repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
mlyundin/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
DiracInstitute/kbmod
analysis/filter_utils.py
1
11539
import os import sys import shutil import numpy as np import pandas as pd import multiprocessing as mp from kbmodpy import kbmod as kb from astropy.io import fits from astropy.wcs import WCS from skimage import measure from sklearn.cluster import DBSCAN def file_and_header_length(filename): i = 0 header_length = 0 with open(filename, 'r') as f: for line in f: i+=1 if line.startswith('#'): header_length += 1 return i, header_length def load_chunk(filename, chunk_start, chunk_size): results_arr = np.genfromtxt(filename, names=['t0_x', 't0_y', 'v_x', 'v_y', 'likelihood', 'est_flux'], skip_header=chunk_start, max_rows=chunk_size) return results_arr def calcCenters(startLocArr, velArr, timeArr): startLocArr = np.array([startLocArr['t0_x'], startLocArr['t0_y']]) velArr = np.array([velArr['v_x'], velArr['v_y']]) centerArr = [] for time in timeArr: centerArr.append(startLocArr + (velArr*time)) return np.array(centerArr) def createPostageStamp(imageArray, objectStartArr, velArr, timeArr, stamp_width): """ Create postage stamp image coadds of potential objects traveling along a trajectory. Parameters ---------- imageArray: numpy array, required The masked input images. objectStartArr: numpy array, required An array with the starting location of the object in pixels. velArr: numpy array, required The x,y velocity in pixels/hr. of the object trajectory. timeArr: numpy array, required The time in hours of each image starting from 0 at the first image. stamp_width: numpy array or list, [2], required The row, column dimensions of the desired output image. Returns ------- stampImage: numpy array The coadded postage stamp. singleImagesArray: numpy array The postage stamps that were added together to create the coadd. """ singleImagesArray = [] stampWidth = np.array(stamp_width, dtype=int) #print stampWidth stampImage = np.zeros(stampWidth) #if len(np.shape(imageArray)) < 3: # imageArray = [imageArray] measureCoords = calcCenters(np.array(objectStartArr), np.array(velArr), timeArr) if len(np.shape(measureCoords)) < 2: measureCoords = [measureCoords] off_edge = [] for centerCoords in measureCoords: if (centerCoords[0] + stampWidth[0]/2 + 1) > np.shape(imageArray[0].science())[1]: #raise ValueError('The boundaries of your postage stamp for one of the images go off the edge') off_edge.append(True) elif (centerCoords[0] - stampWidth[0]/2) < 0: #raise ValueError('The boundaries of your postage stamp for one of the images go off the edge') off_edge.append(True) elif (centerCoords[1] + stampWidth[1]/2 + 1) > np.shape(imageArray[0].science())[0]: #raise ValueError('The boundaries of your postage stamp for one of the images go off the edge') off_edge.append(True) elif (centerCoords[1] - stampWidth[1]/2) < 0: #raise ValueError('The boundaries of your postage stamp for one of the images go off the edge') off_edge.append(True) else: off_edge.append(False) i=0 for image in imageArray: if off_edge[i] is False: xmin = int(np.rint(measureCoords[i,1]-stampWidth[0]/2)) xmax = int(xmin + stampWidth[0]) ymin = int(np.rint(measureCoords[i,0]-stampWidth[1]/2)) ymax = int(ymin + stampWidth[1]) #print xmin, xmax, ymin, ymax single_stamp = image.science()[xmin:xmax, ymin:ymax] single_stamp[np.isnan(single_stamp)] = 0. single_stamp[np.isinf(single_stamp)] = 0. stampImage += single_stamp singleImagesArray.append(single_stamp) else: single_stamp = np.zeros((stampWidth)) singleImagesArray.append(single_stamp) i+=1 return stampImage, singleImagesArray def clusterResults(results, dbscan_args=None): """ Use scikit-learn algorithm of density-based spatial clustering of applications with noise (DBSCAN) (http://scikit-learn.org/stable/modules/generated/ sklearn.cluster.DBSCAN.html) to cluster the results of the likelihood image search using starting location, total velocity and slope of trajectory. Parameters ---------- results: numpy recarray, required The results output from findObjects in searchImage. dbscan_args: dict, optional Additional arguments for the DBSCAN instance. See options in link above. Returns ------- db_cluster: DBSCAN instance DBSCAN instance with clustering completed. To get cluster labels use db_cluster.labels_ top_vals: list of integers The indices in the results array where the most likely object in each cluster is located. """ default_dbscan_args = dict(eps=0.03, min_samples=1, n_jobs=-1) if dbscan_args is not None: default_dbscan_args.update(dbscan_args) dbscan_args = default_dbscan_args slope_arr = [] intercept_arr = [] t0x_arr = [] t0y_arr = [] vel_total_arr = [] vx_arr = [] vel_x_arr = [] vel_y_arr = [] for target_num in range(len(results)): t0x = results['t0_x'][target_num] t0x_arr.append(t0x) t0y = results['t0_y'][target_num] t0y_arr.append(t0y) v0x = results['v_x'][target_num] vel_x_arr.append(v0x) v0y = results['v_y'][target_num] vel_y_arr.append(v0y) db_cluster = DBSCAN(**dbscan_args) scaled_t0x = np.array(t0x_arr) #- np.min(t0x_arr) if np.max(scaled_t0x) > 0.: scaled_t0x = scaled_t0x/4200.#np.max(scaled_t0x) scaled_t0y = np.array(t0y_arr) #- np.min(t0y_arr) if np.max(scaled_t0y) > 0.: scaled_t0y = scaled_t0y/4200.#np.max(scaled_t0y) scaled_vx = np.array(vel_x_arr)# - np.min(vel_x_arr) if np.max(scaled_vx) > 0.: scaled_vx /= np.max(scaled_vx) scaled_vy = np.array(vel_y_arr)# - np.min(vel_y_arr) if np.max(scaled_vy) > 0.: scaled_vy /= np.max(scaled_vy) db_cluster.fit(np.array([scaled_t0x, scaled_t0y, scaled_vx, scaled_vy], dtype=np.float).T) top_vals = [] for cluster_num in np.unique(db_cluster.labels_): cluster_vals = np.where(db_cluster.labels_ == cluster_num)[0] top_vals.append(cluster_vals[0]) return db_cluster, top_vals #http://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html def kalman_filter(obs, var): xhat = np.zeros(len(obs)) P = np.zeros(len(obs)) xhatminus = np.zeros(len(obs)) Pminus = np.zeros(len(obs)) K = np.zeros(len(obs)) Q = 0 R = np.copy(var) R[R==0.] = 100. xhat[0] = obs[0] P[0] = R[0] for k in range(1,len(obs)): xhatminus[k] = xhat[k-1] Pminus[k] = P[k-1] + Q K[k] = Pminus[k] / (Pminus[k] + R[k]) xhat[k] = xhatminus[k] + K[k]*(obs[k]-xhatminus[k]) P[k] = (1-K[k])*Pminus[k] return xhat, P def calc_nu(psi_vals, phi_vals): not_0 = np.where(psi_vals > -9000.)[0] if len(not_0) > 0: return np.sum(psi_vals[not_0])/np.sqrt(np.sum(phi_vals[not_0])) else: return 0. def create_filter_curve(ps_lc, ph_lc, lc_on): num_stamps = len(ps_lc[0]) lc_list = [] for ps_lc_line, ph_lc_line in zip(ps_lc, ph_lc): filter_sums = [] #for ps_lc_line, ph_lc_line in zip(ps_lc_list, ph_lc_list): fluxes = ps_lc_line/ph_lc_line #use_f = np.where(ps_lc_line != 0.) fluxes = fluxes#[use_f] f_var = np.var(fluxes)*np.ones(len(fluxes)) kalman_flux, kalman_error = kalman_filter(fluxes, f_var) deviations = np.abs(kalman_flux - fluxes) / kalman_error**.5 #print deviations keep_idx = np.where(deviations < 1.)[0] kalman_flux, kalman_error = kalman_filter(fluxes[::-1], f_var[::-1]) deviations = np.abs(kalman_flux - fluxes[::-1]) / kalman_error**.5 #print deviations keep_idx_back = np.where(deviations < 1.)[0] if len(keep_idx) >= len(keep_idx_back): single_stamps = fluxes[keep_idx] #print keep_idx else: keep_idx = num_stamps-1 - keep_idx_back single_stamps = fluxes[keep_idx] #print keep_idx filter_sums = calc_nu(ps_lc_line[keep_idx], ph_lc_line[keep_idx]) lc_list.append(filter_sums) #return filter_stamps return (lc_on, lc_list) def return_filter_curve(ps_lc_line, ph_lc_line): num_stamps = len(ps_lc_line) #filter_sums = [] filter_stamps = [] #for ps_lc_line, ph_lc_line in zip(ps_lc_list, ph_lc_list): fluxes = ps_lc_line/ph_lc_line #use_f = np.where(ps_lc_line != 0.) fluxes = fluxes#[use_f] f_var = np.var(fluxes)*np.ones(len(fluxes)) kalman_flux, kalman_error = kalman_filter(fluxes, f_var) deviations = np.abs(kalman_flux - fluxes) / kalman_error**.5 #print deviations keep_idx = np.where(deviations < 1.)[0] kalman_flux, kalman_error = kalman_filter(fluxes[::-1], f_var[::-1]) deviations = np.abs(kalman_flux - fluxes[::-1]) / kalman_error**.5 #print deviations keep_idx_back = np.where(deviations < 1.)[0] if len(keep_idx) >= len(keep_idx_back): single_stamps = fluxes[keep_idx] filter_stamps.append(single_stamps) kalman_flux, kalman_error = kalman_filter(fluxes, f_var) kf_b, kf_e = kalman_filter(fluxes[::-1], f_var[::-1]) #print keep_idx else: keep_idx = num_stamps-1 - keep_idx_back single_stamps = fluxes[keep_idx] filter_stamps.append(single_stamps) kalman_flux, kalman_error = kalman_filter(fluxes[::-1], f_var[::-1]) kf_b, kf_e = kalman_filter(fluxes, f_var) #print keep_idx #filter_sums = calc_nu(ps_lc_line[keep_idx], ph_lc_line[keep_idx]) return filter_stamps, keep_idx#, kalman_flux, kalman_error, kf_b, kf_e, fluxes def get_likelihood_lcs(results_arr, psi, phi, image_times): ps_lc = np.zeros((len(image_times), len(results_arr))) ph_lc = np.zeros((len(image_times), len(results_arr))) print('Building Lightcurves') for idx, t_current in list(enumerate(image_times)): #print(idx) x0 = results_arr['t0_x'] + results_arr['v_x']*t_current y0 = results_arr['t0_y'] + results_arr['v_y']*t_current x0_0 = x0 y0_0 = y0 x0_0 = np.array(x0_0, dtype=np.int) y0_0 = np.array(y0_0, dtype=np.int) x0_0[np.where(((x0_0 > 4199) | (x0_0 < 0)))] = 4199 y0_0[np.where(((y0_0 > 4199) | (y0_0 < 0)))] = 4199 psi_on = psi[idx] phi_on = phi[idx] psi_on[4199, 4199] = 0. psi_on[np.isnan(psi_on)] = 0. psi_on[np.where(psi_on < -9000)] = 0. phi_on[np.where(phi_on < -9000)] = 999999. phi_on[np.where(phi_on == 0.)] = 999999. ps_lc[idx] = psi_on[y0_0, x0_0] #print(p_o) ph_lc[idx] = phi_on[y0_0, x0_0] return ps_lc.T, ph_lc.T
bsd-2-clause
Achuth17/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
davidgbe/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
shangwuhencc/scikit-learn
examples/ensemble/plot_feature_transformation.py
67
4285
""" =============================================== Feature transformations with ensembles of trees =============================================== Transform your features into a higher dimensional, sparse space. Then train a linear model on these features. First fit an ensemble of trees (totally random trees, a random forest, or gradient boosted trees) on the training set. Then each leaf of each tree in the ensemble is assigned a fixed arbitrary feature index in a new feature space. These leaf indices are then encoded in a one-hot fashion. Each sample goes through the decisions of each tree of the ensemble and ends up in one leaf per tree. The sample is encoded by setting feature values for these leaves to 1 and the other feature values to 0. The resulting transformer has then learned a supervised, sparse, high-dimensional categorical embedding of the data. """ # Author: Tim Head <[email protected]> # # License: BSD 3 clause import numpy as np np.random.seed(10) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier) from sklearn.preprocessing import OneHotEncoder from sklearn.cross_validation import train_test_split from sklearn.metrics import roc_curve n_estimator = 10 X, y = make_classification(n_samples=80000) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # It is important to train the ensemble of trees on a different subset # of the training data than the linear regression model to avoid # overfitting, in particular if the total number of leaves is # similar to the number of training samples X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train, y_train, test_size=0.5) # Unsupervised transformation based on totally random trees rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator) rt_lm = LogisticRegression() rt.fit(X_train, y_train) rt_lm.fit(rt.transform(X_train_lr), y_train_lr) y_pred_rt = rt_lm.predict_proba(rt.transform(X_test))[:, 1] fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt) # Supervised transformation based on random forests rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator) rf_enc = OneHotEncoder() rf_lm = LogisticRegression() rf.fit(X_train, y_train) rf_enc.fit(rf.apply(X_train)) rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr) y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1] fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm) grd = GradientBoostingClassifier(n_estimators=n_estimator) grd_enc = OneHotEncoder() grd_lm = LogisticRegression() grd.fit(X_train, y_train) grd_enc.fit(grd.apply(X_train)[:, :, 0]) grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr) y_pred_grd_lm = grd_lm.predict_proba( grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1] fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm) # The gradient boosted model by itself y_pred_grd = grd.predict_proba(X_test)[:, 1] fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd) # The random forest model by itself y_pred_rf = rf.predict_proba(X_test)[:, 1] fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf) plt.figure(1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.legend(loc='best') plt.show() plt.figure(2) plt.xlim(0, 0.2) plt.ylim(0.8, 1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve (zoomed in at top left)') plt.legend(loc='best') plt.show()
bsd-3-clause
kball/ambry
test/old_tests/test_geo.py
1
5525
""" Created on Jan 17, 2013 @author: eric """ import unittest from testbundle.bundle import Bundle from ambry.identity import * #@UnusedWildImport from test_base import TestBase from osgeo.gdalconst import GDT_Float32 import ogr class Test(TestBase): def setUp(self): self.copy_or_build_bundle() self.bundle = Bundle() self.bundle_dir = self.bundle.bundle_dir def tearDown(self): pass def test_geo_schema(self): from osgeo import ogr import support import os.path from ambry.geo.sfschema import copy_schema def geo_file(p): return os.path.join(os.path.dirname(support.__file__),'neighborhoods',p) url = "http://rdw.sandag.org/file_store/Business/Business_Sites.zip" path = geo_file("Neighborhoods_SD.shp") with self.bundle.session: copy_schema(self.bundle.schema, url) print self.bundle.schema.as_csv() def x_test_basic(self): from ambry.geo.analysisarea import get_analysis_area, draw_edges from ambry.geo import Point from ambry.geo.kernel import GaussianKernel aa = get_analysis_area(self.bundle.library, geoid = 'CG0666000') a = aa.new_array() #draw_edges(a) print a.shape, a.size gaussian = GaussianKernel(11,6) for i in range(0,400, 20): p = Point(100+i,100+i) gaussian.apply_add(a,p) aa.write_geotiff('/tmp/box.tiff', a, data_type=GDT_Float32) def test_sfschema(self): from ambry.geo.sfschema import TableShapefile from ambry.geo.analysisarea import get_analysis_area _, communities = self.bundle.library.dep('communities') csrs = communities.get_srs() gp = self.bundle.partitions.new_geo_partition(table='geot2') with gp.database.inserter(source_srs=csrs) as ins: for row in communities.query(""" SELECT *, X(Transform(Centroid(geometry), 4326)) AS lon, Y(Transform(Centroid(geometry), 4326)) as lat, AsText(geometry) as wkt, AsBinary(geometry) as wkb FROM communities"""): r = {'name':row['cpname'], 'lat': row['lat'], 'lon': row['lon'], 'wkt': row['wkt']} ins.insert(r) return aa = get_analysis_area(self.bundle.library, geoid = 'CG0666000') path1 = '/tmp/geot1.kml' if os.path.exists(path1): os.remove(path1) sfs1 = TableShapefile(self.bundle, path1, 'geot1' ) path2 = '/tmp/geot2.kml' if os.path.exists(path2): os.remove(path2) sfs2 = TableShapefile(self.bundle, path2, 'geot2', source_srs=communities.get_srs()) print sfs1.type, sfs2.type for row in communities.query(""" SELECT *, X(Transform(Centroid(geometry), 4326)) AS lon, Y(Transform(Centroid(geometry), 4326)) as lat, AsText(geometry) as wkt, AsBinary(geometry) as wkb FROM communities"""): sfs1.add_feature( {'name':row['cpname'], 'lat': row['lat'], 'lon': row['lon'], 'wkt': row['wkt']}) sfs2.add_feature( {'name':row['cpname'], 'lat': row['lat'], 'lon': row['lon'], 'wkt': row['wkt']}) sfs1.close() sfs2.close() def demo2(self): import ambry import ambry.library as dl import ambry.geo as dg import numpy as np from matplotlib import pyplot as plt k = dg.ConstantKernel(11) b = np.zeros((50,50)) k.apply_add(b,dg.Point(0,0)) k.apply_add(b,dg.Point(0,b.shape[1])) k.apply_add(b,dg.Point(b.shape[0],b.shape[1])) k.apply_add(b,dg.Point(b.shape[0],0)) k.apply_add(b,dg.Point(45,0)) # for a specific bug for i in range(-5,55): for j in range(-5,55): k.apply_add(b,dg.Point(i,j)) b /= np.max(b) print "Done, Rendering" img = plt.imshow(b, interpolation='nearest') img.set_cmap('gist_heat') plt.colorbar() plt.show() def demo3(self): import ambry import ambry.library as dl import ambry.geo as dg from matplotlib import pyplot as plt import numpy as np l = dl.get_library() aa = dg.get_analysis_area(l, geoid='CG0666000') r = l.find(dl.QueryCommand().identity(id='a2z2HM').partition(table='incidents',space=aa.geoid)).pop() p = l.get(r.partition).partition a = aa.new_array() k = dg.ConstantKernel(9) print aa k.apply_add(a, dg.Point(400,1919)) k.apply_add(a, dg.Point(400,1920)) k.apply_add(a, dg.Point(400,1921)) k.apply_add(a, dg.Point(400,1922)) k.apply_add(a, dg.Point(400,1923)) for row in p.query("select date, time, cellx, celly from incidents"): p = dg.Point(row['cellx'],row['celly']) k.apply_add(a, p) a /= np.max(a) print np.sum(a) img = plt.imshow(a, interpolation='nearest') img.set_cmap('spectral_r') plt.colorbar() plt.show() if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
bsd-2-clause
UP-RS-ESP/bpl
example.py
1
3471
""" Examples to help illustrate the module BPL.PY ============================================= Created: Mon May 23, 2016 02:56PM Last modified: Tue May 24, 2016 06:36PM Copyright: Bedartha Goswami <[email protected]> """ import numpy as np import matplotlib.pyplot as pl import bpl def show_examples(): """ Returns precipitation time series with power-law-like event distribution. """ # set power-law parameters alpha = 2.5 xmin = 1E1 xmax = 1E5 size = 1E5 # get random samples from the bounded power-laws s1 = bpl.sample(alpha=alpha, size=size, xmin=xmin, xmax=None) s2 = bpl.sample(alpha=alpha, size=size, xmin=xmin, xmax=xmax) t = np.arange(size) # choose a random window of 1000 points start = np.random.randint(low=0, high=size, size=1) stop = start + 1000 # plot time series with different markers for extreme & anomalous events fig = pl.figure(figsize=[14.5, 6.5]) # power-law time series bounded only from below ax1 = fig.add_axes([0.07, 0.57, 0.35, 0.35]) ax1.fill_between(t[start:stop], s1[start:stop], facecolor="RoyalBlue", edgecolor="none") ax1.set_title("Power-law random variate snapshot\n(bounded only below)", fontsize=12) # power-law time series bounded from above and below ax2 = fig.add_axes([0.07, 0.07, 0.35, 0.35]) ax2.fill_between(t[start:stop], s2[start:stop], facecolor="IndianRed", edgecolor="none") ax2.set_title("Power-law random variate snapshot\n(bounded above & below)", fontsize=12) ax2.set_xlabel("Time (units)", fontsize=12) for ax in fig.axes: ax.set_ylabel("Observable (units)", fontsize=12) ax.set_xlim(start, stop) # plot histograms and PDFs ax3 = fig.add_axes([0.51, 0.09, 0.35, 0.85]) ax3.set_xscale("log") ax3.set_yscale("log") # power-law time series bounded only from below h1, be1 = bpl.histogram(s1, bins=None, density=True, ax=None, plot=False) mp1 = 0.5 * (be1[:-1] + be1[1:]) ax3.plot(mp1, h1, "o", mec="RoyalBlue", mfc="none", ms=8, mew=1.1) ylo, yhi = ax3.get_ylim() xlo, xhi = ax3.get_xlim() x1 = np.logspace(np.log10(xlo), np.log10(xhi), num=100, base=10) pl1 = bpl.pdf(x1, alpha, xmin, xmax=None) ax3.plot(x1, pl1, "-", c="RoyalBlue", lw=1.5, zorder=-1) # power-law time series bounded from above and below h2, be2 = bpl.histogram(s2, bins=None, density=True, ax=None, plot=False) mp2 = 0.5 * (be2[:-1] + be2[1:]) ax3.plot(mp2, h2, "s", mec="IndianRed", mfc="none", ms=8, mew=1.1) x2 = np.logspace(np.log10(xmin), np.log10(xmax), num=100, base=10) pl2 = bpl.pdf(x2, alpha, xmin, xmax=xmax) ax3.plot(x2, pl2, "-", c="IndianRed", lw=1.5, zorder=-1) # a few prettification adjustments ax3.set_ylim(ylo, yhi) ax3.grid(which="both", axis="both") ax3.legend(["Histogram (bounded below)", "Theoretical (bounded below)", "Histogram (bounded both sides)", "Theoretical (bounded both sides)" ]) ax3.set_xlabel("Observable (units)", fontsize=12) ax3.set_ylabel("Probability", fontsize=12) # save/show plot pl.show(fig) return None if __name__ == "__main__": print("running example...") show_examples() print("done.")
gpl-3.0
ycasg/PyNLO
src/pynlo/media/fibers/calculators.py
2
2855
# -*- coding: utf-8 -*- """ Created on Tue Jan 28 13:56:17 2014 This file is part of pyNLO. pyNLO is free software: you can redistribute it and/or modify it under the terms of the GNU General Public gLicense as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. pyNLO is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with pyNLO. If not, see <http://www.gnu.org/licenses/>. @author: dim1 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy.special import factorial from scipy import constants import matplotlib.pyplot as plt def DTabulationToBetas(lambda0, DData, polyOrder, DDataIsFile = True, return_diagnostics = False): """ Read in a tabulation of D vs Lambda. Returns betas in array [beta2, beta3, ...]. If return_diagnostics is True, then return (betas, fit_x_axis (omega in THz), data (ps^2), fit (ps^2) ) """ # # Expand about lambda0 makePlots = 0 if DDataIsFile: DTab = np.genfromtxt(DData,delimiter=',',skiprows=1) else: DTab = DData[:] # Units of D are ps/nm/km # Convert to s/m/m DTab[:,1] = DTab[:,1] * 1e-12 * 1e9 * 1e-3 c = constants.speed_of_light omegaAxis = 2*np.pi*c / (DTab[:,0]*1e-9) - 2*np.pi*c /(lambda0 * 1e-9) # Convert from D to beta via beta2 = -D * lambda^2 / (2*pi*c) betaTwo = -DTab[:,1] * (DTab[:,0]*1e-9)**2 / (2*np.pi*c) # The units of beta2 for the GNLSE solver are ps^2/m; convert betaTwo = betaTwo * 1e24 # Also convert angular frequency to rad/ps omegaAxis = omegaAxis * 1e-12 # s/ps # How betas are interpreted in gnlse.m: #B=0; #for i=1:length(betas) # B = B + betas(i)/factorial(i+1).*V.^(i+1); #end # Fit beta2 with high-order polynomial polyFitCo = np.polyfit(omegaAxis, betaTwo, polyOrder) Betas = polyFitCo[::-1] polyFit = np.zeros((len(omegaAxis),)) for i in range(len(Betas)): Betas[i] = Betas[i] * factorial(i) polyFit = polyFit + Betas[i] / factorial(i)*omegaAxis**i if makePlots == 1: # try: # set(0,'CurrentFigure',dispfig); # catch ME # dispfig = figure('WindowStyle', 'docked'); # end plt.plot(omegaAxis, betaTwo,'o') plt.plot(omegaAxis, polyFit) plt.show() if return_diagnostics: return Betas, omegaAxis, betaTwo, polyFit else: return Betas
gpl-3.0
polyanskiy/refractiveindex.info-scripts
scripts/Ozaki 1993 - ZnS.py
1
3191
# -*- coding: utf-8 -*- # Author: Mikhail Polyanskiy # Last modified: 2017-04-12 # Original data: Ozaki and Adachi 1993, https://doi.org/10.1143/JJAP.32.5008 import numpy as np import matplotlib.pyplot as plt π = np.pi # model parameters from table I E0 = 3.75 #eV Δ0 = 3.82-E0 #eV A = 32.0 #eV**1.5 A0x = 0.07 #eV**-1 G0 = 0.040 #eV Γ0 = 0.07 #eV E1minusG1=5.74 #eV B1x = 4.3 #eV Γ1 = 0.48 #eV E2 = 7.0 #eV C = 0.25 γ = 0.06 εinf = 2.35 def Epsilon_A(ħω): χ0 = (ħω + 1j*Γ0) / E0 χs0 = (ħω + 1j*Γ0) / (E0+Δ0) fχ0 = χ0**-2 * ( 2 -(1+χ0)**0.5 - (1-χ0)**0.5 ) fχs0 = χs0**-2 * ( 2 - (1+χs0)**0.5 - (1-χs0)**0.5 ) return A*E0**-1.5 * (fχ0+0.5*(E0/(E0+Δ0))**1.5*fχs0) def Epsilon_Ax(ħω): y=0 for n in range(1,1000): y += A0x/n**3 * ( 1/(E0-G0/n**2-ħω-1j*Γ0) + 0.5/(E0+Δ0-G0/n**2-ħω-1j*Γ0) ) return y def Epsilon_Bx(ħω): return B1x/(E1minusG1-ħω-1j*Γ1) def Epsilon_C(ħω): χ2 = ħω/E2 return C/((1-χ2**2)-1j*χ2*γ) ev_min = 1.2 ev_max = 5.6 npoints = 500 eV = np.linspace(ev_min, ev_max, npoints) μm = 4.13566733e-1*2.99792458/eV εA = Epsilon_A(eV) εAx = Epsilon_Ax(eV) εBx = Epsilon_Bx(eV) εC = Epsilon_C(eV) ε = εA + εAx + εBx + εC + εinf n = (ε**.5).real k = (ε**.5).imag α = 4*π*k/μm*1e4 #1/cm #============================ DATA OUTPUT ================================= file = open('out.txt', 'w') for i in range(npoints-1, -1, -1): file.write('\n {:.4e} {:.4e} {:.4e}'.format(μm[i],n[i],k[i])) file.close() #=============================== PLOT ===================================== plt.rc('font', family='Arial', size='14') #plot ε vs eV plt.figure(1) plt.plot(eV, ε.real, label="ε1") plt.plot(eV, ε.imag, label="ε2") plt.xlabel('Photon energy (eV)') plt.ylabel('ε') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0) #plot intermediate data (for debugging) plt.figure(2) plt.plot(eV, εA.real, label="Re(εA)") plt.plot(eV, εAx.real, label="Re(εAx)") plt.plot(eV, εBx.real, label="Re(εBx)") plt.plot(eV, εC.real, label="Re(εC)") plt.xlabel('Photon energy (eV)') plt.ylabel('ε') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0) plt.figure(3) plt.plot(eV, εA.imag, label="Im(εA)") plt.plot(eV, εAx.imag, label="Im(εAx)") plt.plot(eV, εBx.imag, label="Im(εBx)") plt.plot(eV, εC.imag, label="Re(εC)") plt.xlabel('Photon energy (eV)') plt.ylabel('ε') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0) #plot n,k vs eV plt.figure(4) plt.plot(eV, n, label="n") plt.plot(eV, k, label="k") plt.xlabel('Photon energy (eV)') plt.ylabel('n, k') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0) #plot n,k vs μm plt.figure(5) plt.plot(μm, n, label="n") plt.plot(μm, k, label="k") plt.xlabel('Wavelength (μm)') plt.ylabel('n, k') plt.xscale('log') plt.yscale('log') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0) #plot α vs eV plt.figure(6) plt.plot(eV,α) plt.yscale('log') plt.ylim([1e3,1e7]) plt.xlabel('Photon energy (eV)') plt.ylabel('α (1/cm)')
gpl-3.0
dsullivan7/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
saiwing-yeung/scikit-learn
sklearn/ensemble/tests/test_iforest.py
9
6928
""" Testing for Isolation Forest algorithm (sklearn.ensemble.iforest). """ # Authors: Nicolas Goix <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.grid_search import ParameterGrid from sklearn.ensemble import IsolationForest from sklearn.model_selection import train_test_split from sklearn.datasets import load_boston, load_iris from sklearn.utils import check_random_state from sklearn.metrics import roc_auc_score from scipy.sparse import csc_matrix, csr_matrix rng = check_random_state(0) # load the iris dataset # and randomly permute it iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] def test_iforest(): """Check Isolation Forest for various parameter settings.""" X_train = np.array([[0, 1], [1, 2]]) X_test = np.array([[2, 1], [1, 1]]) grid = ParameterGrid({"n_estimators": [3], "max_samples": [0.5, 1.0, 3], "bootstrap": [True, False]}) with ignore_warnings(): for params in grid: IsolationForest(random_state=rng, **params).fit(X_train).predict(X_test) def test_iforest_sparse(): """Check IForest for various parameter settings on sparse input.""" rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "bootstrap": [True, False]}) for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in grid: # Trained on sparse format sparse_classifier = IsolationForest( n_estimators=10, random_state=1, **params).fit(X_train_sparse) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_classifier = IsolationForest( n_estimators=10, random_state=1, **params).fit(X_train) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) assert_array_equal(sparse_results, dense_results) def test_iforest_error(): """Test that it gives proper exception on deficient input.""" X = iris.data # Test max_samples assert_raises(ValueError, IsolationForest(max_samples=-1).fit, X) assert_raises(ValueError, IsolationForest(max_samples=0.0).fit, X) assert_raises(ValueError, IsolationForest(max_samples=2.0).fit, X) # The dataset has less than 256 samples, explicitly setting # max_samples > n_samples should result in a warning. If not set # explicitly there should be no warning assert_warns_message(UserWarning, "max_samples will be set to n_samples for estimation", IsolationForest(max_samples=1000).fit, X) assert_no_warnings(IsolationForest(max_samples='auto').fit, X) assert_no_warnings(IsolationForest(max_samples=np.int64(2)).fit, X) assert_raises(ValueError, IsolationForest(max_samples='foobar').fit, X) assert_raises(ValueError, IsolationForest(max_samples=1.5).fit, X) def test_recalculate_max_depth(): """Check max_depth recalculation when max_samples is reset to n_samples""" X = iris.data clf = IsolationForest().fit(X) for est in clf.estimators_: assert_equal(est.max_depth, int(np.ceil(np.log2(X.shape[0])))) def test_max_samples_attribute(): X = iris.data clf = IsolationForest().fit(X) assert_equal(clf.max_samples_, X.shape[0]) clf = IsolationForest(max_samples=500) assert_warns_message(UserWarning, "max_samples will be set to n_samples for estimation", clf.fit, X) assert_equal(clf.max_samples_, X.shape[0]) clf = IsolationForest(max_samples=0.4).fit(X) assert_equal(clf.max_samples_, 0.4*X.shape[0]) def test_iforest_parallel_regression(): """Check parallel regression.""" rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = IsolationForest(n_jobs=3, random_state=0).fit(X_train) ensemble.set_params(n_jobs=1) y1 = ensemble.predict(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict(X_test) assert_array_almost_equal(y1, y2) ensemble = IsolationForest(n_jobs=1, random_state=0).fit(X_train) y3 = ensemble.predict(X_test) assert_array_almost_equal(y1, y3) def test_iforest_performance(): """Test Isolation Forest performs well""" # Generate train/test data rng = check_random_state(2) X = 0.3 * rng.randn(120, 2) X_train = np.r_[X + 2, X - 2] X_train = X[:100] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) X_test = np.r_[X[100:], X_outliers] y_test = np.array([0] * 20 + [1] * 20) # fit the model clf = IsolationForest(max_samples=100, random_state=rng).fit(X_train) # predict scores (the lower, the more normal) y_pred = - clf.decision_function(X_test) # check that there is at most 6 errors (false positive or false negative) assert_greater(roc_auc_score(y_test, y_pred), 0.98) def test_iforest_works(): # toy sample (the last two samples are outliers) X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [6, 3], [-4, 7]] # Test LOF clf = IsolationForest(random_state=rng, contamination=0.25) clf.fit(X) decision_func = - clf.decision_function(X) pred = clf.predict(X) # assert detect outliers: assert_greater(np.min(decision_func[-2:]), np.max(decision_func[:-2])) assert_array_equal(pred, 6 * [1] + 2 * [-1])
bsd-3-clause
potash/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
270
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
SaikWolf/gnuradio
gr-digital/examples/ofdm/gr_plot_ofdm.py
77
10957
#!/usr/bin/env python # # Copyright 2007 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import math, struct, sys from optparse import OptionParser from math import log10 try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: from pylab import * from matplotlib.font_manager import fontManager, FontProperties except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) matplotlib.interactive(True) matplotlib.use('TkAgg') class draw_constellation: def __init__(self, options): derot_file = "ofdm_frame_sink_c.dat" acq_file = "ofdm_frame_acq_c.dat" fft_file = "ofdm_receiver-fft_out_c.dat" self.h_derot_file = open(derot_file, "r") self.h_acq_file = open(acq_file, "r") self.h_fft_file = open(fft_file, "r") self.occ_tones = options.occ_tones self.fft_size = options.fft_size self.symbol = options.start self.sample_rate = options.sample_rate self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(14, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_sym = figtext(0.05, 0.95, ("Symbol: %s" % self.symbol), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_eq.get_xlim() self.manager = get_current_fig_manager() #connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.text_sym.set_text("Symbol: %d" % (self.symbol)) derot_data = scipy.fromfile(self.h_derot_file, dtype=scipy.complex64, count=self.occ_tones) acq_data = scipy.fromfile(self.h_acq_file, dtype=scipy.complex64, count=self.occ_tones) fft_data = scipy.fromfile(self.h_fft_file, dtype=scipy.complex64, count=self.fft_size) if(len(acq_data) == 0): print "End of File" else: self.acq_data_reals = [r.real for r in acq_data] self.acq_data_imags = [i.imag for i in acq_data] self.derot_data_reals = [r.real for r in derot_data] self.derot_data_imags = [i.imag for i in derot_data] self.unequalized_angle = [math.atan2(x.imag, x.real) for x in fft_data] self.equalized_angle = [math.atan2(x.imag, x.real) for x in acq_data] self.derot_equalized_angle = [math.atan2(x.imag, x.real) for x in derot_data] self.time = [i*(1/self.sample_rate) for i in range(len(acq_data))] ffttime = [i*(1/self.sample_rate) for i in range(len(fft_data))] self.freq = self.get_freq(ffttime, self.sample_rate) for i in range(len(fft_data)): if(abs(fft_data[i]) == 0.0): fft_data[i] = complex(1e-6,1e-6) self.fft_data = [20*log10(abs(f)) for f in fft_data] def get_freq(self, time, sample_rate, T=1): N = len(time) Fs = 1.0 / (max(time) - min(time)) Fn = 0.5 * sample_rate freq = [-Fn + i*Fs for i in range(N)] return freq def make_plots(self): self.h_acq_file.seek(8*self.symbol*self.occ_tones, 0) self.h_fft_file.seek(8*self.symbol*self.fft_size, 0) self.h_derot_file.seek(8*self.symbol*self.occ_tones, 0) self.get_data() # Subplot: constellation of rotated symbols self.sp_const = self.fig.add_subplot(4,1,1, position=[0.15, 0.55, 0.3, 0.35]) self.sp_const.set_title(("Constellation"), fontsize=self.title_font_size, fontweight="bold") self.sp_const.set_xlabel("Inphase", fontsize=self.label_font_size, fontweight="bold") self.sp_const.set_ylabel("Qaudrature", fontsize=self.label_font_size, fontweight="bold") self.plot_const = plot(self.acq_data_reals, self.acq_data_imags, 'bo') self.plot_const += plot(self.derot_data_reals, self.derot_data_imags, 'ro') self.sp_const.axis([-2, 2, -2, 2]) # Subplot: unequalized angle self.sp_uneq = self.fig.add_subplot(4,2,1, position=[0.575, 0.55, 0.3, 0.35]) self.sp_uneq.set_title(("Unequalized Angle"), fontsize=self.title_font_size, fontweight="bold") self.sp_uneq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_uneq.set_ylabel("Angle", fontsize=self.label_font_size, fontweight="bold") uneqscale = range(len(self.unequalized_angle)) self.plot_uneq = plot(uneqscale, self.unequalized_angle, 'bo') # Subplot: equalized angle self.sp_eq = self.fig.add_subplot(4,1,2, position=[0.15, 0.1, 0.3, 0.35]) self.sp_eq.set_title(("Equalized Angle"), fontsize=self.title_font_size, fontweight="bold") self.sp_eq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_eq.set_ylabel("Angle", fontsize=self.label_font_size, fontweight="bold") eqscale = range(len(self.equalized_angle)) self.plot_eq = plot(eqscale, self.equalized_angle, 'bo') self.plot_eq += plot(eqscale, self.derot_equalized_angle, 'ro', markersize=4) # Subplot: FFT self.sp_fft = self.fig.add_subplot(4,2,2, position=[0.575, 0.1, 0.3, 0.35]) self.sp_fft.set_title(("FFT"), fontsize=self.title_font_size, fontweight="bold") self.sp_fft.set_xlabel("Frequency (MHz)", fontsize=self.label_font_size, fontweight="bold") self.sp_fft.set_ylabel("Power (dBm)", fontsize=self.label_font_size, fontweight="bold") self.plot_fft = plot(self.freq, self.fft_data, '-bo') draw() def update_plots(self): eqscale = range(len(self.equalized_angle)) uneqscale = range(len(self.unequalized_angle)) self.plot_eq[0].set_data([eqscale, self.equalized_angle]) self.plot_eq[1].set_data([eqscale, self.derot_equalized_angle]) self.plot_uneq[0].set_data([uneqscale, self.unequalized_angle]) self.sp_eq.set_ylim([-4, 4]) self.sp_uneq.set_ylim([-4, 4]) #self.sp_iq.axis([min(self.time), max(self.time), # 1.5*min([min(self.acq_data_reals), min(self.acq_data_imags)]), # 1.5*max([max(self.acq_data_reals), max(self.acq_data_imags)])]) self.plot_const[0].set_data([self.acq_data_reals, self.acq_data_imags]) self.plot_const[1].set_data([self.derot_data_reals, self.derot_data_imags]) self.sp_const.axis([-2, 2, -2, 2]) self.plot_fft[0].set_data([self.freq, self.fft_data]) draw() def zoom(self, event): newxlim = self.sp_eq.get_xlim() if(newxlim != self.xlim): self.xlim = newxlim r = self.reals[int(ceil(self.xlim[0])) : int(ceil(self.xlim[1]))] i = self.imags[int(ceil(self.xlim[0])) : int(ceil(self.xlim[1]))] self.plot_const[0].set_data(r, i) self.sp_const.axis([-2, 2, -2, 2]) self.manager.canvas.draw() draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.symbol += 1 self.get_data() self.update_plots() def step_backward(self): # Step back in file position self.symbol -= 1 if(self.h_acq_file.tell() >= 16*self.occ_tones): self.h_acq_file.seek(-16*self.occ_tones, 1) else: self.symbol = 0 self.h_acq_file.seek(-self.h_acq_file.tell(),1) if(self.h_derot_file.tell() >= 16*self.occ_tones): self.h_derot_file.seek(-16*self.occ_tones, 1) else: self.symbol = 0 self.h_derot_file.seek(-self.h_derot_file.tell(),1) if(self.h_fft_file.tell() >= 16*self.fft_size): self.h_fft_file.seek(-16*self.fft_size, 1) else: self.symbol = 0 self.h_fft_file.seek(-self.h_fft_file.tell(),1) self.get_data() self.update_plots() #FIXME: there must be a way to do this with a Python builtin def find(item_in, list_search): for l in list_search: if item_in == l: return True return False def main(): usage="%prog: [options]" parser = OptionParser(conflict_handler="resolve", usage=usage) parser.add_option("", "--fft-size", type="int", default=512, help="Specify the size of the FFT [default=%default]") parser.add_option("", "--occ-tones", type="int", default=200, help="Specify the number of occupied tones [default=%default]") parser.add_option("-s", "--start", type="int", default=0, help="Specify the starting symbol to plot [default=%default]") parser.add_option("-R", "--sample-rate", type="float", default=1.0, help="Set the sampler rate of the data [default=%default]") (options, args) = parser.parse_args () dc = draw_constellation(options) if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
LamaHamadeh/Harvard-PH526x
Week4-Case-Studies-Part2/Classifying-Whiskies/Homework_Week4_CaseStudy1.py
1
9921
