results.py
1
3372
# -*- coding: utf-8 -*- """ Created on Thu Jul 21 10:23:46 2016 """ import argparse import cPickle import seaborn as sns import matplotlib.pylab as plt import pandas as pd import numpy as np from matplotlib.lines import Line2D import re sns.set_style("darkgrid") lscol_ptn = re.compile("LockingState([0-9]+)") def determine_num_joints(df, _): return len([ lscol_ptn.match(c).group(1) for c in df.columns if lscol_ptn.match(c) is not None]) def plot_locking_states(df, meta, num_joints=None): marker_style = dict(linestyle=':', marker='o', s=100,) def format_axes(ax): ax.margins(0.2) ax.set_axis_off() if num_joints is None: num_joints = determine_num_joints(df) points = np.ones(num_joints) fig, ax = plt.subplots() for j in range(num_joints): ax.text(-1.5, j, "%d" % j) ax.text(0, -1.5, "time") for t in df.index: lock_states = df.loc[t][ [ "LockingState%d" % k for k in range(num_joints) ] ].tolist() c = ["orange" if l else "k" for l in lock_states] ax.scatter((t+0.1) * points, range(num_joints), color=c, **marker_style) format_axes(ax) ax.set_title('Locking state evolution') ax.set_xlabel("t") plt.plot() def plot_entropy(df, meta, num_joints=None): if num_joints is None: num_joints = determine_num_joints(df) plt.figure() for j in range(num_joints): var_name="Entropy%d"%j plt.plot(df[var_name], label=var_name) plt.legend() def plot_dependency_posterior(df, meta, t, num_joints=None): if num_joints is None: num_joints = determine_num_joints(df) plt.figure() posterior=np.array([df["Posterior%d"%j].iloc[t] for j in range(num_joints)]) plt.matshow(posterior, interpolation='nearest') plt.show() def print_actions(df, num_joints=None): pd.options.display.float_format = '{:,.2f}'.format pd.set_option('expand_frame_repr', False) if num_joints is None: num_joints = determine_num_joints(df, None) print(df[[u'CheckedJoint'] + ['DesiredPos{}'.format(j) for j in range(num_joints)] + ['LockingState{}'.format(j) for j in range(num_joints)] ]) #Index([u'DesiredPos0', u'DesiredPos1', u'DesiredPos2', u'DesiredPos3', # u'DesiredPos4', u'CheckedJoint', u'RealPos0', u'RealPos1', u'RealPos2', # u'RealPos3', u'RealPos4', u'LockingState0', u'LockingState1', # u'LockingState2', u'LockingState3', u'LockingState4', u'Posterior0', # u'Entropy0', u'Posterior1', u'Entropy1', u'Posterior2', u'Entropy2', # u'Posterior3', u'Entropy3', u'Posterior4', u'Entropy4'], # dtype='object') def open_pickle_file(pkl_file): with open(pkl_file) as f: df, meta = cPickle.load(f) return df, meta if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", required=True, help="pickle file") args = parser.parse_args() df, meta = open_pickle_file(args.file) print_actions(df) plot_locking_states(df, meta, num_joints=determine_num_joints(df, meta)) plot_entropy(df,meta, num_joints=determine_num_joints(df, meta)) plot_dependency_posterior(df,meta,-1, num_joints=determine_num_joints(df, meta)) plt.show()
mit
giorgiop/scikit-learn
examples/applications/plot_prediction_latency.py
85
11395
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR from sklearn.utils import shuffle def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[[i], :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) random_seed = 13 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=n_train, random_state=random_seed) X_train, y_train = shuffle(X_train, y_train, random_state=random_seed) X_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) X_test = X_scaler.transform(X_test) y_scaler = StandardScaler() y_train = y_scaler.fit_transform(y_train[:, None])[:, 0] y_test = y_scaler.transform(y_test[:, None])[:, 0] gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[[0]]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
multipath-tcp/mptcp-analysis-scripts
scripts_graph/address_stat.py
1
3509
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2015 Quentin De Coninck # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # To install on this machine: matplotlib, numpy from __future__ import print_function import argparse import matplotlib # Do not use any X11 backend matplotlib.use('Agg') matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 import matplotlib.pyplot as plt import numpy as np import os import sys # Add root directory in Python path and be at the root ROOT_DIR = os.path.abspath(os.path.join(".", os.pardir)) os.chdir(ROOT_DIR) sys.path.append(ROOT_DIR) import common as co import common_graph as cog import mptcp import tcp ################################################## ## ARGUMENTS ## ################################################## parser = argparse.ArgumentParser( description="Summarize stat files generated by analyze") parser.add_argument("-s", "--stat", help="directory where the stat files are stored", default=co.DEF_STAT_DIR + '_' + co.DEF_IFACE) parser.add_argument('-S', "--sums", help="directory where the summary graphs will be stored", default=co.DEF_SUMS_DIR + '_' + co.DEF_IFACE) parser.add_argument("-d", "--dirs", help="list of directories to aggregate", nargs="+") args = parser.parse_args() stat_dir_exp = os.path.abspath(os.path.join(ROOT_DIR, args.stat)) sums_dir_exp = os.path.abspath(os.path.join(ROOT_DIR, args.sums)) co.check_directory_exists(sums_dir_exp) ################################################## ## GET THE DATA ## ################################################## connections = cog.fetch_valid_data(stat_dir_exp, args) # multiflow_connections, singleflow_connections = cog.get_multiflow_connections(connections) ################################################## ## PLOTTING RESULTS ## ################################################## ip_addrs = {} saddrs = {} for fname, conns in connections.iteritems(): for conn_id, conn in conns.iteritems(): port = conn.flows[0].attr.get(co.SOCKS_PORT, conn.attr.get(co.SOCKS_PORT, None)) # Apache JServ Port if port and port == 8009: ip_addr = conn.flows[0].attr.get(co.SOCKS_DADDR, conn.attr.get(co.SOCKS_DADDR, None)) if ip_addr not in ip_addrs: ip_addrs[ip_addr] = 1 else: ip_addrs[ip_addr] += 1 saddr = conn.flows[0].attr.get(co.SADDR, conn.attr.get(co.SADDR, None)) if saddr not in saddrs: saddrs[saddr] = 1 else: saddrs[saddr] += 1 print(fname, conn_id, ip_addr, saddr) print("IP ADDRS", ip_addrs) print("SOURCE IP ADDRS", saddrs)
gpl-3.0
spallavolu/scikit-learn
sklearn/tests/test_calibration.py
213
12219
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_greater, assert_almost_equal, assert_greater_equal, assert_array_equal, assert_raises, assert_warns_message) from sklearn.datasets import make_classification, make_blobs from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.metrics import brier_score_loss, log_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve def test_calibration(): """Test calibration objects with isotonic and sigmoid""" n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1) assert_raises(ValueError, pc_clf.fit, X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv=2) # Note that this fit overwrites the fit on the entire training # set pc_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] pc_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_pc_clf_relabeled = \ pc_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_pc_clf, 1 - prob_pos_pc_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss((y_test + 1) % 2, prob_pos_pc_clf_relabeled)) # check that calibration can also deal with regressors that have # a decision_function clf_base_regressor = CalibratedClassifierCV(Ridge()) clf_base_regressor.fit(X_train, y_train) clf_base_regressor.predict(X_test) # Check failure cases: # only "isotonic" and "sigmoid" should be accepted as methods clf_invalid_method = CalibratedClassifierCV(clf, method="foo") assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train) # base-estimators should provide either decision_function or # predict_proba (most regressors, for instance, should fail) clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid") assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train) def test_sample_weight_warning(): n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] for method in ['sigmoid', 'isotonic']: base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV(base_estimator, method=method) # LinearSVC does not currently support sample weights but they # can still be used for the calibration step (with a warning) msg = "LinearSVC does not support sample_weight." assert_warns_message( UserWarning, msg, calibrated_clf.fit, X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # a different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert_greater(diff, 0.1) def test_calibration_multiclass(): """Test calibration for multiclass """ # test multi-class setting with classifier that implements # only decision function clf = LinearSVC() X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42, centers=3, cluster_std=3.0) # Use categorical labels to check that CalibratedClassifierCV supports # them correctly target_names = np.array(['a', 'b', 'c']) y = target_names[y_idx] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=2) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that log-loss of calibrated classifier is smaller than # log-loss of naively turned OvR decision function to probabilities # via softmax def softmax(y_pred): e = np.exp(-y_pred) return e / e.sum(axis=1).reshape(-1, 1) uncalibrated_log_loss = \ log_loss(y_test, softmax(clf.decision_function(X_test))) calibrated_log_loss = log_loss(y_test, probas) assert_greater_equal(uncalibrated_log_loss, calibrated_log_loss) # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier X, y = make_blobs(n_samples=100, n_features=2, random_state=42, cluster_std=3.0) X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) loss = log_loss(y_test, clf_probs) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=3) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) cal_loss = log_loss(y_test, cal_clf_probs) assert_greater(loss, cal_loss) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: pc_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = pc_clf.predict_proba(this_X_test) y_pred = pc_clf.predict(this_X_test) prob_pos_pc_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays assert_raises(ValueError, _SigmoidCalibration().fit, np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert_equal(len(prob_true), len(prob_pred)) assert_equal(len(prob_true), 2) assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False assert_raises(ValueError, calibration_curve, [1.1], [-0.1], normalize=False) def test_calibration_nan_imputer(): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', Imputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_c.fit(X, y) clf_c.predict(X)
bsd-3-clause
massmutual/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
tmerrick1/spack
var/spack/repos/builtin/packages/py-xarray/package.py
5
1699
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyXarray(PythonPackage): """N-D labeled arrays and datasets in Python""" homepage = "https://github.com/pydata/xarray" url = "https://pypi.io/packages/source/x/xarray/xarray-0.9.1.tar.gz" version('0.9.1', '24cc99f19da95427604846c9d1e20e70') depends_on('py-setuptools', type='build') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run'))
lgpl-2.1
DerThorsten/boring_spaghetti
src/interfaces/python/examples/mrf/denoise.py
6
6709
# FIXMEEEEEEEEEEE import opengm import vigra # only to read images import numpy #import sys # to animate the current labeling matplotlib is used import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib import animation class PyCallback(object): """ callback functor which will be passed to an inference visitor. In that way, pure python code can be injected into the c++ inference. This functor visualizes the labeling as an image during inference. Args : shape : shape of the image numLabels : number of labels """ def __init__(self,shape,numLabels): self.shape=shape self.numLabels=numLabels matplotlib.interactive(True) def begin(self,inference): """ this function is called from c++ when inference is started Args : inference : python wrapped c++ solver which is passed from c++ """ print "begin" def end(self,inference): """ this function is called from c++ when inference ends Args : inference : python wrapped c++ solver which is passed from c++ """ print "end" def visit(self,inference): """ this function is called from c++ each time the visitor is called Args : inference : python wrapped c++ solver which is passed from c++ """ arg = inference.arg() gm = inference.gm() print "energy ",gm.evaluate(arg) arg=arg.reshape(self.shape)*255 plt.imshow(arg.T, cmap='gray',interpolation="nearest") plt.draw() def denoiseModel( img, norm = 2, weight = 1.0, truncate = None, numLabels = 256, neighbourhood = 4, inpaintPixels = None, randInpaitStartingPoint = False ): """ this function is used to set up a graphical model similar to **Denoising and inpainting problems:** from `Mrf- Benchmark <http://vision.middlebury.edu/MRF/results/ >`_ Args : img : a grayscale image in the range [0,256) norm : used norm for unaries and 2-order functions (default : 2) weight : weight of 2-order functions (default : 1.0) truncate : Truncate second order function at an given value (defaut : None) numLabels : number of labels for each variable in the graphical model, set this to a lower number to speed up inference (default : 255) neighbourhood : neighbourhood for the second order functions, so far only 4 is allowed (default : 4) inpaintPixels : a tuple of x and y coordinates where no unaries are added randInpaitStartingPoint : use a random starting point for all pixels without unaries (default : False) """ shape = img.shape if(img.ndim!=2): raise RuntimeError("image must be gray") if neighbourhood != 4 : raise RuntimeError("A neighbourhood other than 4 is not yet implemented") # normalize and flatten image iMin = numpy.min(img) iMax = numpy.max(img) imgNorm = ((img[:,:]-iMin)/(iMax-iMin))*float(numLabels) imgFlat = imgNorm.reshape(-1).astype(numpy.uint64) # Set up Grapical Model: numVar = int(img.size) gm = opengm.gm([numLabels]*numVar,operator='adder') gm.reserveFunctions(numLabels,'explicit') numberOfPairwiseFactors=shape[0]*(shape[1]-1) + shape[1]*(shape[0]-1) gm.reserveFactors(numVar-len(inpaintPixels[0]) + numberOfPairwiseFactors ) # Set up unaries: # - create a range of all possible labels allPossiblePixelValues=numpy.arange(numLabels) pixelValueRep = numpy.repeat(allPossiblePixelValues[:,numpy.newaxis],numLabels,1) # - repeat [0,1,2,3,...,253,254,255] numVar times labelRange = numpy.arange(numLabels,dtype=opengm.value_type) labelRange = numpy.repeat(labelRange[numpy.newaxis,:], numLabels, 0) unaries = numpy.abs(pixelValueRep - labelRange)**norm # - add unaries to the graphical model fids=gm.addFunctions(unaries.astype(opengm.value_type)) # add unary factors to graphical model if(inpaintPixels is None): for l in xrange(numLabels): whereL=numpy.where(imgFlat==l) gm.addFactors(fids[l],whereL[0].astype(opengm.index_type)) else: # get vis of inpaint pixels ipX = inpaintPixels[0] ipY = inpaintPixels[1] ipVi = ipX*shape[1] + ipY for l in xrange(numLabels): whereL=numpy.where(imgFlat==l) notInInpaint=numpy.setdiff1d(whereL[0],ipVi) gm.addFactors(fids[l],notInInpaint.astype(opengm.index_type)) # add ONE second order function f=opengm.differenceFunction(shape=[numLabels,numLabels],norm=2,weight=weight) fid=gm.addFunction(f) vis2Order=opengm.secondOrderGridVis(shape[0],shape[1],True) # add all second order factors gm.addFactors(fid,vis2Order) # create a starting point startingPoint = imgFlat.copy() if randInpaitStartingPoint : startingPointRandom = numpy.random.randint(0,numLabels,size=numVar).astype(opengm.index_type) ipVi = inpaintPixels[0]*shape[1] + inpaintPixels[1] for x in ipVi: startingPoint[x]=startingPointRandom[x] startingPoint[startingPoint==numLabels]=numLabels-1 return gm,startingPoint.astype(opengm.index_type) if __name__ == "__main__": # setup imgPath = 'houseM-input.png' norm = 2 weight = 5.0 numLabels = 50 # use 256 for full-model (slow) # Read image img = numpy.array(numpy.squeeze(vigra.impex.readImage(imgPath)),dtype=opengm.value_type)#[0:100,0:40] shape = img.shape # get graphical model an starting point gm,startingPoint=denoiseModel(img,norm=norm,weight=weight,inpaintPixels=numpy.where(img==0), numLabels=numLabels,randInpaitStartingPoint=True) inf=opengm.inference.Imc(gm,parameter=opengm.InfParam()) print "inf" inf.setStartingPoint(inf.arg()) # set up visitor callback=PyCallback(shape,numLabels) visitor=inf.pythonVisitor(callback,visitNth=1) inf.infer(visitor) # get the result arg=inf.arg() arg=arg.reshape(shape) # plot final result matplotlib.interactive(False) # Two subplots, the axes array is 1-d f, axarr = plt.subplots(1,2) axarr[0].imshow(img.T, cmap = cm.Greys_r) axarr[0].set_title('Input Image') axarr[1].imshow(arg.T, cmap = cm.Greys_r) axarr[1].set_title('Solution') plt.show()
mit
abhishekkrthakur/scikit-learn
sklearn/utils/validation.py
2
20807
"""Utilities for input validation""" # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # License: BSD 3 clause import warnings import numbers import numpy as np import scipy.sparse as sp from ..externals import six from inspect import getargspec class DataConversionWarning(UserWarning): """A warning on implicit data conversions happening in the code""" pass warnings.simplefilter("always", DataConversionWarning) class NonBLASDotWarning(UserWarning): """A warning on implicit dispatch to numpy.dot""" class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. """ # Silenced by default to reduce verbosity. Turn on at runtime for # performance profiling. warnings.simplefilter('ignore', NonBLASDotWarning) def _assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" X = np.asanyarray(X) # First try an O(n) time, O(1) space solution for the common case that # everything is finite; fall back to O(n) space np.isfinite to prevent # false positives from overflow in sum method. if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Input contains NaN, infinity" " or a value too large for %r." % X.dtype) def assert_all_finite(X): """Throw a ValueError if X contains NaN or infinity. Input MUST be an np.ndarray instance or a scipy.sparse matrix.""" _assert_all_finite(X.data if sp.issparse(X) else X) def as_float_array(X, copy=True, force_all_finite=True): """Converts an array-like to an array of floats The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sp.issparse(X)): return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64, copy=copy, force_all_finite=force_all_finite, ensure_2d=False) elif sp.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: return X.astype(np.float32 if X.dtype == np.int32 else np.float64) def _is_arraylike(x): """Returns whether the input is array-like""" return (hasattr(x, '__len__') or hasattr(x, 'shape') or hasattr(x, '__array__')) def _num_samples(x): """Return number of samples in array-like x.""" if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %r" % x) if hasattr(x, 'shape'): if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) return x.shape[0] else: return len(x) def _shape_repr(shape): """Return a platform independent reprensentation of an array shape Under Python 2, the `long` type introduces an 'L' suffix when using the default %r format for tuples of integers (typically used to store the shape of an array). Under Windows 64 bit (and Python 2), the `long` type is used by default in numpy shapes even when the integer dimensions are well below 32 bit. The platform specific type causes string messages or doctests to change from one platform to another which is not desirable. Under Python 3, there is no more `long` type so the `L` suffix is never introduced in string representation. >>> _shape_repr((1, 2)) '(1, 2)' >>> one = 2 ** 64 / 2 ** 64 # force an upcast to `long` under Python 2 >>> _shape_repr((one, 2 * one)) '(1, 2)' >>> _shape_repr((1,)) '(1,)' >>> _shape_repr(()) '()' """ if len(shape) == 0: return "()" joined = ", ".join("%d" % e for e in shape) if len(shape) == 1: # special notation for singleton tuples joined += ',' return "(%s)" % joined def check_consistent_length(*arrays): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. Parameters ---------- *arrays : list or tuple of input objects. Objects that will be checked for consistent length. """ uniques = np.unique([_num_samples(X) for X in arrays if X is not None]) if len(uniques) > 1: raise ValueError("Found arrays with inconsistent numbers of samples: %s" % str(uniques)) def indexable(*iterables): """Make arrays indexable for cross-validation. Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays. Parameters ---------- *iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability. """ result = [] for X in iterables: if sp.issparse(X): result.append(X.tocsr()) elif hasattr(X, "__getitem__") or hasattr(X, "iloc"): result.append(X) elif X is None: result.append(X) else: result.append(np.array(X)) check_consistent_length(*result) return result def _ensure_sparse_format(spmatrix, accept_sparse, dtype, order, copy, force_all_finite): """Convert a sparse matrix to a given format. Checks the sparse format of spmatrix and converts if necessary. Parameters ---------- spmatrix : scipy sparse matrix Input to validate and convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats ('csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- spmatrix_converted : scipy sparse matrix. Matrix that is ensured to have an allowed type. """ if accept_sparse is None: raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') sparse_type = spmatrix.format if dtype is None: dtype = spmatrix.dtype if sparse_type in accept_sparse: # correct type if dtype == spmatrix.dtype: # correct dtype if copy: spmatrix = spmatrix.copy() else: # convert dtype spmatrix = spmatrix.astype(dtype) else: # create new spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype) if force_all_finite: if not hasattr(spmatrix, "data"): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: _assert_all_finite(spmatrix.data) if hasattr(spmatrix, "data"): spmatrix.data = np.array(spmatrix.data, copy=False, order=order) return spmatrix def check_array(array, accept_sparse=None, dtype=None, order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2d numpy array. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when ``ensure_2d`` is True and ``allow_nd`` is False. Setting to 0 disables this check. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, order, copy, force_all_finite) else: if ensure_2d: array = np.atleast_2d(array) array = np.array(array, dtype=dtype, order=order, copy=copy) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. Expected <= 2" % array.ndim) if force_all_finite: _assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError("Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required." % (n_samples, shape_repr, ensure_min_samples)) if ensure_min_features > 0 and ensure_2d and not allow_nd: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError("Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required." % (n_features, shape_repr, ensure_min_features)) return array def check_X_y(X, y, accept_sparse=None, dtype=None, order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1): """Input validation for standard estimators. Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y. For multi-label y, set multi_output=True to allow 2d and sparse y. Parameters ---------- X : nd-array, list or sparse matrix Input data. y : nd-array, list or sparse matrix Labels. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. multi_output : boolean (default=False) Whether to allow 2-d y (array or sparse matrix). If false, y will be validated as a vector. ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int (default=1) Make sure that the 2D X has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when ``ensure_2d`` is True and ``allow_nd`` is False. Returns ------- X_converted : object The converted and validated X. """ X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features) if multi_output: y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False) else: y = column_or_1d(y, warn=True) _assert_all_finite(y) check_consistent_length(X, y) return X, y def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like warn : boolean, default False To control display of warnings. Returns ------- y : array """ shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) return np.ravel(y) raise ValueError("bad input shape {0}".format(shape)) def warn_if_not_float(X, estimator='This algorithm'): """Warning utility function to check that data type is floating point. Returns True if a warning was raised (i.e. the input is not float) and False otherwise, for easier input validation. """ if not isinstance(estimator, six.string_types): estimator = estimator.__class__.__name__ if X.dtype.kind != 'f': warnings.warn("%s assumes floating point values as input, " "got %s" % (estimator, X.dtype)) return True return False def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def has_fit_parameter(estimator, parameter): """Checks whether the estimator's fit method supports the given parameter. Examples -------- >>> from sklearn.svm import SVC >>> has_fit_parameter(SVC(), "sample_weight") True """ return parameter in getargspec(estimator.fit)[0] def check_symmetric(array, tol=1E-10, raise_warning=True, raise_exception=False): """Make sure that array is 2D, square and symmetric. If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is raised if the matrix is not symmetric. Parameters ---------- array : nd-array or sparse matrix Input object to check / convert. Must be two-dimensional and square, otherwise a ValueError will be raised. tol : float Absolute tolerance for equivalence of arrays. Default = 1E-10. raise_warning : boolean (default=True) If True then raise a warning if conversion is required. raise_exception : boolean (default=False) If True then raise an exception if array is not symmetric. Returns ------- array_sym : ndarray or sparse matrix Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated. """ if (array.ndim != 2) or (array.shape[0] != array.shape[1]): raise ValueError("array must be 2-dimensional and square. " "shape = {0}".format(array.shape)) if sp.issparse(array): diff = array - array.T # only csr, csc, and coo have `data` attribute if diff.format not in ['csr', 'csc', 'coo']: diff = diff.tocsr() symmetric = np.all(abs(diff.data) < tol) else: symmetric = np.allclose(array, array.T, atol=tol) if not symmetric: if raise_exception: raise ValueError("Array must be symmetric") if raise_warning: warnings.warn("Array is not symmetric, and will be converted " "to symmetric by average with its transpose.") if sp.issparse(array): conversion = 'to' + array.format array = getattr(0.5 * (array + array.T), conversion)() else: array = 0.5 * (array + array.T) return array def check_is_fitted(estimator, attributes, msg=None, all_or_any=all): """Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of "all_or_any" of the passed attributes and raises a NotFittedError with the given message. Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed. attributes : attribute name(s) given as string or a list/tuple of strings Eg. : ["coef_", "estimator_", ...], "coef_" msg : string The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default all Specify whether all or any of the given attributes must exist. """ if msg is None: msg = ("This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this method.") if not hasattr(estimator, 'fit'): raise TypeError("%s is not an estimator instance." % (estimator)) if not isinstance(attributes, (list, tuple)): attributes = [attributes] if not all_or_any([hasattr(estimator, attr) for attr in attributes]): raise NotFittedError(msg % {'name': type(estimator).__name__})
bsd-3-clause
SarthakJShetty/MyDonkey
scripts/sdsandbox_drive.py
1
6352
#!/usr/bin/env python ''' Predict Server Create a server to accept image inputs and run them against a trained neural network. This then sends the steering output back to the client. Author: Tawn Kramer Modified: Alan Steremberg ''' import os import argparse import sys import numpy as np import h5py import json #import matplotlib.pyplot as plt import time import asyncore import json import socket from PIL import Image import struct import donkey as dk import cv2 class RemoteSteeringServer(asyncore.dispatcher): """Receives connections and establishes handlers for each client. """ def __init__(self, address, pilot): asyncore.dispatcher.__init__(self) self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.set_reuse_addr() self.bind(address) self.address = self.socket.getsockname() print ('binding to', self.address) self.listen(1) self.pilot= pilot return def handle_accept(self): # Called when a client connects to our socket client_info = self.accept() #self.logger.debug('handle_accept() -> %s', client_info[1]) print ('got a new client', client_info[1]) h = SteeringHandler(sock=client_info[0], chunk_size=8*1024, pilot=self.pilot) return def handle_close(self): #self.logger.debug('handle_close()') self.close() return class SteeringHandler(asyncore.dispatcher): """Handles echoing messages from a single client. """ IDLE = 1 GETTING_IMG = 2 SENDING_STEERING = 3 def __init__(self, sock, chunk_size=256, pilot=None): self.pilot= pilot self.chunk_size = chunk_size asyncore.dispatcher.__init__(self, sock=sock) self.data_to_write = [] self.image_byes = [] self.mode = self.IDLE self.start_time = time.time() return def writable(self): """We want to write if we have received data.""" response = bool(self.data_to_write) return response def handle_write(self): """Write as much as possible of the most recent message we have received.""" data = self.data_to_write.pop() print('data:'+data) sent = self.send(data[:self.chunk_size].encode('utf-8')) print('sent:'+str(sent)+' len(data):'+str(len(data))) if sent < len(data): remaining = data[sent:].encode('utf-8') self.data.to_write.append(remaining) elif self.mode == self.SENDING_STEERING: self.mode = self.IDLE def handle_read(self): """Read an incoming message from the client and put it into our outgoing queue.""" data = self.recv(self.chunk_size) view_image = False #print ('got', len(data), 'bytes') if len(data) == 0: self.handle_close() elif self.mode == self.IDLE: try: jsonObj = json.loads(data.decode('utf-8')) self.num_bytes = jsonObj['num_bytes'] self.width = jsonObj['width'] self.height = jsonObj['height'] self.num_channels = jsonObj['num_channels'] self.format = jsonObj['format'] self.flip_y = jsonObj['flip_y'] self.data_to_write.insert(0, "{ 'response' : 'ready_for_image' }") self.mode = self.GETTING_IMG self.image_byes = [] self.num_read = 0 except: self.mode = self.IDLE print ('failed to read json from: ', data) elif self.mode == self.GETTING_IMG: self.image_byes.append(data) self.num_read += len(data) if self.num_read == self.num_bytes: lin_arr = np.fromstring(b''.join(self.image_byes), dtype=np.uint8) self.mode = self.SENDING_STEERING if self.format == 'array_of_pixels': img = lin_arr.reshape(self.width, self.height, self.num_channels) if self.flip_y: img = np.flipud(img) img = img.transpose() else: #assumed to be ArrayOfChannels img = lin_arr.reshape(self.num_channels, self.width, self.height) if view_image: #this can be useful when validating that you have your images coming in correctly. vis_img = Image.fromarray(img.transpose(), 'RGB') vis_img.show() #this launches too many windows if we leave it up. self.handle_close() # hook up donkey here now = time.time() milliseconds = int( (now - self.start_time) * 1000) # make the image_arr the right size #print(img.shape) #vis_img = Image.fromarray(img.transpose(), 'RGB') #print(vis_img.shape) img_arr = cv2.resize(img.transpose(),(160,160)) #print(img_arr.shape) #img_arr = img_arr[:, 00:120] img_arr = img_arr[ :120, :] #print(img_arr.shape) angle=0 throttle=0 angle, throttle = self.pilot.decide( img_arr, angle, throttle, milliseconds) print('angle: %s throttle: %s' %(angle, throttle) ) #steering = self.model.predict(img[None, :, :, :]) steering = angle reply = '{ "steering" : "%f", "throttle" : "%f" }' % (steering,throttle) self.data_to_write.append(reply) else: print ("wasn't prepared to recv request!") def handle_close(self): self.close() def go(address,remote_url): #Get all autopilot signals from remote host mypilot = dk.remotes.RemoteClient(remote_url, vehicle_id='mycar') s = RemoteSteeringServer(address, mypilot) try: asyncore.loop() except KeyboardInterrupt: print ('stopping') # ***** main loop ***** if __name__ == "__main__": parser = argparse.ArgumentParser(description='prediction server') parser.add_argument('--remote', dest='remote', default='http://localhost:8887', help='remote url') args = parser.parse_args() # # Let's initialize the donkey things # address = ('0.0.0.0', 9090) go(address,args.remote)
mit
wcmckee/wcmckee
artcontrolme.py
1
5679
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # **artcontrolme** # # # Python script to deal with exported artcontrolme static files. The files are located at https://github.com/artcontrol/artcontrolme. '.wp' files that contain HTML of posts. '.meta' files contain name, permalink, date, cat, tags, id. # # The script deletes all tag data from the .meta files # It performs a nikola build and rsync to server. # # <markdowncell> # **TODO** # # sort dict of permalink and time published. # render index.html that shows recent 10 works # <codecell> import os import pandas as pd import json # <codecell> #artcpost = ('/home/wcmckee/artcontrolme/posts') # <codecell> postsdir = (u'/home/wcmckee/artcontrolme/posts') # <codecell> os.chdir(postsdir) # <codecell> alfilz = [] # <codecell> for filz in os.listdir(postsdir): print filz alfilz.append(filz) # <codecell> alfilz # <codecell> for bleh in alfilz: if '.wp' in bleh: print bleh # <codecell> #file = open('alcemy-landscape.wp', 'r') #print file.read() # <codecell> lisblog = [] metablog = [] dictblog = {} finlis = [] # <codecell> teop = open('test.txt', 'w') # <codecell> #f=open('filename') #lines=f.readlines() #print lines[26] #print lines[30] # <codecell> # <codecell> for bleh in alfilz: if '.meta' in bleh: #print bleh #filez = open('alcemy-landscape.wp', "r") #filez.read #filez.close() file = open(bleh, 'r') metaf = file.readlines() #print file.read() #metablog.append(file.readline()) #metablog.append(file.readline()) #metablog.append(file.readline()) #print metaf[2] #adrdir = {metaf[0]: metaf[2]} #chzdir = ({'test': 'test'}) #chzdir.update({metaf[2]: metaf[1]}) chzdir = {metaf[2].rstrip(): metaf[1].rstrip()}#, file.readline()} #print chzdir finlis.append(chzdir) teop.write(file.read()) # <codecell> chzdir # <codecell> chzdir.items() # <codecell> tuplis = [] # <codecell> derplis = [] # <codecell> import collections # <codecell> dez = collections.OrderedDict() # <codecell> metaf # <codecell> cherdict = dict() # <codecell> listag = [] # <codecell> jslis = [] # <codecell> for bleh in alfilz: if '.meta' in bleh: #print bleh #filez = open('alcemy-landscape.wp', "r") #filez.read #filez.close() file = open(bleh, 'r') metaf = file.readlines() #print file.read() #metablog.append(file.readline()) #metablog.append(file.readline()) #metablog.append(file.readline()) #print metaf[2] #adrdir = {metaf[0]: metaf[2]} #chzdir = ({'name': metaf[0].rstrip()})#, file.readline()} #cherdict.update({metaf[2].rstrip(): metaf[1].rstrip()}) #cherdict.update({metaf[1]: metaf[3].rstrip()}) #listag.append(metaf[3].rstrip()) #chzdir.update({'title': metaf[1].rstrip()}) #chzdir.update({'date': metaf[2].rstrip()}) #chzdir.update({'tags': metaf[3].rstrip()}) print chzdir metawnm = open(bleh, 'w') metawnm.write(metaf[0] + metaf[1] + metaf[2]) print (metaf[0] + metaf[1] + metaf[2]) metawnm.close() finlis.append(chzdir) cherjson = json.dumps(chzdir) jslis.append(cherjson) teop.write(file.read()) # <codecell> cherjson = json.dumps(chzdir) # <codecell> listag # <codecell> cherjson # <codecell> savus = open('/home/wcmckee/visignsys/artcontrol.json', 'a') savus.write(str(jslis)) savus.close() # <codecell> chzdir.items() # <codecell> chval = chzdir.values() # <codecell> itm = len(chval) # <codecell> itm # <codecell> for chre in range(itm): print chval[chre] # <codecell> for chz in chzdir: print chz # <codecell> for fin in finlis: #print sorted(fin.keys()) for fez in fin.keys(): #sorted(fez) print (fez) derplis.append(fez) tuplis.append(fin.keys()) # <codecell> sordep = sorted(derplis) # <markdowncell> # I want to add the correct permalink to the sorted list of publish dates. # # Take two dict. # dict1 is original sort time : permalink # dict2 is sorted time : NEED TO ADD CORRECT PERMALINK HERE # # look at the time in first dict from dict2 and add permalink as its value. # # if numba ('2011-07etc') in timlist: # get its value (permalink). write this as value for dict2. # # Need to add html content, tags, and cats once this is sorted. should be easy since accessing it with var[num of line] # <codecell> sordep # <codecell> metablog # <codecell> for neta in metablog: print neta # <codecell> for bleh in alfilz: if '.wp' in bleh: #print bleh #filez = open('alcemy-landscape.wp', "r") #filez.read #filez.close() file = open(bleh, 'r') #print file.read() lisblog.append(file.read()) teop.write(file.read()) # <codecell> len(lisblog) # <codecell> filez = open('alcemy-landscape.wp', "r") filez.read() filez.close() # <codecell> import dominate from dominate.tags import * doc = dominate.document(title='artcontrolme') with doc.head: link(rel='stylesheet', href='style.css') script(type='text/javascript', src='script.js') h1('artcontrolme') h3('The Art Of WCMCKEE') with doc: with div(id='header').add(ol()): for chre in range(itm): p(chval[chre]) #with div(): # attr(cls='body') # p('Lorem ipsum..') print doc # <codecell> # <codecell> # <codecell>
mit
ubenu/Blits
src/blitspak/blits_data.py
1
5311
''' Created on 23 May 2017 @author: schilsm ''' # -*- coding: utf-8 -*- import pandas as pd, numpy as np, copy as cp # pd.options.mode.chained_assignment = None # suppresses unnecessary warning when creating working data class BlitsData(): def __init__(self, max_points=1000): # attributes self.file_name = "" self.raw_data = None self.series_names = None # same as self.series_dict.keys, but in order of input self.axis_names = None self.series_dict = {} self.max_points = max_points if max_points < 1: self.max_points = np.inf def has_data(self): return len(self.series_dict) > 0 def get_axes_names(self): return cp.deepcopy(self.axis_names) def get_series_names(self): return cp.deepcopy(self.series_names) def get_series_copy(self, name): if name in self.series_dict: return cp.deepcopy(self.series_dict[name]) else: return None def import_data(self, file_path): self.raw_data = pd.read_csv(file_path) self.create_working_data_from_file() def export_results(self, file_path): r = self.results.to_csv() p = self.get_fractional_saturation_params_dataframe().to_csv() f = self.get_fractional_saturation_curve().to_csv() with open(file_path, 'w') as file: file.write(r) file.write('\n') with open(file_path, 'a') as file: file.write(p) file.write('\n') file.write(f) def create_working_data_from_file(self): n_cols = len(self.raw_data.columns) named_cols = self.raw_data.columns[~self.raw_data.columns.str.contains('unnamed', case=False)].values self.series_names = named_cols n_series = len(named_cols) n_cols_per_series = n_cols // n_series n_independents = n_cols_per_series - 1 # Split data set in individual series self.series_dict = {} axis_names = [] for s in range(0, n_cols , n_cols_per_series): df = pd.DataFrame(self.raw_data.iloc[:, s:s+n_cols_per_series]).dropna() s_name = df.columns.tolist()[0] axis_names = ['x{}'.format(i) for i in range(n_independents)] cols = cp.deepcopy(axis_names) cols.append(s_name) df.columns = cols df = df.sort_values(by='x0') step = len(df) // self.max_points if step > 1: r = np.arange(len(df)) filt = np.mod(r, step) == 0 df = df[filt] ix = pd.Index(np.arange(len(df))) df.set_index(ix, inplace=True) self.series_dict[s_name] = df self.axis_names = np.array(axis_names) def create_working_data_from_template(self, template): """ @template: template for series construction, consisting of two pandas DataFrames, with template[0] containing the series axes values and a column for the calculated dependent, template[1] containing the parameter values for each axis, and template[2] the modelling function PS: this is for the chop! """ n_axes = len(template[2].independents) splits = np.arange(1, len(template[0].columns)//(n_axes+1)) * (n_axes+1) all_series = np.split(template[0], splits, axis=1) self.series_names = [] self.axis_names = [] for s in all_series: name = s.columns[-1] self.series_names.append(name) axes_names = s.columns[:-1] self.axis_names = cp.deepcopy(axes_names).tolist() # not pretty: overwrites previous; no check is made s_new = cp.deepcopy(s).dropna() self.series_dict[name] = s_new self.series_names = np.array(self.series_names) def series_extremes(self): """ Returns two pandas DataFrame, one with the minimum values for each row in each series and one with the maximum values. Returned DataFrames have the series names as index, and the axes names + 'y' (ie the dependent) as columns. """ if self.series_names is not None: if self.axis_names is not None: index = np.concatenate((self.get_axes_names(), ['y'])) df_mins = pd.DataFrame(index=index) # last index is called y because the dependents have different names in different series df_maxs = cp.deepcopy(df_mins) for s in self.series_names: series = cp.deepcopy(self.series_dict[s]) cols = series.columns.tolist() cols[-1] = 'y' series.columns = cols mins = series.min(axis=0) maxs = series.max(axis=0) df_mins = pd.concat((df_mins, mins), axis=1) df_maxs = pd.concat((df_maxs, maxs), axis=1) df_mins.columns = self.series_names df_maxs.columns = self.series_names return df_mins.transpose(), df_maxs.transpose() return None return None
gpl-3.0
MartinDelzant/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
181
15664
from __future__ import division from collections import defaultdict from functools import partial import numpy as np import scipy.sparse as sp from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(sp.issparse(Y)) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs(random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
richrr/scripts
python/merging-python-script.py
1
5595
import sys import os import pandas as pd import multiprocessing as mp import csv # this code is written for the merged file with combined pval & fdr. although it could have been written for the file without comb fisher and fdr, # it is easier to have the output with the comb pval and fdr and use what we need rather than have to search them in the merged file with comb pval and fdr # or run the next (create network) command to calc the combined pval and fdr. # cd /nfs3/PHARM/Morgun_Lab/richrr/Cervical_Cancer/analysis/merged/corr/gexpress/stage-ltest_corr/p1 """ SGE_Batch -c "python ~/Morgun_Lab/richrr/scripts/python/merging-python-script.py merged_gexp_sp_corr_p1_FolChMedian_merged-parallel-output.csv-comb-pval-output.csv 1 2" -m 150G -F 100G -r log_merge-py_1 -q biomed -M [email protected] -P 8 SGE_Batch -c "python ~/Morgun_Lab/richrr/scripts/python/merging-python-script.py merged_gexp_sp_corr_p1_FolChMedian_merged-parallel-output.csv-comb-pval-output.csv 2 2" -m 150G -F 100G -r log_merge-py_2 -q biomed -M [email protected] -P 8 SGE_Batch -c "python ~/Morgun_Lab/richrr/scripts/python/merging-python-script.py merged_gexp_sp_corr_p1_FolChMedian_merged-parallel-output.csv-comb-pval-output.csv 3 2" -m 150G -F 100G -r log_merge-py_3 -q biomed -M [email protected] -P 8 SGE_Batch -c "python ~/Morgun_Lab/richrr/scripts/python/merging-python-script.py merged_gexp_sp_corr_p1_FolChMedian_merged-parallel-output.csv-comb-pval-output.csv 4 2" -m 150G -F 100G -r log_merge-py_4 -q biomed -M [email protected] -P 8 """ infile = sys.argv[1] analysis = "Analys " + sys.argv[2] + " " numb_datasets = int(sys.argv[3]) # get the header line form the big file and decide which (analysis) columns to use header_line = '' with open(infile, 'r') as f: header_line = f.readline().strip() selcted_cols = [i for i, s in enumerate(header_line.split(',')) if analysis in s] #[s for s in header_line.split(',') if analysis in s] # get the lowest and highest and make range out of it # this way you get the combinedpval and combined fdr cols selcted_cols = range(min(selcted_cols), max(selcted_cols)+1) selcted_cols.insert(0, 0) # explicitly adding the row id cols print selcted_cols header_for_print = [header_line.split(',')[i] for i in selcted_cols] print header_for_print def process(df): res = list() for row in df.itertuples(): #print row corrs = row[1:numb_datasets+1] corrs_flag = 0 # write some condition to check for NA pos = sum(float(num) > 0 for num in corrs) neg = sum(float(num) < 0 for num in corrs) #print pos, neg if len(corrs) == pos and not len(corrs) == neg: #print "pos" corrs_flag = 1 if len(corrs) == neg and not len(corrs) == pos: #print "neg" corrs_flag = 1 if corrs_flag == 1: res.append(row) return res counter=0 pool = mp.Pool(30) # use 30 processes funclist = [] # http://gouthamanbalaraman.com/blog/distributed-processing-pandas.html #for chunck_df in pd.read_csv(infile, chunksize=100, usecols=range(5), index_col=0): for chunck_df in pd.read_csv(infile, chunksize=100000, usecols=selcted_cols, index_col=0): counter = counter + 1 print counter #print chunck_df # process each data frame f = pool.apply_async(process,[chunck_df]) funclist.append(f) #result = list() OUTfile = infile + analysis.replace(" ", "_") + '-same-dir-corrs.csv' with open(OUTfile, 'w') as of: writer = csv.writer(of, delimiter=',', lineterminator='\n') writer.writerow(header_for_print) for f in funclist: csvd = f.get(timeout=10000) # timeout in 10000 seconds #result.extend(csvd) writer.writerows(csvd) #print result # quick and dirty command to get the first column of the file: cutcmd = "cut -d, -f 1 " + OUTfile + " > " + OUTfile + "-ids.csv" os.system(cutcmd) print "Done" """ # sequential corrs_dict = dict() # satisfies corr direction counter = 0 # with open(in_filename) as in_f, open(out_filename, 'w') as out_f with open(infile) as f: for line in f: counter = counter + 1 line = line.strip() print line contents = line.split(",") corrs = contents[1:numb_datasets+1] corrs_flag = 0 if counter == 1: # move to next iteration of.write(line) continue # write some condition to check for NA pos = sum(float(num) > 0 for num in corrs) neg = sum(float(num) < 0 for num in corrs) #print pos, neg if len(corrs) == pos and not len(corrs) == neg: print "pos" corrs_flag = 1 if len(corrs) == neg and not len(corrs) == pos: print "neg" corrs_flag = 1 if corrs_flag == 1: corrs_dict[contents[0]] = contents[1:] ''' if corrs_flag == 0: # no point in analyzing pvals, move to next iteration continue pvals = contents[numb_datasets+1:] print pvals pvals_flag = 0 # write some condition to check for NA sig = sum(float(num) < 1 for num in pvals) #print sig if len(corrs) == sig: print "sig" pvals_flag = 1 if corrs_flag == 1 and pvals_flag == 1: corrs_dict[contents[0]] = contents[1:] if counter == 5: sys.exit(0) ''' print corrs_dict """
gpl-3.0
orion-42/numerics-physics-stuff
midpoint_displacement.py
1
2079
import numpy as np import matplotlib.pyplot as plt def make_nth_size(n): return 2 ** n + 1 def midpoint_displacement(size, init_min_val=0.0, init_max_val=10.0, max_error=1.0): noise = np.zeros((size, size)) noise[0, 0] = np.random.uniform(init_min_val, init_max_val) noise[0, -1] = np.random.uniform(init_min_val, init_max_val) noise[-1, 0] = np.random.uniform(init_min_val, init_max_val) noise[-1, -1] = np.random.uniform(init_min_val, init_max_val) rec_midpoint_displacement(noise, max_error) return noise def rec_midpoint_displacement(noise, max_error): if noise.shape == (2, 2): return midpoint_index = noise.shape[0] // 2 noise[0, midpoint_index] = ( (noise[0, 0] + noise[0, -1]) / 2.0 + np.random.uniform(-max_error, max_error) ) noise[midpoint_index, 0] = ( (noise[0, 0] + noise[-1, 0]) / 2.0 + np.random.uniform(-max_error, max_error) ) noise[midpoint_index, -1] = ( (noise[0, -1] + noise[-1, -1]) / 2.0 + np.random.uniform(-max_error, max_error) ) noise[-1, midpoint_index] = ( (noise[-1, 0] + noise[-1, -1]) / 2.0 + np.random.uniform(-max_error, max_error) ) noise[midpoint_index, midpoint_index] = ( noise[0, midpoint_index] + noise[midpoint_index, 0] + noise[midpoint_index, -1] + noise[-1, midpoint_index] ) / 4.0 + np.random.uniform(-max_error, max_error) new_max_error = max_error / 2.0 rec_midpoint_displacement(noise[:midpoint_index + 1, :midpoint_index + 1], new_max_error) rec_midpoint_displacement(noise[:midpoint_index + 1, midpoint_index:], new_max_error) rec_midpoint_displacement(noise[midpoint_index:, :midpoint_index + 1], new_max_error) rec_midpoint_displacement(noise[midpoint_index:, midpoint_index:], new_max_error) if __name__ == "__main__": plt.pcolormesh(midpoint_displacement(make_nth_size(6), max_error=2.0))
mit
jzt5132/scikit-learn
examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
markusrenepae/DLTA
Version 1.2/Branches/Mean_comparison/Automation.py
1
2805
import datetime import time import matplotlib.pyplot as plt import numpy as np import pyautogui import Calvar as var import Methods as met def move_cursor(): pyautogui.moveTo(var.rand) def open_IQ(): pyautogui.click(var.chrome) move_cursor() time.sleep(1) def put(): pyautogui.click(var.put) move_cursor() def call(): pyautogui.click(var.call) move_cursor() def new_position(): pyautogui.click(var.newpos) move_cursor() def get_price_data(screen): price_data = np.array([]) for x in range(var.xstart, var.xend): for y in range(var.ystart, var.yend): pixel_color = screen.getpixel((x, y)) if pixel_color == (43, 171, 63): price_data = np.append(price_data, -y) return price_data elif pixel_color == (255, 167, 77): price_data = np.append(price_data, -y) break def plot_state(price_data_x, price_data, fit, std_limit): plt.plot(price_data_x, price_data, "orange") plt.scatter(price_data_x[-1], price_data[-1], color="green", s=5) plt.plot(price_data_x, fit, "red") plt.plot(price_data_x, fit + std_limit, "black") plt.plot(price_data_x, fit - std_limit, "black") plt.show() def decide_bet(screen): price_data = get_price_data(screen) if price_data is not None: mean1 = np.mean(price_data) mean2 = np.mean(price_data[int(6 * len(price_data) / 7):len(price_data)]) price_data_x = np.array(range(price_data.size)) fit_func = np.polyfit(price_data_x, price_data, 1) fit = np.polyval(fit_func, price_data_x) error = price_data - fit currentsec = datetime.datetime.now().second if var.timeupper - 9 <= currentsec < var.timeupper: factor = var.stdfactor else: factor = var.stdfactor * (1 + 0.75 * (11 - currentsec) / 11) # dynamic limit std_limit = factor * np.std(error) dot_y = price_data[-1] last_fit = fit[-1] if dot_y > last_fit + std_limit and ( mean2 - mean1 > 140 or (price_data[-1] - mean2 > 160 and currentsec > var.timelower + 10)): put() return True elif dot_y < last_fit - std_limit and ( mean1 - mean2 > 170 or (mean2 - price_data[-1] > 160 and currentsec > var.timelower + 10)): call() return True else: return False open_IQ() bet_done = False while True: screen = pyautogui.screenshot() seconds = datetime.datetime.now().second if var.timelower <= seconds < var.timeupper: bet_done = decide_bet(screen) if bet_done: time.sleep(25) else: pass new_position() else: pass
apache-2.0
linebp/pandas
pandas/io/clipboards.py
14
3793