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 2 19:04:02 2017 @author: lamahamadeh """ ''' =================================================== Case Study 1 - Scotch Wishkies Analysis Using Bokeh =================================================== ''' #In this case study, we have prepared step-by-step instructions for you on how #to prepare plots in Bokeh, a library designed for simple interactive plotting. #We will demonstrate Bokeh by continuing the analysis of Scotch whiskies. #---------------------------------------------------------------------------------------------------------------- # Exercise 1 #----------- #Here we provide a basic demonstration of an interactive grid plot using Bokeh. #Execute the following code and follow along with the comments. We will later #adapt this code to plot the correlations among distillery flavor profiles as #well as plot a geographical map of distilleries colored by region and flavor #profile. #Make sure to study this code now, as we will edit similar code in the #exercises that follow. #Once you have plotted the code, hover, click, and drag your cursor on the plot #to interact with it. Additionally, explore the icons in the top-right corner #of the plot for more interactive options! # First, we import a tool to allow text to pop up on a plot when the cursor # hovers over it. Also, we import a data structure used to store arguments # of what to plot in Bokeh. Finally, we will use numpy for this section as well! from bokeh.models import HoverTool, ColumnDataSource import numpy as np # Let's plot a simple 5x5 grid of squares, alternating in color as red and blue. plot_values = [1,2,3,4,5] plot_colors = ["red", "blue"] # How do we tell Bokeh to plot each point in a grid? Let's use a function that # finds each combination of values from 1-5. from itertools import product grid = list(product(plot_values, plot_values)) print(grid) #------------------------------------------------------------------------------ # Exercise 2 #----------- #Let's create the names and colors we will use to plot the correlation matrix #of whisky flavors. Later, we will also use these colors to plot each distillery #geographically. Create a dictionary region_colors with regions as keys #and cluster_colors as values. cluster_colors = ["red", "orange", "green", "blue", "purple", "gray"] regions = ["Speyside", "Highlands", "Lowlands", "Islands", "Campbelltown", "Islay"] region_colors = dict(zip(regions,cluster_colors)) #Print region_colors. print(region_colors) #------------------------------------------------------------------------------ # Exercise 3 #----------- #correlations is a two-dimensional np.array with both rows and columns #corresponding to distilleries and elements corresponding to the flavor #correlation of each row/column pair. Let's define a list correlation_colors, #with string values corresponding to colors to be used to plot each distillery #pair. Low correlations among distillery pairs will be white, high correlations #will be a distinct group color if the distilleries from the same group, and #gray otherwise. Edit the code to define correlation_colors for each distillery #pair to have input 'white' if their correlation is less than 0.7. #whisky.Group is a pandas dataframe column consisting of distillery group #memberships. For distillery pairs with correlation greater than 0.7, if they #share the same whisky group, use the corresponding color from cluster_colors. #Otherwise, the correlation_colors value for that distillery pair will be #defined as 'lightgray'. distilleries = list(whisky.Distillery) correlation_colors = [] for i in range(len(distilleries)): for j in range(len(distilleries)): if correlations[i,j] < .70: # if low correlation, correlation_colors.append('white') # just use white. else: # otherwise, if whisky.Group[i] == whisky.Group[j]: # if the groups match, correlation_colors.append(cluster_colors[whisky.Group[i]]) # color them by their mutual group. else: # otherwise correlation_colors.append('lightgray') # color them lightgray. #------------------------------------------------------------------------------ # Exercise 4 #----------- #We will edit the following code to make an interactive grid of the correlations #among distillery pairs using correlation_colors and correlations. #correlation_colors is a list of each distillery pair. To convert correlations #from a np.array to a list, we will use the flatten method. Define the color #of each rectangle in the grid using to correlation_colors. #Define the alpha (transparency) values using correlations.flatten(). #Define correlations and using correlations.flatten(). When the cursor hovers #over a rectangle, this will output the distillery pair, show both distilleries #as well as their correlation coefficient. source = ColumnDataSource( data = { "x": np.repeat(distilleries,len(distilleries)), "y": list(distilleries)*len(distilleries), "colors": correlation_colors, "alphas": correlations.flatten(), "correlations": correlations.flatten(), } ) output_file("Whisky Correlations.html", title="Whisky Correlations") fig = figure(title="Whisky Correlations", x_axis_location="above", tools="resize,hover,save", x_range=list(reversed(distilleries)), y_range=distilleries) fig.grid.grid_line_color = None fig.axis.axis_line_color = None fig.axis.major_tick_line_color = None fig.axis.major_label_text_font_size = "5pt" fig.xaxis.major_label_orientation = np.pi / 3 fig.rect('x', 'y', .9, .9, source=source, color='colors', alpha='alphas') hover = fig.select(dict(type=HoverTool)) hover.tooltips = { "Whiskies": "@x, @y", "Correlation": "@correlations", } show(fig) #------------------------------------------------------------------------------ # Exercise 5 #----------- #Next, we provide an example of plotting points geographically. #Run the following code, to be adapted in the next section. #Compare this code to that used in plotting the distillery correlations. points = [(0,0), (1,2), (3,1)] xs, ys = zip(*points) colors = ["red", "blue", "green"] output_file("Spatial_Example.html", title="Regional Example") location_source = ColumnDataSource( data={ "x": xs, "y": ys, "colors": colors, } ) fig = figure(title = "Title", x_axis_location = "above", tools="resize, hover, save") fig.plot_width = 300 fig.plot_height = 380 fig.circle("x", "y", 10, 10, size=10, source=location_source, color='colors', line_color = None) hover = fig.select(dict(type = HoverTool)) hover.tooltips = { "Location": "(@x, @y)" } show(fig) #------------------------------------------------------------------------------ # Exercise 6 #----------- #Adapt the given code from the beginning to show(fig) in order to define a #function location_plot(title, colors). This function takes a string title # and a list of colors corresponding to each distillery and outputs a Bokeh #plot of each distillery by latitude and longitude. As the cursor hovers over #each point, it displays the distillery name, latitude, and longitude. def location_plot(title, colors): output_file(title+".html") location_source = ColumnDataSource( data={ "x": whisky[" Latitude"], "y": whisky[" Longitude"], "colors": colors, "regions": whisky.Region, "distilleries": whisky.Distillery } ) fig = figure(title = title, x_axis_location = "above", tools="resize, hover, save") fig.plot_width = 400 fig.plot_height = 500 fig.circle("x", "y", 10, 10, size=9, source=location_source, color='colors', line_color = None) fig.xaxis.major_label_orientation = np.pi / 3 hover = fig.select(dict(type = HoverTool)) hover.tooltips = { "Distillery": "@distilleries", "Location": "(@x, @y)" } show(fig) #whisky.Region is a pandas column containing the regional group membership for #each distillery. Make a list consisting of the value of region_colors for #each distillery, and store this list as region_cols. region_cols = [region_colors[i] for i in list(whisky["Region"])] #Use location_plot to plot each distillery, colored by its regional grouping. location_plot("Whisky Locations and Regions", region_cols) #------------------------------------------------------------------------------ # Exercise 7 #----------- #Use list comprehensions to create the list region_cols consisting of the color # in region_colors that corresponds to each whisky in whisky.Region. region_cols = [region_colors[i] for i in whisky['Region']] #Similarly, create a list classification_cols consisting of the color in #cluster_colors that corresponds to each cluster membership in whisky.Group. classification_cols = [cluster_colors[j] for j in whisky['Group']] #location_plot remains stored from the previous exercise. Use it to create two #interactive plots of distilleries, one colored by defined region called #region_cols and the other with colors defined by coclustering designation #called classification_cols. How well do the coclustering groupings match the #regional groupings? location_plot("Whisky Locations and Regions", region_cols) location_plot("Whisky Locations and Groups", classification_cols) ''' We see that there is not very much overlap between the regional classifications and the coclustering classifications. This means that regional classifications are not a very good guide to Scotch whisky flavor profiles. ''' #------------------------------------------------------------------------------
mit
wwf5067/statsmodels
statsmodels/graphics/tests/test_functional.py
30
2816
from statsmodels.compat.python import range import numpy as np from numpy.testing import dec, assert_equal, assert_almost_equal from statsmodels.graphics.functional import \ banddepth, fboxplot, rainbowplot try: import matplotlib.pyplot as plt import matplotlib have_matplotlib = True except ImportError: have_matplotlib = False def test_banddepth_BD2(): xx = np.arange(500) / 150. y1 = 1 + 0.5 * np.sin(xx) y2 = 0.3 + np.sin(xx + np.pi/6) y3 = -0.5 + np.sin(xx + np.pi/6) y4 = -1 + 0.3 * np.cos(xx + np.pi/6) data = np.asarray([y1, y2, y3, y4]) depth = banddepth(data, method='BD2') expected_depth = [0.5, 5./6, 5./6, 0.5] assert_almost_equal(depth, expected_depth) ## Plot to visualize why we expect this output #fig = plt.figure() #ax = fig.add_subplot(111) #for ii, yy in enumerate([y1, y2, y3, y4]): # ax.plot(xx, yy, label="y%s" % ii) #ax.legend() #plt.show() def test_banddepth_MBD(): xx = np.arange(5001) / 5000. y1 = np.zeros(xx.shape) y2 = 2 * xx - 1 y3 = np.ones(xx.shape) * 0.5 y4 = np.ones(xx.shape) * -0.25 data = np.asarray([y1, y2, y3, y4]) depth = banddepth(data, method='MBD') expected_depth = [5./6, (2*(0.75-3./8)+3)/6, 3.5/6, (2*3./8+3)/6] assert_almost_equal(depth, expected_depth, decimal=4) @dec.skipif(not have_matplotlib) def test_fboxplot_rainbowplot(): # Test fboxplot and rainbowplot together, is much faster. def harmfunc(t): """Test function, combination of a few harmonic terms.""" # Constant, 0 with p=0.9, 1 with p=1 - for creating outliers ci = int(np.random.random() > 0.9) a1i = np.random.random() * 0.05 a2i = np.random.random() * 0.05 b1i = (0.15 - 0.1) * np.random.random() + 0.1 b2i = (0.15 - 0.1) * np.random.random() + 0.1 func = (1 - ci) * (a1i * np.sin(t) + a2i * np.cos(t)) + \ ci * (b1i * np.sin(t) + b2i * np.cos(t)) return func np.random.seed(1234567) # Some basic test data, Model 6 from Sun and Genton. t = np.linspace(0, 2 * np.pi, 250) data = [] for ii in range(20): data.append(harmfunc(t)) # fboxplot test fig = plt.figure() ax = fig.add_subplot(111) _, depth, ix_depth, ix_outliers = fboxplot(data, wfactor=2, ax=ax) ix_expected = np.array([13, 4, 15, 19, 8, 6, 3, 16, 9, 7, 1, 5, 2, 12, 17, 11, 14, 10, 0, 18]) assert_equal(ix_depth, ix_expected) ix_expected2 = np.array([2, 11, 17, 18]) assert_equal(ix_outliers, ix_expected2) plt.close(fig) # rainbowplot test (re-uses depth variable) xdata = np.arange(data[0].size) fig = rainbowplot(data, xdata=xdata, depth=depth, cmap=plt.cm.rainbow) plt.close(fig)
bsd-3-clause
dgwakeman/mne-python
examples/decoding/plot_decoding_sensors.py
6
3384
""" ========================== Decoding sensor space data ========================== Decoding, a.k.a MVPA or supervised machine learning applied to MEG data in sensor space. Here the classifier is applied to every time point. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import numpy as np import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() plt.close('all') ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0.2, 0.5 event_id = dict(aud_l=1, vis_l=3) # Setup for reading the raw data raw = io.Raw(raw_fname, preload=True) raw.filter(2, None, method='iir') # replace baselining with high-pass events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=True, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True, reject=dict(grad=4000e-13, eog=150e-6)) epochs_list = [epochs[k] for k in event_id] mne.epochs.equalize_epoch_counts(epochs_list) ############################################################################### # Decoding in sensor space using a linear SVM n_times = len(epochs.times) # Take only the data channels (here the gradiometers) data_picks = mne.pick_types(epochs.info, meg=True, exclude='bads') # Make arrays X and y such that : # X is 3d with X.shape[0] is the total number of epochs to classify # y is filled with integers coding for the class to predict # We must have X.shape[0] equal to y.shape[0] X = [e.get_data()[:, data_picks, :] for e in epochs_list] y = [k * np.ones(len(this_X)) for k, this_X in enumerate(X)] X = np.concatenate(X) y = np.concatenate(y) from sklearn.svm import SVC # noqa from sklearn.cross_validation import cross_val_score, ShuffleSplit # noqa clf = SVC(C=1, kernel='linear') # Define a monte-carlo cross-validation generator (reduce variance): cv = ShuffleSplit(len(X), 10, test_size=0.2) scores = np.empty(n_times) std_scores = np.empty(n_times) for t in range(n_times): Xt = X[:, :, t] # Standardize features Xt -= Xt.mean(axis=0) Xt /= Xt.std(axis=0) # Run cross-validation # Note : for sklearn the Xt matrix should be 2d (n_samples x n_features) scores_t = cross_val_score(clf, Xt, y, cv=cv, n_jobs=1) scores[t] = scores_t.mean() std_scores[t] = scores_t.std() times = 1e3 * epochs.times scores *= 100 # make it percentage std_scores *= 100 plt.plot(times, scores, label="Classif. score") plt.axhline(50, color='k', linestyle='--', label="Chance level") plt.axvline(0, color='r', label='stim onset') plt.legend() hyp_limits = (scores - std_scores, scores + std_scores) plt.fill_between(times, hyp_limits[0], y2=hyp_limits[1], color='b', alpha=0.5) plt.xlabel('Times (ms)') plt.ylabel('CV classification score (% correct)') plt.ylim([30, 100]) plt.title('Sensor space decoding') plt.show()
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/io/tests/sas/test_sas7bdat.py
7
4973
import pandas as pd from pandas.compat import PY2 import pandas.util.testing as tm import os import io import numpy as np class TestSAS7BDAT(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.data = [] self.test_ix = [list(range(1, 16)), [16]] for j in 1, 2: fname = os.path.join(self.dirpath, "test_sas7bdat_%d.csv" % j) df = pd.read_csv(fname) epoch = pd.datetime(1960, 1, 1) t1 = pd.to_timedelta(df["Column4"], unit='d') df["Column4"] = epoch + t1 t2 = pd.to_timedelta(df["Column12"], unit='d') df["Column12"] = epoch + t2 for k in range(df.shape[1]): col = df.iloc[:, k] if col.dtype == np.int64: df.iloc[:, k] = df.iloc[:, k].astype(np.float64) elif col.dtype == np.dtype('O'): if PY2: f = lambda x: (x.decode('utf-8') if isinstance(x, str) else x) df.iloc[:, k] = df.iloc[:, k].apply(f) self.data.append(df) def test_from_file(self): for j in 0, 1: df0 = self.data[j] for k in self.test_ix[j]: fname = os.path.join(self.dirpath, "test%d.sas7bdat" % k) df = pd.read_sas(fname, encoding='utf-8') tm.assert_frame_equal(df, df0) def test_from_buffer(self): for j in 0, 1: df0 = self.data[j] for k in self.test_ix[j]: fname = os.path.join(self.dirpath, "test%d.sas7bdat" % k) with open(fname, 'rb') as f: byts = f.read() buf = io.BytesIO(byts) rdr = pd.read_sas(buf, format="sas7bdat", iterator=True, encoding='utf-8') df = rdr.read() tm.assert_frame_equal(df, df0, check_exact=False) def test_from_iterator(self): for j in 0, 1: df0 = self.data[j] for k in self.test_ix[j]: fname = os.path.join(self.dirpath, "test%d.sas7bdat" % k) rdr = pd.read_sas(fname, iterator=True, encoding='utf-8') df = rdr.read(2) tm.assert_frame_equal(df, df0.iloc[0:2, :]) df = rdr.read(3) tm.assert_frame_equal(df, df0.iloc[2:5, :]) def test_iterator_loop(self): # github #13654 for j in 0, 1: for k in self.test_ix[j]: for chunksize in 3, 5, 10, 11: fname = os.path.join(self.dirpath, "test%d.sas7bdat" % k) rdr = pd.read_sas(fname, chunksize=10, encoding='utf-8') y = 0 for x in rdr: y += x.shape[0] self.assertTrue(y == rdr.row_count) def test_iterator_read_too_much(self): # github #14734 k = self.test_ix[0][0] fname = os.path.join(self.dirpath, "test%d.sas7bdat" % k) rdr = pd.read_sas(fname, format="sas7bdat", iterator=True, encoding='utf-8') d1 = rdr.read(rdr.row_count + 20) rdr = pd.read_sas(fname, iterator=True, encoding="utf-8") d2 = rdr.read(rdr.row_count + 20) tm.assert_frame_equal(d1, d2) def test_encoding_options(): dirpath = tm.get_data_path() fname = os.path.join(dirpath, "test1.sas7bdat") df1 = pd.read_sas(fname) df2 = pd.read_sas(fname, encoding='utf-8') for col in df1.columns: try: df1[col] = df1[col].str.decode('utf-8') except AttributeError: pass tm.assert_frame_equal(df1, df2) from pandas.io.sas.sas7bdat import SAS7BDATReader rdr = SAS7BDATReader(fname, convert_header_text=False) df3 = rdr.read() rdr.close() for x, y in zip(df1.columns, df3.columns): assert(x == y.decode()) def test_productsales(): dirpath = tm.get_data_path() fname = os.path.join(dirpath, "productsales.sas7bdat") df = pd.read_sas(fname, encoding='utf-8') fname = os.path.join(dirpath, "productsales.csv") df0 = pd.read_csv(fname) vn = ["ACTUAL", "PREDICT", "QUARTER", "YEAR", "MONTH"] df0[vn] = df0[vn].astype(np.float64) tm.assert_frame_equal(df, df0) def test_12659(): dirpath = tm.get_data_path() fname = os.path.join(dirpath, "test_12659.sas7bdat") df = pd.read_sas(fname) fname = os.path.join(dirpath, "test_12659.csv") df0 = pd.read_csv(fname) df0 = df0.astype(np.float64) tm.assert_frame_equal(df, df0) def test_airline(): dirpath = tm.get_data_path() fname = os.path.join(dirpath, "airline.sas7bdat") df = pd.read_sas(fname) fname = os.path.join(dirpath, "airline.csv") df0 = pd.read_csv(fname) df0 = df0.astype(np.float64) tm.assert_frame_equal(df, df0, check_exact=False)
gpl-3.0
jblackburne/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
borismarin/genesis2.4gamma
Scripts/gpython-tools/weight_hist.py
2
3321
#!/usr/bin/env python # weight_hist.py ver 1.0 - a command line utility to plot a wildcarded argument # list of files containing a line of connection weight values as a histogram. import sys, os import matplotlib.pyplot as plt import numpy as np def print_help(): msg = """ weight_hist.py ver 1.0 - a utility to plot synaptic weight histograms Usage: weight_hist.py filenames [filenames2] [filenames3] ... weight_hist.py plots a histogram of synaptic weight values for the connections to a synaptically activated channel, such as a GENESIS synchan element. Here 'filenames' is a wildcarded list of filenames, e.g. 'weight_hist W128ex32inh-gmax0.2*.txt', or a single filename. Each file should consist of a single line of synaptic weight values. If there is more than one file, the data are plotted as separately colored and labeled bars. """ print msg def do_plot_files(filenames): formats = ['r', 'g', 'b', 'k', 'm', 'c'] plotnum = 0 datasets = [] colors = [] for file in filenames: # print file format = formats[plotnum % len(formats)] if os.path.exists(file): fp = open(file, 'r') values = np.loadtxt(fp, dtype='float') print format, plotnum nvalues = len(values) print 'Number of values = %d' % nvalues datasets.append(values) colors.append(format) ndatasets = len(datasets) print 'Number of datasets = %d' % ndatasets print 'Plotting %s' % file plotnum = plotnum + 1 else: print '*** Error: Incorrect file name or path specified ***' sys.exit() # I need to do better error handling! # Now make the histogram with the data in values n, bins, patches = axes.hist(datasets, bins=20, label=filenames, color=colors) # print n, bins, patches if __name__ == "__main__": # Get the arguments (possibly wildcarded) into a list of filenames filenames = sys.argv[1:] if len(filenames) == 0: print_help() sys.exit() print filenames # Generate a RUNID from a string like "W128ex32inh_0.20.txt" fn1 = sys.argv[1] fnbase,ext = os.path.splitext(fn1) if len(filenames) == 1: runid = fnbase else: # get string following final '_' and remove 1 char suffix # runid = 'series ' + fnbase.split('_')[-1][:-1] runid = 'series ' + fnbase[:-1] # print filenames, runid # create the plot fig = plt.figure() fig.canvas.set_window_title('GENESIS Weight Histogram') fig.suptitle('Histogram of connection weights') # A pleasant light blue background # figbg = (191, 209, 212) figbg = (160, 216, 248) fig.set_facecolor('#%02x%02x%02x' % figbg) axes = fig.add_subplot(111) do_plot_files(filenames) # n, bins, patches = axes.hist([values[0], values[1], values[2]], # bins=20, histtype='bar',color=format) axes.set_title('Weights for ' + runid) axes.set_xlabel('Synaptic Weights') axes.set_ylabel('Number') axes.legend(loc='upper center') plt.show()
gpl-2.0
liangz0707/scikit-learn
sklearn/utils/__init__.py
79
14202
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric, DataConversionWarning) from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric"] class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra: string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask: array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list. Data from which to sample rows or items. indices : array-like, list Indices according to which X will be subsampled. """ if hasattr(X, "iloc"): # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples if max_n_samples > n_samples: raise ValueError("Cannot sample %d out of arrays with dim %d" % ( max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x) class ConvergenceWarning(UserWarning): """Custom warning to capture convergence problems""" class DataDimensionalityWarning(UserWarning): """Custom warning to notify potential issues with data dimensionality"""
bsd-3-clause
MostafaGazar/tensorflow
tensorflow/examples/skflow/text_classification_builtin_rnn_model.py
11
2984
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import metrics import pandas import tensorflow as tf from tensorflow.contrib import learn FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_bool('test_with_fake_data', False, 'Test the example code with fake data.') MAX_DOCUMENT_LENGTH = 10 EMBEDDING_SIZE = 50 n_words = 0 def input_op_fn(x): """Customized function to transform batched x into embeddings.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = learn.ops.categorical_variable(x, n_classes=n_words, embedding_size=EMBEDDING_SIZE, name='words') # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unpack(word_vectors, axis=1) return word_list def main(unused_argv): global n_words # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) x_train = np.array(list(vocab_processor.fit_transform(x_train))) x_test = np.array(list(vocab_processor.transform(x_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model: a single direction GRU with a single layer classifier = learn.TensorFlowRNNClassifier( rnn_size=EMBEDDING_SIZE, n_classes=15, cell_type='gru', input_op_fn=input_op_fn, num_layers=1, bidirectional=False, sequence_length=None, steps=1000, optimizer='Adam', learning_rate=0.01, continue_training=True) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = classifier.predict(x_test) score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
ruffoa/Qhacks2016
Sigma-Securities/src/analysis/Analyser.py
1
1691
import csv import sys import numpy from numpy import array import decimal import string from sklearn import linear_model from operator import itemgetter from sklearn import tree import random from sklearn import cross_validation rawList= [] positiveRawList = [] negativeRawList = [] element = [] positiveResponses=0 negativeResponses=0 f = open("alchemy.txt", 'rt') try: reader = csv.reader(f) for row in reader: element = [] element.append(float(row[0])) element.append(float(row[1])) element.append(float(row[2])) element.append(float(row[3])) element.append(float(row[4])) rawList.append(element) finally: f.close() a = array( rawList) X = a[:, 0:2] Y= a[:,4] print X print Y lr = linear_model.LogisticRegression() lr.fit(X,Y) proba1 = lr.predict(X) proba = lr.predict_proba(X) print("lr output scores %s",proba1) #lr_scores = cross_validation.cross_val_score(lr, X, Y, cv=10) #print "lr accuracy: %0.2f (+/- %0.2f)" % (lr_scores.mean(), lr_scores.std() / 2) dt = tree.DecisionTreeClassifier() dt.fit(X,Y) proba2 = lr.predict(X) proba = dt.predict_proba(X) print("dt output scores %s",proba2) #dt_scores = cross_validation.cross_val_score(dt, X, Y, cv=10) #print "dt accuracy: %0.2f (+/- %0.2f)" % (dt_scores.mean(), dt_scores.std() / 2) ''' from sklearn.linear_model import SGDClassifier clf =SGDClassifier(loss="modified_huber", penalty="l2") clf.fit(X,Y) proba = clf.predict_proba(X) clf_scores = cross_validation.cross_val_score(clf, X, Y, cv=10) print "SGDClassifier accuracy: %0.2f (+/- %0.2f)" % (clf_scores.mean(), clf_scores.std() / 2) '''
mit
comp-imaging/ProxImaL
proximal/examples/test_conv.py
1
2524
# Proximal import sys sys.path.append('../../') from proximal.utils.utils import * from proximal.halide.halide import * from proximal.lin_ops import * import numpy as np from scipy import signal from scipy import ndimage import matplotlib.pyplot as plt ############################################################ # Load image np_img = get_test_image(2048) print('Type ', np_img.dtype, 'Shape', np_img.shape) imgplot = plt.imshow(np_img, interpolation='nearest', clim=(0.0, 1.0)) imgplot.set_cmap('gray') plt.title('Numpy') # Force recompile in local dir tic() Halide('A_conv', recompile=True) Halide('At_conv', recompile=True) # Force recompile in local dir print('Compilation took: {0:.1f}ms'.format(toc())) # Test the runner output = np.zeros_like(np_img) K = get_kernel(15, len(np_img.shape)) tic() Halide('A_conv').A_conv(np_img, K, output) # Call print('Running took: {0:.1f}ms'.format(toc())) plt.figure() imgplot = plt.imshow(output, interpolation='nearest', clim=(0.0, 1.0)) imgplot.set_cmap('gray') plt.title('Output from Halide') tic() output_scipy = signal.convolve2d(np_img, K, mode='same', boundary='wrap') print('Running Scipy.convolve2d took: {0:.1f}ms'.format(toc())) fn = conv(K, Variable(np_img.shape), implem='halide') output_ref = np.zeros(np_img.shape, dtype=np.float32, order='F') tic() fn.forward([np_img], [output_ref]) print('Running conv fft convolution took: {0:.1f}ms'.format(toc())) # Error print('Maximum error {0}'.format(np.amax(np.abs(output_ref - output)))) plt.figure() imgplot = plt.imshow(output_ref * 255, interpolation='nearest', clim=(0.0, 255.0)) imgplot.set_cmap('gray') plt.title('Output from Scipy') ############################################################################ # Check correlation ############################################################################ output_corr = np.zeros_like(np_img) tic() Halide('At_conv').At_conv(np_img, K, output_corr) # Call print('Running correlation took: {0:.1f}ms'.format(toc())) #output_corr_ref = signal.convolve2d(np_img, np.flipud(np.fliplr(K)), mode='same', boundary='wrap') output_corr_ref = ndimage.correlate(np_img, K, mode='wrap') # Adjoint. output_corr_ref = np.zeros(np_img.shape, dtype=np.float32, order='F') tic() fn.adjoint([np_img], [output_corr_ref]) print('Running transpose conv fft convolution took: {0:.1f}ms'.format(toc())) # Error print('Maximum error correlation {0}'.format( np.amax(np.abs(output_corr_ref - output_corr)))) plt.show()
mit
Mushirahmed/gnuradio
gr-utils/src/python/plot_data.py
17
5768
# # Copyright 2007,2008,2011 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # try: import scipy except ImportError: print "Please install SciPy to run this script (http://www.scipy.org/)" raise SystemExit, 1 try: from pylab import * except ImportError: print "Please install Matplotlib to run this script (http://matplotlib.sourceforge.net/)" raise SystemExit, 1 from optparse import OptionParser class plot_data: def __init__(self, datatype, filenames, options): self.hfile = list() self.legend_text = list() for f in filenames: self.hfile.append(open(f, "r")) self.legend_text.append(f) self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype self.sizeof_data = datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_f.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show() def get_data(self, hfile): self.text_file_pos.set_text("File Position: %d" % (hfile.tell()//self.sizeof_data)) try: f = scipy.fromfile(hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print "End of File" else: self.f = scipy.array(f) self.time = scipy.array([i*(1/self.sample_rate) for i in range(len(self.f))]) def make_plots(self): self.sp_f = self.fig.add_subplot(2,1,1, position=[0.075, 0.2, 0.875, 0.6]) self.sp_f.set_title(("Amplitude"), fontsize=self.title_font_size, fontweight="bold") self.sp_f.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_f.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") self.plot_f = list() maxval = -1e12 minval = 1e12 for hf in self.hfile: # if specified on the command-line, set file pointer hf.seek(self.sizeof_data*self.start, 1) self.get_data(hf) # Subplot for real and imaginary parts of signal self.plot_f += plot(self.time, self.f, 'o-') maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) self.leg = self.sp_f.legend(self.plot_f, self.legend_text) draw() def update_plots(self): maxval = -1e12 minval = 1e12 for hf,p in zip(self.hfile,self.plot_f): self.get_data(hf) p.set_data([self.time, self.f]) maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.update_plots() def step_backward(self): for hf in self.hfile: # Step back in file position if(hf.tell() >= 2*self.sizeof_data*self.block_length ): hf.seek(-2*self.sizeof_data*self.block_length, 1) else: hf.seek(-hf.tell(),1) self.update_plots() def find(item_in, list_search): try: return list_search.index(item_in) != None except ValueError: return False
gpl-3.0
rvraghav93/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
52
3435
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll # ############################################################################# # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 # ############################################################################# # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) # ############################################################################# # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2], color=plt.cm.jet(np.float(l) / np.max(label + 1)), s=20, edgecolor='k') plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) # ############################################################################# # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # ############################################################################# # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) # ############################################################################# # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2], color=plt.cm.jet(float(l) / np.max(label + 1)), s=20, edgecolor='k') plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
daaugusto/ppi
script/plot.py
1
6876
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt import subprocess import sys import argparse ################################################################################ # usage: plot.py [-h] -e EXE -f FRONT_FILE -d TEST_DATASET [-t TITLE] # [-x XLABEL] [-y YLABEL] [-fbl FIRST_BAR_LABEL] # [-sbl SECOND_BAR_LABEL] [-out OUT_FILE] [-dup] [-min MIN] # [-max MAX] # # optional arguments: # -h, --help show this help message and exit # -e EXE, --exe EXE Executable filename # -f FRONT_FILE, --front-file FRONT_FILE # Pareto-front file # -d TEST_DATASET, --test-dataset TEST_DATASET # Test dataset # -t TITLE, --title TITLE # Title of the figure [default=none] # -x XLABEL, --xlabel XLABEL # Label of the x-axis [default='Complexity (nodes)'] # -y YLABEL, --ylabel YLABEL # Label of the y-axis [default='Error'] # -fbl FIRST_BAR_LABEL, --first-bar-label FIRST_BAR_LABEL # Label of the first bar [default='Training set'] # -sbl SECOND_BAR_LABEL, --second-bar-label SECOND_BAR_LABEL # Label of the second bar [default='Test set'] # -out OUT_FILE, --out-file OUT_FILE # Figure output filename [default=plot.pdf] # -dup, --plot-duplicate # Plot duplicate entries instead of taking their mean # [default=false] # -min MIN, --min MIN Ignore sizes less than the given minimum size # [default=0] # -max MAX, --max MAX Ignore sizes greater than the given maximum size # [default=inf] ### # Example: # # python script/plot.py -e build/speed -f build/speed.front -d build/test.csv ################################################################################ parser = argparse.ArgumentParser() parser.add_argument("-e", "--exe", required=True, help="Executable filename") parser.add_argument("-f", "--front-file", required=True, help="Pareto-front file") parser.add_argument("-d", "--test-dataset", required=True, help="Test dataset") parser.add_argument("-t", "--title", default="", help="Title of the figure [default=none]") parser.add_argument("-x", "--xlabel", default="Complexity (nodes)", help="Label of the x-axis [default='Complexity (nodes)']") parser.add_argument("-y", "--ylabel", default="Error", help="Label of the y-axis [default='Error']") parser.add_argument("-fbl", "--first-bar-label", default="Training set", help="Label of the first bar [default='Training set']") parser.add_argument("-sbl", "--second-bar-label", default="Test set", help="Label of the second bar [default='Test set']") parser.add_argument("-out", "--out-file", default="plot.pdf", help="Figure output filename [default=plot.pdf]") parser.add_argument("-dup", "--plot-duplicate", action='store_true', default=False, help="Plot duplicate entries instead of taking their mean [default=false]") parser.add_argument("-min", "--min", type=int, default=0, help="Ignore sizes less than the given minimum size [default=0]") parser.add_argument("-max", "--max", type=int, default=sys.maxint, help="Ignore sizes greater than the given maximum size [default=inf]") args = parser.parse_args() try: f = open(args.front_file,"r") except IOError: print >> sys.stderr, "Could not open file '" + args.front_file + "'" sys.exit(1) lines = f.readlines() f.close() size = [] tra_error = [] solution = [] for i in range(len(lines)): sz = int(lines[i].split(';')[1]) if sz >= args.min and sz <= args.max: size.append(sz) tra_error.append(lines[i].split(';')[2]) solution.append(lines[i].split(';')[4]) size = np.array(size).astype(int) tra_error = np.array(tra_error).astype(float) try: f = open(args.test_dataset,"r") except IOError: print >> sys.stderr, "Could not open file '" + args.test_dataset + "'" sys.exit(1) lines = f.readlines() f.close() tes_error = np.empty(len(solution)); print "# training error -> '%s'" % (args.first_bar_label) print "# test error -> '%s'" % (args.second_bar_label) print "ID size :: training error :: test error :: solution (encoded terminals)" print "-- ---- -------------- -------------- ----------------------------" for i in range(len(solution)): tes_error[i] = subprocess.check_output(["./" + args.exe, "-d", args.test_dataset, "-sol", str(size[i]) + " " + str(solution[i].rstrip())]) print "[%-3d] %-4s :: %-14s :: %-14s :: %s" % (i+1, size[i], tra_error[i], tes_error[i], str(solution[i].rstrip())) min_value = sys.float_info.max; max_value = 0. fig = plt.figure(figsize=(18,4)) ax = fig.add_subplot(111) if args.title: ax.set_title(args.title, fontsize=14, fontweight='bold') if args.xlabel: ax.set_xlabel(args.xlabel, fontweight='bold', fontsize=12) if args.ylabel: ax.set_ylabel(args.ylabel, fontweight='bold', fontsize=12) width = 0.4 vector = []; marks = [] for i in range(1,max(size[tes_error<1.e+30])+1): if args.plot_duplicate: if len(tra_error[(tes_error<1.e+30)]) > 0: for complexity in tra_error[(tes_error<1.e+30) & (size==i)]: marks.append(i) vector.append(complexity) else: if len(tra_error[(tes_error<1.e+30) & (size==i)]) > 0: marks.append(i) vector.append(np.mean(tra_error[(tes_error<1.e+30) & (size==i)])) ax.bar(range(1,len(marks)+1), vector, width, color='b', label=args.first_bar_label) vector = [] for i in range(1,max(size[tes_error<1.e+30])+1): if args.plot_duplicate: if len(tes_error[(tes_error<1.e+30)]) > 0: for complexity in tes_error[(tes_error<1.e+30) & (size==i)]: vector.append(complexity) else: if len(tes_error[(tes_error<1.e+30) & (size==i)]) > 0: vector.append(np.mean(tes_error[(tes_error<1.e+30) & (size==i)])) ax.bar([x + width for x in range(1,len(marks)+1)], vector, width, color='r', label=args.second_bar_label) if min(tra_error) < min_value: min_value = min(tra_error) if max(tra_error) > max_value: max_value = max(tra_error) if min(tes_error) < min_value: min_value = min(tes_error) if max(tes_error[tes_error<1.e+30]) > max_value: max_value = max(tes_error[tes_error<1.e+30]) ax.set_ylim(min_value-0.03*min_value,max_value+0.03*max_value) ax.set_xlim(width,len(marks)+4*width) ax.set_xticks([x + width for x in range(1,len(marks)+1)]) xtickNames = ax.set_xticklabels(marks) plt.setp(xtickNames, rotation=45, fontsize=8) ax.legend(loc='upper right', scatterpoints=1, ncol=1, fontsize=12) fig.savefig(args.out_file, dpi=300, facecolor='w', edgecolor='w', orientation='portrait', papertype='letter', bbox_inches='tight') print "\nPlotted to file '%s'" % (args.out_file) #plt.show()
gpl-3.0
diana-hep/carl
tests/learning/test_parameterize.py
1
2839