""" io on the clipboard """ from pandas import compat, get_option, option_context, DataFrame from pandas.compat import StringIO, PY2 def read_clipboard(sep='\s+', **kwargs): # pragma: no cover r""" Read text from clipboard and pass to read_table. See read_table for the full argument list Parameters ---------- sep : str, default '\s+'. A string or regex delimiter. The default of '\s+' denotes one or more whitespace characters. Returns ------- parsed : DataFrame """ encoding = kwargs.pop('encoding', 'utf-8') # only utf-8 is valid for passed value because that's what clipboard # supports if encoding is not None and encoding.lower().replace('-', '') != 'utf8': raise NotImplementedError( 'reading from clipboard only supports utf-8 encoding') from pandas.io.clipboard import clipboard_get from pandas.io.parsers import read_table text = clipboard_get() # try to decode (if needed on PY3) # Strange. linux py33 doesn't complain, win py33 does if compat.PY3: try: text = compat.bytes_to_str( text, encoding=(kwargs.get('encoding') or get_option('display.encoding')) ) except: pass # Excel copies into clipboard with \t separation # inspect no more then the 10 first lines, if they # all contain an equal number (>0) of tabs, infer # that this came from excel and set 'sep' accordingly lines = text[:10000].split('\n')[:-1][:10] # Need to remove leading white space, since read_table # accepts: # a b # 0 1 2 # 1 3 4 counts = set([x.lstrip().count('\t') for x in lines]) if len(lines) > 1 and len(counts) == 1 and counts.pop() != 0: sep = '\t' if sep is None and kwargs.get('delim_whitespace') is None: sep = '\s+' return read_table(StringIO(text), sep=sep, **kwargs) def to_clipboard(obj, excel=None, sep=None, **kwargs): # pragma: no cover """ Attempt to write text representation of object to the system clipboard The clipboard can be then pasted into Excel for example. Parameters ---------- obj : the object to write to the clipboard excel : boolean, defaults to True if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard sep : optional, defaults to tab other keywords are passed to to_csv Notes ----- Requirements for your platform - Linux: xclip, or xsel (with gtk or PyQt4 modules) - Windows: - OS X: """ encoding = kwargs.pop('encoding', 'utf-8') # testing if an invalid encoding is passed to clipboard if encoding is not None and encoding.lower().replace('-', '') != 'utf8': raise ValueError('clipboard only supports utf-8 encoding') from pandas.io.clipboard import clipboard_set if excel is None: excel = True if excel: try: if sep is None: sep = '\t' buf = StringIO() # clipboard_set (pyperclip) expects unicode obj.to_csv(buf, sep=sep, encoding='utf-8', **kwargs) text = buf.getvalue() if PY2: text = text.decode('utf-8') clipboard_set(text) return except: pass if isinstance(obj, DataFrame): # str(df) has various unhelpful defaults, like truncation with option_context('display.max_colwidth', 999999): objstr = obj.to_string(**kwargs) else: objstr = str(obj) clipboard_set(objstr)
bsd-3-clause
hantsik/dissertation
struct_func.py
1
25669
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 9 21:30:04 2017 @author: hanna-stinasonts """ ''' INTRO This is just a long list of functions that I have used in the code The functions can be divided up to a) Basic - functions that use predefined paramters and built in functions. These are all based on textbook structral engineering formulas. b) Advanced - functions that use SOME predefined paramters but calculate most by using the user-written and then imported Basic functions. ''' # not really sure if these need to be here but just kindof left it like that import numpy as np import copy np.set_printoptions(precision=1) #set working precision to .1 import matplotlib.pyplot as plt import pandas ################################## ####---BASIC FUNCTIONS---------### ################################## def geometry(m, b, h): "Return the geometrical properties of cross-section, including the area, location of neutral axis, and second moment of area" #LOCATION OF NEUTRAL AXIS A = 0.0 #Area Ay = 0.0 #First moment of area i = 0 j = 0 while ( i<h ): while ( j<b ): if ( (m[i,j]) != 0 ) : #If 0, then considered as empty and not counted A=A+1 Ay = Ay + (i+ 0.5) #i+0.5 to account for centrid of element (element height 1) j= j + 1 i=i+1 j=0 ybary= Ay/A #Location of neutral axis # CALCULATING SECOND MOMENT OF AREA Iy=0 #Second moment of area i=0 #Again, i and j are elements to help counting j=0 while ( i<h ): while ( j<b ): if ( (m[i,j]) != 0 ): #As 0 would bean an elements with no area Iy = Iy + ( i+0.5 - ybary )**2 j= j + 1 i=i+1 j=0 return A, ybary, Iy # CALCULATE BENDING STRESS IN EACH ELEMENT - major axis def moment(m, M, b, h, ybar, I): "Return the moment matrix" #Make a copy of the element matrix and substitue values with moment stresses moment1 = copy.deepcopy (m) #deepcopy because normal copy doesn't work proper i=0 j=0 while ( i<h ): while ( j<b ): if ( (moment1[i,j]) != 0) : moment1 [i,j] = (M*(ybar-i-0.5))/I #Calculates bending stress in each element j= j + 1 i=i+1 j=0 return moment1 # CALCULATING SHEAR STRESSES IN EACH ELEMENT - major axis def shear(m, S, b, h, ybary, Iy): "Return the shear stresses matrix" shear1 = copy.deepcopy (m) i=0 j=0 As = 0 # To calculate the area in shear t = 0 # To calculate the breadth of a slither Ay=0 ''' The shear stress formula is a bit funny, first you need to go through each row to know how many elements in slither are carrying the stress and what is the total area above slither. Then knowing this, you can go through the row again and applu the same shear stress value to all the elements, hence the double loop. ''' while ( i<h ): #Starts to read from top first row down #The loop where you count elements in and up to end of row while ( j<b ): # Starts to read elements from left in frist row if ( (shear1[i,j]) != 0) : t= t+1 As= As+1 Ay = Ay + 1*(ybary-i-0.5) j=j+1 j=0 #Loop where you assign values to elements in row while ( j<b ): # Starts to read elements from left in frist row if ( (shear1[i,j]) != 0 ) : shear1[i,j]=(S*(Ay)/(Iy*t)) #NB the ybar-i/2 is a roug simplification of centroid j=j+1 j=0 i=i+1 t=0 ''' Another slightly tricky bit here. Because I have taken cuts through the bottom of the element row it means that it will produce results where the top row as some shear in it with the bottom row being all elemenst 0. I'm going to fix the top row value to always be zero because that would be most correct in the theorical terms. Although practically this doesn't make much difference to the results, but I would prefer to keep top and bottom results symmetrical. ''' shear1[0, :] = 0 #Turn all first row values to zero return shear1 # PRINCIPAL STRESSES def principal (m, b, h, momentx, momenty, shear1): "Return the principal stresses matrix" ''' So here comes two more tricky parts Tricky nr 1 I want to compare the MAX principal stress which could be both pos or neg Python always takes the pos value of a square root, therefore i need to try out total principal stress with both the pos or neg value of squareroot Hence the z with '+' and w with '-' Then i go on to compare the two values in abs terms, and assign the bigger one to element. Tricky (and questionable) nr 2 - NEEDS TO BE REVISED/CONFIRMED Initially I had just abs(z) > abs(w), and not really thinking about what will happen if abs(z) = abs (w). Then I realised if abs(z) = abs (w) it means that (momentx[i,j] + momenty[i,j])/2 value must be 0, meaning the only force acting would be the shear force. I have used an arbitraru sign convention currently for the shear force so not really sure what sign it should be but have left it as pos for now. ''' principal1 = copy.deepcopy (m) i=0 j=0 while ( i<h ): while ( j<b ): if ( (principal1[i,j]) != 0 ) : # Tricky nr 1 z = (momentx[i,j] + momenty[i,j])/2 + (( ((momentx[i,j] - momenty[i,j])/2)**2 + (shear1[i,j])**2 )**(0.5)) w = (momentx[i,j] + momenty[i,j])/2 - (( ((momentx[i,j] - momenty[i,j])/2)**2 + (shear1[i,j])**2 )**(0.5)) #Tricky (and questionable) nr 2 - NEEDS TO BE REVISED/CONFIRMED if (abs(z) >= abs(w)): principal1 [i,j]=z else: principal1 [i,j]=w j= j + 1 i=i+1 j=0 return principal1 ################################## ####---ADVANCED FUNCTIONS------### ################################## def initial (h,b,Mx,My,S,P,maxstress): "Return the geometrical properties of cross-section" ''' This function calculates the round 0 principal stresses, meaning in the cross-section where no material has yet to be removed, utilising the above written functions. ''' from struct_func import geometry, moment, shear, principal import numpy as np import copy np.set_printoptions(precision=1) # Sets the rounding percision to 0.1 #Creating the matrix of a solid hxb element filled for the time with all values 1 m = np.ones((h, b), dtype=np.float ) #np.float isntead of int in order to get decimals mx= copy.deepcopy (m.transpose()) #same matrix turned around to work with minor axis #MAJOR AXIS GEOMETRY Y= (geometry(m,b,h)) A =Y[0] ybary = Y[1] Iy = Y[2] #MINOR AXIS GEOMETRY Y= (geometry(mx,h,b)) #notice how you have to swap b and h here to work in minor ybarx = Y[1] Ix = Y[2] # CALCULATE BENDING AND SHEAR IN EACH ELEMENT momentx= (moment(m,Mx,b,h,ybary,Iy)) momenty= (moment (mx,My,h,b,ybarx,Ix)) #takes the turned around matrix to local axis momenty= copy.deepcopy (momenty.transpose()) # turns it back to aling global axes for summing purposes shear1 = (shear(m,S, b, h,ybary,Iy)) axial1=P/A #This is a check to ensure that axial stresses within the stress limits if (axial1 > maxstress): print("The maxstress is ", maxstress, " but the axial stress is ", axial1) print("Section is overstressed, choose different input", "\n") principal1 = (principal(m, b, h, momentx, momenty, shear1)) return principal1 def iteration (h,b,f,w, Mx,My,My1,S,P,maxstress,step): "Return the final iterataion of the cross-section" from struct_func import geometry, moment, shear, principal, initial # The function produces a set of initial principal stresses results principal1 = (initial (h,b,Mx,My,S,P,maxstress) ) # Then it checks if the principal stresses are within limits #print ("Intitial princiapl, ", "\n", principal1) if ( ((abs(principal1))>(maxstress)).any() ): print ("The max principal stress is more than allowed") print("Section is overstressed, choose different input", "\n") # If there is no error message, it proceeds to the iteration loop else: kord=1 #Remembers the number of the iteration #There may be instances when it's already optimum at first round #So for these cases remember= copy.deepcopy (principal1) absprincipal1= abs(principal1) # You take abs as you have both +&- stresses ''' Here I have incoprorated a boundary condition for constructability purposes. No matter how small the stresses ight be, it will always keep a flat top flange. To do this, I have only allowed the loop the delete elements that are below the predefine flange thickness of f. Therefore the iteration loop will stop if it has either reached the 'perfect optimum' section (meaning that material stresses are as close to max as possible) OR If all elements below the flange have already been deleted. To check the latter I have made a new matric which contains all the elements stresses below the flange. If all these are 0 the iteration loop will close. ''' #Matrix of element stresses below the flange flange1 = np.delete(principal1, np.s_[0:(f)], axis=0) #flange for #If there are no out of plane reactions, then place web in the moddle if (My1==0): flange = np.delete(flange1, np.s_[ int(b/2 - w/2 - 1): int(b/2 + w/2) ] , axis=1) #If there are, then place web in the outside rows else: flange2 = np.delete(flange1, np.s_[ int(b-w-1):int(b) ] , axis=1) flange = np.delete(flange2, np.s_[ int(0):int(w) ] , axis=1) # Matrix now delets also all the web members #http://stackoverflow.com/questions/16632568/remove-a-specific-column-in-numpy ''' We want to remove the web lines from the matrix too nobody will design an uneven width of a beam anyway, so remove elements from b/2 ''' ''' The while conditon: Checks the maximum absolute value of all non-zero elements to be smaller than max stress limit And if all elements within flange matrix are not zero. If either case is true the loop will stop. ''' while (((np.max(absprincipal1[np.nonzero(absprincipal1)]))<maxstress) & np.any(flange) ) : ''' This loop makes everything that is understressed value to nought taking into account the step size and number of itearation. Starting from row f means that no elements within flange will be deleted. ''' #print (flange) #print (principal1) #print ("Max stressxkordxstep ", maxstress*step*kord, "\n") #print ("Max stress value, ", np.max(absprincipal1[np.nonzero(absprincipal1)]) , "\n") i=f j=0 if (My1==0): while ( i<h ): #print (i) while ( j<b ): if ( absprincipal1[i,j] < maxstress*step*kord ): #print (absprincipal1[i,j] < maxstress*step*kord) if ( j < (b/2-w/2) or j > (b/2+w/2-1)): principal1 [i,j] = 0 j= j + 1 i=i+1 j=0 else: while ( i<h ): #print (i) while ( j<b ): if ( absprincipal1[i,j] < maxstress*step*kord ): #print (absprincipal1[i,j] < maxstress*step*kord) if ( j > (w-1) and j < (b-w)): principal1 [i,j] = 0 j= j + 1 i=i+1 j=0 #print ("after removing material new matrix is, ", "\n", principal1 ) # Then you remember the new matrix with removed material and work with that instead m = copy.deepcopy(principal1) mx= copy.deepcopy (m.transpose()) #MAJOR AXIS GEOMETRY Y= (geometry(m,b,h)) A =Y[0] ybary = Y[1] Iy = Y[2] #MINOR AXIS GEOMETRY Y= (geometry(mx,h,b)) ybarx = Y[1] Ix = Y[2] # CALCULATE STRESSes IN EACH ELEMENT momentx= (moment (m,Mx,b,h,ybary,Iy)) momenty= (moment (mx,My,h,b,ybarx,Ix)) momenty= copy.deepcopy (momenty.transpose()) shear1 = (shear(m,S, b, h,ybary,Iy)) # COMBINES TO PRINCIPAL principal1 = (principal(m, b, h, momentx, momenty, shear1)) #print(principal1) # REPRODUCES THE NEW FLANGE MATRIC OF ELEMENTS BELOW IT #The first line only does stuff with top flange flange1 = np.delete(principal1, np.s_[0:(f)], axis=0) #If there are no out of plane reactions, then place web in the moddle if (My1==0): flange = np.delete(flange1, np.s_[ int(b/2 - w/2 - 1): int(b/2 + w/2) ] , axis=1) #If there are, then place web in the outside rows else: flange2 = np.delete(flange1, np.s_[ int(b-w-1):int(b) ] , axis=1) flange = np.delete(flange2, np.s_[ int(0):int(w) ] , axis=1) axial1 = round(P/A,1) kord = kord + 1 #print (kord) absprincipal1= abs(principal1) ''' The iteration loop will stop if any stress value has gone above limit. Therefore we need to retrieve the results from before this happened, which is what the 'remember' bit below does. ''' #REMEMBERING THE CORRECT VALUES # No values in principal matrix are greater than maxstress # AND axial stress is smaller than maxstress #print (np.max(absprincipal1), "viimane if tingimus" ) if ((np.max(absprincipal1[np.nonzero(absprincipal1)])) < maxstress) and (axial1 < maxstress): remember= copy.deepcopy (principal1) #rememberflange = copy.deepcopy(flange) remembera= A #print (flange) #print (remember) #index = ['Row'+str(i) for i in range(1, len(rememberflange)+1)] #df = pandas.DataFrame(rememberflange, index=index) #df.to_csv('flange.csv', split=', ') #print ("Principal, ", "\n", remember) print ("The area in mm2 is ", remembera) return remember def flangemove (flangeremember,b, Mx, My,S,P,maxstress,step): "This gunction uses a defined web and flance thickness at which it moves the bottom around, not changing any cross-section" from struct_func import geometry, moment, shear, principal ''' You take the optimised section also ti height and try to delete more members of the bottom flange ''' #Measuring flange-actual thickness # so you take the moved base result and start deleting elements # from both ends of the bottom flange #ticky because the first will be zero anyway absnewsection1= abs(flangeremember) #print ("Max in imported stress ", ((np.max(absnewsection1[np.nonzero(absnewsection1)]))) ) flangeremember.shape h = ( flangeremember.shape[0] ) #This return the nr of rows print ("Measure the height ",h, "\n") #Now you start removing the row just below #While max stresses are within allowable limits remember = copy.deepcopy (flangeremember) Y= (geometry(remember,b,h)) remembera =Y[0] newflange= copy.deepcopy(flangeremember) absnewsection = abs(newflange) #print ("Max current stress ", ((np.max(absnewsection[np.nonzero(absnewsection)]))) ) # you start from the two outermost rows of the flange j1 = 0 j2 = b-1 midpoint=b/2 #print ("The maximums stress is ", (np.max(absnewsection[np.nonzero(absnewsection)])) ) while ( ((np.max(absnewsection[np.nonzero(absnewsection)])) < maxstress) and (j1<midpoint) ): #print ("Calculating at flange at row ", j1, "\n") #h is the number of rowns, therefore last one is h-1 i = h-1 #start at the most bottom row newflange[i,j1] = 0 newflange[i,j2] =0 i=i-1 #move up by one row, because the bottomw row will be zero at ends #delete all elelemnts in that column of the flange while ( ( newflange[i,j1] != 0 ) and ( newflange[i,j2] !=0 ) ): newflange[i,j1] = 0 newflange[i,j2] = 0 i=i-1 #Prep for next round j1=j1+1 j2=j2-1 #print (newsection,"\n") ''' then you should recalculate and check the stress levels and if they are fine you should then go on and delete the next two columsn ''' m = copy.deepcopy(newflange) mx= copy.deepcopy (m.transpose()) #MAJOR AXIS GEOMETRY Y= (geometry(m,b,h)) A =Y[0] ybary = Y[1] Iy = Y[2] #MINOR AXIS GEOMETRY Y= (geometry(mx,h,b)) ybarx = Y[1] Ix = Y[2] # CALCULATE STRESSes IN EACH ELEMENT momentx= (moment (m,Mx,b,h,ybary,Iy)) momenty= (moment (mx,My,h,b,ybarx,Ix)) momenty= copy.deepcopy (momenty.transpose()) shear1 = (shear(m,S, b, h,ybary,Iy)) axial1=P/A # COMBINES TO PRINCIPAL newsection2 = (principal(m, b, h, momentx, momenty, shear1)) #print ("recalculating the principal stresses for new geomter, ", "\n") #print(newsection,"\n") absnewsection= abs(newsection2) ''' The iteration loop will stop if any stress value has gone above limit. Therefore we need to retrieve the results from before this happened, which is what the 'remember' bit below does. if j1==100: remembercopy2= np.flipud(newsection2) remembercopy2[remembercopy2 == 0.0] = np.nan np.flipud(remembercopy2) # http://stackoverflow.com/questions/10114576/setting-points-with-no-data-to-white-with-matplotlib-imshow img = plt.imshow(remembercopy2, interpolation='nearest') img.set_cmap('plasma') #Plasma is pretty http://matplotlib.org/examples/color/colormaps_reference.html plt.clim(-275,275) plt.axis('off') plt.ylim([0,500]) plt.show() plt.clf() if j1==50: remembercopy2= np.flipud(newsection2) remembercopy2[remembercopy2 == 0.0] = np.nan np.flipud(remembercopy2) # http://stackoverflow.com/questions/10114576/setting-points-with-no-data-to-white-with-matplotlib-imshow img = plt.imshow(remembercopy2, interpolation='nearest') img.set_cmap('plasma') #Plasma is pretty http://matplotlib.org/examples/color/colormaps_reference.html plt.clim(-275,275) plt.axis('off') plt.ylim([0,500]) plt.show() plt.clf() ''' #REMEMBERING THE CORRECT VALUES # No values in principal matrix are greater than maxstress # AND axial stress is smaller than maxstress if ((np.max(absnewsection[np.nonzero(absnewsection)])) < maxstress) and (axial1 < maxstress): remember= copy.deepcopy (newsection2) remembera= A #print ("The area in mm2 is ", remembera) #print ("The final I value n major axis is, ", Iy) #print ("And the rotation is ", (Iy*190000/My) ) #print ("Which results in a deflection of (in mm), ", (Iy*190000*700/My) ) #where 700 only applied for length 7000 and 10 cuts return remember def basemove (midsection, h,b,f,w, Mx,My1, My,S,P,maxstress,step): "This gunction uses a defined web and flance thickness at which it moves the bottom around, not changing any cross-section" from struct_func import geometry, moment, shear, principal ''' You'll take the optimum mid-section, and start by deleting the row just below the top flange. The top flange is probably thicker now than the initial perscribed therefore the thickness needs to be measures ''' #Measuring flange-actual thickness fa=0 i=0 #just to make sure there is not web at that place if (My1==0): j=0 else: j= b/2-w/2-5 #print ("j value i", j) while ( midsection[i,j] != 0 ): fa=fa+1 i=i+1 #print("Flange thickness in this case is ,", fa, ) #Now you start removing the row just below #While max stresses are within allowable limits remember = copy.deepcopy(midsection) newsection= copy.deepcopy(midsection) absnewsection = abs(newsection) while ( (np.max(absnewsection[np.nonzero(absnewsection)])) < maxstress ): newsection1 = np.delete(newsection, [fa+1], axis=0) h = h-1 #sest iga kord läheb väiksemaks m = copy.deepcopy(newsection1) mx= copy.deepcopy (m.transpose()) #MAJOR AXIS GEOMETRY Y= (geometry(m,b,h)) A =Y[0] ybary = Y[1] Iy = Y[2] #MINOR AXIS GEOMETRY Y= (geometry(mx,h,b)) ybarx = Y[1] Ix = Y[2] # CALCULATE STRESSes IN EACH ELEMENT momentx= (moment (m,Mx,b,h,ybary,Iy)) momenty= (moment (mx,My,h,b,ybarx,Ix)) momenty= copy.deepcopy (momenty.transpose()) shear1 = (shear(m,S, b, h,ybary,Iy)) axial1=P/A # COMBINES TO PRINCIPAL newsection2 = (principal(m, b, h, momentx, momenty, shear1)) newsection=copy.deepcopy(newsection2) absnewsection= abs(newsection2) ''' The iteration loop will stop if any stress value has gone above limit. Therefore we need to retrieve the results from before this happened, which is what the 'remember' bit below does. ''' #REMEMBERING THE CORRECT VALUES # No values in principal matrix are greater than maxstress # AND axial stress is smaller than maxstress ''' remembercopy= copy.deepcopy(newsection) remembercopy[remembercopy == 0.0] = np.nan # http://stackoverflow.com/questions/10114576/setting-points-with-no-data-to-white-with-matplotlib-imshow img = plt.imshow(remembercopy, interpolation='nearest') img.set_cmap('plasma') #Plasma is pretty http://matplotlib.org/examples/color/colormaps_reference.html plt.clim(-275,275) plt.axis('off') plt.ylim([0,500]) plt.show() plt.clf() print (h) ''' if ((np.max(absnewsection[np.nonzero(absnewsection)])) < maxstress) and (axial1 < maxstress): remember= copy.deepcopy (newsection2) #remembera= A #print ("The area in mm2 is ", remembera) #print ("The actual hight now is, ", h) #print ("The final I value n major axis is, ", Iy) #print ("And the rotation is ", (Iy*180000/My) ) #print ("Which results in a deflection of (in mm), ", (Iy*180000*700/My) ) return remember
mit
abimannans/scikit-learn
examples/preprocessing/plot_function_transformer.py
161
1949
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.cross_validation import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() plt.scatter(X[:, 0], X[:, 1], c=y, s=50) plt.show() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, s=50, ) plt.show()
bsd-3-clause
nvoron23/scikit-learn
examples/ensemble/plot_ensemble_oob.py
259
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <[email protected]> # Gilles Louppe <[email protected]> # Andreas Mueller <[email protected]> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
datapythonista/pandas
pandas/tests/indexing/multiindex/test_sorted.py
4
4461
import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, Series, ) import pandas._testing as tm class TestMultiIndexSorted: def test_getitem_multilevel_index_tuple_not_sorted(self): index_columns = list("abc") df = DataFrame( [[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"] ) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.loc[query_index, "data"] xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=["a", "b", "c"]) xp = Series(["x"], index=xp_idx, name="data") tm.assert_series_equal(rs, xp) def test_getitem_slice_not_sorted(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data df = frame.sort_index(level=1).T # buglet with int typechecking result = df.iloc[:, : np.int32(3)] expected = df.reindex(columns=df.columns[:3]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("key", [None, lambda x: x]) def test_frame_getitem_not_sorted2(self, key): # 13431 df = DataFrame( { "col1": ["b", "d", "b", "a"], "col2": [3, 1, 1, 2], "data": ["one", "two", "three", "four"], } ) df2 = df.set_index(["col1", "col2"]) df2_original = df2.copy() with tm.assert_produces_warning(FutureWarning): return_value = df2.index.set_levels( ["b", "d", "a"], level="col1", inplace=True ) assert return_value is None with tm.assert_produces_warning(FutureWarning): return_value = df2.index.set_codes([0, 1, 0, 2], level="col1", inplace=True) assert return_value is None assert not df2.index.is_monotonic assert df2_original.index.equals(df2.index) expected = df2.sort_index(key=key) assert expected.index.is_monotonic result = df2.sort_index(level=0, key=key) assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_sort_values_key(self, multiindex_dataframe_random_data): arrays = [ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = zip(*arrays) index = MultiIndex.from_tuples(tuples) index = index.sort_values( # sort by third letter key=lambda x: x.map(lambda entry: entry[2]) ) result = DataFrame(range(8), index=index) arrays = [ ["foo", "foo", "bar", "bar", "qux", "qux", "baz", "baz"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = zip(*arrays) index = MultiIndex.from_tuples(tuples) expected = DataFrame(range(8), index=index) tm.assert_frame_equal(result, expected) def test_frame_getitem_not_sorted(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data df = frame.T df["foo", "four"] = "foo" arrays = [np.array(x) for x in zip(*df.columns.values)] result = df["foo"] result2 = df.loc[:, "foo"] expected = df.reindex(columns=df.columns[arrays[0] == "foo"]) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) df = df.T result = df.xs("foo") result2 = df.loc["foo"] expected = df.reindex(df.index[arrays[0] == "foo"]) expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = zip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(np.random.randn(8), index=index) arrays = [np.array(x) for x in zip(*index.values)] result = s["qux"] result2 = s.loc["qux"] expected = s[arrays[0] == "qux"] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected)
bsd-3-clause
FayolChang/vnpy
vn.datayes/api.py
19
45371
#encoding: UTF-8 import os import json import time import requests import pymongo import pandas as pd from datetime import datetime, timedelta from Queue import Queue, Empty from threading import Thread, Timer from pymongo import MongoClient from requests.exceptions import ConnectionError from errors import (VNPAST_ConfigError, VNPAST_RequestError, VNPAST_DataConstructorError) class Config(object): """ Json-like config object. The Config contains all kinds of settings and user info that could be useful in the implementation of Api wrapper. privates -------- * head: string; the name of config file. * token: string; user's token. * body: dictionary; the main content of config. - domain: string, api domain. - ssl: boolean, specifes http or https usage. - version: string, version of the api. Currently 'v1'. - header: dictionary; the request header which contains authorization infomation. """ head = 'my config' toke_ = '44ebc0f058981f85382595f9f15f967' + \ '0c7eaf2695de30dd752e8f33e9022baa0' token = '7c2e59e212dbff90ffd6b382c7afb57' + \ 'bc987a99307d382b058af6748f591d723' body = { 'ssl': False, 'domain': 'api.wmcloud.com/data', 'version': 'v1', 'header': { 'Connection' : 'keep-alive', 'Authorization': 'Bearer ' + token } } def __init__(self, head=None, token=None, body=None): """ Reloaded constructor. parameters ---------- * head: string; the name of config file. Default is None. * token: string; user's token. * body: dictionary; the main content of config """ if head: self.head = head if token: self.token = token if body: self.body = body def view(self): """ Prettify printing method. """ config_view = { 'config_head' : self.head, 'config_body' : self.body, 'user_token' : self.token } print json.dumps(config_view, indent=4, sort_keys=True) #---------------------------------------------------------------------- # Data containers. class BaseDataContainer(object): """ Basic data container. The fundamental of all other data container objects defined within this module. privates -------- * head: string; the head(type) of data container. * body: dictionary; data content. Among all sub-classes that inherit BaseDataContainer, type(body) varies according to the financial meaning that the child data container stands for. - History: - Bar """ head = 'ABSTRACT_DATA' body = dict() pass class History(BaseDataContainer): """ Historical data container. The foundation of all other pandas DataFrame-like two dimensional data containers for this module. privates -------- * head: string; the head(type) of data container. * body: pd.DataFrame object; contains data contents. """ head = 'HISTORY' body = pd.DataFrame() def __init__(self, data): """ Reloaded constructor. parameters ---------- * data: dictionary; usually a Json-like response from web based api. For our purposes, data is exactly resp.json() where resp is the response from datayes developer api. - example: {'data': [ { 'closePrice': 15.88, 'date': 20150701, ... }, { 'closePrice': 15.99, 'date': 20150702, ... }, ...], 'retCode': 1, 'retMsg': 'Success'}. So the body of data is actually in data['data'], which is our target when constructing the container. """ try: assert 'data' in data self.body = pd.DataFrame(data['data']) except AssertionError: msg = '[{}]: Unable to construct history data; '.format( self.head) + 'input is not a dataframe.' raise VNPAST_DataConstructorError(msg) except Exception,e: msg = '[{}]: Unable to construct history data; '.format( self.head) + str(e) raise VNPAST_DataConstructorError(msg) class Bar(History): """ Historical Bar data container. Inherits from History() DataFrame-like two dimensional data containers for Bar data. privates -------- * head: string; the head(type) of data container. * body: pd.DataFrame object; contains data contents. """ head = 'HISTORY_BAR' body = pd.DataFrame() def __init__(self, data): """ Reloaded constructor. parameters ---------- * data: dictionary; usually a Json-like response from web based api. For our purposes, data is exactly resp.json() where resp is the response from datayes developer api. - example: {'data': [{ 'exchangeCD': 'XSHG', 'utcOffset': '+08:00', 'unit': 1, 'currencyCD': 'CNY', 'barBodys': [ { 'closePrice': 15.88, 'date': 20150701, ... }, { 'closePrice': 15.99, 'date': 20150702, ... }, ... ], 'ticker': '000001', 'shortNM': u'\u4e0a\u8bc1\u6307\u6570' }, ...(other tickers) ], 'retCode': 1, 'retMsg': 'Success'}. When requesting 1 ticker, json['data'] layer has only one element; we expect that this is for data collectioning for multiple tickers, which is currently impossible nevertheless. So we want resp.json()['data'][0]['barBodys'] for Bar data contents, and that is what we go into when constructing Bar. """ try: assert 'data' in data assert 'barBodys' in data['data'][0] self.body = pd.DataFrame(data['data'][0]['barBodys']) except AssertionError: msg = '[{}]: Unable to construct history data; '.format( self.head) + 'input is not a dataframe.' raise VNPAST_DataConstructorError(msg) except Exception,e: msg = '[{}]: Unable to construct history data; '.format( self.head) + str(e) raise VNPAST_DataConstructorError(msg) #---------------------------------------------------------------------- # Datayes Api class class PyApi(object): """ Python based Datayes Api object. PyApi should be initialized with a Config json. The config must be complete, in that once constructed, the private variables like request headers, tokens, etc. become constant values (inherited from config), and will be consistantly referred to whenever make requests. privates -------- * _config: Config object; a container of all useful settings when making requests. * _ssl, _domain, _domain_stream, _version, _header, _account_id: boolean, string, string, string, dictionary, integer; just private references to the items in Config. See the docs of Config(). * _session: requests.session object. examples -------- """ _config = Config() # request stuffs _ssl = False _domain = '' _version = 'v1' _header = dict() _token = None _session = requests.session() def __init__(self, config): """ Constructor. parameters ---------- * config: Config object; specifies user and connection configs. """ if config.body: try: self._config = config self._ssl = config.body['ssl'] self._domain = config.body['domain'] self._version = config.body['version'] self._header = config.body['header'] except KeyError: msg = '[API]: Unable to configure api; ' + \ 'config file is incomplete.' raise VNPAST_ConfigError(msg) except Exception,e: msg = '[API]: Unable to configure api; ' + str(e) raise VNPAST_ConfigError(msg) # configure protocol if self._ssl: self._domain = 'https://' + self._domain else: self._domain = 'http://' + self._domain def __access(self, url, params, method='GET'): """ request specific data from given url with parameters. parameters ---------- * url: string. * params: dictionary. * method: string; 'GET' or 'POST', request method. """ try: assert type(url) == str assert type(params) == dict except AssertionError,e: raise e('[API]: Unvalid url or parameter input.') if not self._session: s = requests.session() else: s = self._session # prepare and send the request. try: req = requests.Request(method, url = url, headers = self._header, params = params) prepped = s.prepare_request(req) # prepare the request resp = s.send(prepped, stream=False, verify=True) if method == 'GET': assert resp.status_code == 200 elif method == 'POST': assert resp.status_code == 201 return resp except AssertionError: msg = '[API]: Bad request, unexpected response status: ' + \ str(resp.status_code) raise VNPAST_RequestError(msg) pass except Exception,e: msg = '[API]: Bad request.' + str(e) raise VNPAST_RequestError(msg) #---------------------------------------------------------------------- # directly get methods - Market data def get_equity_M1_one(self, start='', end='', secID='000001.XSHG'): """ Get 1-minute intraday bar data of one security. parameters ---------- * start, end: string; Time mark formatted in 'HH:MM'. Specifies the start/end point of bar. Note that the requested date is the latest trading day (only one day), and the default start/end time is '09:30' and min(now, '15:00'). Effective minute bars range from 09:30 - 11:30 in the morning and 13:01 - 15:00 in the afternoon. * secID: string; the security ID in the form of '000001.XSHG', i.e. ticker.exchange """ url = '{}/{}/api/market/getBarRTIntraDay.json'.format( self._domain, self._version) params = { 'startTime': start, 'endTime': end, 'securityID': secID, } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 print resp.json() data = Bar(resp.json()) return data except AssertionError: return 0 def get_equity_M1(self, field='', start='20130701', end='20130730', secID='000001.XSHG', output='df'): """ 1-minute bar in a month, currently unavailable. parameters ---------- * field: string; variables that are to be requested. * start, end: string; Time mark formatted in 'YYYYMMDD'. * secID: string; the security ID in the form of '000001.XSHG', i.e. ticker.exchange * output: enumeration of strings; the format of output that will be returned. default is 'df', optionals are: - 'df': returns History object, where ret.body is a dataframe. - 'list': returns a list of dictionaries. """ url = '{}/{}/api/market/getBarHistDateRange.json'.format( self._domain, self._version) params = { 'field': field, 'startDate': start, 'endDate': end, 'securityID': secID, } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = Bar(resp.json()) elif output == 'list': data = resp.json()['data'][0]['barBodys'] return data except AssertionError: return 0 def get_equity_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one security. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for securities) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - actPreClosePrice* double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - turnoverVol double. - turnoverValue double. - dealAmount* integer. - turnoverRate double. - accumAdjFactor* double. - negMarketValue* double. - marketValue* double. - PE* double. - PE1* double. - PB* double. Field is an optional parameter, default setting returns all fields. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of bar. Start and end are optional parameters. If start, end and ticker are all specified, default 'one' value will be abandoned. * secID: string; the security ID in the form of '000001.XSHG', i.e. ticker.exchange. * ticker: string; the trading code in the form of '000001'. * one: string; Date mark formatted in 'YYYYMMDD'. Specifies one date on which data of all tickers are to be requested. Note that to get effective json data response, at least one parameter in {secID, ticker, tradeDate} should be entered. * output: enumeration of strings; the format of output that will be returned. default is 'df', optionals are: - 'df': returns History object, where ret.body is a dataframe. - 'list': returns a list of dictionaries. """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktEqud.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data #return resp except AssertionError: return 0 def get_block_D1(self, field='', start='', end='', secID='', ticker='', one=20150513): """ """ pass def get_repo_D1(self, field='', start='', end='', secID='', ticker='', one=20150513): """ """ pass def get_bond_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one bond instrument. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for bonds) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - turnoverVol double. - turnoverValue double. - turnoverRate double. - dealAmount* integer. - accrInterest* double. - YTM(yieldToMaturity)* double. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktBondd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_future_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one future contract. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for future contracts) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - contractObject* string. - contractMark* string. - preSettlePrice* double. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - settlePrice* double. - turnoverVol integer. - turnoverValue integer. - openInt* integer. - CHG* double. - CHG1* double. - CHGPct* double. - mainCon* integer (0/1 flag). - smainCon* integer (0/1 flag). Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktFutd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_future_main_D1(self, field='', start='', end='', mark='', obj='', main=1, one=20150513): """ """ pass def get_fund_D1(self, field='', start='', end='', secID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one mutual fund. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for funds) - secID string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - turnoverVol double. - turnoverValue double. - CHG* double. - CHGPct* double. - discount* double. - discountRatio* double. - circulationShares* double. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktFundd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_index_D1(self, field='', start='', end='', indexID='', ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one stock index. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for indices) - indexID string. - tradeDate date(?). - ticker string. - secShortName string. - porgFullName* string. - exchangeCD string. - preCloseIndex double. - openIndex double. - highestIndex double. - lowestIndex double. - closeIndex double. - turnoverVol double. - turnoverValue double. - CHG* double. - CHGPct* double. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktIdxd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'indexID': indexID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_option_D1(self, field='', start='', end='', secID='', optID='' ,ticker='', one=20150513, output='df'): """ Get 1-day interday bar data of one option contact. parameters ---------- * field: string; variables that are to be requested. Available variables are: (* is unique for options) - secID string. - optID* string. - tradeDate date(?). - ticker string. - secShortName string. - exchangeCD string. - preClosePrice double. - openPrice double. - highestPrice double. - lowestPrice double. - closePrice double. - settlePrice* double. - turnoverVol double. - turnoverValue double. - openInt* integer. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ if start and end and ticker: one = '' # while user specifies start/end, covers tradeDate. url = '{}/{}/api/market/getMktOptd.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'optID': optID, 'ticker': ticker, 'tradeDate': one } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 if output == 'df': data = History(resp.json()) elif output == 'list': data = resp.json()['data'] return data except AssertionError: return 0 def get_stockFactor_D1(self, field='', secID='', ticker='000001', start=20130701, end=20130801): """ Get 1-day interday factor data for stocks. parameters ---------- * field: string; variables that are to be requested. Field is an optional parameter, default setting returns all fields. * start, end, secID, ticker, one, output string, string, string, string, string, string(enum) Same as above, reference: get_equity_D1(). """ url = '{}/{}/api/market/getStockFactorsDateRange.json'.format( self._domain, self._version) params = { 'field': field, 'beginDate': start, 'endDate': end, 'secID': secID, 'ticker': ticker } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 #---------------------------------------------------------------------- # directly get methods - Fundamental Data def get_balanceSheet(self, field='', secID='', start='', end='', pubStart='', pubEnd='', reportType='', ticker='000001'): """ """ url = '{}/{}/api/fundamental/getFdmtBS.json'.format( self._domain, self._version) params = { 'field': field, 'secID': secID, 'ticker': ticker, 'beginDate': start, 'endDate': end, 'publishDateBegin': pubStart, 'publishDateEnd': pubEnd, 'reportType': reportType } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 def get_balanceSheet_bnk(self): """ """ pass def get_balanceSheet_sec(self): """ """ pass def get_balanceSheet_ins(self): """ """ pass def get_balanceSheet_ind(self): """ """ pass def get_cashFlow(self, field='', secID='', start='', end='', pubStart='', pubEnd='', reportType='', ticker='000001'): """ """ url = '{}/{}/api/fundamental/getFdmtCF.json'.format( self._domain, self._version) params = { 'field': field, 'secID': secID, 'ticker': ticker, 'beginDate': start, 'endDate': end, 'publishDateBegin': pubStart, 'publishDateEnd': pubEnd, 'reportType': reportType } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 def get_cashFlow_bnk(self): """ """ pass def get_cashFlow_sec(self): """ """ pass def get_cashFlow_ins(self): """ """ pass def get_cashFlow_ind(self): """ """ pass def get_incomeStatement(self, field='', secID='', start='', end='', pubStart='', pubEnd='', reportType='', ticker='000001'): """ """ url = '{}/{}/api/fundamental/getFdmtIS.json'.format( self._domain, self._version) params = { 'field': field, 'secID': secID, 'ticker': ticker, 'beginDate': start, 'endDate': end, 'publishDateBegin': pubStart, 'publishDateEnd': pubEnd, 'reportType': reportType } try: resp = self.__access(url=url, params=params) assert len(resp.json()) > 0 data = History(resp.json()) return data except AssertionError: return 0 def get_incomeStatement_bnk(self): """ """ pass def get_incomeStatement_sec(self): """ """ pass def get_incomeStatement_ins(self): """ """ pass def get_incomeStatement_ind(self): """ """ pass #---------------------------------------------------------------------- # multi-threading download for database storage. def __drudgery(self, id, db, indexType, start, end, tasks, target): """ basic drudgery function. This method loops over a list of tasks(tickers) and get data using target api.get_# method for all those tickers. A new feature 'date' or 'dateTime'(for intraday) will be automatically added into every json-like documents, and specifies the datetime. datetime() formatted date(time) mark. With the setting of MongoDB in this module, this feature should be the unique index for all collections. By programatically assigning creating and assigning tasks to drudgery functions, multi-threading download of data can be achieved. parameters ---------- * id: integer; the ID of Drudgery session. * db: pymongo.db object; the database which collections of bars will go into. * indexType: string(enum): 'date' or 'datetime', specifies what is the collection index formatted. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * tasks: list of strings; the tickers that this drudgery function loops over. * target: method; the api.get_# method that is to be called by drudgery function. """ if len(tasks) == 0: return 0 # str to datetime inline functions. if indexType == 'date': todt = lambda str_dt: datetime.strptime(str_dt,'%Y-%m-%d') update_dt = lambda d: d.update({'date':todt(d['tradeDate'])}) elif indexType == 'datetime': todt = lambda str_d, str_t: datetime.strptime( str_d + ' ' + str_t,'%Y-%m-%d %H:%M') update_dt = lambda d: d.update( {'dateTime':todt(d['dataDate'], d['barTime'])}) else: raise ValueError # loop over all tickers in task list. k, n = 1, len(tasks) for ticker in tasks: try: data = target(start = start, end = end, ticker = ticker, output = 'list') assert len(data) >= 1 map(update_dt, data) # add datetime feature to docs. coll = db[ticker] coll.insert_many(data) print '[API|Session{}]: '.format(id) + \ 'Finished {} in {}.'.format(k, n) k += 1 except AssertionError: msg = '[API|Session{}]: '.format(id) + \ 'Empty dataset in the response.' print msg pass except Exception, e: msg = '[API|Session{}]: '.format(id) + \ 'Exception encountered when ' + \ 'requesting data; ' + str(e) print msg pass def get_equity_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_equity_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_equity_D1) def get_future_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_future_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_future_D1) def get_index_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_index_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_index_D1) def get_bond_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_bond_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_bond_D1) def get_fund_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_fund_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_fund_D1) def get_option_D1_drudgery(self, id, db, start, end, tasks=[]): """ call __drudgery targeting at get_option_D1() """ self.__drudgery(id=id, db=db, indexType = 'date', start = start, end = end, tasks = tasks, target = self.get_option_D1) #---------------------------------------------------------------------- def __overlord(self, db, start, end, dName, target1, target2, sessionNum): """ Basic controller of multithreading request. Generates a list of all tickers, creates threads and distribute tasks to individual #_drudgery() functions. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * dName: string; the path of file where all tickers' infomation are stored in. * target1: method; targetting api method that overlord calls to get tasks list. * target2: method; the corresponding drudgery function. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') allTickers = json.loads(jsonFile.read()) jsonFile.close() else: data = target1() allTickers = list(data.body['ticker']) chunkSize = len(allTickers)/sessionNum taskLists = [allTickers[k:k+chunkSize] for k in range( 0, len(allTickers), chunkSize)] k = 0 for tasks in taskLists: thrd = Thread(target = target2, args = (k, db, start, end, tasks)) thrd.start() k += 1 return 1 def get_equity_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get equity D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/equTicker.json', target1 = self.get_equity_D1, target2 = self.get_equity_D1_drudgery, sessionNum = sessionNum) def get_future_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get future D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/futTicker.json', target1 = self.get_future_D1, target2 = self.get_future_D1_drudgery, sessionNum = sessionNum) def get_index_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get index D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/idxTicker.json', target1 = self.get_index_D1, target2 = self.get_index_D1_drudgery, sessionNum = sessionNum) def get_bond_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get bond D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/bndTicker.json', target1 = self.get_bond_D1, target2 = self.get_bond_D1_drudgery, sessionNum = sessionNum) def get_fund_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get fund D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/fudTicker.json', target1 = self.get_fund_D1, target2 = self.get_fund_D1_drudgery, sessionNum = sessionNum) def get_option_D1_mongod(self, db, start, end, sessionNum=30): """ Controller of get option D1 method. """ self.__overlord(db = db, start = start, end = end, dName = 'names/optTicker.json', target1 = self.get_option_D1, target2 = self.get_option_D1_drudgery, sessionNum = sessionNum) def get_equity_D1_mongod_(self, db, start, end, sessionNum=30): """ Outer controller of get equity D1 method. Generates a list of all tickers, creates threads and distribute tasks to individual get_equity_D1_drudgery() functions. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ # initialize task list. dName = 'names/equTicker.json' if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') allTickers = json.loads(jsonFile.read()) jsonFile.close() else: data = self.get_equity_D1() allTickers = list(data.body['ticker']) chunkSize = len(allTickers)/sessionNum taskLists = [allTickers[k:k+chunkSize] for k in range( 0, len(allTickers), chunkSize)] k = 0 for tasks in taskLists: thrd = Thread(target = self.get_equity_D1_drudgery, args = (k, db, start, end, tasks)) thrd.start() k += 1 return 1 #----------------------------------------------------------------------# # to be deprecated def get_equity_D1_drudgery_(self, id, db, start, end, tasks=[]): """ Drudgery function of getting equity_D1 bars. This method loops over a list of tasks(tickers) and get D1 bar for all these tickers. A new feature 'date' will be automatically added into every json-like documents, and specifies the datetime. datetime() formatted date mark. With the default setting of MongoDB in this module, this feature should be the unique index for all collections. By programatically assigning creating and assigning tasks to drudgery functions, multi-threading download of data can be achieved. parameters ---------- * id: integer; the ID of Drudgery session. * db: pymongo.db object; the database which collections of bars will go into. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * tasks: list of strings; the tickers that this drudgery function loops over. """ if len(tasks) == 0: return 0 # str to datetime inline functions. todt = lambda str_dt: datetime.strptime(str_dt,'%Y-%m-%d') update_dt = lambda d: d.update({'date':todt(d['tradeDate'])}) # loop over all tickers in task list. k, n = 1, len(tasks) for ticker in tasks: try: data = self.get_equity_D1(start = start, end = end, ticker = ticker, output = 'list') assert len(data) >= 1 map(update_dt, data) # add datetime feature to docs. coll = db[ticker] coll.insert_many(data) print '[API|Session{}]: '.format(id) + \ 'Finished {} in {}.'.format(k, n) k += 1 except ConnectionError: # If choke connection, standby for 1sec an invoke again. time.sleep(1) self.get_equity_D1_drudgery( id, db, start, end, tasks) except AssertionError: msg = '[API|Session{}]: '.format(id) + \ 'Empty dataset in the response.' print msg pass except Exception, e: msg = '[API|Session{}]: '.format(id) + \ 'Exception encountered when ' + \ 'requesting data; ' + str(e) print msg pass def get_equity_D1_mongod_(self, db, start, end, sessionNum=30): """ Outer controller of get equity D1 method. Generates a list of all tickers, creates threads and distribute tasks to individual get_equity_D1_drudgery() functions. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ # initialize task list. dName = 'names/equTicker.json' if os.path.isfile(dName): # if directory exists, read from it. jsonFile = open(dName,'r') allTickers = json.loads(jsonFile.read()) jsonFile.close() else: data = self.get_equity_D1() allTickers = list(data.body['ticker']) chunkSize = len(allTickers)/sessionNum taskLists = [allTickers[k:k+chunkSize] for k in range( 0, len(allTickers), chunkSize)] k = 0 for tasks in taskLists: thrd = Thread(target = self.get_equity_D1_drudgery, args = (k, db, start, end, tasks)) thrd.start() k += 1 return 1 #----------------------------------------------------------------------# def get_equity_M1_drudgery(self, id, db, start, end, tasks=[]): """ Drudgery function of getting equity_D1 bars. This method loops over a list of tasks(tickers) and get D1 bar for all these tickers. A new feature 'dateTime', combined by Y-m-d formatted date part and H:M time part, will be automatically added into every json-like documents. It would be a datetime.datetime() timestamp object. In this module, this feature should be the unique index for all collections. By programatically assigning creating and assigning tasks to drudgery functions, multi-threading download of data can be achieved. parameters ---------- * id: integer; the ID of Drudgery session. * db: pymongo.db object; the database which collections of bars will go into. * start, end: string; Date mark formatted in 'YYYYMMDD'. Specifies the start/end point of collections of bars. Note that to ensure the success of every requests, the range amid start and end had better be no more than one month. * tasks: list of strings; the tickers that this drudgery function loops over. """ if len(tasks) == 0: return 0 # str to datetime inline functions. todt = lambda str_d, str_t: datetime.strptime( str_d + ' ' + str_t,'%Y-%m-%d %H:%M') update_dt = lambda d: d.update( {'dateTime':todt(d['dataDate'], d['barTime'])}) k, n = 1, len(tasks) for secID in tasks: try: data = self.get_equity_M1(start = start, end = end, secID = secID, output = 'list') map(update_dt, data) # add datetime feature to docs. coll = db[secID] coll.insert_many(data) print '[API|Session{}]: '.format(id) + \ 'Finished {} in {}.'.format(k, n) k += 1 except ConnectionError: # If choke connection, standby for 1sec an invoke again. time.sleep(1) self.get_equity_D1_drudgery( id, db, start, end, tasks) except AssertionError: msg = '[API|Session{}]: '.format(id) + \ 'Empty dataset in the response.' print msg pass except Exception, e: msg = '[API|Session{}]: '.format(id) + \ 'Exception encountered when ' + \ 'requesting data; ' + str(e) print msg pass def get_equity_M1_interMonth(self, db, id, startYr=datetime.now().year-2, endYr=datetime.now().year, tasks=[]): """ Mid-level wrapper of get equity M1 method. Get 1-minute bar between specified start year and ending year for more than one tickers in tasks list. parameters ---------- * db: pymongo.db object; the database which collections of bars will go into. Note that this database will be transferred to every drudgery functions created by controller. * id: integer; the ID of wrapper session. * startYr, endYr: integer; the start and ending year amid which the 1-minute bar data is gotten one month by another employing get_equity_M1_drudgery() function. Default values are this year and two years before now. the complete time range will be sub-divided into months. And threads are deployed for each of these months. - example ------- Suppose .now() is Auguest 15th 2015. (20150815) startYr, endYr = 2014, 2015. then two list of strings will be generated: ymdStringStart = ['20140102','20140202', ... '20150802'] ymdStringEnd = ['20140101','20140201', ... '20150801'] the sub-timeRanges passed to drudgeries will be: (start, end): (20140102, 20140201), (20140202, 20140301), ..., (20150702, 20150801). So the actual time range is 20140102 - 20150801. * sessionNum: integer; the number of threads that will be deploied. Concretely, the list of all tickers will be sub-divided into chunks, where chunkSize = len(allTickers)/sessionNum. """ # Construct yyyymmdd strings.(as ymdStrings list) now = datetime.now() years = [str(y) for y in range(startYr, endYr+1)] monthDates = [(2-len(str(k)))*'0'+str(k)+'02' for k in range(1,13)] ymdStringStart = [y+md for y in years for md in monthDates if ( datetime.strptime(y+md,'%Y%m%d')<=now)] monthDates = [(2-len(str(k)))*'0'+str(k)+'01' for k in range(1,13)] ymdStringEnd = [y+md for y in years for md in monthDates if ( datetime.strptime(y+md,'%Y%m%d')<=now)] k = 0 for t in range(len(ymdStringEnd)-1): start = ymdStringStart[t] end = ymdStringEnd[t+1] subID = str(id) + '_' + str(k) thrd = Thread(target = self.get_equity_M1_drudgery, args = (subID, db, start, end, tasks)) thrd.start() k += 1 def get_equity_M1_all(self, db, startYr=datetime.now().year-2, endYr=datetime.now().year, splitNum=10): """ """ """ # initialize task list. data = self.get_equity_D1() allTickers = list(data.body['ticker']) exchangeCDs = list(data.body['exchangeCD']) allSecIds = [allTickers[k]+'.'+exchangeCDs[k] for k in range( len(allTickers))] chunkSize = len(allSecIds)/splitNum taskLists = [allSecIds[k:k+chunkSize] for k in range( 0, len(allSecIds), chunkSize)] # Construct yyyymmdd strings.(as ymdStrings list) now = datetime.now() years = [str(y) for y in range(startYr, endYr+1)] monthDates = [(2-len(str(k)))*'0'+str(k)+'01' for k in range(1,13)] ymdStrings = [y+md for y in years for md in monthDates if ( datetime.strptime(y+md,'%Y%m%d')<=now)] print taskLists[0] print ymdStrings k = 0 for t in range(len(ymdStrings)-1): start = ymdStrings[t] end = ymdStrings[t+1] thrd = Thread(target = self.get_equity_M1_drudgery, args = (k, db, start, end, taskLists[0])) thrd.start() k += 1 return 1 """ pass
mit
lail3344/sms-tools
lectures/08-Sound-transformations/plots-code/FFT-filtering.py
21
1723
import math import matplotlib.pyplot as plt import numpy as np import time, os, sys sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/orchestra.wav') N = 2048 start = 1.0*fs x1 = x[start:start+N] plt.figure(1, figsize=(12, 9)) plt.subplot(321) plt.plot(np.arange(N)/float(fs), x1*np.hamming(N), 'b', lw=1.5) plt.axis([0, N/float(fs), min(x1*np.hamming(N)), max(x1*np.hamming(N))]) plt.title('x (orchestra.wav)') mX, pX = DFT.dftAnal(x1, np.hamming(N), N) startBin = int(N*500.0/fs) nBins = int(N*4000.0/fs) bandpass = (np.hanning(nBins) * 60.0) - 60 filt = np.zeros(mX.size)-60 filt[startBin:startBin+nBins] = bandpass mY = mX + filt plt.subplot(323) plt.plot(fs*np.arange(mX.size)/float(mX.size), mX, 'r', lw=1.5, label = 'mX') plt.plot(fs*np.arange(mX.size)/float(mX.size), filt+max(mX), 'k', lw=1.5, label='filter') plt.legend(prop={'size':10}) plt.axis([0,fs/4.0,-90,max(mX)+2]) plt.title('mX + filter') plt.subplot(325) plt.plot(fs*np.arange(pX.size)/float(pX.size), pX, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pX),8]) plt.title('pX') y = DFT.dftSynth(mY, pX, N)*sum(np.hamming(N)) mY1, pY = DFT.dftAnal(y, np.hamming(N), N) plt.subplot(322) plt.plot(np.arange(N)/float(fs), y, 'b') plt.axis([0, float(N)/fs, min(y), max(y)]) plt.title('y') plt.subplot(324) plt.plot(fs*np.arange(mY1.size)/float(mY1.size), mY1, 'r', lw=1.5) plt.axis([0,fs/4.0,-90,max(mY1)+2]) plt.title('mY') plt.subplot(326) plt.plot(fs*np.arange(pY.size)/float(pY.size), pY, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pY),8]) plt.title('pY') plt.tight_layout() plt.savefig('FFT-filtering.png') plt.show()
agpl-3.0
larissapassos/TAIA-finalproject
Processor.py
2
5408
import copy from sklearn.feature_extraction.text import TfidfVectorizer as Tfidf from sklearn.preprocessing import scale import numpy as np import re import cPickle as pickle from nltk.corpus import stopwords import twokenize # tweet tokenizer import time from scipy.sparse import csr_matrix as toSparse from scipy.sparse import hstack from warnings import warn from sys import stdout tweet_tokenizer = twokenize.tokenize # Taking important words off of the stopwords dictionary adverbs = set(['muito', 'extremamente', 'bastante']) emojiList = set([':-)', '(-:', '=)', '(=', '(:', ':)', ':-(', ')-:', '=(', ')=', ':(', '):', ':D', '^_^', '^__^', '^___^', ':d', 'd:', \ ': )', '( :', ': (', ') :', '8)', '(8', '8(', ')8', '8 )', ') 8', '8 (', ';)', '(;', '; )', '( ;', ';-)', '(-;']) posEmoji = set([':-)', '(-:', '=)', '(=', '(:', ':)', ':-(', ':D', '^_^', '^__^', '^___^', ':d', 'd:', ': )', '( :', '8)', \ '(8', '8 )', ';)', '; )', '; )', '( ;', ';-)', '(-;', '(;']) negEmoji = emojiList.difference(posEmoji) punctuation = set([',', ';', '.', ':', '.', '!', '?', '\"', '*', '\'', '(', ')', '-']) pattern = re.compile(r'(.)\1{2,}', re.DOTALL) # for elongated words truncation class Processor: def __init__(self, stopwords, tokenizer=tweet_tokenizer, ngrams=2): self.tokenizer = tokenizer self.stopwords = stopwords self.__target_not = u'n\xe3o' for adv in adverbs: if adv in self.stopwords: self.stopwords.remove(adv) #TODO: use the adverbs below to generate lexicons in target language self.__adverbs = adverbs self.lang = 'pt' self.__fitted = False # WARNING: do NOT change the parameters of the vectorization. It is already # set to the optimal configuration. self.__vectorizer = Tfidf(ngram_range=(1,ngrams), binary=True, tokenizer=self.tokenizer) def __preprocess(self, tweetList, verbose=False): rep_count = [] hst_count = [] hst_last = [] exc_count = [] exc_last = [] qst_count = [] qst_last = [] neg_count = [] tw_length = [] labels = [] ll = len(tweetList) dot = ll / 50 for x in xrange(ll): if verbose and dot > 0 and x % dot == 0: stdout.write("."); stdout.flush() tweet = tweetList[x].lower().encode('utf-8').decode('utf-8') # Count reps reps = pattern.findall(tweet) if reps != []: tweet = pattern.sub(r'\1\1', tweet) rep_count.append(len(reps)) # Tokenizing tweet = self.tokenizer(tweet) # ok to use independent of language # Removing stopwords and retweet noise tweet = [word for word in tweet if word not in self.stopwords and not word.startswith('RT')] # Normalizing mentions, hyperlinks reps = 0. # float is intended type hsts = 0. # necessary for scaling excs = 0. qsts = 0. negs = 0. last = -1. label = np.inf for i, word in enumerate(tweet): if word.startswith(('.@', '@')): #mention tweet[i] = '___mention___' if word.startswith(('www','http')): tweet[i] = '___url___' if word.startswith('!'): excs += 1 last = 0 if word.startswith('?'): #TODO: problem with ?!, !?, account for this qsts += 1 last = 1 if word.startswith('#'): hsts += 1 last = 2 if word == self.__target_not: negs += 1 tweet[i] = '' if (i+1)<len(tweet): tweet[i+1] = self.__target_not+'___'+tweet[i+1] else: tweet[i] = self.__target_not if label == np.inf and word in posEmoji: label = +1 elif label == np.inf and word in negEmoji: label = -1 hst_count.append(hsts) qst_count.append(qsts) exc_count.append(excs) neg_count.append(negs) tw_length.append(len(tweet)) labels.append(label) # Removing punctuation tweet = [''.join([w for w in word if w not in punctuation]) for word in tweet if len(word)>2] tweet = ' '.join(tweet) tweetList[x] = tweet return (tweetList, rep_count, hst_count, exc_count, qst_count, neg_count, tw_length, labels) def process(self, tweetList, verbose=False): ll = copy.deepcopy(tweetList) t0 = time.time() if verbose: print 'Normalizing and extracting features' ret = self.__preprocess(ll, verbose) corpus = ret[0] rep_count, hst_count, exc_count, qst_count, neg_count, \ tw_length, labels = map(lambda x: np.array(x), list(ret[1:])) feats = np.vstack((rep_count, hst_count, exc_count, qst_count, \ neg_count, tw_length, labels)).transpose() if verbose: print '\nTime elapsed on processing and feature extraction: %.0fs' % ((time.time()-t0)) return (corpus, feats)
apache-2.0
pypot/scikit-learn
sklearn/svm/tests/test_svm.py
116
31653
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn.base import ChangedBehaviorWarning from sklearn import svm, linear_model, datasets, metrics, base from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils import ConvergenceWarning from sklearn.utils.validation import NotFittedError from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deteriministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert np.linalg.norm(lsvr.coef_ - svr.coef_) / np.linalg.norm(svr.coef_) < .1 assert np.abs(score1 - score2) < 0.1 def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf.decision_function_shape = None msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_decision_function(): # Test SVR's decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='weighted') <= metrics.f1_score(y, y_pred_balanced, average='weighted')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1/L1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2/L2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("L2", "squared_hinge", "loss='L2'", "1.0"), svm.LinearSVC(loss="L2").fit, X, y) # LinearSVR # loss l1/L1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("L1", "epsilon_insensitive", "loss='L1'", "1.0"), svm.LinearSVR(loss="L1").fit, X, y) # loss l2/L2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) # FIXME remove in 0.18 def test_linear_svx_uppercase_loss_penalty(): # Check if Upper case notation is supported by _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") # loss SQUARED_hinge --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("SQUARED_hinge", "squared_hinge", "0.18"), svm.LinearSVC(loss="SQUARED_hinge").fit, X, y) # penalty L2 --> l2 assert_warns_message(DeprecationWarning, msg.replace("loss", "penalty") % ("L2", "l2", "0.18"), svm.LinearSVC(penalty="L2").fit, X, y) # loss EPSILON_INSENSITIVE --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("EPSILON_INSENSITIVE", "epsilon_insensitive", "0.18"), svm.LinearSVR(loss="EPSILON_INSENSITIVE").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert_true(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_true(hasattr(G, 'predict_proba')) G = svm.SVC(probability=False) assert_false(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_false(hasattr(G, 'predict_proba')) # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert_true(hasattr(G, 'predict_proba')) msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data)
bsd-3-clause
kagayakidan/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
247
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
mlyundin/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
abimannans/scikit-learn
sklearn/datasets/tests/test_20news.py
280
3045
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_length_consistency(): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract the full dataset data = datasets.fetch_20newsgroups(subset='all') assert_equal(len(data['data']), len(data.data)) assert_equal(len(data['target']), len(data.target)) assert_equal(len(data['filenames']), len(data.filenames)) def test_20news_vectorized(): # This test is slow. raise SkipTest("Test too slow.") bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 107428)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 107428)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="all") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 107428)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
robogen/CMS-Mining
temp_test.py
1
3491
from elasticsearch import Elasticsearch import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.ioff() from matplotlib.backends.backend_pdf import PdfPages from matplotlib.dates import AutoDateLocator, AutoDateFormatter import numpy as np import datetime as dt import math import json import pprint pretty = pprint.PrettyPrinter(indent=4) with open('sites.json', 'r+') as txt: sitesArray = json.load(txt) with open('cms.json', 'r+') as txt: cmsLocate = json.load(txt) with open("config", "r+") as txt: contents = list(map(str.rstrip, txt)) def conAtlasTime(time): if type(time) is str: return (dt.datetime.strptime(time, '%Y-%m-%dT%X')).replace(tzinfo=dt.timezone.utc).timestamp() elif type(time) is int: return time def utcDate(time): return dt.datetime.fromtimestamp(time, dt.timezone.utc) esAtlas = Elasticsearch([{ 'host': contents[4], 'port': contents[3] }], timeout=50) esHCC = Elasticsearch([{ 'host': contents[0], 'port': contents[1] }], timeout=50) esCon = Elasticsearch([{ 'host': contents[4], 'port': contents[5] }], timeout=50) scrollPreserve="3m" startDate = "2016-07-17T00:00:00" endDate = "2016-07-25T00:00:00" tenMin = np.multiply(10,60) stampStart = conAtlasTime(startDate) - tenMin stampEnd = conAtlasTime(endDate) tasktype = ["DIGIRECO", "RECO", "DIGI", "DataProcessing"] #tasktype = ["gensim"] loc = {} loc["location"] = np.array([]) def esConAgg(field, task): queryBody={"query" : {"bool": { "must": [ {"match" : {"CMS_JobType" : "Processing"} }, #{"range" : # {"EventRate" : {"gte" : "0"}} #}, {"exists" : { "field" : "ChirpCMSSWEventRate" } }, {"exists" : { "field" : "InputGB" } }, {"match" : {"TaskType" : task} }, {"range" : { "JobFinishedHookDone" : { "gt" : int(conAtlasTime(startDate)), "lt" : int(conAtlasTime(endDate)) } }}, {"match" : {"DataLocationsCount" : 1} }, {"match" : {"InputData" : "Offsite"} } ]#, #"filter" : { # "term" : { "TaskType" : task } #} } }, "aggs": { "dev": { "terms": {"field":field} } } } scannerCon = esCon.search(index="cms-*", body=queryBody, search_type="query_then_fetch", scroll=scrollPreserve) scrollIdCon = scannerCon['aggregations']['dev'] conTotalRec = scrollIdCon['buckets'] arrRet = np.array([]) pretty.pprint(conTotalRec) pretty.pprint(scrollIdCon) if conTotalRec == 0: return None else: for hit in conTotalRec: arrRet = np.append(arrRet, hit['key']) return arrRet returnedVal = esConAgg("Workflow", "DataProcessing") pretty.pprint(returnedVal)
mit
tseaver/google-cloud-python
automl/google/cloud/automl_v1beta1/tables/tables_client.py
1
123114
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A tables helper for the google.cloud.automl_v1beta1 AutoML API""" import pkg_resources import logging from google.api_core.gapic_v1 import client_info from google.api_core import exceptions from google.cloud.automl_v1beta1 import gapic from google.cloud.automl_v1beta1.proto import data_types_pb2 from google.cloud.automl_v1beta1.tables import gcs_client _GAPIC_LIBRARY_VERSION = pkg_resources.get_distribution("google-cloud-automl").version _LOGGER = logging.getLogger(__name__) class TablesClient(object): """ AutoML Tables API helper. This is intended to simplify usage of the auto-generated python client, in particular for the `AutoML Tables product <https://cloud.google.com/automl-tables/>`_. """ def __init__( self, project=None, region="us-central1", credentials=None, client=None, prediction_client=None, gcs_client=None, **kwargs ): """Constructor. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... Args: project (Optional[str]): The project ID of the GCP project all future calls will default to. Most methods take `project` as an optional parameter, and can override your choice of `project` supplied here. region (Optional[str]): The region all future calls will default to. Most methods take `region` as an optional parameter, and can override your choice of `region` supplied here. Note, only `us-central1` is supported to-date. transport (Union[~.AutoMlGrpcTransport, Callable[[~.Credentials, type], ~.AutoMlGrpcTransport]): A transport instance, responsible for actually making the API calls. The default transport uses the gRPC protocol. This argument may also be a callable which returns a transport instance. Callables will be sent the credentials as the first argument and the default transport class as the second argument. channel (grpc.Channel): DEPRECATED. A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to ``transport``; doing so will raise an exception. client_config (dict): DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used. client_options (Union[dict, google.api_core.client_options.ClientOptions]): Client options used to set user options on the client. API Endpoint should be set through client_options. """ version = _GAPIC_LIBRARY_VERSION user_agent = "automl-tables-wrapper/{}".format(version) client_info_ = kwargs.get("client_info") if client_info_ is None: client_info_ = client_info.ClientInfo( user_agent=user_agent, gapic_version=version ) else: client_info_.user_agent = user_agent client_info_.gapic_version = version if client is None: self.auto_ml_client = gapic.auto_ml_client.AutoMlClient( credentials=credentials, client_info=client_info_, **kwargs ) else: self.auto_ml_client = client if prediction_client is None: self.prediction_client = gapic.prediction_service_client.PredictionServiceClient( credentials=credentials, client_info=client_info_, **kwargs ) else: self.prediction_client = prediction_client self.project = project self.region = region self.credentials = credentials self.gcs_client = gcs_client def __lookup_by_display_name(self, object_type, items, display_name): relevant_items = [i for i in items if i.display_name == display_name] if len(relevant_items) == 0: raise exceptions.NotFound( "The {} with display_name='{}' was not found.".format( object_type, display_name ) ) elif len(relevant_items) == 1: return relevant_items[0] else: raise ValueError( ( "Multiple {}s match display_name='{}': {}\n\n" "Please use the `.name` (unique identifier) field instead" ).format( object_type, display_name, ", ".join([str(i) for i in relevant_items]), ) ) def __location_path(self, project=None, region=None): if project is None: if self.project is None: raise ValueError( "Either initialize your client with a value " "for 'project', or provide 'project' as a " "parameter for this method." ) project = self.project if region is None: if self.region is None: raise ValueError( "Either initialize your client with a value " "for 'region', or provide 'region' as a " "parameter for this method." ) region = self.region return self.auto_ml_client.location_path(project, region) # the returned metadata object doesn't allow for updating fields, so # we need to manually copy user-updated fields over def __update_metadata(self, metadata, k, v): new_metadata = {} new_metadata["ml_use_column_spec_id"] = metadata.ml_use_column_spec_id new_metadata["weight_column_spec_id"] = metadata.weight_column_spec_id new_metadata["target_column_spec_id"] = metadata.target_column_spec_id new_metadata[k] = v return new_metadata def __dataset_from_args( self, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): if dataset is None and dataset_display_name is None and dataset_name is None: raise ValueError( "One of 'dataset', 'dataset_name' or " "'dataset_display_name' must be set." ) # we prefer to make a live call here in the case that the # dataset object is out-of-date if dataset is not None: dataset_name = dataset.name return self.get_dataset( dataset_display_name=dataset_display_name, dataset_name=dataset_name, project=project, region=region, **kwargs ) def __model_from_args( self, model=None, model_display_name=None, model_name=None, project=None, region=None, **kwargs ): if model is None and model_display_name is None and model_name is None: raise ValueError( "One of 'model', 'model_name' or " "'model_display_name' must be set." ) # we prefer to make a live call here in the case that the # model object is out-of-date if model is not None: model_name = model.name return self.get_model( model_display_name=model_display_name, model_name=model_name, project=project, region=region, **kwargs ) def __dataset_name_from_args( self, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): if dataset is None and dataset_display_name is None and dataset_name is None: raise ValueError( "One of 'dataset', 'dataset_name' or " "'dataset_display_name' must be set." ) if dataset_name is None: if dataset is None: dataset = self.get_dataset( dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) dataset_name = dataset.name else: # we do this to force a NotFound error when needed self.get_dataset( dataset_name=dataset_name, project=project, region=region, **kwargs ) return dataset_name def __table_spec_name_from_args( self, table_spec_index=0, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) table_specs = [ t for t in self.list_table_specs(dataset_name=dataset_name, **kwargs) ] table_spec_full_id = table_specs[table_spec_index].name return table_spec_full_id def __model_name_from_args( self, model=None, model_display_name=None, model_name=None, project=None, region=None, **kwargs ): if model is None and model_display_name is None and model_name is None: raise ValueError( "One of 'model', 'model_name' or " "'model_display_name' must be set." ) if model_name is None: if model is None: model = self.get_model( model_display_name=model_display_name, project=project, region=region, **kwargs ) model_name = model.name else: # we do this to force a NotFound error when needed self.get_model( model_name=model_name, project=project, region=region, **kwargs ) return model_name def __log_operation_info(self, message, op): name = "UNKNOWN" try: if ( op is not None and op.operation is not None and op.operation.name is not None ): name = op.operation.name except AttributeError: pass _LOGGER.info( ( "Operation '{}' is running in the background. The returned " "Operation '{}' can be used to query or block on the status " "of this operation. Ending your python session will _not_ " "cancel this operation. Read the documentation here:\n\n" "\thttps://googleapis.dev/python/google-api-core/latest/operation.html\n\n" "for more information on the Operation class." ).format(message, name) ) return op def __column_spec_name_from_args( self, dataset=None, dataset_display_name=None, dataset_name=None, table_spec_name=None, table_spec_index=0, column_spec_name=None, column_spec_display_name=None, project=None, region=None, **kwargs ): column_specs = self.list_column_specs( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, table_spec_name=table_spec_name, table_spec_index=table_spec_index, project=project, region=region, **kwargs ) if column_spec_display_name is not None: column_specs = {s.display_name: s for s in column_specs} if column_specs.get(column_spec_display_name) is None: raise exceptions.NotFound( "No column with " + "column_spec_display_name: '{}' found".format( column_spec_display_name ) ) column_spec_name = column_specs[column_spec_display_name].name elif column_spec_name is not None: column_specs = {s.name: s for s in column_specs} if column_specs.get(column_spec_name) is None: raise exceptions.NotFound( "No column with " + "column_spec_name: '{}' found".format(column_spec_name) ) else: raise ValueError( "Either supply 'column_spec_name' or " "'column_spec_display_name' for the column to update" ) return column_spec_name def __type_code_to_value_type(self, type_code, value): if value is None: return {"null_value": 0} elif type_code == data_types_pb2.FLOAT64: return {"number_value": value} elif type_code == data_types_pb2.TIMESTAMP: return {"string_value": value} elif type_code == data_types_pb2.STRING: return {"string_value": value} elif type_code == data_types_pb2.ARRAY: return {"list_value": value} elif type_code == data_types_pb2.STRUCT: return {"struct_value": value} elif type_code == data_types_pb2.CATEGORY: return {"string_value": value} else: raise ValueError("Unknown type_code: {}".format(type_code)) def __ensure_gcs_client_is_initialized(self, credentials, project): """Checks if GCS client is initialized. Initializes it if not. Args: credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. project (str): The ID of the project to use with the GCS client. If none is specified, the client will attempt to ascertain the credentials from the environment. """ if self.gcs_client is None: self.gcs_client = gcs_client.GcsClient( project=project, credentials=credentials ) def list_datasets(self, project=None, region=None, **kwargs): """List all datasets in a particular project and region. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> ds = client.list_datasets() >>> >>> for d in ds: ... # do something ... pass ... Args: project (Optional[str]): The ID of the project that owns the datasets. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. Returns: A :class:`~google.api_core.page_iterator.PageIterator` instance. An iterable of :class:`~google.cloud.automl_v1beta1.types.Dataset` instances. You can also iterate over the pages of the response using its `pages` property. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ return self.auto_ml_client.list_datasets( self.__location_path(project=project, region=region), **kwargs ) def get_dataset( self, project=None, region=None, dataset_name=None, dataset_display_name=None, **kwargs ): """Gets a single dataset in a particular project and region. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.get_dataset(dataset_display_name='my_dataset') >>> Args: project (Optional[str]): The ID of the project that owns the dataset. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_name (Optional[str]): This is the fully-qualified name generated by the AutoML API for this dataset. This is not to be confused with the human-assigned `dataset_display_name` that is provided when creating a dataset. Either `dataset_name` or `dataset_display_name` must be provided. dataset_display_name (Optional[str]): This is the name you provided for the dataset when first creating it. Either `dataset_name` or `dataset_display_name` must be provided. Returns: A :class:`~google.cloud.automl_v1beta1.types.Dataset` instance if found, `None` otherwise. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ if dataset_name is None and dataset_display_name is None: raise ValueError( "One of 'dataset_name' or " "'dataset_display_name' must be set." ) if dataset_name is not None: return self.auto_ml_client.get_dataset(dataset_name, **kwargs) return self.__lookup_by_display_name( "dataset", self.list_datasets(project, region, **kwargs), dataset_display_name, ) def create_dataset( self, dataset_display_name, metadata={}, project=None, region=None, **kwargs ): """Create a dataset. Keep in mind, importing data is a separate step. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.create_dataset(dataset_display_name='my_dataset') >>> Args: project (Optional[str]): The ID of the project that will own the dataset. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_display_name (str): A human-readable name to refer to this dataset by. Returns: A :class:`~google.cloud.automl_v1beta1.types.Dataset` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ return self.auto_ml_client.create_dataset( self.__location_path(project, region), {"display_name": dataset_display_name, "tables_dataset_metadata": metadata}, **kwargs ) def delete_dataset( self, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): """Deletes a dataset. This does not delete any models trained on this dataset. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> op = client.delete_dataset(dataset_display_name='my_dataset') >>> >>> op.result() # blocks on delete request >>> Args: project (Optional[str]): The ID of the project that owns the dataset. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to delete. This must be supplied if `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to delete. This must be supplied if `dataset_display_name` or `dataset` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to delete. This must be supplied if `dataset_display_name` or `dataset_name` are not supplied. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ try: dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) # delete is idempotent except exceptions.NotFound: return None op = self.auto_ml_client.delete_dataset(dataset_name, **kwargs) self.__log_operation_info("Delete dataset", op) return op def import_data( self, dataset=None, dataset_display_name=None, dataset_name=None, pandas_dataframe=None, gcs_input_uris=None, bigquery_input_uri=None, project=None, region=None, credentials=None, **kwargs ): """Imports data into a dataset. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.create_dataset(dataset_display_name='my_dataset') >>> >>> response = client.import_data(dataset=d, ... gcs_input_uris='gs://cloud-ml-tables-data/bank-marketing.csv') ... >>> def callback(operation_future): ... result = operation_future.result() ... >>> response.add_done_callback(callback) >>> Args: project (Optional[str]): The ID of the project that owns the dataset. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to import data into. This must be supplied if `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to import data into. This must be supplied if `dataset_display_name` or `dataset` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to import data into. This must be supplied if `dataset_display_name` or `dataset_name` are not supplied. pandas_dataframe (Optional[pandas.DataFrame]): A Pandas Dataframe object containing the data to import. The data will be converted to CSV, and this CSV will be staged to GCS in `gs://{project}-automl-tables-staging/{uploaded_csv_name}` This parameter must be supplied if neither `gcs_input_uris` nor `bigquery_input_uri` is supplied. gcs_input_uris (Optional[Union[str, Sequence[str]]]): Either a single `gs://..` prefixed URI, or a list of URIs referring to GCS-hosted CSV files containing the data to import. This must be supplied if neither `bigquery_input_uri` nor `pandas_dataframe` is supplied. bigquery_input_uri (Optional[str]): A URI pointing to the BigQuery table containing the data to import. This must be supplied if neither `gcs_input_uris` nor `pandas_dataframe` is supplied. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) request = {} if pandas_dataframe is not None: project = project or self.project region = region or self.region credentials = credentials or self.credentials self.__ensure_gcs_client_is_initialized(credentials, project) self.gcs_client.ensure_bucket_exists(project, region) gcs_input_uri = self.gcs_client.upload_pandas_dataframe(pandas_dataframe) request = {"gcs_source": {"input_uris": [gcs_input_uri]}} elif gcs_input_uris is not None: if type(gcs_input_uris) != list: gcs_input_uris = [gcs_input_uris] request = {"gcs_source": {"input_uris": gcs_input_uris}} elif bigquery_input_uri is not None: request = {"bigquery_source": {"input_uri": bigquery_input_uri}} else: raise ValueError( "One of 'gcs_input_uris', or 'bigquery_input_uri', or 'pandas_dataframe' must be set." ) op = self.auto_ml_client.import_data(dataset_name, request, **kwargs) self.__log_operation_info("Data import", op) return op def export_data( self, dataset=None, dataset_display_name=None, dataset_name=None, gcs_output_uri_prefix=None, bigquery_output_uri=None, project=None, region=None, **kwargs ): """Exports data from a dataset. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.create_dataset(dataset_display_name='my_dataset') >>> >>> response = client.export_data(dataset=d, ... gcs_output_uri_prefix='gs://cloud-ml-tables-data/bank-marketing.csv') ... >>> def callback(operation_future): ... result = operation_future.result() ... >>> response.add_done_callback(callback) >>> Args: project (Optional[str]): The ID of the project that owns the dataset. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to export data from. This must be supplied if `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to export data from. This must be supplied if `dataset_display_name` or `dataset` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to export data from. This must be supplied if `dataset_display_name` or `dataset_name` are not supplied. gcs_output_uri_prefix (Optional[Union[str, Sequence[str]]]): A single `gs://..` prefixed URI to export to. This must be supplied if `bigquery_output_uri` is not. bigquery_output_uri (Optional[str]): A URI pointing to the BigQuery table containing the data to export. This must be supplied if `gcs_output_uri_prefix` is not. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) request = {} if gcs_output_uri_prefix is not None: request = {"gcs_destination": {"output_uri_prefix": gcs_output_uri_prefix}} elif bigquery_output_uri is not None: request = {"bigquery_destination": {"output_uri": bigquery_output_uri}} else: raise ValueError( "One of 'gcs_output_uri_prefix', or 'bigquery_output_uri' must be set." ) op = self.auto_ml_client.export_data(dataset_name, request, **kwargs) self.__log_operation_info("Export data", op) return op def get_table_spec(self, table_spec_name, project=None, region=None, **kwargs): """Gets a single table spec in a particular project and region. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.get_table_spec('my_table_spec') >>> Args: table_spec_name (str): This is the fully-qualified name generated by the AutoML API for this table spec. project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.TableSpec` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ return self.auto_ml_client.get_table_spec(table_spec_name, **kwargs) def list_table_specs( self, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): """Lists table specs. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> for s in client.list_table_specs(dataset_display_name='my_dataset') ... # process the spec ... pass ... Args: project (Optional[str]): The ID of the project that owns the dataset. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to read specs from. This must be supplied if `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to read specs from. This must be supplied if `dataset_display_name` or `dataset` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to read specs from. This must be supplied if `dataset_display_name` or `dataset_name` are not supplied. Returns: A :class:`~google.api_core.page_iterator.PageIterator` instance. An iterable of :class:`~google.cloud.automl_v1beta1.types.TableSpec` instances. You can also iterate over the pages of the response using its `pages` property. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) return self.auto_ml_client.list_table_specs(dataset_name, **kwargs) def get_column_spec(self, column_spec_name, project=None, region=None, **kwargs): """Gets a single column spec in a particular project and region. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.get_column_spec('my_column_spec') >>> Args: column_spec_name (str): This is the fully-qualified name generated by the AutoML API for this column spec. project (Optional[str]): The ID of the project that owns the column. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.ColumnSpec` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ return self.auto_ml_client.get_column_spec(column_spec_name, **kwargs) def list_column_specs( self, dataset=None, dataset_display_name=None, dataset_name=None, table_spec_name=None, table_spec_index=0, project=None, region=None, **kwargs ): """Lists column specs. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> for s in client.list_column_specs(dataset_display_name='my_dataset') ... # process the spec ... pass ... Args: project (Optional[str]): The ID of the project that owns the columns. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. table_spec_name (Optional[str]): The AutoML-assigned name for the table whose specs you want to read. If not supplied, the client can determine this name from a source `Dataset` object. table_spec_index (Optional[int]): If no `table_spec_name` was provided, we use this index to determine which table to read column specs from. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to read specs from. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to read specs from. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to read specs from. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to read specs from. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to read specs from. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to read specs from. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.api_core.page_iterator.PageIterator` instance. An iterable of :class:`~google.cloud.automl_v1beta1.types.ColumnSpec` instances. You can also iterate over the pages of the response using its `pages` property. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ if table_spec_name is None: table_specs = [ t for t in self.list_table_specs( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, project=project, region=region, **kwargs ) ] table_spec_name = table_specs[table_spec_index].name return self.auto_ml_client.list_column_specs(table_spec_name, **kwargs) def update_column_spec( self, dataset=None, dataset_display_name=None, dataset_name=None, table_spec_name=None, table_spec_index=0, column_spec_name=None, column_spec_display_name=None, type_code=None, nullable=None, project=None, region=None, **kwargs ): """Updates a column's specs. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.update_column_specs(dataset_display_name='my_dataset', ... column_spec_display_name='Outcome', type_code='CATEGORY') ... Args: dataset (Optional[Dataset]): The `Dataset` instance you want to update specs on. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update specs on. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update specs on. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update specs on. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update specs one. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update specs on. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. table_spec_name (Optional[str]): The AutoML-assigned name for the table whose specs you want to update. If not supplied, the client can determine this name from a source `Dataset` object. table_spec_index (Optional[int]): If no `table_spec_name` was provided, we use this index to determine which table to update column specs on. column_spec_name (Optional[str]): The name AutoML-assigned name for the column you want to update. column_spec_display_name (Optional[str]): The human-readable name of the column you want to update. If this is supplied in place of `column_spec_name`, you also need to provide either a way to lookup the source dataset (using one of the `dataset*` kwargs), or the `table_spec_name` of the table this column belongs to. type_code (Optional[str]): The desired 'type_code' of the column. For more information on the available types, please see the documentation: https://cloud.google.com/automl-tables/docs/reference/rpc/google.cloud.automl.v1beta1#typecode nullable (Optional[bool]): Set to `True` or `False` to specify if this column's value must expected to be present in all rows or not. project (Optional[str]): The ID of the project that owns the columns. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.ColumnSpec` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ column_spec_name = self.__column_spec_name_from_args( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, table_spec_name=table_spec_name, table_spec_index=table_spec_index, column_spec_name=column_spec_name, column_spec_display_name=column_spec_display_name, project=project, region=region, **kwargs ) # type code must always be set if type_code is None: # this index is safe, we would have already thrown a NotFound # had the column_spec_name not existed type_code = { s.name: s for s in self.list_column_specs( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, table_spec_name=table_spec_name, table_spec_index=table_spec_index, project=project, region=region, **kwargs ) }[column_spec_name].data_type.type_code data_type = {} if nullable is not None: data_type["nullable"] = nullable data_type["type_code"] = type_code request = {"name": column_spec_name, "data_type": data_type} return self.auto_ml_client.update_column_spec(request, **kwargs) def set_target_column( self, dataset=None, dataset_display_name=None, dataset_name=None, table_spec_name=None, table_spec_index=0, column_spec_name=None, column_spec_display_name=None, project=None, region=None, **kwargs ): """Sets the target column for a given table. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.set_target_column(dataset_display_name='my_dataset', ... column_spec_display_name='Income') ... Args: project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. column_spec_name (Optional[str]): The name AutoML-assigned name for the column you want to set as the target column. column_spec_display_name (Optional[str]): The human-readable name of the column you want to set as the target column. If this is supplied in place of `column_spec_name`, you also need to provide either a way to lookup the source dataset (using one of the `dataset*` kwargs), or the `table_spec_name` of the table this column belongs to. table_spec_name (Optional[str]): The AutoML-assigned name for the table whose target column you want to set . If not supplied, the client can determine this name from a source `Dataset` object. table_spec_index (Optional[int]): If no `table_spec_name` or `column_spec_name` was provided, we use this index to determine which table to set the target column on. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update the target column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the target column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update the target column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the target column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to update the target column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the target column of. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.Dataset` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ column_spec_name = self.__column_spec_name_from_args( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, table_spec_name=table_spec_name, table_spec_index=table_spec_index, column_spec_name=column_spec_name, column_spec_display_name=column_spec_display_name, project=project, region=region, **kwargs ) column_spec_id = column_spec_name.rsplit("/", 1)[-1] dataset = self.__dataset_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) metadata = dataset.tables_dataset_metadata metadata = self.__update_metadata( metadata, "target_column_spec_id", column_spec_id ) request = {"name": dataset.name, "tables_dataset_metadata": metadata} return self.auto_ml_client.update_dataset(request, **kwargs) def set_time_column( self, dataset=None, dataset_display_name=None, dataset_name=None, table_spec_name=None, table_spec_index=0, column_spec_name=None, column_spec_display_name=None, project=None, region=None, **kwargs ): """Sets the time column which designates which data will be of type timestamp and will be used for the timeseries data. This column must be of type timestamp. Example: >>> from google.cloud import automl_v1beta1 >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.set_time_column(dataset_display_name='my_dataset', ... column_spec_display_name='Unix Time') ... Args: project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. column_spec_name (Optional[str]): The name AutoML-assigned name for the column you want to set as the time column. column_spec_display_name (Optional[str]): The human-readable name of the column you want to set as the time column. If this is supplied in place of `column_spec_name`, you also need to provide either a way to lookup the source dataset (using one of the `dataset*` kwargs), or the `table_spec_name` of the table this column belongs to. table_spec_name (Optional[str]): The AutoML-assigned name for the table whose time column you want to set . If not supplied, the client can determine this name from a source `Dataset` object. table_spec_index (Optional[int]): If no `table_spec_name` or `column_spec_name` was provided, we use this index to determine which table to set the time column on. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update the time column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the time column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update the time column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the time column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to update the time column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the time column of. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.TableSpec` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ column_spec_name = self.__column_spec_name_from_args( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, table_spec_name=table_spec_name, table_spec_index=table_spec_index, column_spec_name=column_spec_name, column_spec_display_name=column_spec_display_name, project=project, region=region, **kwargs ) column_spec_id = column_spec_name.rsplit("/", 1)[-1] dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) table_spec_full_id = self.__table_spec_name_from_args( dataset_name=dataset_name, **kwargs ) my_table_spec = { "name": table_spec_full_id, "time_column_spec_id": column_spec_id, } return self.auto_ml_client.update_table_spec(my_table_spec, **kwargs) def clear_time_column( self, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): """Clears the time column which designates which data will be of type timestamp and will be used for the timeseries data. Example: >>> from google.cloud import automl_v1beta1 >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.clear_time_column(dataset_display_name='my_dataset') >>> Args: project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update the time column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the time column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update the time column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the time column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to update the time column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the time column of. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.TableSpec` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) table_spec_full_id = self.__table_spec_name_from_args( dataset_name=dataset_name, **kwargs ) my_table_spec = {"name": table_spec_full_id, "time_column_spec_id": None} return self.auto_ml_client.update_table_spec(my_table_spec, **kwargs) def set_weight_column( self, dataset=None, dataset_display_name=None, dataset_name=None, table_spec_name=None, table_spec_index=0, column_spec_name=None, column_spec_display_name=None, project=None, region=None, **kwargs ): """Sets the weight column for a given table. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.set_weight_column(dataset_display_name='my_dataset', ... column_spec_display_name='Income') ... Args: project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. column_spec_name (Optional[str]): The name AutoML-assigned name for the column you want to set as the weight column. column_spec_display_name (Optional[str]): The human-readable name of the column you want to set as the weight column. If this is supplied in place of `column_spec_name`, you also need to provide either a way to lookup the source dataset (using one of the `dataset*` kwargs), or the `table_spec_name` of the table this column belongs to. table_spec_name (Optional[str]): The AutoML-assigned name for the table whose weight column you want to set . If not supplied, the client can determine this name from a source `Dataset` object. table_spec_index (Optional[int]): If no `table_spec_name` or `column_spec_name` was provided, we use this index to determine which table to set the weight column on. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update the weight column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the weight column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update the weight column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the weight column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to update the weight column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the weight column of. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.Dataset` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ column_spec_name = self.__column_spec_name_from_args( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, table_spec_name=table_spec_name, table_spec_index=table_spec_index, column_spec_name=column_spec_name, column_spec_display_name=column_spec_display_name, project=project, region=region, **kwargs ) column_spec_id = column_spec_name.rsplit("/", 1)[-1] dataset = self.__dataset_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) metadata = dataset.tables_dataset_metadata metadata = self.__update_metadata( metadata, "weight_column_spec_id", column_spec_id ) request = {"name": dataset.name, "tables_dataset_metadata": metadata} return self.auto_ml_client.update_dataset(request, **kwargs) def clear_weight_column( self, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): """Clears the weight column for a given dataset. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.clear_weight_column(dataset_display_name='my_dataset') >>> Args: project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update the weight column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the weight column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update the weight column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the weight column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to update the weight column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the weight column of. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.Dataset` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ dataset = self.__dataset_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) metadata = dataset.tables_dataset_metadata metadata = self.__update_metadata(metadata, "weight_column_spec_id", None) request = {"name": dataset.name, "tables_dataset_metadata": metadata} return self.auto_ml_client.update_dataset(request, **kwargs) def set_test_train_column( self, dataset=None, dataset_display_name=None, dataset_name=None, table_spec_name=None, table_spec_index=0, column_spec_name=None, column_spec_display_name=None, project=None, region=None, **kwargs ): """Sets the test/train (ml_use) column which designates which data belongs to the test and train sets. This column must be categorical. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.set_test_train_column(dataset_display_name='my_dataset', ... column_spec_display_name='TestSplit') ... Args: project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. column_spec_name (Optional[str]): The name AutoML-assigned name for the column you want to set as the test/train column. column_spec_display_name (Optional[str]): The human-readable name of the column you want to set as the test/train column. If this is supplied in place of `column_spec_name`, you also need to provide either a way to lookup the source dataset (using one of the `dataset*` kwargs), or the `table_spec_name` of the table this column belongs to. table_spec_name (Optional[str]): The AutoML-assigned name for the table whose test/train column you want to set . If not supplied, the client can determine this name from a source `Dataset` object. table_spec_index (Optional[int]): If no `table_spec_name` or `column_spec_name` was provided, we use this index to determine which table to set the test/train column on. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update the test/train column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the test/train column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update the test/train column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the test/train column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to update the test/train column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the test/train column of. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.Dataset` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ column_spec_name = self.__column_spec_name_from_args( dataset=dataset, dataset_display_name=dataset_display_name, dataset_name=dataset_name, table_spec_name=table_spec_name, table_spec_index=table_spec_index, column_spec_name=column_spec_name, column_spec_display_name=column_spec_display_name, project=project, region=region, **kwargs ) column_spec_id = column_spec_name.rsplit("/", 1)[-1] dataset = self.__dataset_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) metadata = dataset.tables_dataset_metadata metadata = self.__update_metadata( metadata, "ml_use_column_spec_id", column_spec_id ) request = {"name": dataset.name, "tables_dataset_metadata": metadata} return self.auto_ml_client.update_dataset(request, **kwargs) def clear_test_train_column( self, dataset=None, dataset_display_name=None, dataset_name=None, project=None, region=None, **kwargs ): """Clears the test/train (ml_use) column which designates which data belongs to the test and train sets. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.clear_test_train_column(dataset_display_name='my_dataset') >>> Args: project (Optional[str]): The ID of the project that owns the table. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to update the test/train column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the test/train column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to update the test/train column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the test/train column of. This must be supplied if `table_spec_name`, `dataset` or `dataset_display_name` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to update the test/train column of. If no `table_spec_name` is supplied, this will be used together with `table_spec_index` to infer the name of table to update the test/train column of. This must be supplied if `table_spec_name`, `dataset_name` or `dataset_display_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.Dataset` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ dataset = self.__dataset_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) metadata = dataset.tables_dataset_metadata metadata = self.__update_metadata(metadata, "ml_use_column_spec_id", None) request = {"name": dataset.name, "tables_dataset_metadata": metadata} return self.auto_ml_client.update_dataset(request, **kwargs) def list_models(self, project=None, region=None, **kwargs): """List all models in a particular project and region. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> ms = client.list_models() >>> >>> for m in ms: ... # do something ... pass ... Args: project (Optional[str]): The ID of the project that owns the models. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. Returns: A :class:`~google.api_core.page_iterator.PageIterator` instance. An iterable of :class:`~google.cloud.automl_v1beta1.types.Model` instances. You can also iterate over the pages of the response using its `pages` property. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ return self.auto_ml_client.list_models( self.__location_path(project=project, region=region), **kwargs ) def list_model_evaluations( self, project=None, region=None, model=None, model_display_name=None, model_name=None, **kwargs ): """List all model evaluations for a given model. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> ms = client.list_model_evaluations(model_display_name='my_model') >>> >>> for m in ms: ... # do something ... pass ... Args: project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. model_display_name (Optional[str]): The human-readable name given to the model you want to list evaluations for. This must be supplied if `model` or `model_name` are not supplied. model_name (Optional[str]): The AutoML-assigned name given to the model you want to list evaluations for. This must be supplied if `model_display_name` or `model` are not supplied. model (Optional[model]): The `model` instance you want to list evaluations for. This must be supplied if `model_display_name` or `model_name` are not supplied. Returns: A :class:`~google.api_core.page_iterator.PageIterator` instance. An iterable of :class:`~google.cloud.automl_v1beta1.types.ModelEvaluation` instances. You can also iterate over the pages of the response using its `pages` property. For a regression model, there will only be one evaluation. For a classification model there will be on for each classification label, as well as one for micro-averaged metrics. See more documentation here: https://cloud.google.com/automl-tables/docs/evaluate#automl-tables-list-model-evaluations-cli-curl:w Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ model_name = self.__model_name_from_args( model=model, model_name=model_name, model_display_name=model_display_name, project=project, region=region, **kwargs ) return self.auto_ml_client.list_model_evaluations(model_name, **kwargs) def create_model( self, model_display_name, dataset=None, dataset_display_name=None, dataset_name=None, train_budget_milli_node_hours=None, optimization_objective=None, project=None, region=None, model_metadata=None, include_column_spec_names=None, exclude_column_spec_names=None, disable_early_stopping=False, **kwargs ): """Create a model. This will train your model on the given dataset. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> m = client.create_model( ... 'my_model', ... dataset_display_name='my_dataset', ... train_budget_milli_node_hours=1000 ... ) >>> >>> m.result() # blocks on result >>> Args: project (Optional[str]): The ID of the project that will own the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. model_display_name (str): A human-readable name to refer to this model by. train_budget_milli_node_hours (int): The amount of time (in thousandths of an hour) to spend training. This value must be between 1,000 and 72,000 inclusive (between 1 and 72 hours). optimization_objective (str): The metric AutoML tables should optimize for. dataset_display_name (Optional[str]): The human-readable name given to the dataset you want to train your model on. This must be supplied if `dataset` or `dataset_name` are not supplied. dataset_name (Optional[str]): The AutoML-assigned name given to the dataset you want to train your model on. This must be supplied if `dataset_display_name` or `dataset` are not supplied. dataset (Optional[Dataset]): The `Dataset` instance you want to train your model on. This must be supplied if `dataset_display_name` or `dataset_name` are not supplied. model_metadata (Optional[Dict]): Optional model metadata to supply to the client. include_column_spec_names(Optional[str]): The list of the names of the columns you want to include to train your model on. exclude_column_spec_names(Optional[str]): The list of the names of the columns you want to exclude and not train your model on. disable_early_stopping(Optional[bool]): True if disable early stopping. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ if model_metadata is None: model_metadata = {} if ( train_budget_milli_node_hours is None or train_budget_milli_node_hours < 1000 or train_budget_milli_node_hours > 72000 ): raise ValueError( "'train_budget_milli_node_hours' must be a " "value between 1,000 and 72,000 inclusive" ) if exclude_column_spec_names not in [ None, [], ] and include_column_spec_names not in [None, []]: raise ValueError( "Cannot set both " "'exclude_column_spec_names' and " "'include_column_spec_names'" ) dataset_name = self.__dataset_name_from_args( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, project=project, region=region, **kwargs ) model_metadata["train_budget_milli_node_hours"] = train_budget_milli_node_hours if optimization_objective is not None: model_metadata["optimization_objective"] = optimization_objective if disable_early_stopping: model_metadata["disable_early_stopping"] = True dataset_id = dataset_name.rsplit("/", 1)[-1] columns = [ s for s in self.list_column_specs( dataset=dataset, dataset_name=dataset_name, dataset_display_name=dataset_display_name, **kwargs ) ] final_columns = [] if include_column_spec_names: for c in columns: if c.display_name in include_column_spec_names: final_columns.append(c) model_metadata["input_feature_column_specs"] = final_columns elif exclude_column_spec_names: for a in columns: if a.display_name not in exclude_column_spec_names: final_columns.append(a) model_metadata["input_feature_column_specs"] = final_columns request = { "display_name": model_display_name, "dataset_id": dataset_id, "tables_model_metadata": model_metadata, } op = self.auto_ml_client.create_model( self.__location_path(project=project, region=region), request, **kwargs ) self.__log_operation_info("Model creation", op) return op def delete_model( self, model=None, model_display_name=None, model_name=None, project=None, region=None, **kwargs ): """Deletes a model. Note this will not delete any datasets associated with this model. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> op = client.delete_model(model_display_name='my_model') >>> >>> op.result() # blocks on delete request >>> Args: project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. model_display_name (Optional[str]): The human-readable name given to the model you want to delete. This must be supplied if `model` or `model_name` are not supplied. model_name (Optional[str]): The AutoML-assigned name given to the model you want to delete. This must be supplied if `model_display_name` or `model` are not supplied. model (Optional[model]): The `model` instance you want to delete. This must be supplied if `model_display_name` or `model_name` are not supplied. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ try: model_name = self.__model_name_from_args( model=model, model_name=model_name, model_display_name=model_display_name, project=project, region=region, **kwargs ) # delete is idempotent except exceptions.NotFound: return None op = self.auto_ml_client.delete_model(model_name, **kwargs) self.__log_operation_info("Delete model", op) return op def get_model_evaluation( self, model_evaluation_name, project=None, region=None, **kwargs ): """Gets a single evaluation model in a particular project and region. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.get_model_evaluation('my_model_evaluation') >>> Args: model_evaluation_name (str): This is the fully-qualified name generated by the AutoML API for this model evaluation. project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.ModelEvaluation` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ return self.auto_ml_client.get_model_evaluation(model_evaluation_name, **kwargs) def get_model( self, project=None, region=None, model_name=None, model_display_name=None, **kwargs ): """Gets a single model in a particular project and region. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> d = client.get_model(model_display_name='my_model') >>> Args: project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. model_name (Optional[str]): This is the fully-qualified name generated by the AutoML API for this model. This is not to be confused with the human-assigned `model_display_name` that is provided when creating a model. Either `model_name` or `model_display_name` must be provided. model_display_name (Optional[str]): This is the name you provided for the model when first creating it. Either `model_name` or `model_display_name` must be provided. Returns: A :class:`~google.cloud.automl_v1beta1.types.Model` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ if model_name is None and model_display_name is None: raise ValueError( "One of 'model_name' or " "'model_display_name' must be set." ) if model_name is not None: return self.auto_ml_client.get_model(model_name, **kwargs) return self.__lookup_by_display_name( "model", self.list_models(project, region, **kwargs), model_display_name ) # TODO(jonathanskim): allow deployment from just model ID def deploy_model( self, model=None, model_name=None, model_display_name=None, project=None, region=None, **kwargs ): """Deploys a model. This allows you make online predictions using the model you've deployed. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> op = client.deploy_model(model_display_name='my_model') >>> >>> op.result() # blocks on deploy request >>> Args: project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. model_display_name (Optional[str]): The human-readable name given to the model you want to deploy. This must be supplied if `model` or `model_name` are not supplied. model_name (Optional[str]): The AutoML-assigned name given to the model you want to deploy. This must be supplied if `model_display_name` or `model` are not supplied. model (Optional[model]): The `model` instance you want to deploy. This must be supplied if `model_display_name` or `model_name` are not supplied. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ model_name = self.__model_name_from_args( model=model, model_name=model_name, model_display_name=model_display_name, project=project, region=region, **kwargs ) op = self.auto_ml_client.deploy_model(model_name, **kwargs) self.__log_operation_info("Deploy model", op) return op def undeploy_model( self, model=None, model_name=None, model_display_name=None, project=None, region=None, **kwargs ): """Undeploys a model. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> op = client.undeploy_model(model_display_name='my_model') >>> >>> op.result() # blocks on undeploy request >>> Args: project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. model_display_name (Optional[str]): The human-readable name given to the model you want to undeploy. This must be supplied if `model` or `model_name` are not supplied. model_name (Optional[str]): The AutoML-assigned name given to the model you want to undeploy. This must be supplied if `model_display_name` or `model` are not supplied. model (Optional[model]): The `model` instance you want to undeploy. This must be supplied if `model_display_name` or `model_name` are not supplied. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ model_name = self.__model_name_from_args( model=model, model_name=model_name, model_display_name=model_display_name, project=project, region=region, **kwargs ) op = self.auto_ml_client.undeploy_model(model_name, **kwargs) self.__log_operation_info("Undeploy model", op) return op ## TODO(lwander): support pandas DataFrame as input type def predict( self, inputs, model=None, model_name=None, model_display_name=None, project=None, region=None, **kwargs ): """Makes a prediction on a deployed model. This will fail if the model was not deployed. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.predict(inputs={'Age': 30, 'Income': 12, 'Category': 'A'} ... model_display_name='my_model') ... >>> client.predict([30, 12, 'A'], model_display_name='my_model') >>> Args: project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. inputs (Union[List[str], Dict[str, str]]): Either the sorted list of column values to predict with, or a key-value map of column display name to value to predict with. model_display_name (Optional[str]): The human-readable name given to the model you want to predict with. This must be supplied if `model` or `model_name` are not supplied. model_name (Optional[str]): The AutoML-assigned name given to the model you want to predict with. This must be supplied if `model_display_name` or `model` are not supplied. model (Optional[model]): The `model` instance you want to predict with . This must be supplied if `model_display_name` or `model_name` are not supplied. Returns: A :class:`~google.cloud.automl_v1beta1.types.PredictResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ model = self.__model_from_args( model=model, model_name=model_name, model_display_name=model_display_name, project=project, region=region, **kwargs ) column_specs = model.tables_model_metadata.input_feature_column_specs if type(inputs) == dict: inputs = [inputs.get(c.display_name, None) for c in column_specs] if len(inputs) != len(column_specs): raise ValueError( ( "Dimension mismatch, the number of provided " "inputs ({}) does not match that of the model " "({})" ).format(len(inputs), len(column_specs)) ) values = [] for i, c in zip(inputs, column_specs): value_type = self.__type_code_to_value_type(c.data_type.type_code, i) values.append(value_type) request = {"row": {"values": values}} return self.prediction_client.predict(model.name, request, **kwargs) def batch_predict( self, pandas_dataframe=None, bigquery_input_uri=None, bigquery_output_uri=None, gcs_input_uris=None, gcs_output_uri_prefix=None, model=None, model_name=None, model_display_name=None, project=None, region=None, credentials=None, inputs=None, **kwargs ): """Makes a batch prediction on a model. This does _not_ require the model to be deployed. Example: >>> from google.cloud import automl_v1beta1 >>> >>> from google.oauth2 import service_account >>> >>> client = automl_v1beta1.TablesClient( ... credentials=service_account.Credentials.from_service_account_file('~/.gcp/account.json') ... project='my-project', region='us-central1') ... >>> client.batch_predict( ... gcs_input_uris='gs://inputs/input.csv', ... gcs_output_uri_prefix='gs://outputs/', ... model_display_name='my_model' ... ).result() ... Args: project (Optional[str]): The ID of the project that owns the model. If you have initialized the client with a value for `project` it will be used if this parameter is not supplied. Keep in mind, the service account this client was initialized with must have access to this project. region (Optional[str]): If you have initialized the client with a value for `region` it will be used if this parameter is not supplied. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. pandas_dataframe (Optional[pandas.DataFrame]): A Pandas Dataframe object containing the data you want to predict off of. The data will be converted to CSV, and this CSV will be staged to GCS in `gs://{project}-automl-tables-staging/{uploaded_csv_name}` This must be supplied if neither `gcs_input_uris` nor `bigquery_input_uri` is supplied. gcs_input_uris (Optional(Union[List[str], str])) Either a list of or a single GCS URI containing the data you want to predict off of. This must be supplied if neither `pandas_dataframe` nor `bigquery_input_uri` is supplied. gcs_output_uri_prefix (Optional[str]) The folder in GCS you want to write output to. This must be supplied if `bigquery_output_uri` is not. bigquery_input_uri (Optional[str]) The BigQuery table to input data from. This must be supplied if neither `pandas_dataframe` nor `gcs_input_uris` is supplied. bigquery_output_uri (Optional[str]) The BigQuery table to output data to. This must be supplied if `gcs_output_uri_prefix` is not. model_display_name (Optional[str]): The human-readable name given to the model you want to predict with. This must be supplied if `model` or `model_name` are not supplied. model_name (Optional[str]): The AutoML-assigned name given to the model you want to predict with. This must be supplied if `model_display_name` or `model` are not supplied. model (Optional[model]): The `model` instance you want to predict with . This must be supplied if `model_display_name` or `model_name` are not supplied. Returns: google.api_core.operation.Operation: An operation future that can be used to check for completion synchronously or asynchronously. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If required parameters are missing. """ model_name = self.__model_name_from_args( model=model, model_name=model_name, model_display_name=model_display_name, project=project, region=region, **kwargs ) input_request = None if pandas_dataframe is not None: project = project or self.project region = region or self.region credentials = credentials or self.credentials self.__ensure_gcs_client_is_initialized(credentials, project) self.gcs_client.ensure_bucket_exists(project, region) gcs_input_uri = self.gcs_client.upload_pandas_dataframe(pandas_dataframe) input_request = {"gcs_source": {"input_uris": [gcs_input_uri]}} elif gcs_input_uris is not None: if type(gcs_input_uris) != list: gcs_input_uris = [gcs_input_uris] input_request = {"gcs_source": {"input_uris": gcs_input_uris}} elif bigquery_input_uri is not None: input_request = {"bigquery_source": {"input_uri": bigquery_input_uri}} else: raise ValueError( "One of 'gcs_input_uris'/'bigquery_input_uris' must" "be set" ) output_request = None if gcs_output_uri_prefix is not None: output_request = { "gcs_destination": {"output_uri_prefix": gcs_output_uri_prefix} } elif bigquery_output_uri is not None: output_request = { "bigquery_destination": {"output_uri": bigquery_output_uri} } else: raise ValueError( "One of 'gcs_output_uri_prefix'/'bigquery_output_uri' must be set" ) op = self.prediction_client.batch_predict( model_name, input_request, output_request, **kwargs ) self.__log_operation_info("Batch predict", op) return op
apache-2.0
mainakibui/kobocat
onadata/apps/viewer/tests/test_export_list.py
5
8203
import os from django.core.urlresolvers import reverse from onadata.apps.main.tests.test_base import TestBase from onadata.apps.viewer.models.export import Export from onadata.apps.main.models.meta_data import MetaData from onadata.apps.viewer.views import export_list class TestExportList(TestBase): def setUp(self): super(TestExportList, self).setUp() self._publish_transportation_form() survey = self.surveys[0] self._make_submission( os.path.join( self.this_directory, 'fixtures', 'transportation', 'instances', survey, survey + '.xml')) def test_unauthorised_users_cannot_export_form_data(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.CSV_EXPORT} url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) # check that the 'New Export' button is not being rendered self.assertNotIn( '<input title="" data-original-title="" \ class="btn large btn-primary" \ value="New Export" type="submit">', response.content) self.assertEqual(response.status_code, 200) def test_csv_export_list(self): kwargs = {'username': self.user.username.upper(), 'id_string': self.xform.id_string.upper(), 'export_type': Export.CSV_EXPORT} # test csv url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_xls_export_list(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.XLS_EXPORT} url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_kml_export_list(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.KML_EXPORT} url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_zip_export_list(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.ZIP_EXPORT} url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_gdoc_export_list(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.GDOC_EXPORT} url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_csv_zip_export_list(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.CSV_ZIP_EXPORT} url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_sav_zip_export_list(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.SAV_ZIP_EXPORT} url = reverse(export_list, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_external_export_list(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.EXTERNAL_EXPORT} server = 'http://localhost:8080/xls/23fa4c38c0054748a984ffd89021a295' data_value = 'template 1 |{0}'.format(server) meta = MetaData.external_export(self.xform, data_value) custom_params = { 'meta': meta.id, } url = reverse(export_list, kwargs=kwargs) count = len(Export.objects.all()) response = self.client.get(url, custom_params) self.assertEqual(response.status_code, 200) count1 = len(Export.objects.all()) self.assertEquals(count+1, count1) def test_external_export_list_no_template(self): kwargs = {'username': self.user.username, 'id_string': self.xform.id_string, 'export_type': Export.EXTERNAL_EXPORT} url = reverse(export_list, kwargs=kwargs) count = len(Export.objects.all()) response = self.client.get(url) self.assertEqual(response.status_code, 403) self.assertEquals(response.content, u'No XLS Template set.') count1 = len(Export.objects.all()) self.assertEquals(count, count1) class TestDataExportURL(TestBase): def setUp(self): super(TestDataExportURL, self).setUp() self._publish_transportation_form() def _filename_from_disposition(self, content_disposition): filename_pos = content_disposition.index('filename=') self.assertTrue(filename_pos != -1) return content_disposition[filename_pos + len('filename='):] def test_csv_export_url(self): self._submit_transport_instance() url = reverse('csv_export', kwargs={ 'username': self.user.username, 'id_string': self.xform.id_string, }) response = self.client.get(url) headers = dict(response.items()) self.assertEqual(headers['Content-Type'], 'application/csv') content_disposition = headers['Content-Disposition'] filename = self._filename_from_disposition(content_disposition) basename, ext = os.path.splitext(filename) self.assertEqual(ext, '.csv') def test_csv_export_url_without_records(self): # csv using the pandas path can throw a NoRecordsFound Exception - # handle it gracefully url = reverse('csv_export', kwargs={ 'username': self.user.username, 'id_string': self.xform.id_string, }) response = self.client.get(url) self.assertEqual(response.status_code, 404) def test_xls_export_url(self): self._submit_transport_instance() url = reverse('xls_export', kwargs={ 'username': self.user.username.upper(), 'id_string': self.xform.id_string.upper(), }) response = self.client.get(url) headers = dict(response.items()) self.assertEqual(headers['Content-Type'], 'application/vnd.openxmlformats') content_disposition = headers['Content-Disposition'] filename = self._filename_from_disposition(content_disposition) basename, ext = os.path.splitext(filename) self.assertEqual(ext, '.xlsx') def test_csv_zip_export_url(self): self._submit_transport_instance() url = reverse('csv_zip_export', kwargs={ 'username': self.user.username.upper(), 'id_string': self.xform.id_string.upper(), }) response = self.client.get(url) headers = dict(response.items()) self.assertEqual(headers['Content-Type'], 'application/zip') content_disposition = headers['Content-Disposition'] filename = self._filename_from_disposition(content_disposition) basename, ext = os.path.splitext(filename) self.assertEqual(ext, '.zip') def test_sav_zip_export_url(self): self._submit_transport_instance() url = reverse('sav_zip_export', kwargs={ 'username': self.user.username, 'id_string': self.xform.id_string, }) response = self.client.get(url) headers = dict(response.items()) self.assertEqual(headers['Content-Type'], 'application/zip') content_disposition = headers['Content-Disposition'] filename = self._filename_from_disposition(content_disposition) basename, ext = os.path.splitext(filename) self.assertEqual(ext, '.zip')
bsd-2-clause
saguziel/incubator-airflow
airflow/hooks/base_hook.py
5
2571
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import object import logging import os import random from airflow import settings from airflow.models import Connection from airflow.exceptions import AirflowException CONN_ENV_PREFIX = 'AIRFLOW_CONN_' class BaseHook(object): """ Abstract base class for hooks, hooks are meant as an interface to interact with external systems. MySqlHook, HiveHook, PigHook return object that can handle the connection and interaction to specific instances of these systems, and expose consistent methods to interact with them. """ def __init__(self, source): pass @classmethod def get_connections(cls, conn_id): session = settings.Session() db = ( session.query(Connection) .filter(Connection.conn_id == conn_id) .all() ) session.expunge_all() session.close() if not db: raise AirflowException( "The conn_id `{0}` isn't defined".format(conn_id)) return db @classmethod def get_connection(cls, conn_id): environment_uri = os.environ.get(CONN_ENV_PREFIX + conn_id.upper()) conn = None if environment_uri: conn = Connection(conn_id=conn_id, uri=environment_uri) else: conn = random.choice(cls.get_connections(conn_id)) if conn.host: logging.info("Using connection to: " + conn.host) return conn @classmethod def get_hook(cls, conn_id): connection = cls.get_connection(conn_id) return connection.get_hook() def get_conn(self): raise NotImplementedError() def get_records(self, sql): raise NotImplementedError() def get_pandas_df(self, sql): raise NotImplementedError() def run(self, sql): raise NotImplementedError()
apache-2.0
redcap-tools/PyCap
redcap/project.py
2
36294
#!/usr/bin/env python # -*- coding: utf-8 -*- """User facing class for interacting with a REDCap Project""" import json import warnings import semantic_version from .request import RCRequest, RedcapError, RequestException try: from StringIO import StringIO except ImportError: from io import StringIO __author__ = "Scott Burns <scott.s.burnsgmail.com>" __license__ = "MIT" __copyright__ = "2014, Vanderbilt University" # pylint: disable=too-many-lines # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-arguments # pylint: disable=too-many-public-methods # pylint: disable=redefined-builtin class Project(object): """Main class for interacting with REDCap projects""" def __init__(self, url, token, name="", verify_ssl=True, lazy=False): """ Parameters ---------- url : str API URL to your REDCap server token : str API token to your project name : str, optional name for project verify_ssl : boolean, str Verify SSL, default True. Can pass path to CA_BUNDLE. """ self.token = token self.name = name self.url = url self.verify = verify_ssl self.metadata = None self.redcap_version = None self.field_names = None # We'll use the first field as the default id for each row self.def_field = None self.field_labels = None self.forms = None self.events = None self.arm_nums = None self.arm_names = None self.configured = False if not lazy: self.configure() def configure(self): """Fill in project attributes""" try: self.metadata = self.__md() except RequestException as request_fail: raise RedcapError( "Exporting metadata failed. Check your URL and token." ) from request_fail try: self.redcap_version = self.__rcv() except Exception as general_fail: raise RedcapError( "Determination of REDCap version failed" ) from general_fail self.field_names = self.filter_metadata("field_name") # we'll use the first field as the default id for each row self.def_field = self.field_names[0] self.field_labels = self.filter_metadata("field_label") self.forms = tuple(set(c["form_name"] for c in self.metadata)) # determine whether longitudinal ev_data = self._call_api(self.__basepl("event"), "exp_event")[0] arm_data = self._call_api(self.__basepl("arm"), "exp_arm")[0] if isinstance(ev_data, dict) and ("error" in ev_data.keys()): events = tuple([]) else: events = ev_data if isinstance(arm_data, dict) and ("error" in arm_data.keys()): arm_nums = tuple([]) arm_names = tuple([]) else: arm_nums = tuple([a["arm_num"] for a in arm_data]) arm_names = tuple([a["name"] for a in arm_data]) self.events = events self.arm_nums = arm_nums self.arm_names = arm_names self.configured = True def __md(self): """Return the project's metadata structure""" p_l = self.__basepl("metadata") p_l["content"] = "metadata" return self._call_api(p_l, "metadata")[0] def __basepl(self, content, rec_type="flat", format="json"): """Return a dictionary which can be used as is or added to for payloads""" payload_dict = {"token": self.token, "content": content, "format": format} if content not in ["metapayload_dictata", "file"]: payload_dict["type"] = rec_type return payload_dict def __rcv(self): payload = self.__basepl("version") rcv = self._call_api(payload, "version")[0].decode("utf-8") if "error" in rcv: warnings.warn("Version information not available for this REDCap instance") return "" if semantic_version.validate(rcv): return semantic_version.Version(rcv) return rcv def is_longitudinal(self): """ Returns ------- boolean : longitudinal status of this project """ return ( len(self.events) > 0 and len(self.arm_nums) > 0 and len(self.arm_names) > 0 ) def filter_metadata(self, key): """ Return a list of values for the metadata key from each field of the project's metadata. Parameters ---------- key: str A known key in the metadata structure Returns ------- filtered : attribute list from each field """ filtered = [field[key] for field in self.metadata if key in field] if len(filtered) == 0: raise KeyError("Key not found in metadata") return filtered def _kwargs(self): """Private method to build a dict for sending to RCRequest Other default kwargs to the http library should go here""" return {"verify": self.verify} def _call_api(self, payload, typpe, **kwargs): request_kwargs = self._kwargs() request_kwargs.update(kwargs) rcr = RCRequest(self.url, payload, typpe) return rcr.execute(**request_kwargs) def export_fem(self, arms=None, format="json", df_kwargs=None): """ Export the project's form to event mapping Parameters ---------- arms : list Limit exported form event mappings to these arm numbers format : (``'json'``), ``'csv'``, ``'xml'`` Return the form event mappings in native objects, csv or xml, ``'df''`` will return a ``pandas.DataFrame`` df_kwargs : dict Passed to pandas.read_csv to control construction of returned DataFrame Returns ------- fem : list, str, ``pandas.DataFrame`` form-event mapping for the project """ ret_format = format if format == "df": ret_format = "csv" payload = self.__basepl("formEventMapping", format=ret_format) if arms: for i, value in enumerate(arms): payload["arms[{}]".format(i)] = value response, _ = self._call_api(payload, "exp_fem") if format in ("json", "csv", "xml"): return response if format != "df": raise ValueError(("Unsupported format: '{}'").format(format)) if not df_kwargs: df_kwargs = {} return self.read_csv(StringIO(response), **df_kwargs) def export_field_names(self, field=None, format="json", df_kwargs=None): """ Export the project's export field names Parameters ---------- fields : str Limit exported field name to this field (only single field supported). When not provided, all fields returned. format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Return the metadata in native objects, csv or xml. ``'df'`` will return a ``pandas.DataFrame``. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default ``{'index_col': 'original_field_name'}`` Returns ------- metadata : list, str, ``pandas.DataFrame`` metadata structure for the project. """ ret_format = format if format == "df": ret_format = "csv" payload = self.__basepl("exportFieldNames", format=ret_format) if field: payload["field"] = field response, _ = self._call_api(payload, "exp_field_names") if format in ("json", "csv", "xml"): return response if format != "df": raise ValueError(("Unsupported format: '{}'").format(format)) if not df_kwargs: df_kwargs = {"index_col": "original_field_name"} return self.read_csv(StringIO(response), **df_kwargs) def export_metadata(self, fields=None, forms=None, format="json", df_kwargs=None): """ Export the project's metadata Parameters ---------- fields : list Limit exported metadata to these fields forms : list Limit exported metadata to these forms format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Return the metadata in native objects, csv or xml. ``'df'`` will return a ``pandas.DataFrame``. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default ``{'index_col': 'field_name'}`` Returns ------- metadata : list, str, ``pandas.DataFrame`` metadata sttructure for the project. """ ret_format = format if format == "df": ret_format = "csv" payload = self.__basepl("metadata", format=ret_format) to_add = [fields, forms] str_add = ["fields", "forms"] for key, data in zip(str_add, to_add): if data: for i, value in enumerate(data): payload["{}[{}]".format(key, i)] = value response, _ = self._call_api(payload, "metadata") if format in ("json", "csv", "xml"): return response if format != "df": raise ValueError(("Unsupported format: '{}'").format(format)) if not df_kwargs: df_kwargs = {"index_col": "field_name"} return self.read_csv(StringIO(response), **df_kwargs) def delete_records(self, records): """ Delete records from the Project. Parameters ---------- records : list List of record IDs that you want to delete from the project Returns ------- response : int Number of records deleted """ payload = dict() payload["action"] = "delete" payload["content"] = "record" payload["token"] = self.token # Turn list of records into dict, and append to payload records_dict = { "records[{}]".format(idx): record for idx, record in enumerate(records) } payload.update(records_dict) payload["format"] = format response, _ = self._call_api(payload, "del_record") return response # pylint: disable=too-many-branches # pylint: disable=too-many-locals def export_records( self, records=None, fields=None, forms=None, events=None, raw_or_label="raw", event_name="label", format="json", export_survey_fields=False, export_data_access_groups=False, df_kwargs=None, export_checkbox_labels=False, filter_logic=None, date_begin=None, date_end=None, ): """ Export data from the REDCap project. Parameters ---------- records : list array of record names specifying specific records to export. by default, all records are exported fields : list array of field names specifying specific fields to pull by default, all fields are exported forms : list array of form names to export. If in the web UI, the form name has a space in it, replace the space with an underscore by default, all forms are exported events : list an array of unique event names from which to export records :note: this only applies to longitudinal projects raw_or_label : (``'raw'``), ``'label'``, ``'both'`` export the raw coded values or labels for the options of multiple choice fields, or both event_name : (``'label'``), ``'unique'`` export the unique event name or the event label format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Format of returned data. ``'json'`` returns json-decoded objects while ``'csv'`` and ``'xml'`` return other formats. ``'df'`` will attempt to return a ``pandas.DataFrame``. export_survey_fields : (``False``), True specifies whether or not to export the survey identifier field (e.g., "redcap_survey_identifier") or survey timestamp fields (e.g., form_name+"_timestamp") when surveys are utilized in the project. export_data_access_groups : (``False``), ``True`` specifies whether or not to export the ``"redcap_data_access_group"`` field when data access groups are utilized in the project. :note: This flag is only viable if the user whose token is being used to make the API request is *not* in a data access group. If the user is in a group, then this flag will revert to its default value. df_kwargs : dict Passed to ``pandas.read_csv`` to control construction of returned DataFrame. by default, ``{'index_col': self.def_field}`` export_checkbox_labels : (``False``), ``True`` specify whether to export checkbox values as their label on export. filter_logic : string specify the filterLogic to be sent to the API. date_begin : datetime for the dateRangeStart filtering of the API date_end : datetime for the dateRangeEnd filtering snet to the API Returns ------- data : list, str, ``pandas.DataFrame`` exported data """ ret_format = format if format == "df": ret_format = "csv" payload = self.__basepl("record", format=ret_format) fields = self.backfill_fields(fields, forms) keys_to_add = ( records, fields, forms, events, raw_or_label, event_name, export_survey_fields, export_data_access_groups, export_checkbox_labels, ) str_keys = ( "records", "fields", "forms", "events", "rawOrLabel", "eventName", "exportSurveyFields", "exportDataAccessGroups", "exportCheckboxLabel", ) for key, data in zip(str_keys, keys_to_add): if data: if key in ("fields", "records", "forms", "events"): for i, value in enumerate(data): payload["{}[{}]".format(key, i)] = value else: payload[key] = data if date_begin: payload["dateRangeBegin"] = date_begin.strftime("%Y-%m-%d %H:%M:%S") if date_end: payload["dateRangeEnd"] = date_end.strftime("%Y-%m-%d %H:%M:%S") if filter_logic: payload["filterLogic"] = filter_logic response, _ = self._call_api(payload, "exp_record") if format in ("json", "csv", "xml"): return response if format != "df": raise ValueError(("Unsupported format: '{}'").format(format)) if not df_kwargs: if self.is_longitudinal(): df_kwargs = {"index_col": [self.def_field, "redcap_event_name"]} else: df_kwargs = {"index_col": self.def_field} buf = StringIO(response) dataframe = self.read_csv(buf, **df_kwargs) buf.close() return dataframe # pylint: enable=too-many-branches # pylint: enable=too-many-locals # pylint: disable=import-outside-toplevel @staticmethod def read_csv(buf, **df_kwargs): """Wrapper around pandas read_csv that handles EmptyDataError""" from pandas import DataFrame, read_csv from pandas.errors import EmptyDataError try: dataframe = read_csv(buf, **df_kwargs) except EmptyDataError: dataframe = DataFrame() return dataframe # pylint: enable=import-outside-toplevel def metadata_type(self, field_name): """If the given field_name is validated by REDCap, return it's type""" return self.__meta_metadata( field_name, "text_validation_type_or_show_slider_number" ) def __meta_metadata(self, field, key): """Return the value for key for the field in the metadata""" metadata_field = "" try: metadata_field = str( [f[key] for f in self.metadata if f["field_name"] == field][0] ) except IndexError: print("%s not in metadata field:%s" % (key, field)) return metadata_field else: return metadata_field def backfill_fields(self, fields, forms): """ Properly backfill fields to explicitly request specific keys. The issue is that >6.X servers *only* return requested fields so to improve backwards compatiblity for PyCap clients, add specific fields when required. Parameters ---------- fields: list requested fields forms: list requested forms Returns ------- new fields, forms """ if forms and not fields: new_fields = [self.def_field] elif fields and self.def_field not in fields: new_fields = list(fields) if self.def_field not in fields: new_fields.append(self.def_field) elif not fields: new_fields = self.field_names else: new_fields = list(fields) return new_fields def names_labels(self, do_print=False): """Simple helper function to get all field names and labels """ if do_print: for name, label in zip(self.field_names, self.field_labels): print("%s --> %s" % (str(name), str(label))) return self.field_names, self.field_labels def import_records( self, to_import, overwrite="normal", format="json", return_format="json", return_content="count", date_format="YMD", force_auto_number=False, ): """ Import data into the RedCap Project Parameters ---------- to_import : array of dicts, csv/xml string, ``pandas.DataFrame`` :note: If you pass a csv or xml string, you should use the ``format`` parameter appropriately. :note: Keys of the dictionaries should be subset of project's, fields, but this isn't a requirement. If you provide keys that aren't defined fields, the returned response will contain an ``'error'`` key. overwrite : ('normal'), 'overwrite' ``'overwrite'`` will erase values previously stored in the database if not specified in the to_import dictionaries. format : ('json'), 'xml', 'csv' Format of incoming data. By default, to_import will be json-encoded return_format : ('json'), 'csv', 'xml' Response format. By default, response will be json-decoded. return_content : ('count'), 'ids', 'nothing' By default, the response contains a 'count' key with the number of records just imported. By specifying 'ids', a list of ids imported will be returned. 'nothing' will only return the HTTP status code and no message. date_format : ('YMD'), 'DMY', 'MDY' Describes the formatting of dates. By default, date strings are formatted as 'YYYY-MM-DD' corresponding to 'YMD'. If date strings are formatted as 'MM/DD/YYYY' set this parameter as 'MDY' and if formatted as 'DD/MM/YYYY' set as 'DMY'. No other formattings are allowed. force_auto_number : ('False') Enables automatic assignment of record IDs of imported records by REDCap. If this is set to true, and auto-numbering for records is enabled for the project, auto-numbering of imported records will be enabled. Returns ------- response : dict, str response from REDCap API, json-decoded if ``return_format`` == ``'json'`` """ payload = self._initialize_import_payload(to_import, format, "record") payload["overwriteBehavior"] = overwrite payload["returnFormat"] = return_format payload["returnContent"] = return_content payload["dateFormat"] = date_format payload["forceAutoNumber"] = force_auto_number response = self._call_api(payload, "imp_record")[0] if "error" in response: raise RedcapError(str(response)) return response def import_metadata( self, to_import, format="json", return_format="json", date_format="YMD" ): """ Import metadata (DataDict) into the RedCap Project Parameters ---------- to_import : array of dicts, csv/xml string, ``pandas.DataFrame`` :note: If you pass a csv or xml string, you should use the ``format`` parameter appropriately. format : ('json'), 'xml', 'csv' Format of incoming data. By default, to_import will be json-encoded return_format : ('json'), 'csv', 'xml' Response format. By default, response will be json-decoded. date_format : ('YMD'), 'DMY', 'MDY' Describes the formatting of dates. By default, date strings are formatted as 'YYYY-MM-DD' corresponding to 'YMD'. If date strings are formatted as 'MM/DD/YYYY' set this parameter as 'MDY' and if formatted as 'DD/MM/YYYY' set as 'DMY'. No other formattings are allowed. Returns ------- response : dict, str response from REDCap API, json-decoded if ``return_format`` == ``'json'`` If successful, the number of imported fields """ payload = self._initialize_import_payload(to_import, format, "metadata") payload["returnFormat"] = return_format payload["dateFormat"] = date_format response = self._call_api(payload, "imp_metadata")[0] if "error" in str(response): raise RedcapError(str(response)) return response def _initialize_import_payload(self, to_import, format, data_type): """ Standardize the data to be imported and add it to the payload Parameters ---------- to_import : array of dicts, csv/xml string, ``pandas.DataFrame`` :note: If you pass a csv or xml string, you should use the ``format`` parameter appropriately. format : ('json'), 'xml', 'csv' Format of incoming data. By default, to_import will be json-encoded data_type: 'record', 'metadata' The kind of data that are imported Returns ------- payload : (dict, str) The initialized payload dictionary and updated format """ payload = self.__basepl(data_type) # pylint: disable=comparison-with-callable if hasattr(to_import, "to_csv"): # We'll assume it's a df buf = StringIO() if data_type == "record": if self.is_longitudinal(): csv_kwargs = {"index_label": [self.def_field, "redcap_event_name"]} else: csv_kwargs = {"index_label": self.def_field} elif data_type == "metadata": csv_kwargs = {"index": False} to_import.to_csv(buf, **csv_kwargs) payload["data"] = buf.getvalue() buf.close() format = "csv" elif format == "json": payload["data"] = json.dumps(to_import, separators=(",", ":")) else: # don't do anything to csv/xml payload["data"] = to_import # pylint: enable=comparison-with-callable payload["format"] = format return payload def export_file(self, record, field, event=None, return_format="json"): """ Export the contents of a file stored for a particular record Notes ----- Unlike other export methods, this works on a single record. Parameters ---------- record : str record ID field : str field name containing the file to be exported. event: str for longitudinal projects, specify the unique event here return_format: ('json'), 'csv', 'xml' format of error message Returns ------- content : bytes content of the file content_map : dict content-type dictionary """ self._check_file_field(field) # load up payload payload = self.