# Carl is free software; you can redistribute it and/or modify it # under the terms of the Revised BSD License; see LICENSE file for # more details. import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_raises from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor import theano from carl.distributions import Normal from carl.learning import ParameterStacker from carl.learning import ParameterizedClassifier from carl.learning import ParameterizedRegressor from carl.learning import make_parameterized_classification def test_parameter_stacker(): mu = theano.shared(0) sigma = theano.shared(1) p = Normal(mu=mu, sigma=sigma) X = p.rvs(10) tf = ParameterStacker(params=[mu, sigma]) Xt = tf.transform(X) assert Xt.shape == (10, 1+2) assert_array_almost_equal(Xt[:, 1], np.zeros(10)) assert_array_almost_equal(Xt[:, 2], np.ones(10)) mu.set_value(1) Xt = tf.transform(X) assert_array_almost_equal(Xt[:, 1], np.ones(10)) def test_parameterized_classifier(): mu0 = theano.shared(0) mu1 = theano.shared(1) p0 = Normal(mu=mu0) p1 = Normal(mu=mu1) X, y = make_parameterized_classification(p0, p1, 100, [mu0, mu1]) clf = ParameterizedClassifier(DecisionTreeClassifier(), params=[mu0, mu1]) clf.fit(X, y) assert clf.n_features_ == 1 assert_array_almost_equal(y, clf.predict(X)) def test_parameterized_regressor(): mu = theano.shared(0) p = Normal(mu=mu) X = p.rvs(100) y = p.pdf(X).astype(np.float32) tf = ParameterStacker(params=[mu]) clf = ParameterizedRegressor(DecisionTreeRegressor(), params=[mu]) clf.fit(tf.transform(X), y) assert clf.n_features_ == 1 assert_array_almost_equal(y, clf.predict(tf.transform(X)), decimal=3) def test_make_parameterized_classification(): # Simple case mu0 = theano.shared(0.) mu1 = theano.shared(1.) p0 = Normal(mu=mu0) p1 = Normal(mu=mu1) X, y = make_parameterized_classification(p0, p1, 100, [mu0, mu1]) assert X.shape == (100, 1+2) assert_array_almost_equal(X[:, 1], np.zeros(100)) assert_array_almost_equal(X[:, 2], np.ones(100)) # Grid of parameter values X, y = make_parameterized_classification(p0, p1, 100, [(mu0, [0, 0.5]), (mu1, [0.5, 1.5])]) assert X.shape == (100, 1+2) assert_array_equal(np.unique(X[:, 1]), [0, 0.5]) assert_array_equal(np.unique(X[:, 2]), [0.5, 1.5]) d = set() for row in X[:, 1:]: d.add(tuple(row)) assert_array_equal(np.array(sorted(d)), [[0., 0.5], [0., 1.5], [0.5, 0.5], [0.5, 1.5]])
bsd-3-clause
OSSHealth/ghdata
augur/metrics/contributor.py
1
23901
#SPDX-License-Identifier: MIT """ Metrics that provides data about contributors & their associated activity """ import datetime import sqlalchemy as s import pandas as pd from augur.util import register_metric @register_metric() def contributors(self, repo_group_id, repo_id=None, period='day', begin_date=None, end_date=None): """ Returns a timeseries of all the contributions to a project. DataFrame has these columns: date commits pull_requests issues commit_comments pull_request_comments issue_comments total :param repo_id: The repository's id :param repo_group_id: The repository's group id :param period: To set the periodicity to 'day', 'week', 'month' or 'year', defaults to 'day' :param begin_date: Specifies the begin date, defaults to '1970-1-1 00:00:00' :param end_date: Specifies the end date, defaults to datetime.now() :return: DataFrame of persons/period """ # In this version, pull request, pr request comments,issue comments haven't be calculated if not begin_date: begin_date = '1970-1-1 00:00:01' if not end_date: end_date = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') if repo_id: contributorsSQL = s.sql.text(""" SELECT id AS user_id, SUM(commits) AS commits, SUM(issues) AS issues, SUM(commit_comments) AS commit_comments, SUM(issue_comments) AS issue_comments, SUM(pull_requests) AS pull_requests, SUM(pull_request_comments) AS pull_request_comments, SUM(a.commits + a.issues + a.commit_comments + a.issue_comments + a.pull_requests + a.pull_request_comments) AS total, a.repo_id, repo.repo_name FROM ( (SELECT gh_user_id AS id, 0 AS commits, COUNT(*) AS issues, 0 AS commit_comments, 0 AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments, repo_id FROM issues WHERE repo_id = :repo_id AND created_at BETWEEN :begin_date AND :end_date AND gh_user_id IS NOT NULL AND pull_request IS NULL GROUP BY gh_user_id, repo_id) UNION ALL (SELECT cmt_ght_author_id AS id, COUNT(*) AS commits, 0 AS issues, 0 AS commit_comments, 0 AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments, repo_id FROM commits WHERE repo_id = :repo_id AND cmt_ght_author_id IS NOT NULL AND cmt_committer_date BETWEEN :begin_date AND :end_date GROUP BY cmt_ght_author_id, repo_id) UNION ALL (SELECT cntrb_id AS id, 0 AS commits, 0 AS issues, COUNT(*) AS commit_comments, 0 AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments, repo_id FROM commit_comment_ref, commits, message WHERE commit_comment_ref.cmt_id = commit_comment_ref.cmt_id AND message.msg_id = commit_comment_ref.msg_id AND repo_id = :repo_id AND created_at BETWEEN :begin_date AND :end_date GROUP BY id, repo_id) UNION ALL ( SELECT message.cntrb_id AS id, 0 AS commits, 0 AS issues, 0 AS commit_comments, count(*) AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments, repo_id FROM issues, issue_message_ref, message WHERE repo_id = :repo_id AND gh_user_id IS NOT NULL AND issues.issue_id = issue_message_ref.issue_id AND issue_message_ref.msg_id = message.msg_id AND issues.pull_request IS NULL AND created_at BETWEEN :begin_date AND :end_date GROUP BY id, repo_id ) ) a, repo WHERE a.repo_id = repo.repo_id GROUP BY a.id, a.repo_id, repo_name ORDER BY total DESC """) results = pd.read_sql(contributorsSQL, self.database, params={'repo_id': repo_id, 'period': period, 'begin_date': begin_date, 'end_date': end_date}) else: contributorsSQL = s.sql.text(""" SELECT id AS user_id, SUM(commits) AS commits, SUM(issues) AS issues, SUM(commit_comments) AS commit_comments, SUM(issue_comments) AS issue_comments, SUM(pull_requests) AS pull_requests, SUM(pull_request_comments) AS pull_request_comments, SUM(a.commits + a.issues + a.commit_comments + a.issue_comments + a.pull_requests + a.pull_request_comments) AS total, a.repo_id, repo_name FROM ( (SELECT gh_user_id AS id, repo_id, 0 AS commits, COUNT(*) AS issues, 0 AS commit_comments, 0 AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments FROM issues WHERE repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) AND created_at BETWEEN :begin_date AND :end_date AND gh_user_id IS NOT NULL AND pull_request IS NULL GROUP BY gh_user_id, repo_id) UNION ALL (SELECT cmt_ght_author_id AS id, repo_id, COUNT(*) AS commits, 0 AS issues, 0 AS commit_comments, 0 AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments FROM commits WHERE repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) AND cmt_ght_author_id IS NOT NULL AND cmt_committer_date BETWEEN :begin_date AND :end_date GROUP BY cmt_ght_author_id, repo_id) UNION ALL (SELECT cntrb_id AS id, repo_id, 0 AS commits, 0 AS issues, COUNT(*) AS commit_comments, 0 AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments FROM commit_comment_ref, commits, message WHERE commit_comment_ref.cmt_id = commit_comment_ref.cmt_id AND message.msg_id = commit_comment_ref.msg_id AND repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) AND created_at BETWEEN :begin_date AND :end_date GROUP BY id, repo_id) UNION ALL ( SELECT message.cntrb_id AS id, repo_id, 0 AS commits, 0 AS issues, 0 AS commit_comments, count(*) AS issue_comments, 0 AS pull_requests, 0 AS pull_request_comments FROM issues, issue_message_ref, message WHERE repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) AND gh_user_id IS NOT NULL AND issues.issue_id = issue_message_ref.issue_id AND issue_message_ref.msg_id = message.msg_id AND issues.pull_request IS NULL AND created_at BETWEEN :begin_date AND :end_date GROUP BY id, repo_id ) ) a, repo WHERE a.repo_id = repo.repo_id GROUP BY a.id, a.repo_id, repo_name ORDER BY total DESC """) results = pd.read_sql(contributorsSQL, self.database, params={'repo_group_id': repo_group_id, 'period': period, 'begin_date': begin_date, 'end_date': end_date}) return results @register_metric() def contributors_new(self, repo_group_id, repo_id=None, period='day', begin_date=None, end_date=None): """ Returns a timeseries of new contributions to a project. :param repo_id: The repository's id :param repo_group_id: The repository's group id :param period: To set the periodicity to 'day', 'week', 'month' or 'year', defaults to 'day' :param begin_date: Specifies the begin date, defaults to '1970-1-1 00:00:00' :param end_date: Specifies the end date, defaults to datetime.now() :return: DataFrame of persons/period """ # In this version, pull request, pr request comments,issue comments haven't be calculated if not begin_date: begin_date = '1970-1-1 00:00:01' if not end_date: end_date = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') if repo_id: contributorsNewSQL = s.sql.text(""" SELECT date_trunc(:period, b.created_at::DATE) AS date, COUNT(id) AS new_contributors, repo.repo_id, repo_name FROM ( SELECT id as id, MIN(created_at) AS created_at, a.repo_id FROM ( (SELECT gh_user_id AS id, MIN(created_at) AS created_at, repo_id FROM issues WHERE repo_id = :repo_id AND created_at BETWEEN :begin_date AND :end_date AND gh_user_id IS NOT NULL AND pull_request IS NULL GROUP BY gh_user_id, repo_id) UNION ALL (SELECT cmt_ght_author_id AS id, MIN(TO_TIMESTAMP(cmt_author_date, 'YYYY-MM-DD')) AS created_at, repo_id FROM commits WHERE repo_id = :repo_id AND cmt_ght_author_id IS NOT NULL AND TO_TIMESTAMP(cmt_author_date, 'YYYY-MM-DD') BETWEEN :begin_date AND :end_date GROUP BY cmt_ght_author_id, repo_id) UNION ALL (SELECT cntrb_id as id, MIN(created_at) AS created_at, commits.repo_id FROM commit_comment_ref, commits, message where commits.cmt_id = commit_comment_ref.cmt_id and commits.repo_id = :repo_id and commit_comment_ref.msg_id = message.msg_id group by id, commits.repo_id) UNION ALL (SELECT issue_events.cntrb_id AS id, MIN(issue_events.created_at) AS created_at, repo_id FROM issue_events, issues WHERE issues.repo_id = :repo_id AND issues.issue_id = issue_events.issue_id AND issues.pull_request IS NULL AND issue_events.created_at BETWEEN :begin_date AND :end_date AND issue_events.cntrb_id IS NOT NULL AND action = 'closed' GROUP BY issue_events.cntrb_id, repo_id) ) a GROUP BY a.id, a.repo_id) b, repo WHERE repo.repo_id = b.repo_id GROUP BY date, repo.repo_id, repo_name """) results = pd.read_sql(contributorsNewSQL, self.database, params={'repo_id': repo_id, 'period': period, 'begin_date': begin_date, 'end_date': end_date}) else: contributorsNewSQL = s.sql.text(""" SELECT date_trunc(:period, b.created_at::DATE) AS date, COUNT(id) AS new_contributors, repo.repo_id, repo_name FROM ( SELECT id as id, MIN(created_at) AS created_at, a.repo_id FROM ( (SELECT gh_user_id AS id, MIN(created_at) AS created_at, repo_id FROM issues WHERE repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) AND created_at BETWEEN :begin_date AND :end_date AND gh_user_id IS NOT NULL AND pull_request IS NULL GROUP BY gh_user_id, repo_id) UNION ALL (SELECT cmt_ght_author_id AS id, MIN(TO_TIMESTAMP(cmt_author_date, 'YYYY-MM-DD')) AS created_at, repo_id FROM commits WHERE repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) AND cmt_ght_author_id IS NOT NULL AND TO_TIMESTAMP(cmt_author_date, 'YYYY-MM-DD') BETWEEN :begin_date AND :end_date GROUP BY cmt_ght_author_id, repo_id) UNION ALL (SELECT cntrb_id as id, MIN(created_at) AS created_at, commits.repo_id FROM commit_comment_ref, commits, message where commits.cmt_id = commit_comment_ref.cmt_id and commits.repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) and commit_comment_ref.msg_id = message.msg_id group by id, commits.repo_id) UNION ALL (SELECT issue_events.cntrb_id AS id, MIN(issue_events.created_at) AS created_at, repo_id FROM issue_events, issues WHERE issues.repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) AND issues.issue_id = issue_events.issue_id AND issues.pull_request IS NULL AND issue_events.created_at BETWEEN :begin_date AND :end_date AND issue_events.cntrb_id IS NOT NULL AND action = 'closed' GROUP BY issue_events.cntrb_id, repo_id) ) a GROUP BY a.id, a.repo_id) b, repo WHERE repo.repo_id = b.repo_id GROUP BY date, repo.repo_id, repo_name """) results = pd.read_sql(contributorsNewSQL, self.database, params={'repo_group_id': repo_group_id, 'period': period, 'begin_date': begin_date, 'end_date': end_date}) return results @register_metric() def lines_changed_by_author(self, repo_group_id, repo_id=None): """ Returns number of lines changed per author per day :param repo_url: the repository's URL """ if repo_id: linesChangedByAuthorSQL = s.sql.text(""" SELECT cmt_author_email, date_trunc('week', cmt_author_date::date) as cmt_author_date, cmt_author_affiliation as affiliation, SUM(cmt_added) as additions, SUM(cmt_removed) as deletions, SUM(cmt_whitespace) as whitespace, repo_name FROM commits JOIN repo ON commits.repo_id = repo.repo_id WHERE commits.repo_id = :repo_id GROUP BY commits.repo_id, date_trunc('week', cmt_author_date::date), cmt_author_affiliation, cmt_author_email, repo_name ORDER BY date_trunc('week', cmt_author_date::date) ASC; """) results = pd.read_sql(linesChangedByAuthorSQL, self.database, params={"repo_id": repo_id}) return results else: linesChangedByAuthorSQL = s.sql.text(""" SELECT cmt_author_email, date_trunc('week', cmt_author_date::date) as cmt_author_date, cmt_author_affiliation as affiliation, SUM(cmt_added) as additions, SUM(cmt_removed) as deletions, SUM(cmt_whitespace) as whitespace FROM commits WHERE repo_id in (SELECT repo_id FROM repo WHERE repo_group_id=:repo_group_id) GROUP BY repo_id, date_trunc('week', cmt_author_date::date), cmt_author_affiliation, cmt_author_email ORDER BY date_trunc('week', cmt_author_date::date) ASC; """) results = pd.read_sql(linesChangedByAuthorSQL, self.database, params={"repo_group_id": repo_group_id}) return results @register_metric() def contributors_code_development(self, repo_group_id, repo_id=None, period='all', begin_date=None, end_date=None): """ Returns a timeseries of all the contributions to a project. DataFrame has these columns: date commits :param repo_id: The repository's id :param repo_group_id: The repository's group id ----- :param period: To set the periodicity to 'all', day', 'week', 'month' or 'year', defaults to 'all' ----- :param begin_date: Specifies the begin date, defaults to '1970-1-1 00:00:00' ----- :param end_date: Specifies the end date, defaults to datetime.now() :return: DataFrame of persons/period """ # In this version, pull request, pr request comments,issue comments haven't be calculated if not begin_date: begin_date = '1970-1-1 00:00:01' if not end_date: end_date = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') if repo_id: contributorsSQL = s.sql.text(""" SELECT email AS email, SUM(commits) AS commits, SUM(lines_added) AS lines_added, a.repo_id, repo.repo_name FROM ( ( SELECT repo_id, email, SUM(patches)::int as commits, 0 as lines_added FROM (SELECT repo_id, email, patches FROM dm_repo_annual WHERE repo_id = :repo_id ORDER BY patches DESC) a GROUP BY email, a.repo_id ) UNION ALL ( SELECT repo_id, cmt_author_email as email, 0 as commits, SUM(cmt_added) as lines_added -- cmt_author_affiliation as affiliation, -- SUM(cmt_added) as additions, SUM(cmt_removed) as deletions, SUM(cmt_whitespace) as whitespace, FROM commits WHERE commits.repo_id = :repo_id GROUP BY commits.repo_id, cmt_author_date, cmt_author_affiliation, cmt_author_email ORDER BY cmt_author_date ASC ) ) a, repo WHERE a.repo_id = repo.repo_id GROUP BY a.email, a.repo_id, repo_name """) results = pd.read_sql(contributorsSQL, self.database, params={'repo_id': repo_id, 'period': period, 'begin_date': begin_date, 'end_date': end_date}) else: contributorsSQL = s.sql.text(""" SELECT email AS email, SUM(commits) AS commits, SUM(lines_added) AS lines_added, a.repo_id, repo.repo_name FROM ( ( SELECT repo_id, email, SUM(patches)::INT AS commits, 0 AS lines_added FROM (SELECT dm_repo_annual.repo_id, email, patches FROM dm_repo_annual JOIN repo ON repo.repo_id = dm_repo_annual.repo_id WHERE repo_group_id = :repo_group_id ORDER BY patches DESC) a GROUP BY email, a.repo_id ) UNION ALL ( SELECT commits.repo_id, cmt_author_email AS email, 0 AS commits, SUM(cmt_added) AS lines_added -- cmt_author_affiliation as affiliation, -- SUM(cmt_added) as additions, SUM(cmt_removed) as deletions, SUM(cmt_whitespace) as whitespace, FROM commits JOIN repo ON repo.repo_id = commits.repo_id WHERE repo_group_id = :repo_group_id GROUP BY commits.repo_id, cmt_author_date, cmt_author_affiliation, cmt_author_email ORDER BY cmt_author_date ASC ) ) a, repo WHERE a.repo_id = repo.repo_id GROUP BY a.email, a.repo_id, repo_name ORDER BY commits desc, email """) results = pd.read_sql(contributorsSQL, self.database, params={'repo_group_id': repo_group_id, 'period': period, 'begin_date': begin_date, 'end_date': end_date}) return results
mit
tomsilver/nupic
examples/opf/clients/hotgym/anomaly/one_gym/run.py
15
4940
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Groups together code used for creating a NuPIC model and dealing with IO. (This is a component of the One Hot Gym Anomaly Tutorial.) """ import importlib import sys import csv import datetime from nupic.data.inference_shifter import InferenceShifter from nupic.frameworks.opf.modelfactory import ModelFactory import nupic_anomaly_output DESCRIPTION = ( "Starts a NuPIC model from the model params returned by the swarm\n" "and pushes each line of input from the gym into the model. Results\n" "are written to an output file (default) or plotted dynamically if\n" "the --plot option is specified.\n" ) GYM_NAME = "rec-center-hourly" DATA_DIR = "." MODEL_PARAMS_DIR = "./model_params" # '7/2/10 0:00' DATE_FORMAT = "%m/%d/%y %H:%M" def createModel(modelParams): """ Given a model params dictionary, create a CLA Model. Automatically enables inference for kw_energy_consumption. :param modelParams: Model params dict :return: OPF Model object """ model = ModelFactory.create(modelParams) model.enableInference({"predictedField": "kw_energy_consumption"}) return model def getModelParamsFromName(gymName): """ Given a gym name, assumes a matching model params python module exists within the model_params directory and attempts to import it. :param gymName: Gym name, used to guess the model params module name. :return: OPF Model params dictionary """ importName = "model_params.%s_model_params" % ( gymName.replace(" ", "_").replace("-", "_") ) print "Importing model params from %s" % importName try: importedModelParams = importlib.import_module(importName).MODEL_PARAMS except ImportError: raise Exception("No model params exist for '%s'. Run swarm first!" % gymName) return importedModelParams def runIoThroughNupic(inputData, model, gymName, plot): """ Handles looping over the input data and passing each row into the given model object, as well as extracting the result object and passing it into an output handler. :param inputData: file path to input data CSV :param model: OPF Model object :param gymName: Gym name, used for output handler naming :param plot: Whether to use matplotlib or not. If false, uses file output. """ inputFile = open(inputData, "rb") csvReader = csv.reader(inputFile) # skip header rows csvReader.next() csvReader.next() csvReader.next() shifter = InferenceShifter() if plot: output = nupic_anomaly_output.NuPICPlotOutput(gymName) else: output = nupic_anomaly_output.NuPICFileOutput(gymName) counter = 0 for row in csvReader: counter += 1 if (counter % 100 == 0): print "Read %i lines..." % counter timestamp = datetime.datetime.strptime(row[0], DATE_FORMAT) consumption = float(row[1]) result = model.run({ "timestamp": timestamp, "kw_energy_consumption": consumption }) if plot: result = shifter.shift(result) prediction = result.inferences["multiStepBestPredictions"][1] anomalyScore = result.inferences["anomalyScore"] output.write(timestamp, consumption, prediction, anomalyScore) inputFile.close() output.close() def runModel(gymName, plot=False): """ Assumes the gynName corresponds to both a like-named model_params file in the model_params directory, and that the data exists in a like-named CSV file in the current directory. :param gymName: Important for finding model params and input CSV file :param plot: Plot in matplotlib? Don't use this unless matplotlib is installed. """ print "Creating model from %s..." % gymName model = createModel(getModelParamsFromName(gymName)) inputData = "%s/%s.csv" % (DATA_DIR, gymName.replace(" ", "_")) runIoThroughNupic(inputData, model, gymName, plot) if __name__ == "__main__": print DESCRIPTION plot = False args = sys.argv[1:] if "--plot" in args: plot = True runModel(GYM_NAME, plot=plot)
gpl-3.0
laurent-george/bokeh
examples/plotting/server/glucose.py
18
1612
# The plot server must be running # Go to http://localhost:5006/bokeh to view this plot import pandas as pd from bokeh.sampledata.glucose import data from bokeh.plotting import figure, show, output_server, vplot output_server("glucose") TOOLS = "pan,wheel_zoom,box_zoom,reset,save" p1 = figure(x_axis_type="datetime", tools=TOOLS) p1.line(data.index, data['glucose'], color='red', legend='glucose') p1.line(data.index, data['isig'], color='blue', legend='isig') p1.title = "Glucose Measurements" p1.xaxis.axis_label = 'Date' p1.yaxis.axis_label = 'Value' day = data.ix['2010-10-06'] highs = day[day['glucose'] > 180] lows = day[day['glucose'] < 80] p2 = figure(x_axis_type="datetime", tools=TOOLS) p2.line(day.index.to_series(), day['glucose'], line_color="gray", line_dash="4 4", line_width=1, legend="glucose") p2.circle(highs.index, highs['glucose'], size=6, color='tomato', legend="high") p2.circle(lows.index, lows['glucose'], size=6, color='navy', legend="low") p2.title = "Glucose Range" p2.xgrid[0].grid_line_color=None p2.ygrid[0].grid_line_alpha=0.5 p2.xaxis.axis_label = 'Time' p2.yaxis.axis_label = 'Value' data['inrange'] = (data['glucose'] < 180) & (data['glucose'] > 80) window = 30.5*288 #288 is average number of samples in a month inrange = pd.rolling_sum(data.inrange, window) inrange = inrange.dropna() inrange = inrange/float(window) p3 = figure(x_axis_type="datetime", tools=TOOLS) p3.line(inrange.index, inrange, line_color="navy") p3.title = "Glucose In-Range Rolling Sum" p3.xaxis.axis_label = 'Date' p3.yaxis.axis_label = 'Proportion In-Range' show(vplot(p1,p2,p3))
bsd-3-clause
ElDeveloper/scikit-learn
benchmarks/bench_plot_omp_lars.py
266
4447
"""Benchmarks of orthogonal matching pursuit (:ref:`OMP`) versus least angle regression (:ref:`least_angle_regression`) The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path, orthogonal_mp from sklearn.datasets.samples_generator import make_sparse_coded_signal def compute_bench(samples_range, features_range): it = 0 results = dict() lars = np.empty((len(features_range), len(samples_range))) lars_gram = lars.copy() omp = lars.copy() omp_gram = lars.copy() max_it = len(samples_range) * len(features_range) for i_s, n_samples in enumerate(samples_range): for i_f, n_features in enumerate(features_range): it += 1 n_informative = n_features / 10 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') # dataset_kwargs = { # 'n_train_samples': n_samples, # 'n_test_samples': 2, # 'n_features': n_features, # 'n_informative': n_informative, # 'effective_rank': min(n_samples, n_features) / 10, # #'effective_rank': None, # 'bias': 0.0, # } dataset_kwargs = { 'n_samples': 1, 'n_components': n_features, 'n_features': n_samples, 'n_nonzero_coefs': n_informative, 'random_state': 0 } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) y, X, _ = make_sparse_coded_signal(**dataset_kwargs) X = np.asfortranarray(X) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, max_iter=n_informative) delta = time() - tstart print("%0.3fs" % delta) lars_gram[i_f, i_s] = delta gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, Gram=None, max_iter=n_informative) delta = time() - tstart print("%0.3fs" % delta) lars[i_f, i_s] = delta gc.collect() print("benchmarking orthogonal_mp (with Gram):", end='') sys.stdout.flush() tstart = time() orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_informative) delta = time() - tstart print("%0.3fs" % delta) omp_gram[i_f, i_s] = delta gc.collect() print("benchmarking orthogonal_mp (without Gram):", end='') sys.stdout.flush() tstart = time() orthogonal_mp(X, y, precompute=False, n_nonzero_coefs=n_informative) delta = time() - tstart print("%0.3fs" % delta) omp[i_f, i_s] = delta results['time(LARS) / time(OMP)\n (w/ Gram)'] = (lars_gram / omp_gram) results['time(LARS) / time(OMP)\n (w/o Gram)'] = (lars / omp) return results if __name__ == '__main__': samples_range = np.linspace(1000, 5000, 5).astype(np.int) features_range = np.linspace(1000, 5000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(np.max(t) for t in results.values()) import pylab as pl fig = pl.figure('scikit-learn OMP vs. LARS benchmark results') for i, (label, timings) in enumerate(sorted(results.iteritems())): ax = fig.add_subplot(1, 2, i) vmax = max(1 - timings.min(), -1 + timings.max()) pl.matshow(timings, fignum=False, vmin=1 - vmax, vmax=1 + vmax) ax.set_xticklabels([''] + map(str, samples_range)) ax.set_yticklabels([''] + map(str, features_range)) pl.xlabel('n_samples') pl.ylabel('n_features') pl.title(label) pl.subplots_adjust(0.1, 0.08, 0.96, 0.98, 0.4, 0.63) ax = pl.axes([0.1, 0.08, 0.8, 0.06]) pl.colorbar(cax=ax, orientation='horizontal') pl.show()
bsd-3-clause
gfyoung/pandas
pandas/tests/io/parser/test_quoting.py
6
5084
""" Tests that quoting specifications are properly handled during parsing for all of the parsers defined in parsers.py """ import csv from io import StringIO import pytest from pandas.errors import ParserError from pandas import DataFrame import pandas._testing as tm @pytest.mark.parametrize( "kwargs,msg", [ ({"quotechar": "foo"}, '"quotechar" must be a(n)? 1-character string'), ( {"quotechar": None, "quoting": csv.QUOTE_MINIMAL}, "quotechar must be set if quoting enabled", ), ({"quotechar": 2}, '"quotechar" must be string, not int'), ], ) def test_bad_quote_char(all_parsers, kwargs, msg): data = "1,2,3" parser = all_parsers with pytest.raises(TypeError, match=msg): parser.read_csv(StringIO(data), **kwargs) @pytest.mark.parametrize( "quoting,msg", [ ("foo", '"quoting" must be an integer'), (5, 'bad "quoting" value'), # quoting must be in the range [0, 3] ], ) def test_bad_quoting(all_parsers, quoting, msg): data = "1,2,3" parser = all_parsers with pytest.raises(TypeError, match=msg): parser.read_csv(StringIO(data), quoting=quoting) def test_quote_char_basic(all_parsers): parser = all_parsers data = 'a,b,c\n1,2,"cat"' expected = DataFrame([[1, 2, "cat"]], columns=["a", "b", "c"]) result = parser.read_csv(StringIO(data), quotechar='"') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("quote_char", ["~", "*", "%", "$", "@", "P"]) def test_quote_char_various(all_parsers, quote_char): parser = all_parsers expected = DataFrame([[1, 2, "cat"]], columns=["a", "b", "c"]) data = 'a,b,c\n1,2,"cat"' new_data = data.replace('"', quote_char) result = parser.read_csv(StringIO(new_data), quotechar=quote_char) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("quoting", [csv.QUOTE_MINIMAL, csv.QUOTE_NONE]) @pytest.mark.parametrize("quote_char", ["", None]) def test_null_quote_char(all_parsers, quoting, quote_char): kwargs = {"quotechar": quote_char, "quoting": quoting} data = "a,b,c\n1,2,3" parser = all_parsers if quoting != csv.QUOTE_NONE: # Sanity checking. msg = "quotechar must be set if quoting enabled" with pytest.raises(TypeError, match=msg): parser.read_csv(StringIO(data), **kwargs) else: expected = DataFrame([[1, 2, 3]], columns=["a", "b", "c"]) result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "kwargs,exp_data", [ ({}, [[1, 2, "foo"]]), # Test default. # QUOTE_MINIMAL only applies to CSV writing, so no effect on reading. ({"quotechar": '"', "quoting": csv.QUOTE_MINIMAL}, [[1, 2, "foo"]]), # QUOTE_MINIMAL only applies to CSV writing, so no effect on reading. ({"quotechar": '"', "quoting": csv.QUOTE_ALL}, [[1, 2, "foo"]]), # QUOTE_NONE tells the reader to do no special handling # of quote characters and leave them alone. ({"quotechar": '"', "quoting": csv.QUOTE_NONE}, [[1, 2, '"foo"']]), # QUOTE_NONNUMERIC tells the reader to cast # all non-quoted fields to float ({"quotechar": '"', "quoting": csv.QUOTE_NONNUMERIC}, [[1.0, 2.0, "foo"]]), ], ) def test_quoting_various(all_parsers, kwargs, exp_data): data = '1,2,"foo"' parser = all_parsers columns = ["a", "b", "c"] result = parser.read_csv(StringIO(data), names=columns, **kwargs) expected = DataFrame(exp_data, columns=columns) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "doublequote,exp_data", [(True, [[3, '4 " 5']]), (False, [[3, '4 " 5"']])] ) def test_double_quote(all_parsers, doublequote, exp_data): parser = all_parsers data = 'a,b\n3,"4 "" 5"' result = parser.read_csv(StringIO(data), quotechar='"', doublequote=doublequote) expected = DataFrame(exp_data, columns=["a", "b"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("quotechar", ['"', "\u0001"]) def test_quotechar_unicode(all_parsers, quotechar): # see gh-14477 data = "a\n1" parser = all_parsers expected = DataFrame({"a": [1]}) result = parser.read_csv(StringIO(data), quotechar=quotechar) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("balanced", [True, False]) def test_unbalanced_quoting(all_parsers, balanced): # see gh-22789. parser = all_parsers data = 'a,b,c\n1,2,"3' if balanced: # Re-balance the quoting and read in without errors. expected = DataFrame([[1, 2, 3]], columns=["a", "b", "c"]) result = parser.read_csv(StringIO(data + '"')) tm.assert_frame_equal(result, expected) else: msg = ( "EOF inside string starting at row 1" if parser.engine == "c" else "unexpected end of data" ) with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data))
bsd-3-clause
deeplook/bokeh
bokeh/charts/builder/horizon_builder.py
43
12508
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Horizon class which lets you build your Horizon charts just passing the arguments to the Chart class and calling the proper functions. """ from __future__ import absolute_import, division import math from six import string_types from .._builder import Builder, create_and_build from ...models import ColumnDataSource, Range1d, DataRange1d, FactorRange, GlyphRenderer, CategoricalAxis from ...models.glyphs import Patches from ...properties import Any, Color, Int #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def Horizon(values, index=None, num_folds=3, pos_color='#006400', neg_color='#6495ed', xscale='datetime', xgrid=False, ygrid=False, **kws): """ Create a Horizon chart using :class:`HorizonBuilder <bokeh.charts.builder.horizon_builder.HorizonBuilder>` render the geometry from values, index and num_folds. Args: values (iterable): iterable 2d representing the data series values matrix. index (str|1d iterable, optional): can be used to specify a common custom index for all data series as an **1d iterable** of any sort that will be used as series common index or a **string** that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame) num_folds (int, optional): The number of folds stacked on top of each other. (default: 3) pos_color (color, optional): The color of the positive folds. (default: "#006400") neg_color (color, optional): The color of the negative folds. (default: "#6495ed") In addition the the parameters specific to this chart, :ref:`userguide_charts_generic_arguments` are also accepted as keyword parameters. Returns: a new :class:`Chart <bokeh.charts.Chart>` Examples: .. bokeh-plot:: :source-position: above import datetime from collections import OrderedDict from bokeh.charts import Horizon, output_file, show now = datetime.datetime.now() dts = [now+datetime.timedelta(seconds=i) for i in range(10)] xyvalues = OrderedDict({'Date': dts}) y_python = xyvalues['python'] = [2, 3, 7, 5, 26, 27, 27, 28, 26, 20] y_pypy = xyvalues['pypy'] = [12, 33, 47, 15, 126, 122, 95, 90, 110, 112] y_jython = xyvalues['jython'] = [22, 43, 10, 25, 26, 25, 26, 45, 26, 30] hz = Horizon(xyvalues, index='Date', title="Horizon Example", ylabel='Sample Data', xlabel='') output_file('horizon.html') show(hz) """ tools = kws.get('tools', True) if tools == True: tools = "save,resize,reset" elif isinstance(tools, string_types): tools = tools.replace('pan', '') tools = tools.replace('wheel_zoom', '') tools = tools.replace('box_zoom', '') tools = tools.replace(',,', ',') kws['tools'] = tools chart = create_and_build( HorizonBuilder, values, index=index, num_folds=num_folds, pos_color=pos_color, neg_color=neg_color, xscale=xscale, xgrid=xgrid, ygrid=ygrid, **kws ) # Hide numerical axis chart.left[0].visible = False # Add the series names to the y axis chart.extra_y_ranges = {"series": FactorRange(factors=chart._builders[0]._series)} chart.add_layout(CategoricalAxis(y_range_name="series"), 'left') return chart class HorizonBuilder(Builder): """This is the Horizon class and it is in charge of plotting Horizon charts in an easy and intuitive way. Essentially, we provide a way to ingest the data, separate the data into a number of folds which stack on top of each others. We additionally make calculations for the ranges. And finally add the needed lines taking the references from the source. """ index = Any(help=""" An index to be used for all data series as follows: - A 1d iterable of any sort that will be used as series common index - As a string that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame) """) neg_color = Color("#6495ed", help=""" The color of the negative folds. (default: "#6495ed") """) num_folds = Int(3, help=""" The number of folds stacked on top of each other. (default: 3) """) pos_color = Color("#006400", help=""" The color of the positive folds. (default: "#006400") """) def __init__(self, values, **kws): """ Args: values (iterable): iterable 2d representing the data series values matrix. index (str|1d iterable, optional): can be used to specify a common custom index for all data series as follows: - As a 1d iterable of any sort (of datetime values) that will be used as series common index - As a string that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame). The values must be datetime values. legend (str, optional): the legend of your chart. The legend content is inferred from incoming input.It can be ``top_left``, ``top_right``, ``bottom_left``, ``bottom_right``. ``top_right`` is set if you set it as True. Defaults to None. palette(list, optional): a list containing the colormap as hex values. num_folds (int, optional): pos_color (hex color string, optional): t neg_color (hex color string, optional): the color of the negative folds (default: #6495ed) Attributes: source (obj): datasource object for your plot, initialized as a dummy None. x_range (obj): x-associated datarange object for you plot, initialized as a dummy None. y_range (obj): y-associated datarange object for you plot, initialized as a dummy None. groups (list): to be filled with the incoming groups of data. Useful for legend construction. data (dict): to be filled with the incoming data and be passed to the ColumnDataSource in each chart inherited class. Needed for _set_And_get method. attr (list): to be filled with the new attributes created after loading the data dict. Needed for _set_And_get method. """ super(HorizonBuilder, self).__init__(values, **kws) self._fold_names = [] self._source = None self._series = [] self._fold_height = {} self._max_y = 0 def fold_coordinates(self, y, fold_no, fold_height, y_origin=0, graph_ratio=1): """ Function that calculate the coordinates for a value given a fold """ height = fold_no * fold_height quotient, remainder = divmod(abs(y), float(height)) v = fold_height # quotient would be 0 if the coordinate is represented in this fold # layer if math.floor(quotient) == 0: v = 0 if remainder >= height - fold_height: v = remainder - height + fold_height v = v * graph_ratio # Return tuple of the positive and negative relevant position of # the coordinate against the provided fold layer if y > 0: return (v + y_origin, fold_height * graph_ratio + y_origin) else: return (y_origin, fold_height * graph_ratio - v + y_origin) def pad_list(self, l, padded_value=None): """ Function that insert padded values at the start and end of the list (l). If padded_value not provided, then duplicate the values next to each end of the list """ if len(l) > 0: l.insert(0, l[0] if padded_value is None else padded_value) l.append(l[-1] if padded_value is None else padded_value) return l def _process_data(self): """Use x/y data from the horizon values. It calculates the chart properties accordingly. Then build a dict containing references to all the points to be used by the multiple area glyphes inside the ``_yield_renderers`` method. """ for col in self._values.keys(): if isinstance(self.index, string_types) and col == self.index: continue self._series.append(col) self._max_y = max(max(self._values[col]), self._max_y) v_index = [x for x in self._values_index] self.set_and_get("x_", col, self.pad_list(v_index)) self._fold_height = self._max_y / self.num_folds self._graph_ratio = self.num_folds / len(self._series) fill_alpha = [] fill_color = [] for serie_no, serie in enumerate(self._series): self.set_and_get('y_', serie, self._values[serie]) y_origin = serie_no * self._max_y / len(self._series) for fold_itr in range(1, self.num_folds + 1): layers_datapoints = [self.fold_coordinates( x, fold_itr, self._fold_height, y_origin, self._graph_ratio) for x in self._values[serie]] pos_points, neg_points = map(list, zip(*(layers_datapoints))) alpha = 1.0 * (abs(fold_itr)) / self.num_folds # Y coordinates above 0 pos_points = self.pad_list(pos_points, y_origin) self.set_and_get("y_fold%s_" % fold_itr, serie, pos_points) self._fold_names.append("y_fold%s_%s" % (fold_itr, serie)) fill_color.append(self.pos_color) fill_alpha.append(alpha) # Y coordinates below 0 neg_points = self.pad_list( neg_points, self._fold_height * self._graph_ratio + y_origin) self.set_and_get("y_fold-%s_" % fold_itr, serie, neg_points) self._fold_names.append("y_fold-%s_%s" % (fold_itr, serie)) fill_color.append(self.neg_color) fill_alpha.append(alpha) # Groups shown in the legend will only appear once if serie_no == 0: self._groups.append(str(self._fold_height * fold_itr)) self._groups.append(str(self._fold_height * -fold_itr)) self.set_and_get('fill_', 'alpha', fill_alpha) self.set_and_get('fill_', 'color', fill_color) self.set_and_get('x_', 'all', [self._data[ 'x_%s' % serie] for serie in self._series for y in range(self.num_folds * 2)]) self.set_and_get( 'y_', 'all', [self._data[f_name] for f_name in self._fold_names]) def _set_sources(self): """Push the Horizon data into the ColumnDataSource and calculate the proper ranges. """ self._source = ColumnDataSource(self._data) self.x_range = DataRange1d(range_padding=0) self.y_range = Range1d(start=0, end=self._max_y) def _yield_renderers(self): """Use the patch glyphs to connect the xy points in the time series. It requires the positive and negative layers Takes reference points from the data loaded at the ColumnDataSource. """ patches = Patches( fill_color='fill_color', fill_alpha='fill_alpha', xs='x_all', ys='y_all') renderer = GlyphRenderer(data_source=self._source, glyph=patches) # self._legends.append((self._groups[i-1], [renderer])) yield renderer # TODO: Add the tooltips to display the dates and all absolute y values for each series # at any vertical places on the plot # TODO: Add the legend to display the fold ranges based on the color of # the fold