__basepl(content="file", format=return_format) # there's no format field in this call del payload["format"] payload["returnFormat"] = return_format payload["action"] = "export" payload["field"] = field payload["record"] = record if event: payload["event"] = event content, headers = self._call_api(payload, "exp_file") # REDCap adds some useful things in content-type if "content-type" in headers: splat = [ key_values.strip() for key_values in headers["content-type"].split(";") ] key_values = [ (key_values.split("=")[0], key_values.split("=")[1].replace('"', "")) for key_values in splat if "=" in key_values ] content_map = dict(key_values) else: content_map = {} return content, content_map def import_file( self, record, field, fname, fobj, event=None, repeat_instance=None, return_format="json", ): """ Import the contents of a file represented by fobj to a particular records field Parameters ---------- record : str record ID field : str field name where the file will go fname : str file name visible in REDCap UI fobj : file object file object as returned by `open` event : str for longitudinal projects, specify the unique event here repeat_instance : int (only for projects with repeating instruments/events) The repeat instance number of the repeating event (if longitudinal) or the repeating instrument (if classic or longitudinal). return_format : ('json'), 'csv', 'xml' format of error message Returns ------- response : response from server as specified by ``return_format`` """ self._check_file_field(field) # load up payload payload = self.__basepl(content="file", format=return_format) # no format in this call del payload["format"] payload["returnFormat"] = return_format payload["action"] = "import" payload["field"] = field payload["record"] = record if event: payload["event"] = event if repeat_instance: payload["repeat_instance"] = repeat_instance file_kwargs = {"files": {"file": (fname, fobj)}} return self._call_api(payload, "imp_file", **file_kwargs)[0] def delete_file(self, record, field, return_format="json", event=None): """ Delete a file from REDCap Notes ----- There is no undo button to this. Parameters ---------- record : str record ID field : str field name return_format : (``'json'``), ``'csv'``, ``'xml'`` return format for error message event : str If longitudinal project, event to delete file from Returns ------- response : dict, str response from REDCap after deleting file """ self._check_file_field(field) # Load up payload payload = self.__basepl(content="file", format=return_format) del payload["format"] payload["returnFormat"] = return_format payload["action"] = "delete" payload["record"] = record payload["field"] = field if event: payload["event"] = event return self._call_api(payload, "del_file")[0] def _check_file_field(self, field): """Check that field exists and is a file field""" is_field = field in self.field_names is_file = self.__meta_metadata(field, "field_type") == "file" if not (is_field and is_file): msg = "'%s' is not a field or not a 'file' field" % field raise ValueError(msg) return True def export_users(self, format="json"): """ Export the users of the Project Notes ----- Each user will have the following keys: * ``'firstname'`` : User's first name * ``'lastname'`` : User's last name * ``'email'`` : Email address * ``'username'`` : User's username * ``'expiration'`` : Project access expiration date * ``'data_access_group'`` : data access group ID * ``'data_export'`` : (0=no access, 2=De-Identified, 1=Full Data Set) * ``'forms'`` : a list of dicts with a single key as the form name and value is an integer describing that user's form rights, where: 0=no access, 1=view records/responses and edit records (survey responses are read-only), 2=read only, and 3=edit survey responses, Parameters ---------- format : (``'json'``), ``'csv'``, ``'xml'`` response return format Returns ------- users: list, str list of users dicts when ``'format'='json'``, otherwise a string """ payload = self.__basepl(content="user", format=format) return self._call_api(payload, "exp_user")[0] def export_survey_participant_list(self, instrument, event=None, format="json"): """ Export the Survey Participant List Notes ----- The passed instrument must be set up as a survey instrument. Parameters ---------- instrument: str Name of instrument as seen in second column of Data Dictionary. event: str Unique event name, only used in longitudinal projects format: (json, xml, csv), json by default Format of returned data """ payload = self.__basepl(content="participantList", format=format) payload["instrument"] = instrument if event: payload["event"] = event return self._call_api(payload, "exp_survey_participant_list") def generate_next_record_name(self): """Return the next record name for auto-numbering records""" payload = self.__basepl(content="generateNextRecordName") return self._call_api(payload, "exp_next_id")[0] def export_project_info(self, format="json"): """ Export Project Information Parameters ---------- format: (json, xml, csv), json by default Format of returned data """ payload = self.__basepl(content="project", format=format) return self._call_api(payload, "exp_proj")[0] # pylint: disable=too-many-locals def export_reports( self, format="json", report_id=None, raw_or_label="raw", raw_or_label_headers="raw", export_checkbox_labels="false", decimal_character=None, df_kwargs=None, ): """ Export a report of the Project Notes ----- Parameters ---------- report_id : the report ID number provided next to the report name on the report list page format : (``'json'``), ``'csv'``, ``'xml'``, ``'df'`` Format of returned data. ``'json'`` returns json-decoded objects while ``'csv'`` and ``'xml'`` return other formats. ``'df'`` will attempt to return a ``pandas.DataFrame``. raw_or_label : raw [default], label - export the raw coded values or labels for the options of multiple choice fields raw_or_label_headers : raw [default], label - (for 'csv' format 'flat' type only) for the CSV headers, export the variable/field names (raw) or the field labels (label) export_checkbox_labels : true, false [default] - specifies the format of checkbox field values specifically when exporting the data as labels (i.e., when rawOrLabel=label). When exporting labels, by default (without providing the exportCheckboxLabel flag or if exportCheckboxLabel=false), all checkboxes will either have a value 'Checked' if they are checked or 'Unchecked' if not checked. But if exportCheckboxLabel is set to true, it will instead export the checkbox value as the checkbox option's label (e.g., 'Choice 1') if checked or it will be blank/empty (no value) if not checked. If rawOrLabel=false, then the exportCheckboxLabel flag is ignored. decimal_character : If specified, force all numbers into same decimal format. You may choose to force all data values containing a decimal to have the same decimal character, which will be applied to all calc fields and number-validated text fields. Options include comma ',' or dot/full stop '.', but if left blank/null, then it will export numbers using the fields' native decimal format. Simply provide the value of either ',' or '.' for this parameter. Returns ------- Per Redcap API: Data from the project in the format and type specified Ordered by the record (primary key of project) and then by event id """ ret_format = format if format == "df": ret_format = "csv" payload = self.__basepl(content="report", format=ret_format) keys_to_add = ( report_id, raw_or_label, raw_or_label_headers, export_checkbox_labels, decimal_character, ) str_keys = ( "report_id", "rawOrLabel", "rawOrLabelHeaders", "exportCheckboxLabel", "decimalCharacter", ) for key, data in zip(str_keys, keys_to_add): if data: payload[key] = data response, _ = self._call_api(payload, "exp_report") if format in ("json", "csv", "xml"): return response if format != "df": raise ValueError(("Unsupported format: '{}'").format(format)) if not df_kwargs: if self.is_longitudinal(): df_kwargs = {"index_col": [self.def_field, "redcap_event_name"]} else: df_kwargs = {"index_col": self.def_field} buf = StringIO(response) dataframe = self.read_csv(buf, **df_kwargs) buf.close() return dataframe # pylint: enable=too-many-locals # pylint: enable=too-many-instance-attributes # pylint: enable=too-many-arguments # pylint: enable=too-many-public-methods # pylint: enable=redefined-builtin
mit
balazs-bamer/FreeCAD-Surface
src/Mod/Plot/plotSeries/TaskPanel.py
26
17784
#*************************************************************************** #* * #* Copyright (c) 2011, 2012 * #* Jose Luis Cercos Pita <[email protected]> * #* * #* This program is free software; you can redistribute it and/or modify * #* it under the terms of the GNU Lesser General Public License (LGPL) * #* as published by the Free Software Foundation; either version 2 of * #* the License, or (at your option) any later version. * #* for detail see the LICENCE text file. * #* * #* This program is distributed in the hope that it will be useful, * #* but WITHOUT ANY WARRANTY; without even the implied warranty of * #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * #* GNU Library General Public License for more details. * #* * #* You should have received a copy of the GNU Library General Public * #* License along with this program; if not, write to the Free Software * #* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * #* USA * #* * #*************************************************************************** import FreeCAD as App import FreeCADGui as Gui from PySide import QtGui, QtCore import Plot from plotUtils import Paths import matplotlib from matplotlib.lines import Line2D import matplotlib.colors as Colors class TaskPanel: def __init__(self): self.ui = Paths.modulePath() + "/plotSeries/TaskPanel.ui" self.skip = False self.item = 0 self.plt = None def accept(self): return True def reject(self): return True def clicked(self, index): pass def open(self): pass def needsFullSpace(self): return True def isAllowedAlterSelection(self): return False def isAllowedAlterView(self): return True def isAllowedAlterDocument(self): return False def helpRequested(self): pass def setupUi(self): mw = self.getMainWindow() form = mw.findChild(QtGui.QWidget, "TaskPanel") form.items = self.widget(QtGui.QListWidget, "items") form.label = self.widget(QtGui.QLineEdit, "label") form.isLabel = self.widget(QtGui.QCheckBox, "isLabel") form.style = self.widget(QtGui.QComboBox, "lineStyle") form.marker = self.widget(QtGui.QComboBox, "markers") form.width = self.widget(QtGui.QDoubleSpinBox, "lineWidth") form.size = self.widget(QtGui.QSpinBox, "markerSize") form.color = self.widget(QtGui.QPushButton, "color") form.remove = self.widget(QtGui.QPushButton, "remove") self.form = form self.retranslateUi() self.fillStyles() self.updateUI() QtCore.QObject.connect( form.items, QtCore.SIGNAL("currentRowChanged(int)"), self.onItem) QtCore.QObject.connect( form.label, QtCore.SIGNAL("editingFinished()"), self.onData) QtCore.QObject.connect( form.isLabel, QtCore.SIGNAL("stateChanged(int)"), self.onData) QtCore.QObject.connect( form.style, QtCore.SIGNAL("currentIndexChanged(int)"), self.onData) QtCore.QObject.connect( form.marker, QtCore.SIGNAL("currentIndexChanged(int)"), self.onData) QtCore.QObject.connect( form.width, QtCore.SIGNAL("valueChanged(double)"), self.onData) QtCore.QObject.connect( form.size, QtCore.SIGNAL("valueChanged(int)"), self.onData) QtCore.QObject.connect( form.color, QtCore.SIGNAL("pressed()"), self.onColor) QtCore.QObject.connect( form.remove, QtCore.SIGNAL("pressed()"), self.onRemove) QtCore.QObject.connect( Plot.getMdiArea(), QtCore.SIGNAL("subWindowActivated(QMdiSubWindow*)"), self.onMdiArea) return False def getMainWindow(self): toplevel = QtGui.qApp.topLevelWidgets() for i in toplevel: if i.metaObject().className() == "Gui::MainWindow": return i raise RuntimeError("No main window found") def widget(self, class_id, name): """Return the selected widget. Keyword arguments: class_id -- Class identifier name -- Name of the widget """ mw = self.getMainWindow() form = mw.findChild(QtGui.QWidget, "TaskPanel") return form.findChild(class_id, name) def retranslateUi(self): """Set the user interface locale strings.""" self.form.setWindowTitle(QtGui.QApplication.translate( "plot_series", "Configure series", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QCheckBox, "isLabel").setText( QtGui.QApplication.translate( "plot_series", "No label", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QPushButton, "remove").setText( QtGui.QApplication.translate( "plot_series", "Remove serie", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QLabel, "styleLabel").setText( QtGui.QApplication.translate( "plot_series", "Line style", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QLabel, "markerLabel").setText( QtGui.QApplication.translate( "plot_series", "Marker", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QListWidget, "items").setToolTip( QtGui.QApplication.translate( "plot_series", "List of available series", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QLineEdit, "label").setToolTip( QtGui.QApplication.translate( "plot_series", "Line title", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QCheckBox, "isLabel").setToolTip( QtGui.QApplication.translate( "plot_series", "If checked serie will not be considered for legend", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QComboBox, "lineStyle").setToolTip( QtGui.QApplication.translate( "plot_series", "Line style", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QComboBox, "markers").setToolTip( QtGui.QApplication.translate( "plot_series", "Marker style", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QDoubleSpinBox, "lineWidth").setToolTip( QtGui.QApplication.translate( "plot_series", "Line width", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QSpinBox, "markerSize").setToolTip( QtGui.QApplication.translate( "plot_series", "Marker size", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QPushButton, "color").setToolTip( QtGui.QApplication.translate( "plot_series", "Line and marker color", None, QtGui.QApplication.UnicodeUTF8)) self.widget(QtGui.QPushButton, "remove").setToolTip( QtGui.QApplication.translate( "plot_series", "Removes this serie", None, QtGui.QApplication.UnicodeUTF8)) def fillStyles(self): """Fill the style combo boxes with the availabel ones.""" mw = self.getMainWindow() form = mw.findChild(QtGui.QWidget, "TaskPanel") form.style = self.widget(QtGui.QComboBox, "lineStyle") form.marker = self.widget(QtGui.QComboBox, "markers") # Line styles linestyles = Line2D.lineStyles.keys() for i in range(0, len(linestyles)): style = linestyles[i] string = "\'" + str(style) + "\'" string += " (" + Line2D.lineStyles[style] + ")" form.style.addItem(string) # Markers markers = Line2D.markers.keys() for i in range(0, len(markers)): marker = markers[i] string = "\'" + str(marker) + "\'" string += " (" + Line2D.markers[marker] + ")" form.marker.addItem(string) def onItem(self, row): """Executed when the selected item is modified.""" if not self.skip: self.skip = True self.item = row self.updateUI() self.skip = False def onData(self): """Executed when the selected item data is modified.""" if not self.skip: self.skip = True plt = Plot.getPlot() if not plt: self.updateUI() return mw = self.getMainWindow() form = mw.findChild(QtGui.QWidget, "TaskPanel") form.label = self.widget(QtGui.QLineEdit, "label") form.isLabel = self.widget(QtGui.QCheckBox, "isLabel") form.style = self.widget(QtGui.QComboBox, "lineStyle") form.marker = self.widget(QtGui.QComboBox, "markers") form.width = self.widget(QtGui.QDoubleSpinBox, "lineWidth") form.size = self.widget(QtGui.QSpinBox, "markerSize") # Ensure that selected serie exist if self.item >= len(Plot.series()): self.updateUI() return # Set label serie = Plot.series()[self.item] if(form.isLabel.isChecked()): serie.name = None form.label.setEnabled(False) else: serie.name = form.label.text() form.label.setEnabled(True) # Set line style and marker style = form.style.currentIndex() linestyles = Line2D.lineStyles.keys() serie.line.set_linestyle(linestyles[style]) marker = form.marker.currentIndex() markers = Line2D.markers.keys() serie.line.set_marker(markers[marker]) # Set line width and marker size serie.line.set_linewidth(form.width.value()) serie.line.set_markersize(form.size.value()) plt.update() # Regenerate series labels self.setList() self.skip = False def onColor(self): """ Executed when color pallete is requested. """ plt = Plot.getPlot() if not plt: self.updateUI() return mw = self.getMainWindow() form = mw.findChild(QtGui.QWidget, "TaskPanel") form.color = self.widget(QtGui.QPushButton, "color") # Ensure that selected serie exist if self.item >= len(Plot.series()): self.updateUI() return # Show widget to select color col = QtGui.QColorDialog.getColor() # Send color to widget and serie if col.isValid(): serie = plt.series[self.item] form.color.setStyleSheet( "background-color: rgb({}, {}, {});".format(col.red(), col.green(), col.blue())) serie.line.set_color((col.redF(), col.greenF(), col.blueF())) plt.update() def onRemove(self): """Executed when the data serie must be removed.""" plt = Plot.getPlot() if not plt: self.updateUI() return # Ensure that selected serie exist if self.item >= len(Plot.series()): self.updateUI() return # Remove serie Plot.removeSerie(self.item) self.setList() self.updateUI() plt.update() def onMdiArea(self, subWin): """Executed when a new window is selected on the mdi area. Keyword arguments: subWin -- Selected window. """ plt = Plot.getPlot() if plt != subWin: self.updateUI() def updateUI(self): """ Setup UI controls values if possible """ mw = self.getMainWindow() form = mw.findChild(QtGui.QWidget, "TaskPanel") form.items = self.widget(QtGui.QListWidget, "items") form.label = self.widget(QtGui.QLineEdit, "label") form.isLabel = self.widget(QtGui.QCheckBox, "isLabel") form.style = self.widget(QtGui.QComboBox, "lineStyle") form.marker = self.widget(QtGui.QComboBox, "markers") form.width = self.widget(QtGui.QDoubleSpinBox, "lineWidth") form.size = self.widget(QtGui.QSpinBox, "markerSize") form.color = self.widget(QtGui.QPushButton, "color") form.remove = self.widget(QtGui.QPushButton, "remove") plt = Plot.getPlot() form.items.setEnabled(bool(plt)) form.label.setEnabled(bool(plt)) form.isLabel.setEnabled(bool(plt)) form.style.setEnabled(bool(plt)) form.marker.setEnabled(bool(plt)) form.width.setEnabled(bool(plt)) form.size.setEnabled(bool(plt)) form.color.setEnabled(bool(plt)) form.remove.setEnabled(bool(plt)) if not plt: self.plt = plt form.items.clear() return self.skip = True # Refill list if self.plt != plt or len(Plot.series()) != form.items.count(): self.plt = plt self.setList() # Ensure that have series if not len(Plot.series()): form.label.setEnabled(False) form.isLabel.setEnabled(False) form.style.setEnabled(False) form.marker.setEnabled(False) form.width.setEnabled(False) form.size.setEnabled(False) form.color.setEnabled(False) form.remove.setEnabled(False) return # Set label serie = Plot.series()[self.item] if serie.name is None: form.isLabel.setChecked(True) form.label.setEnabled(False) form.label.setText("") else: form.isLabel.setChecked(False) form.label.setText(serie.name) # Set line style and marker form.style.setCurrentIndex(0) linestyles = Line2D.lineStyles.keys() for i in range(0, len(linestyles)): style = linestyles[i] if style == serie.line.get_linestyle(): form.style.setCurrentIndex(i) form.marker.setCurrentIndex(0) markers = Line2D.markers.keys() for i in range(0, len(markers)): marker = markers[i] if marker == serie.line.get_marker(): form.marker.setCurrentIndex(i) # Set line width and marker size form.width.setValue(serie.line.get_linewidth()) form.size.setValue(serie.line.get_markersize()) # Set color color = Colors.colorConverter.to_rgb(serie.line.get_color()) form.color.setStyleSheet("background-color: rgb({}, {}, {});".format( int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))) self.skip = False def setList(self): """Setup the UI control values if it is possible.""" mw = self.getMainWindow() form = mw.findChild(QtGui.QWidget, "TaskPanel") form.items = self.widget(QtGui.QListWidget, "items") form.items.clear() series = Plot.series() for i in range(0, len(series)): serie = series[i] string = 'serie ' + str(i) + ': ' if serie.name is None: string = string + '\"No label\"' else: string = string + serie.name form.items.addItem(string) # Ensure that selected item is correct if len(series) and self.item >= len(series): self.item = len(series) - 1 form.items.setCurrentIndex(self.item) def createTask(): panel = TaskPanel() Gui.Control.showDialog(panel) if panel.setupUi(): Gui.Control.closeDialog(panel) return None return panel
lgpl-2.1
gt-ros-pkg/hrl-haptic-manip
hrl_common_code_darpa_m3/src/hrl_common_code_darpa_m3/software_simulation_setup/distribute_goal_on_a_grid.py
1
5318
#!/usr/bin/python import sys import numpy as np, math import copy import matplotlib.pyplot as pp import roslib; roslib.load_manifest('hrl_common_code_darpa_m3') import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import hrl_common_code_darpa_m3.software_simulation_setup.viz as sssv if __name__ == '__main__': import optparse p = optparse.OptionParser() p.add_option('--nr', action='store', dest='nr',type='int', default=3, help='number of goals in radial direction') p.add_option('--nt', action='store', dest='nt',type='int', default=3, help='number of goals in theta direction') p.add_option('--rmin', action='store', dest='rmin',type='float', default=0.5, help='min radial distance for goal') p.add_option('--rmax', action='store', dest='rmax',type='float', default=0.7, help='max x radial distance for goal') p.add_option('--tmin', action='store', dest='tmin',type='float', default=-30, help='min theta for goal (DEGREES)') p.add_option('--tmax', action='store', dest='tmax',type='float', default=30, help='max theta for goal (DEGREES)') p.add_option('--pkl', action='store', dest='pkl', default=None, help='pkl with obstacle locations') p.add_option('--save_figure', '--sf', action='store_true', dest='sf', help='save the figure') p.add_option('--sim3', action='store_true', dest='sim3', help='three link planar (torso, upper arm, forearm)') p.add_option('--sim3_with_hand', action='store_true', dest='sim3_with_hand', help='three link planar (upper arm, forearm, hand)') p.add_option('--grid_goal', action='store', dest='grid_resol', type='float', default=0.0, help='Grid Goal resolution for equaly distributed goals') p.add_option('--xmin', action='store', dest='xmin',type='float', default=0.2, help='min x coord for goals') p.add_option('--xmax', action='store', dest='xmax',type='float', default=0.6, help='max x coord for goals') p.add_option('--ymin', action='store', dest='ymin',type='float', default=-0.3, help='min y coord for goals') p.add_option('--ymax', action='store', dest='ymax',type='float', default=0.3, help='max y coord for goals') opt, args = p.parse_args() if opt.pkl == None: raise RuntimeError('Please specify a reach_problem_dict pkl') rpd = ut.load_pickle(opt.pkl) nm = '.'.join(opt.pkl.split('.')[0:-1]) g_list = [] if opt.grid_resol: x = opt.xmin y = opt.ymin arGridX = [] while x <= opt.xmax: arGridX.append(x) x += opt.grid_resol arGridY = [] while y <= opt.ymax: arGridY.append(y) y += opt.grid_resol for i in range(len(arGridX)): for j in range(len(arGridY)): rpd['goal'] = [arGridX[i], arGridY[j], 0] ut.save_pickle(rpd, nm + '_x%02d'%i + '_y%02d'%j + '.pkl') g_list.append(copy.copy(rpd['goal'])) else: # Prevent divided by zero if opt.nr != 1 : r_step = (opt.rmax - opt.rmin) / (opt.nr - 1) else: r_step = 0 if opt.nt != 1 : t_step = math.radians((opt.tmax - opt.tmin) / (opt.nt - 1)) else: t_step = 0 t_start = math.radians(opt.tmin) nt = opt.nt for r in range(opt.nr): for t in range(nt): rad = opt.rmin + r_step * r theta = t_start + t_step * t rpd['goal'] = [rad * math.cos(theta), rad * math.sin(theta), 0] ut.save_pickle(rpd, nm + '_r%02d'%r + '_t%02d'%t + '.pkl') g_list.append(copy.copy(rpd['goal'])) if r%2 == 0: t_start = t_start + t_step/2 nt = nt - 1 else: t_start = t_start - t_step/2 nt = nt + 1 if opt.sf: # if we are using this file, then we need to have # hrl_software_simulation_darpa_m3 roslib.load_manifest('hrl_software_simulation_darpa_m3') import hrl_software_simulation_darpa_m3.gen_sim_arms as gsa if opt.sim3: import hrl_common_code_darpa_m3.robot_config.three_link_planar_capsule as d_robot elif opt.sim3_with_hand: import hrl_common_code_darpa_m3.robot_config.three_link_with_hand as d_robot mpu.set_figure_size(6,4) pp.figure() kinematics = gsa.RobotSimulatorKDL(d_robot) sssv.draw_obstacles_from_reach_problem_dict(rpd) g_arr = np.array(g_list) pp.scatter(-g_arr[:,1], g_arr[:,0], s=50, c='g', marker='x', lw=1, edgecolor='g') q = [0.,0,0] ee,_ = kinematics.FK(q) rad = np.linalg.norm(ee) sa = -math.radians(45) ea = math.radians(45) mpu.plot_circle(0., 0., rad, sa, ea, color='b', linewidth=0.5) mpu.plot_radii(0., 0., rad, sa, ea, 2*math.pi, color='b', linewidth=0.5) pp.xlim(-0.7, 0.7) mpu.reduce_figure_margins(left=0.02, bottom=0.02, right=0.98, top=0.98) pp.savefig(nm+'.pdf')
apache-2.0
M-R-Houghton/euroscipy_2015
bokeh/examples/plotting/server/burtin.py
42
4826
# The plot server must be running # Go to http://localhost:5006/bokeh to view this plot from collections import OrderedDict from math import log, sqrt import numpy as np import pandas as pd from six.moves import cStringIO as StringIO from bokeh.plotting import figure, show, output_server antibiotics = """ bacteria, penicillin, streptomycin, neomycin, gram Mycobacterium tuberculosis, 800, 5, 2, negative Salmonella schottmuelleri, 10, 0.8, 0.09, negative Proteus vulgaris, 3, 0.1, 0.1, negative Klebsiella pneumoniae, 850, 1.2, 1, negative Brucella abortus, 1, 2, 0.02, negative Pseudomonas aeruginosa, 850, 2, 0.4, negative Escherichia coli, 100, 0.4, 0.1, negative Salmonella (Eberthella) typhosa, 1, 0.4, 0.008, negative Aerobacter aerogenes, 870, 1, 1.6, negative Brucella antracis, 0.001, 0.01, 0.007, positive Streptococcus fecalis, 1, 1, 0.1, positive Staphylococcus aureus, 0.03, 0.03, 0.001, positive Staphylococcus albus, 0.007, 0.1, 0.001, positive Streptococcus hemolyticus, 0.001, 14, 10, positive Streptococcus viridans, 0.005, 10, 40, positive Diplococcus pneumoniae, 0.005, 11, 10, positive """ drug_color = OrderedDict([ ("Penicillin", "#0d3362"), ("Streptomycin", "#c64737"), ("Neomycin", "black" ), ]) gram_color = { "positive" : "#aeaeb8", "negative" : "#e69584", } df = pd.read_csv(StringIO(antibiotics), skiprows=1, skipinitialspace=True, engine='python') width = 800 height = 800 inner_radius = 90 outer_radius = 300 - 10 minr = sqrt(log(.001 * 1E4)) maxr = sqrt(log(1000 * 1E4)) a = (outer_radius - inner_radius) / (minr - maxr) b = inner_radius - a * maxr def rad(mic): return a * np.sqrt(np.log(mic * 1E4)) + b big_angle = 2.0 * np.pi / (len(df) + 1) small_angle = big_angle / 7 x = np.zeros(len(df)) y = np.zeros(len(df)) output_server("burtin") p = figure(plot_width=width, plot_height=height, title="", x_axis_type=None, y_axis_type=None, x_range=[-420, 420], y_range=[-420, 420], min_border=0, outline_line_color="black", background_fill="#f0e1d2", border_fill="#f0e1d2") p.line(x+1, y+1, alpha=0) # annular wedges angles = np.pi/2 - big_angle/2 - df.index.to_series()*big_angle colors = [gram_color[gram] for gram in df.gram] p.annular_wedge( x, y, inner_radius, outer_radius, -big_angle+angles, angles, color=colors, ) # small wedges p.annular_wedge(x, y, inner_radius, rad(df.penicillin), -big_angle+angles+5*small_angle, -big_angle+angles+6*small_angle, color=drug_color['Penicillin']) p.annular_wedge(x, y, inner_radius, rad(df.streptomycin), -big_angle+angles+3*small_angle, -big_angle+angles+4*small_angle, color=drug_color['Streptomycin']) p.annular_wedge(x, y, inner_radius, rad(df.neomycin), -big_angle+angles+1*small_angle, -big_angle+angles+2*small_angle, color=drug_color['Neomycin']) # circular axes and lables labels = np.power(10.0, np.arange(-3, 4)) radii = a * np.sqrt(np.log(labels * 1E4)) + b p.circle(x, y, radius=radii, fill_color=None, line_color="white") p.text(x[:-1], radii[:-1], [str(r) for r in labels[:-1]], text_font_size="8pt", text_align="center", text_baseline="middle") # radial axes p.annular_wedge(x, y, inner_radius-10, outer_radius+10, -big_angle+angles, -big_angle+angles, color="black") # bacteria labels xr = radii[0]*np.cos(np.array(-big_angle/2 + angles)) yr = radii[0]*np.sin(np.array(-big_angle/2 + angles)) label_angle=np.array(-big_angle/2+angles) label_angle[label_angle < -np.pi/2] += np.pi # easier to read labels on the left side p.text(xr, yr, df.bacteria, angle=label_angle, text_font_size="9pt", text_align="center", text_baseline="middle") # OK, these hand drawn legends are pretty clunky, will be improved in future release p.circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5) p.text([-30, -30], [-370, -390], text=["Gram-" + gr for gr in gram_color.keys()], text_font_size="7pt", text_align="left", text_baseline="middle") p.rect([-40, -40, -40], [18, 0, -18], width=30, height=13, color=list(drug_color.values())) p.text([-15, -15, -15], [18, 0, -18], text=list(drug_color.keys()), text_font_size="9pt", text_align="left", text_baseline="middle") p.xgrid.grid_line_color = None p.ygrid.grid_line_color = None show(p)
mit
tdeboissiere/DeepLearningImplementations
InfoGAN/src/model/eval.py
1
4641
import sys import numpy as np import models import matplotlib.pylab as plt # Utils sys.path.append("../utils") import data_utils import general_utils def eval(**kwargs): # Roll out the parameters batch_size = kwargs["batch_size"] generator = kwargs["generator"] model_name = kwargs["model_name"] image_data_format = kwargs["image_data_format"] img_dim = kwargs["img_dim"] cont_dim = (kwargs["cont_dim"],) cat_dim = (kwargs["cat_dim"],) noise_dim = (kwargs["noise_dim"],) bn_mode = kwargs["bn_mode"] noise_scale = kwargs["noise_scale"] dset = kwargs["dset"] epoch = kwargs["epoch"] # Setup environment (logging directory etc) general_utils.setup_logging(model_name) # Load and rescale data if dset == "RGZ": X_real_train = data_utils.load_RGZ(img_dim, image_data_format) if dset == "mnist": X_real_train, _, _, _ = data_utils.load_mnist(image_data_format) img_dim = X_real_train.shape[-3:] # Load generator model generator_model = models.load("generator_%s" % generator, cat_dim, cont_dim, noise_dim, img_dim, bn_mode, batch_size, dset=dset) # Load colorization model generator_model.load_weights("../../models/%s/gen_weights_epoch%s.h5" % (model_name, epoch)) X_plot = [] # Vary the categorical variable for i in range(cat_dim[0]): X_noise = data_utils.sample_noise(noise_scale, batch_size, noise_dim) X_cont = data_utils.sample_noise(noise_scale, batch_size, cont_dim) X_cont = np.repeat(X_cont[:1, :], batch_size, axis=0) # fix continuous noise X_cat = np.zeros((batch_size, cat_dim[0]), dtype='float32') X_cat[:, i] = 1 # always the same categorical value X_gen = generator_model.predict([X_cat, X_cont, X_noise]) X_gen = data_utils.inverse_normalization(X_gen) if image_data_format == "channels_first": X_gen = X_gen.transpose(0,2,3,1) X_gen = [X_gen[i] for i in range(len(X_gen))] X_plot.append(np.concatenate(X_gen, axis=1)) X_plot = np.concatenate(X_plot, axis=0) plt.figure(figsize=(8,10)) if X_plot.shape[-1] == 1: plt.imshow(X_plot[:, :, 0], cmap="gray") else: plt.imshow(X_plot) plt.xticks([]) plt.yticks([]) plt.ylabel("Varying categorical factor", fontsize=28, labelpad=60) plt.annotate('', xy=(-0.05, 0), xycoords='axes fraction', xytext=(-0.05, 1), arrowprops=dict(arrowstyle="-|>", color='k', linewidth=4)) plt.tight_layout() plt.savefig("../../figures/varying_categorical.png") plt.clf() plt.close() # Vary the continuous variables X_plot = [] # First get the extent of the noise sampling x = np.ravel(data_utils.sample_noise(noise_scale, batch_size * 20000, cont_dim)) # Define interpolation points x = np.linspace(x.min(), x.max(), num=batch_size) for i in range(batch_size): X_noise = data_utils.sample_noise(noise_scale, batch_size, noise_dim) X_cont = np.concatenate([np.array([x[i], x[j]]).reshape(1, -1) for j in range(batch_size)], axis=0) X_cat = np.zeros((batch_size, cat_dim[0]), dtype='float32') X_cat[:, 1] = 1 # always the same categorical value X_gen = generator_model.predict([X_cat, X_cont, X_noise]) X_gen = data_utils.inverse_normalization(X_gen) if image_data_format == "channels_first": X_gen = X_gen.transpose(0,2,3,1) X_gen = [X_gen[i] for i in range(len(X_gen))] X_plot.append(np.concatenate(X_gen, axis=1)) X_plot = np.concatenate(X_plot, axis=0) plt.figure(figsize=(10,10)) if X_plot.shape[-1] == 1: plt.imshow(X_plot[:, :, 0], cmap="gray") else: plt.imshow(X_plot) plt.xticks([]) plt.yticks([]) plt.ylabel("Varying continuous factor 1", fontsize=28, labelpad=60) plt.annotate('', xy=(-0.05, 0), xycoords='axes fraction', xytext=(-0.05, 1), arrowprops=dict(arrowstyle="-|>", color='k', linewidth=4)) plt.xlabel("Varying continuous factor 2", fontsize=28, labelpad=60) plt.annotate('', xy=(1, -0.05), xycoords='axes fraction', xytext=(0, -0.05), arrowprops=dict(arrowstyle="-|>", color='k', linewidth=4)) plt.tight_layout() plt.savefig("../../figures/varying_continuous.png") plt.clf() plt.close()
mit
wwliao/bkheatmap
bkheatmap.py
1
12038
import argparse import math import os from bokeh.models import ColumnDataSource, HoverTool from bokeh.plotting import figure, gridplot, output_file, save import matplotlib as mpl from matplotlib import cm import numpy as np import pandas as pd import scipy.spatial.distance as dist import scipy.cluster.hierarchy as hier __version__ = "0.1.5" def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--palette", default="Spectral_r", help="default: %(default)s") parser.add_argument("--width", type=int, default=400, help="default: %(default)d") parser.add_argument("--height", type=int, default=400, help="default: %(default)d") parser.add_argument("--scale", default="row", help="default: %(default)s") parser.add_argument("--metric", default="euclidean", help="default: %(default)s") parser.add_argument("--method", default="single", help="default: %(default)s") parser.add_argument("table") return parser def calc_zscore(df, scale): if scale == "row": df = df.T df = (df - df.mean()) / df.std(ddof=1) df = df.T elif scale == "column": df = (df - df.mean()) / df.std(ddof=1) return df def cluster(df, metric="euclidean", method="single", row=True, column=True): row_linkmat, col_linkmat = None, None if row: distmat = dist.pdist(df, metric) row_linkmat = hier.linkage(distmat, method) df = df.iloc[hier.leaves_list(row_linkmat), :] if column: df = df.T distmat = dist.pdist(df, metric) col_linkmat = hier.linkage(distmat, method) df = df.iloc[hier.leaves_list(col_linkmat), :].T return df, row_linkmat, col_linkmat def assign_color(df, value_var, colormap): vmax = df[value_var].abs().max() vmin = vmax * -1 norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) df["color"] = df.apply(lambda s: mpl.colors.rgb2hex( cm.get_cmap(colormap)(norm(s[value_var]))), axis=1) return df def assign_cat_color(df, cat_var, colormap): color = {} norm = mpl.colors.Normalize(vmin=0, vmax=len(df[cat_var].unique())-1) for i, cat in enumerate(df[cat_var].unique()): color[cat] = mpl.colors.rgb2hex(cm.get_cmap(colormap)(norm(i))) df["color"] = df.apply(lambda s: color[s[cat_var]], axis=1) return df def get_colorbar_source(df, value_var, colormap): vmax = df[value_var].abs().max() vmin = vmax * -1 norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) value = np.linspace(vmin, vmax, num=50) color = [] for v in value: color.append(mpl.colors.rgb2hex(cm.get_cmap(colormap)(norm(v)))) return vmax*2/49.0, ColumnDataSource(data=dict(value=value, color=color)) def bkheatmap(df, prefix, scale="row", metric="euclidean", method="single", width=400, height=400, palette="Spectral_r"): df.index.name = "row" zscore = calc_zscore(df, scale=scale) zscore = zscore.dropna() zscore, rlm, clm = cluster(zscore, metric=metric, method=method) coldict = dict((t[1], t[0]) for t in enumerate(zscore.columns.tolist())) rowdict = dict((t[1], t[0]) for t in enumerate(zscore.index.tolist())) tidy_df = pd.melt(zscore.reset_index(), id_vars=["row"], var_name="column", value_name="zscore") tidy_df["row_id"] = tidy_df.apply(lambda s: rowdict[s["row"]], axis=1) tidy_df["column_id"] = tidy_df.apply(lambda s: coldict[s["column"]], axis=1) tidy_df["value"] = tidy_df.apply(lambda s: df[s["column"]][s["row"]], axis=1) tidy_df = assign_color(tidy_df, "zscore", palette) source = ColumnDataSource(data=tidy_df) TOOLS = "pan,box_zoom,wheel_zoom,reset,hover" heatmap = figure(x_range=(-0.5, max(coldict.values()) + 0.5), y_range=(-0.5, max(rowdict.values()) + 0.5), plot_width=width, plot_height=height, toolbar_location="above", tools=TOOLS, min_border_left=0, min_border_right=0, min_border_top=0, min_border_bottom=0) #heatmap.toolbar.logo = None heatmap.grid.grid_line_color = None heatmap.axis.visible = False heatmap.outline_line_color = None heatmap.rect("column_id", "row_id", 1, 1, source=source, color="color", line_color=None, alpha=1) heatmap.select_one(HoverTool).tooltips = [ ("row", "@row"), ("column", "@column"), ("value", "@value"), ("z-score", "@zscore") ] row, row_id = zip(*rowdict.items()) row_group = [] row_name = [] if all(s.count(":") for s in row): for s in row: rg, rn = s.split(":")[-2:] # only one-level grouping row_group.append(rg) row_name.append(rn) else: row_name = row rowlabel = figure(plot_width=200, plot_height=heatmap.plot_height, x_range=(0, 1), y_range=heatmap.y_range, title=None, min_border_left=0, min_border_right=0, min_border_top=0, min_border_bottom=0, toolbar_location=None, webgl=True) #rowlabel.toolbar.logo = None rowlabel.text(0.05, "row_id", "row_name", source=ColumnDataSource(data=dict(row_name=row_name, row_id=row_id)), text_align="left", text_baseline="middle", text_font_size="10pt", text_color="#000000") rowlabel.axis.visible = False rowlabel.grid.grid_line_color = None rowlabel.outline_line_color = None column, column_id = zip(*coldict.items()) column_group = [] column_name = [] if all(s.count(":") for s in column): for s in column: cg, cn = s.split(":")[-2:] # only one-level grouping column_group.append(cg) column_name.append(cn) else: column_name = column collabel = figure(plot_width=heatmap.plot_width, plot_height=200, x_range=heatmap.x_range, y_range=(-1, 0), title=None, min_border_left=0, min_border_right=0, min_border_top=0, min_border_bottom=0, toolbar_location=None, webgl=True) #collabel.toolbar.logo = None collabel.text("column_id", -0.05, "column_name", source=ColumnDataSource(data=dict(column_name=column_name, column_id=column_id)), text_align="right", text_baseline="middle", text_font_size="10pt", text_color="#000000", angle=math.pi/3) collabel.axis.visible = False collabel.grid.grid_line_color = None collabel.outline_line_color = None col_dendro = hier.dendrogram(clm, no_plot=True) coldendro = figure(plot_width=heatmap.plot_width, plot_height=180, x_range=heatmap.x_range, title=None, min_border_left=0, min_border_right=0, min_border_top=0, min_border_bottom=0, toolbar_location=None, webgl=True) #coldendro.toolbar.logo = None col_height = 0.09 * (df.shape[0] * width) / (df.shape[1] * height) if column_group: coldendro.multi_line(list(np.asarray(col_dendro["icoord"])/10 - 0.5), list(np.asarray(col_dendro["dcoord"]) + col_height/2), line_color="#000000", line_width=1) groupdict = {} groupdict["column_id"] = column_id groupdict["column_group"] = column_group groupdf = pd.DataFrame(groupdict) groupdf = assign_cat_color(groupdf, "column_group", "Paired") coldendro.rect("column_id", 0, width=1, height=col_height, fill_color="color", line_color=None, source=ColumnDataSource(data=groupdf)) else: coldendro.multi_line(list(np.asarray(col_dendro["icoord"])/10 - 0.5), list(np.asarray(col_dendro["dcoord"])), line_color="#000000", line_width=1) coldendro.axis.visible = False coldendro.grid.grid_line_color = None coldendro.outline_line_color = None row_dendro = hier.dendrogram(rlm, orientation="left", no_plot=True) rowdendro = figure(plot_width=200, plot_height=heatmap.plot_height, y_range=heatmap.y_range, title=None, min_border_left=0, min_border_right=0, min_border_top=0, min_border_bottom=0, toolbar_location=None, webgl=True) #rowdendro.toolbar.logo = None if row_group: rowdendro.multi_line(list(np.asarray(row_dendro["dcoord"])*-1 - 0.15), list(np.asarray(row_dendro["icoord"])/10 - 0.5), line_color="#000000", line_width=1) groupdict = {} groupdict["row_id"] = row_id groupdict["row_group"] = row_group groupdf = pd.DataFrame(groupdict) groupdf = assign_cat_color(groupdf, "row_group", "Set3") rowdendro.rect(0, "row_id", width=0.3, height=1, fill_color="color", line_color=None, source=ColumnDataSource(data=groupdf)) else: rowdendro.multi_line(list(np.asarray(row_dendro["dcoord"])*-1), list(np.asarray(row_dendro["icoord"])/10 - 0.5), line_color="#000000", line_width=1) rowdendro.axis.visible = False rowdendro.grid.grid_line_color = None rowdendro.outline_line_color = None empty = figure(plot_width=rowdendro.plot_width, plot_height=coldendro.plot_height, title=None, toolbar_location=None) #empty.toolbar.logo = None # Plot a circle to escape NO_DATA_RENDERERS error empty.circle(x=0, y=0, color=None) empty.axis.visible = False empty.grid.grid_line_color = None empty.outline_line_color = None colorbar = figure(y_range=(-0.5, 0.5), x_axis_location="above", plot_width=rowdendro.plot_width, plot_height=coldendro.plot_height, title=None, min_border_top=0, min_border_bottom=0, min_border_left=0, min_border_right=0, toolbar_location=None) #colorbar.toolbar.logo = None width, colorbar_source = get_colorbar_source(tidy_df, "zscore", palette) colorbar.rect(x="value", y=0, fill_color="color", line_color=None, width=width, height=1, source=colorbar_source) colorbar.axis.axis_line_color = None colorbar.axis.major_tick_in = 0 colorbar.xaxis.axis_label = "z-score" colorbar.xaxis.axis_label_text_color = "#000000" colorbar.xaxis.axis_label_text_font_size = "12pt" colorbar.xaxis.major_label_text_color = "#000000" colorbar.xaxis.major_tick_line_color = "#000000" colorbar.yaxis.major_tick_line_color = None colorbar.yaxis.major_label_text_color = None colorbar.axis.minor_tick_line_color = None colorbar.grid.grid_line_color = None colorbar.outline_line_color = None output_file("{0}.bkheatmap.html".format(prefix), title="{0} Bokeh Heatmap".format(prefix)) save(gridplot([[colorbar, coldendro, None], [rowdendro, heatmap, rowlabel], [empty, collabel, None]])) def main(): parser = get_parser() args = parser.parse_args() prefix = os.path.splitext(os.path.basename(args.table))[0] df = pd.read_table(args.table, index_col=0) bkheatmap(df, prefix=prefix, scale=args.scale, metric=args.metric, method=args.method, width=args.width, height=args.height, palette=args.palette) if __name__ == "__main__": exit(main())
gpl-3.0
v0i0/lammps
python/examples/matplotlib_plot.py
22
2270
#!/usr/bin/env python -i # preceding line should have path for Python on your machine # matplotlib_plot.py # Purpose: plot Temp of running LAMMPS simulation via matplotlib # Syntax: plot.py in.lammps Nfreq Nsteps compute-ID # in.lammps = LAMMPS input script # Nfreq = plot data point every this many steps # Nsteps = run for this many steps # compute-ID = ID of compute that calculates temperature # (or any other scalar quantity) from __future__ import print_function import sys sys.path.append("./pizza") import matplotlib matplotlib.use('tkagg') import matplotlib.pyplot as plt # parse command line argv = sys.argv if len(argv) != 5: print("Syntax: plot.py in.lammps Nfreq Nsteps compute-ID") sys.exit() infile = sys.argv[1] nfreq = int(sys.argv[2]) nsteps = int(sys.argv[3]) compute = sys.argv[4] me = 0 # uncomment if running in parallel via Pypar #import pypar #me = pypar.rank() #nprocs = pypar.size() from lammps import lammps lmp = lammps() # run infile all at once # assumed to have no run command in it lmp.file(infile) lmp.command("thermo %d" % nfreq) # initial 0-step run to generate initial 1-point plot lmp.command("run 0 pre yes post no") value = lmp.extract_compute(compute,0,0) ntimestep = 0 xaxis = [ntimestep] yaxis = [value] # create matplotlib plot # just proc 0 handles plotting if me == 0: fig = plt.figure() line, = plt.plot(xaxis, yaxis) plt.xlim([0, nsteps]) plt.title(compute) plt.xlabel("Timestep") plt.ylabel("Temperature") plt.show(block=False) # run nfreq steps at a time w/out pre/post, query compute, refresh plot import time while ntimestep < nsteps: lmp.command("run %d pre no post no" % nfreq) ntimestep += nfreq value = lmp.extract_compute(compute,0,0) xaxis.append(ntimestep) yaxis.append(value) if me == 0: line.set_xdata(xaxis) line.set_ydata(yaxis) ax = plt.gca() ax.relim() ax.autoscale_view(True, True, True) fig.canvas.draw() lmp.command("run 0 pre no post yes") # uncomment if running in parallel via Pypar #print("Proc %d out of %d procs has" % (me,nprocs), lmp) #pypar.finalize() if sys.version_info[0] == 3: input("Press Enter to exit...") else: raw_input("Press Enter to exit...")
gpl-2.0
kapteyn-astro/kapteyn
doc/source/EXAMPLES/allsky.py
1
50612