bsd-3-clause
markovmodel/PyEMMA
pyemma/plots/tests/test_plots2d.py
2
4165
# This file is part of PyEMMA. # # Copyright (c) 2017, 2018 Computational Molecular Biology Group, Freie Universitaet Berlin (GER) # # PyEMMA is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import unittest import numpy as np import matplotlib.pyplot as plt from pyemma.plots.plots2d import contour, scatter_contour from pyemma.plots.plots2d import plot_density from pyemma.plots.plots2d import plot_free_energy from pyemma.plots.plots2d import plot_contour from pyemma.plots.plots2d import plot_state_map class TestPlots2d(unittest.TestCase): @classmethod def setUpClass(cls): cls.data = np.random.binomial(10, 0.4, (100, 2)) def test_free_energy(self): fig, ax = plot_free_energy( self.data[:, 0], self.data[:, 1]) plt.close(fig) def test_contour(self): ax = contour(self.data[:,0], self.data[:,1], self.data[:,0]) plt.close(ax.get_figure()) ax = contour( self.data[:,0], self.data[:,1], self.data[:,0], zlim=(self.data[:, 0].min(), self.data[:, 0].max())) plt.close(ax.get_figure()) def test_scatter_contour(self): ax = scatter_contour( self.data[:,0], self.data[:,1], self.data[:,0]) plt.close(ax.get_figure()) def test_plot_density(self): fig, ax, misc = plot_density( self.data[:, 0], self.data[:, 1], logscale=True) plt.close(fig) fig, ax, misc = plot_density( self.data[:, 0], self.data[:, 1], logscale=False) plt.close(fig) fig, ax, misc = plot_density( self.data[:, 0], self.data[:, 1], alpha=True) plt.close(fig) fig, ax, misc = plot_density( self.data[:, 0], self.data[:, 1], zorder=-1) plt.close(fig) fig, ax, misc = plot_density( self.data[:, 0], self.data[:, 1], this_should_raise_a_UserWarning=True) plt.close(fig) def test_plot_free_energy(self): fig, ax, misc = plot_free_energy( self.data[:, 0], self.data[:, 1], legacy=False) plt.close(fig) with self.assertRaises(ValueError): plot_free_energy( self.data[:, 0], self.data[:, 1], legacy=False, offset=42) with self.assertRaises(ValueError): plot_free_energy( self.data[:, 0], self.data[:, 1], legacy=False, ncountours=42) def test_plot_contour(self): fig, ax, misc = plot_contour( self.data[:, 0], self.data[:, 1], self.data[:,0]) plt.close(fig) fig, ax, misc = plot_contour( self.data[:, 0], self.data[:, 1], self.data[:,0], levels='legacy') plt.close(fig) fig, ax, misc = plot_contour( self.data[:, 0], self.data[:, 1], self.data[:,0], mask=True) plt.close(fig) def test_plot_state_map(self): fig, ax, misc = plot_state_map( self.data[:, 0], self.data[:, 1], self.data[:,0]) plt.close(fig) fig, ax, misc = plot_state_map( self.data[:, 0], self.data[:, 1], self.data[:,0], zorder=0.5) plt.close(fig) fig, ax, misc = plot_state_map( self.data[:, 0], self.data[:, 1], self.data[:,0], cbar_orientation='horizontal', cbar_label=None) plt.close(fig) with self.assertRaises(ValueError): fig, ax, misc = plot_state_map( self.data[:, 0], self.data[:, 1], self.data[:,0], cbar_orientation='INVALID')
lgpl-3.0
jzt5132/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
meduz/scikit-learn
examples/gaussian_process/plot_gpc_xor.py
104
2132
""" ======================================================================== Illustration of Gaussian process classification (GPC) on the XOR dataset ======================================================================== This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better results. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, DotProduct xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50)) rng = np.random.RandomState(0) X = rng.randn(200, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model plt.figure(figsize=(10, 5)) kernels = [1.0 * RBF(length_scale=1.0), 1.0 * DotProduct(sigma_0=1.0)**2] for i, kernel in enumerate(kernels): clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1] Z = Z.reshape(xx.shape) plt.subplot(1, 2, i + 1) image = plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.colorbar(image) plt.title("%s\n Log-Marginal-Likelihood:%.3f" % (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
2uller/LotF
App/Lib/site-packages/numpy/lib/npyio.py
9
65323
__all__ = ['savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource'] import numpy as np import format import sys import os import re import sys import itertools import warnings import weakref from operator import itemgetter from cPickle import load as _cload, loads from _datasource import DataSource from _compiled_base import packbits, unpackbits from _iotools import LineSplitter, NameValidator, StringConverter, \ ConverterError, ConverterLockError, ConversionWarning, \ _is_string_like, has_nested_fields, flatten_dtype, \ easy_dtype, _bytes_to_name from numpy.compat import asbytes, asstr, asbytes_nested, bytes if sys.version_info[0] >= 3: from io import BytesIO else: from cStringIO import StringIO as BytesIO _string_like = _is_string_like def seek_gzip_factory(f): """Use this factory to produce the class so that we can do a lazy import on gzip. """ import gzip class GzipFile(gzip.GzipFile): def seek(self, offset, whence=0): # figure out new position (we can only seek forwards) if whence == 1: offset = self.offset + offset if whence not in [0, 1]: raise IOError("Illegal argument") if offset < self.offset: # for negative seek, rewind and do positive seek self.rewind() count = offset - self.offset for i in range(count // 1024): self.read(1024) self.read(count % 1024) def tell(self): return self.offset if isinstance(f, str): f = GzipFile(f) elif isinstance(f, gzip.GzipFile): # cast to our GzipFile if its already a gzip.GzipFile try: name = f.name except AttributeError: # Backward compatibility for <= 2.5 name = f.filename mode = f.mode f = GzipFile(fileobj=f.fileobj, filename=name) f.mode = mode return f class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def zipfile_factory(*args, **kwargs): import zipfile if sys.version_info >= (2, 5): kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ".npy" extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ".npy" extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ".npy" extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.read(key) if bytes.startswith(format.MAGIC_PREFIX): value = BytesIO(bytes) return format.read_array(value) else: return bytes else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ".npy" extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None): """ Load an array(s) or pickled objects from .npy, .npz, or pickled files. Parameters ---------- file : file-like object or string The file to read. It must support ``seek()`` and ``read()`` methods. If the filename extension is ``.gz``, the file is first decompressed. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. Returns ------- result : array, tuple, dict, etc. Data stored in the file. For '.npz' files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. See Also -------- save, savez, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlyling file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif isinstance(file, gzip.GzipFile): fid = seek_gzip_factory(file) else: fid = file try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) own_fid = False return NpzFile(fid, own_fid=own_fid) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid) else: # Try a pickle try: return _cload(fid) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see `format`. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file try: arr = np.asanyarray(arr) format.write_array(fid, arr) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed .npz file format Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of .npz file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed .npz file format """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError("Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zip = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.iteritems(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val)) fid.close() fid = None zip.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zip.close() # Adapted from matplotlib def _getconv(dtype): typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return float elif issubclass(typ, np.complex): return complex elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a record data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str, optional The character used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a record data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. Examples -------- >>> from StringIO import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience comments = asbytes(comments) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): fh = iter(seek_gzip_factory(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) else: fh = iter(open(fname, 'U')) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing == None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter.""" line = asbytes(line).split(comments)[0].strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in xrange(skiprows): fh.next() # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = fh.next() first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in xrange(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).iteritems(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if not ndmin in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional Character separating columns. newline : str, optional .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 Character separating lines. See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into a ``.npz`` compressed archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to preceed result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif type(fmt) is str: n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt),] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: fh.write(asbytes(format % tuple(row) + newline)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0, skip_header=0, skip_footer=0, converters=None, missing='', missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skip_header : int, optional The numbers of lines to skip at the beginning of the file. skip_footer : int, optional The numbers of lines to skip at the end of the file converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from StringIO import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing, unicode): missing = asbytes(missing) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): errmsg = "The input argument 'converter' should be a valid dictionary "\ "(got '%s' instead)" raise TypeError(errmsg % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): fhd = iter(np.lib._datasource.open(fname, 'rbU')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError("fname mustbe a string, filehandle, or generator. "\ "(got %s instead)" % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Get the first valid lines after the first skiprows ones .. if skiprows: warnings.warn(\ "The use of `skiprows` is deprecated, it will be removed in numpy 2.0.\n" \ "Please use `skip_header` instead.", DeprecationWarning) skip_header = skiprows # Skip the first `skip_header` rows for i in xrange(skip_header): fhd.next() # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = fhd.next() if names is True: if comments in first_line: first_line = asbytes('').join(first_line.split(comments)[1:]) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the deprecated `missing` if missing != asbytes(''): warnings.warn(\ "The use of `missing` is deprecated, it will be removed in Numpy 2.0.\n" \ "Please use `missing_values` instead.", DeprecationWarning) values = [str(_) for _ in missing.split(asbytes(","))] for entry in missing_values: entry.extend(values) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values or [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (i, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(i): try: i = names.index(i) except ValueError: continue elif usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue # Find the value to test: if len(first_line): testing_value = first_values[i] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue # Select only the columns we need if usecols: try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = map(itemgetter(i), rows) try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = itertools.imap(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... # if loose: # conversionfuncs = [conv._loose_call for conv in converters] # else: # conversionfuncs = [conv._strict_call for conv in converters] # for (i, vals) in enumerate(rows): # rows[i] = tuple([convert(val) # for (convert, val) in zip(conversionfuncs, vals)]) if loose: rows = zip(*[map(converter._loose_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) else: rows = zip(*[map(converter._strict_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = zip(names, column_types) mdtype = zip(names, [np.bool] * len(column_types)) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): errmsg = "Nested fields involving objects "\ "are not supported..." raise NotImplementedError(errmsg) else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array(masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for (i, ttype) in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.update(dtype=kwargs.get('dtype', None)) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ case_sensitive = kwargs.get('case_sensitive', "lower") or "lower" names = kwargs.get('names', True) if names is None: names = True kwargs.update(dtype=kwargs.get('update', None), delimiter=kwargs.get('delimiter', ",") or ",", names=names, case_sensitive=case_sensitive) usemask = kwargs.get("usemask", False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
gpl-2.0
mjsauvinen/P4UL
pyFootprint/footprintMaskOutput.py
1
4056
#!/usr/bin/env python3 from utilities import filesFromList from utilities import writeLog from footprintTools import * from mapTools import readNumpyZTile, filterAndScale import sys import argparse import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt ''' Author: Mikko Auvinen [email protected] University of Helsinki & Finnish Meteorological Institute ''' # = # = # = # Function definitions # = # = # = # = # = # = # # = # = # = # = # = # = # = # = # = # = # = # = # = # = # # = # = # = # End Function definitions # = # = # = # = # = # #========================================================== # parser = argparse.ArgumentParser(prog='footprintMaskOutput.py') parser.add_argument("-f", "--filename", type=str,help="Footprint file. (npz format)") parser.add_argument("-fm", "--filemask", type=str, help="Mask file. (npz format)") parser.add_argument("-pp", "--printOnly", help="Only print the contour. Don't save.",\ action="store_true", default=False) parser.add_argument("--save", help="Save the figure right away.", action="store_true",\ default=False) args = parser.parse_args() writeLog( parser, args, args.printOnly ) #========================================================== # # Rename ... that's all. filename = args.filename filemask = args.filemask printOnly = args.printOnly saveOn = args.save # save the fig # = = = = = = = = = = = = = = = = = = = = = = = = = = = = # # xO := origin coords. # xt := target coords. # ut := target speed try: Fp, X, Y, Z, C, IDict = readNumpyZFootprint( filename, True ) # IdsOn=True except: sys.exit(' Could not read the footprint file: {}'.format(filename)) try: Rdict = readNumpyZTile( filemask ) Rm = Rdict['R'] Rmdims = np.array(np.shape(R)) RmOrig = Rdict['GlobOrig'] dPx = Rdict['dPx'] Rdict = None except: sys.exit(' Could not read the mask file: {}'.format(filemask)) # To unify the treatment, let's add 100% to the IDict. if(not IDict): IDict = {} # In case IDict comes in as <None> IDict[100] = np.ones( np.shape(Fp) , bool ) # All true Nm = int(np.max(Rm))+1 # Number of different mask ID's (assuming first is zero) dA = np.prod(dPx) # Read the user specified source strengths Qd = np.ones(Nm, float) # Default try: Q = input("Enter {} source strengths (Q) separated by commas: ".format(Nm)) except: print(" All source strengths are set to unity. Q[:] = 1.") Q = Qd if( len(Q) != Nm ): sys.exit(" Error! len(Q) = {}. It should be {}. Exiting ...".format(len(Qe),Nm)) for key in IDict.keys(): # CSV header idx = IDict[key] print('{}%:\n \"Mask ID\",\"[%]\",\"SUM( Fp*M*dA )\",\"SUM( FP*dA )\" ,\" Q \"'.format(key)) #Fptot = np.sum(Fp[idx]*dA) Fptot = 0. FpM = np.zeros( Nm ) for im in range(Nm): M = (Rm == im).astype(int) #print(' sum(Fp*idx) = {}, min(M) = {}'.format(np.min(Fp*idx), np.min(M))) FpM[im] = Q[im] * np.sum(Fp*idx*M*dA) Fptot += FpM[im] for im in range(Nm): pStr = '{}, {}, {}, {}, {}'.format(im,FpM[im]/Fptot*100.,FpM[im],Fptot,Q[im]) print(pStr) print('----------') mpl.rcParams['font.size'] = 18.0 plt.figure(num=1, figsize=(9.,6.)); lbl = np.array(['Buildings','Impervious','Grass',\ 'Low Vegetation','High Vegetation', 'Water', '','Road']) dat = FpM/Fptot*100. ix = (dat > 0.) # Valid points. In order to isolate meaningless entries. #colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] cs=np.array(['lightskyblue', 'g', 'r', 'c', 'm', 'y', 'k', 'w']) expl = np.zeros(Nm) expl[2:] = 0.1 plt.pie(dat[ix],explode=expl[ix],labels=lbl[ix],colors=cs[ix],\ autopct='%1.1f%%',shadow=True, startangle=90) #plt.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') if(saveOn): plt.savefig( filename.strip('.npz')+'.jpg' ) plt.show() #print(' Footprint: {} '.format(np.shape(Fp))) #print(' Mask : {} '.format(np.shape(Rm))) #print(' FpM : {} '.format(FpM))
mit
DaveBerkeley/arduino
sketchbook/current_meter/graph2.py
1
1242
import time import sys import serial target_cycle = 0 if len(sys.argv) > 1: target_cycle = int(sys.argv[1]) s = serial.Serial("/dev/ttyUSB0", 9600, timeout=1) for i in range(10): time.sleep(0.1) s.write("W\n") # Set Wave mode def get_data_(): ii = [] vv = [] p_total = 0.0 while True: line = s.readline() #print `line` if not line: continue if line.startswith("***"): break try: parts = line.split(" ") v = int(parts[0], 10) * (378 / 512.0) i = float(parts[1]) * (128.2 / 512.0) except: continue ii.append(i * 20) vv.append(v) p_total += i * v if vv: print p_total / len(vv) sys.stdout.flush() return ii, vv def get_data(): while True: ii, vv = get_data_() if len(ii) >= 128: return ii, vv # # fout = open("/tmp/mains.csv", "w") i, v = get_data() i, v = get_data() print i, v from matplotlib import pyplot pyplot.ion() axes = pyplot.axes() v_line, = pyplot.plot(v) i_line, = pyplot.plot(i) while True: i, v = get_data() v_line.set_ydata(v) i_line.set_ydata(i) pyplot.draw() # FIN
gpl-2.0
raghavrv/scikit-learn
sklearn/model_selection/_split.py
5
74919
""" The :mod:`sklearn.model_selection._split` module includes classes and functions to split the data based on a preset strategy. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # Raghav RV <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from collections import Iterable from math import ceil, floor import numbers from abc import ABCMeta, abstractmethod import numpy as np from ..utils import indexable, check_random_state, safe_indexing from ..utils.validation import _num_samples, column_or_1d from ..utils.validation import check_array from ..utils.multiclass import type_of_target from ..externals.six import with_metaclass from ..externals.six.moves import zip from ..utils.fixes import signature, comb from ..base import _pprint __all__ = ['BaseCrossValidator', 'KFold', 'GroupKFold', 'LeaveOneGroupOut', 'LeaveOneOut', 'LeavePGroupsOut', 'LeavePOut', 'RepeatedStratifiedKFold', 'RepeatedKFold', 'ShuffleSplit', 'GroupShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'train_test_split', 'check_cv'] class BaseCrossValidator(with_metaclass(ABCMeta)): """Base class for all cross-validators Implementations must define `_iter_test_masks` or `_iter_test_indices`. """ def __init__(self): # We need this for the build_repr to work properly in py2.7 # see #6304 pass def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, of length n_samples The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) indices = np.arange(_num_samples(X)) for test_index in self._iter_test_masks(X, y, groups): train_index = indices[np.logical_not(test_index)] test_index = indices[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self, X=None, y=None, groups=None): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices(X, y, groups) """ for test_index in self._iter_test_indices(X, y, groups): test_mask = np.zeros(_num_samples(X), dtype=np.bool) test_mask[test_index] = True yield test_mask def _iter_test_indices(self, X=None, y=None, groups=None): """Generates integer indices corresponding to test sets.""" raise NotImplementedError @abstractmethod def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator""" def __repr__(self): return _build_repr(self) class LeaveOneOut(BaseCrossValidator): """Leave-One-Out cross-validator Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_splits=n)`` and ``LeavePOut(p=1)`` where ``n`` is the number of samples. Due to the high number of test sets (which is the same as the number of samples) this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit` or :class:`StratifiedKFold`. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneOut >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = LeaveOneOut() >>> loo.get_n_splits(X) 2 >>> print(loo) LeaveOneOut() >>> for train_index, test_index in loo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneGroupOut For splitting the data according to explicit, domain-specific stratification of the dataset. GroupKFold: K-fold iterator variant with non-overlapping groups. """ def _iter_test_indices(self, X, y=None, groups=None): return range(_num_samples(X)) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if X is None: raise ValueError("The 'X' parameter should not be None.") return _num_samples(X) class LeavePOut(BaseCrossValidator): """Leave-P-Out cross-validator Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(p)`` is NOT equivalent to ``KFold(n_splits=n_samples // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`StratifiedKFold` or :class:`ShuffleSplit`. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- p : int Size of the test sets. Examples -------- >>> from sklearn.model_selection import LeavePOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = LeavePOut(2) >>> lpo.get_n_splits(X) 6 >>> print(lpo) LeavePOut(p=2) >>> for train_index, test_index in lpo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, p): self.p = p def _iter_test_indices(self, X, y=None, groups=None): for combination in combinations(range(_num_samples(X)), self.p): yield np.array(combination) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. """ if X is None: raise ValueError("The 'X' parameter should not be None.") return int(comb(_num_samples(X), self.p, exact=True)) class _BaseKFold(with_metaclass(ABCMeta, BaseCrossValidator)): """Base class for KFold, GroupKFold, and StratifiedKFold""" @abstractmethod def __init__(self, n_splits, shuffle, random_state): if not isinstance(n_splits, numbers.Integral): raise ValueError('The number of folds must be of Integral type. ' '%s of type %s was passed.' % (n_splits, type(n_splits))) n_splits = int(n_splits) if n_splits <= 1: raise ValueError( "k-fold cross-validation requires at least one" " train/test split by setting n_splits=2 or more," " got n_splits={0}.".format(n_splits)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) if self.n_splits > n_samples: raise ValueError( ("Cannot have number of splits n_splits={0} greater" " than the number of samples: {1}.").format(self.n_splits, n_samples)) for train, test in super(_BaseKFold, self).split(X, y, groups): yield train, test def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits class KFold(_BaseKFold): """K-Folds cross-validator Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used once as a validation while the k - 1 remaining folds form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``shuffle`` == True. Examples -------- >>> from sklearn.model_selection import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(n_splits=2) >>> kf.get_n_splits(X) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE KFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in kf.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first ``n_samples % n_splits`` folds have size ``n_samples // n_splits + 1``, other folds have size ``n_samples // n_splits``, where ``n_samples`` is the number of samples. See also -------- StratifiedKFold Takes group information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). GroupKFold: K-fold iterator variant with non-overlapping groups. RepeatedKFold: Repeats K-Fold n times. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(KFold, self).__init__(n_splits, shuffle, random_state) def _iter_test_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) indices = np.arange(n_samples) if self.shuffle: check_random_state(self.random_state).shuffle(indices) n_splits = self.n_splits fold_sizes = (n_samples // n_splits) * np.ones(n_splits, dtype=np.int) fold_sizes[:n_samples % n_splits] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield indices[start:stop] current = stop class GroupKFold(_BaseKFold): """K-fold iterator variant with non-overlapping groups. The same group will not appear in two different folds (the number of distinct groups has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct groups is approximately the same in each fold. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. Examples -------- >>> from sklearn.model_selection import GroupKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> groups = np.array([0, 0, 2, 2]) >>> group_kfold = GroupKFold(n_splits=2) >>> group_kfold.get_n_splits(X, y, groups) 2 >>> print(group_kfold) GroupKFold(n_splits=2) >>> for train_index, test_index in group_kfold.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneGroupOut For splitting the data according to explicit domain-specific stratification of the dataset. """ def __init__(self, n_splits=3): super(GroupKFold, self).__init__(n_splits, shuffle=False, random_state=None) def _iter_test_indices(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, ensure_2d=False, dtype=None) unique_groups, groups = np.unique(groups, return_inverse=True) n_groups = len(unique_groups) if self.n_splits > n_groups: raise ValueError("Cannot have number of splits n_splits=%d greater" " than the number of groups: %d." % (self.n_splits, n_groups)) # Weight groups by their number of occurrences n_samples_per_group = np.bincount(groups) # Distribute the most frequent groups first indices = np.argsort(n_samples_per_group)[::-1] n_samples_per_group = n_samples_per_group[indices] # Total weight of each fold n_samples_per_fold = np.zeros(self.n_splits) # Mapping from group index to fold index group_to_fold = np.zeros(len(unique_groups)) # Distribute samples by adding the largest weight to the lightest fold for group_index, weight in enumerate(n_samples_per_group): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight group_to_fold[indices[group_index]] = lightest_fold indices = group_to_fold[groups] for f in range(self.n_splits): yield np.where(indices == f)[0] class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``shuffle`` == True. Examples -------- >>> from sklearn.model_selection import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(n_splits=2) >>> skf.get_n_splits(X, y) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE StratifiedKFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in skf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size ``trunc(n_samples / n_splits)``, the last one has the complementary. See also -------- RepeatedStratifiedKFold: Repeats Stratified K-Fold n times. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__(n_splits, shuffle, random_state) def _make_test_folds(self, X, y=None, groups=None): if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state y = np.asarray(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = np.bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("All the n_groups for individual classes" " are less than n_splits=%d." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of groups for any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds def _iter_test_masks(self, X, y=None, groups=None): test_folds = self._make_test_folds(X, y) for i in range(self.n_splits): yield test_folds == i def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ y = check_array(y, ensure_2d=False, dtype=None) return super(StratifiedKFold, self).split(X, y, groups) class TimeSeriesSplit(_BaseKFold): """Time Series cross-validator Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test sets. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate. This cross-validation object is a variation of :class:`KFold`. In the kth split, it returns first k folds as train set and the (k+1)th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of splits. Must be at least 1. max_train_size : int, optional Maximum size for a single training set. Examples -------- >>> from sklearn.model_selection import TimeSeriesSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> tscv = TimeSeriesSplit(n_splits=3) >>> print(tscv) # doctest: +NORMALIZE_WHITESPACE TimeSeriesSplit(max_train_size=None, n_splits=3) >>> for train_index, test_index in tscv.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [0] TEST: [1] TRAIN: [0 1] TEST: [2] TRAIN: [0 1 2] TEST: [3] Notes ----- The training set has size ``i * n_samples // (n_splits + 1) + n_samples % (n_splits + 1)`` in the ``i``th split, with a test set of size ``n_samples//(n_splits + 1)``, where ``n_samples`` is the number of samples. """ def __init__(self, n_splits=3, max_train_size=None): super(TimeSeriesSplit, self).__init__(n_splits, shuffle=False, random_state=None) self.max_train_size = max_train_size def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits n_folds = n_splits + 1 if n_folds > n_samples: raise ValueError( ("Cannot have number of folds ={0} greater" " than the number of samples: {1}.").format(n_folds, n_samples)) indices = np.arange(n_samples) test_size = (n_samples // n_folds) test_starts = range(test_size + n_samples % n_folds, n_samples, test_size) for test_start in test_starts: if self.max_train_size and self.max_train_size < test_start: yield (indices[test_start - self.max_train_size:test_start], indices[test_start:test_start + test_size]) else: yield (indices[:test_start], indices[test_start:test_start + test_size]) class LeaveOneGroupOut(BaseCrossValidator): """Leave One Group Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneGroupOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> groups = np.array([1, 1, 2, 2]) >>> logo = LeaveOneGroupOut() >>> logo.get_n_splits(X, y, groups) 2 >>> logo.get_n_splits(groups=groups) # 'groups' is always required 2 >>> print(logo) LeaveOneGroupOut() >>> for train_index, test_index in logo.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") # We make a copy of groups to avoid side-effects during iteration groups = check_array(groups, copy=True, ensure_2d=False, dtype=None) unique_groups = np.unique(groups) if len(unique_groups) <= 1: raise ValueError( "The groups parameter contains fewer than 2 unique groups " "(%s). LeaveOneGroupOut expects at least 2." % unique_groups) for i in unique_groups: yield groups == i def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object, optional Always ignored, exists for compatibility. y : object, optional Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. This 'groups' parameter must always be specified to calculate the number of splits, though the other parameters can be omitted. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, ensure_2d=False, dtype=None) return len(np.unique(groups)) class LeavePGroupsOut(BaseCrossValidator): """Leave P Group(s) Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and LeaveOneGroupOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the groups while the latter uses samples all assigned the same groups. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_groups : int Number of groups (``p``) to leave out in the test split. Examples -------- >>> from sklearn.model_selection import LeavePGroupsOut >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> groups = np.array([1, 2, 3]) >>> lpgo = LeavePGroupsOut(n_groups=2) >>> lpgo.get_n_splits(X, y, groups) 3 >>> lpgo.get_n_splits(groups=groups) # 'groups' is always required 3 >>> print(lpgo) LeavePGroupsOut(n_groups=2) >>> for train_index, test_index in lpgo.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- GroupKFold: K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_groups): self.n_groups = n_groups def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, copy=True, ensure_2d=False, dtype=None) unique_groups = np.unique(groups) if self.n_groups >= len(unique_groups): raise ValueError( "The groups parameter contains fewer than (or equal to) " "n_groups (%d) numbers of unique groups (%s). LeavePGroupsOut " "expects that at least n_groups + 1 (%d) unique groups be " "present" % (self.n_groups, unique_groups, self.n_groups + 1)) combi = combinations(range(len(unique_groups)), self.n_groups) for indices in combi: test_index = np.zeros(_num_samples(X), dtype=np.bool) for l in unique_groups[np.array(indices)]: test_index[groups == l] = True yield test_index def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object, optional Always ignored, exists for compatibility. y : object, optional Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. This 'groups' parameter must always be specified to calculate the number of splits, though the other parameters can be omitted. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, ensure_2d=False, dtype=None) return int(comb(len(np.unique(groups)), self.n_groups, exact=True)) class _RepeatedSplits(with_metaclass(ABCMeta)): """Repeated splits for an arbitrary randomized CV splitter. Repeats splits for cross-validators n times with different randomization in each repetition. Parameters ---------- cv : callable Cross-validator class. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. **cvargs : additional params Constructor parameters for cv. Must not contain random_state and shuffle. """ def __init__(self, cv, n_repeats=10, random_state=None, **cvargs): if not isinstance(n_repeats, (np.integer, numbers.Integral)): raise ValueError("Number of repetitions must be of Integral type.") if n_repeats <= 0: raise ValueError("Number of repetitions must be greater than 0.") if any(key in cvargs for key in ('random_state', 'shuffle')): raise ValueError( "cvargs must not contain random_state or shuffle.") self.cv = cv self.n_repeats = n_repeats self.random_state = random_state self.cvargs = cvargs def split(self, X, y=None, groups=None): """Generates indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, of length n_samples The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ n_repeats = self.n_repeats rng = check_random_state(self.random_state) for idx in range(n_repeats): cv = self.cv(random_state=rng, shuffle=True, **self.cvargs) for train_index, test_index in cv.split(X, y, groups): yield train_index, test_index def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. y : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ rng = check_random_state(self.random_state) cv = self.cv(random_state=rng, shuffle=True, **self.cvargs) return cv.get_n_splits(X, y, groups) * self.n_repeats class RepeatedKFold(_RepeatedSplits): """Repeated K-Fold cross validator. Repeats K-Fold n times with different randomization in each repetition. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Examples -------- >>> from sklearn.model_selection import RepeatedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=2652124) >>> for train_index, test_index in rkf.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... TRAIN: [0 1] TEST: [2 3] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] See also -------- RepeatedStratifiedKFold: Repeates Stratified K-Fold n times. """ def __init__(self, n_splits=5, n_repeats=10, random_state=None): super(RepeatedKFold, self).__init__( KFold, n_repeats, random_state, n_splits=n_splits) class RepeatedStratifiedKFold(_RepeatedSplits): """Repeated Stratified K-Fold cross validator. Repeats Stratified K-Fold n times with different randomization in each repetition. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : None, int or RandomState, default=None Random state to be used to generate random state for each repetition. Examples -------- >>> from sklearn.model_selection import RepeatedStratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2, ... random_state=36851234) >>> for train_index, test_index in rskf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] See also -------- RepeatedKFold: Repeats K-Fold n times. """ def __init__(self, n_splits=5, n_repeats=10, random_state=None): super(RepeatedStratifiedKFold, self).