from kapteyn import maputils, tabarray import numpy import sys from matplotlib import pyplot as plt __version__ = '1.91' epsilon = 0.0000000001 def radians(a): return a*numpy.pi/180.0 def degrees(a): return a*180.0/numpy.pi def cylrange(): X = numpy.arange(0,400.0,30.0); # Replace last two (dummy) values by two values around 180 degrees X[-1] = 180.0 - epsilon X[-2] = 180.0 + epsilon return X def polrange(): X = numpy.arange(0,380.0,15); # Replace last two (dummy) values by two values around 180 degrees X[-1] = 180.0 - epsilon X[-2] = 180.0 + epsilon return X def getperimeter(grat): # Calculate perimeter of QUAD projection xlo, y = grat.gmap.topixel((-45.0-epsilon, 0.0)) xhi, y = grat.gmap.topixel((315+epsilon, 0.0)) x, ylo = grat.gmap.topixel((180, -45)) x, yhi = grat.gmap.topixel((180, 45)) x1, y = grat.gmap.topixel((45-epsilon, 0.0)) x, ylolo = grat.gmap.topixel((0, -135+epsilon)) x, yhihi = grat.gmap.topixel((0, 135-epsilon)) perimeter = [(xlo,ylo), (x1,ylo), (x1,ylolo), (xhi,ylolo), (xhi,yhihi), (x1,yhihi), (x1,yhi), (xlo,yhi), (xlo,ylo)] return perimeter def plotcoast(fn, frame, grat, col='k', lim=100, decim=5, plotsym=None, sign=1.0): coasts = tabarray.tabarray(fn, comchar='s') # Read two columns from file for segment in coasts.segments: coastseg = coasts[segment].T xw = sign * coastseg[1]; yw = coastseg[0] # First one appears to be Latitude xs = xw; ys = yw # Reset lists which store valid pos. if 1: # Mask arrays if outside plot box xp, yp = grat.gmap.topixel((numpy.array(xs),numpy.array(ys))) # Be sure you understand # the operator precedence: (a > 2) | (a < 5) is the proper syntax # because a > 2 | a < 5 will result in an error due to the fact # that 2 | a is evaluated first. xp = numpy.ma.masked_where(numpy.isnan(xp) | (xp > grat.pxlim[1]) | (xp < grat.pxlim[0]), xp) yp = numpy.ma.masked_where(numpy.isnan(yp) | (yp > grat.pylim[1]) | (yp < grat.pylim[0]), yp) # Mask array could be of type numpy.bool_ instead of numpy.ndarray if numpy.isscalar(xp.mask): xp.mask = numpy.array(xp.mask, 'bool') if numpy.isscalar(yp.mask): yp.mask = numpy.array(yp.mask, 'bool') # Count the number of positions in this list that are inside the box xdc = []; ydc = [] for i in range(len(xp)): if not xp.mask[i] and not yp.mask[i]: if not i%decim: xdc.append(xp.data[i]) ydc.append(yp.data[i]) if len(xdc) >= lim: if plotsym == None: frame.plot(xdc, ydc, color=col) else: frame.plot(xdc, ydc, '.', markersize=1, color=col) def plotfig(fignum, smallversion=False): # Set defaults pixel = None markerpos = None border = None title = '' titlepos = 1.02 dec0 = 89.9999999999 lat_constval = None lon_constval = None perimeter = None lon_world = list(range(0,360,30)) lat_world = [-dec0, -60, -30, 30, 60, dec0] deltapx = deltapy = 0.0 annotatekwargs0 = {'color':'r'} annotatekwargs1 = {'color':'b'} plotdata = False fsize = 11 figsize = (7,6) datasign = -1 addangle0 = addangle1 = 0.0 drawgrid = False oblique = None framebackgroundcolor = None grat = None # Just initialize ilabs1 = ilabs2 = None fig = plt.figure(figsize=figsize) frame = fig.add_axes((0.1,0.05,0.8,0.85)) if fignum == 1: # Fig 2 in celestial article (Calabretta et al) shows a positive cdelt1 title = r"""Plate Carree projection (CAR), non oblique with: $(\alpha_0,\delta_0,\phi_p) = (120^\circ,0^\circ,0^\circ)$. (Cal. fig.2)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---CAR', 'CRVAL1' : 120.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : 5.0, 'CTYPE2' : 'DEC--CAR', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, 'LONPOLE' : 0.0, } X = numpy.arange(0,380.0,30.0); Y = numpy.arange(-90,100,30.0) # i.e. include +90 also f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(header, axnum=(1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) #pixel = grat.gmap.topixel((120.0,60)) markerpos = "120 deg 60 deg" header['CRVAL1'] = 0.0 border = annim.Graticule(header, axnum=(1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=(180-epsilon,-180+epsilon, 0), starty=(-90,0,90)) lat_world = lon_world = None elif fignum == 2: title = r"""Plate Carree projection (CAR), oblique with: $(\alpha_0,\delta_0,\phi_p) = (120^\circ,0^\circ,0^\circ)$ and obviously cdelt1 $>$ 0. (Cal. fig. 2)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---CAR', 'CRVAL1' : 120.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : 5.0, 'CTYPE2' : 'DEC--CAR', 'CRVAL2' : 60.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, 'LONPOLE' : 0.0, } X = numpy.arange(0,360.0,30.0); Y = numpy.arange(-90,100,30.0) # i.e. include +90 also f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) markerpos = "120 deg 60 deg" # Get the non-oblique version for the border header['CRVAL1'] = 0.0 header['CRVAL2'] = 0.0 border = annim.Graticule(header, axnum= (1,2), boxsamples=10000, wylim=(-90,90.0), wxlim=(-180,180), startx=(180-epsilon,-180+epsilon), starty=(-90,90)) lat_world = lon_world = None elif fignum == 3: mu = 2.0; gamma = 30.0 title = r"""Slant zenithal (azimuthal) perspective projection (AZP) with: $\gamma=30$ and $\mu=2$ (Cal. fig.6)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---AZP', 'CRVAL1' :0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--AZP', 'CRVAL2' : dec0, 'CRPIX2' : 30, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'PV2_1' : mu, 'PV2_2' : gamma, } lowval = (180.0/numpy.pi)*numpy.arcsin(-1.0/mu) + 0.00001 # Calabretta eq.32 X = numpy.arange(0,360,15.0) Y = numpy.arange(-30,90,15.0); Y[0] = lowval # Add lowest possible Y to array f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum=(1,2), wylim=(lowval,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs0(0, lw=2) grat.setp_lineswcs1(0, lw=2) grat.setp_lineswcs1(lowval, lw=2, color='g') lat_world = [0, 30, 60, 90] elif fignum == 4: mu = 2.0; phi = 180.0; theta = 60 title = r"""Slant zenithal perspective (SZP) with: ($\mu,\phi,\theta)=(2,180,60)$ with special algorithm for border (Cal. fig.7)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---SZP', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--SZP', 'CRVAL2' : dec0, 'CRPIX2' : 20, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'PV2_1' : mu, 'PV2_2' : phi, 'PV2_3' : theta, } X = numpy.arange(0,360.0,30.0) Y = numpy.arange(-90,90,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum=(1,2), wylim=(-90.0,90.0), wxlim=(-180,180), startx=X, starty=Y) # PROBLEM: markerpos = "180 deg -30 deg" grat.setp_lineswcs0(0, lw=2) grat.setp_lineswcs1(0, lw=2) # grat.setp_tick(plotaxis=wcsgrat.top, rotation=30, ha='left') titlepos = 1.01 # Special care for the boundary # The algorithm seems to work but is not very accurate xp = -mu * numpy.cos(theta*numpy.pi/180.0)* numpy.sin(phi*numpy.pi/180.0) yp = mu * numpy.cos(theta*numpy.pi/180.0)* numpy.cos(phi*numpy.pi/180.0) zp = mu * numpy.sin(theta*numpy.pi/180.0) + 1.0 a = numpy.linspace(0.0,360.0,500) arad = a*numpy.pi/180.0 rho = zp - 1.0 sigma = xp*numpy.sin(arad) - yp*numpy.cos(arad) s = numpy.sqrt(rho*rho+sigma*sigma) omega = numpy.arcsin(1/s) psi = numpy.arctan2(sigma,rho) thetaxrad = psi - omega thetax = thetaxrad * 180.0/numpy.pi + 5 g = grat.addgratline(a, thetax, pixels=False) grat.setp_linespecial(g, lw=2, color='c') # Select two starting points for a scan in pixel to find borders g2 = grat.scanborder(68.26,13,3,3) g3 = grat.scanborder(30,66.3,3,3) grat.setp_linespecial(g2, color='r', lw=1) grat.setp_linespecial(g3, color='r', lw=1) elif fignum == 5: title = r"Gnomonic projection (TAN) diverges at $\theta=0$. (Cal. fig.8)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---TAN', 'CRVAL1' :0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--TAN', 'CRVAL2' : dec0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, } X = numpy.arange(0,360.0,15.0) #Y = numpy.arange(0,90,15.0) Y = [20, 30,45, 60, 75, 90] f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(20.0,90.0), wxlim=(0,360), startx=X, starty=Y) lat_constval = 20 lat_world = [20, 30, 60, dec0] grat.setp_lineswcs1(20, color='g', linestyle='--') elif fignum == 6: title = r"Stereographic projection (STG) diverges at $\theta=-90$. (Cal. fig.9)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---STG', 'CRVAL1' :0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -12.0, 'CTYPE2' : 'DEC--STG', 'CRVAL2' : dec0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 12.0, } X = numpy.arange(0,360.0,30.0) Y = numpy.arange(-60,90,10.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-60,90.0), wxlim=(0,360), startx=X, starty=Y) lat_constval = -62 lat_world = list(range(-50, 10, 10)) elif fignum == 7: title = r"Slant orthograpic projection (SIN) with: $\xi=\frac{-1}{\sqrt{6}}$ and $\eta=\frac{1}{\sqrt{6}}$ (Cal. fig.10b)" xi = -1/numpy.sqrt(6); eta = 1/numpy.sqrt(6) header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---SIN', 'CRVAL1' :0.0, 'CRPIX1' : 40, 'CUNIT1' : 'deg', 'CDELT1' : -2, 'CTYPE2' : 'DEC--SIN', 'CRVAL2' : dec0, 'CRPIX2' : 30, 'CUNIT2' : 'deg', 'CDELT2' : 2, 'PV2_1' : xi, 'PV2_2' : eta } X = numpy.arange(0,360.0,30.0) Y = numpy.arange(-90,90,10.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) # Special care for the boundary (algorithm from Calabretta et al) a = numpy.linspace(0,360,500) arad = a*numpy.pi/180.0 thetaxrad = -numpy.arctan(xi*numpy.sin(arad)-eta*numpy.cos(arad)) thetax = thetaxrad * 180.0/numpy.pi + 0.000001 # Little shift to avoid NaN's at border g = grat.addgratline(a, thetax, pixels=False) grat.setp_linespecial(g, color='g', lw=1) lat_constval = 50 lon_constval = 180 lat_world = [0,30,60,dec0] elif fignum == 8: title = r"Zenithal equidistant projection (ARC). (Cal. fig.11)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---ARC', 'CRVAL1' :0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--ARC', 'CRVAL2' : dec0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0 } X = numpy.arange(0,360.0,30.0) Y = numpy.arange(-90,90,30.0) Y[0]= -89.999999 # Graticule for -90 exactly is not plotted #lat_world = range(-80,80,20) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) elif fignum == 9: title = r"""Zenithal polynomial projection (ZPN) with PV2_n parameters 0 to 7. (Cal. fig.12)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---ZPN', 'CRVAL1' :0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--ZPN', 'CRVAL2' : dec0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, 'PV2_0' : 0.05, 'PV2_1' : 0.975, 'PV2_2' : -0.807, 'PV2_3' : 0.337, 'PV2_4' : -0.065, 'PV2_5' : 0.01, 'PV2_6' : 0.003,' PV2_7' : -0.001 } X = numpy.arange(0,360.0,30.0) #Y = numpy.arange(-70,90,30.0) # Diverges (this depends on selected parameters) Y = [-70, -60, -45, -30, 0, 15, 30, 45, 60, 90] f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-70,90.0), wxlim=(0,360), startx=X, starty=Y) # Configure annotations lat_constval = -72 lat_world = [-60, -30, 0, 60, dec0] addangle0 = 90.0 annotatekwargs1.update({'ha':'left'}) elif fignum == 10: title = r"Zenith equal area projection (ZEA). (Cal. fig.13)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---ZEA', 'CRVAL1' :0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -3.0, 'CTYPE2' : 'DEC--ZEA', 'CRVAL2' : dec0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 3.0 } X = numpy.arange(0,360.0,30.0) Y = numpy.arange(-90,90,30.0) Y[0]= -dec0+0.00000001 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs1(position=0, color='g', lw=2) # Set attributes for graticule line at lat = 0 lat_world = [-dec0, -30, 30, 60] elif fignum == 11: title = r"Airy projection (AIR) with $\theta_b = 45^\circ$. (Cal. fig.14)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---AIR', 'CRVAL1' :0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--AIR', 'CRVAL2' : dec0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0 } X = numpy.arange(0,360.0,30.0) Y = numpy.arange(-30,90,10.0) # Diverges at dec = -90, start at dec = -30 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-30, -20, -10, 10, 40, 70] # CYLINDRICALS elif fignum == 12: title = r"Gall's stereographic projection (CYP) with $\mu = 1$ and $\theta_x = 45^\circ$. (Cal. fig.16)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---CYP', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -3.5, 'CTYPE2' : 'DEC--CYP', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 3.5, 'PV2_1' : 1, 'PV2_2' : numpy.sqrt(2.0)/2.0 } X = cylrange() Y = numpy.arange(-90,100,30.0) # i.e. include +90 also f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-90, -60,-30, 30, 60, dec0] lon_world = list(range(0,360,30)) lon_world.append(180+epsilon) annotatekwargs0.update({'va':'bottom', 'ha':'right'}) elif fignum == 13: title = r"Lambert's equal area projection (CEA) with $\lambda = 1$. (Cal. fig.17)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---CEA', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--CEA', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, 'PV2_1' : 1 } X = cylrange() Y = numpy.arange(-90,100,30.0) # i.e. include +90 also f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-60,-30, 30, 60] lon_world = list(range(0,360,30)) lon_world.append(180.00000001) elif fignum == 14: title = "Plate Carree projection (CAR). (Cal. fig.18)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---CAR', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--CAR', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, } X = cylrange() Y = numpy.arange(-90,100,30.0) # i.e. include +90 also f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-90, -60,-30, 30, 60, dec0] lon_world = list(range(0,360,30)) lon_world.append(180.00000001) elif fignum == 15: title = "Mercator's projection (MER). (Cal. fig.19)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---MER', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--MER', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, } X = cylrange() Y = numpy.arange(-80,90,10.0) # Diverges at +-90 so exclude these values f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(header, axnum= (1,2), wylim=(-80,80.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-90, -60,-30, 30, 60, dec0] lon_world = list(range(0,360,30)) lon_world.append(180+epsilon) grat.setp_lineswcs1((-80,80), linestyle='--', color='g') elif fignum == 16: title = "Sanson-Flamsteed projection (SFL). (Cal. fig.20)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---SFL', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--SFL', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, } X = cylrange() Y = numpy.arange(-90,100,30.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-dec0, -60,-30, 30, 60, dec0] lon_world = list(range(0,360,30)) lon_world.append(180+epsilon) elif fignum == 17: title = "Parabolic projection (PAR). (Cal. fig.21)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---PAR', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--PAR', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, } X = cylrange() Y = numpy.arange(-90,100,30.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-dec0, -60,-30, 30, 60, dec0] lon_world = list(range(0,360,30)) lon_world.append(180+epsilon) elif fignum == 18: title= "Mollweide's projection (MOL). (Cal. fig.22)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---MOL', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--MOL', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, } X = cylrange() Y = numpy.arange(-90,100,30.0) # Diverges at +-90 so exclude these values f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-60,-30, 30, 60] lon_world = list(range(0,360,30)) lon_world.append(180+epsilon) elif fignum == 19: title = "Hammer Aitoff projection (AIT). (Cal. fig.23)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---AIT', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--AIT', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, } X = cylrange() Y = numpy.arange(-90,100,30.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lat_world = [-dec0, -60,-30, 30, 60, dec0] lon_world = list(range(0,360,30)) lon_world.append(180+epsilon) # CONIC PROJECTIONS elif fignum == 20: theta_a = 45 t1 = 20.0; t2 = 70.0 eta = abs(t1-t2)/2.0 title = r"""Conic perspective projection (COP) with: $\theta_a=45^\circ$, $\theta_1=20^\circ$ and $\theta_2=70^\circ$. (Cal. fig.24)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---COP', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.5, 'CTYPE2' : 'DEC--COP', 'CRVAL2' : theta_a, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.5, 'PV2_1' : theta_a, 'PV2_2' : eta } X = numpy.arange(0,370.0,30.0); X[-1] = 180+epsilon Y = numpy.arange(-30,90,15.0) # Diverges at theta_a +- 90.0 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs1(-30, linestyle='--', color='g') lon_world.append(180+epsilon) elif fignum == 21: theta_a = -45 t1 = -20.0; t2 = -70.0 eta = abs(t1-t2)/2.0 title = r"""Conic equal area projection (COE) with: $\theta_a=-45$, $\theta_1=-20$ and $\theta_2=-70$. (Cal. fig.25)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---COE', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--COE', 'CRVAL2' : theta_a, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'PV2_1' : theta_a, 'PV2_2' : eta } X = cylrange() Y = numpy.arange(-90,91,30.0); Y[-1] = dec0 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lon_world.append(180+epsilon) lat_constval = 5 lat_world = [-60,-30,0,30,60] addangle0 = -90.0 elif fignum == 22: theta_a = 45 t1 = 20.0; t2 = 70.0 eta = abs(t1-t2)/2.0 title = r"""Conic equidistant projection (COD) with: $\theta_a=45$, $\theta_1=20$ and $\theta_2=70$. (Cal. fig.26)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---COD', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--COD', 'CRVAL2' : theta_a, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, 'PV2_1' : theta_a, 'PV2_2' : eta } X = cylrange() Y = numpy.arange(-90,91,15) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lon_world.append(180.0+epsilon) elif fignum == 23: theta_a = 45 t1 = 20.0; t2 = 70.0 eta = abs(t1-t2)/2.0 title = r"""Conic orthomorfic projection (COO) with: $\theta_a=45$, $\theta_1=20$ and $\theta2=70$. (Cal. fig.27)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---COO', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--COO', 'CRVAL2' : theta_a, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'PV2_1' : theta_a, 'PV2_2' : eta } X = cylrange() Y = numpy.arange(-30,90,30.0) # Diverges at theta_a= -90.0 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs1(-30, linestyle='--', color='g') lon_world.append(180.0+epsilon) # POLYCONIC AND PSEUDOCONIC elif fignum == 24: theta1 = 45 title = r"Bonne's equal area projection (BON) with $\theta_1=45$. (Cal. fig.28)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---BON', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--BON', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'PV2_1' : theta1 } X = polrange() Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lon_world.append(180+epsilon) elif fignum == 25: title = r"Polyconic projection (PCO). (Cal. fig.29)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---PCO', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--PCO', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0 } X = polrange() Y = numpy.arange(-90,100,15.0) # !!!!!! Let the world coordinates for constant latitude run from 180,180 # instead of 0,360. Then one prevents the connection between the two points # 179.9999 and 180.0001 which is a jump, but smaller than the definition of # a rejected jump in the wcsgrat module. # Also we need to increase the value of 'gridsamples' to # increase the relative size of a jump. f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=X, starty=Y, gridsamples=2000) lon_world.append(180+epsilon) # QUAD CUBE PROJECTIONS elif fignum == 26: title = r"Tangential spherical cube projection (TSC). (Cal. fig.30)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---TSC', 'CRVAL1' : 0.0, 'CRPIX1' : 85, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--TSC', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0 } X = numpy.arange(0,370.0,15.0) Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=X, starty=Y) # Make a polygon for the border perimeter = getperimeter(grat) elif fignum == 27: title = r"COBE quadrilateralized spherical cube projection (CSC). (Cal. fig.31)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---CSC', 'CRVAL1' : 0.0, 'CRPIX1' : 85, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--CSC', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0 } X = numpy.arange(0,370.0,15.0) Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=X, starty=Y) perimeter = getperimeter(grat) elif fignum == 28: title = r"Quadrilateralized spherical cube projection (QSC). (Cal. fig.32)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---QSC', 'CRVAL1' : 0.0, 'CRPIX1' : 85, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--QSC', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, } X = numpy.arange(-180,180,15) Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) perimeter = getperimeter(grat) deltapx = 1 plotdata = True elif fignum == 280: title = r"Quadrilateralized spherical cube projection (QSC). (Cal. fig.32)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---QSC', 'CRVAL1' : 0.0, 'CRPIX1' : 85, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--QSC', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, } X = numpy.arange(-180,180,15) Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) lon_world = list(range(0,360,30)) lat_world = [-90, -60, -30, 30, 60, dec0] perimeter = getperimeter(grat) deltapx = 1 plotdata = True elif fignum == 270: title = r"Quadrilateralized spherical cube projection (QSC). (Cal. fig.32)" header = {'NAXIS' : 3, 'NAXIS1': 100, 'NAXIS2': 80, 'NAXIS3' : 6, 'CTYPE1' : 'RA---QSC', 'CRVAL1' : 0.0, 'CRPIX1' : 85, 'CUNIT1' : 'deg', 'CDELT1' : -7.0, 'CTYPE2' : 'DEC--QSC', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 7.0, 'CTYPE3' : 'CUBEFACE', 'CRVAL3' : 0, 'CRPIX3' : 2,'CDELT3' : 90, 'CUNIT3' : 'deg', } X = numpy.arange(0,370.0,15.0) Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=X, starty=Y) lon_world = list(range(-180,180,30)) lat_world = [-90, -60, -30, 30, 60, dec0] perimeter = getperimeter(grat) elif fignum == 29: title = r"""Zenith equal area projection (ZEA) oblique with: $\alpha_p=0$, $\delta_p=30$ and $\phi_p=180$. (Cal. fig.33a)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---ZEA', 'CRVAL1' :0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -3.5, 'CTYPE2' : 'DEC--ZEA', 'CRVAL2' : 30.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 3.5, } X = numpy.arange(0,360,15.0) Y = numpy.arange(-90,90,15.0) Y[0]= -dec0 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) elif fignum == 30: title = r"""Zenith equal area projection (ZEA) oblique with: $\alpha_p=45$, $\delta_p=30$ and $\phi_p=180$. (Cal. fig.33b)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---ZEA', 'CRVAL1' :45.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -3.5, 'CTYPE2' : 'DEC--ZEA', 'CRVAL2' : 30.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 3.5 } X = numpy.arange(0,360.0,15.0) Y = numpy.arange(-90,90,15.0) Y[0]= -dec0 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs0((0,180), color='g', lw=2) elif fignum == 31: title = r"""Zenith equal area projection (ZEA) oblique with: $\alpha_p=0$, $\theta_p=30$ and $\phi_p = 150$. (Cal. fig.33c)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---ZEA', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -3.5, 'CTYPE2' : 'DEC--ZEA', 'CRVAL2' : 30.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 3.5, 'PV1_3' : 150.0 # Works only with patched wcslib 4.3 } X = numpy.arange(0,360.0,15.0) Y = numpy.arange(-90,90,15.0) Y[0]= -dec0 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs0((0,180), color='g', lw=2) elif fignum == 32: title = r"""Zenith equal area projection (ZEA) oblique with: $\alpha_p=0$, $\theta_p=30$ and $\phi_p = 75$ (Cal. fig.33d)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---ZEA', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -3.5, 'CTYPE2' : 'DEC--ZEA', 'CRVAL2' : 30.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 3.5, 'PV1_3' : 75.0 } X = numpy.arange(0,360.0,15.0) Y = numpy.arange(-90,90,15.0) Y[0]= -dec0 f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs0((0,180), color='g', lw=2) elif fignum == 33: theta_a = 45.0 t1 = 20.0; t2 = 70.0 eta = abs(t1-t2)/2.0 title = r"""Conic equidistant projection (COD) oblique with $\theta_a=45$, $\theta_1=20$ and $\theta_2=70$, $\alpha_p = 0$, $\delta_p = 30$, $\phi_p = 75$ also: $(\phi_0,\theta_0) = (0,90^\circ)$. (Cal. fig.33d)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---COD', 'CRVAL1' : 0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--COD', 'CRVAL2' : 30, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0, 'PV2_1' : theta_a, 'PV2_2' : eta, 'PV1_1' : 0.0, 'PV1_2' : 90.0, # IMPORTANT. This is a setting from section 7.1, p 1103 'LONPOLE' :75.0 } X = numpy.arange(0,370.0,15.0); X[-1] = 180.000001 Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) # Draw border with standard graticule header['CRVAL1'] = 0.0 header['CRVAL2'] = theta_a header['LONPOLE'] = 0.0 del header['PV1_1'] del header['PV1_2'] # Non oblique version as border border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=(180-epsilon, -180+epsilon), starty=(-90,90)) border.setp_lineswcs0(color='g') # Show borders in different color border.setp_lineswcs1(color='g') elif fignum == 34: title = r"""Hammer Aitoff projection (AIT) oblique with: $(\alpha_p,\delta_p) = (0^\circ,30^\circ)$, $\phi_p = 75^\circ$ also: $(\phi_0,\theta_0) = (0^\circ,90^\circ)$. (Cal. fig.34d)""" # Header works only with a patched wcslib 4.3 header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---AIT', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--AIT', 'CRVAL2' : 30.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'LONPOLE' :75.0, 'PV1_1' : 0.0, 'PV1_2' : 90.0, # IMPORTANT. This is a setting from Cal.section 7.1, p 1103 } X = numpy.arange(0,390.0,15.0); Y = numpy.arange(-90,100,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) # Draw border with standard graticule header['CRVAL1'] = 0.0 header['CRVAL2'] = 0.0 del header['PV1_1'] del header['PV1_2'] header['LONPOLE'] = 0.0 header['LATPOLE'] = 0.0 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=(180-epsilon, -180+epsilon), skipy=True) border.setp_lineswcs0(color='g') # Show borders in different color border.setp_lineswcs1(color='g') elif fignum == 35: title = r"""COBE quadrilateralized spherical cube projection (CSC) oblique with: $(\alpha_p,\delta_p) = (0^\circ,30^\circ)$, $\phi_p = 75^\circ$ also: $(\phi_0,\theta_0) = (0^\circ,90^\circ)$. (Cal. fig.34d)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---CSC', 'CRVAL1' : 0.0, 'CRPIX1' : 85, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--CSC', 'CRVAL2' : 30.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'LONPOLE': 75.0, 'PV1_1' : 0.0, 'PV1_2' : 90.0, } X = numpy.arange(0,370.0,30.0) Y = numpy.arange(-90,100,30.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=X, starty=Y) # Take border from non-oblique version header['CRVAL2'] = 0.0 del header['PV1_1'] del header['PV1_2'] del header['LONPOLE'] border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), skipx=True, skipy=True) perimeter = getperimeter(border) elif fignum == 36: title = 'Earth in zenithal perspective (AZP). (Cal. fig.36)' # The ctype's are TLON, TLAT. These are recognized by WCSlib as longitude and latitude. # Any other prefix is also valid. header = {'NAXIS' : 2, 'NAXIS1': 2048, 'NAXIS2': 2048, 'PC1_1' : 0.9422, 'PC1_2' : -0.3350, 'PC2_1' : 0.3350, 'PC2_2' : 0.9422, 'CTYPE1' : 'TLON-AZP', 'CRVAL1' : 31.15, 'CRPIX1' : 681.67, 'CUNIT1' : 'deg', 'CDELT1' : 0.008542, 'CTYPE2' : 'TLAT-AZP', 'CRVAL2' : 30.03, 'CRPIX2' : 60.12, 'CUNIT2' : 'deg', 'CDELT2' : 0.008542, 'PV2_1' : -1.350, 'PV2_2' : 25.8458, 'LONPOLE' : 143.3748, } X = numpy.arange(-30,60.0,10.0) Y = numpy.arange(-40,65,10.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-30,90.0), wxlim=(-20,60), startx=X, starty=Y, gridsamples=4000) grat.setp_lineswcs1(color='#B30000') grat.setp_lineswcs0(color='#B30000') grat.setp_lineswcs0(0, color='r', lw=2) grat.setp_plotaxis('bottom', mode='all_ticks', label='Latitude / Longitude') grat.setp_plotaxis('left', mode='switched_ticks', label='Latitude') grat.setp_plotaxis('right', mode='native_ticks') grat.setp_tick(wcsaxis=0, color='g') grat.setp_tick(wcsaxis=1, color='m') grat.setp_tick(wcsaxis=1, plotaxis=('bottom','right'), color='m', rotation=-30, ha='left') #grat.setp_tick(plotaxis=wcsgrat.right, backgroundcolor='yellow') grat.setp_tick(plotaxis='left', position=-10, visible=False) g = grat.scanborder(560, 1962, 2) grat.setp_linespecial(g, color='b', lw=2) lat_world = lon_world = [] drawgrid = True plotdata = True datasign = +1 # Proof that WCSlib thinks TLON, TLAT are valid longitudes & latitudes print("TLON and TLAT are recognized as:", grat.gmap.types) elif fignum == 37: title = 'WCS polyconic (PGSBOX fig.1)' rot = 30.0 *numpy.pi/180.0 header = {'NAXIS' : 2, 'NAXIS1': 512, 'NAXIS2': 512, 'CTYPE1' : 'RA---PCO', 'PC1_1' : numpy.cos(rot), 'PC1_2' : numpy.sin(rot), 'PC2_1' : -numpy.sin(rot), 'PC2_2' : numpy.cos(rot), 'CRVAL1' : 332.0, 'CRPIX1' : 192, 'CUNIT1' : 'deg', 'CDELT1' : -1.0/5.0, 'CTYPE2' : 'DEC--PCO', 'CRVAL2' : 40.0, 'CRPIX2' : 640, 'CUNIT2' : 'deg', 'CDELT2' : 1.0/5.0, 'LONPOLE' : -30.0, } X = numpy.arange(-180,180.0,15.0); Y = numpy.arange(-90,120,15.0) # Here we demonstrate how to avoid a jump at the right corner boundary # of the plot by increasing the value of 'gridsamples'. f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=X, starty=Y, gridsamples=4000) grat.setp_tick(position=(-15.0,-45.0, -60.0,-75.0), visible=False) deltapx = 3 header['CRVAL1'] = 0.0 header['CRVAL2'] = 0.0 header['LONPOLE'] = 999 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=(180-epsilon, -180+epsilon), starty=(-90,90)) border.setp_gratline((0,1), color='g', lw=2) border.setp_plotaxis((0,1,2,3), mode='no_ticks', visible=False) elif fignum == 38: theta_a = 60.0; eta = 15.0 title = r"WCS conic equal area projection with $\theta_a=60$ and $\eta=15$ (Cal. PGSBOX fig.2)" header = {'NAXIS' : 2, 'NAXIS1': 512, 'NAXIS2': 512, 'CTYPE1' : 'RA---COE', 'CRVAL1' : 90.0, 'CRPIX1' : 256, 'CUNIT1' : 'deg', 'CDELT1' : -1.0/3.0, 'CTYPE2' : 'DEC--COE', 'CRVAL2' : 30.0, 'CRPIX2' : 256, 'CUNIT2' : 'deg', 'CDELT2' : 1.0/3.0, 'LONPOLE' : 150.0, 'PV2_1' : theta_a, 'PV2_2' : eta } X = numpy.arange(0,390.0,30.0); Y = numpy.arange(-90,120,30.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs0(color='r') grat.setp_lineswcs1(color='b') grat.setp_tick(plotaxis=1, position=(150.0,210.0), visible=False) deltapx = 10 # Draw border with standard graticule header['CRVAL1'] = 0.0; header['CRVAL2'] = 60.0 header['LONPOLE'] = 999 header['LATPOLE'] = 999 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=(180-epsilon, -180+epsilon), starty=(-90,90)) border.setp_gratline((0,1), color='g', lw=2) border.setp_plotaxis((0,1,2,3), mode='no_ticks', visible=False) framebackgroundcolor = 'k' # i.e. black annotatekwargs0.update({'color':'w'}) annotatekwargs1.update({'color':'w'}) elif fignum == 39: theta1 = 35 title = r"""Bonne's equal area projection (BON) with conformal latitude $\theta_1=35$ and $\alpha_p=0^\circ$, $\theta_p=+45^\circ$ and N.C.P. at $(45^\circ,0^\circ)$. (Cal. PGSBOX example)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---BON', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--BON', 'CRVAL2' : 0.0, 'CRPIX2' : 35, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'PV2_1' : theta1 } X = polrange() Y = numpy.arange(-90.0,100.0,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) annotatekwargs0.update({'visible':False}) annotatekwargs1.update({'visible':False}) grat.setp_lineswcs0(color='#339333') # Dark green grat.setp_lineswcs1(color='#339333') header['LONPOLE'] = 45.0 # Or PV1_3 header['CRVAL1'] = 0.0 header['CRVAL2'] = 45.0 oblique = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) oblique.setp_lineswcs0(0.0, color='y') oblique.setp_lineswcs1(0.0, color='y') oblique.setp_lineswcs0(list(range(15,360,45)), color='b') oblique.setp_lineswcs1([15,-15,60, -60], color='b') oblique.setp_lineswcs0(list(range(30,360,45)), color='r') oblique.setp_lineswcs1([30,-30,75, -75], color='r') oblique.setp_lineswcs0(list(range(45,360,45)), color='w') oblique.setp_lineswcs1((-45,45), color='w') framebackgroundcolor = 'k' if not smallversion: txt ="""Green: Native, non-oblique graticule. Yellow: Equator and prime meridian Others: Colour coded oblique graticule""" plt.figtext(0.1, 0.008, txt, fontsize=10) #------------------------------------ Settings ---------------------------------------- # Apply some extra settings if framebackgroundcolor != None: frame.set_axis_bgcolor(framebackgroundcolor) # Plot coastlines if required if plotdata: if fignum == 36: plotcoast('WDB/world.txt', frame, grat, col='k', lim=100) else: plotcoast('WDB/world.txt', frame, grat, col='r', lim=50, decim=20, plotsym=',', sign=-1) # Plot alternative borders if perimeter != None: p = plt.Polygon(perimeter, facecolor='#d6eaef', lw=2) frame.add_patch(p) Xp, Yp = list(zip(*perimeter)) frame.plot(Xp, Yp, color='r') # Plot labels inside graticule if required annotatekwargs0.update({'fontsize':fsize}) annotatekwargs1.update({'fontsize':fsize}) ilabs1 = grat.Insidelabels(wcsaxis=0, world=lon_world, constval=lat_constval, deltapx=deltapx, deltapy=deltapy, addangle=addangle0, fmt="$%g$", **annotatekwargs0) ilabs2 = grat.Insidelabels(wcsaxis=1, world=lat_world, constval=lon_constval, deltapx=deltapx, deltapy=deltapy, addangle=addangle1, fmt="$%g$", **annotatekwargs1) # Plot just 1 pixel c.q. marker if markerpos != None: annim.Marker(pos=markerpos, marker='o', color='red' ) if drawgrid: pixellabels = annim.Pixellabels(plotaxis=(2,3)) # Plot the title if smallversion: t = frame.set_title(title, color='g', fontsize=10) else: t = frame.set_title(title, color='g', fontsize=13, linespacing=1.5) t.set_y(titlepos) #gratplot.plot() annim.plot() annim.interact_toolbarinfo() if smallversion: fn = "allsky-fig%d_small.png"%fignum else: fn = "allsky-fig%d.png"%fignum plt.show() if __name__ == "__main__": # Process command line arguments. First is number of the all sky plot, # second argument can be any character and sets the figure format to small. # # Usage: # python plotwcs.py [<figure number> <s>] # e.g.: # python plotwcs.py # You will be prompted for a figure number # python plotwcs.py 23 # Figure 23 # python plotwcs.py 23 s # Figure 23 small version # smallversion = False if len(sys.argv) > 1: fignum = int(sys.argv[1]) if len(sys.argv) > 2: figsize = (5.0,5.0) smallversion = True fsize = 8 if fignum == None: print("enter number of figures", file=sys.stderr) #fignum = eval(input("Enter number of figure: ")) plotfig(fignum, smallversion)
bsd-3-clause
fzalkow/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
RJT1990/pyflux
pyflux/arma/tests/test_arimax_inference.py
1
5827
import numpy as np import pandas as pd from pyflux.arma import ARIMAX # Set up some data to use for the tests noise = np.random.normal(0,1,100) y = np.zeros(100) x1 = np.random.normal(0,1,100) x2 = np.random.normal(0,1,100) for i in range(1,len(y)): y[i] = 0.9*y[i-1] + noise[i] + 0.1*x1[i] - 0.3*x2[i] data = pd.DataFrame([y,x1,x2]).T data.columns = ['y', 'x1', 'x2'] y_oos = np.random.normal(0,1,30) x1_oos = np.random.normal(0,1,30) x2_oos = np.random.normal(0,1,30) data_oos = pd.DataFrame([y_oos,x1_oos,x2_oos]).T data_oos.columns = ['y', 'x1', 'x2'] def test_bbvi(): """ Tests an ARIMAX model estimated with BBVI, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1", data=data, ar=1, ma=1) x = model.fit('BBVI',iterations=100, quiet_progress=True) assert(len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_bbvi_mini_batch(): """ Tests an ARIMA model estimated with BBVI and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMAX(formula="y ~ x1", data=data, ar=1, ma=1) x = model.fit('BBVI',iterations=100, quiet_progress=True, mini_batch=32) assert(len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_bbvi_elbo(): """ Tests that the ELBO increases """ model = ARIMAX(formula="y ~ x1", data=data, ar=1, ma=1) x = model.fit('BBVI',iterations=200, record_elbo=True, quiet_progress=True) assert(x.elbo_records[-1]>x.elbo_records[0]) def test_bbvi_mini_batch_elbo(): """ Tests that the ELBO increases """ model = ARIMAX(formula="y ~ x1", data=data, ar=1, ma=1) x = model.fit('BBVI',iterations=200, mini_batch=32, record_elbo=True, quiet_progress=True) assert(x.elbo_records[-1]>x.elbo_records[0]) def test_mh(): """ Tests an ARIMAX model estimated with Metropolis-Hastings, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1", data=data, ar=1, ma=1) x = model.fit('M-H', nsims=200, quiet_progress=True) assert(len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_laplace(): """ Tests an ARIMAX model estimated with Laplace approximation, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1", data=data, ar=1, ma=1) x = model.fit('Laplace') assert(len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_pml(): """ Tests an ARIMAX model estimated with PML, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1", data=data, ar=1, ma=1) x = model.fit('PML') assert(len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_2_bbvi(): """ Tests an ARIMAX model estimated with BBVI, with multiple predictors, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1 + x2", data=data, ar=1, ma=1) x = model.fit('BBVI',iterations=100, quiet_progress=True) assert(len(model.latent_variables.z_list) == 6) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_2_bbvi_mini_batch(): """ Tests an ARIMA model estimated with BBVI and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = ARIMAX(formula="y ~ x1 + x2", data=data, ar=1, ma=1) x = model.fit('BBVI',iterations=100, quiet_progress=True, mini_batch=32) assert(len(model.latent_variables.z_list) == 6) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_2_mh(): """ Tests an ARIMAX model estimated with MEtropolis-Hastings, with multiple predictors, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1 + x2", data=data, ar=1, ma=1) x = model.fit('M-H', nsims=200, quiet_progress=True) assert(len(model.latent_variables.z_list) == 6) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_2_laplace(): """ Tests an ARIMAX model estimated with Laplace, with multiple predictors, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1 + x2", data=data, ar=1, ma=1) x = model.fit('Laplace') assert(len(model.latent_variables.z_list) == 6) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0) def test_2_pml(): """ Tests an ARIMAX model estimated with PML, with multiple predictors, and tests that the latent variable vector length is correct, and that value are not nan """ model = ARIMAX(formula="y ~ x1 + x2", data=data, ar=1, ma=1) x = model.fit('PML') assert(len(model.latent_variables.z_list) == 6) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0)
bsd-3-clause
momingsong/ns-3
src/core/examples/sample-rng-plot.py
188
1246
# -*- Mode:Python; -*- # /* # * This program is free software; you can redistribute it and/or modify # * it under the terms of the GNU General Public License version 2 as # * published by the Free Software Foundation # * # * This program is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU General Public License for more details. # * # * You should have received a copy of the GNU General Public License # * along with this program; if not, write to the Free Software # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # */ # Demonstrate use of ns-3 as a random number generator integrated with # plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial import numpy as np import matplotlib.pyplot as plt import ns.core # mu, var = 100, 225 rng = ns.core.NormalVariable(100.0, 225.0) x = [rng.GetValue() for t in range(10000)] # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75) plt.title('ns-3 histogram') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()
gpl-2.0
adas-most/adas-single-chip
source code/Python_ImageProcessing/LBP_SVM_example/SVM_testing_LBP.py
1
1829
# -*- coding: UTF-8 -*- import cv2 import numpy as np import io import my_lib from matplotlib import pyplot as plt ImgCnt = 10 SampleSize = (32,32) Image_data = np.zeros((ImgCnt,SampleSize[0],SampleSize[1]),np.float32) for temp_i in range(0,ImgCnt,1): img = cv2.imread("test_" + str(temp_i) + ".jpeg",0) Image_data[temp_i] = img cv2.imwrite("Image_data[0].jpg",Image_data[0]) # cv2.imwrite("Image_data[1].jpg",Image_data[1]) print Image_data.shape feature_len = Image_data.shape[1]*Image_data.shape[2] data = np.zeros((ImgCnt,feature_len),np.float32) his = np.zeros((ImgCnt,8),np.float32) unitLBP = my_lib.ImgOperations("test.jpg","test.jpg") for LBPLoop in range(0,ImgCnt,1): NanCheck = unitLBP.DataToImg(Image_data[LBPLoop],"transferData.jpg") if( 1 == NanCheck ): print 0 unitLBP.LBP_Transform("transferData.jpg","LBP[0].jpg",0) data_cnt = 0 for y in range(0,unitLBP.LBP_Matrix.shape[0],1): for x in range(0,unitLBP.LBP_Matrix.shape[1],1): data[LBPLoop][data_cnt] = unitLBP.LBP_Matrix[y][x] data_cnt = data_cnt + 1 # for y in range(0,unitLBP.LBP_Matrix.shape[0],1): # for x in range(0,unitLBP.LBP_Matrix.shape[1],1): # if( 1 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][0] += 1 # elif( 2 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][1] += 1 # elif( 4 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][2] += 1 # elif( 8 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][3] += 1 # elif( 16 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][4] += 1 # elif( 32 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][5] += 1 # elif( 64 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][6] += 1 # elif( 128 == unitLBP.LBP_Matrix[y][x] ): # his[LBPLoop][7] += 1 print data svm = cv2.SVM() svm.load('LBP0_3type_HW.dat') result = svm.predict_all(data) print result
gpl-3.0
leungmanhin/opencog
opencog/python/attic/spatiotemporal/temporal_events/animation.py
34
4896
from matplotlib.lines import Line2D from matplotlib.ticker import AutoMinorLocator from numpy.core.multiarray import zeros from spatiotemporal.temporal_events.trapezium import TemporalEventTrapezium from spatiotemporal.time_intervals import TimeInterval from matplotlib import pyplot as plt from matplotlib import animation __author__ = 'keyvan' x_axis = xrange(13) zeros_13 = zeros(13) class Animation(object): def __init__(self, event_a, event_b, event_c, plt=plt): self.event_a = event_a self.event_c = event_c self.event_b_length_beginning = event_b.beginning - event_b.a self.event_b_length_middle = self.event_b_length_beginning + event_b.ending - event_b.beginning self.event_b_length_total = event_b.b - event_b.ending self.plt = plt self.fig = plt.figure(1) self.ax_a_b = self.fig.add_subplot(4, 1, 1) self.ax_b_c = self.fig.add_subplot(4, 1, 2) self.ax_a_c = self.fig.add_subplot(4, 1, 3) self.ax_relations = self.fig.add_subplot(4, 1, 4) self.ax_a_b.set_xlim(0, 13) self.ax_a_b.set_ylim(0, 1) self.ax_b_c.set_xlim(0, 13) self.ax_b_c.set_ylim(0, 1) self.ax_a_c.set_xlim(0, 13) self.ax_a_c.set_ylim(0, 1) self.rects_a_b = self.ax_a_b.bar(x_axis, zeros_13) self.rects_b_c = self.ax_b_c.bar(x_axis, zeros_13) self.rects_a_c = self.ax_a_c.bar(x_axis, zeros_13) self.line_a = Line2D([], []) self.line_b = Line2D([], []) self.line_c = Line2D([], []) self.ax_relations.add_line(self.line_a) self.ax_relations.add_line(self.line_b) self.ax_relations.add_line(self.line_c) a = min(event_a.a, event_c.a) - self.event_b_length_total b = max(event_a.b, event_c.b) self.ax_relations.set_xlim(a, b + self.event_b_length_total) self.ax_relations.set_ylim(0, 1.1) # self.interval = TimeInterval(a, b, 150) self.interval = TimeInterval(a, b, 2) self.ax_a_b.xaxis.set_minor_formatter(self.ax_a_b.xaxis.get_major_formatter()) self.ax_a_b.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_a_b.xaxis.set_ticklabels('poDedOP') self.ax_a_b.xaxis.set_ticklabels('mFsSfM', minor=True) self.ax_b_c.xaxis.set_minor_formatter(self.ax_b_c.xaxis.get_major_formatter()) self.ax_b_c.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_b_c.xaxis.set_ticklabels('poDedOP') self.ax_b_c.xaxis.set_ticklabels('mFsSfM', minor=True) self.ax_a_c.xaxis.set_minor_formatter(self.ax_a_c.xaxis.get_major_formatter()) self.ax_a_c.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_a_c.xaxis.set_ticklabels('poDedOP') self.ax_a_c.xaxis.set_ticklabels('mFsSfM', minor=True) def init(self): artists = [] self.line_a.set_data(self.event_a, self.event_a.membership_function) self.line_b.set_data([], []) self.line_c.set_data(self.event_c, self.event_c.membership_function) artists.append(self.line_a) artists.append(self.line_b) artists.append(self.line_c) for rect, h in zip(self.rects_a_b, zeros_13): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_b_c, zeros_13): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_a_c, (self.event_a * self.event_c).to_list()): rect.set_height(h) artists.append(rect) return artists def animate(self, t): interval = self.interval B = TemporalEventTrapezium(interval[t], interval[t] + self.event_b_length_total, interval[t] + self.event_b_length_beginning, interval[t] + self.event_b_length_middle) plt.figure() B.plot().show() a_b = (self.event_a * B).to_list() b_c = (B * self.event_c).to_list() self.line_b.set_data(B, B.membership_function) artists = [] for rect, h in zip(self.rects_a_b, a_b): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_b_c, b_c): rect.set_height(h) artists.append(rect) artists.append(self.line_a) artists.append(self.line_b) artists.append(self.line_c) return artists def show(self): fr = len(self.interval) - 1 anim = animation.FuncAnimation(self.fig, self.animate, init_func=self.init, frames=fr, interval=fr, blit=True) self.plt.show() if __name__ == '__main__': anim = Animation(TemporalEventTrapezium(4, 8, 5, 7), TemporalEventTrapezium(0, 10, 6, 9), TemporalEventTrapezium(0.5, 11, 1, 3)) # anim.show()
agpl-3.0
theoryno3/scikit-learn
sklearn/feature_selection/tests/test_base.py
170
3666
import numpy as np from scipy import sparse as sp from nose.tools import assert_raises, assert_equal from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform(feature_names) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform(feature_names_t) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
jadhavhninad/-CSE_515_MWD_Analytics-
Phase 2/Complete_Team_project/mwd_proj/scripts_p2/Arun/part3.py
2
3599
import numpy as np import operator import scipy.io import tensorly.backend as T import tensorly.decomposition import numpy as np from sklearn.preprocessing import normalize from time import time import sys, os from datetime import datetime import django import traceback os.environ['DJANGO_SETTINGS_MODULE']="mwd_proj.settings" django.setup() from mwd_proj.utils.utils2 import * import traceback from django.db.models import Sum import operator import math from django.db.models.functions import Lower from mwd_proj.phase2.models import * from django.db.models import Q from mwd_proj.scripts_p2 import (print_genreactor_vector, print_genre_vector, print_user_vector, print_actor_vector, part1) from mwd_proj.scripts_p2.Arun import ppr def compute_Semantics_3a(setActors): print "\n\n" #setActors = set([1860883,486691,1335137,901175]) actor_dict = {} act = MovieActor.objects.values_list('actorid', flat=True).distinct() actor_count = act.count() for n, each in enumerate(list(act)): actor_dict[each] = n setIndex = set([]) inv_a = {v: k for k, v in actor_dict.iteritems()} for actorid in setActors: #print(actor_dict[2312401]) setIndex.add(actor_dict[actorid]) results, xyz = part1.compute_Semantics_1c('TF-IDF','Lillard, Matthew','cosine',10,5,False) #print(len(results)) #print((results[0])) nodes,s=ppr.closedform(setIndex,results,0.85) #print(s) #print(s) result = list(reversed(sorted(range(len(s)), key=lambda k: s[k]))) till_which = len(setActors)+10 print(result[:till_which]) print("Seed Actors:") for actorid in setActors: print(ImdbActorInfo.objects.get(actorid=actorid).name) for ea in result[:till_which]: ac = ImdbActorInfo.objects.get(actorid=inv_a[ea]) print(inv_a[ea], ac.name, s[ea]) #print(inv_a[ea], ac.name, s[ea], print_actor_vector.main(inv_a[ea])) def coactor_matrix(): """Gets coactor matrix""" print "\n\n" actor_dict = {} act = MovieActor.objects.values_list('actorid', flat=True).distinct() actor_count = act.count() for n, each in enumerate(list(act)): actor_dict[each] = n results = [[0]*actor_count for i in range(actor_count)] act = list(act) for i in range(len(act)): ac = ImdbActorInfo.objects.get(actorid=act[i]) movies = MovieActor.objects.filter(actorid=ac) for movie in movies: #print movie.movieid.movieid result1 = MovieActor.objects.filter(movieid=movie.movieid) for res in result1: #print res.actorid.actorid #print(res.actorid.actorid) results[i][actor_dict[res.actorid.actorid]]+=1.0 for i in range(len(results)): results[i][i] =0.0 return results, actor_dict def compute_Semantics_3b(setActors): #setActors = set([2312401]) results, actor_dict = coactor_matrix() setIndex = set([]) for actorid in setActors: #print(actor_dict[2312401]) setIndex.add(actor_dict[actorid]) #print(setIndex) # with open("coactor_matrix.csv", "wb") as f: # writer = csv.writer(f) # writer.writerows(results) inv_a = {v: k for k, v in actor_dict.iteritems()} # nodes,s=ppr.closedform(setActors,results) nodes,s=ppr.closedform(setIndex,results,0.85) #print(s) #print(s) result = list(reversed(sorted(range(len(s)), key=lambda k: s[k]))) #print(result[:10]) till_which = len(setActors)+10 print("Seed Actors:") for actorid in setActors: print(ImdbActorInfo.objects.get(actorid=actorid).name) for ea in result[:till_which]: ac = ImdbActorInfo.objects.get(actorid=inv_a[ea]) print(inv_a[ea], ac.name, s[ea]) if __name__ == "__main__": setActors = set([1860883,486691,1335137,901175]) compute_Semantics_3a(setActors) compute_Semantics_3b(setActors)
gpl-3.0
chungjjang80/FRETBursts
fretbursts/__init__.py
2
6910
# # FRETBursts - A single-molecule FRET burst analysis toolkit. # # Copyright (C) 2014-2016 The Regents of the University of California, # Antonino Ingargiola <[email protected]> # from __future__ import print_function, absolute_import from ._version import get_versions __version__ = get_versions()['version'] del get_versions ## Citation information _CITATION = """ FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET Ingargiola et al. (2016). http://dx.doi.org/10.1371/journal.pone.0160716 """ _INFO_CITATION = (' You are running FRETBursts (version {}).\n\n' ' If you use this software please cite the following' ' paper:\n{}\n\n').format(__version__, _CITATION) def citation(bar=True): cit = _INFO_CITATION if bar: cit = ('-' * 62) + '\n' + _INFO_CITATION + ('-' * 62) print(cit) import warnings try: import pandas except ImportError: has_pandas = False warnings.warn((' - Cannot import pandas. Some functionality will not be ' 'available.')) else: has_pandas = True try: import matplotlib except ImportError: has_matplotlib = False warnings.warn((' - Cannot import matplotlib. Plotting will not be ' 'available.')) else: has_matplotlib = True try: try: from PyQt5 import QtWidgets, QtCore QtGui = QtWidgets except ImportError: try: from PyQt4 import QtGui, QtCore except ImportError: from PySide import QtGui, QtCore except ImportError: has_qt = False # This catches ImportError or other errors due to broken QT installation warnings.warn((' - Cannot import QT, custom GUI widgets disabled.')) else: has_qt = True try: import lmfit except ImportError: has_lmfit = False warnings.warn((' - Cannot import lmfit. Some fitting functionalities ' ' will not be available.')) else: has_lmfit = True __all__numpy = ["np"] __all__matplotlib = [ # Library modules and functions "plt", "rcParams", "matplotlib", "plot", "hist", "grid", "xlim", "ylim", "gca", "gcf",] __all_local_names = [ # Local modules "loader", "select_bursts", "bl", "bg", "bpl", "bext", "bg_cache", "hdf5", "fretmath", "mfit", "citation", "git", # Classes, functions, variables "Data", "Sel", "Ph_sel", "download_file", "init_notebook", # Standalone plots or plots as a function of ch "mch_plot_bg", "plot_alternation_hist", "alex_jointplot", # Plots types used for 1ch of multi-ch plots through `dplot` "timetrace", "timetrace_single", "ratetrace", "ratetrace_single", "timetrace_fret", "timetrace_bg", "hist_width", "hist_size", "hist_size_all", "hist_brightness", "hist_fret", "hist_burst_data", "hist2d_alex", "hist_S", "hist_sbr", "hist_asymmetry", "hist_interphoton_single", "hist_interphoton", "hist_bg_single", "hist_bg", "hist_ph_delays", "hist_mdelays", "hist_mrates", "hist_burst_phrate", "hist_burst_delays", "scatter_width_size", "scatter_rate_da", "scatter_fret_size", "scatter_fret_nd_na", "scatter_fret_width", "scatter_da", "scatter_naa_nt", "scatter_alex", "hexbin_alex", # Wrapper functions that create a plot for each channel "dplot", "dplot_48ch", "dplot_8ch", "dplot_1ch", ] __all__ = __all__numpy + __all_local_names import numpy as np if has_qt: __all__ += ['OpenFileDialog'] from .utils.gui import OpenFileDialog if has_matplotlib: __all__ += __all__matplotlib from matplotlib import rcParams import matplotlib.pyplot as plt from matplotlib.pyplot import plot, hist, grid, xlim, ylim, gca, gcf # Import plain module names from . import loader, hdf5, select_bursts, fretmath # Import modules with custom names from . import background as bg from . import burstlib as bl # Import objects from .burstlib import Data, Sel from .ph_sel import Ph_sel if has_pandas and has_lmfit: from . import burstlib_ext as bext if has_matplotlib and has_pandas and has_lmfit: from . import mfit from . import burst_plot as bpl from .burst_plot import ( # Standalone plots as a function of ch mch_plot_bg, plot_alternation_hist, alex_jointplot, # Single-ch plots used in multi-ch plots through `dplot` timetrace, timetrace_single, ratetrace, ratetrace_single, timetrace_fret, timetrace_bg, hist_width, hist_size, hist_size_all, hist_brightness, hist_fret, hist_burst_data, hist2d_alex, hist_S, hist_sbr, hist_asymmetry, hist_interphoton_single, hist_interphoton, hist_bg_single, hist_bg, hist_ph_delays, hist_mdelays, hist_mrates, hist_burst_phrate, hist_burst_delays, scatter_width_size, scatter_rate_da, scatter_fret_size, scatter_fret_nd_na, scatter_fret_width, scatter_da, scatter_naa_nt, scatter_alex, hexbin_alex, # Wrapper functions that create a plot for each channel dplot, dplot_48ch, dplot_8ch, dplot_1ch, ) from .utils.misc import download_file from .utils import git def init_notebook(fs=13, seaborn_style='darkgrid', mpl_backend='inline', configure_logger=True, apionly=False): """ Set the default plot style for inline plots using the seaborn library. This function must be called from an ipython notebook or ipython QT console. Arguments: fs (int): base font size for text labels Returns: The imported seaborn library. By saving the return value you don't need to import seaborn again. """ if configure_logger: import logging logger = logging.getLogger('fretbursts') formatter = logging.Formatter('%(levelname)s %(name)s\n%(message)s') handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) if mpl_backend is not None: ip = get_ipython() ip.enable_matplotlib(mpl_backend) import seaborn as sns if not apionly: rc={'font.size': fs, 'axes.labelsize': fs, 'legend.fontsize': fs, 'axes.titlesize': fs*1.1, 'xtick.labelsize': fs, 'ytick.labelsize': fs, 'font.sans-serif': ['Arial', 'Liberation Sans'], } sns.set(rc=rc) blue = '#0055d4' green = '#2ca02c' color_brewer = sns.color_palette("Set1", 9) colors = np.array(color_brewer)[(1,0,2,3,4,8,6,7), :] colors = list(colors) colors[:3] = (blue, colors[1], green) sns.set_palette(colors, 8) sns.colors = colors sns.set_style(seaborn_style) return sns citation()
gpl-2.0
allanino/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/numerix/__init__.py
69
5473
""" numerix imports either Numeric or numarray based on various selectors. 0. If the value "--numpy","--numarray" or "--Numeric" is specified on the command line, then numerix imports the specified array package. 1. The value of numerix in matplotlibrc: either Numeric or numarray 2. If none of the above is done, the default array package is Numeric. Because the matplotlibrc always provides *some* value for numerix (it has it's own system of default values), this default is most likely never used. To summarize: the commandline is examined first, the rc file second, and the default array package is Numeric. """ import sys, os, struct from matplotlib import rcParams, verbose which = None, None use_maskedarray = None # First, see if --numarray or --Numeric was specified on the command # line: for a in sys.argv: if a in ["--Numeric", "--numeric", "--NUMERIC", "--Numarray", "--numarray", "--NUMARRAY", "--NumPy", "--numpy", "--NUMPY", "--Numpy", ]: which = a[2:], "command line" if a == "--maskedarray": use_maskedarray = True if a == "--ma": use_maskedarray = False try: del a except NameError: pass if which[0] is None: try: # In theory, rcParams always has *some* value for numerix. which = rcParams['numerix'], "rc" except KeyError: pass if use_maskedarray is None: try: use_maskedarray = rcParams['maskedarray'] except KeyError: use_maskedarray = False # If all the above fail, default to Numeric. Most likely not used. if which[0] is None: which = "numeric", "defaulted" which = which[0].strip().lower(), which[1] if which[0] not in ["numeric", "numarray", "numpy"]: raise ValueError("numerix selector must be either 'Numeric', 'numarray', or 'numpy' but the value obtained from the %s was '%s'." % (which[1], which[0])) if which[0] == "numarray": import warnings warnings.warn("numarray use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from na_imports import * from numarray import * from _na_imports import nx, inf, infinity, Infinity, Matrix, isnan, all from numarray.numeric import nonzero from numarray.convolve import cross_correlate, convolve import numarray version = 'numarray %s'%numarray.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numeric": import warnings warnings.warn("Numeric use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from nc_imports import * from Numeric import * from _nc_imports import nx, inf, infinity, Infinity, isnan, all, any from Matrix import Matrix import Numeric version = 'Numeric %s'%Numeric.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numpy": try: import numpy.oldnumeric as numpy from numpy.oldnumeric import * except ImportError: import numpy from numpy import * print 'except asarray', asarray from _sp_imports import nx, infinity, rand, randn, isnan, all, any from _sp_imports import UInt8, UInt16, UInt32, Infinity try: from numpy.oldnumeric.matrix import Matrix except ImportError: Matrix = matrix version = 'numpy %s' % numpy.__version__ from numpy import nan else: raise RuntimeError("invalid numerix selector") # Some changes are only applicable to the new numpy: if (which[0] == 'numarray' or which[0] == 'numeric'): from mlab import amin, amax newaxis = NewAxis def typecode(a): return a.typecode() def iscontiguous(a): return a.iscontiguous() def byteswapped(a): return a.byteswapped() def itemsize(a): return a.itemsize() def angle(a): return arctan2(a.imag, a.real) else: # We've already checked for a valid numerix selector, # so assume numpy. from mlab import amin, amax newaxis = NewAxis from numpy import angle def typecode(a): return a.dtype.char def iscontiguous(a): return a.flags.contiguous def byteswapped(a): return a.byteswap() def itemsize(a): return a.itemsize verbose.report('numerix %s'%version) # a bug fix for blas numeric suggested by Fernando Perez matrixmultiply=dot asum = sum def _import_fail_message(module, version): """Prints a message when the array package specific version of an extension fails to import correctly. """ _dict = { "which" : which[0], "module" : module, "specific" : version + module } print """ The import of the %(which)s version of the %(module)s module, %(specific)s, failed. This is is either because %(which)s was unavailable when matplotlib was compiled, because a dependency of %(specific)s could not be satisfied, or because the build flag for this module was turned off in setup.py. If it appears that %(specific)s was not built, make sure you have a working copy of %(which)s and then re-install matplotlib. Otherwise, the following traceback gives more details:\n""" % _dict g = globals() l = locals() __import__('ma', g, l) __import__('fft', g, l) __import__('linear_algebra', g, l) __import__('random_array', g, l) __import__('mlab', g, l) la = linear_algebra ra = random_array
agpl-3.0
luispedro/BuildingMachineLearningSystemsWithPython
ch10/neighbors.py
1
1767
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing import numpy as np import mahotas as mh from glob import glob from features import texture, chist from matplotlib import pyplot as plt from sklearn.preprocessing import StandardScaler from scipy.spatial import distance basedir = '../SimpleImageDataset/' haralicks = [] chists = [] print('Computing features...') # Use glob to get all the images images = glob('{}/*.jpg'.format(basedir)) # We sort the images to ensure that they are always processed in the same order # Otherwise, this would introduce some variation just based on the random # ordering that the filesystem uses images.sort() for fname in images: imc = mh.imread(fname) imc = imc[200:-200,200:-200] haralicks.append(texture(mh.colors.rgb2grey(imc))) chists.append(chist(imc)) haralicks = np.array(haralicks) chists = np.array(chists) features = np.hstack([chists, haralicks]) print('Computing neighbors...') sc = StandardScaler() features = sc.fit_transform(features) dists = distance.squareform(distance.pdist(features)) print('Plotting...') fig, axes = plt.subplots(2, 9, figsize=(16,8)) # Remove ticks from all subplots for ax in axes.flat: ax.set_xticks([]) ax.set_yticks([]) for ci,i in enumerate(range(0,90,10)): left = images[i] dists_left = dists[i] right = dists_left.argsort() # right[0] is the same as left[i], so pick the next closest element right = right[1] right = images[right] left = mh.imread(left) right = mh.imread(right) axes[0, ci].imshow(left) axes[1, ci].imshow(right) fig.tight_layout() fig.savefig('figure_neighbors.png', dpi=300)
mit
ligovirgo/seismon
RfPrediction/old/cause_lockstate.py
2
28041
#!/usr/bin/python from __future__ import division import os, sys, glob, optparse, warnings, time, json import numpy as np import subprocess from subprocess import Popen from lxml import etree from scipy.interpolate import interp1d from gwpy.timeseries import TimeSeries import lal.gpstime #from seismon import (eqmon, utils) import matplotlib matplotlib.use("AGG") matplotlib.rcParams.update({'font.size': 18}) from matplotlib import pyplot as plt from matplotlib import cm def parse_commandline(): """@parse the options given on the command-line. """ parser = optparse.OptionParser(usage=__doc__) parser.add_option("-t", "--time_after_p_wave", help="time to check for lockloss status after p wave arrival.", default = 3600) parser.add_option("-v", "--verbose", action="store_true", default=False, help="Run verbosely. (Default: False)") opts, args = parser.parse_args() # show parameters if opts.verbose: print >> sys.stderr, "" print >> sys.stderr, "running network_eqmon..." print >> sys.stderr, "version: %s"%__version__ print >> sys.stderr, "" print >> sys.stderr, "***************** PARAMETERS ********************" for o in opts.__dict__.items(): print >> sys.stderr, o[0]+":" print >> sys.stderr, o[1] print >> sys.stderr, "" return opts ## LHO rms_toggle = '' os.system('mkdir -p /home/eric.coughlin/H1O1/') os.system('mkdir -p /home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/') for direction in ['Z','X','Y']: if rms_toggle == "": channel = 'H1:ISI-GND_STS_HAM2_{0}_DQ'.format(direction) elif rms_toggle == "RMS_": channel = 'H1:ISI-GND_STS_HAM5_{0}_BLRMS_30M_100M'.format(direction) H1_lock_time_list = [] H1_lockloss_time_list = [] H1_peak_ground_velocity_list = [] hdir = os.environ["HOME"] options = parse_commandline() predicted_peak_ground_velocity_list = [] datafileH1 = open('{0}/gitrepo/seismon/RfPrediction/data/LHO_O1_{1}{2}.txt'.format(hdir, rms_toggle, direction), 'r') resultfileH1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LHO_lockstatus_{0}{1}.txt'.format(rms_toggle, direction), 'w') H1_channel_lockstatus_data = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/segs_Locked_H_1126569617_1136649617.txt', 'r') # This next section of code is where the data is seperated into two lists to make this data easier to search through and process. for item in (line.strip().split() for line in H1_channel_lockstatus_data): H1_lock_time = item[0] H1_lockloss_time = item[1] H1_lock_time_list.append(float(H1_lock_time)) H1_lockloss_time_list.append(float(H1_lockloss_time)) #resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} \n'.format('eq arrival time','pw arrival time','peak ground velocity','lockloss')) for column in ( line.strip().split() for line in datafileH1): eq_time = column[0] # This is the time that the earthquake was detected eq_mag = column[1] pw_arrival_time = column[2] #this is the arrival time of the pwave sw_arrival_time = column[3] eq_distance = column[12] eq_depth = column[13] peak_acceleration = column[17] peak_displacement = column[19] rw_arrival_time = column[5] #this is the arrival time of rayleigh wave peak_ground_velocity = column[15] # this is the peak ground velocity during the time of the earthquake. predicted_peak_ground_velocity = column[7] predicted_peak_ground_velocity_list.append(float(predicted_peak_ground_velocity)) # The next function is designed to to take a list and find the first item in that list that matches the conditions. If an item is not in the list that matches the condition it is possible to set a default value which will prevent the program from raising an error otherwise. #H1_lock_time = next((item for item in H1_lock_time_list if min(H1_lock_time_list, key=lambda x:abs(x-float(pw_arrival_time)))),[None]) #H1_lockloss_time = next((item for item in H1_lockloss_time_list if min(H1_lockloss_time_list, key=lambda x:abs(x-float(float(pw_arrival_time)+float(options.time_after_p_wave))))),[None]) H1_lock_time = min(H1_lock_time_list, key=lambda x:abs(x-float(pw_arrival_time))) H1_lockloss_time = min(H1_lockloss_time_list, key=lambda x:abs(x-float(float(pw_arrival_time) + float(options.time_after_p_wave)))) lockloss = "" if (H1_lock_time <= float(pw_arrival_time) and H1_lockloss_time <= float(float(pw_arrival_time) + float(options.time_after_p_wave))): # The if statements are designed to check if the interferometer is in lock or not and if it is. Did it lose lock around the time of the earthquake? lockloss = "Y" resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss)) elif (H1_lock_time <= float(pw_arrival_time) and H1_lockloss_time > float(float(pw_arrival_time) + float(options.time_after_p_wave))): lockloss = "N" resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss)) elif (H1_lock_time > float(pw_arrival_time)): lockloss = "Z" resultfileH1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss)) datafileH1.close() resultfileH1.close() H1_channel_lockstatus_data.close() eq_time_list = [] locklosslist = [] pw_arrival_list = [] peak_acceleration_list = [] peak_displacement_list = [] eq_mag_list = [] eq_distance_list = [] eq_depth_list = [] resultfileplotH1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LHO_lockstatus_{0}{1}.txt'.format(rms_toggle, direction), 'r') for item in (line.strip().split() for line in resultfileplotH1): eq_time = item[0] pw_arrival = item[1] peakgroundvelocity = item[2] peak_acceleration = item[3] peak_displacement = item[4] eq_mag = item[5] eq_distance = item[6] eq_depth = item[7] lockloss = item[8] H1_peak_ground_velocity_list.append(float(peakgroundvelocity)) locklosslist.append(lockloss) eq_time_list.append(eq_time) pw_arrival_list.append(pw_arrival) peak_acceleration_list.append(peak_acceleration) peak_displacement_list.append(peak_displacement) eq_mag_list.append(eq_mag) eq_distance_list.append(eq_distance) eq_depth_list.append(eq_depth) H1_binary_file = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LHO_O1_binary_{0}{1}.txt'.format(direction, rms_toggle), 'w') for eq_time, pw_arrival, peakgroundvelocity, peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth, lockloss in zip(eq_time_list, pw_arrival_list, H1_peak_ground_velocity_list, peak_acceleration_list,peak_displacement_list,eq_mag_list,eq_distance_list,eq_depth_list, locklosslist): if lockloss == "Y": lockloss_binary = '1' H1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival,peakgroundvelocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss_binary)) elif lockloss == "N": lockloss_binary = '0' H1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival,peakgroundvelocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss_binary)) else: pass H1_binary_file.close() locklosslistZ = [] locklosslistY = [] locklosslistN = [] eq_time_list_Z = [] eq_time_list_N = [] eq_time_list_Y = [] H1_peak_ground_velocity_list_Z = [] H1_peak_ground_velocity_list_N = [] H1_peak_ground_velocity_list_Y = [] peak_ground_acceleration_list_Z = [] peak_ground_acceleration_list_N = [] peak_ground_acceleration_list_Y = [] H1_peak_ground_velocity_sorted_list, locklosssortedlist, predicted_peak_ground_velocity_sorted_list = (list(t) for t in zip(*sorted(zip(H1_peak_ground_velocity_list, locklosslist, predicted_peak_ground_velocity_list)))) num_lock_list = [] YN_peak_list = [] for sortedpeak, sortedlockloss in zip(H1_peak_ground_velocity_sorted_list, locklosssortedlist): if sortedlockloss == "Y": YN_peak_list.append(sortedpeak) num_lock_list.append(1) elif sortedlockloss == "N": YN_peak_list.append(sortedpeak) num_lock_list.append(0) num_lock_prob_cumsum = np.divide(np.cumsum(num_lock_list), np.cumsum(np.ones(len(num_lock_list)))) f, axarr = plt.subplots(1) for t,time,peak, peak_acc, lockloss in zip(range(len(eq_time_list)),eq_time_list,H1_peak_ground_velocity_list,peak_acceleration_list,locklosslist): if lockloss == "Z": eq_time_list_Z.append(t) H1_peak_ground_velocity_list_Z.append(peak) locklosslistZ.append(lockloss) peak_ground_acceleration_list_Z.append(peak_acc) elif lockloss == "N": eq_time_list_N.append(t) H1_peak_ground_velocity_list_N.append(peak) locklosslistN.append(lockloss) peak_ground_acceleration_list_N.append(peak_acc) elif lockloss == "Y": eq_time_list_Y.append(t) H1_peak_ground_velocity_list_Y.append(peak) locklosslistY.append(lockloss) peak_ground_acceleration_list_Y.append(peak_acc) axarr.plot(eq_time_list_N, H1_peak_ground_velocity_list_N, 'go', label='locked at earthquake(eq)') axarr.plot(eq_time_list_Y, H1_peak_ground_velocity_list_Y, 'ro', label='lockloss at earthquake(eq)') axarr.set_title('H1 Lockstatus Plot') axarr.set_yscale('log') axarr.set_xlabel('earthquake count(eq)') axarr.set_ylabel('peak ground velocity(m/s)') axarr.legend(loc='best') #f.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/lockstatus_LHO_{0}{1}.png'.format(rms_toggle, direction)) f.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.figure(2) plt.plot(eq_time_list_N, peak_ground_acceleration_list_N, 'go', label='locked at earthquake(eq)') plt.plot(eq_time_list_Y, peak_ground_acceleration_list_Y, 'ro', label='lockloss at earthquake(eq)') plt.title('H1 Lockstatus Plot(acceleration)') plt.yscale('log') plt.xlabel('earthquake count(eq)') plt.ylabel('peak ground acceleration(m/s)') plt.legend(loc='best') plt.savefig('/home/eric.coughlin/public_html/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) #plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf() plt.figure(3) plt.plot(H1_peak_ground_velocity_sorted_list, predicted_peak_ground_velocity_sorted_list, 'o', label='actual vs predicted') plt.title('H1 actual vs predicted ground velocity') plt.xscale('log') plt.yscale('log') plt.xlabel('peak ground velocity(m/s)') plt.ylabel('predicted peak ground velocity(m/s)') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/check_prediction_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/check_prediction_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf() threshold_file_H1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/threshhold_data_{0}{1}.txt'.format(rms_toggle, direction), 'w') num_of_lockloss = len(locklosslistY) total_lockstatus = num_of_lockloss + len(locklosslistN) total_lockstatus_all = num_of_lockloss + len(locklosslistN) + len(locklosslistZ) total_percent_lockloss = num_of_lockloss / total_lockstatus threshold_file_H1.write('The percentage of total locklosses is {0}% \n'.format(total_percent_lockloss * 100)) threshold_file_H1.write('The total number of earthquakes is {0}. \n'.format(total_lockstatus_all)) eqcount_50 = 0 eqcount_75 = 0 eqcount_90 = 0 eqcount_95 = 0 for item, thing in zip(num_lock_prob_cumsum, YN_peak_list): if item >= .5: eqcount_50 = eqcount_50 + 1 if item >= .75: eqcount_75 = eqcount_75 + 1 if item >= .9: eqcount_90 = eqcount_90 + 1 if item >= .95: eqcount_95 = eqcount_95 + 1 threshold_file_H1.write('The number of earthquakes above 50 percent is {0}. \n'.format(eqcount_50)) threshold_file_H1.write('The number of earthquakes above 75 percent is {0}. \n'.format(eqcount_75)) threshold_file_H1.write('The number of earthquakes above 90 percent is {0}. \n'.format(eqcount_90)) threshold_file_H1.write('The number of earthquakes above 95 percent is {0}. \n'.format(eqcount_95)) probs = [0.5, 0.75, 0.9, 0.95] num_lock_prob_cumsum_sort = np.unique(num_lock_prob_cumsum) YN_peak_list_sort = np.unique(YN_peak_list) num_lock_prob_cumsum_sort, YN_peak_list_sort = zip(*sorted(zip(num_lock_prob_cumsum_sort, YN_peak_list_sort))) thresholdsf = interp1d(num_lock_prob_cumsum_sort,YN_peak_list_sort, bounds_error=False) for item in probs: threshold = thresholdsf(item) threshold_file_H1.write('The threshhold at {0}% is {1}(m/s) \n'.format(item * 100, threshold)) threshold_file_H1.write('The number of times of locklosses is {0}. \n'.format(len(locklosslistY))) threshold_file_H1.write('The number of times of no locklosses is {0}. \n'.format(len(locklosslistN))) threshold_file_H1.write('The number of times of not locked is {0}. \n'.format(len(locklosslistZ))) threshold_file_H1.close() plt.figure(4) plt.plot(YN_peak_list_sort, num_lock_prob_cumsum_sort, 'kx', label='probability of lockloss') plt.title('H1 Lockloss Probability') plt.xscale('log') plt.grid(True) plt.xlabel('peak ground velocity (m/s)') plt.ylabel('Lockloss Probablity') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LHO/lockloss_probablity_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockloss_probablity_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf() ## LLO os.system('mkdir -p /home/eric.coughlin/L1O1/') os.system('mkdir -p /home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/') for direction in ['Z','X','Y']: if rms_toggle == "": channel = 'L1:ISI-GND_STS_HAM2_{0}_DQ'.format(direction) elif rms_toggle == "RMS_": channel = 'L1:ISI-GND_STS_HAM5_{0}_BLRMS_30M_100M'.format(direction) L1_lock_time_list = [] L1_lockloss_time_list = [] options = parse_commandline() predicted_peak_ground_velocity_list = [] H1_peak_ground_velocity_list =[] datafileL1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_O1_{0}{1}.txt'.format(rms_toggle, direction), 'r') resultfileL1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_lockstatus_{0}{1}.txt'.format(rms_toggle, direction), 'w') L1_channel_lockstatus_data = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/segs_Locked_L_1126569617_1136649617.txt', 'r') for item in (line.strip().split() for line in L1_channel_lockstatus_data): L1_lock_time = item[0] L1_lockloss_time = item[1] L1_lock_time_list.append(float(L1_lock_time)) L1_lockloss_time_list.append(float(L1_lockloss_time)) #resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} \n'.format('eq arrival time','pw arrival time','peak ground velocity','lockloss')) for column in ( line.strip().split() for line in datafileL1): eq_time = column[0] eq_mag = column[1] pw_arrival_time = column[2] sw_arrival_time = column[3] eq_distance = column[12] eq_depth = column[13] peak_acceleration = column[17] peak_displacement = column[19] rw_arrival_time = column[5] peak_ground_velocity = column[15] predicted_peak_ground_velocity = column[7] predicted_peak_ground_velocity_list.append(float(predicted_peak_ground_velocity)) #L1_lock_time = next((item for item in L1_lock_time_list if item <= float(pw_arrival_time)),[None]) #L1_lockloss_time = next((item for item in L1_lockloss_time_list if item <= float(float(pw_arrival_time) + float(options.time_after_p_wave))),[None]) L1_lock_time = min(L1_lock_time_list, key=lambda x:abs(x-float(pw_arrival_time))) L1_lockloss_time = min(L1_lockloss_time_list, key=lambda x:abs(x-float(float(pw_arrival_time) + float(options.time_after_p_wave)))) lockloss = "" if (L1_lock_time <= float(pw_arrival_time) and L1_lockloss_time <= float(float(pw_arrival_time) + float(options.time_after_p_wave))): lockloss = "Y" resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss)) elif (L1_lock_time <= float(pw_arrival_time) and L1_lockloss_time > float(float(pw_arrival_time) + float(options.time_after_p_wave))): lockloss = "N" resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss)) elif (L1_lock_time > float(pw_arrival_time)): lockloss = "Z" resultfileL1.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival_time,peak_ground_velocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss)) datafileL1.close() resultfileL1.close() L1_channel_lockstatus_data.close() eq_time_list = [] locklosslist = [] pw_arrival_list = [] peak_acceleration_list =[] peak_displacement_list = [] eq_mag_list = [] eq_distance_list = [] eq_depth_list = [] resultfileplotL1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_lockstatus_{0}{1}.txt'.format(rms_toggle, direction), 'r') for item in (line.strip().split() for line in resultfileplotL1): eq_time = item[0] pw_arrival = item[1] peakgroundvelocity = item[2] peak_acceleration = item[3] peak_displacement = item[4] eq_mag = item[5] eq_distance = item[6] eq_depth = item[7] lockloss = item[8] H1_peak_ground_velocity_list.append(float(peakgroundvelocity)) locklosslist.append(lockloss) eq_time_list.append(eq_time) pw_arrival_list.append(pw_arrival) peak_acceleration_list.append(peak_acceleration) peak_displacement_list.append(peak_displacement) eq_mag_list.append(eq_mag) eq_distance_list.append(eq_distance) eq_depth_list.append(eq_depth) L1_binary_file = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/LLO_O1_binary_{0}{1}.txt'.format(rms_toggle, direction), 'w') for eq_time, pw_arrival, peakgroundvelocity, peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth, lockloss in zip(eq_time_list, pw_arrival_list, H1_peak_ground_velocity_list, peak_acceleration_list,peak_displacement_list,eq_mag_list,eq_distance_list,eq_depth_list, locklosslist): if lockloss == "Y": lockloss_binary = '1' L1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival,peakgroundvelocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss_binary)) elif lockloss == "N": lockloss_binary = '0' L1_binary_file.write('{0:^20} {1:^20} {2:^20} {3:^20} {4:^20} {5:^20} {6:^20} {7:^20} {8:^20} \n'.format(eq_time,pw_arrival,peakgroundvelocity,peak_acceleration,peak_displacement,eq_mag,eq_distance,eq_depth,lockloss_binary)) else: pass L1_binary_file.close() locklosslistZ = [] locklosslistY = [] locklosslistN = [] eq_time_list_Z = [] eq_time_list_N = [] eq_time_list_Y = [] H1_peak_ground_velocity_list_Z = [] H1_peak_ground_velocity_list_N = [] H1_peak_ground_velocity_list_Y = [] peak_ground_acceleration_list_Z = [] peak_ground_acceleration_list_N = [] peak_ground_acceleration_list_Y = [] H1_peak_ground_velocity_sorted_list, locklosssortedlist, predicted_peak_ground_velocity_sorted_list = (list(t) for t in zip(*sorted(zip(H1_peak_ground_velocity_list, locklosslist, predicted_peak_ground_velocity_list)))) num_lock_list = [] YN_peak_list = [] for sortedpeak, sortedlockloss in zip(H1_peak_ground_velocity_sorted_list, locklosssortedlist): if sortedlockloss == "Y": YN_peak_list.append(sortedpeak) num_lock_list.append(1) elif sortedlockloss == "N": YN_peak_list.append(sortedpeak) num_lock_list.append(0) num_lock_prob_cumsum = np.cumsum(num_lock_list) / np.cumsum(np.ones(len(num_lock_list))) plt.figure(8) for t,time,peak,peak_acc,lockloss in zip(range(len(eq_time_list)),eq_time_list,H1_peak_ground_velocity_list,peak_acceleration_list,locklosslist): if lockloss == "Z": eq_time_list_Z.append(t) H1_peak_ground_velocity_list_Z.append(peak) locklosslistZ.append(lockloss) peak_ground_acceleration_list_Z.append(peak_acc) elif lockloss == "N": eq_time_list_N.append(t) H1_peak_ground_velocity_list_N.append(peak) locklosslistN.append(lockloss) peak_ground_acceleration_list_N.append(peak_acc) elif lockloss == "Y": eq_time_list_Y.append(t) H1_peak_ground_velocity_list_Y.append(peak) locklosslistY.append(lockloss) peak_ground_acceleration_list_Y.append(peak_acc) plt.plot(eq_time_list_N, H1_peak_ground_velocity_list_N, 'go', label='locked at earthquake(eq)') plt.plot(eq_time_list_Y, H1_peak_ground_velocity_list_Y, 'ro', label='lockloss at earthquake(eq)') plt.title('L1 Lockstatus Plot') plt.yscale('log') plt.xlabel('earthquake count(eq)') plt.ylabel('peak ground velocity(m/s)') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/lockstatus_LLO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_LLO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf() plt.figure(23) plt.plot(eq_time_list_N, peak_ground_acceleration_list_N, 'go', label='locked at earthquake(eq)') plt.plot(eq_time_list_Y, peak_ground_acceleration_list_Y, 'ro', label='lockloss at earthquake(eq)') plt.title('H1 Lockstatus Plot(acceleration)') plt.yscale('log') plt.xlabel('earthquake count(eq)') plt.ylabel('peak ground acceleration(m/s)') plt.legend(loc='best') plt.savefig('/home/eric.coughlin/public_html/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) #plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockstatus_acceleration_LHO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf() plt.figure(9) plt.plot(H1_peak_ground_velocity_list, predicted_peak_ground_velocity_list, 'o', label='actual vs predicted') plt.title('L1 actual vs predicted ground velocity') plt.xscale('log') plt.yscale('log') plt.xlabel('peak ground velocity(m/s)') plt.ylabel('predicted peak ground velocity(m/s)') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/check_predictionLLO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/check_predictionLLO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf() threshold_file_L1 = open('/home/eric.coughlin/gitrepo/seismon/RfPrediction/data/threshhold_data_{0}{1}.txt'.format(rms_toggle, direction), 'w') num_of_lockloss = len(locklosslistY) total_lockstatus = num_of_lockloss + len(locklosslistN) total_lockstatus_all = num_of_lockloss + len(locklosslistN) + len(locklosslistZ) total_percent_lockloss = num_of_lockloss / total_lockstatus threshold_file_L1.write('The percentage of total locklosses is {0}% \n'.format(total_percent_lockloss * 100)) threshold_file_L1.write('The total number of earthquakes is {0}. \n'.format(total_lockstatus_all)) eqcount_50 = 0 eqcount_75 = 0 eqcount_90 = 0 eqcount_95 = 0 for item, thing in zip(num_lock_prob_cumsum, YN_peak_list): if item >= .5: eqcount_50 = eqcount_50 + 1 if item >= .75: eqcount_75 = eqcount_75 + 1 if item >= .9: eqcount_90 = eqcount_90 + 1 if item >= .95: eqcount_95 = eqcount_95 + 1 threshold_file_L1.write('The number of earthquakes above 50 percent is {0}. \n'.format(eqcount_50)) threshold_file_L1.write('The number of earthquakes above 75 percent is {0}. \n'.format(eqcount_75)) threshold_file_L1.write('The number of earthquakes above 90 percent is {0}. \n'.format(eqcount_90)) threshold_file_L1.write('The number of earthquakes above 95 percent is {0}. \n'.format(eqcount_95)) probs = [0.5, 0.75, 0.9, 0.95] num_lock_prob_cumsum_sort = np.unique(num_lock_prob_cumsum) YN_peak_list_sort = np.unique(YN_peak_list) num_lock_prob_cumsum_sort, YN_peak_list_sort = zip(*sorted(zip(num_lock_prob_cumsum_sort, YN_peak_list_sort))) thresholds = [] thresholdsf = interp1d(num_lock_prob_cumsum_sort,YN_peak_list_sort,bounds_error=False) for item in probs: threshold = thresholdsf(item) threshold_file_L1.write('The threshhold at {0}% is {1}(m/s) \n'.format(item * 100, threshold)) threshold_file_L1.write('The number of times of locklosses is {0}. \n'.format(len(locklosslistY))) threshold_file_L1.write('The number of times of no locklosses is {0}. \n'.format(len(locklosslistN))) threshold_file_L1.write('The number of times of not locked is {0}. \n'.format(len(locklosslistZ))) threshold_file_L1.close() plt.figure(10) plt.plot(YN_peak_list_sort, num_lock_prob_cumsum_sort, 'kx', label='probability of lockloss') plt.title('L1 Lockloss Probability') plt.xscale('log') plt.grid(True) plt.xlabel('peak ground velocity (m/s)') plt.ylabel('Lockloss Probablity') plt.legend(loc='best') #plt.savefig('/home/eric.coughlin/public_html/lockloss_threshold_plots/LLO/lockloss_probablity_LLO_{0}{1}.png'.format(rms_toggle, direction)) plt.savefig('/home/eric.coughlin/gitrepo/seismon/RfPrediction/plots/lockloss_probablity_LLO_{0}{1}.png'.format(rms_toggle, direction)) plt.clf()
gpl-3.0
zihua/scikit-learn
examples/decomposition/plot_pca_iris.py
65
1485
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= PCA example with Iris Data-set ========================================================= Principal Component Analysis applied to the Iris dataset. See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = plt.figure(1, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
huobaowangxi/scikit-learn
sklearn/metrics/ranking.py
75
25426
"""Metrics to assess performance on classification task given scores Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import csr_matrix from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.fixes import isclose from ..utils.fixes import bincount from ..utils.stats import rankdata from ..utils.sparsefuncs import count_nonzero from .base import _average_binary_score from .base import UndefinedMetricWarning def auc(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 See also -------- roc_auc_score : Computes the area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 if reorder: # reorder the data points according to the x axis and using y to # break ties order = np.lexsort((y, x)) x, y = x[order], y[order] else: dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) area = direction * np.trapz(y, x) return area def average_precision_score(y_true, y_score, average="macro", sample_weight=None): """Compute average precision (AP) from prediction scores This score corresponds to the area under the precision-recall curve. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average_precision : float References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ See also -------- roc_auc_score : Area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS 0.79... """ def _binary_average_precision(y_true, y_score, sample_weight=None): precision, recall, thresholds = precision_recall_curve( y_true, y_score, sample_weight=sample_weight) return auc(recall, precision) return _average_binary_score(_binary_average_precision, y_true, y_score, average, sample_weight=sample_weight) def roc_auc_score(y_true, y_score, average="macro", sample_weight=None): """Compute Area Under the Curve (AUC) from prediction scores Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ See also -------- average_precision_score : Area under the precision-recall curve roc_curve : Compute Receiver operating characteristic (ROC) Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 """ def _binary_roc_auc_score(y_true, y_score, sample_weight=None): if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, tresholds = roc_curve(y_true, y_score, sample_weight=sample_weight) return auc(fpr, tpr, reorder=True) return _average_binary_score( _binary_roc_auc_score, y_true, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fps : array, shape = [n_thresholds] A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : array, shape = [n_thresholds := len(np.unique(y_score))] An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : array, shape = [n_thresholds] Decreasing score values. """ check_consistent_length(y_true, y_score) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (np.all(classes == [0, 1]) or np.all(classes == [-1, 1]) or np.all(classes == [0]) or np.all(classes == [-1]) or np.all(classes == [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # We need to use isclose to avoid spurious repeated thresholds # stemming from floating point roundoff errors. distinct_value_indices = np.where(np.logical_not(isclose( np.diff(y_score), 0)))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = (y_true * weight).cumsum()[threshold_idxs] if sample_weight is not None: fps = weight.cumsum()[threshold_idxs] - tps else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] def precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. probas_pred : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds := len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def roc_curve(y_true, y_score, pos_label=None, sample_weight=None): """Compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class or confidence values. pos_label : int Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See also -------- roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) if tps.size == 0 or fps[0] != 0: # Add an extra threshold position if necessary tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds def label_ranking_average_precision_score(y_true, y_score): """Compute ranking-based average precision Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) \ # doctest: +ELLIPSIS 0.416... """ check_consistent_length(y_true, y_score) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formated array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. out += 1. continue scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') out += (L / rank).mean() return out / n_samples def coverage_error(y_true, y_score, sample_weight=None): """Coverage error measure Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : array, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) def label_ranking_loss(y_true, y_score, sample_weight=None): """Compute Ranking loss measure Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight)
bsd-3-clause
nikitasingh981/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
jlegendary/SimpleCV
scripts/install/win/OpenKinect/freenect-examples/demo_mp_async.py
15
1082
#!/usr/bin/env python import freenect import matplotlib.pyplot as mp import signal import frame_convert mp.ion() image_rgb = None image_depth = None keep_running = True def display_depth(dev, data, timestamp): global image_depth data = frame_convert.pretty_depth(data) mp.gray() mp.figure(1) if image_depth: image_depth.set_data(data) else: image_depth = mp.imshow(data, interpolation='nearest', animated=True) mp.draw() def display_rgb(dev, data, timestamp): global image_rgb mp.figure(2) if image_rgb: image_rgb.set_data(data) else: image_rgb = mp.imshow(data, interpolation='nearest', animated=True) mp.draw() def body(*args): if not keep_running: raise freenect.Kill def handler(signum, frame): global keep_running keep_running = False print('Press Ctrl-C in terminal to stop') signal.signal(signal.SIGINT, handler) freenect.runloop(depth=display_depth, video=display_rgb, body=body)
bsd-3-clause
robin-lai/scikit-learn
examples/ensemble/plot_voting_probas.py
316
2824
""" =========================================================== Plot class probabilities calculated by the VotingClassifier =========================================================== Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`LogisticRegression`, `GaussianNB`, and `RandomForestClassifier`) and used to initialize a soft-voting `VotingClassifier` with weights `[1, 1, 5]`, which means that the predicted probabilities of the `RandomForestClassifier` count 5 times as much as the weights of the other classifiers when the averaged probability is calculated. To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities for the first sample in this example dataset. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 5]) # predict class probabilities for all classifiers probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)] # get class probabilities for the first sample in the dataset class1_1 = [pr[0, 0] for pr in probas] class2_1 = [pr[0, 1] for pr in probas] # plotting N = 4 # number of groups ind = np.arange(N) # group positions width = 0.35 # bar width fig, ax = plt.subplots() # bars for classifier 1-3 p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color='green') p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width, color='lightgreen') # bars for VotingClassifier p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color='blue') p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width, color='steelblue') # plot annotations plt.axvline(2.8, color='k', linestyle='dashed') ax.set_xticks(ind + width) ax.set_xticklabels(['LogisticRegression\nweight 1', 'GaussianNB\nweight 1', 'RandomForestClassifier\nweight 5', 'VotingClassifier\n(average probabilities)'], rotation=40, ha='right') plt.ylim([0, 1]) plt.title('Class probabilities for sample 1 by different classifiers') plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left') plt.show()
bsd-3-clause
dmargala/tpcorr
examples/plot_acceptance_contours.py
1
3423
#!/usr/bin/env python import argparse import numpy as np import matplotlib as mpl mpl.use('Agg') mpl.rcParams.update({'font.size': 18}) mpl.rcParams.update({'savefig.dpi': 200}) mpl.rcParams.update({'savefig.bbox': 'tight'}) import matplotlib.pyplot as plt import scipy.interpolate import astropy.units as u import tpcorr def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--wlen', type=float, default=5400., help='Observing wavelength') args = parser.parse_args() # Observing wavelength wlen = args.wlen * u.Angstrom # Initialize telescope model sdss_25m = tpcorr.acceptance_model.Telescope() # psf fwhm fwhm0 = 1.5 * u.arcsec fwhm_array = np.array([1.2, 1.5, 1.8]) * u.arcsec linestyles = ['-.', 'solid', 'dashed'] # offset sampling grid dmin, dmax, nd = (0, 1.5, 50) offsets = np.linspace(dmin, dmax, nd) offset_std_grid, offset_grid = np.meshgrid(offsets, offsets) edges = np.linspace(dmin, dmax, nd + 1) # Levels for acceptance ratio contours acceptance_ratio_levels = np.linspace(0.5, 0.9, 3) # acceptance_ratio_levels_inverse = [1.0/l for l in acceptance_ratio_levels[::-1]] plt.figure(figsize=(8,6)) for i,(fwhm,linestyle) in enumerate(zip(fwhm_array,linestyles)): # Draw reference contours for Gaussian atmosphere psf = sdss_25m.get_atmospheric_psf(wlen, fwhm, gauss=True) acceptance = sdss_25m.calculate_fiber_acceptance(psf) # acceptance = tpcorr.acceptance_model.AcceptanceModel(fwhm) acceptance_ratio = acceptance(offset_std_grid) / acceptance(offset_grid) contours_ratio = plt.contour(offset_grid, offset_std_grid, acceptance_ratio, acceptance_ratio_levels, colors='green', linewidths=1, linestyles=linestyle) contours_ratio = plt.contour(offset_grid, offset_std_grid, acceptance_ratio, 1.0/acceptance_ratio_levels, colors='green', linewidths=1, linestyles=linestyle) # Draw reference contours for Kolmogorov atmosphere, use the reference fwhm psf = sdss_25m.get_atmospheric_psf(wlen, fwhm0, gauss=False) acceptance = sdss_25m.calculate_fiber_acceptance(psf) acceptance_ratio = acceptance(offset_std_grid) / acceptance(offset_grid) contours_ratio = plt.contour(offset_grid, offset_std_grid, acceptance_ratio, acceptance_ratio_levels, colors='black', linewidths=1, linestyles='solid') # Add contour labels plt.clabel(contours_ratio, fontsize=11, fmt=lambda l: '%.2f'%l) contours_ratio = plt.contour(offset_grid, offset_std_grid, acceptance_ratio, 1.0/acceptance_ratio_levels, colors='black', linewidths=1, linestyles='solid') # Add contour labels plt.clabel(contours_ratio, fontsize=11, fmt=lambda l: '%.2f'%l) # draw 1 to 1 line plt.plot(offsets, offsets, color='green', ls='-', lw=1) # Set aspect ratio and plot limits plt.gca().set_aspect('equal') plt.xlim(dmin, dmax) plt.ylim(dmin, dmax) # Add title and axis labels plt.xlabel(r'$d_i^\ast(\lambda,\lambda_i,h_\mathrm{obs})$ $(\mathrm{arcseconds})$') plt.ylabel(r'$d_i^\ast(\lambda,\lambda_c,h_\mathrm{obs})$ $(\mathrm{arcseconds})$') plt.title(r'$\lambda$ = %d $\AA$' % wlen.value) # Save figure plt.savefig('acceptance_contours.pdf') if __name__ == '__main__': main()
mit
zrhans/python
exemplos/Examples.lnk/bokeh/glyphs/anscombe.py
6
2961
from __future__ import print_function import numpy as np import pandas as pd from bokeh.browserlib import view from bokeh.document import Document from bokeh.embed import file_html from bokeh.models.glyphs import Circle, Line from bokeh.models import ( ColumnDataSource, Grid, GridPlot, LinearAxis, Plot, Range1d ) from bokeh.resources import INLINE raw_columns=[ [10.0, 8.04, 10.0, 9.14, 10.0, 7.46, 8.0, 6.58], [8.0, 6.95, 8.0, 8.14, 8.0, 6.77, 8.0, 5.76], [13.0, 7.58, 13.0, 8.74, 13.0, 12.74, 8.0, 7.71], [9.0, 8.81, 9.0, 8.77, 9.0, 7.11, 8.0, 8.84], [11.0, 8.33, 11.0, 9.26, 11.0, 7.81, 8.0, 8.47], [14.0, 9.96, 14.0, 8.10, 14.0, 8.84, 8.0, 7.04], [6.0, 7.24, 6.0, 6.13, 6.0, 6.08, 8.0, 5.25], [4.0, 4.26, 4.0, 3.10, 4.0, 5.39, 19.0, 12.5], [12.0, 10.84, 12.0, 9.13, 12.0, 8.15, 8.0, 5.56], [7.0, 4.82, 7.0, 7.26, 7.0, 6.42, 8.0, 7.91], [5.0, 5.68, 5.0, 4.74, 5.0, 5.73, 8.0, 6.89]] quartet = pd.DataFrame(data=raw_columns, columns= ['Ix','Iy','IIx','IIy','IIIx','IIIy','IVx','IVy']) circles_source = ColumnDataSource( data = dict( xi = quartet['Ix'], yi = quartet['Iy'], xii = quartet['IIx'], yii = quartet['IIy'], xiii = quartet['IIIx'], yiii = quartet['IIIy'], xiv = quartet['IVx'], yiv = quartet['IVy'], ) ) x = np.linspace(-0.5, 20.5, 10) y = 3 + 0.5 * x lines_source = ColumnDataSource(data=dict(x=x, y=y)) xdr = Range1d(start=-0.5, end=20.5) ydr = Range1d(start=-0.5, end=20.5) def make_plot(title, xname, yname): plot = Plot( x_range=xdr, y_range=ydr, title=title, plot_width=400, plot_height=400, border_fill='white', background_fill='#e9e0db' ) xaxis = LinearAxis(axis_line_color=None) plot.add_layout(xaxis, 'below') yaxis = LinearAxis(axis_line_color=None) plot.add_layout(yaxis, 'left') plot.add_layout(Grid(dimension=0, ticker=xaxis.ticker)) plot.add_layout(Grid(dimension=1, ticker=yaxis.ticker)) line = Line(x='x', y='y', line_color="#666699", line_width=2) plot.add_glyph(lines_source, line) circle = Circle( x=xname, y=yname, size=12, fill_color="#cc6633", line_color="#cc6633", fill_alpha=0.5 ) plot.add_glyph(circles_source, circle) return plot #where will this comment show up I = make_plot('I', 'xi', 'yi') II = make_plot('II', 'xii', 'yii') III = make_plot('III', 'xiii', 'yiii') IV = make_plot('IV', 'xiv', 'yiv') grid = GridPlot(children=[[I, II], [III, IV]], plot_width=800) doc = Document() doc.add(grid) if __name__ == "__main__": filename = "anscombe.html" with open(filename, "w") as f: f.write(file_html(doc, INLINE, "Anscombe's Quartet")) print("Wrote %s" % filename) view(filename)
gpl-2.0
actlea/TopicalCrawler
TopicalCrawl/TopicalCrawl/TopicalCrawl/classifier/build_dict.py
1
7498
#!/usr/bin/env python # encoding: utf-8 """ @version: ?? @author: phpergao @license: Apache Licence @file: build_dict.py @time: 16-4-13 上午11:38 """ from multiclassifier import zh_tokenize from base import read_text_src import json from math import log import cPickle import os from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer def dic_add(dic, key, cnt=1): if key in dic: dic[key] += cnt else: dic[key] = cnt def unicode2str(text): if isinstance(text, str): return text else: return text.encode('utf-8') def is_rarity_ok(Rmax, Rth, k, LDC, TFIDF, Tth): if LDC<Rmax and TFIDF>Rth: return True for i in range(1,k+1): if 2**(i-1)*Rmax<LDC<2**(i)*Rmax and TFIDF>Tth: return True return False def is_popularity_ok(Tth, Pmax, LDC, TFIDF): return TFIDF>Tth and LDC<Pmax def compute_tfidf(path, dest_dir, N=150): if not os.path.exists(dest_dir): os.mkdir(dest_dir) with open(path) as fr: lines = fr.read() lines = lines.splitlines() lines = [line.split('\t')[1] for line in lines] tok2tf = {} tok2idf = {} tok2tfidf = {} bgram2LDC = {} tok2LDC = {} popularity = {} rarity = {} for index, line in enumerate(lines): toks = zh_tokenize(line) #收集bgram词汇,统计两个词同时出现的频率 gram = 2 for i in range(len(toks) - gram + 1): bgram=tuple(toks[i:i + gram]) if bgram not in bgram2LDC: bgram2LDC[bgram]=1 # toks.append(tuple(toks[i:i + gram])) # 计算tf值 for tok in toks: dic_add(tok2tf, tok) tok2idf.setdefault(tok, set()).add(index) N = len(lines) #compute tf*idf for tok in tok2tf: Nt = len(tok2idf[tok]) tf = 1.0*tok2tf[tok] idf = log(N/Nt+0.01) weight = tf*idf tok2tfidf[tok] = weight tok2idf[tok] = idf # 计算联合出现的频率 for bgram, cnt in bgram2LDC.items(): left = bgram[0] right = bgram[1] dic_add(tok2LDC, left) dic_add(tok2LDC, right) for tok in tok2tf: if tok not in tok2LDC: tok2LDC[tok] = 1 #选择出现频率最高的前20%的词作为popularity tfidf_tmp = sorted(tok2tfidf.items(), key=lambda x:x[1], reverse=True) LDC_tmp = sorted(tok2LDC.items(), key=lambda x: x[1], reverse=True) ratio = N*1.0/len(tfidf_tmp) #选择尽可能不那么普遍的词 Tth = tfidf_tmp[int(len(tfidf_tmp)*ratio)][1] Pmax = LDC_tmp[int(len(LDC_tmp)*0.1)][1] popularity = {tok: freq for tok, freq in tok2tfidf.items() if is_popularity_ok(Tth, Pmax, tok2LDC[tok], freq)} Rth = tfidf_tmp[int(len(tfidf_tmp)*(1-ratio))][1] #在选择rarity时要求词频不得太小 Rmax = LDC_tmp[int(len(LDC_tmp)*(1-ratio))][1] rarity = {tok: freq for tok, freq in tok2tfidf.items() if is_rarity_ok(Tth, Pmax, 10, tok2LDC[tok], freq, Tth)} #求联合出现最多的词项 maxLDC = max(tok2LDC.values()) print 'maxLDC:', maxLDC cPickle.dump(tok2tf, open('%s/tok2tf.pkl' %dest_dir, 'wb'), -1) cPickle.dump(tok2idf, open('%s/tok2idf.pkl' %dest_dir, 'wb'), -1) cPickle.dump(bgram2LDC, open('%s/bgram2LDC.pkl' %dest_dir, 'wb'), -1) with open('%s/tok2tf.txt' %dest_dir, 'w') as fw: for tok, tf in tok2tf.items(): fw.write('%s\t%d\n' % (unicode2str(tok), tf)) with open('%s/popularity.txt' % dest_dir, 'w') as fw: for tok, tfidf in popularity.items(): fw.write('%s\t%d\n' % (unicode2str(tok), tfidf)) with open('%s/rarity.txt' % dest_dir, 'w') as fw: for tok, tfidf in rarity.items(): fw.write('%s\t%d\n' % (unicode2str(tok), tfidf)) cPickle.dump(tok2tfidf, open('%s/tok2tfidf.pkl' %dest_dir, 'wb'), -1) with open('%s/tok2tfidf.txt' %dest_dir, 'w') as fw: for tok, tfidf in tok2tfidf.items(): fw.write('%s\t%s\n' % (unicode2str(tok), str(tfidf))) #compute LDC cPickle.dump(tok2LDC, open('%s/tok2LDC.pkl' %dest_dir, 'wb'), -1) with open('%s/tok2LDC.txt' %dest_dir, 'w') as fw: for tok, LDC in tok2LDC.items(): fw.write('%s\t%s\n' % (unicode2str(tok), str(LDC))) from sklearn.feature_selection import SelectKBest, chi2 import numpy as np from sklearn.svm import LinearSVC from sklearn import metrics from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer def chi_feature_select(train_file, test_file): lines = read_text_src(train_file) lines = [x for x in lines if len(x)>1] X_train = [line[1] for line in lines] y_train = [line[0] for line in lines] lines = read_text_src(test_file) lines = [x for x in lines if len(x) > 1] X_test = [line[1] for line in lines] y_test = [line[0] for line in lines] vectorizer = TfidfVectorizer(tokenizer=zh_tokenize)#ngram_range=(1,2) X_train = vectorizer.fit_transform(X_train) X_test = vectorizer.transform(X_test) word = vectorizer.get_feature_names() N = X_train.shape[1] ch2 = SelectKBest(chi2, k=int(N*0.2)) #.fit_transform(X, y) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) feature_names = [word[i] for i in ch2.get_support(indices=True)] # # for i in feature_names: # print i.encode('utf-8') # feature_names = np.asarray(feature_names) # print feature_names clf = LinearSVC(penalty="l1", dual=False, tol=1e-3) clf.fit(X_train, y_train) pred = clf.predict(X_test) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) import lda def test_lda(train_file, out_file): lines = read_text_src(train_file) lines = [x for x in lines if len(x) > 1] X_train = [line[1] for line in lines] y_train = [line[0] for line in lines] # lines = read_text_src(test_file) # lines = [x for x in lines if len(x) > 1] # X_test = [line[1] for line in lines] # y_test = [line[0] for line in lines] vectorizer = CountVectorizer(tokenizer=zh_tokenize) # ngram_range=(1,2) X_train = vectorizer.fit_transform(X_train) # X_test = vectorizer.transform(X_test) vocab = vectorizer.get_feature_names() model = lda.LDA(n_topics=1, random_state=0, n_iter=1000) model.fit_transform(X_train, y_train) topic_word = model.components_ # model.components_ also works N = len(vocab) n_top_words = N*0.2 with open(out_file, 'w') as fw: for i, topic_dist in enumerate(topic_word): topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words + 1):-1] print '%d:%s' %(i, '\n'.join(topic_words)) data = '\n'.join(topic_words) data = data.encode('utf-8') fw.write('%s' %'\n'.join(topic_words)) if __name__=='__main__': path = '/mnt/UbutunShare/graduate/DataSet/document1.txt' # path = '/mnt/UbutunShare/graduate/DataSet/Big/C000008.txt' # path = '/mnt/UbutunShare/graduate/DataSet/Big/C000014.txt' path = '/mnt/UbutunShare/graduate/DataSet/Dic/tennis_news.txt' train_file = 'sample-data/train-6-zh.txt' test_file = 'sample-data/test-6-zh.txt' # compute_tfidf(path, 'tmp') # chi_feature_select(train_file, test_file) test_lda(path, 'tennis.txt') # test() # test_chi()
gpl-3.0
sangwook236/SWDT
sw_dev/python/rnd/test/language_processing/konlpy_test.py
2
6495
#!/usr/bin/env python # -*- coding: UTF-8 -*- # REF [site] >> # https://github.com/konlpy/konlpy # http://konlpy.org/ko/latest/ # http://konlpy.org/ko/latest/data/ # http://konlpy.org/ko/latest/references/ import os import konlpy import nltk import wordcloud import matplotlib.pyplot as plt # REF [site] >> http://konlpy.org/ko/latest/api/konlpy.tag def simple_kkma_example(): kkma = konlpy.tag.Kkma() print('kkma.tagset =', kkma.tagset) konlpy.utils.pprint(kkma.sentences('네, 안녕하세요. 반갑습니다.')) konlpy.utils.pprint(kkma.nouns('질문이나 건의사항은 깃헙 이슈 트래커에 남겨주세요.')) konlpy.utils.pprint(kkma.pos('오류보고는 실행환경, 에러메세지와함께 설명을 최대한상세히!^^')) konlpy.utils.pprint(kkma.pos('오루보고는 실행환경, 에러메세지와함께 설명을 최대한상세히!^^')) # A typo exists. print(kkma.sentences('그래도 계속 공부합니다. 재밌으니까!')) print(kkma.nouns('대학에서 DB, 통계학, 이산수학 등을 배웠지만...')) print(kkma.morphs('공부를 하면할수록 모르는게 많다는 것을 알게 됩니다.')) print(kkma.pos('다 까먹어버렸네요?ㅋㅋ')) # REF [site] >> http://konlpy.org/ko/latest/api/konlpy.tag def simple_hannanum_example(): hannanum = konlpy.tag.Hannanum() print('hannanum.tagset =', hannanum.tagset) print(hannanum.nouns('다람쥐 헌 쳇바퀴에 타고파')) print(hannanum.analyze('롯데마트의 흑마늘 양념 치킨이 논란이 되고 있다.')) print(hannanum.morphs('롯데마트의 흑마늘 양념 치킨이 논란이 되고 있다.')) print(hannanum.pos('웃으면 더 행복합니다!')) # REF [site] >> http://konlpy.org/ko/latest/api/konlpy.tag def simple_komoran_example(): # REF [file] >> ${konlpy_HOME}/konlpy/data/tagset/komoran.json """ In user_dic.txt: 코모란 NNP 오픈소스 NNG 바람과 함께 사라지다 NNP """ komoran = konlpy.tag.Komoran(userdic='./user_dic.txt') print('komoran.tagset =', komoran.tagset) print(komoran.nouns('오픈소스에 관심 많은 멋진 개발자님들!')) print(komoran.morphs('우왕 코모란도 오픈소스가 되었어요')) print(komoran.pos('혹시 바람과 함께 사라지다 봤어?')) # REF [site] >> http://konlpy.org/ko/latest/api/konlpy.tag def simple_mecab_example(): # Mecab is not supported on Windows. mecab = konlpy.tag.Mecab() print('mecab.tagset =', mecab.tagset) print(mecab.nouns('우리나라에는 무릎 치료를 잘하는 정형외과가 없는가!')) print(mecab.morphs('영등포구청역에 있는 맛집 좀 알려주세요.')) print(mecab.pos('자연주의 쇼핑몰은 어떤 곳인가?')) # REF [site] >> http://konlpy.org/ko/latest/api/konlpy.tag def simple_okt_example(): # Twitter() has changed to Okt() since v0.5.0. okt = konlpy.tag.Okt() print('okt.tagset =', okt.tagset) print(okt.phrases('날카로운 분석과 신뢰감 있는 진행으로')) print(okt.nouns('유일하게 항공기 체계 종합개발 경험을 갖고 있는 KAI는')) print(okt.morphs('단독입찰보다 복수입찰의 경우')) print(okt.pos('이것도 되나욬ㅋㅋ')) print(okt.pos('이것도 되나욬ㅋㅋ', norm=True)) print(okt.pos('이것도 되나욬ㅋㅋ', norm=True, stem=True)) # REF [site] >> http://konlpy.org/ko/latest/api/konlpy.corpus/ def simple_kolaw_corpus_example(): fids = konlpy.corpus.kolaw.fileids() print(fids) fobj = konlpy.corpus.kolaw.open(fids[0]) print(fobj.read(140)) c = konlpy.corpus.kolaw.open('constitution.txt').read() print(c[:10]) # REF [site] >> http://konlpy.org/ko/latest/data/ def simple_kobill_corpus_example(): fids = konlpy.corpus.kobill.fileids() print(fids) d = konlpy.corpus.kobill.open('1809890.txt').read() print(d[:15]) # REF [site] >> https://datascienceschool.net/view-notebook/70ce46db4ced4a999c6ec349df0f4eb0/ def integrate_with_nltk(): okt = konlpy.tag.Okt() c = konlpy.corpus.kolaw.open('constitution.txt').read() text = nltk.Text(okt.nouns(c), name='kolaw') #print(text.vocab()) #print(len(text.vocab().items())) #text.vocab().plot() text.plot(30) plt.show() # REF [doc] >> "Python 환경에서 한글 형태소 분석기 패키지 KoNLPy 사용법.pdf" def extract_bigram_or_trigram_with_nltk(): bigram_measures = nltk.collocations.BigramAssocMeasures() doc = konlpy.corpus.kolaw.open('constitution.txt').read() pos = konlpy.tag.Kkma().pos(doc) words = [s for s, t in pos] tags = [t for s, t in pos] print('\nCollocations among tagged words:') finder = nltk.collocations.BigramCollocationFinder.from_words(pos) konlpy.utils.pprint(finder.nbest(bigram_measures.pmi, 10)) # Top 10 n-grams with highest PMI. print('\nCollocations among words:') ignored_words = ['안녕'] finder = nltk.collocations.BigramCollocationFinder.from_words(words) finder.apply_word_filter(lambda w: len(w) < 2 or w in ignored_words) finder.apply_freq_filter(3) # Only bigrams that appear 3+ times. konlpy.utils.pprint(finder.nbest(bigram_measures.pmi, 10)) print('\nCollocations among tags:') finder = nltk.collocations.BigramCollocationFinder.from_words(tags) konlpy.utils.pprint(finder.nbest(bigram_measures.pmi, 5)) # REF [site] >> https://datascienceschool.net/view-notebook/70ce46db4ced4a999c6ec349df0f4eb0/ def integrate_with_wordcloud(): if 'posix' == os.name: system_font_dir_path = '/usr/share/fonts' font_base_dir_path = '/home/sangwook/work/font' else: system_font_dir_path = 'C:/Windows/Fonts' font_base_dir_path = 'D:/work/font' font_filepath = font_base_dir_path + '/kor/gulim.ttf' okt = konlpy.tag.Okt() c = konlpy.corpus.kolaw.open('constitution.txt').read() text = nltk.Text(okt.nouns(c), name='kolaw') wc = wordcloud.WordCloud(width=1000, height=600, background_color='white', font_path=font_filepath) plt.imshow(wc.generate_from_frequencies(text.vocab())) plt.axis('off') plt.show() def main(): # Initialize the Java virtual machine (JVM). #konlpy.jvm.init_jvm(jvmpath=None, max_heap_size=1024) #-------------------- #simple_kkma_example() #simple_hannanum_example() #simple_komoran_example() #simple_mecab_example() # Error. #simple_okt_example() #simple_kolaw_corpus_example() #simple_kobill_corpus_example() #-------------------- #integrate_with_nltk() extract_bigram_or_trigram_with_nltk() #integrate_with_wordcloud() #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-3.0