__init__( StratifiedKFold, n_repeats, random_state, n_splits=n_splits) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n_splits=10, test_size="default", train_size=None, random_state=None): _validate_shuffle_split_init(test_size, train_size) self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) for train, test in self._iter_indices(X, y, groups): yield train, test @abstractmethod def _iter_indices(self, X, y=None, groups=None): """Generate (train, test) indices""" def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits def __repr__(self): return _build_repr(self) class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validator Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default 10 Number of re-shuffling & splitting iterations. test_size : float, int, None, default=0.1 If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. By default (the is parameter unspecified), the value is set to 0.1. The default will change in version 0.21. It will remain 0.1 only if ``train_size`` is unspecified, otherwise it will complement the specified ``train_size``. train_size : float, int, or None, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Examples -------- >>> from sklearn.model_selection import ShuffleSplit >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> rs = ShuffleSplit(n_splits=3, test_size=.25, random_state=0) >>> rs.get_n_splits(X) 3 >>> print(rs) ShuffleSplit(n_splits=3, random_state=0, test_size=0.25, train_size=None) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = ShuffleSplit(n_splits=3, train_size=0.5, test_size=.25, ... random_state=0) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) rng = check_random_state(self.random_state) for i in range(self.n_splits): # random partition permutation = rng.permutation(n_samples) ind_test = permutation[:n_test] ind_train = permutation[n_test:(n_test + n_train)] yield ind_train, ind_test class GroupShuffleSplit(ShuffleSplit): '''Shuffle-Group(s)-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and GroupShuffleSplit is that the former generates splits using all subsets of size ``p`` unique groups, whereas GroupShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique groups. For example, a less computationally intensive alternative to ``LeavePGroupsOut(p=10)`` would be ``GroupShuffleSplit(test_size=10, n_splits=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to groups, and not to samples, as in ShuffleSplit. Parameters ---------- n_splits : int (default 5) Number of re-shuffling & splitting iterations. test_size : float, int, None, optional If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. By default, the value is set to 0.2. The default will change in version 0.21. It will remain 0.2 only if ``train_size`` is unspecified, otherwise it will complement the specified ``train_size``. train_size : float, int, or None, default is None If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the train split. If int, represents the absolute number of train groups. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. ''' def __init__(self, n_splits=5, test_size="default", train_size=None, random_state=None): if test_size == "default": if train_size is not None: warnings.warn("From version 0.21, test_size will always " "complement train_size unless both " "are specified.", FutureWarning) test_size = 0.2 super(GroupShuffleSplit, self).__init__( n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=random_state) def _iter_indices(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, ensure_2d=False, dtype=None) classes, group_indices = np.unique(groups, return_inverse=True) for group_train, group_test in super( GroupShuffleSplit, self)._iter_indices(X=classes): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(group_indices, group_train)) test = np.flatnonzero(np.in1d(group_indices, group_test)) yield train, test def _approximate_mode(class_counts, n_draws, rng): """Computes approximate mode of multivariate hypergeometric. This is an approximation to the mode of the multivariate hypergeometric given by class_counts and n_draws. It shouldn't be off by more than one. It is the mostly likely outcome of drawing n_draws many samples from the population given by class_counts. Parameters ---------- class_counts : ndarray of int Population per class. n_draws : int Number of draws (samples to draw) from the overall population. rng : random state Used to break ties. Returns ------- sampled_classes : ndarray of int Number of samples drawn from each class. np.sum(sampled_classes) == n_draws Examples -------- >>> from sklearn.model_selection._split import _approximate_mode >>> _approximate_mode(class_counts=np.array([4, 2]), n_draws=3, rng=0) array([2, 1]) >>> _approximate_mode(class_counts=np.array([5, 2]), n_draws=4, rng=0) array([3, 1]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=0) array([0, 1, 1, 0]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=42) array([1, 1, 0, 0]) """ rng = check_random_state(rng) # this computes a bad approximation to the mode of the # multivariate hypergeometric given by class_counts and n_draws continuous = n_draws * class_counts / class_counts.sum() # floored means we don't overshoot n_samples, but probably undershoot floored = np.floor(continuous) # we add samples according to how much "left over" probability # they had, until we arrive at n_samples need_to_add = int(n_draws - floored.sum()) if need_to_add > 0: remainder = continuous - floored values = np.sort(np.unique(remainder))[::-1] # add according to remainder, but break ties # randomly to avoid biases for value in values: inds, = np.where(remainder == value) # if we need_to_add less than what's in inds # we draw randomly from them. # if we need to add more, we add them all and # go to the next value add_now = min(len(inds), need_to_add) inds = rng.choice(inds, size=add_now, replace=False) floored[inds] += 1 need_to_add -= add_now if need_to_add == 0: break return floored.astype(np.int) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default 10 Number of re-shuffling & splitting iterations. test_size : float, int, None, optional If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. By default, the value is set to 0.1. The default will change in version 0.21. It will remain 0.1 only if ``train_size`` is unspecified, otherwise it will complement the specified ``train_size``. train_size : float, int, or None, default is None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Examples -------- >>> from sklearn.model_selection import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(n_splits=3, test_size=0.5, random_state=0) >>> sss.get_n_splits(X, y) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(n_splits=3, random_state=0, ...) >>> for train_index, test_index in sss.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, n_splits=10, test_size="default", train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( n_splits, test_size, train_size, random_state) def _iter_indices(self, X, y, groups=None): n_samples = _num_samples(X) y = check_array(y, ensure_2d=False, dtype=None) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) if y.ndim == 2: # for multi-label y, map each distinct row to its string repr: y = np.array([str(row) for row in y]) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = np.bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of groups for any class cannot" " be less than 2.") if n_train < n_classes: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_train, n_classes)) if n_test < n_classes: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_test, n_classes)) rng = check_random_state(self.random_state) for _ in range(self.n_splits): # if there are ties in the class-counts, we want # to make sure to break them anew in each iteration n_i = _approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = _approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i, class_i in enumerate(classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = np.where((y == class_i))[0][permutation] train.extend(perm_indices_class_i[:n_i[i]]) test.extend(perm_indices_class_i[n_i[i]:n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ y = check_array(y, ensure_2d=False, dtype=None) return super(StratifiedShuffleSplit, self).split(X, y, groups) def _validate_shuffle_split_init(test_size, train_size): """Validation helper to check the test_size and train_size at init NOTE This does not take into account the number of samples which is known only at split """ if test_size == "default": if train_size is not None: warnings.warn("From version 0.21, test_size will always " "complement train_size unless both " "are specified.", FutureWarning) test_size = 0.1 if test_size is None and train_size is None: raise ValueError('test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif (np.asarray(test_size).dtype.kind == 'f' and (train_size + test_size) > 1.): raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for train_size: %r" % train_size) def _validate_shuffle_split(n_samples, test_size, train_size): """ Validation helper to check if the test/test sizes are meaningful wrt to the size of the data (n_samples) """ if (test_size is not None and np.asarray(test_size).dtype.kind == 'i' and test_size >= n_samples): raise ValueError('test_size=%d should be smaller than the number of ' 'samples %d' % (test_size, n_samples)) if (train_size is not None and np.asarray(train_size).dtype.kind == 'i' and train_size >= n_samples): raise ValueError("train_size=%d should be smaller than the number of" " samples %d" % (train_size, n_samples)) if test_size == "default": test_size = 0.1 if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n_samples) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n_samples - n_test elif np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n_samples) else: n_train = float(train_size) if test_size is None: n_test = n_samples - n_train if n_train + n_test > n_samples: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n_samples)) return int(n_train), int(n_test) class PredefinedSplit(BaseCrossValidator): """Predefined split cross-validator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> test_fold = [0, 1, -1, 1] >>> ps = PredefinedSplit(test_fold) >>> ps.get_n_splits() 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for train_index, test_index in ps.split(): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ ind = np.arange(len(self.test_fold)) for test_index in self._iter_test_masks(): train_index = ind[np.logical_not(test_index)] test_index = ind[test_index] yield train_index, test_index def _iter_test_masks(self): """Generates boolean masks corresponding to test sets.""" for f in self.unique_folds: test_index = np.where(self.test_fold == f)[0] test_mask = np.zeros(len(self.test_fold), dtype=np.bool) test_mask[test_index] = True yield test_mask def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.unique_folds) class _CVIterableWrapper(BaseCrossValidator): """Wrapper class for old style cv objects and iterables.""" def __init__(self, cv): self.cv = list(cv) def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.cv) def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ for train, test in self.cv: yield train, test def check_cv(cv=3, y=None, classifier=False): """Input checker utility for building a cross-validator Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. y : array-like, optional The target variable for supervised learning problems. classifier : boolean, optional, default False Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. """ if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if (classifier and (y is not None) and (type_of_target(y) in ('binary', 'multiclass'))): return StratifiedKFold(cv) else: return KFold(cv) if not hasattr(cv, 'split') or isinstance(cv, str): if not isinstance(cv, Iterable) or isinstance(cv, str): raise ValueError("Expected cv as an integer, cross-validation " "object (from sklearn.model_selection) " "or an iterable. Got %s." % cv) return _CVIterableWrapper(cv) return cv # New style cv objects are passed without any modification def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(ShuffleSplit().split(X, y))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. test_size : float, int, None, optional If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. By default, the value is set to 0.25. The default will change in version 0.21. It will remain 0.25 only if ``train_size`` is unspecified, otherwise it will complement the specified ``train_size``. train_size : float, int, or None, default None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. shuffle : boolean, optional (default=True) Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the class labels. Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs. .. versionadded:: 0.16 If the input is sparse, the output will be a ``scipy.sparse.csr_matrix``. Else, output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] >>> train_test_split(y, shuffle=False) [[0, 1, 2], [3, 4]] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', 'default') train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) stratify = options.pop('stratify', None) shuffle = options.pop('shuffle', True) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if test_size == 'default': test_size = None if train_size is not None: warnings.warn("From version 0.21, test_size will always " "complement train_size unless both " "are specified.", FutureWarning) if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if shuffle is False: if stratify is not None: raise ValueError( "Stratified train/test split is not implemented for " "shuffle=False") n_samples = _num_samples(arrays[0]) n_train, n_test = _validate_shuffle_split(n_samples, test_size, train_size) train = np.arange(n_train) test = np.arange(n_train, n_train + n_test) else: if stratify is not None: CVClass = StratifiedShuffleSplit else: CVClass = ShuffleSplit cv = CVClass(test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(cv.split(X=arrays[0], y=stratify)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests def _build_repr(self): # XXX This is copied from BaseEstimator's get_params cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) # Ignore varargs, kw and default values and pop self init_signature = signature(init) # Consider the constructor parameters excluding 'self' if init is object.__init__: args = [] else: args = sorted([p.name for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD]) class_name = self.__class__.__name__ params = dict() for key in args: # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) params[key] = value return '%s(%s)' % (class_name, _pprint(params, offset=len(class_name)))
bsd-3-clause
WagnerLabPapers/Waskom_JNeurosci_2014
process_searchlight.py
1
4248
import os import sys import os.path as op import argparse import numpy as np import pandas as pd from scipy import ndimage from scipy.stats import zscore import nibabel as nib import subprocess as sp from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import LeaveOneLabelOut from nilearn.decoding import SearchLight import lyman project = lyman.gather_project_info() data_dir = project["data_dir"] analysis_dir = project["analysis_dir"] def main(arglist): args = parse_args(arglist) if args.subjects is None: args.subjects = lyman.determine_subjects() for subj in args.subjects: print "Running subject", subj searchlight_dir = op.join(analysis_dir, "dksort", subj, "mvpa/searchlight") if not op.exists(searchlight_dir): os.mkdir(searchlight_dir) vol_fname = op.join(searchlight_dir, "dimension_dksort_pfc.nii.gz") if "fit" in args.do and (not op.exists(vol_fname) or args.overwrite): print " Doing searchlight" mask_img, X, y, runs = load_data(subj) s = SearchLight(mask_img, radius=10, n_jobs=10, estimator=LogisticRegression(), cv=LeaveOneLabelOut(runs)) s.fit(X, y) out_img = nib.Nifti1Image(s.scores_, s.mask_img.get_affine()) out_img.to_filename(vol_fname) surf_fnames = [op.join(searchlight_dir, "lh.dimension_dksort_pfc.mgz"), op.join(searchlight_dir, "rh.dimension_dksort_pfc.mgz")] if "surf" in args.do and (not all(map(op.exists, surf_fnames)) or args.overwrite): print " Doing surfreg" reg_fname = op.join(analysis_dir, "dksort", subj, "preproc/run_1/func2anat_tkreg.dat") for i, hemi in enumerate(["lh", "rh"]): cmdline = ["mri_vol2surf", "--mov", vol_fname, "--reg", reg_fname, "--trgsubject", "fsaverage", "--projfrac-avg", "0", "1", ".1", "--surf-fwhm", "5", "--hemi", hemi, "--o", surf_fnames[i]] sp.check_output(" ".join(cmdline), shell=True) def load_data(subj): design = pd.read_csv(op.join(data_dir, subj, "design/dimension.csv")) mask_img = nib.load(op.join(data_dir, subj, "masks/dksort_all_pfc.nii.gz")) mean_img = nib.load(op.join(analysis_dir, "dksort", subj, "preproc/run_1/mean_func.nii.gz")) orig_mask_data = mask_img.get_data() mask_data = ndimage.binary_dilation(orig_mask_data, iterations=2) mask_img = nib.Nifti1Image(mask_data.astype(int), mask_img.get_affine(), mask_img.get_header()) mask_img.to_filename(op.join(analysis_dir, "dksort", subj, "mvpa/searchlight/dksort_pfc_mask.nii.gz")) X_data = [] for run in range(1, 5): ts_img = nib.load(op.join(analysis_dir, "dksort", subj, "reg/epi", "unsmoothed/run_%d" % run, "timeseries_xfm.nii.gz")) ts_data = ts_img.get_data() onsets = design.loc[design.run == run, "onset"].values indices = np.round(onsets / 2).astype(int) frame1 = ts_data[..., indices + 2] frame2 = ts_data[..., indices + 3] X_run = np.mean([frame1, frame2], axis=0) X_run = zscore(X_run, axis=-1) X_data.append(X_run) X = nib.Nifti1Image(np.concatenate(X_data, axis=-1), mean_img.get_affine(), mean_img.get_header()) y = design["condition"].values runs = design["run"].values return mask_img, X, y, runs def parse_args(arglist): parser = argparse.ArgumentParser() parser.add_argument("-subjects", nargs="*") parser.add_argument("-do", nargs="*", default=[]) parser.add_argument("-overwrite", action="store_true") args = parser.parse_args(arglist) return args if __name__ == "__main__": main(sys.argv[1:])
bsd-3-clause
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/sklearn/cross_validation.py
1
67355
""" The :mod:`sklearn.cross_validation` module includes utilities for cross- validation and performance evaluation. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import division from __future__ import print_function import numbers import time import warnings from abc import ABCMeta, abstractmethod from itertools import chain, combinations from math import ceil, floor, factorial import numpy as np import scipy.sparse as sp from .externals.six.moves import zip from .base import is_classifier, clone from .exceptions import FitFailedWarning from .externals.joblib import Parallel, delayed, logger from .externals.six import with_metaclass from .gaussian_process.kernels import Kernel as GPKernel from .metrics.scorer import check_scoring from .utils import indexable, check_random_state, safe_indexing from .utils.fixes import bincount from .utils.multiclass import type_of_target from .utils.validation import (_is_arraylike, _num_samples, column_or_1d) warnings.warn("This module has been deprecated in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. Also note that the interface of the " "new CV iterators are different from that of this module. " "This module will be removed in 0.20.", DeprecationWarning) __all__ = ['KFold', 'LabelKFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'LabelShuffleSplit', 'check_cv', 'cross_val_score', 'cross_val_predict', 'permutation_test_score', 'train_test_split'] class _PartitionIterator(with_metaclass(ABCMeta)): """Base class for CV iterators where train_mask = ~test_mask Implementations must define `_iter_test_masks` or `_iter_test_indices`. Parameters ---------- n : int Total number of elements in dataset. """ def __init__(self, n): if abs(n - int(n)) >= np.finfo('f').eps: raise ValueError("n must be an integer") self.n = int(n) def __iter__(self): ind = np.arange(self.n) for test_index in self._iter_test_masks(): train_index = np.logical_not(test_index) train_index = ind[train_index] test_index = ind[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices() """ for test_index in self._iter_test_indices(): test_mask = self._empty_mask() test_mask[test_index] = True yield test_mask def _iter_test_indices(self): """Generates integer indices corresponding to test sets.""" raise NotImplementedError def _empty_mask(self): return np.zeros(self.n, dtype=np.bool) class LeaveOneOut(_PartitionIterator): """Leave-One-Out cross validation iterator. Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and ``LeavePOut(n, p=1)``. Due to the high number of test sets (which is the same as the number of samples) this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = cross_validation.LeaveOneOut(2) >>> len(loo) 2 >>> print(loo) sklearn.cross_validation.LeaveOneOut(n=2) >>> for train_index, test_index in loo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def _iter_test_indices(self): return range(self.n) def __repr__(self): return '%s.%s(n=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, ) def __len__(self): return self.n class LeavePOut(_PartitionIterator): """Leave-P-Out cross validation iterator Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. p : int Size of the test sets. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print(lpo) sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, n, p): super(LeavePOut, self).__init__(n) self.p = p def _iter_test_indices(self): for comb in combinations(range(self.n), self.p): yield np.array(comb) def __repr__(self): return '%s.%s(n=%i, p=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.p, ) def __len__(self): return int(factorial(self.n) / factorial(self.n - self.p) / factorial(self.p)) class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)): """Base class to validate KFold approaches""" @abstractmethod def __init__(self, n, n_folds, shuffle, random_state): super(_BaseKFold, self).__init__(n) if abs(n_folds - int(n_folds)) >= np.finfo('f').eps: raise ValueError("n_folds must be an integer") self.n_folds = n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross validation requires at least one" " train / test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if n_folds > self.n: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(n_folds, n)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.shuffle = shuffle self.random_state = random_state class KFold(_BaseKFold): """K-Folds cross validation iterator. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used a validation set once while the k - 1 remaining fold form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.cross_validation import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(4, n_folds=2) >>> len(kf) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in kf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds. See also -------- StratifiedKFold take label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, n, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n, n_folds, shuffle, random_state) self.idxs = np.arange(n) if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): n = self.n n_folds = self.n_folds fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int) fold_sizes[:n % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield self.idxs[start:stop] current = stop def __repr__(self): return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LabelKFold(_BaseKFold): """K-fold iterator variant with non-overlapping labels. The same label will not appear in two different folds (the number of distinct labels has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct labels is approximately the same in each fold. .. versionadded:: 0.17 Parameters ---------- labels : array-like with shape (n_samples, ) Contains a label for each sample. The folds are built so that the same label does not appear in two different folds. n_folds : int, default=3 Number of folds. Must be at least 2. Examples -------- >>> from sklearn.cross_validation import LabelKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> labels = np.array([0, 0, 2, 2]) >>> label_kfold = LabelKFold(labels, n_folds=2) >>> len(label_kfold) 2 >>> print(label_kfold) sklearn.cross_validation.LabelKFold(n_labels=4, n_folds=2) >>> for train_index, test_index in label_kfold: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def __init__(self, labels, n_folds=3): super(LabelKFold, self).__init__(len(labels), n_folds, shuffle=False, random_state=None) unique_labels, labels = np.unique(labels, return_inverse=True) n_labels = len(unique_labels) if n_folds > n_labels: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of labels: {1}.").format(n_folds, n_labels)) # Weight labels by their number of occurrences n_samples_per_label = np.bincount(labels) # Distribute the most frequent labels first indices = np.argsort(n_samples_per_label)[::-1] n_samples_per_label = n_samples_per_label[indices] # Total weight of each fold n_samples_per_fold = np.zeros(n_folds) # Mapping from label index to fold index label_to_fold = np.zeros(len(unique_labels)) # Distribute samples by adding the largest weight to the lightest fold for label_index, weight in enumerate(n_samples_per_label): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight label_to_fold[indices[label_index]] = lightest_fold self.idxs = label_to_fold[labels] def _iter_test_indices(self): for f in range(self.n_folds): yield np.where(self.idxs == f)[0] def __repr__(self): return '{0}.{1}(n_labels={2}, n_folds={3})'.format( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, ) def __len__(self): return self.n_folds class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.cross_validation import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size trunc(n_samples / n_folds), the last one has the complementary. See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, y, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__( len(y), n_folds, shuffle, random_state) y = np.asarray(y) n_samples = y.shape[0] unique_labels, y_inversed = np.unique(y, return_inverse=True) label_counts = bincount(y_inversed) min_labels = np.min(label_counts) if np.all(self.n_folds > label_counts): raise ValueError("All the n_labels for individual classes" " are less than %d folds." % (self.n_folds)) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # don't want to use the same seed in each label's shuffle if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each label so as to respect the # balance of labels per_label_cvs = [ KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle, random_state=rng) for c in label_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)): for label, (_, test_split) in zip(unique_labels, per_label_splits): label_test_folds = test_folds[y == label] # the test split can be too big because we used # KFold(max(c, self.n_folds), self.n_folds) instead of # KFold(c, self.n_folds) to make it possible to not crash even # if the data is not 100% stratifiable for all the labels # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(label_test_folds)] label_test_folds[test_split] = test_fold_idx test_folds[y == label] = label_test_folds self.test_folds = test_folds self.y = y def _iter_test_masks(self): for i in range(self.n_folds): yield self.test_folds == i def __repr__(self): return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.y, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LeaveOneLabelOut(_PartitionIterator): """Leave-One-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = cross_validation.LeaveOneLabelOut(labels) >>> len(lol) 2 >>> print(lol) sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2]) >>> for train_index, test_index in lol: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, labels): super(LeaveOneLabelOut, self).__init__(len(labels)) # We make a copy of labels to avoid side-effects during iteration self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) def _iter_test_masks(self): for i in self.unique_labels: yield self.labels == i def __repr__(self): return '%s.%s(labels=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, ) def __len__(self): return self.n_unique_labels class LeavePLabelOut(_PartitionIterator): """Leave-P-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. p : int Number of samples to leave out in the test split. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, labels, p): # We make a copy of labels to avoid side-effects during iteration super(LeavePLabelOut, self).__init__(len(labels)) self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) self.p = p def _iter_test_masks(self): comb = combinations(range(self.n_unique_labels), self.p) for idx in comb: test_index = self._empty_mask() idx = np.array(idx) for l in self.unique_labels[idx]: test_index[self.labels == l] = True yield test_index def __repr__(self): return '%s.%s(labels=%s, p=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, self.p, ) def __len__(self): return int(factorial(self.n_unique_labels) / factorial(self.n_unique_labels - self.p) / factorial(self.p)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n, n_iter=10, test_size=0.1, train_size=None, random_state=None): self.n = n self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state self.n_train, self.n_test = _validate_shuffle_split(n, test_size, train_size) def __iter__(self): for train, test in self._iter_indices(): yield train, test return @abstractmethod def _iter_indices(self): """Generate (train, test) indices""" class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validation iterator. Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in the dataset. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... test_size=.25, random_state=0) >>> len(rs) 3 >>> print(rs) ... # doctest: +ELLIPSIS ShuffleSplit(4, n_iter=3, test_size=0.25, ...) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... train_size=0.5, test_size=.25, random_state=0) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self): rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(self.n) ind_test = permutation[:self.n_test] ind_train = permutation[self.n_test:self.n_test + self.n_train] yield ind_train, ind_test def __repr__(self): return ('%s(%d, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.n, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _validate_shuffle_split(n, test_size, train_size): if test_size is None and train_size is None: raise ValueError( 'test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind == 'i': if test_size >= n: raise ValueError( 'test_size=%d should be smaller ' 'than the number of samples %d' % (test_size, n)) else: raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif np.asarray(test_size).dtype.kind == 'f' and \ train_size + test_size > 1.: raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind == 'i': if train_size >= n: raise ValueError("train_size=%d should be smaller " "than the number of samples %d" % (train_size, n)) else: raise ValueError("Invalid value for train_size: %r" % train_size) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n - n_test else: if np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n) else: n_train = float(train_size) if test_size is None: n_test = n - n_train if n_train + n_test > n: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n)) return int(n_train), int(n_test) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array, [n_samples] Labels of samples. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.cross_validation import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0) >>> len(sss) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...) >>> for train_index, test_index in sss: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, y, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( len(y), n_iter, test_size, train_size, random_state) self.y = np.array(y) self.classes, self.y_indices = np.unique(y, return_inverse=True) n_cls = self.classes.shape[0] if np.min(bincount(self.y_indices)) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if self.n_train < n_cls: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_train, n_cls)) if self.n_test < n_cls: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_test, n_cls)) def _iter_indices(self): rng = check_random_state(self.random_state) cls_count = bincount(self.y_indices) p_i = cls_count / float(self.n) n_i = np.round(self.n_train * p_i).astype(int) t_i = np.minimum(cls_count - n_i, np.round(self.n_test * p_i).astype(int)) for n in range(self.n_iter): train = [] test = [] for i, cls in enumerate(self.classes): permutation = rng.permutation(cls_count[i]) cls_i = np.where((self.y == cls))[0][permutation] train.extend(cls_i[:n_i[i]]) test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) < self.n_train or len(test) < self.n_test: # We complete by affecting randomly the missing indexes missing_idx = np.where(bincount(train + test, minlength=len(self.y)) == 0, )[0] missing_idx = rng.permutation(missing_idx) train.extend(missing_idx[:(self.n_train - len(train))]) test.extend(missing_idx[-(self.n_test - len(test)):]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.y, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter class PredefinedSplit(_PartitionIterator): """Predefined split cross validation iterator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- test_fold : "array-like, shape (n_samples,) test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold. Examples -------- >>> from sklearn.cross_validation import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1]) >>> len(ps) 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1]) >>> for train_index, test_index in ps: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): super(PredefinedSplit, self).__init__(len(test_fold)) self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def _iter_test_indices(self): for f in self.unique_folds: yield np.where(self.test_fold == f)[0] def __repr__(self): return '%s.%s(test_fold=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.test_fold) def __len__(self): return len(self.unique_folds) class LabelShuffleSplit(ShuffleSplit): """Shuffle-Labels-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LabelShuffleSplit is that the former generates splits using all subsets of size ``p`` unique labels, whereas LabelShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique labels. For example, a less computationally intensive alternative to ``LeavePLabelOut(labels, p=10)`` would be ``LabelShuffleSplit(labels, test_size=10, n_iter=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to labels, and not to samples, as in ShuffleSplit. .. versionadded:: 0.17 Parameters ---------- labels : array, [n_samples] Labels of samples n_iter : int (default 5) Number of re-shuffling and splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the test split. If int, represents the absolute number of test labels. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the train split. If int, represents the absolute number of train labels. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. """ def __init__(self, labels, n_iter=5, test_size=0.2, train_size=None, random_state=None): classes, label_indices = np.unique(labels, return_inverse=True) super(LabelShuffleSplit, self).__init__( len(classes), n_iter=n_iter, test_size=test_size, train_size=train_size, random_state=random_state) self.labels = labels self.classes = classes self.label_indices = label_indices def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.labels, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _iter_indices(self): for label_train, label_test in super(LabelShuffleSplit, self)._iter_indices(): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(self.label_indices, label_train)) test = np.flatnonzero(np.in1d(self.label_indices, label_test)) yield train, test ############################################################################## def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Generate cross-validated estimates for each input data point Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- preds : ndarray This is the result of calling 'predict' """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y, train, test, verbose, fit_params) for train, test in cv) preds = [p for p, _ in preds_blocks] locs = np.concatenate([loc for _, loc in preds_blocks]) if not _check_is_partition(locs, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') inv_locs = np.empty(len(locs), dtype=int) inv_locs[locs] = np.arange(len(locs)) # Check for sparse predictions if sp.issparse(preds[0]): preds = sp.vstack(preds, format=preds[0].format) else: preds = np.concatenate(preds) return preds[inv_locs] def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params): """Fit estimator and predict values for a given dataset split. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. Returns ------- preds : sequence Result of calling 'estimator.predict' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) preds = estimator.predict(X_test) return preds, test def _check_is_partition(locs, n): """Check whether locs is a reordering of the array np.arange(n) Parameters ---------- locs : ndarray integer array to test n : int number of expected elements Returns ------- is_partition : bool True iff sorted(locs) is range(n) """ if len(locs) != n: return False hit = np.zeros(n, bool) hit[locs] = True if not np.all(hit): return False return True def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv) return np.array(scores)[:, 0] def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = "no parameters to be set" else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)" ) else: test_score = _score(estimator, X_test, y_test, scorer) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel) \ and not isinstance(estimator.kernel, GPKernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def _permutation_test_score(estimator, X, y, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv: estimator.fit(X[train], y[train]) avg_score.append(scorer(estimator, X[test], y[test])) return np.mean(avg_score) def _shuffle(y, labels, random_state): """Return a shuffled copy of y eventually shuffle among same labels.""" if labels is None: ind = random_state.permutation(len(y)) else: ind = np.arange(len(labels)) for label in np.unique(labels): this_mask = (labels == label) ind[this_mask] = random_state.permutation(ind[this_mask]) return y[ind] def check_cv(cv, X=None, y=None, classifier=False): """Input checker utility for building a CV in a user friendly way. Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. X : array-like The data the cross-val object will be applied on. y : array-like The target variable for a supervised learning problem. classifier : boolean optional Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv: a cross-validation generator instance. The return value is guaranteed to be a cv generator instance, whatever the input type. """ is_sparse = sp.issparse(X) if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if classifier: if type_of_target(y) in ['binary', 'multiclass']: cv = StratifiedKFold(y, cv) else: cv = KFold(_num_samples(y), cv) else: if not is_sparse: n_samples = len(X) else: n_samples = X.shape[0] cv = KFold(n_samples, cv) return cv def permutation_test_score(estimator, X, y, cv=None, n_permutations=100, n_jobs=1, labels=None, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. labels : array-like of shape [n_samples] (optional) Labels constrain the permutation among groups of samples with a same label. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The returned value equals p-value if `scoring` returns bigger numbers for better scores (e.g., accuracy_score). If `scoring` is rather a loss function (i.e. when lower is better such as with `mean_squared_error`) then this is actually the complement of the p-value: 1 - p-value. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, labels, random_state), cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. .. versionadded:: 0.16 preserves input type instead of always casting to numpy array. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the labels array. .. versionadded:: 0.17 *stratify* splitting Returns ------- splitting : list, length = 2 * len(arrays), List containing train-test split of inputs. .. versionadded:: 0.16 Output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) stratify = options.pop('stratify', None) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: cv = StratifiedShuffleSplit(stratify, test_size=test_size, train_size=train_size, random_state=random_state) else: n_samples = _num_samples(arrays[0]) cv = ShuffleSplit(n_samples, test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(iter(cv)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests
mit
baklanovp/pystella
tests/test_flx.py
1
1102
import unittest from os.path import dirname, abspath, join import os import matplotlib.pyplot as plt import pystella.model.sn_flx as flx from pystella.model.stella import Stella __author__ = 'bakl' class TestStellaFlx(unittest.TestCase): def setUp(self): pass # name = 'cat_R1000_M15_Ni007_E15' # path = join(dirname(abspath(__file__)), 'data', 'stella') # stella = Stella(name, path=path) # self.flx = stella.get_flx() def test_flx_reader(self): name = 'cat_R1000_M15_Ni007_E15' path = join(dirname(abspath(__file__)), 'data', 'stella') fname = os.path.join(path, name + '.flx') flx_data = flx.flx_reader(fname) flx_data.show_emergent_Fl(logy=False) plt.show() def test_stella_get_flx(self): name = 'cat_R1000_M15_Ni007_E15' path = join(dirname(abspath(__file__)), 'data', 'stella') flx_data = Stella(name, path=path).get_flx() flx_data.show_emergent_Fl(logy=False) plt.show() def main(): unittest.main() if __name__ == '__main__': main()
mit
TheSriram/MLT4Trading
Project 3/testlearner.py
1
6856
from __future__ import division from Randomforestlearner import Randomforestlearner import numpy import datetime import os import matplotlib.pyplot as plt import numpy as np import math def get_graph_two_plots(x_series,y_series,y1_series,xlabel,ylabel,name_file): plt.clf() plt.xlabel(xlabel) plt.ylabel(ylabel) first = plt.plot(x_series,y_series,color='r') second = plt.plot(x_series,y1_series,color='b') plt.legend(["Ypredict","Yactual"]) plt.savefig(name_file) def get_correlation(Y_return,Y_test): covariance_matrix = np.corrcoef(Y_return, np.squeeze(np.asarray(Y_test))) return covariance_matrix[0, 1] def get_rmse(Y_return,Y_Test): return math.sqrt(np.mean(np.square(Y_return-Y_Test))) def scatter(Y_return,Y_test,name_file): plt.clf() fig = plt.figure(figsize=(6, 5)) graph = fig.add_subplot(1,1,1) graph.scatter(Y_return,Y_test) graph.set_title("predicted Y vs actual Y") graph.set_xlabel="Days" graph.set_ylabel="Y" fig.savefig(name_file) def all_feature_graph(y1,y2,y3,y4,y5,x,xlabel,ylabel,name_file): plt.clf() plt.xlabel(xlabel) plt.ylabel(ylabel) first = plt.plot(x,y1) second = plt.plot(x,y2) third = plt.plot(x,y3) fourth = plt.plot(x,y4) fifth = plt.plot(x,y5) plt.legend(["mean","stddev","rsi","roc","slope"]) plt.savefig(name_file) def read_file(filename): required_all=list() inf = open(filename) for s in reversed(inf.readlines()): all_needed = s.split(',') required = all_needed[:2] if(all_needed[0]!='Date'): required_all.append(float(required[1])) return required_all def get_mean(dataset_21): return numpy.mean(dataset_21) def get_stddev(dataset_21): return numpy.std(dataset_21) def get_relative_strength_idx(dataset_21): comparer = dataset_21[0] gain =0.0 loss =0.0 new_dataset= dataset_21[0:] for each in new_dataset: if each > comparer: gain = gain + (each-comparer) elif each < comparer: loss = loss + (comparer-each) if loss ==0.0: return 100.0 elif gain ==0.0: return 0.0 else: rs = (gain/len(new_dataset))/(loss/len(new_dataset)) rsi = float(100 - (100/(1+rs))) return rsi def roc(dataset_21): latest = dataset_21[len(dataset_21)-1] oldest = dataset_21[0] ROC = (latest - oldest) / (oldest) * 100 return ROC def slope(dataset_21): x = numpy.array([i for i in range(1,22)]) y = numpy.array([data for data in dataset_21]) A = numpy.vstack([x, numpy.ones(len(x))]).T m, c = numpy.linalg.lstsq(A, y)[0] return m def createX(datesandY): totalX =[] index = 21 start = 0 while index <=len(datesandY)-5: dataset_21 = datesandY[start:index] totalX.append([get_mean(dataset_21),get_stddev(dataset_21),get_relative_strength_idx(dataset_21),roc(dataset_21),slope(dataset_21),datesandY[index+4]-datesandY[index]]) start = start+1 index= index+1 return numpy.array(totalX) def main(): curr_dirr = os.getcwd() os.chdir('proj3-data-fixed') datesandY = read_file('ML4T-000.csv') stack = createX(datesandY) # print len(stack) for i in range(1,10): datesandY = read_file('ML4T-00'+str(i)+'.csv') learnedvalues = createX(datesandY) stack = numpy.vstack((stack,learnedvalues)) for i in range(11,100): datesandY = read_file('ML4T-0'+str(i)+'.csv') learnedvalues = createX(datesandY) stack = numpy.vstack((stack,learnedvalues)) print len(stack) testdatesandY = read_file('ML4T-292.csv') test = createX(testdatesandY) (XTrain,YTrain) = numpy.split(stack,[5],axis=1) (XTest,YTest) = numpy.split(test,[5],axis=1) # print XTest randomforestlearner = Randomforestlearner(k=50) randomforestlearner.addEvidence(XTrain,YTrain) Y_Return = numpy.multiply(numpy.array(randomforestlearner.query(XTest)),-1) Y_Test = np.squeeze(np.asarray(YTest)) start=0 index=5 print len(Y_Return) print len(Y_Test) print len(testdatesandY) while index<len(testdatesandY)-26: Y_Return[start]=Y_Return[start]+testdatesandY[index] Y_Test[start]=Y_Test[start]+testdatesandY[index] start = start+1 index=index+1 os.chdir(curr_dirr) get_graph_two_plots(numpy.arange(1,101),Y_Return[:100],Y_Test[:100],"Days","Y","YpredictvsYactual_292_first100.jpg") last126_test = Y_Test[-126:] last126_return = Y_Return[-126:] get_graph_two_plots(numpy.arange(1,101),last126_return[:100],last126_test[:100],"Days","Y","YpredictvsYactual_292_last100.jpg") scatter(Y_Return,Y_Test,"scatterplot_292.jpg") mean_series = XTest[:,0] std_series =XTest[:,1] rsi_series = XTest[:,2] roc_series = XTest[:,3] slope_series = XTest[:,4] all_feature_graph(mean_series[:100],std_series[:100],rsi_series[:100],roc_series[:100],slope_series[:100],numpy.arange(1,101),"Days","Features","Allfeature_292.jpg") print "Correlation 292 is {0}".format(get_correlation(Y_Test,Y_Return)) print "RMSE 292 is {0}".format(get_rmse(Y_Test,Y_Return)) os.chdir('proj3-data-fixed') testdatesandY = read_file('ML4T-132.csv') test = createX(testdatesandY) (XTrain,YTrain) = numpy.split(stack,[5],axis=1) (XTest,YTest) = numpy.split(test,[5],axis=1) # print XTest randomforestlearner = Randomforestlearner(k=50) randomforestlearner.addEvidence(XTrain,YTrain) Y_Return = numpy.multiply(numpy.array(randomforestlearner.query(XTest)),-1) Y_Test = np.squeeze(np.asarray(YTest)) start=0 index=5 print len(Y_Return) print len(Y_Test) print len(testdatesandY) while index<len(testdatesandY)-26: Y_Return[start]=Y_Return[start]+testdatesandY[index] Y_Test[start]=Y_Test[start]+testdatesandY[index] start = start+1 index=index+1 os.chdir(curr_dirr) get_graph_two_plots(numpy.arange(1,101),Y_Return[:100],Y_Test[:100],"Days","Y","YpredictvsYactual_132_first100.jpg") last126_test = Y_Test[-126:] last126_return = Y_Return[-126:] get_graph_two_plots(numpy.arange(1,101),last126_return[:100],last126_test[:100],"Days","Y","YpredictvsYactual_132_last100.jpg") scatter(Y_Return,Y_Test,"scatterplot_132.jpg") mean_series = XTest[:,0] std_series =XTest[:,1] rsi_series = XTest[:,2] roc_series = XTest[:,3] slope_series = XTest[:,4] all_feature_graph(mean_series[:100],std_series[:100],rsi_series[:100],roc_series[:100],slope_series[:100],numpy.arange(1,101),"Days","Features","Allfeature_132.jpg") print "Correlation 132 is {0}".format(get_correlation(Y_Test,Y_Return)) print "RMSE 132 is {0}".format(get_rmse(Y_Test,Y_Return)) if __name__ == '__main__': main()
apache-2.0
rebeccabilbro/machine-learning
code/polyregviz.py
3
2466
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from utils import load_energy, DATA_DIR from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def interpolation_viz(degree_max=6,): """ Shows interpolation of polynomial degree with Ridge. """ def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] plt.plot(x_plot, f(x_plot), label="ground truth") plt.scatter(x, y, label="training points") for degree in xrange(degree_max): model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, label="degree %d" % degree) plt.legend(loc='lower left') plt.show() def nba_viz(degree=None): """ Regression of NBA Data set with Ridge """ df = pd.read_csv(os.path.join(DATA_DIR, 'nba_players.csv')) plt.scatter(df['PER'], df['SALARY'], label="tranining points", alpha=.6, color='#70B7BA') score = None if degree is not None: x = np.linspace(0, 35, 100) model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(df['PER'].reshape((len(df['PER']), 1)), df['SALARY']) y_plot = model.predict(x.reshape((len(x), 1))) plt.plot(x, y_plot, label="ridge degree %d" % degree, color="#F1433F", linewidth=2, alpha=.7) score = model.score(df['PER'].reshape((len(df['PER']), 1)), df['SALARY']) plt.ylim(0, df['SALARY'].max() + 100000) plt.xlim(0, df['PER'].max() + 5) plt.ylabel('salary') plt.xlabel('player efficiency rating') if score is not None: plt.title('NBA 2013 PER to Salary; Score: %0.3f' % score) else: plt.title('NBA 2013 PER to Salary Correlation') plt.legend(loc='lower right') # plt.show() plt.savefig("/Users/benjamin/Desktop/nba_regression_degree_%i.png" % degree) if __name__ == '__main__': nba_viz(3)
mit
andreashorn/lead_dbs
ext_libs/OSS-DBS/OSS_platform/Electrode_files/Boston_Scientific_Vercise_Cartesia_profile.py
1
34041
# -*- coding: utf-8 -*- ### ### This file is generated automatically by SALOME v8.3.0 with dump python functionality ###### Run with DPS_lead_position_V9.py import sys import salome salome.salome_init() theStudy = salome.myStudy import salome_notebook notebook = salome_notebook.NoteBook(theStudy) ### ### GEOM component ### ########################################### extra code 1 V10 15/12/18############################################# ###### This file runs with DBS_lead_position_V10.py import os sys.path.insert( 0, r'{}'.format(os.getcwd())) sys.path.append('/usr/local/lib/python2.7/dist-packages') #from pandas import read_csv ##### DEFAULT LIST ##### #Lead2nd_Enable = True #Xt = 0 #Yt = 5 #Zt = 0 #X_2nd = 0 #Y_2nd = 5 #Z_2nd = 0 #OZ_angle = 0 #Xm = 0 #Ym = 0 #Zm = 0 #encap_thickness = 0.1 #ROI_radial = 13 #Vertice_enable = False #Brain_map = '/home/trieu/electrode_dir/brain_elipse.brep' #stretch=1.0 #if(Lead2nd_Enable): # Xt2 = 0 # Yt2 = -5 # Zt2 = 0 # OX_angle2 = 0 # OY_angle2 = 0 # OZ_angle2 = 0 #stretch=1.0 ##### VARIABLE LIST ##### ########## End of variable list############# #specific parameters of the lead if Z_2nd == Zt: Z_2nd_artif = Zt+1.0 # just to ensure the rotation is possible else: Z_2nd_artif=Z_2nd #for Lead-DBS, the tip point should be shifted down (they use the middle of the lowest contact as the reference point) Zt_tip=Zt-0.75 #for Boston Scientific Vercise Cartesia (directional) # hardwired turn because of the Lead-DBS definition (marker points against X-axis) Vert_array =[0]; number_vertex = len(Vert_array) Vert = [] VolumeObject1 = [] ContactObject1 = [] VolumeObject2 = [] ContactObject2 = [] print " DBS_lead's Geometry buid\n" ######################################### end of extra code 1 ######################################## ###################################################################################################### from salome.geom import geomBuilder import math import SALOMEDS contact_angle=90*math.pi/180.0 ang_betw_contacts=120*math.pi/180.0 contact_thickness=0.1 geompy = geomBuilder.New(theStudy) O = geompy.MakeVertex(0, 0, 0) OX = geompy.MakeVectorDXDYDZ(1, 0, 0) OY = geompy.MakeVectorDXDYDZ(0, 1, 0) OZ = geompy.MakeVectorDXDYDZ(0, 0, 1) #Circle_1 = geompy.MakeCircle(O, OZ, 0.635) #Contact_1 = geompy.MakePrismVecH(Circle_1, OZ, 1.5) Circle_1 = geompy.MakeCircle(O, OZ, 0.65) Contact_1_prism = geompy.MakePrismVecH(Circle_1, OZ, 0.75*stretch+0.1) Vertex_1 = geompy.MakeVertex(0, 0.65, 0) Vertex_2 = geompy.MakeVertex(0, -0.65, 0) Vertex_3 = geompy.MakeVertex(0.65, 0, 0) Arc_1 = geompy.MakeArc(Vertex_1, Vertex_3, Vertex_2) Revolution_1 = geompy.MakeRevolution(Arc_1, OY, 180*math.pi/180.0) Contact_1 = geompy.MakeFuseList([Contact_1_prism, Revolution_1], True, True) Contact_1_fake = geompy.MakePrismVecH(Circle_1, OZ, 0.75*stretch+0.75) geompy.TranslateDXDYDZ(Contact_1_fake, 0, 0, 0.75*stretch+0.1) #geompy.TranslateDXDYDZ(Contact_1, 0, 0, 0.85) #Contact_2 = geompy.MakeTranslation(Contact_1, 0, 0, 2) #Contact_3 = geompy.MakeTranslation(Contact_1, 0, 0, 4) Contact_8 = geompy.MakeTranslation(Contact_1_fake, 0, 0, (6-1.5)*stretch) #first, we will create contact surfaces Cylinder_1 = geompy.MakeCylinderRH(0.65, 149.365) Sphere_1 = geompy.MakeSphereR(0.65) Fuse_1 = geompy.MakeFuseList([Cylinder_1, Sphere_1], True, True) Cylinder_2 = geompy.MakeCylinderRH(encap_thickness+0.65, 149.365) Sphere_2 = geompy.MakeSphereR(encap_thickness+0.65) Fuse_2 = geompy.MakeFuseList([Cylinder_2, Sphere_2], True, True) encap_layer = geompy.MakeCutList(Fuse_2, [Fuse_1], True) encap_layer2 = geompy.MakeCutList(Fuse_2, [Fuse_1], True) Circle_2 = geompy.MakeCircle(None, None, 0.65) Common_1 = geompy.MakeCommonList([encap_layer, Circle_2], True) Vertex_1 = geompy.MakeVertex(0.65, -0, 0) Rotation_1 = geompy.MakeRotation(Vertex_1, OZ, contact_angle) Arc_1 = geompy.MakeArcCenter(O, Vertex_1, Rotation_1,False) #Vertex_1 = geompy.MakeVertex(0, 0, 0) #Vertex_2 = geompy.MakeVertex(0.635, 0, 0) #Rotation_1 = geompy.MakeRotation(Vertex_2, OZ, contact_angle) #Arc_1 = geompy.MakeArcOfEllipse(O, Vertex_2, Rotation_1) Contact_2_fake = geompy.MakePrismVecH(Arc_1, OZ, 1.5*stretch) geompy.TranslateDXDYDZ(Contact_2_fake, 0, 0, (0.75+0.5)*stretch+0.1) Contact_2=Contact_2_fake Contact_3 = geompy.MakeRotation(Contact_2, OZ, ang_betw_contacts) # Boston has another notation (counter-clockwise from the top) Contact_4 = geompy.MakeRotation(Contact_2, OZ, 2*ang_betw_contacts) Contact_5 = geompy.MakeTranslation(Contact_2, 0, 0, 2*stretch) Contact_6 = geompy.MakeRotation(Contact_5, OZ, ang_betw_contacts) Contact_7 = geompy.MakeRotation(Contact_5, OZ, 2*ang_betw_contacts) Rotation_2 = geompy.MakeRotation(Vertex_1, OZ, contact_angle/2.0) Vector_1 = geompy.MakeVector(Rotation_2, O) CV2 = geompy.MakePrismVecH(Contact_2_fake, Vector_1, contact_thickness) #geompy.TranslateDXDYDZ(CV2, 0, 0, 1.5) CV3 = geompy.MakeRotation(CV2, OZ, ang_betw_contacts) # Boston has another notation (counter-clockwise from the top) CV4 = geompy.MakeRotation(CV2, OZ, 2*ang_betw_contacts) CV5 = geompy.MakeTranslation(CV2, 0, 0, 2*stretch) CV6 = geompy.MakeRotation(CV5, OZ, ang_betw_contacts) CV7 = geompy.MakeRotation(CV5, OZ, 2*ang_betw_contacts) #CV1 = geompy.MakeCylinderRH(0.65, 1.5) #geompy.TranslateDXDYDZ(CV1, 0, 0, 1.5) Sphere_cyl = geompy.MakeSphereR(0.65) CV1_cyl= geompy.MakeCylinderRH(0.65, 0.75*stretch+0.1) CV1 = geompy.MakeFuseList([CV1_cyl, Sphere_cyl], True, True) geompy.TranslateDXDYDZ(CV1, 0, 0, 0.65) CV1_fake = geompy.MakeCylinderRH(0.65, 0.75*stretch+0.75) CV8 = geompy.MakeTranslation(CV1_fake, 0, 0, (5.25*stretch+0.65)+0.1) geompy.TranslateDXDYDZ(Circle_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_3, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_4, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_5, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_6, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_7, 0, 0, 0.65) geompy.TranslateDXDYDZ(Contact_8, 0, 0, 0.65) geompy.TranslateDXDYDZ(CV2, 0, 0, 0.65) geompy.TranslateDXDYDZ(CV3, 0, 0, 0.65) geompy.TranslateDXDYDZ(CV4, 0, 0, 0.65) geompy.TranslateDXDYDZ(CV5, 0, 0, 0.65) geompy.TranslateDXDYDZ(CV6, 0, 0, 0.65) geompy.TranslateDXDYDZ(CV7, 0, 0, 0.65) geompy.TranslateDXDYDZ(Cylinder_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Sphere_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Fuse_1, 0, 0, 0.65) geompy.TranslateDXDYDZ(Cylinder_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(Sphere_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(Fuse_2, 0, 0, 0.65) geompy.TranslateDXDYDZ(encap_layer, 0, 0, 0.65) Sphere_ROI = geompy.MakeSphereR(ROI_radial) encap_outer_ROI = geompy.MakeCutList(encap_layer, [Sphere_ROI], True) encap_inner_ROI = geompy.MakeCutList(encap_layer, [encap_outer_ROI], True) Fuse_all_lead_encap_ROI = geompy.MakeFuseList([Sphere_ROI, Fuse_2], True, True) ROI = geompy.MakeCutList(Sphere_ROI, [Fuse_2], True) ################################################################################################################## ########################################### extra code 2 V10 15/12/18############################################# print " Load brain image \n" if (Brain_map[-4:] == 'brep'): brain_solid = geompy.ImportBREP( Brain_map ) elif (Brain_map[-4:] == 'step'): brain_solid = geompy.ImportSTEP( Brain_map ) elif (Brain_map[-4:] == 'iges'): brain_solid = geompy.ImportIGES( Brain_map ) elif (Brain_map[-4:] == '.stl'): brain_solid = geompy.ImportSTL( Brain_map ) else: print " unknow imported file format" Fuse_all_lead_encap_ROI_no_internal_face = geompy.RemoveInternalFaces(Fuse_all_lead_encap_ROI) #################################################### Geometry and extra code interface ############################################################## VolumeObject1 = [ encap_outer_ROI,ROI,encap_inner_ROI,CV1,CV2,CV3,CV4,CV5,CV6,CV7,CV8] # Declare objects included to partition, encap_outer_ROI always @1st position Volume_name1 = ['encap_outer_ROI1','ROI1','encap_inner_ROI1','CV1_1','CV1_2','CV1_3','CV1_4','CV1_5','CV1_6','CV1_7','CV1_8'] # Declare name of the group in the partition for volume ContactObject1 = [Contact_1,Contact_2,Contact_3,Contact_4,Contact_5,Contact_6,Contact_7,Contact_8] Contact_name1 = ['Contact1_1','Contact1_2','Contact1_3','Contact1_4','Contact1_5','Contact1_6','Contact1_7','Contact1_8'] if(Lead2nd_Enable): ################## 2nd LEAD ############################################### VolumeObject2 = [ROI]*len(VolumeObject1) ContactObject2 = [Contact_1]*len(ContactObject1) Volume_name2 = [ 'encap_outer_ROI2','ROI2','encap_inner_ROI2','CV2_1','CV2_2','CV2_3','CV2_4'] Contact_name2 = ['Contact2_1','Contact2_2','Contact2_3','Contact2_4'] ############################################################################################################################################## print "Position 2nd Fuse all object at [{},{},{}], [{}',{}',{}']\n".format(Xt2,Yt2,Zt2,OX_angle2,OY_angle2,OZ_angle2) Fuse_all_lead_encap_ROI_no_internal_face2 = geompy.MakeTranslation(Fuse_all_lead_encap_ROI_no_internal_face,Xt2,Yt2,Zt2) OX2 = geompy.MakeTranslation(OX,Xt2,Yt2,Zt2) OY2 = geompy.MakeTranslation(OY,Xt2,Yt2,Zt2) OZ2 = geompy.MakeTranslation(OZ,Xt2,Yt2,Zt2) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face2, OX2,OX_angle2*math.pi/180.0) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face2, OY2,OY_angle2*math.pi/180.0) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face2, OZ2,OZ_angle2*math.pi/180.0) print "Position 2nd Lead at [{},{},{}], [{}',{}',{}']\n".format(Xt2,Yt2,Zt2,OX_angle2,OY_angle2,OZ_angle2) for i in range(0,len(VolumeObject1)): VolumeObject2[i] = geompy.MakeTranslation(VolumeObject1[i],Xt2,Yt2,Zt2) geompy.Rotate(VolumeObject2[i], OX2,OX_angle2*math.pi/180.0) geompy.Rotate(VolumeObject2[i], OY2,OY_angle2*math.pi/180.0) geompy.Rotate(VolumeObject2[i], OZ2,OZ_angle2*math.pi/180.0) for i in range(0,len(ContactObject1)): ContactObject2[i] = geompy.MakeTranslation(ContactObject1[i],Xt2,Yt2,Zt2) geompy.Rotate(ContactObject2[i], OX2,OX_angle2*math.pi/180.0) geompy.Rotate(ContactObject2[i], OY2,OY_angle2*math.pi/180.0) geompy.Rotate(ContactObject2[i], OZ2,OZ_angle2*math.pi/180.0) print "Cut outer ROI2 with brain\n" cut_outer_ROI = geompy.MakeCutList(VolumeObject2[0], [brain_solid], True) VolumeObject2[0] = geompy.MakeCutList(VolumeObject2[0], [cut_outer_ROI], True) print "Cut ROI2 with brain\n" VolumeObject2[1] = geompy.MakeCommonList([VolumeObject2[1], brain_solid], True) print "Group 2nd:volume and area extraction for group ID identification process\n" Volume2_Pro = [geompy.BasicProperties( VolumeObject2[0])]*len(VolumeObject2) Contact2_Pro = [geompy.BasicProperties( ContactObject2[0])]*len(ContactObject2) for i in range(0,len(VolumeObject2)): Volume2_Pro[i] = geompy.BasicProperties( VolumeObject2[i]) for i in range(0,len(ContactObject2)): Contact2_Pro[i] = geompy.BasicProperties( ContactObject2[i]) ################## LEAD 1st ############################################################# #print "Position 1st Fuse all object at [{},{},{}], [{}',{}',{}']\n".format(Xt,Yt,Zt,OX_angle,OY_angle,OZ_angle) geompy.TranslateDXDYDZ(Fuse_all_lead_encap_ROI_no_internal_face,Xt,Yt,Zt_tip) OX1 = geompy.MakeTranslation(OX,Xt,Yt,Zt_tip) OY1 = geompy.MakeTranslation(OY,Xt,Yt,Zt_tip) OZ1 = geompy.MakeTranslation(OZ,Xt,Yt,Zt_tip) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face, OZ1,45.0*math.pi/180.0) # hardwired turn because of the Lead-DBS definition (1st constact on positive Y) geompy.Rotate(Fuse_all_lead_encap_ROI_no_internal_face, OZ1,OZ_angle*math.pi/180.0) Vertex_1 = geompy.MakeVertex(X_2nd,Y_2nd,Z_2nd) Vertex_O = geompy.MakeVertex(Xt,Yt,Zt) Vertex_3 = geompy.MakeVertex(Xt,Yt,Z_2nd_artif) if X_2nd!=Xt or Y_2nd!=Yt: Fuse_all_lead_encap_ROI_no_internal_face=geompy.MakeRotationThreePoints(Fuse_all_lead_encap_ROI_no_internal_face, Vertex_O, Vertex_3, Vertex_1) #print "Position 1st Lead at [{},{},{}], [{}',{}',{}']\n".format(Xt,Yt,Zt,OX_angle,OY_angle,OZ_angle) for i in range(0,len(VolumeObject1)): geompy.TranslateDXDYDZ(VolumeObject1[i],Xt,Yt,Zt_tip) geompy.Rotate(VolumeObject1[i], OZ1,45.0*math.pi/180.0) # hardwired turn because of the Lead-DBS definition (1st constact on positive Y) geompy.Rotate(VolumeObject1[i], OZ1,OZ_angle*math.pi/180.0) if X_2nd!=Xt or Y_2nd!=Yt: VolumeObject1[i]=geompy.MakeRotationThreePoints(VolumeObject1[i], Vertex_O, Vertex_3, Vertex_1) for i in range(0,len(ContactObject1)): geompy.TranslateDXDYDZ(ContactObject1[i],Xt,Yt,Zt_tip) geompy.Rotate(ContactObject1[i], OZ1,45.0*math.pi/180.0) # hardwired turn because of the Lead-DBS definition (1st constact on positive Y) geompy.Rotate(ContactObject1[i], OZ1,OZ_angle*math.pi/180.0) if X_2nd!=Xt or Y_2nd!=Yt: ContactObject1[i]=geompy.MakeRotationThreePoints(ContactObject1[i], Vertex_O, Vertex_3, Vertex_1) print "Cut outer ROI1 with brain\n" cut_outer_ROI = geompy.MakeCutList(VolumeObject1[0], [brain_solid], True) VolumeObject1[0] = geompy.MakeCutList(VolumeObject1[0], [cut_outer_ROI], True) print "Cut ROI1 with brain\n" VolumeObject1[1] = geompy.MakeCommonList([VolumeObject1[1], brain_solid], True) print "Group 1st:volume and area extraction for group ID identification process\n" Volume1_Pro = [geompy.BasicProperties( VolumeObject1[0])]*len(VolumeObject1) Contact1_Pro = [geompy.BasicProperties( ContactObject1[0])]*len(ContactObject1) for i in range(0,len(VolumeObject1)): Volume1_Pro[i] = geompy.BasicProperties( VolumeObject1[i]) for i in range(0,len(ContactObject1)): Contact1_Pro[i] = geompy.BasicProperties( ContactObject1[i]) print "Create reference groups for ID identification process\n" if(Lead2nd_Enable): Rest = geompy.MakeCutList(brain_solid, [Fuse_all_lead_encap_ROI_no_internal_face,Fuse_all_lead_encap_ROI_no_internal_face2], True) Partition_profile = geompy.MakePartition(VolumeObject1+VolumeObject2+ContactObject1+ContactObject2, [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) ###reference_volume reference_volume = VolumeObject1 + VolumeObject2 reference_volume_Pro = Volume1_Pro + Volume2_Pro Volume_name = Volume_name1+Volume_name2 ### reference_area reference_surface = ContactObject1 + ContactObject2 reference_surface_Pro = Contact1_Pro + Contact2_Pro Contact_name = Contact_name1+Contact_name2 Group_volume = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"])] * (len(VolumeObject1)+len(VolumeObject2)+1) # +1 is Rest Group Group_surface = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["FACE"])] * (len(ContactObject1)+len(ContactObject2)) else: Rest = geompy.MakeCutList(brain_solid, [Fuse_all_lead_encap_ROI_no_internal_face], True) Partition_profile = geompy.MakePartition(VolumeObject1+ContactObject1, [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) ###reference_volume reference_volume = VolumeObject1 reference_volume_Pro = Volume1_Pro Volume_name = Volume_name1 ### reference_area reference_surface = ContactObject1 reference_surface_Pro = Contact1_Pro Contact_name = Contact_name1 Group_volume = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"])] * (len(VolumeObject1)+1) # +1 is Rest Group Group_surface = [geompy.CreateGroup(Partition_profile, geompy.ShapeType["FACE"])] * len(ContactObject1) ### find out subshape and subshape ID Group_surface_ListIDs =[] Group_volume_ListIDs =[] Group_partition_volume = [] Group_partition_surface = [] ### find group volume ID ###################################################################### Partition_volume_IDsList = geompy.SubShapeAllIDs(Partition_profile, geompy.ShapeType["SOLID"]) # list all sub shape volume in Partition print "Partition_volume_IDsList",Partition_volume_IDsList, '\n' for ref_ind in range (0, len(reference_volume)): temp_volume = [] for sub_ind in range (0, len (Partition_volume_IDsList)): subshape = geompy.GetSubShape(Partition_profile, [Partition_volume_IDsList[sub_ind]]) # get subshape subshape_Pro = geompy.BasicProperties(subshape) # extract volume of subshape Common_volume = geompy.MakeCommonList([subshape, reference_volume[ref_ind]], True) # check common intersection Common_volume_Pro = geompy.BasicProperties(Common_volume) print "volume difference",abs(Common_volume_Pro[2]-subshape_Pro[2]),"/",abs(Common_volume_Pro[2]-reference_volume_Pro[ref_ind][2]) # if ( common volume = subshape) and (common volume = ref volume) => ref volume = sub shape if (abs(Common_volume_Pro[2]-subshape_Pro[2])< 0.0003) and (abs(Common_volume_Pro[2]-reference_volume_Pro[ref_ind][2])<0.0003): Group_partition_volume.append([Volume_name[ref_ind],Partition_volume_IDsList[sub_ind]]) # if ( common volume = subshape) and (common volume < ref volume) => sub shape belong to ref volume elif (abs(Common_volume_Pro[2]-subshape_Pro[2])< 0.0003) and ((Common_volume_Pro[2] - reference_volume_Pro[ref_ind][2])<-0.0003): temp_volume.append( Partition_volume_IDsList[sub_ind] ) if len(temp_volume) >1 : # the volume is devided Group_partition_volume.append([Volume_name[ref_ind],temp_volume ]) print Volume_name[ref_ind]," is devided and has sub IDs:{}\n".format(temp_volume) if len(reference_volume) != len(Group_partition_volume): print "Geometry-volume error please check ROI diameter and DBS lead Position ",len(reference_volume),len(Group_partition_volume) print 'Group_partition_volume',Group_partition_volume,'\n' ### find group surface ID ###################################################################### Partition_surface_IDsList = geompy.SubShapeAllIDs(Partition_profile, geompy.ShapeType["FACE"]) # list all sub shape face in Partition print 'Partition_surface_IDsList',Partition_surface_IDsList,'\n' sub_face = [] ## store devided faces for reff_ind in range (0, len (reference_surface)): temp_surface = [] for subf_ind in range (0, len(Partition_surface_IDsList)): subshapef = geompy.GetSubShape(Partition_profile, [Partition_surface_IDsList[subf_ind]]) # get subshape Common_face = geompy.MakeCommonList([subshapef, reference_surface[reff_ind]], True) # check common intersection Common_face_Pro = geompy.BasicProperties(Common_face) subshapef_Pro = geompy.BasicProperties(subshapef) # extract volume of subshape print "area difference",abs(Common_face_Pro[1]-subshapef_Pro[1]),"/",abs(Common_face_Pro[1]-reference_surface_Pro[reff_ind][1]) # if ( common face = subface) and (common face = ref face) => ref face = sub face if (abs(Common_face_Pro[1]-subshapef_Pro[1])<0.000001 )and (abs(Common_face_Pro[1]-reference_surface_Pro[reff_ind][1])<0.000001): Group_partition_surface.append([ Contact_name[reff_ind],Partition_surface_IDsList[subf_ind] ]) # if ( common face = subface) and (common face < ref face) => sub face belong to ref face elif (abs(Common_face_Pro[1]-subshapef_Pro[1])<0.000001 ) and ((Common_face_Pro[1] - reference_surface_Pro[reff_ind][1])<-0.000001): temp_surface.append(Partition_surface_IDsList[subf_ind]) if len(temp_surface) >1 : # the face is devided Group_partition_surface.append( [Contact_name[reff_ind],temp_surface ]) print Contact_name[reff_ind]," is devided and has sub IDs:{}\n".format(temp_surface) if len(reference_surface) != len(Group_partition_surface): #+len(Group_partition_Multi_surface): print "Geometry-Surface error please check ROI diameter and DBS lead Position ",len(reference_surface),len(Group_partition_surface),'\n' print 'Group_partition_surface',Group_partition_surface,'\n' if(Lead2nd_Enable): Partition_profile = geompy.MakePartition(VolumeObject1+VolumeObject2+ContactObject1+ContactObject2+[Rest], [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) else: Partition_profile = geompy.MakePartition(VolumeObject1+ContactObject1+[Rest], [], [], [], geompy.ShapeType["SOLID"], 0, [], 0) new_volume_ID= geompy.SubShapeAllIDs(Partition_profile, geompy.ShapeType["SOLID"]) ID= list(set(Partition_volume_IDsList) ^ set (new_volume_ID)) Group_partition_volume.append(['Rest_1',ID[0]]) print "REST ID:",ID print 'Group_partition_volume',Group_partition_volume,'\n' print"Create volume and surface group under partition_profile\n" for i_solid in range (0,len (Group_partition_volume)): Group_volume[i_solid] = geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"]) if (isinstance (Group_partition_volume[i_solid][1],list) == False): geompy.UnionIDs(Group_volume[i_solid], [Group_partition_volume[i_solid][1]]) if (isinstance (Group_partition_volume[i_solid][1],list) == True): geompy.UnionIDs(Group_volume[i_solid], Group_partition_volume[i_solid][1]) ############################################# for i_surface in range (0,len (Group_partition_surface)): Group_surface[i_surface] = geompy.CreateGroup(Partition_profile, geompy.ShapeType["FACE"]) if (isinstance (Group_partition_surface[i_surface][1],list) == False): # not a list geompy.UnionIDs(Group_surface[i_surface], [Group_partition_surface[i_surface][1]]) if (isinstance (Group_partition_surface[i_surface][1],list) == True): # it is a list geompy.UnionIDs(Group_surface[i_surface], Group_partition_surface[i_surface][1]) print "Translate whole partition to Xm,Ym,Zm\n" geompy.TranslateDXDYDZ(Partition_profile, Xm, Ym, Zm) ### add Vertices to geometry if(Vertice_enable): for ver_ind in range (0,number_vertex): print"Add vertices to model\n" Vert.append(geompy.MakeVertex(Vert_array[ver_ind][0],Vert_array[ver_ind][1],Vert_array[ver_ind][2])) geompy.TranslateDXDYDZ(Vert[ver_ind], Xm, Ym, Zm) ###Translate vertices to Xm,Ym,Zm geompy.addToStudy( Vert[ver_ind], 'Vert_{}'.format(ver_ind)) print"add to study\n" ############################################ end of extra code 2 ############################################ ############################################################################################################# geompy.addToStudy( O, 'O' ) geompy.addToStudy( OX, 'OX' ) geompy.addToStudy( OY, 'OY' ) geompy.addToStudy( OZ, 'OZ' ) geompy.addToStudy( Circle_1, 'Circle_1' ) geompy.addToStudy( Contact_1, 'Contact_1' ) geompy.addToStudy( Contact_2, 'Contact_2' ) geompy.addToStudy( Contact_3, 'Contact_3' ) geompy.addToStudy( Contact_4, 'Contact_4' ) geompy.addToStudy( Contact_5, 'Contact_5' ) geompy.addToStudy( Contact_6, 'Contact_6' ) geompy.addToStudy( Contact_7, 'Contact_7' ) geompy.addToStudy( Contact_8, 'Contact_8' ) geompy.addToStudy( CV1, 'CV1' ) geompy.addToStudy( CV2, 'CV2' ) geompy.addToStudy( CV3, 'CV3' ) geompy.addToStudy( CV4, 'CV4' ) geompy.addToStudy( CV5, 'CV5' ) geompy.addToStudy( CV6, 'CV6' ) geompy.addToStudy( CV7, 'CV7' ) geompy.addToStudy( CV8, 'CV8' ) geompy.addToStudy( Cylinder_1, 'Cylinder_1' ) geompy.addToStudy( Sphere_1, 'Sphere_1' ) geompy.addToStudy( Fuse_1, 'Fuse_1' ) geompy.addToStudy( ROI, 'ROI' ) geompy.addToStudy( encap_outer_ROI, 'encap_outer_ROI' ) geompy.addToStudy( encap_inner_ROI, 'encap_inner_ROI' ) geompy.addToStudy( Fuse_all_lead_encap_ROI, 'Fuse_all_lead_encap_ROI' ) ################################################################################################################ ####################################### extra code 3 V10 15/12/18##############################################/ #for i in range(0,len(VolumeObject2)):/ # geompy.addToStudy( VolumeObject2[i], 'VolumeObject2_{}'.format(i) ) #for i in range(0,len(ContactObject2)): # geompy.addToStudy( ContactObject2[i], 'ContactObject2_{}'.format(i) ) #for i in range(0,len(VolumeObject1)): # geompy.addToStudy( VolumeObject1[i], 'VolumeObject1_{}'.format(i) ) #for i in range(0,len(ContactObject1)): # geompy.addToStudy( ContactObject1[i], 'ContactObject1_{}'.format(i) ) geompy.addToStudy( Partition_profile, 'Partition_profile' ) for i_solid1 in range (0,len (Group_partition_volume)): geompy.addToStudyInFather( Partition_profile, Group_volume [i_solid1], Group_partition_volume[i_solid1][0]) for i_surface1 in range (0,len (Group_partition_surface)): geompy.addToStudyInFather( Partition_profile, Group_surface [i_surface1], Group_partition_surface[i_surface1][0]) ##################################### end of extra code 3########################################## ################################################################################################### Contact1_1=Group_surface[0] Contact1_2=Group_surface[1] Contact1_3=Group_surface[2] Contact1_4=Group_surface[3] Contact1_5=Group_surface[4] Contact1_6=Group_surface[5] Contact1_7=Group_surface[6] Contact1_8=Group_surface[7] encap_inner_ROI1=Group_volume[2] encap_outer_ROI1=Group_volume[0] ROI1=Group_volume[1] Rest_1=Group_volume[11] Floating_contacts=[] float_indices=[] for i in xrange(len(Phi_vector)): if Phi_vector[i]==None: Floating_contacts.append(Group_volume[i+3]) #because the first contact is Group_volume[3] float_indices.append(i+3) Auto_group_for_floating = geompy.CreateGroup(Partition_profile, geompy.ShapeType["SOLID"]) geompy.UnionList(Auto_group_for_floating, Floating_contacts[:]) geompy.addToStudyInFather( Partition_profile, Auto_group_for_floating, 'Auto_group_for_floating' ) ### ### SMESH component ### import SMESH, SALOMEDS from salome.smesh import smeshBuilder smesh = smeshBuilder.New(theStudy) Mesh_1 = smesh.Mesh(Partition_profile) NETGEN_1D_2D_3D = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D) NETGEN_3D_Parameters_1 = NETGEN_1D_2D_3D.Parameters() NETGEN_3D_Parameters_1.SetMaxSize( 25.4615 ) NETGEN_3D_Parameters_1.SetSecondOrder( 0 ) NETGEN_3D_Parameters_1.SetOptimize( 1 ) NETGEN_3D_Parameters_1.SetFineness( 0 ) NETGEN_3D_Parameters_1.SetMinSize( 0.000374134 ) NETGEN_3D_Parameters_1.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_1.SetFuseEdges( 1 ) NETGEN_3D_Parameters_1.SetQuadAllowed( 0 ) NETGEN_1D_2D = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_1) Sub_mesh_1 = NETGEN_1D_2D.GetSubMesh() NETGEN_2D_Parameters_1 = NETGEN_1D_2D.Parameters() NETGEN_2D_Parameters_1.SetMaxSize( 0.05 ) NETGEN_2D_Parameters_1.SetSecondOrder( 0 ) NETGEN_2D_Parameters_1.SetOptimize( 1 ) NETGEN_2D_Parameters_1.SetFineness( 4 ) NETGEN_2D_Parameters_1.SetMinSize( 0.0001 ) NETGEN_2D_Parameters_1.SetUseSurfaceCurvature( 1 ) NETGEN_2D_Parameters_1.SetFuseEdges( 1 ) NETGEN_2D_Parameters_1.SetQuadAllowed( 0 ) NETGEN_1D_2D_1 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_2) Sub_mesh_2 = NETGEN_1D_2D_1.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_2) NETGEN_1D_2D_2 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_3) Sub_mesh_3 = NETGEN_1D_2D_2.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_3) NETGEN_1D_2D_3 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_4) Sub_mesh_4 = NETGEN_1D_2D_3.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_4) NETGEN_1D_2D_4 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_5) Sub_mesh_41 = NETGEN_1D_2D_4.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_5) NETGEN_1D_2D_5 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_6) Sub_mesh_42 = NETGEN_1D_2D_5.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_6) NETGEN_1D_2D_6 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_7) Sub_mesh_43 = NETGEN_1D_2D_6.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_7) NETGEN_1D_2D_7 = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_1D2D,geom=Contact1_8) Sub_mesh_44 = NETGEN_1D_2D_7.GetSubMesh() status = Mesh_1.AddHypothesis(NETGEN_2D_Parameters_1,Contact1_8) NETGEN_1D_2D_3D_1 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=encap_inner_ROI1) Sub_mesh_5 = NETGEN_1D_2D_3D_1.GetSubMesh() NETGEN_3D_Parameters_2 = NETGEN_1D_2D_3D_1.Parameters() NETGEN_3D_Parameters_2.SetMaxSize( encap_thickness ) NETGEN_3D_Parameters_2.SetSecondOrder( 0 ) NETGEN_3D_Parameters_2.SetOptimize( 1 ) NETGEN_3D_Parameters_2.SetFineness( 2 ) NETGEN_3D_Parameters_2.SetMinSize( 0.00283583 ) NETGEN_3D_Parameters_2.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_2.SetFuseEdges( 1 ) NETGEN_3D_Parameters_2.SetQuadAllowed( 0 ) #isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5 ] ]) NETGEN_1D_2D_3D_2 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=encap_outer_ROI1) Sub_mesh_6 = NETGEN_1D_2D_3D_2.GetSubMesh() NETGEN_3D_Parameters_3 = NETGEN_1D_2D_3D_2.Parameters() NETGEN_3D_Parameters_3.SetMaxSize( encap_thickness ) NETGEN_3D_Parameters_3.SetSecondOrder( 0 ) NETGEN_3D_Parameters_3.SetOptimize( 1 ) NETGEN_3D_Parameters_3.SetFineness( 2 ) NETGEN_3D_Parameters_3.SetMinSize( 0.0333798 ) NETGEN_3D_Parameters_3.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_3.SetFuseEdges( 1 ) NETGEN_3D_Parameters_3.SetQuadAllowed( 0 ) #isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5, Sub_mesh_6 ] ]) NETGEN_1D_2D_3D_3 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=ROI1) Sub_mesh_7 = NETGEN_1D_2D_3D_3.GetSubMesh() NETGEN_3D_Parameters_4 = NETGEN_1D_2D_3D_3.Parameters() NETGEN_3D_Parameters_4.SetMaxSize( 25.4615 ) NETGEN_3D_Parameters_4.SetSecondOrder( 0 ) NETGEN_3D_Parameters_4.SetOptimize( 1 ) NETGEN_3D_Parameters_4.SetFineness( 2 ) NETGEN_3D_Parameters_4.SetMinSize( 0.00328242 ) NETGEN_3D_Parameters_4.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_4.SetFuseEdges( 1 ) NETGEN_3D_Parameters_4.SetQuadAllowed( 0 ) #isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1, Sub_mesh_5, Sub_mesh_6, Sub_mesh_7 ] ]) NETGEN_1D_2D_3D_4 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=Rest_1) Sub_mesh_8 = NETGEN_1D_2D_3D_4.GetSubMesh() NETGEN_3D_Parameters_5 = NETGEN_1D_2D_3D_4.Parameters() NETGEN_3D_Parameters_5.SetMaxSize( 2.5 ) NETGEN_3D_Parameters_5.SetSecondOrder( 0 ) NETGEN_3D_Parameters_5.SetOptimize( 1 ) NETGEN_3D_Parameters_5.SetFineness( 2 ) NETGEN_3D_Parameters_5.SetMinSize( 0.000374134 ) NETGEN_3D_Parameters_5.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_5.SetFuseEdges( 1 ) NETGEN_3D_Parameters_5.SetQuadAllowed( 0 ) NETGEN_1D_2D_3D_5 = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D,geom=Auto_group_for_floating) Sub_mesh_9 = NETGEN_1D_2D_3D_5.GetSubMesh() NETGEN_3D_Parameters_6 = NETGEN_1D_2D_3D_5.Parameters() NETGEN_3D_Parameters_6.SetMaxSize( 25.4615 ) NETGEN_3D_Parameters_6.SetSecondOrder( 0 ) NETGEN_3D_Parameters_6.SetOptimize( 1 ) NETGEN_3D_Parameters_6.SetFineness( 2 ) NETGEN_3D_Parameters_6.SetMinSize( 0.000374134 ) NETGEN_3D_Parameters_6.SetUseSurfaceCurvature( 1 ) NETGEN_3D_Parameters_6.SetFuseEdges( 1 ) NETGEN_3D_Parameters_6.SetQuadAllowed( 0 ) isDone = Mesh_1.SetMeshOrder( [ [ Sub_mesh_4, Sub_mesh_3, Sub_mesh_2, Sub_mesh_1,Sub_mesh_41, Sub_mesh_42, Sub_mesh_43, Sub_mesh_44, Sub_mesh_5,Sub_mesh_9,Sub_mesh_6, Sub_mesh_7, Sub_mesh_8 ] ]) #if Phi_vector[0]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_1 ) #if Phi_vector[1]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_2 ) #if Phi_vector[2]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_3 ) #if Phi_vector[3]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_4 ) #if Phi_vector[4]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_41 ) #if Phi_vector[5]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_42 ) #if Phi_vector[6]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_43 ) #if Phi_vector[7]==None: # Mesh_1.GetMesh().RemoveSubMesh( Sub_mesh_44 ) isDone = Mesh_1.Compute() if Phi_vector[0]!=None: Mesh_1.GroupOnGeom(Contact1_1,'C1_1',SMESH.FACE) if Phi_vector[1]!=None: Mesh_1.GroupOnGeom(Contact1_2,'C1_2',SMESH.FACE) if Phi_vector[2]!=None: Mesh_1.GroupOnGeom(Contact1_3,'C1_3',SMESH.FACE) if Phi_vector[3]!=None: Mesh_1.GroupOnGeom(Contact1_4,'C1_4',SMESH.FACE) if Phi_vector[4]!=None: Mesh_1.GroupOnGeom(Contact1_5,'C1_5',SMESH.FACE) if Phi_vector[5]!=None: Mesh_1.GroupOnGeom(Contact1_6,'C1_6',SMESH.FACE) if Phi_vector[6]!=None: Mesh_1.GroupOnGeom(Contact1_7,'C1_7',SMESH.FACE) if Phi_vector[7]!=None: Mesh_1.GroupOnGeom(Contact1_8,'C1_8',SMESH.FACE) Encap_contact = Mesh_1.GroupOnGeom(encap_inner_ROI1,'Encap_contact',SMESH.VOLUME) Encap_rest = Mesh_1.GroupOnGeom(encap_outer_ROI1,'Encap_rest',SMESH.VOLUME) RegOfInt = Mesh_1.GroupOnGeom(ROI1,'RegOfInt',SMESH.VOLUME) Rst = Mesh_1.GroupOnGeom(Rest_1,'Rst',SMESH.VOLUME) Flt_cnt=Mesh_1.GroupOnGeom(Auto_group_for_floating,'Flt_cnt',SMESH.VOLUME) ## Set names of Mesh objects smesh.SetName(NETGEN_1D_2D_3D.GetAlgorithm(), 'NETGEN 1D-2D-3D') smesh.SetName(NETGEN_1D_2D.GetAlgorithm(), 'NETGEN 1D-2D') smesh.SetName(NETGEN_2D_Parameters_1, 'NETGEN 2D Parameters_1') smesh.SetName(NETGEN_3D_Parameters_2, 'NETGEN 3D Parameters_2') smesh.SetName(NETGEN_3D_Parameters_1, 'NETGEN 3D Parameters_1') smesh.SetName(NETGEN_3D_Parameters_5, 'NETGEN 3D Parameters_5') smesh.SetName(NETGEN_3D_Parameters_6, 'NETGEN 3D Parameters_6') smesh.SetName(NETGEN_3D_Parameters_3, 'NETGEN 3D Parameters_3') smesh.SetName(NETGEN_3D_Parameters_4, 'NETGEN 3D Parameters_4') smesh.SetName(Sub_mesh_4, 'Sub-mesh_4') smesh.SetName(Sub_mesh_41, 'Sub-mesh_41') smesh.SetName(Sub_mesh_42, 'Sub-mesh_42') smesh.SetName(Sub_mesh_43, 'Sub-mesh_43') smesh.SetName(Sub_mesh_44, 'Sub-mesh_44') smesh.SetName(Sub_mesh_1, 'Sub-mesh_1') smesh.SetName(Sub_mesh_3, 'Sub-mesh_3') smesh.SetName(Sub_mesh_2, 'Sub-mesh_2') smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1') smesh.SetName(Rst, 'Rst') smesh.SetName(Flt_cnt, 'Flt_cnt') smesh.SetName(RegOfInt, 'RegOfInt') smesh.SetName(Encap_rest, 'Encap_rest') smesh.SetName(Encap_contact, 'Encap_contact') smesh.SetName(Sub_mesh_7, 'Sub-mesh_7') smesh.SetName(Sub_mesh_6, 'Sub-mesh_6') smesh.SetName(Sub_mesh_5, 'Sub-mesh_5') smesh.SetName(Sub_mesh_8, 'Sub-mesh_8') smesh.SetName(Sub_mesh_9, 'Sub-mesh_9') Mesh_1.ExportMED(os.environ['PATIENTDIR']+'/Meshes/Mesh_unref.med') #if salome.sg.hasDesktop(): # salome.sg.updateObjBrowser(True) import killSalome killSalome.killAllPorts()
gpl-3.0
SimonGreenhill/pyvolve
helper_scripts/count_simulated_dnds.py
1
16767
''' SJS. This script implements a module counting site-specific dN/dS values, as simulated by pyvolve. The counting method implemented is similar to the SLAC method [Kosakovsky Pond & Frost (2005) MBE], although as the actual ancestral sequences are known, no reconstruction is performed. NOTE: this module is meant to be used ONLY with sequences simulated with pyvolve and thus can't handle gaps or ambiguities. Usage: from count_simulated_dnds import * c = dNdS_Counter(<alnfile>, <treefile>, <mutation_dictionary>) # alnfile: a FASTA-formatted sequence alignment file produced by a pyvolve simulation. This file **MUST** contain ancestral sequences (get this alignment by including the argument `write_anc=True` when calling a pyvolve Evolver class). # treefile: a file containing the *exact* newick tree used in the pyvolve simulation which produced the alnfile. # mutation_dictionary: **optional** argument indicating the mutation rates between nucleotides. This argument is analogous to the "mu" dictionary provided to pyvolve when simulating with custom mutation rates. If this argument is not provided, this module assumes equal mutation rates (e.g. a JC69 situation). c.calculate_dnds() # This method will compute site-specific dN/dS values and output a tab-delimited file of this format: # site ns_changes s_changes ns_sites s_sites # ... ... ... ... ... # You can then calculate dN/dS from this file with this calculation: (ns_changes/ns_sites) / (s_changes/s_sites) . This is straight-forward in something like R or the python pandas package. Beware your parentheses placement, and also keep a look-out for NA or Inf values (these can happen when no synonymous changes occurred). # By default, the output file will be called "counted_dnds.txt". To change this name, include the argument savefile, e.g. c.calculate_dnds(savefile = "my_preferred_filename.txt") Please post all questions, bugs, etc. to https://github.com/sjspielman/pyvolve/Issues ''' from copy import deepcopy from pyvolve import newick from Bio import AlignIO import numpy as np class CalcOverBranch(object): ''' Compute quantities for dN/dS over a branch on a phylogeny, using a SLAC approach. Takes 4 ordered input arguments: source = the source codon (string) target = the target codon (string branch_length = the branch length (float) nuc_sub_probs = a dictionary of normalized (sum to 1) nucleotide substitution probabilities ''' def __init__(self, source, target, branch_length, nuc_sub_probs): # Genetics variables self.nucleotides = ["A", "C", "G", "T"] self.stop_codons = ["TAA", "TAG", "TGA"] self.codons = ["AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA", "AGC", "AGG", "AGT", "ATA", "ATC", "ATG", "ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAC", "TAT", "TCA", "TCC", "TCG", "TCT", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT"] self.translation_dict = {"AAA":"K", "AAC":"N", "AAG":"K", "AAT":"N", "ACA":"T", "ACC":"T", "ACG":"T", "ACT":"T", "AGA":"R", "AGC":"S", "AGG":"R", "AGT":"S", "ATA":"I", "ATC":"I", "ATG":"M", "ATT":"I", "CAA":"Q", "CAC":"H", "CAG":"Q", "CAT":"H", "CCA":"P", "CCC":"P", "CCG":"P", "CCT":"P", "CGA":"R", "CGC":"R", "CGG":"R", "CGT":"R", "CTA":"L", "CTC":"L", "CTG":"L", "CTT":"L", "GAA":"E", "GAC":"D", "GAG":"E", "GAT":"D", "GCA":"A", "GCC":"A", "GCG":"A", "GCT":"A", "GGA":"G", "GGC":"G", "GGG":"G", "GGT":"G", "GTA":"V", "GTC":"V", "GTG":"V", "GTT":"V", "TAC":"Y", "TAT":"Y", "TCA":"S", "TCC":"S", "TCG":"S", "TCT":"S", "TGC":"C", "TGG":"W", "TGT":"C", "TTA":"L", "TTC":"F", "TTG":"L", "TTT":"F"} # Input arguments self.source_codon = source # originating codon self.target_codon = target # final codon self.bl = branch_length # branch length self.B = nuc_sub_probs # dictionary of nucleotide substitution probabilities assert(self.source_codon in self.codons and self.target_codon in self.codons), "\n\nImproper codons provided for dN/dS calculation. They are either stop codons, or straight-up not DNA." self.path_codon_counts = {} # dictionary to contain the counts for all codons appearing in the paths between source, target self.n_changes = 0. self.s_changes = 0. self.n_sites = 0. self.s_sites = 0. def compute_branch_dnds(self): ''' *This* is the function users should call to compute nonsyn, syn changes and sites over a branch. ''' self.compute_paths_and_changes() self.count_sites_over_branch() assert(self.n_sites + self.s_sites > 0.), "\n\nNo sites were counted for this branch. Bad news." return self.n_changes, self.s_changes, self.n_sites, self.s_sites def num_nuc_diff(self, s, t): ''' Count the number of nucleotide differences between two codons: s,t. ''' return sum([1 for i in range(3) if s[i] != t[i]]) def eval_path(self, l, n_count, s_count): ''' Enumerate and evaluate the changes within a path. ''' stop = False temp_s_count = 0. temp_n_count = 0. path = [self.source_codon] source = deepcopy(self.source_codon) for p in l: new_source = source[0:p] + self.target_codon[p] + source[p+1:3] # If our path takes us through a stop, we will disregard the whole path if new_source in self.stop_codons: stop = True break # Evaluate the change as syn, nonsyn if self.translation_dict[new_source] == self.translation_dict[source]: temp_s_count += 1. else: temp_n_count += 1. path.append(new_source) source = new_source # Save the path to count dictionary if accessible if not stop: path.append(self.target_codon) # Append the final target codon to the list for entry in path: if entry in self.path_codon_counts: self.path_codon_counts[entry] += 1 else: self.path_codon_counts[entry] = 1 # Tally and return s_count.append(temp_s_count) n_count.append(temp_n_count) return n_count, s_count def compute_paths_and_changes(self): ''' Assess the shortest paths between self.source and self.target which don`t pass through stop codons. Builds self.path_codon_counts and computes self.n_changes, self.s_changes ''' s_count = [] # Total number of synonymous changes. Use list for each averaging. n_count = [] # Total number of nonsynonymous changes. Use list for each averaging. # Which sites had a mutation? diff_sites = [i for i in range(3) if self.source_codon[i] != self.target_codon[i]] n = len(diff_sites) # No change? if n == 0: self.path_codon_counts[self.source_codon] = 1. # Single change? if n == 1: if self.translation_dict[self.source_codon] == self.translation_dict[self.target_codon]: self.s_changes = 1. else: self.n_changes = 1. self.path_codon_counts[self.source_codon] = 1. self.path_codon_counts[self.target_codon] = 1. # Multiple changes? elif n > 1: for i in range(n): m = diff_sites[i] new_diff_sites = diff_sites[0:i] + diff_sites[i+1:n] n_count, s_count = self.eval_path(new_diff_sites, n_count, s_count) # Evaluate reverse substitution order if needed if len(new_diff_sites) == 2: new_diff_sites.reverse() n_count, s_count = self.eval_path(new_diff_sites, n_count, s_count) # Average the changes self.n_changes = sum(n_count) / float(len(n_count)) self.s_changes = sum(s_count) / float(len(s_count)) def count_codon_sites(self,codon): ''' Count number of synonymous, nonsynonymous sites in a given codon. Argument "codon" is the sense codon of interest. ''' codon = codon.upper() source_aa = self.translation_dict[codon] # Determine which sense codons are a single nucleotide change from input argument, codon # One list for nonsyn and one list for syn n_sites = 0. s_sites = 0. for i in range(3): s_numer = 0. n_numer = 0. denom = 0. for n in self.nucleotides: if codon[i] != n: target = codon[0:i] + n + codon[i+1:3] if target not in self.stop_codons: target_aa = self.translation_dict[target] # Evaluate syn, nonsyn if source_aa == target_aa: s_numer += self.B[codon[i] + n] else: n_numer += self.B[codon[i] + n] denom += self.B[codon[i] + n] # Tally if there were changes if s_numer > 0.: s_sites += s_numer/denom if n_numer > 0: n_sites += n_numer/denom return n_sites, s_sites def count_sites_over_branch(self): ''' Count number of expected number of nonsyn, syn sites for a given branch. ''' assert(len(self.path_codon_counts) > 0), "\n\nPath is empty." x = float(sum(self.path_codon_counts.values())) s_sites_raw = 0. n_sites_raw = 0. for key in self.path_codon_counts: ntemp, stemp = self.count_codon_sites(key) s_sites_raw += (self.path_codon_counts[key] * stemp) n_sites_raw += (self.path_codon_counts[key] * ntemp) self.s_sites = (s_sites_raw / x) * self.bl self.n_sites = (n_sites_raw / x) * self.bl class dNdS_Counter(object): ''' Class to count simulated, site-specific dN/dS. Required positional arguments: alnfile: alignment file (fasta) produced by pyvolve *with ancestral sequences* treefile: file with newick tree Optional positional arguments: mu_dict: dictionary of nucleotide mutation rates. If missing, assumes equal mutation rates. ''' def __init__(self, alnfile, treefile, mu_dict = None): # Parse initial tree self.tree = newick.read_tree(file = treefile) # Read alignment, convert to dictionary, and determine nucleotide pi dictionary length = 0. nuc_counts = np.zeros(4) with open(alnfile, "rU") as handle: aln = AlignIO.read(handle, "fasta") self.alnlen = len(aln[0])/3 self.alndict = {} for rec in aln: s = str(rec.seq).upper() nuc_counts[0] += s.count("A") nuc_counts[1] += s.count("C") nuc_counts[2] += s.count("G") nuc_counts[3] += s.count("T") self.alndict[str(rec.id)] = s # Build B. self.compute_B(mu_dict, nuc_counts) # How many branch lengths? self.num_edges = 0 self.sum_bl = 0. self.tally_bl(self.tree) # Set up storage for raw site-wise dn, ds quantities. self.n_sites = np.zeros( [self.alnlen, self.num_edges] ) self.s_sites = np.zeros( [self.alnlen, self.num_edges] ) self.n_changes = np.zeros( [self.alnlen, self.num_edges] ) self.s_changes = np.zeros( [self.alnlen, self.num_edges] ) def compute_B(self, mu_dict, nuc_probs): ''' Given nucleotide mutational information, return a dictionary giving the relative probability of subbing nucleotide pairs. ''' nuc_probs /= np.sum(nuc_probs) pi_dict = {"A": nuc_probs[0], "C": nuc_probs[1], "G": nuc_probs[2], "T": nuc_probs[3]} # Default. if mu_dict is None: mu_dict = {"AC":1., "AG":1., "AT":1., "CG":1., "CT":1., "GT":1.} # Fill in missing mutation rates symmetrically temp_mu_dict = {} for key in mu_dict: if key[1] + key[0] not in mu_dict: temp_mu_dict[key[1] + key[0]] = mu_dict[key] # Build unnormalized B new = {} for key in mu_dict: new[key] = mu_dict[key] * pi_dict[key[1]] for key in temp_mu_dict: new[key] = temp_mu_dict[key] * pi_dict[key[1]] # Build normalized B k = new.keys() v = np.array(new.values()) v /= np.sum(v) self.B = dict(zip(k,v)) def tally_bl(self, t): ''' Recursive function to retrieve the total number of edges and the sum of all branch lengths. ''' if t.branch_length is not None: self.sum_bl += t.branch_length self.num_edges += 1 if len(self.tree.children)>0: for child in t.children: self.tally_bl(child) def traverse_tree_dnds(self, source_node, target_node, storage_index): ''' Traverse the tree to compute and store dN, dS quantities (sites and changes) at each edge. ''' # Compute site-wise dN/dS along this branch, where bl = target_node.branch_length full_target_seq = self.alndict[target_node.name] full_source_seq = self.alndict[source_node.name] bl = target_node.branch_length for s in range(0, self.alnlen*3, 3): source_seq = full_source_seq[s:s+3] target_seq = full_target_seq[s:s+3] calcer = CalcOverBranch(source_seq, target_seq, bl, self.B) n_changes, s_changes, n_sites, s_sites= calcer.compute_branch_dnds() # Save quantities self.n_changes[s/3][storage_index] = n_changes self.s_changes[s/3][storage_index] = s_changes self.n_sites[s/3][storage_index] = n_sites self.s_sites[s/3][storage_index] = s_sites storage_index += 1 # Proceed down the tree only if there are no more children #print "children:", target_node.children[0].name, target_node.children[1].name if len(target_node.children) > 0: for child in target_node.children: storage_index = self.traverse_tree_dnds(target_node, child, storage_index) return storage_index def calculate_dnds(self, savefile = "counted_dnds.txt"): ''' Function *for users to call* in order to compute, save site-wise dnds quantities over a tree. ''' # Obtain all quantities. We have to start with root's children, not root. storage_index = 0 for subtree in self.tree.children: storage_index = self.traverse_tree_dnds(self.tree, subtree, storage_index) # Normalize sites by total branch length self.n_sites /= self.sum_bl self.s_sites /= self.sum_bl # Obtain per-site average of all quantities final_nsites = np.mean(self.n_sites, axis=1) final_ssites = np.mean(self.s_sites, axis=1) final_nchanges = np.mean(self.n_changes, axis=1) final_schanges = np.mean(self.s_changes, axis=1) # Finally, save this csv: site_index, nonsyn_changes, syn_changes, nonsyn_sites, syn_sites with open(savefile, "w") as f: site = 1 f.write("site\tns_changes\ts_changes\tns_sites\ts_sites") for i in range(len(final_nsites)): f.write("\n" + str(site) + "\t" + str(final_nchanges[i]) + "\t" + str(final_schanges[i]) + "\t" + str(final_nsites[i]) + "\t" + str(final_ssites[i])) site += 1
bsd-2-clause
coreymason/LAHacks2017
web/linear_regression_engine.py
1
2084
import warnings warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd") import pandas as pd import numpy as np import sklearn.linear_model as skl import matplotlib.pyplot as plt reg = skl.LinearRegression() data = pd.read_csv('sleep_quality_data.csv', index_col=0) x_train = data.as_matrix(['temperature', 'humidity', 'brightness'])[:13] y_train = data.as_matrix(['sleep quality'])[:13] reg.fit (x_train, y_train) # if there is a higher correlation coefficient # then you want to maximise that variable, and vice versa fields = ["Temperature", "Humidity", "Room brightness"] index = 0 for cof in reg.coef_[0]: suggestion = "" if cof > 0.5: suggestion += "increase " + fields[index] + ", " print suggestion index += 1 elif cof > 0: suggestion += "slightly increase " + fields[index] + ", " print suggestion index += 1 elif cof < -0.5: suggestion += "decrease " + fields[index] + ", " print suggestion index += 1 elif cof < 0: suggestion += "slightly decrease " + fields[index] + ", " print suggestion index+=1 else: suggestion += "it's fine " + ", " print suggestion index+=1 #print suggestion x_test = data.as_matrix(['temperature', 'humidity', 'brightness'])[-1:] #print x_test predicted_value = reg.predict(x_test) print predicted_value # if predicted_value < 3: # for cof in reg.coef_[0]: # suggestion = "" # if cof > 0.5: # suggestion += "increase " + fields[index] + ", " # print suggestion # index += 1 # elif cof > 0: # suggestion += "slightly increase " + fields[index] + ", " # print suggestion # index += 1 # elif cof < -0.5: # suggestion += "decrease " + fields[index] + ", " # print suggestion # index += 1 # elif cof < 0: # suggestion += "slightly decrease " + fields[index] + ", " # print suggestion # index+=1 # else: # suggestion += "it's fine " + ", " # print suggestion # index+=1 # plot data data.plot(kind='scatter', x='temperature', y='sleep quality') # plot the least squares line plt.plot(x_test, predicted_value, c='red', linewidth=2) #plt.show()
mit
ARM-software/trappy
tests/test_trappy.py
1
4903
# Copyright 2015-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import unicode_literals from __future__ import division from __future__ import print_function from builtins import str import os import re import matplotlib, tempfile import trappy from test_thermal import BaseTestThermal class TestTrappy(BaseTestThermal): def __init__(self, *args, **kwargs): super(TestTrappy, self).__init__(*args, **kwargs) self.map_label = {"00000000,00000039": "A53", "00000000,00000006": "A57"} self.actor_order = ["GPU", "A57", "A53"] def test_summary_plots(self): """Test summary_plots() Can't check that the graphs are ok, so just see that the method doesn't blow up""" trappy.summary_plots(self.actor_order, self.map_label) matplotlib.pyplot.close('all') trappy.summary_plots(self.actor_order, self.map_label, width=14, title="Foo") matplotlib.pyplot.close('all') def test_summary_plots_bad_parameters(self): """When summary_plots() receives bad parameters, it offers an understandable error""" self.assertRaises(TypeError, trappy.summary_plots, (self.map_label, self.actor_order)) try: trappy.summary_plots(self.map_label, self.actor_order) except TypeError as exception: self.assertTrue("actor_order" in str(exception)) else: self.fail() try: trappy.summary_plots(self.actor_order, self.actor_order) except TypeError as exception: self.assertTrue("map_label" in str(exception)) else: self.fail() def test_summary_other_dir(self): """Test summary_plots() with another directory""" other_random_dir = tempfile.mkdtemp() os.chdir(other_random_dir) trappy.summary_plots(self.actor_order, self.map_label, path=self.out_dir) matplotlib.pyplot.close('all') # Sanity check that the test actually ran from another directory self.assertEqual(os.getcwd(), other_random_dir) def test_summary_plots_only_power_allocator_trace(self): """Test that summary_plots() work if there is only power allocator trace""" # Strip out "thermal_temperature" from the trace trace_out = "" with open("trace.txt") as fin: for line in fin: if not re.search("thermal_temperature:", line): trace_out += line with open("trace.txt", "w") as fout: fout.write(trace_out) trappy.summary_plots(self.actor_order, self.map_label) matplotlib.pyplot.close('all') def test_summary_plots_no_gpu(self): """summary_plots() works if there is no GPU trace""" # Strip out devfreq traces trace_out = "" with open("trace.txt") as fin: for line in fin: if ("thermal_power_devfreq_get_power:" not in line) and \ ("thermal_power_devfreq_limit:" not in line): trace_out += line with open("trace.txt", "w") as fout: fout.write(trace_out) trappy.summary_plots(self.actor_order, self.map_label) matplotlib.pyplot.close('all') def test_summary_plots_one_actor(self): """summary_plots() works if there is only one actor""" # Strip out devfreq and little traces trace_out = "" with open("trace.txt") as fin: for line in fin: if ("thermal_power_devfreq_get_power:" not in line) and \ ("thermal_power_devfreq_limit:" not in line) and \ ("thermal_power_cpu_get_power: cpus=00000000,00000039" not in line) and \ ("thermal_power_cpu_limit: cpus=00000000,00000039" not in line): trace_out += line with open("trace.txt", "w") as fout: fout.write(trace_out) map_label = {"00000000,00000006": "A57"} trappy.summary_plots(self.actor_order, map_label) matplotlib.pyplot.close('all') def test_compare_runs(self): """Basic compare_runs() functionality""" trappy.compare_runs(self.actor_order, self.map_label, runs=[("new", "."), ("old", self.out_dir)]) matplotlib.pyplot.close('all')
apache-2.0
okadate/romspy
romspy/hview/pickup.py
2
6168
# coding: utf-8 # (c) 2015-10-21 Teruhisa Okada """changelog 2015-11-04 Add levels, fmt """ import netCDF4 import numpy as np from itertools import product import pandas as pd import datetime try: from geopy.distance import vincenty except: pass import matplotlib.pyplot as plt import romspy #import seaborn as sns #sns.set_palette("Reds") def pickup(nc, vname, lon, lat, method='idw', grdfile=None): if grdfile is not None: grd = netCDF4.Dataset(grdfile) lon_rho = grd.variables['lon_rho'][0,:] lat_rho = grd.variables['lat_rho'][:,0] else: lon_rho = nc.variables['lon_rho'][0,:] lat_rho = nc.variables['lat_rho'][:,0] d_lon = lon_rho - lon d_lat = lat_rho - lat x = abs(d_lon).argmin() y = abs(d_lat).argmin() if method == 'near': var = nc.variables[vname] if var.ndim == 4: return var[:,:,y,x] elif var.ndim == 3: return var[:,y,x] elif var.ndim == 2: return var[y,x] elif method == 'idw': s_lon = np.sign(d_lon[x]) s_lat = np.sign(d_lat[y]) if np.sign(d_lon[x+1]) != s_lon: x2 = [x, x+1] else: x2 = [x-1, x] if np.sign(d_lat[y+1]) != s_lat: y2 = [y, y+1] else: y2 = [y-1, y] var = nc.variables[vname] weight = np.zeros(4) var1 = [[] for _ in range(4)] for i, (x1, y1) in enumerate(product(x2, y2)): if nc.variables['mask_rho'][y1,x1] == 1: dx = x - x1 dy = y - y1 weight[i] = np.sqrt(abs(dx) ** 2 + abs(dy) ** 2) if var.ndim == 4: var1[i] = var[:,:,y1,x1] if var.ndim == 3: var1[i] = var[:,y1,x1] if var.ndim == 2: var1[i] = var[y1,x1] else: weight[i] = 0 var1[i] = 0 return sum([var1[i] * weight[i] / sum(weight) for i in range(4)]) else: print 'ERROR: your method "{}" is wrong'.format(method) def pickup_line(nc, vname, line, time, method='idw', unit='g', cff=None, levels=None, grdfile=None, fmt='%2.1f', cblabel=None, pmethod='contourf'): if cff is None: cff = romspy.unit2cff(vname, unit) if type(time) == int: t = time time = netCDF4.num2date(nc.variables['ocean_time'][t], romspy.JST) elif type(time) == datetime.datetime: time2 = netCDF4.date2num(time, romspy.JST) time3 = nc.variables['ocean_time'][:] t = np.where(time3==time2)[0][0] else: print 'ERROR: your time type =',type(time) if cblabel is None: cblabel = vname print '\n',time, t cs_r = nc.variables['Cs_r'][:] var = np.zeros([len(line),len(cs_r)]) depth = np.zeros([len(line),len(cs_r)]) dist = np.zeros([len(line),len(cs_r)]) for s, l in enumerate(line): lon = l[0] lat = l[1] v = pickup(nc, vname, lon, lat, method, grdfile=grdfile) var[s,:] = v[t,:] h = pickup(nc, 'h', lon, lat, 'idw', grdfile=grdfile) try: zeta = pickup(nc, 'zeta', lon, lat, 'idw', grdfile=grdfile) depth[s,:] = (h + zeta[t]) * cs_r[:] except: depth[s,:] = (h + 1.0) * cs_r[:] if s == 0: dist[s,:] = 0 else: back = line[s-1] fore = line[s] dist[s,:] = dist[s-1,:] + vincenty(back, fore).meters #fig, ax = plt.subplots(figsize=[6,3]) ax = plt.gca() origin = 'upper' #origin = 'lower' if levels is None: levels = romspy.levels(vname, unit=unit) if pmethod == 'contourf': CF = ax.contourf(dist/1000, depth, var*cff, extend='both', origin=origin, levels=levels) plt.clabel(CF, fmt=fmt, colors='k') CB = plt.colorbar(CF) CB.ax.set_ylabel(cblabel) elif pmethod == 'contour': C = ax.contour(dist/1000, depth, var*cff, colors='w', origin=origin, levels=levels) plt.clabel(C, fmt=fmt, colors='k') elif pmethod == 'pcolor': CF = ax.pcolor(dist/1000, depth, var*cff, vmin=levels[0], vmax=levels[-1]) CB = plt.colorbar(CF) CB.ax.set_ylabel(cblabel) ax.plot(dist[:,0]/1000, depth[:,0], 'k-') ax.set_xlabel('distance(km)') ax.set_ylabel('depth(m)') ax.set_title(datetime.datetime.strftime(time, '%Y-%m-%d %H:%M:%S')) ax.set_xlabel('distance(km)') ax.set_ylabel('depth(m)') ax.set_title(datetime.datetime.strftime(time, '%Y-%m-%d %H:%M:%S')) return ax def line_parser(linefile): df = pd.read_csv(linefile) return [[df.x[i], df.y[i]] for i in df.index] def test_pickup(ncfile): nc = netCDF4.Dataset(ncfile) var0 = pickup(nc, 'temp', 135.380822, 34.671375) var1 = pickup(nc, 'temp', 135.380822, 34.671375, 'idw') fig, ax = plt.subplots(2,1) p0 = ax[0].pcolor(var0.T) p1 = ax[1].pcolor(var1.T) #plt.colorbar(p0, ax=ax[0]) plt.show() def test_pickup_line(ncfile): nc = netCDF4.Dataset(ncfile) line = line_parser('/home/okada/Dropbox/Data/stations_yodo.csv') fig, ax = plt.subplots(figsize=[6,3]) #pickup_line(nc, 'temp', line, time=0, method='near') pickup_line(nc, 'salt', line, time=0) plt.show() def test_pickup_line2(): nc = netCDF4.Dataset('X:/2015_kaiko/group_4dvar210_2/his/osaka-bay_his_024.nc') grdfile = 'X:/2015_kaiko/Data/osaka-bay_grdfile_001.nc' line = romspy.line_parser('F:/okada/Dropbox/Data/stations_abcd_osaka-bay.csv') romspy.JST = 'seconds since 2012-06-01 00:00:00' time = 0 fig, ax = plt.subplots(figsize=[6,3]) pickup_line(nc, 'temp', line, time, fmt='%i', grdfile=grdfile, pmethod='pcolor') plt.show() if __name__ == '__main__': testfile = '/home/okada/apps/OB500P/testDA/param6/output/ob500_ini_0.nc' #test_pickup(testfile) test_pickup_line(testfile) #test_pickup_line2()
mit
dingocuster/scikit-learn
examples/applications/topics_extraction_with_nmf_lda.py
133
3517
""" ======================================================================================== Topics extraction with Non-Negative Matrix Factorization And Latent Dirichlet Allocation ======================================================================================== This is an example of applying Non Negative Matrix Factorization and Latent Dirichlet Allocation on a corpus of documents and extract additive models of the topic structure of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown). The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of seconds. You can try to increase the dimensions of the problem, but be aware that the time complexity is polynomial in NMF. In LDA, the time complexity is proportional to (n_samples * iterations). """ # Author: Olivier Grisel <[email protected]> # Lars Buitinck <[email protected]> # Chyi-Kwei Yau <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation from sklearn.datasets import fetch_20newsgroups n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print() # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics # to filter out useless terms early on: the posts are stripped of headers, # footers and quoted replies, and common English words, words occurring in # only one document or in at least 95% of the documents are removed. t0 = time() print("Loading dataset and extracting features...") dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) data_samples = dataset.data[:n_samples] # use tf-idf feature for NMF model tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') tfidf = tfidf_vectorizer.fit_transform(data_samples) # use tf feature for LDA model tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') tf = tf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) # Fit the NMF model print("Fitting the NMF model with tf-idf feature, n_samples=%d and n_features=%d..." % (n_samples, n_features)) nmf = NMF(n_components=n_topics, random_state=1).fit(tfidf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model:") tfidf_feature_names = tfidf_vectorizer.get_feature_names() print_top_words(nmf, tfidf_feature_names, n_top_words) print("\nFitting LDA models with tf feature, n_samples=%d and n_features=%d..." % (n_samples, n_features)) lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', learning_offset=50., random_state=0) lda.fit(tf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(lda, tf_feature_names, n_top_words)
bsd-3-clause
jreeder/avoplot
src/avoplot/gui/toolbar.py
3
10052
#Copyright (C) Nial Peters 2013 # #This file is part of AvoPlot. # #AvoPlot is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. # #AvoPlot is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. # #You should have received a copy of the GNU General Public License #along with AvoPlot. If not, see <http://www.gnu.org/licenses/>. import wx from matplotlib.backends.backend_wx import _load_bitmap as load_matplotlib_bitmap from avoplot import core from avoplot import figure from avoplot.gui import menu class MainToolbar(wx.ToolBar): """ Main program toolbar """ def __init__(self,parent): self.parent = parent self.__active_figure = None self.__all_figures = set() wx.ToolBar.__init__(self,parent, wx.ID_ANY) #file tools self.new_tool = self.AddTool(-1, wx.ArtProvider.GetBitmap(wx.ART_NEW, wx.ART_TOOLBAR), shortHelpString="New plot") self.save_tool = self.AddTool(-1, wx.ArtProvider.GetBitmap(wx.ART_FILE_SAVE, wx.ART_TOOLBAR), shortHelpString="Save plot") self.AddSeparator() #plot navigation tools self.home_tool = self.AddTool(-1, wx.ArtProvider.GetBitmap(wx.ART_GO_HOME, wx.ART_TOOLBAR),shortHelpString="Return to initial zoom setting") self.back_tool = self.AddTool(-1, load_matplotlib_bitmap('back.png'), shortHelpString="Previous zoom setting") self.forward_tool = self.AddTool(-1, load_matplotlib_bitmap('forward.png'), shortHelpString="Next zoom setting") self.zoom_tool = self.AddCheckTool(-1, load_matplotlib_bitmap('zoom_to_rect.png'), shortHelp="Zoom selection") self.pan_tool = self.AddCheckTool(-1, load_matplotlib_bitmap('move.png'),shortHelp='Pan',longHelp='Pan with left, zoom with right') self.AddSeparator() self.Realize() self.enable_plot_tools(False) #register avoplot event handlers core.EVT_AVOPLOT_ELEM_ADD(self, self.on_element_add) core.EVT_AVOPLOT_ELEM_SELECT(self, self.on_element_select) core.EVT_AVOPLOT_ELEM_DELETE(self, self.on_element_delete) #register events wx.EVT_TOOL(self.parent, self.new_tool.GetId(), self.on_new) wx.EVT_TOOL(self.parent, self.save_tool.GetId(), self.on_save_plot) wx.EVT_TOOL(self.parent, self.home_tool.GetId(), self.on_home) wx.EVT_TOOL(self.parent, self.back_tool.GetId(), self.on_back) wx.EVT_TOOL(self.parent, self.forward_tool.GetId(), self.on_forward) wx.EVT_TOOL(self.parent, self.zoom_tool.GetId(), self.on_zoom) wx.EVT_TOOL(self.parent, self.pan_tool.GetId(), self.on_pan) def on_element_add(self, evnt): """ Event handler for new element events. If the element is not a figure then nothing gets done. For figures, their zoom and pan settings are updated depending on the toggle state of the zoom/pan tools. This method also enables the plot navigation tools if they were previously disabled. """ el = evnt.element if isinstance(el, figure.AvoPlotFigure): if not self.__all_figures: self.enable_plot_tools(True) #enable the zoom/pan tools for this figure (if they are currently #selected in the toolbar) if self.GetToolState(self.pan_tool.GetId()): el.pan() elif self.GetToolState(self.zoom_tool.GetId()): el.zoom() self.__all_figures.add(el) #initialise the pan and zoom tools to "off" each time a new figure #is created self.set_zoom_state(False) self.set_pan_state(False) def on_element_delete(self, evnt): """ Event handler for element delete events.If the element is not a figure then nothing gets done. If the element being deleted was the last figure in the session, then this disables the plot navigation tools. """ el = evnt.element if isinstance(el, figure.AvoPlotFigure): self.__all_figures.remove(el) if not self.__all_figures: self.__active_figure = None self.enable_plot_tools(False) def on_element_select(self, evnt): """ Event handler for element select events. Keeps track of what the currently selected element is and updates the state of the history buttons. """ el = evnt.element if isinstance(el, figure.AvoPlotFigure): self.__active_figure = el #set the history button update handler so that the history buttons #get enabled/disabled at the correct times self.__active_figure.tb.set_history_buttons = self.update_history_buttons self.update_history_buttons() def enable_plot_tools(self, state): """ Enables the plot tools if state=True or disables them if state=False """ self.EnableTool(self.save_tool.GetId(),state) self.EnableTool(self.home_tool.GetId(),state) #self.EnableTool(self.back_tool.GetId(),state) #self.EnableTool(self.forward_tool.GetId(),state) self.EnableTool(self.pan_tool.GetId(),state) self.EnableTool(self.zoom_tool.GetId(),state) self.update_history_buttons() def on_new(self,evnt): """Handle 'new' button pressed. Creates a popup menu over the tool button containing the same entries as the File->New menu. """ #Get the position of the toolbar relative to #the frame. This will be the upper left corner of the first tool bar_pos = self.GetScreenPosition()-self.parent.GetScreenPosition() # This is the position of the tool along the tool bar (1st, 2nd, 3rd, etc...) tool_index = self.GetToolPos(evnt.GetId()) # Get the size of the tool tool_size = self.GetToolSize() # This is the lower left corner of the clicked tool lower_left_pos = (bar_pos[0]+self.GetToolSeparation()*(tool_index+1)+tool_size[0]*tool_index, bar_pos[1]+tool_size[1]+self.GetToolSeparation())#-tool_size[1]) menu_pos = (lower_left_pos[0]-bar_pos[0],lower_left_pos[1]-bar_pos[1]) self.PopupMenu(menu.create_the_New_menu(self.parent), menu_pos) def on_home(self, evnt): """ Event handler for "home zoom level" events. Resets all subplots in the current figure to their default zoom levels. """ if self.__active_figure is not None: self.__active_figure.go_home() def on_back(self, evnt): """ Event handler for 'back' tool events. Returns the figure to its previous view. """ if self.__active_figure is not None: self.__active_figure.back() def on_forward(self, evnt): """ Event handler for 'forward' tool events. Returns the figure to its next view. """ if self.__active_figure is not None: self.__active_figure.forward() def on_zoom(self,evnt): """ Event handler for zoom tool toggle events. Enables or disables zooming in all figures accordingly. """ self.set_zoom_state(self.GetToolState(self.zoom_tool.GetId())) def set_zoom_state(self, state): """ Enables (state = True) or disables (state = False) the zoom tool for all figures. The pan tool will be disabled if needed. """ self.ToggleTool(self.zoom_tool.GetId(),state) if state: self.ToggleTool(self.pan_tool.GetId(),False) for p in self.__all_figures: if p.is_zoomed() != state: p.zoom() def set_pan_state(self, state): """ Enables (state = True) or disables (state = False) the pan tool for all figures. The zoom tool will be disabled if needed. """ self.ToggleTool(self.pan_tool.GetId(),state) if state: self.ToggleTool(self.zoom_tool.GetId(),False) for p in self.__all_figures: if p.is_panned() != state: p.pan() def on_pan(self,evnt): """ Event handler for pan tool toggle events. Enables or disables panning in all figures accordingly. """ self.set_pan_state(self.GetToolState(self.pan_tool.GetId())) def on_save_plot(self, *args): """ Event handler for save tool events. Opens a file save dialog for saving the currently selected figure as an image file. """ if self.__active_figure is not None: self.__active_figure.save_figure_as_image() def update_history_buttons(self): """ Enables/disables the next- and prev-view buttons depending on whether there are views to go forward or back to. """ if self.__active_figure is not None: current_mpl_toolbar = self.__active_figure.tb can_backward = (current_mpl_toolbar._views._pos > 0) can_forward = (current_mpl_toolbar._views._pos < len(current_mpl_toolbar._views._elements) - 1) else: can_backward = False can_forward = False self.EnableTool(self.back_tool.GetId(),can_backward) self.EnableTool(self.forward_tool.GetId(),can_forward)