cloud-fan/spark
python/pyspark/pandas/tests/test_series_datetime.py
15
10917
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import unittest import numpy as np import pandas as pd from pyspark import pandas as ps from pyspark.testing.pandasutils import PandasOnSparkTestCase from pyspark.testing.sqlutils import SQLTestUtils class SeriesDateTimeTest(PandasOnSparkTestCase, SQLTestUtils): @property def pdf1(self): date1 = pd.Series(pd.date_range("2012-1-1 12:45:31", periods=3, freq="M")) date2 = pd.Series(pd.date_range("2013-3-11 21:45:00", periods=3, freq="W")) return pd.DataFrame(dict(start_date=date1, end_date=date2)) @property def pd_start_date(self): return self.pdf1["start_date"] @property def ks_start_date(self): return ps.from_pandas(self.pd_start_date) def check_func(self, func): self.assert_eq(func(self.ks_start_date), func(self.pd_start_date)) def test_timestamp_subtraction(self): pdf = self.pdf1 psdf = ps.from_pandas(pdf) # Those fail in certain OSs presumably due to different # timezone behaviours inherited from C library. actual = (psdf["end_date"] - psdf["start_date"] - 1).to_pandas() expected = (pdf["end_date"] - pdf["start_date"]) // np.timedelta64(1, "s") - 1 # self.assert_eq(actual, expected) actual = (psdf["end_date"] - pd.Timestamp("2012-1-1 12:45:31") - 1).to_pandas() expected = (pdf["end_date"] - pd.Timestamp("2012-1-1 12:45:31")) // np.timedelta64( 1, "s" ) - 1 # self.assert_eq(actual, expected) actual = (pd.Timestamp("2013-3-11 21:45:00") - psdf["start_date"] - 1).to_pandas() expected = (pd.Timestamp("2013-3-11 21:45:00") - pdf["start_date"]) // np.timedelta64( 1, "s" ) - 1 # self.assert_eq(actual, expected) psdf = ps.DataFrame( {"a": pd.date_range("2016-12-31", "2017-01-08", freq="D"), "b": pd.Series(range(9))} ) expected_error_message = "datetime subtraction can only be applied to datetime series." with self.assertRaisesRegex(TypeError, expected_error_message): psdf["a"] - psdf["b"] with self.assertRaisesRegex(TypeError, expected_error_message): psdf["a"] - 1 with self.assertRaisesRegex(TypeError, expected_error_message): 1 - psdf["a"] def test_arithmetic_op_exceptions(self): psser = self.ks_start_date py_datetime = self.pd_start_date.dt.to_pydatetime() datetime_index = ps.Index(self.pd_start_date) for other in [1, 0.1, psser, datetime_index, py_datetime]: expected_err_msg = "Addition can not be applied to datetimes." self.assertRaisesRegex(TypeError, expected_err_msg, lambda: psser + other) self.assertRaisesRegex(TypeError, expected_err_msg, lambda: other + psser) expected_err_msg = "Multiplication can not be applied to datetimes." self.assertRaisesRegex(TypeError, expected_err_msg, lambda: psser * other) self.assertRaisesRegex(TypeError, expected_err_msg, lambda: other * psser) expected_err_msg = "True division can not be applied to datetimes." self.assertRaisesRegex(TypeError, expected_err_msg, lambda: psser / other) self.assertRaisesRegex(TypeError, expected_err_msg, lambda: other / psser) expected_err_msg = "Floor division can not be applied to datetimes." self.assertRaisesRegex(TypeError, expected_err_msg, lambda: psser // other) self.assertRaisesRegex(TypeError, expected_err_msg, lambda: other // psser) expected_err_msg = "Modulo can not be applied to datetimes." self.assertRaisesRegex(TypeError, expected_err_msg, lambda: psser % other) self.assertRaisesRegex(TypeError, expected_err_msg, lambda: other % psser) expected_err_msg = "datetime subtraction can only be applied to datetime series." for other in [1, 0.1]: self.assertRaisesRegex(TypeError, expected_err_msg, lambda: psser - other) self.assertRaisesRegex(TypeError, expected_err_msg, lambda: other - psser) self.assertRaisesRegex(TypeError, expected_err_msg, lambda: psser - other) self.assertRaises(NotImplementedError, lambda: py_datetime - psser) def test_date_subtraction(self): pdf = self.pdf1 psdf = ps.from_pandas(pdf) self.assert_eq( psdf["end_date"].dt.date - psdf["start_date"].dt.date, (pdf["end_date"].dt.date - pdf["start_date"].dt.date).dt.days, ) self.assert_eq( psdf["end_date"].dt.date - datetime.date(2012, 1, 1), (pdf["end_date"].dt.date - datetime.date(2012, 1, 1)).dt.days, ) self.assert_eq( datetime.date(2013, 3, 11) - psdf["start_date"].dt.date, (datetime.date(2013, 3, 11) - pdf["start_date"].dt.date).dt.days, ) psdf = ps.DataFrame( {"a": pd.date_range("2016-12-31", "2017-01-08", freq="D"), "b": pd.Series(range(9))} ) expected_error_message = "date subtraction can only be applied to date series." with self.assertRaisesRegex(TypeError, expected_error_message): psdf["a"].dt.date - psdf["b"] with self.assertRaisesRegex(TypeError, expected_error_message): psdf["a"].dt.date - 1 with self.assertRaisesRegex(TypeError, expected_error_message): 1 - psdf["a"].dt.date @unittest.skip( "It fails in certain OSs presumably due to different " "timezone behaviours inherited from C library." ) def test_div(self): pdf = self.pdf1 psdf = ps.from_pandas(pdf) for u in "D", "s", "ms": duration = np.timedelta64(1, u) self.assert_eq( (psdf["end_date"] - psdf["start_date"]) / duration, (pdf["end_date"] - pdf["start_date"]) / duration, ) @unittest.skip("It is currently failed probably for the same reason in 'test_subtraction'") def test_date(self): self.check_func(lambda x: x.dt.date) def test_time(self): with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.dt.time) def test_timetz(self): with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.dt.timetz) def test_year(self): self.check_func(lambda x: x.dt.year) def test_month(self): self.check_func(lambda x: x.dt.month) def test_day(self): self.check_func(lambda x: x.dt.day) def test_hour(self): self.check_func(lambda x: x.dt.hour) def test_minute(self): self.check_func(lambda x: x.dt.minute) def test_second(self): self.check_func(lambda x: x.dt.second) def test_microsecond(self): self.check_func(lambda x: x.dt.microsecond) def test_nanosecond(self): with self.assertRaises(NotImplementedError): self.check_func(lambda x: x.dt.nanosecond) def test_week(self): self.check_func(lambda x: x.dt.week) def test_weekofyear(self): self.check_func(lambda x: x.dt.weekofyear) def test_dayofweek(self): self.check_func(lambda x: x.dt.dayofweek) def test_weekday(self): self.check_func(lambda x: x.dt.weekday) def test_dayofyear(self): self.check_func(lambda x: x.dt.dayofyear) def test_quarter(self): self.check_func(lambda x: x.dt.dayofyear) def test_is_month_start(self): self.check_func(lambda x: x.dt.is_month_start) def test_is_month_end(self): self.check_func(lambda x: x.dt.is_month_end) def test_is_quarter_start(self): self.check_func(lambda x: x.dt.is_quarter_start) def test_is_quarter_end(self): self.check_func(lambda x: x.dt.is_quarter_end) def test_is_year_start(self): self.check_func(lambda x: x.dt.is_year_start) def test_is_year_end(self): self.check_func(lambda x: x.dt.is_year_end) def test_is_leap_year(self): self.check_func(lambda x: x.dt.is_leap_year) def test_daysinmonth(self): self.check_func(lambda x: x.dt.daysinmonth) def test_days_in_month(self): self.check_func(lambda x: x.dt.days_in_month) @unittest.expectedFailure def test_tz_localize(self): self.check_func(lambda x: x.dt.tz_localize("America/New_York")) @unittest.expectedFailure def test_tz_convert(self): self.check_func(lambda x: x.dt.tz_convert("America/New_York")) def test_normalize(self): self.check_func(lambda x: x.dt.normalize()) def test_strftime(self): self.check_func(lambda x: x.dt.strftime("%Y-%m-%d")) def test_round(self): self.check_func(lambda x: x.dt.round(freq="min")) self.check_func(lambda x: x.dt.round(freq="H")) def test_floor(self): self.check_func(lambda x: x.dt.floor(freq="min")) self.check_func(lambda x: x.dt.floor(freq="H")) def test_ceil(self): self.check_func(lambda x: x.dt.floor(freq="min")) self.check_func(lambda x: x.dt.floor(freq="H")) @unittest.skip("Unsupported locale setting") def test_month_name(self): self.check_func(lambda x: x.dt.month_name()) self.check_func(lambda x: x.dt.month_name(locale="en_US.UTF-8")) @unittest.skip("Unsupported locale setting") def test_day_name(self): self.check_func(lambda x: x.dt.day_name()) self.check_func(lambda x: x.dt.day_name(locale="en_US.UTF-8")) def test_unsupported_type(self): self.assertRaisesRegex( ValueError, "Cannot call DatetimeMethods on type LongType", lambda: ps.Series([0]).dt ) if __name__ == "__main__": from pyspark.pandas.tests.test_series_datetime import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
zzcclp/spark
python/pyspark/pandas/base.py
6
56113
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Base and utility classes for pandas-on-Spark objects. """ from abc import ABCMeta, abstractmethod from functools import wraps, partial from itertools import chain from typing import Any, Callable, Optional, Sequence, Tuple, Union, cast, TYPE_CHECKING import numpy as np import pandas as pd # noqa: F401 from pandas.api.types import is_list_like, CategoricalDtype from pyspark.sql import functions as F, Column, Window from pyspark.sql.types import ( DoubleType, FloatType, LongType, ) from pyspark import pandas as ps # For running doctests and reference resolution in PyCharm. from pyspark.pandas._typing import Axis, Dtype, IndexOpsLike, Label, SeriesOrIndex from pyspark.pandas.config import get_option, option_context from pyspark.pandas.internal import ( InternalField, InternalFrame, NATURAL_ORDER_COLUMN_NAME, SPARK_DEFAULT_INDEX_NAME, ) from pyspark.pandas.spark import functions as SF from pyspark.pandas.spark.accessors import SparkIndexOpsMethods from pyspark.pandas.typedef import extension_dtypes from pyspark.pandas.utils import ( combine_frames, same_anchor, scol_for, validate_axis, ERROR_MESSAGE_CANNOT_COMBINE, ) from pyspark.pandas.frame import DataFrame if TYPE_CHECKING: from pyspark.sql._typing import ColumnOrName # noqa: F401 (SPARK-34943) from pyspark.pandas.data_type_ops.base import DataTypeOps # noqa: F401 (SPARK-34943) from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) def should_alignment_for_column_op(self: SeriesOrIndex, other: SeriesOrIndex) -> bool: from pyspark.pandas.series import Series if isinstance(self, Series) and isinstance(other, Series): return not same_anchor(self, other) else: return self._internal.spark_frame is not other._internal.spark_frame def align_diff_index_ops( func: Callable[..., Column], this_index_ops: SeriesOrIndex, *args: Any ) -> SeriesOrIndex: """ Align the `IndexOpsMixin` objects and apply the function. Parameters ---------- func : The function to apply this_index_ops : IndexOpsMixin A base `IndexOpsMixin` object args : list of other arguments including other `IndexOpsMixin` objects Returns ------- `Index` if all `this_index_ops` and arguments are `Index`; otherwise `Series` """ from pyspark.pandas.indexes import Index from pyspark.pandas.series import Series, first_series cols = [arg for arg in args if isinstance(arg, IndexOpsMixin)] if isinstance(this_index_ops, Series) and all(isinstance(col, Series) for col in cols): combined = combine_frames( this_index_ops.to_frame(), *[cast(Series, col).rename(i) for i, col in enumerate(cols)], how="full" ) return column_op(func)( combined["this"]._psser_for(combined["this"]._internal.column_labels[0]), *[ combined["that"]._psser_for(label) for label in combined["that"]._internal.column_labels ] ).rename(this_index_ops.name) else: # This could cause as many counts, reset_index calls, joins for combining # as the number of `Index`s in `args`. So far it's fine since we can assume the ops # only work between at most two `Index`s. We might need to fix it in the future. self_len = len(this_index_ops) if any(len(col) != self_len for col in args if isinstance(col, IndexOpsMixin)): raise ValueError("operands could not be broadcast together with shapes") with option_context("compute.default_index_type", "distributed-sequence"): if isinstance(this_index_ops, Index) and all(isinstance(col, Index) for col in cols): return Index( column_op(func)( this_index_ops.to_series().reset_index(drop=True), *[ arg.to_series().reset_index(drop=True) if isinstance(arg, Index) else arg for arg in args ] ).sort_index(), name=this_index_ops.name, ) elif isinstance(this_index_ops, Series): this = cast(DataFrame, this_index_ops.reset_index()) that = [ cast(Series, col.to_series() if isinstance(col, Index) else col) .rename(i) .reset_index(drop=True) for i, col in enumerate(cols) ] combined = combine_frames(this, *that, how="full").sort_index() combined = combined.set_index( combined._internal.column_labels[: this_index_ops._internal.index_level] ) combined.index.names = this_index_ops._internal.index_names return column_op(func)( first_series(combined["this"]), *[ combined["that"]._psser_for(label) for label in combined["that"]._internal.column_labels ] ).rename(this_index_ops.name) else: this = cast(Index, this_index_ops).to_frame().reset_index(drop=True) that_series = next(col for col in cols if isinstance(col, Series)) that_frame = that_series._psdf[ [ cast(Series, col.to_series() if isinstance(col, Index) else col).rename(i) for i, col in enumerate(cols) ] ] combined = combine_frames(this, that_frame.reset_index()).sort_index() self_index = ( combined["this"].set_index(combined["this"]._internal.column_labels).index ) other = combined["that"].set_index( combined["that"]._internal.column_labels[: that_series._internal.index_level] ) other.index.names = that_series._internal.index_names return column_op(func)( self_index, *[ other._psser_for(label) for label, col in zip(other._internal.column_labels, cols) ] ).rename(that_series.name) def booleanize_null(scol: Column, f: Callable[..., Column]) -> Column: """ Booleanize Null in Spark Column """ comp_ops = [ getattr(Column, "__{}__".format(comp_op)) for comp_op in ["eq", "ne", "lt", "le", "ge", "gt"] ] if f in comp_ops: # if `f` is "!=", fill null with True otherwise False filler = f == Column.__ne__ scol = F.when(scol.isNull(), filler).otherwise(scol) return scol def column_op(f: Callable[..., Column]) -> Callable[..., SeriesOrIndex]: """ A decorator that wraps APIs taking/returning Spark Column so that pandas-on-Spark Series can be supported too. If this decorator is used for the `f` function that takes Spark Column and returns Spark Column, decorated `f` takes pandas-on-Spark Series as well and returns pandas-on-Spark Series. :param f: a function that takes Spark Column and returns Spark Column. :param self: pandas-on-Spark Series :param args: arguments that the function `f` takes. """ @wraps(f) def wrapper(self: SeriesOrIndex, *args: Any) -> SeriesOrIndex: from pyspark.pandas.indexes.base import Index from pyspark.pandas.series import Series # It is possible for the function `f` takes other arguments than Spark Column. # To cover this case, explicitly check if the argument is pandas-on-Spark Series and # extract Spark Column. For other arguments, they are used as are. cols = [arg for arg in args if isinstance(arg, (Series, Index))] if all(not should_alignment_for_column_op(self, col) for col in cols): # Same DataFrame anchors scol = f( self.spark.column, *[arg.spark.column if isinstance(arg, IndexOpsMixin) else arg for arg in args] ) field = InternalField.from_struct_field( self._internal.spark_frame.select(scol).schema[0], use_extension_dtypes=any( isinstance(col.dtype, extension_dtypes) for col in [self] + cols ), ) if not field.is_extension_dtype: scol = booleanize_null(scol, f).alias(field.name) if isinstance(self, Series) or not any(isinstance(col, Series) for col in cols): index_ops = self._with_new_scol(scol, field=field) else: psser = next(col for col in cols if isinstance(col, Series)) index_ops = psser._with_new_scol(scol, field=field) elif get_option("compute.ops_on_diff_frames"): index_ops = align_diff_index_ops(f, self, *args) else: raise ValueError(ERROR_MESSAGE_CANNOT_COMBINE) if not all(self.name == col.name for col in cols): index_ops = index_ops.rename(None) return index_ops return wrapper def numpy_column_op(f: Callable[..., Column]) -> Callable[..., SeriesOrIndex]: @wraps(f) def wrapper(self: SeriesOrIndex, *args: Any) -> SeriesOrIndex: # PySpark does not support NumPy type out of the box. For now, we convert NumPy types # into some primitive types understandable in PySpark. new_args = [] for arg in args: # TODO: This is a quick hack to support NumPy type. We should revisit this. if isinstance(self.spark.data_type, LongType) and isinstance(arg, np.timedelta64): new_args.append(float(arg / np.timedelta64(1, "s"))) else: new_args.append(arg) return column_op(f)(self, *new_args) return wrapper class IndexOpsMixin(object, metaclass=ABCMeta): """common ops mixin to support a unified interface / docs for Series / Index Assuming there are following attributes or properties and function. """ @property @abstractmethod def _internal(self) -> InternalFrame: pass @property @abstractmethod def _psdf(self) -> DataFrame: pass @abstractmethod def _with_new_scol( self: IndexOpsLike, scol: Column, *, field: Optional[InternalField] = None ) -> IndexOpsLike: pass @property @abstractmethod def _column_label(self) -> Optional[Label]: pass @property @abstractmethod def spark(self: IndexOpsLike) -> SparkIndexOpsMethods[IndexOpsLike]: pass @property def _dtype_op(self) -> "DataTypeOps": from pyspark.pandas.data_type_ops.base import DataTypeOps return DataTypeOps(self.dtype, self.spark.data_type) @abstractmethod def copy(self: IndexOpsLike) -> IndexOpsLike: pass # arithmetic operators def __neg__(self: IndexOpsLike) -> IndexOpsLike: return self._dtype_op.neg(self) def __add__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.add(self, other) def __sub__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.sub(self, other) def __mul__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.mul(self, other) def __truediv__(self, other: Any) -> SeriesOrIndex: """ __truediv__ has different behaviour between pandas and PySpark for several cases. 1. When divide np.inf by zero, PySpark returns null whereas pandas returns np.inf 2. When divide positive number by zero, PySpark returns null whereas pandas returns np.inf 3. When divide -np.inf by zero, PySpark returns null whereas pandas returns -np.inf 4. When divide negative number by zero, PySpark returns null whereas pandas returns -np.inf +-------------------------------------------+ | dividend (divisor: 0) | PySpark | pandas | |-----------------------|---------|---------| | np.inf | null | np.inf | | -np.inf | null | -np.inf | | 10 | null | np.inf | | -10 | null | -np.inf | +-----------------------|---------|---------+ """ return self._dtype_op.truediv(self, other) def __mod__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.mod(self, other) def __radd__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.radd(self, other) def __rsub__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rsub(self, other) def __rmul__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rmul(self, other) def __rtruediv__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rtruediv(self, other) def __floordiv__(self, other: Any) -> SeriesOrIndex: """ __floordiv__ has different behaviour between pandas and PySpark for several cases. 1. When divide np.inf by zero, PySpark returns null whereas pandas returns np.inf 2. When divide positive number by zero, PySpark returns null whereas pandas returns np.inf 3. When divide -np.inf by zero, PySpark returns null whereas pandas returns -np.inf 4. When divide negative number by zero, PySpark returns null whereas pandas returns -np.inf +-------------------------------------------+ | dividend (divisor: 0) | PySpark | pandas | |-----------------------|---------|---------| | np.inf | null | np.inf | | -np.inf | null | -np.inf | | 10 | null | np.inf | | -10 | null | -np.inf | +-----------------------|---------|---------+ """ return self._dtype_op.floordiv(self, other) def __rfloordiv__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rfloordiv(self, other) def __rmod__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rmod(self, other) def __pow__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.pow(self, other) def __rpow__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rpow(self, other) def __abs__(self: IndexOpsLike) -> IndexOpsLike: return self._dtype_op.abs(self) # comparison operators def __eq__(self, other: Any) -> SeriesOrIndex: # type: ignore[override] return self._dtype_op.eq(self, other) def __ne__(self, other: Any) -> SeriesOrIndex: # type: ignore[override] return self._dtype_op.ne(self, other) def __lt__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.lt(self, other) def __le__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.le(self, other) def __ge__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.ge(self, other) def __gt__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.gt(self, other) def __invert__(self: IndexOpsLike) -> IndexOpsLike: return self._dtype_op.invert(self) # `and`, `or`, `not` cannot be overloaded in Python, # so use bitwise operators as boolean operators def __and__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.__and__(self, other) def __or__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.__or__(self, other) def __rand__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rand(self, other) def __ror__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.ror(self, other) def __len__(self) -> int: return len(self._psdf) # NDArray Compat def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ) -> SeriesOrIndex: from pyspark.pandas import numpy_compat # Try dunder methods first. result = numpy_compat.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) # After that, we try with PySpark APIs. if result is NotImplemented: result = numpy_compat.maybe_dispatch_ufunc_to_spark_func( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return cast(SeriesOrIndex, result) else: # TODO: support more APIs? raise NotImplementedError( "pandas-on-Spark objects currently do not support %s." % ufunc ) @property def dtype(self) -> Dtype: """Return the dtype object of the underlying data. Examples -------- >>> s = ps.Series([1, 2, 3]) >>> s.dtype dtype('int64') >>> s = ps.Series(list('abc')) >>> s.dtype dtype('O') >>> s = ps.Series(pd.date_range('20130101', periods=3)) >>> s.dtype dtype('<M8[ns]') >>> s.rename("a").to_frame().set_index("a").index.dtype dtype('<M8[ns]') """ return self._internal.data_fields[0].dtype @property def empty(self) -> bool: """ Returns true if the current object is empty. Otherwise, returns false. >>> ps.range(10).id.empty False >>> ps.range(0).id.empty True >>> ps.DataFrame({}, index=list('abc')).index.empty False """ return self._internal.resolved_copy.spark_frame.rdd.isEmpty() @property def hasnans(self) -> bool: """ Return True if it has any missing values. Otherwise, it returns False. >>> ps.DataFrame({}, index=list('abc')).index.hasnans False >>> ps.Series(['a', None]).hasnans True >>> ps.Series([1.0, 2.0, np.nan]).hasnans True >>> ps.Series([1, 2, 3]).hasnans False >>> (ps.Series([1.0, 2.0, np.nan]) + 1).hasnans True >>> ps.Series([1, 2, 3]).rename("a").to_frame().set_index("a").index.hasnans False """ sdf = self._internal.spark_frame scol = self.spark.column if isinstance(self.spark.data_type, (DoubleType, FloatType)): return sdf.select(F.max(scol.isNull() | F.isnan(scol))).collect()[0][0] else: return sdf.select(F.max(scol.isNull())).collect()[0][0] @property def is_monotonic(self) -> bool: """ Return boolean if values in the object are monotonically increasing. .. note:: the current implementation of is_monotonic requires to shuffle and aggregate multiple times to check the order locally and globally, which is potentially expensive. In case of multi-index, all data are transferred to single node which can easily cause out-of-memory error currently. .. note:: Disable the Spark config `spark.sql.optimizer.nestedSchemaPruning.enabled` for multi-index if you're using pandas-on-Spark < 1.7.0 with PySpark 3.1.1. Returns ------- is_monotonic : bool Examples -------- >>> ser = ps.Series(['1/1/2018', '3/1/2018', '4/1/2018']) >>> ser.is_monotonic True >>> df = ps.DataFrame({'dates': [None, '1/1/2018', '2/1/2018', '3/1/2018']}) >>> df.dates.is_monotonic False >>> df.index.is_monotonic True >>> ser = ps.Series([1]) >>> ser.is_monotonic True >>> ser = ps.Series([]) >>> ser.is_monotonic True >>> ser.rename("a").to_frame().set_index("a").index.is_monotonic True >>> ser = ps.Series([5, 4, 3, 2, 1], index=[1, 2, 3, 4, 5]) >>> ser.is_monotonic False >>> ser.index.is_monotonic True Support for MultiIndex >>> midx = ps.MultiIndex.from_tuples( ... [('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')], ) >>> midx.is_monotonic True >>> midx = ps.MultiIndex.from_tuples( ... [('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')], ) >>> midx.is_monotonic False """ return self._is_monotonic("increasing") is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self) -> bool: """ Return boolean if values in the object are monotonically decreasing. .. note:: the current implementation of is_monotonic_decreasing requires to shuffle and aggregate multiple times to check the order locally and globally, which is potentially expensive. In case of multi-index, all data are transferred to single node which can easily cause out-of-memory error currently. .. note:: Disable the Spark config `spark.sql.optimizer.nestedSchemaPruning.enabled` for multi-index if you're using pandas-on-Spark < 1.7.0 with PySpark 3.1.1. Returns ------- is_monotonic : bool Examples -------- >>> ser = ps.Series(['4/1/2018', '3/1/2018', '1/1/2018']) >>> ser.is_monotonic_decreasing True >>> df = ps.DataFrame({'dates': [None, '3/1/2018', '2/1/2018', '1/1/2018']}) >>> df.dates.is_monotonic_decreasing False >>> df.index.is_monotonic_decreasing False >>> ser = ps.Series([1]) >>> ser.is_monotonic_decreasing True >>> ser = ps.Series([]) >>> ser.is_monotonic_decreasing True >>> ser.rename("a").to_frame().set_index("a").index.is_monotonic_decreasing True >>> ser = ps.Series([5, 4, 3, 2, 1], index=[1, 2, 3, 4, 5]) >>> ser.is_monotonic_decreasing True >>> ser.index.is_monotonic_decreasing False Support for MultiIndex >>> midx = ps.MultiIndex.from_tuples( ... [('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')], ) >>> midx.is_monotonic_decreasing False >>> midx = ps.MultiIndex.from_tuples( ... [('z', 'e'), ('z', 'd'), ('y', 'c'), ('y', 'b'), ('x', 'a')]) >>> midx # doctest: +SKIP MultiIndex([('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')], ) >>> midx.is_monotonic_decreasing True """ return self._is_monotonic("decreasing") def _is_locally_monotonic_spark_column(self, order: str) -> Column: window = ( Window.partitionBy(F.col("__partition_id")) .orderBy(NATURAL_ORDER_COLUMN_NAME) .rowsBetween(-1, -1) ) if order == "increasing": return (F.col("__origin") >= F.lag(F.col("__origin"), 1).over(window)) & F.col( "__origin" ).isNotNull() else: return (F.col("__origin") <= F.lag(F.col("__origin"), 1).over(window)) & F.col( "__origin" ).isNotNull() def _is_monotonic(self, order: str) -> bool: assert order in ("increasing", "decreasing") sdf = self._internal.spark_frame sdf = ( sdf.select( F.spark_partition_id().alias( "__partition_id" ), # Make sure we use the same partition id in the whole job. F.col(NATURAL_ORDER_COLUMN_NAME), self.spark.column.alias("__origin"), ) .select( F.col("__partition_id"), F.col("__origin"), self._is_locally_monotonic_spark_column(order).alias( "__comparison_within_partition" ), ) .groupby(F.col("__partition_id")) .agg( F.min(F.col("__origin")).alias("__partition_min"), F.max(F.col("__origin")).alias("__partition_max"), F.min(F.coalesce(F.col("__comparison_within_partition"), SF.lit(True))).alias( "__comparison_within_partition" ), ) ) # Now we're windowing the aggregation results without partition specification. # The number of rows here will be as the same of partitions, which is expected # to be small. window = Window.orderBy(F.col("__partition_id")).rowsBetween(-1, -1) if order == "increasing": comparison_col = F.col("__partition_min") >= F.lag(F.col("__partition_max"), 1).over( window ) else: comparison_col = F.col("__partition_min") <= F.lag(F.col("__partition_max"), 1).over( window ) sdf = sdf.select( comparison_col.alias("__comparison_between_partitions"), F.col("__comparison_within_partition"), ) ret = sdf.select( F.min(F.coalesce(F.col("__comparison_between_partitions"), SF.lit(True))) & F.min(F.coalesce(F.col("__comparison_within_partition"), SF.lit(True))) ).collect()[0][0] if ret is None: return True else: return ret @property def ndim(self) -> int: """ Return an int representing the number of array dimensions. Return 1 for Series / Index / MultiIndex. Examples -------- For Series >>> s = ps.Series([None, 1, 2, 3, 4], index=[4, 5, 2, 1, 8]) >>> s.ndim 1 For Index >>> s.index.ndim 1 For MultiIndex >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [1, 1, 1, 1, 1, 2, 1, 2, 2]]) >>> s = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) >>> s.index.ndim 1 """ return 1 def astype(self: IndexOpsLike, dtype: Union[str, type, Dtype]) -> IndexOpsLike: """ Cast a pandas-on-Spark object to a specified dtype ``dtype``. Parameters ---------- dtype : data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. Examples -------- >>> ser = ps.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64 >>> ser.rename("a").to_frame().set_index("a").index.astype('int64') Int64Index([1, 2], dtype='int64', name='a') """ return self._dtype_op.astype(self, dtype) def isin(self: IndexOpsLike, values: Sequence[Any]) -> IndexOpsLike: """ Check whether `values` are contained in Series or Index. Return a boolean Series or Index showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Returns ------- isin : Series (bool dtype) or Index (bool dtype) Examples -------- >>> s = ps.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool >>> s.rename("a").to_frame().set_index("a").index.isin(['lama']) Index([True, False, True, False, True, False], dtype='object', name='a') """ if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed" " to isin(), you passed a [{values_type}]".format(values_type=type(values).__name__) ) values = values.tolist() if isinstance(values, np.ndarray) else list(values) return self._with_new_scol(self.spark.column.isin([SF.lit(v) for v in values])) def isnull(self: IndexOpsLike) -> IndexOpsLike: """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). Returns ------- Series or Index : Mask of bool values for each element in Series that indicates whether an element is not an NA value. Examples -------- >>> ser = ps.Series([5, 6, np.NaN]) >>> ser.isna() # doctest: +NORMALIZE_WHITESPACE 0 False 1 False 2 True dtype: bool >>> ser.rename("a").to_frame().set_index("a").index.isna() Index([False, False, True], dtype='object', name='a') """ from pyspark.pandas.indexes import MultiIndex if isinstance(self, MultiIndex): raise NotImplementedError("isna is not defined for MultiIndex") return self._dtype_op.isnull(self) isna = isnull def notnull(self: IndexOpsLike) -> IndexOpsLike: """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values. Returns ------- Series or Index : Mask of bool values for each element in Series that indicates whether an element is not an NA value. Examples -------- Show which entries in a Series are not NA. >>> ser = ps.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool >>> ser.rename("a").to_frame().set_index("a").index.notna() Index([True, True, False], dtype='object', name='a') """ from pyspark.pandas.indexes import MultiIndex if isinstance(self, MultiIndex): raise NotImplementedError("notna is not defined for MultiIndex") return (~self.isnull()).rename(self.name) # type: ignore notna = notnull # TODO: axis, skipna, and many arguments should be implemented. def all(self, axis: Axis = 0) -> bool: """ Return whether all elements are True. Returns True unless there at least one element within a series that is False or equivalent (e.g. zero or empty) Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- >>> ps.Series([True, True]).all() True >>> ps.Series([True, False]).all() False >>> ps.Series([0, 1]).all() False >>> ps.Series([1, 2, 3]).all() True >>> ps.Series([True, True, None]).all() True >>> ps.Series([True, False, None]).all() False >>> ps.Series([]).all() True >>> ps.Series([np.nan]).all() True >>> df = ps.Series([True, False, None]).rename("a").to_frame() >>> df.set_index("a").index.all() False """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') sdf = self._internal.spark_frame.select(self.spark.column) col = scol_for(sdf, sdf.columns[0]) # Note that we're ignoring `None`s here for now. # any and every was added as of Spark 3.0 # ret = sdf.select(F.expr("every(CAST(`%s` AS BOOLEAN))" % sdf.columns[0])).collect()[0][0] # Here we use min as its alternative: ret = sdf.select(F.min(F.coalesce(col.cast("boolean"), SF.lit(True)))).collect()[0][0] if ret is None: return True else: return ret # TODO: axis, skipna, and many arguments should be implemented. def any(self, axis: Axis = 0) -> bool: """ Return whether any element is True. Returns False unless there at least one element within a series that is True or equivalent (e.g. non-zero or non-empty). Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- >>> ps.Series([False, False]).any() False >>> ps.Series([True, False]).any() True >>> ps.Series([0, 0]).any() False >>> ps.Series([0, 1, 2]).any() True >>> ps.Series([False, False, None]).any() False >>> ps.Series([True, False, None]).any() True >>> ps.Series([]).any() False >>> ps.Series([np.nan]).any() False >>> df = ps.Series([True, False, None]).rename("a").to_frame() >>> df.set_index("a").index.any() True """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') sdf = self._internal.spark_frame.select(self.spark.column) col = scol_for(sdf, sdf.columns[0]) # Note that we're ignoring `None`s here for now. # any and every was added as of Spark 3.0 # ret = sdf.select(F.expr("any(CAST(`%s` AS BOOLEAN))" % sdf.columns[0])).collect()[0][0] # Here we use max as its alternative: ret = sdf.select(F.max(F.coalesce(col.cast("boolean"), SF.lit(False)))).collect()[0][0] if ret is None: return False else: return ret # TODO: add frep and axis parameter def shift( self: IndexOpsLike, periods: int = 1, fill_value: Optional[Any] = None ) -> IndexOpsLike: """ Shift Series/Index by desired number of periods. .. note:: the current implementation of shift uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. fill_value : object, optional The scalar value to use for newly introduced missing values. The default depends on the dtype of self. For numeric data, np.nan is used. Returns ------- Copy of input Series/Index, shifted. Examples -------- >>> df = ps.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}, ... columns=['Col1', 'Col2', 'Col3']) >>> df.Col1.shift(periods=3) 0 NaN 1 NaN 2 NaN 3 10.0 4 20.0 Name: Col1, dtype: float64 >>> df.Col2.shift(periods=3, fill_value=0) 0 0 1 0 2 0 3 13 4 23 Name: Col2, dtype: int64 >>> df.index.shift(periods=3, fill_value=0) Int64Index([0, 0, 0, 0, 1], dtype='int64') """ return self._shift(periods, fill_value).spark.analyzed def _shift( self: IndexOpsLike, periods: int, fill_value: Any, *, part_cols: Sequence["ColumnOrName"] = () ) -> IndexOpsLike: if not isinstance(periods, int): raise TypeError("periods should be an int; however, got [%s]" % type(periods).__name__) col = self.spark.column window = ( Window.partitionBy(*part_cols) .orderBy(NATURAL_ORDER_COLUMN_NAME) .rowsBetween(-periods, -periods) ) lag_col = F.lag(col, periods).over(window) col = F.when(lag_col.isNull() | F.isnan(lag_col), fill_value).otherwise(lag_col) return self._with_new_scol(col, field=self._internal.data_fields[0].copy(nullable=True)) # TODO: Update Documentation for Bins Parameter when its supported def value_counts( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins: None = None, dropna: bool = True, ) -> "Series": """ Return a Series containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values. ascending : boolean, default False Sort in ascending order. bins : Not Yet Supported dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.count: Number of non-NA elements in a Series. Examples -------- For Series >>> df = ps.DataFrame({'x':[0, 0, 1, 1, 1, np.nan]}) >>> df.x.value_counts() # doctest: +NORMALIZE_WHITESPACE 1.0 3 0.0 2 Name: x, dtype: int64 With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> df.x.value_counts(normalize=True) # doctest: +NORMALIZE_WHITESPACE 1.0 0.6 0.0 0.4 Name: x, dtype: float64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> df.x.value_counts(dropna=False) # doctest: +NORMALIZE_WHITESPACE 1.0 3 0.0 2 NaN 1 Name: x, dtype: int64 For Index >>> idx = ps.Index([3, 1, 2, 3, 4, np.nan]) >>> idx Float64Index([3.0, 1.0, 2.0, 3.0, 4.0, nan], dtype='float64') >>> idx.value_counts().sort_index() 1.0 1 2.0 1 3.0 2 4.0 1 dtype: int64 **sort** With `sort` set to `False`, the result wouldn't be sorted by number of count. >>> idx.value_counts(sort=True).sort_index() 1.0 1 2.0 1 3.0 2 4.0 1 dtype: int64 **normalize** With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> idx.value_counts(normalize=True).sort_index() 1.0 0.2 2.0 0.2 3.0 0.4 4.0 0.2 dtype: float64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> idx.value_counts(dropna=False).sort_index() # doctest: +SKIP 1.0 1 2.0 1 3.0 2 4.0 1 NaN 1 dtype: int64 For MultiIndex. >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [1, 1, 1, 1, 1, 2, 1, 2, 2]]) >>> s = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) >>> s.index # doctest: +SKIP MultiIndex([( 'lama', 'weight'), ( 'lama', 'weight'), ( 'lama', 'weight'), ( 'cow', 'weight'), ( 'cow', 'weight'), ( 'cow', 'length'), ('falcon', 'weight'), ('falcon', 'length'), ('falcon', 'length')], ) >>> s.index.value_counts().sort_index() (cow, length) 1 (cow, weight) 2 (falcon, length) 2 (falcon, weight) 1 (lama, weight) 3 dtype: int64 >>> s.index.value_counts(normalize=True).sort_index() (cow, length) 0.111111 (cow, weight) 0.222222 (falcon, length) 0.222222 (falcon, weight) 0.111111 (lama, weight) 0.333333 dtype: float64 If Index has name, keep the name up. >>> idx = ps.Index([0, 0, 0, 1, 1, 2, 3], name='pandas-on-Spark') >>> idx.value_counts().sort_index() 0 3 1 2 2 1 3 1 Name: pandas-on-Spark, dtype: int64 """ from pyspark.pandas.series import first_series if bins is not None: raise NotImplementedError("value_counts currently does not support bins") if dropna: sdf_dropna = self._internal.spark_frame.select(self.spark.column).dropna() else: sdf_dropna = self._internal.spark_frame.select(self.spark.column) index_name = SPARK_DEFAULT_INDEX_NAME column_name = self._internal.data_spark_column_names[0] sdf = sdf_dropna.groupby(scol_for(sdf_dropna, column_name).alias(index_name)).count() if sort: if ascending: sdf = sdf.orderBy(F.col("count")) else: sdf = sdf.orderBy(F.col("count").desc()) if normalize: sum = sdf_dropna.count() sdf = sdf.withColumn("count", F.col("count") / SF.lit(sum)) internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, index_name)], column_labels=self._internal.column_labels, data_spark_columns=[scol_for(sdf, "count")], column_label_names=self._internal.column_label_names, ) return first_series(DataFrame(internal)) def nunique(self, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> int: """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- dropna : bool, default True Don’t include NaN in the count. approx: bool, default False If False, will use the exact algorithm and return the exact number of unique. If True, it uses the HyperLogLog approximate algorithm, which is significantly faster for large amount of data. Note: This parameter is specific to pandas-on-Spark and is not found in pandas. rsd: float, default 0.05 Maximum estimation error allowed in the HyperLogLog algorithm. Note: Just like ``approx`` this parameter is specific to pandas-on-Spark. Returns ------- int See Also -------- DataFrame.nunique: Method nunique for DataFrame. Series.count: Count non-NA/null observations in the Series. Examples -------- >>> ps.Series([1, 2, 3, np.nan]).nunique() 3 >>> ps.Series([1, 2, 3, np.nan]).nunique(dropna=False) 4 On big data, we recommend using the approximate algorithm to speed up this function. The result will be very close to the exact unique count. >>> ps.Series([1, 2, 3, np.nan]).nunique(approx=True) 3 >>> idx = ps.Index([1, 1, 2, None]) >>> idx Float64Index([1.0, 1.0, 2.0, nan], dtype='float64') >>> idx.nunique() 2 >>> idx.nunique(dropna=False) 3 """ res = self._internal.spark_frame.select([self._nunique(dropna, approx, rsd)]) return res.collect()[0][0] def _nunique(self, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> Column: colname = self._internal.data_spark_column_names[0] count_fn = cast( Callable[[Column], Column], partial(F.approx_count_distinct, rsd=rsd) if approx else F.countDistinct, ) if dropna: return count_fn(self.spark.column).alias(colname) else: return ( count_fn(self.spark.column) + F.when( F.count(F.when(self.spark.column.isNull(), 1).otherwise(None)) >= 1, 1 ).otherwise(0) ).alias(colname) def take(self: IndexOpsLike, indices: Sequence[int]) -> IndexOpsLike: """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. Returns ------- taken : same type as caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- Series >>> psser = ps.Series([100, 200, 300, 400, 500]) >>> psser 0 100 1 200 2 300 3 400 4 500 dtype: int64 >>> psser.take([0, 2, 4]).sort_index() 0 100 2 300 4 500 dtype: int64 Index >>> psidx = ps.Index([100, 200, 300, 400, 500]) >>> psidx Int64Index([100, 200, 300, 400, 500], dtype='int64') >>> psidx.take([0, 2, 4]).sort_values() Int64Index([100, 300, 500], dtype='int64') MultiIndex >>> psmidx = ps.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "c")]) >>> psmidx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('x', 'c')], ) >>> psmidx.take([0, 2]) # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'c')], ) """ if not is_list_like(indices) or isinstance(indices, (dict, set)): raise TypeError("`indices` must be a list-like except dict or set") if isinstance(self, ps.Series): return cast(IndexOpsLike, self.iloc[indices]) else: return cast(IndexOpsLike, self._psdf.iloc[indices].index) def factorize( self: IndexOpsLike, sort: bool = True, na_sentinel: Optional[int] = -1 ) -> Tuple[IndexOpsLike, pd.Index]: """ Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. Parameters ---------- sort : bool, default True na_sentinel : int or None, default -1 Value to mark "not found". If None, will not drop the NaN from the uniques of the values. Returns ------- codes : Series or Index A Series or Index that's an indexer into `uniques`. ``uniques.take(codes)`` will have the same values as `values`. uniques : pd.Index The unique valid values. .. note :: Even if there's a missing value in `values`, `uniques` will *not* contain an entry for it. Examples -------- >>> psser = ps.Series(['b', None, 'a', 'c', 'b']) >>> codes, uniques = psser.factorize() >>> codes 0 1 1 -1 2 0 3 2 4 1 dtype: int32 >>> uniques Index(['a', 'b', 'c'], dtype='object') >>> codes, uniques = psser.factorize(na_sentinel=None) >>> codes 0 1 1 3 2 0 3 2 4 1 dtype: int32 >>> uniques Index(['a', 'b', 'c', None], dtype='object') >>> codes, uniques = psser.factorize(na_sentinel=-2) >>> codes 0 1 1 -2 2 0 3 2 4 1 dtype: int32 >>> uniques Index(['a', 'b', 'c'], dtype='object') For Index: >>> psidx = ps.Index(['b', None, 'a', 'c', 'b']) >>> codes, uniques = psidx.factorize() >>> codes Int64Index([1, -1, 0, 2, 1], dtype='int64') >>> uniques Index(['a', 'b', 'c'], dtype='object') """ from pyspark.pandas.series import first_series assert (na_sentinel is None) or isinstance(na_sentinel, int) assert sort is True if isinstance(self.dtype, CategoricalDtype): categories = self.dtype.categories if len(categories) == 0: scol = SF.lit(None) else: kvs = list( chain( *[ (SF.lit(code), SF.lit(category)) for code, category in enumerate(categories) ] ) ) map_scol = F.create_map(*kvs) scol = map_scol.getItem(self.spark.column) codes, uniques = self._with_new_scol( scol.alias(self._internal.data_spark_column_names[0]) ).factorize(na_sentinel=na_sentinel) return codes, uniques.astype(self.dtype) uniq_sdf = self._internal.spark_frame.select(self.spark.column).distinct() # Check number of uniques and constructs sorted `uniques_list` max_compute_count = get_option("compute.max_rows") if max_compute_count is not None: uniq_pdf = uniq_sdf.limit(max_compute_count + 1).toPandas() if len(uniq_pdf) > max_compute_count: raise ValueError( "Current Series has more then {0} unique values. " "Please set 'compute.max_rows' by using 'pyspark.pandas.config.set_option' " "to more than {0} rows. Note that, before changing the " "'compute.max_rows', this operation is considerably expensive.".format( max_compute_count ) ) else: uniq_pdf = uniq_sdf.toPandas() # pandas takes both NaN and null in Spark to np.nan, so de-duplication is required uniq_series = first_series(uniq_pdf).drop_duplicates() uniques_list = uniq_series.tolist() uniques_list = sorted(uniques_list, key=lambda x: (pd.isna(x), x)) # Constructs `unique_to_code` mapping non-na unique to code unique_to_code = {} if na_sentinel is not None: na_sentinel_code = na_sentinel code = 0 for unique in uniques_list: if pd.isna(unique): if na_sentinel is None: na_sentinel_code = code else: unique_to_code[unique] = code code += 1 kvs = list( chain(*([(SF.lit(unique), SF.lit(code)) for unique, code in unique_to_code.items()])) ) if len(kvs) == 0: # uniques are all missing values new_scol = SF.lit(na_sentinel_code) else: scol = self.spark.column if isinstance(self.spark.data_type, (FloatType, DoubleType)): cond = scol.isNull() | F.isnan(scol) else: cond = scol.isNull() map_scol = F.create_map(*kvs) null_scol = F.when(cond, SF.lit(na_sentinel_code)) new_scol = null_scol.otherwise(map_scol.getItem(scol)) codes = self._with_new_scol(new_scol.alias(self._internal.data_spark_column_names[0])) if na_sentinel is not None: # Drops the NaN from the uniques of the values uniques_list = [x for x in uniques_list if not pd.isna(x)] uniques = pd.Index(uniques_list) return codes, uniques def _test() -> None: import os import doctest import sys from pyspark.sql import SparkSession import pyspark.pandas.base os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.base.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]").appName("pyspark.pandas.base tests").getOrCreate() ) (failure_count, test_count) = doctest.testmod( pyspark.pandas.base, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
naturali/tensorflow
tensorflow/examples/skflow/digits.py
9
2380
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import datasets, cross_validation, metrics import tensorflow as tf from tensorflow.contrib import learn from tensorflow.contrib.learn import monitors # Load dataset digits = datasets.load_digits() X = digits.images y = digits.target # Split it into train / test subsets X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2, random_state=42) # Split X_train again to create validation data X_train, X_val, y_train, y_val = cross_validation.train_test_split(X_train, y_train, test_size=0.2, random_state=42) # TensorFlow model using Scikit Flow ops def conv_model(X, y): X = tf.expand_dims(X, 3) features = tf.reduce_max(tf.contrib.layers.conv2d(X, 12, [3, 3]), [1, 2]) features = tf.reshape(features, [-1, 12]) return learn.models.logistic_regression(features, y) val_monitor = monitors.ValidationMonitor(X_val, y_val, every_n_steps=50) # Create a classifier, train and predict. classifier = learn.TensorFlowEstimator(model_fn=conv_model, n_classes=10, steps=1000, learning_rate=0.05, batch_size=128) classifier.fit(X_train, y_train, monitors=[val_monitor]) score = metrics.accuracy_score(y_test, classifier.predict(X_test)) print('Test Accuracy: {0:f}'.format(score))
apache-2.0
elijah513/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
Christoph/tag-connect
embeddings/nlp_pipeline.py
1
2809
from importlib import reload import spacy from sklearn.decomposition import TruncatedSVD, PCA, NMF, LatentDirichletAllocation from sklearn.metrics.pairwise import cosine_similarity from scipy.stats import wasserstein_distance from scipy.stats import entropy import numpy as np from os import path import sys sys.path.append(path.abspath('../methods')) import embedding import details import helpers import vis # nlp = spacy.load('en') # Load data (texts, clean, clean_fancy, labels) = helpers.load_reuters_data() used = clean_fancy used = clean len(clean[0]) len(clean_fancy[0]) reload(vis) # Word vectors (word_vecs, word_docs, vocab_vecs, vocab) = embedding.HAL(used, True) (word_vecs, word_docs, vocab_vecs, vocab) = embedding.W2V(used) # High dimensional clustering dependent document vectors (cluster_labels, dist, clusterer) = embedding.hsc_auto(word_vecs, vocab_vecs) (cluster_labels, dist, clusterer) = embedding.hsc_binned(word_vecs, vocab_vecs, "birch", 16) vis.simMatrixIntersection(embedding.earth_mover_distance(dist), used) # Document vectors (vecs, vectorizer) = embedding.count(used) (vecs, vectorizer) = embedding.tfidf(used) reduced = TruncatedSVD(20).fit_transform(vecs) reduced = PCA(3).fit_transform(vecs.toarray()) reduced = NMF(10, beta_loss='frobenius').fit_transform(vecs) reduced = NMF(50, beta_loss="kullback-leibler", solver="mu").fit_transform(vecs) reduced = LatentDirichletAllocation(5).fit_transform(vecs) vecs = reduced sim = cosine_similarity(vecs) vis.simMatrixIntersection(sim, used) vis.scree_plot(sim, vecs, nonlinear=False) vis.scatter_tsne(vecs, labels) vis.scatter_mds(vecs, labels) vis.scatter_svd(vecs, labels) # Comparing description axis axis_words = helpers.get_dimension_words(vectorizer, vecs, reduced) print(axis_words) reload(cluster_analysis) reload(vis) # Cluster analysis classes = cluster_analysis.prepare_label_data(labels, word_vecs, word_docs) documents = cluster_analysis.prepare_data(word_vecs, word_docs) tfidf_documents = cluster_analysis.prepare_tfidf_data(vecs.toarray(), used) # Algorithms: agglo, km, gauss, aff # predictions, vocab_labels = cluster_analysis.cluster_space(classes, vocab_vecs, vocab, bins=16, algorithm="aff") predictions, dist_predictions, vocab_labels = cluster_analysis.cluster_space(documents, vocab_vecs, vocab, bins=16, algorithm="agglo") predictions, vocab_labels = cluster_analysis.cluster_space_hdb(classes, vocab_vecs, vocab) vis.cluster_document(dist_predictions, vocab_labels) vis.multi_histogram(predictions) sim = embedding.earth_mover_distance(dist_predictions) wasserstein_distance(predictions["0"], predictions["1"]) [v[0] for v in vocab_labels.items() if v[1] == 2] set([v[0] for v in vocab_labels.items() if v[1] == 1]).intersection( [v[0] for v in vocab_labels.items() if v[1] == 14])
mit