gpl-3.0
kiyoto/statsmodels
statsmodels/datasets/sunspots/data.py
8
2040
"""Yearly sunspots data 1700-2008""" __docformat__ = 'restructuredtext' COPYRIGHT = """This data is public domain.""" TITLE = __doc__ SOURCE = """ http://www.ngdc.noaa.gov/stp/solar/solarda3.html The original dataset contains monthly data on sunspot activity in the file ./src/sunspots_yearly.dat. There is also sunspots_monthly.dat. """ DESCRSHORT = """Yearly (1700-2008) data on sunspots from the National Geophysical Data Center.""" DESCRLONG = DESCRSHORT NOTE = """:: Number of Observations - 309 (Annual 1700 - 2008) Number of Variables - 1 Variable name definitions:: SUNACTIVITY - Number of sunspots for each year The data file contains a 'YEAR' variable that is not returned by load. """ from numpy import recfromtxt, array from pandas import Series, DataFrame from statsmodels.datasets.utils import Dataset from os.path import dirname, abspath def load(): """ Load the yearly sunspot data and returns a data class. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. Notes ----- This dataset only contains data for one variable, so the attributes data, raw_data, and endog are all the same variable. There is no exog attribute defined. """ data = _get_data() endog_name = 'SUNACTIVITY' endog = array(data[endog_name], dtype=float) dataset = Dataset(data=data, names=[endog_name], endog=endog, endog_name=endog_name) return dataset def load_pandas(): data = DataFrame(_get_data()) # TODO: time series endog = Series(data['SUNACTIVITY'], index=data['YEAR'].astype(int)) dataset = Dataset(data=data, names=list(data.columns), endog=endog, endog_name='volume') return dataset def _get_data(): filepath = dirname(abspath(__file__)) with open(filepath + '/sunspots.csv', 'rb') as f: data = recfromtxt(f, delimiter=",", names=True, dtype=float) return data
bsd-3-clause
flychen50/thinkstat
estimate.py
2
3280
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import math import matplotlib.pyplot as pyplot import myplot import Pmf import random import thinkstats def MakeUniformSuite(low, high, steps): """Makes a PMF that represents a suite of hypotheses with equal p. Args: low: low end of range high: high end of range steps: number of values Returns: Pmf object """ hypos = [low + (high-low) * i / (steps-1.0) for i in range(steps)] pmf = Pmf.MakePmfFromList(hypos) return pmf def Update(suite, evidence): """Updates a suite of hypotheses based on new evidence. Modifies the suite directly; if you want to keep the original, make a copy. Args: suite: Pmf object evidence: whatever kind of object Likelihood expects """ for hypo in suite.Values(): likelihood = Likelihood(evidence, hypo) suite.Mult(hypo, likelihood) suite.Normalize() def Likelihood(evidence, hypo): """Computes the likelihood of the evidence assuming the hypothesis is true. Args: evidence: sequence of measurements hypo: parameter of the expo distribution Returns: probability of the evidence under the hypothesis """ param = hypo likelihood = 1 for x in evidence: likelihood *= ExpoPdf(x, param) return likelihood def ExpoPdf(x, param): """Evaluates the exponential PDF. Returns the probability density of x in the exponential PDF with the given parameter. Args: x: float observed value param: float parameter of the exponential distribution """ p = param * math.exp(-param * x) return p def EstimateParameter(prior, sample, name='posterior'): """Computes the posterior distribution for the parameter of an expo dist. Args: prior: Pmf that maps values of lambda to their prior prob sample: sequence of values drawn from expo dist name: string name for the posterior Returns: new Pmf object with the posterior probabilities """ posterior = prior.Copy() posterior.name = name Update(posterior, sample) return posterior def main(): # make a uniform prior param = 1.2 prior = MakeUniformSuite(0.5, 1.5, 1000) # try out the sample in the book t = [] sample = [2.675, 0.198, 1.152, 0.787, 2.717, 4.269] name = 'post%d' % len(sample) posterior = EstimateParameter(prior, sample, name) t.append(posterior) # try out a range of sample sizes for n in [10, 20, 40]: # generate a sample sample = [random.expovariate(param) for _ in range(n)] name = 'post%d' % n # compute the posterior posterior = EstimateParameter(prior, sample, name) t.append(posterior) # plot the posterior distributions for i, posterior in enumerate(t): pyplot.subplot(2, 2, i+1) myplot.Pmf(posterior) pyplot.xlabel('lambda') pyplot.ylabel('Posterior probability') pyplot.legend() myplot.Save(root='posteriors') if __name__ == '__main__': main()
mit
aureooms/dotfiles
.config/repl/modules/plot3D.py
1
3559
from sympy import Symbol from sympy import lambdify from sympy import log from sympy import E from sympy import factorial from sympy import latex import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib.colors import ListedColormap, BoundaryNorm from operator import __gt__ from operator import __lt__ def lam3D(f, x, y): tmp1 = Symbol('tmp1') tmp2 = Symbol('tmp2') return lambdify((tmp1, tmp2), f.subs({x: tmp1, y: tmp2}), modules=['numpy']) def plot3D(fns, rangex, rangey, points=100, colors=None, layout=None, block=False, **kwargs): if not isinstance(fns, (list, tuple)): fns = (fns,) if layout is None: layout = (1, len(fns)) x, xmin, xmax = rangex y, ymin, ymax = rangey xmin, xmax, ymin, ymax = map(float, (xmin, xmax, ymin, ymax)) X = np.arange(xmin, xmax, (xmax-xmin)/points) Y = np.arange(ymin, ymax, (ymax-ymin)/points) domain = np.meshgrid(X, Y) fig = plt.figure() for j, f in enumerate(fns, 1): ax = fig.add_subplot(*layout, j, projection='3d') ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xlabel(latex(x, mode='inline')) ax.set_ylabel(latex(y, mode='inline')) l = lam3D(f, x, y) z = l(*domain) z = np.ma.array(z, mask=np.isnan(z)) zmin = np.amin(z) zmax = np.amax(z) ax.set_zlim(zmin, zmax) ax.set_zlabel(latex(f, mode='inline')) if colors is None: cmap, norm = None, None else: cmap, norm = colors(zmin, zmax, points) surf = ax.plot_surface(*domain, z, cmap=cmap, norm=norm, linewidth=0, antialiased=False, label=latex(f, mode='inline')) if cmap is not None: fig.colorbar(surf, shrink=0.5, aspect=5) plt.show(block=block, **kwargs) gt = lambda t: threshold(__gt__, t) lt = lambda t: threshold(__lt__, t) def threshold (op , t) : assert op is __gt__ or op is __lt__ def colors(zmin, zmax, points): bounds = np.linspace(zmin, zmax, points) _bounds = tuple(filter(lambda x: not op(x,t), bounds.tolist())) if zmin <= t <= zmax: if op is __gt__: if _bounds[-1] != t and t != zmax: _bounds = _bounds + (t,) else: if _bounds[0] != t and t != zmin: _bounds = (t,) + _bounds if op(zmin,t): _bounds = (zmin,) + _bounds if op(zmax,t): _bounds = _bounds + (zmax,) elif t < zmin <= zmax: if op is __gt__: _bounds = (t,zmin,zmax) else: _bounds = (zmin,) + _bounds + (zmax,) elif zmin <= zmax < t: if op is __lt__: _bounds = (zmin,zmax,t) else: _bounds = (zmin,) + _bounds + (zmax,) ncolors = len(_bounds) assert(ncolors >= 2) bounds = np.array(_bounds) viridis = cm.get_cmap('viridis', ncolors-1) newcolors = viridis(np.linspace(0, 1, ncolors-1)) pink = np.array([248/256, 24/256, 148/256, 1]) if op is __gt__: if t < zmax: newcolors[-1] = pink else: if t > zmin: newcolors[0] = pink cmap = ListedColormap(newcolors) norm = BoundaryNorm(bounds, ncolors-1) return cmap, norm return colors
agpl-3.0
kshedstrom/pyroms
examples/Arctic_HYCOM/get_hycom_GLBa0.08_grid.py
1
2227
import matplotlib matplotlib.use('Agg') import numpy as np import netCDF4 from datetime import datetime import pyroms import pyroms_toolbox import sys # get HYCOM Northeast Pacific data from 2007 to 2011 invarname = 'temperature' outvarname = 'temp' #read grid and variable attributes from the first file url='http://tds.hycom.org/thredds/dodsC/datasets/global/GLBa0.08_analysis/data/temp/archv.2010_342_00_3zt.nc' dataset = netCDF4.Dataset(url) lon = dataset.variables['Longitude'][2100-1:,550-1:4040+1] lat = dataset.variables['Latitude'][2100-1:,550-1:4040+1] z = dataset.variables['Depth'][:] #spval = dataset.variables[invarname]._FillValue var = dataset.variables[invarname][0,:,2100-1:,550-1:4040+1] spval = var.get_fill_value() units = dataset.variables[invarname].units long_name = dataset.variables[invarname].long_name dataset.close() year = 2011 day = 1 #create netCDF file outfile = 'HYCOM_GLBa0.08_North_grid.nc' nc = netCDF4.Dataset(outfile, 'w', format='NETCDF3_64BIT') nc.Created = datetime.now().strftime("%Y-%m-%d %H:%M:%S") nc.title = 'HYCOM + NCODA Global 1/12 Analysis (GLBa0.08)' #create dimensions Mp, Lp = lon.shape N = len(z) nc.createDimension('lon', Lp) nc.createDimension('lat', Mp) nc.createDimension('z', N) nc.createDimension('ocean_time', None) #create variables nc.createVariable('lon', 'f', ('lat', 'lon')) nc.variables['lon'].long_name = 'longitude' nc.variables['lon'].units = 'degrees_east' nc.variables['lon'][:] = lon nc.createVariable('lat', 'f', ('lat', 'lon')) nc.variables['lat'].long_name = 'latitude' nc.variables['lat'].units = 'degrees_north' nc.variables['lat'][:] = lat nc.createVariable('z', 'f', ('z')) nc.variables['z'].long_name = 'depth' nc.variables['z'].units = 'meter' nc.variables['z'][:] = z nc.createVariable('ocean_time', 'f', ('ocean_time')) nc.variables['ocean_time'].units = 'days since 1900-01-01 00:00:00' jday = pyroms_toolbox.date2jday(datetime(year, 1, 1)) + day - 1 nc.variables['ocean_time'][0] = jday nc.createVariable(outvarname, 'f', ('ocean_time', 'z', 'lat', 'lon'), fill_value=spval) nc.variables[outvarname].long_name = long_name nc.variables[outvarname].units = units nc.variables[outvarname][0] = var nc.close()
bsd-3-clause
zrhans/python
exemplos/Examples.lnk/bokeh/compat/mpl/subplots.py
13
1798
""" Edward Tufte uses this example from Anscombe to show 4 datasets of x and y that have the same mean, standard deviation, and regression line, but which are qualitatively different. matplotlib fun for a rainy day """ import matplotlib.pyplot as plt import numpy as np from bokeh import mpl from bokeh.plotting import show x = np.array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]) y1 = np.array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]) y2 = np.array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]) y3 = np.array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]) x4 = np.array([8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]) y4 = np.array([6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]) def fit(x): return 3 + 0.5 * x xfit = np.linspace(np.amin(x), np.amax(x), len(x)) plt.subplot(221) plt.plot(x, y1, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), xticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.ylabel('I', fontsize=20) plt.subplot(222) plt.plot(x, y2, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), xticklabels=[], yticks=(4, 8, 12), yticklabels=[], xticks=(0, 10, 20)) plt.ylabel('II', fontsize=20) plt.subplot(223) plt.plot(x, y3, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.ylabel('III', fontsize=20) plt.setp(plt.gca(), yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.subplot(224) xfit = np.array([np.amin(x4), np.amax(x4)]) plt.plot(x4, y4, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), yticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.ylabel('IV', fontsize=20) # We create the figure in matplotlib and then we "pass it" to Bokeh show(mpl.to_bokeh(name="subplots"))
gpl-2.0
JensMunkHansen/sofus
python/MultiElement.py
1
1541
import numpy as np from fnm import (rect,linear_array) from timeit import default_timer as timer import matplotlib.pyplot as plt plt.ion() def create_time_string(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) ms = np.round(s * 1000) % 1000 timeString = "%d:%02d:%02d,%03d" % (h, m, s, (1000*ms)) return timeString; print('This script uses the Fast Nearfield Method to calculate the CW pressure field of'); print('an array of 10 rectangular elements focused at a single point. The script'); print('outputs the pressure field.\n'); f0 = 1e6 # excitation frequency,Hz soundspeed = 1500 # m/s lamda = soundspeed / f0 # wavelength, m #define a transducer structure/array nelex = 10 neley = 1 kerf = 5.0e-4 width = 3e-3 # transducer width, m height = 50e-3 # transducer height, m d = nelex * (width+kerf) xmin = -1.5 * d/2 xmax = 1.5 * d/2 ymin = 0 ymax = 0 zmin = 0.0 zmax = 2*d nx = 100 nz = 100 dx = (xmax - xmin) / max(nx-1.0,1.0) dz = (zmax - zmin) / max(nz-1.0,1.0) xs = (np.r_[0:nx] - (nx-1.0)/2.0) * dx zs = (np.r_[0:nz]) * dz k = (2*np.pi)/lamda factor = int(height / width) ndiv = 32 #factor = 1 xs,zs = np.meshgrid(xs,zs,indexing='ij') a = linear_array(nElements=nelex,pitch=width+kerf,kerf=kerf,height=height,c=soundspeed, nAbcissa=[ndiv,ndiv*factor]) a.focus([0,0,d],f0) hmm = a.cw_pressure(xs,np.zeros(xs.shape),zs,k) result = np.real(np.abs(hmm)) plt.figure() plt.imshow(result,extent=np.round(100*np.r_[0,2*d,-d/2,d/2]),interpolation='none') plt.xlabel('Depth [cm]') plt.ylabel('Width [cm]')
gpl-3.0
fredhusser/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
249
2211
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() plt.plot(coef[:, feature_to_plot], 'k', label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], 'r', label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
hainm/statsmodels
statsmodels/sandbox/tsa/diffusion.py
31
18732
'''getting started with diffusions, continuous time stochastic processes Author: josef-pktd License: BSD References ---------- An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations Author(s): Desmond J. Higham Source: SIAM Review, Vol. 43, No. 3 (Sep., 2001), pp. 525-546 Published by: Society for Industrial and Applied Mathematics Stable URL: http://www.jstor.org/stable/3649798 http://www.sitmo.com/ especially the formula collection Notes ----- OU process: use same trick for ARMA with constant (non-zero mean) and drift some of the processes have easy multivariate extensions *Open Issues* include xzero in returned sample or not? currently not *TODOS* * Milstein from Higham paper, for which processes does it apply * Maximum Likelihood estimation * more statistical properties (useful for tests) * helper functions for display and MonteCarlo summaries (also for testing/checking) * more processes for the menagerie (e.g. from empirical papers) * characteristic functions * transformations, non-linear e.g. log * special estimators, e.g. Ait Sahalia, empirical characteristic functions * fft examples * check naming of methods, "simulate", "sample", "simexact", ... ? stochastic volatility models: estimation unclear finance applications ? option pricing, interest rate models ''' from __future__ import print_function import numpy as np from scipy import stats, signal import matplotlib.pyplot as plt #np.random.seed(987656789) class Diffusion(object): '''Wiener Process, Brownian Motion with mu=0 and sigma=1 ''' def __init__(self): pass def simulateW(self, nobs=100, T=1, dt=None, nrepl=1): '''generate sample of Wiener Process ''' dt = T*1.0/nobs t = np.linspace(dt, 1, nobs) dW = np.sqrt(dt)*np.random.normal(size=(nrepl, nobs)) W = np.cumsum(dW,1) self.dW = dW return W, t def expectedsim(self, func, nobs=100, T=1, dt=None, nrepl=1): '''get expectation of a function of a Wiener Process by simulation initially test example from ''' W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl) U = func(t, W) Umean = U.mean(0) return U, Umean, t class AffineDiffusion(Diffusion): ''' differential equation: :math:: dx_t = f(t,x)dt + \sigma(t,x)dW_t integral: :math:: x_T = x_0 + \\int_{0}^{T}f(t,S)dt + \\int_0^T \\sigma(t,S)dW_t TODO: check definition, affine, what about jump diffusion? ''' def __init__(self): pass def sim(self, nobs=100, T=1, dt=None, nrepl=1): # this doesn't look correct if drift or sig depend on x # see arithmetic BM W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl) dx = self._drift() + self._sig() * W x = np.cumsum(dx,1) xmean = x.mean(0) return x, xmean, t def simEM(self, xzero=None, nobs=100, T=1, dt=None, nrepl=1, Tratio=4): ''' from Higham 2001 TODO: reverse parameterization to start with final nobs and DT TODO: check if I can skip the loop using my way from exactprocess problem might be Winc (reshape into 3d and sum) TODO: (later) check memory efficiency for large simulations ''' #TODO: reverse parameterization to start with final nobs and DT nobs = nobs * Tratio # simple way to change parameter # maybe wrong parameterization, # drift too large, variance too small ? which dt/Dt # _drift, _sig independent of dt is wrong if xzero is None: xzero = self.xzero if dt is None: dt = T*1.0/nobs W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl) dW = self.dW t = np.linspace(dt, 1, nobs) Dt = Tratio*dt; L = nobs/Tratio; # L EM steps of size Dt = R*dt Xem = np.zeros((nrepl,L)); # preallocate for efficiency Xtemp = xzero Xem[:,0] = xzero for j in np.arange(1,L): #Winc = np.sum(dW[:,Tratio*(j-1)+1:Tratio*j],1) Winc = np.sum(dW[:,np.arange(Tratio*(j-1)+1,Tratio*j)],1) #Xtemp = Xtemp + Dt*lamda*Xtemp + mu*Xtemp*Winc; Xtemp = Xtemp + self._drift(x=Xtemp) + self._sig(x=Xtemp) * Winc #Dt*lamda*Xtemp + mu*Xtemp*Winc; Xem[:,j] = Xtemp return Xem ''' R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt Xem = zeros(1,L); % preallocate for efficiency Xtemp = Xzero; for j = 1:L Winc = sum(dW(R*(j-1)+1:R*j)); Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc; Xem(j) = Xtemp; end ''' class ExactDiffusion(AffineDiffusion): '''Diffusion that has an exact integral representation this is currently mainly for geometric, log processes ''' def __init__(self): pass def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''ddt : discrete delta t should be the same as an AR(1) not tested yet ''' t = np.linspace(ddt, nobs*ddt, nobs) #expnt = np.exp(-self.lambd * t) expddt = np.exp(-self.lambd * ddt) normrvs = np.random.normal(size=(nrepl,nobs)) #do I need lfilter here AR(1) ? if mean reverting lag-coeff<1 #lfilter doesn't handle 2d arrays, it does? inc = self._exactconst(expddt) + self._exactstd(expddt) * normrvs return signal.lfilter([1.], [1.,-expddt], inc) def exactdist(self, xzero, t): expnt = np.exp(-self.lambd * t) meant = xzero * expnt + self._exactconst(expnt) stdt = self._exactstd(expnt) return stats.norm(loc=meant, scale=stdt) class ArithmeticBrownian(AffineDiffusion): ''' :math:: dx_t &= \\mu dt + \\sigma dW_t ''' def __init__(self, xzero, mu, sigma): self.xzero = xzero self.mu = mu self.sigma = sigma def _drift(self, *args, **kwds): return self.mu def _sig(self, *args, **kwds): return self.sigma def exactprocess(self, nobs, xzero=None, ddt=1., nrepl=2): '''ddt : discrete delta t not tested yet ''' if xzero is None: xzero = self.xzero t = np.linspace(ddt, nobs*ddt, nobs) normrvs = np.random.normal(size=(nrepl,nobs)) inc = self._drift + self._sigma * np.sqrt(ddt) * normrvs #return signal.lfilter([1.], [1.,-1], inc) return xzero + np.cumsum(inc,1) def exactdist(self, xzero, t): expnt = np.exp(-self.lambd * t) meant = self._drift * t stdt = self._sigma * np.sqrt(t) return stats.norm(loc=meant, scale=stdt) class GeometricBrownian(AffineDiffusion): '''Geometric Brownian Motion :math:: dx_t &= \\mu x_t dt + \\sigma x_t dW_t $x_t $ stochastic process of Geometric Brownian motion, $\mu $ is the drift, $\sigma $ is the Volatility, $W$ is the Wiener process (Brownian motion). ''' def __init__(self, xzero, mu, sigma): self.xzero = xzero self.mu = mu self.sigma = sigma def _drift(self, *args, **kwds): x = kwds['x'] return self.mu * x def _sig(self, *args, **kwds): x = kwds['x'] return self.sigma * x class OUprocess(AffineDiffusion): '''Ornstein-Uhlenbeck :math:: dx_t&=\\lambda(\\mu - x_t)dt+\\sigma dW_t mean reverting process TODO: move exact higher up in class hierarchy ''' def __init__(self, xzero, mu, lambd, sigma): self.xzero = xzero self.lambd = lambd self.mu = mu self.sigma = sigma def _drift(self, *args, **kwds): x = kwds['x'] return self.lambd * (self.mu - x) def _sig(self, *args, **kwds): x = kwds['x'] return self.sigma * x def exact(self, xzero, t, normrvs): #TODO: aggregate over time for process with observations for all t # i.e. exact conditional distribution for discrete time increment # -> exactprocess #TODO: for single t, return stats.norm -> exactdist expnt = np.exp(-self.lambd * t) return (xzero * expnt + self.mu * (1-expnt) + self.sigma * np.sqrt((1-expnt*expnt)/2./self.lambd) * normrvs) def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''ddt : discrete delta t should be the same as an AR(1) not tested yet # after writing this I saw the same use of lfilter in sitmo ''' t = np.linspace(ddt, nobs*ddt, nobs) expnt = np.exp(-self.lambd * t) expddt = np.exp(-self.lambd * ddt) normrvs = np.random.normal(size=(nrepl,nobs)) #do I need lfilter here AR(1) ? lfilter doesn't handle 2d arrays, it does? from scipy import signal #xzero * expnt inc = ( self.mu * (1-expddt) + self.sigma * np.sqrt((1-expddt*expddt)/2./self.lambd) * normrvs ) return signal.lfilter([1.], [1.,-expddt], inc) def exactdist(self, xzero, t): #TODO: aggregate over time for process with observations for all t #TODO: for single t, return stats.norm expnt = np.exp(-self.lambd * t) meant = xzero * expnt + self.mu * (1-expnt) stdt = self.sigma * np.sqrt((1-expnt*expnt)/2./self.lambd) from scipy import stats return stats.norm(loc=meant, scale=stdt) def fitls(self, data, dt): '''assumes data is 1d, univariate time series formula from sitmo ''' # brute force, no parameter estimation errors nobs = len(data)-1 exog = np.column_stack((np.ones(nobs), data[:-1])) parest, res, rank, sing = np.linalg.lstsq(exog, data[1:]) const, slope = parest errvar = res/(nobs-2.) lambd = -np.log(slope)/dt sigma = np.sqrt(-errvar * 2.*np.log(slope)/ (1-slope**2)/dt) mu = const / (1-slope) return mu, lambd, sigma class SchwartzOne(ExactDiffusion): '''the Schwartz type 1 stochastic process :math:: dx_t = \\kappa (\\mu - \\ln x_t) x_t dt + \\sigma x_tdW \\ The Schwartz type 1 process is a log of the Ornstein-Uhlenbeck stochastic process. ''' def __init__(self, xzero, mu, kappa, sigma): self.xzero = xzero self.mu = mu self.kappa = kappa self.lambd = kappa #alias until I fix exact self.sigma = sigma def _exactconst(self, expnt): return (1-expnt) * (self.mu - self.sigma**2 / 2. /self.kappa) def _exactstd(self, expnt): return self.sigma * np.sqrt((1-expnt*expnt)/2./self.kappa) def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''uses exact solution for log of process ''' lnxzero = np.log(xzero) lnx = super(self.__class__, self).exactprocess(xzero, nobs, ddt=ddt, nrepl=nrepl) return np.exp(lnx) def exactdist(self, xzero, t): expnt = np.exp(-self.lambd * t) #TODO: check this is still wrong, just guessing meant = np.log(xzero) * expnt + self._exactconst(expnt) stdt = self._exactstd(expnt) return stats.lognorm(loc=meant, scale=stdt) def fitls(self, data, dt): '''assumes data is 1d, univariate time series formula from sitmo ''' # brute force, no parameter estimation errors nobs = len(data)-1 exog = np.column_stack((np.ones(nobs),np.log(data[:-1]))) parest, res, rank, sing = np.linalg.lstsq(exog, np.log(data[1:])) const, slope = parest errvar = res/(nobs-2.) #check denominator estimate, of sigma too low kappa = -np.log(slope)/dt sigma = np.sqrt(errvar * kappa / (1-np.exp(-2*kappa*dt))) mu = const / (1-np.exp(-kappa*dt)) + sigma**2/2./kappa if np.shape(mu)== (1,): mu = mu[0] # how to remove scalar array ? if np.shape(sigma)== (1,): sigma = sigma[0] #mu, kappa are good, sigma too small return mu, kappa, sigma class BrownianBridge(object): def __init__(self): pass def simulate(self, x0, x1, nobs, nrepl=1, ddt=1., sigma=1.): nobs=nobs+1 dt = ddt*1./nobs t = np.linspace(dt, ddt-dt, nobs) t = np.linspace(dt, ddt, nobs) wm = [t/ddt, 1-t/ddt] #wmi = wm[1] #wm1 = x1*wm[0] wmi = 1-dt/(ddt-t) wm1 = x1*(dt/(ddt-t)) su = sigma* np.sqrt(t*(1-t)/ddt) s = sigma* np.sqrt(dt*(ddt-t-dt)/(ddt-t)) x = np.zeros((nrepl, nobs)) x[:,0] = x0 rvs = s*np.random.normal(size=(nrepl,nobs)) for i in range(1,nobs): x[:,i] = x[:,i-1]*wmi[i] + wm1[i] + rvs[:,i] return x, t, su class CompoundPoisson(object): '''nobs iid compound poisson distributions, not a process in time ''' def __init__(self, lambd, randfn=np.random.normal): if len(lambd) != len(randfn): raise ValueError('lambd and randfn need to have the same number of elements') self.nobj = len(lambd) self.randfn = randfn self.lambd = np.asarray(lambd) def simulate(self, nobs, nrepl=1): nobj = self.nobj x = np.zeros((nrepl, nobs, nobj)) N = np.random.poisson(self.lambd[None,None,:], size=(nrepl,nobs,nobj)) for io in range(nobj): randfnc = self.randfn[io] nc = N[:,:,io] #print nrepl,nobs,nc #xio = randfnc(size=(nrepl,nobs,np.max(nc))).cumsum(-1)[np.arange(nrepl)[:,None],np.arange(nobs),nc-1] rvs = randfnc(size=(nrepl,nobs,np.max(nc))) print('rvs.sum()', rvs.sum(), rvs.shape) xio = rvs.cumsum(-1)[np.arange(nrepl)[:,None],np.arange(nobs),nc-1] #print xio.shape x[:,:,io] = xio x[N==0] = 0 return x, N ''' randn('state',100) % set the state of randn T = 1; N = 500; dt = T/N; t = [dt:dt:1]; M = 1000; % M paths simultaneously dW = sqrt(dt)*randn(M,N); % increments W = cumsum(dW,2); % cumulative sum U = exp(repmat(t,[M 1]) + 0.5*W); Umean = mean(U); plot([0,t],[1,Umean],'b-'), hold on % plot mean over M paths plot([0,t],[ones(5,1),U(1:5,:)],'r--'), hold off % plot 5 individual paths xlabel('t','FontSize',16) ylabel('U(t)','FontSize',16,'Rotation',0,'HorizontalAlignment','right') legend('mean of 1000 paths','5 individual paths',2) averr = norm((Umean - exp(9*t/8)),'inf') % sample error ''' if __name__ == '__main__': doplot = 1 nrepl = 1000 examples = []#['all'] if 'all' in examples: w = Diffusion() # Wiener Process # ^^^^^^^^^^^^^^ ws = w.simulateW(1000, nrepl=nrepl) if doplot: plt.figure() tmp = plt.plot(ws[0].T) tmp = plt.plot(ws[0].mean(0), linewidth=2) plt.title('Standard Brownian Motion (Wiener Process)') func = lambda t, W: np.exp(t + 0.5*W) us = w.expectedsim(func, nobs=500, nrepl=nrepl) if doplot: plt.figure() tmp = plt.plot(us[0].T) tmp = plt.plot(us[1], linewidth=2) plt.title('Brownian Motion - exp') #plt.show() averr = np.linalg.norm(us[1] - np.exp(9*us[2]/8.), np.inf) print(averr) #print us[1][:10] #print np.exp(9.*us[2][:10]/8.) # Geometric Brownian # ^^^^^^^^^^^^^^^^^^ gb = GeometricBrownian(xzero=1., mu=0.01, sigma=0.5) gbs = gb.simEM(nobs=100, nrepl=100) if doplot: plt.figure() tmp = plt.plot(gbs.T) tmp = plt.plot(gbs.mean(0), linewidth=2) plt.title('Geometric Brownian') plt.figure() tmp = plt.plot(np.log(gbs).T) tmp = plt.plot(np.log(gbs.mean(0)), linewidth=2) plt.title('Geometric Brownian - log-transformed') ab = ArithmeticBrownian(xzero=1, mu=0.05, sigma=1) abs = ab.simEM(nobs=100, nrepl=100) if doplot: plt.figure() tmp = plt.plot(abs.T) tmp = plt.plot(abs.mean(0), linewidth=2) plt.title('Arithmetic Brownian') # Ornstein-Uhlenbeck # ^^^^^^^^^^^^^^^^^^ ou = OUprocess(xzero=2, mu=1, lambd=0.5, sigma=0.1) ous = ou.simEM() oue = ou.exact(1, 1, np.random.normal(size=(5,10))) ou.exact(0, np.linspace(0,10,10/0.1), 0) ou.exactprocess(0,10) print(ou.exactprocess(0,10, ddt=0.1,nrepl=10).mean(0)) #the following looks good, approaches mu oues = ou.exactprocess(0,100, ddt=0.1,nrepl=100) if doplot: plt.figure() tmp = plt.plot(oues.T) tmp = plt.plot(oues.mean(0), linewidth=2) plt.title('Ornstein-Uhlenbeck') # SchwartsOne # ^^^^^^^^^^^ so = SchwartzOne(xzero=0, mu=1, kappa=0.5, sigma=0.1) sos = so.exactprocess(0,50, ddt=0.1,nrepl=100) print(sos.mean(0)) print(np.log(sos.mean(0))) doplot = 1 if doplot: plt.figure() tmp = plt.plot(sos.T) tmp = plt.plot(sos.mean(0), linewidth=2) plt.title('Schwartz One') print(so.fitls(sos[0,:],dt=0.1)) sos2 = so.exactprocess(0,500, ddt=0.1,nrepl=5) print('true: mu=1, kappa=0.5, sigma=0.1') for i in range(5): print(so.fitls(sos2[i],dt=0.1)) # Brownian Bridge # ^^^^^^^^^^^^^^^ bb = BrownianBridge() #bbs = bb.sample(x0, x1, nobs, nrepl=1, ddt=1., sigma=1.) bbs, t, wm = bb.simulate(0, 0.5, 99, nrepl=500, ddt=1., sigma=0.1) if doplot: plt.figure() tmp = plt.plot(bbs.T) tmp = plt.plot(bbs.mean(0), linewidth=2) plt.title('Brownian Bridge') plt.figure() plt.plot(wm,'r', label='theoretical') plt.plot(bbs.std(0), label='simulated') plt.title('Brownian Bridge - Variance') plt.legend() # Compound Poisson # ^^^^^^^^^^^^^^^^ cp = CompoundPoisson([1,1], [np.random.normal,np.random.normal]) cps = cp.simulate(nobs=20000,nrepl=3) print(cps[0].sum(-1).sum(-1)) print(cps[0].sum()) print(cps[0].mean(-1).mean(-1)) print(cps[0].mean()) print(cps[1].size) print(cps[1].sum()) #Note Y = sum^{N} X is compound poisson of iid x, then #E(Y) = E(N)*E(X) eg. eq. (6.37) page 385 in http://ee.stanford.edu/~gray/sp.html #plt.show()
bsd-3-clause
Featuretools/featuretools
featuretools/utils/entity_utils.py
1
7387
from datetime import datetime import numpy as np import pandas as pd import pandas.api.types as pdtypes from featuretools import variable_types as vtypes def infer_variable_types(df, link_vars, variable_types, time_index, secondary_time_index): '''Infer variable types from dataframe Args: df (DataFrame): Input DataFrame link_vars (list[]): Linked variables variable_types (dict[str -> dict[str -> type]]) : An entity's variable_types dict maps string variable ids to types (:class:`.Variable`) or (type, kwargs) to pass keyword arguments to the Variable. time_index (str or None): Name of time_index column secondary_time_index (dict[str: [str]]): Dictionary of secondary time columns that each map to a list of columns that depend on that secondary time ''' # TODO: set pk and pk types here inferred_types = {} vids_to_assume_datetime = [time_index] if len(list(secondary_time_index.keys())): vids_to_assume_datetime.append(list(secondary_time_index.keys())[0]) inferred_type = vtypes.Unknown for variable in df.columns: if variable in variable_types: continue elif variable in vids_to_assume_datetime: if col_is_datetime(df[variable]): inferred_type = vtypes.Datetime else: inferred_type = vtypes.Numeric elif variable in link_vars: inferred_type = vtypes.Categorical elif df[variable].dtype == "object": if not len(df[variable]): inferred_type = vtypes.Categorical elif col_is_datetime(df[variable]): inferred_type = vtypes.Datetime else: inferred_type = vtypes.Categorical # heuristics to predict this some other than categorical sample = df[variable].sample(min(10000, len(df[variable]))) # catch cases where object dtype cannot be interpreted as a string try: avg_length = sample.str.len().mean() if avg_length > 50: inferred_type = vtypes.Text except AttributeError: pass elif df[variable].dtype == "bool": inferred_type = vtypes.Boolean elif pdtypes.is_categorical_dtype(df[variable].dtype): inferred_type = vtypes.Categorical elif pdtypes.is_numeric_dtype(df[variable].dtype): inferred_type = vtypes.Numeric elif col_is_datetime(df[variable]): inferred_type = vtypes.Datetime elif len(df[variable]): sample = df[variable] \ .sample(min(10000, df[variable].nunique(dropna=False))) unique = sample.unique() percent_unique = sample.size / len(unique) if percent_unique < .05: inferred_type = vtypes.Categorical else: inferred_type = vtypes.Numeric inferred_types[variable] = inferred_type return inferred_types def convert_all_variable_data(df, variable_types): """Convert all dataframes' variables to different types. """ for var_id, desired_type in variable_types.items(): type_args = {} if isinstance(desired_type, tuple): # grab args before assigning type type_args = desired_type[1] desired_type = desired_type[0] if var_id not in df.columns: raise LookupError("Variable ID %s not in DataFrame" % (var_id)) current_type = df[var_id].dtype.name if issubclass(desired_type, vtypes.Numeric) and \ current_type not in vtypes.PandasTypes._pandas_numerics: df = convert_variable_data(df=df, column_id=var_id, new_type=desired_type, **type_args) if issubclass(desired_type, vtypes.Discrete) and \ current_type not in [vtypes.PandasTypes._categorical]: df = convert_variable_data(df=df, column_id=var_id, new_type=desired_type, **type_args) if issubclass(desired_type, vtypes.Datetime) and \ current_type not in vtypes.PandasTypes._pandas_datetimes: df = convert_variable_data(df=df, column_id=var_id, new_type=desired_type, **type_args) return df def convert_variable_data(df, column_id, new_type, **kwargs): """Convert dataframe's variable to different type. """ if df[column_id].empty: return df if new_type == vtypes.Numeric: orig_nonnull = df[column_id].dropna().shape[0] df[column_id] = pd.to_numeric(df[column_id], errors='coerce') # This will convert strings to nans # If column contained all strings, then we should # just raise an error, because that shouldn't have # been converted to numeric nonnull = df[column_id].dropna().shape[0] if nonnull == 0 and orig_nonnull != 0: raise TypeError("Attempted to convert all string column {} to numeric".format(column_id)) elif issubclass(new_type, vtypes.Datetime): format = kwargs.get("format", None) # TODO: if float convert to int? df[column_id] = pd.to_datetime(df[column_id], format=format, infer_datetime_format=True) elif new_type == vtypes.Boolean: map_dict = {kwargs.get("true_val", True): True, kwargs.get("false_val", False): False, True: True, False: False} # TODO: what happens to nans? df[column_id] = df[column_id].map(map_dict).astype(np.bool) elif not issubclass(new_type, vtypes.Discrete): raise Exception("Cannot convert column %s to %s" % (column_id, new_type)) return df def get_linked_vars(entity): """Return a list with the entity linked variables. """ link_relationships = [r for r in entity.entityset.relationships if r.parent_entity.id == entity.id or r.child_entity.id == entity.id] link_vars = [v.id for rel in link_relationships for v in [rel.parent_variable, rel.child_variable] if v.entity.id == entity.id] return link_vars def col_is_datetime(col): # check if dtype is datetime if (col.dtype.name.find('datetime') > -1 or (len(col) and isinstance(col.iloc[0], datetime))): return True # if it can be casted to numeric, it's not a datetime dropped_na = col.dropna() try: pd.to_numeric(dropped_na, errors='raise') except (ValueError, TypeError): # finally, try to cast to datetime if col.dtype.name.find('str') > -1 or col.dtype.name.find('object') > -1: try: pd.to_datetime(dropped_na, errors='raise') except Exception: return False else: return True return False
bsd-3-clause
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/matplotlib/tests/test_rcparams.py
9
10258
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import sys import warnings import matplotlib as mpl from matplotlib.tests import assert_str_equal from matplotlib.testing.decorators import cleanup, knownfailureif from nose.tools import assert_true, assert_raises, assert_equal from nose.plugins.skip import SkipTest import nose from itertools import chain import numpy as np from matplotlib.rcsetup import (validate_bool_maybe_none, validate_stringlist, validate_bool, validate_nseq_int, validate_nseq_float) mpl.rc('text', usetex=False) mpl.rc('lines', linewidth=22) fname = os.path.join(os.path.dirname(__file__), 'test_rcparams.rc') def test_rcparams(): usetex = mpl.rcParams['text.usetex'] linewidth = mpl.rcParams['lines.linewidth'] # test context given dictionary with mpl.rc_context(rc={'text.usetex': not usetex}): assert mpl.rcParams['text.usetex'] == (not usetex) assert mpl.rcParams['text.usetex'] == usetex # test context given filename (mpl.rc sets linewdith to 33) with mpl.rc_context(fname=fname): assert mpl.rcParams['lines.linewidth'] == 33 assert mpl.rcParams['lines.linewidth'] == linewidth # test context given filename and dictionary with mpl.rc_context(fname=fname, rc={'lines.linewidth': 44}): assert mpl.rcParams['lines.linewidth'] == 44 assert mpl.rcParams['lines.linewidth'] == linewidth # test rc_file try: mpl.rc_file(fname) assert mpl.rcParams['lines.linewidth'] == 33 finally: mpl.rcParams['lines.linewidth'] = linewidth def test_RcParams_class(): rc = mpl.RcParams({'font.cursive': ['Apple Chancery', 'Textile', 'Zapf Chancery', 'cursive'], 'font.family': 'sans-serif', 'font.weight': 'normal', 'font.size': 12}) if six.PY3: expected_repr = """ RcParams({'font.cursive': ['Apple Chancery', 'Textile', 'Zapf Chancery', 'cursive'], 'font.family': ['sans-serif'], 'font.size': 12.0, 'font.weight': 'normal'})""".lstrip() else: expected_repr = """ RcParams({u'font.cursive': [u'Apple Chancery', u'Textile', u'Zapf Chancery', u'cursive'], u'font.family': [u'sans-serif'], u'font.size': 12.0, u'font.weight': u'normal'})""".lstrip() assert_str_equal(expected_repr, repr(rc)) if six.PY3: expected_str = """ font.cursive: ['Apple Chancery', 'Textile', 'Zapf Chancery', 'cursive'] font.family: ['sans-serif'] font.size: 12.0 font.weight: normal""".lstrip() else: expected_str = """ font.cursive: [u'Apple Chancery', u'Textile', u'Zapf Chancery', u'cursive'] font.family: [u'sans-serif'] font.size: 12.0 font.weight: normal""".lstrip() assert_str_equal(expected_str, str(rc)) # test the find_all functionality assert ['font.cursive', 'font.size'] == sorted(rc.find_all('i[vz]').keys()) assert ['font.family'] == list(six.iterkeys(rc.find_all('family'))) # remove know failure + warnings after merging to master @knownfailureif(not (sys.version_info[:2] < (2, 7))) def test_rcparams_update(): if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager " "not supported with Python < 2.7") rc = mpl.RcParams({'figure.figsize': (3.5, 42)}) bad_dict = {'figure.figsize': (3.5, 42, 1)} # make sure validation happens on input with assert_raises(ValueError): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='.*(validate)', category=UserWarning) rc.update(bad_dict) # remove know failure + warnings after merging to master @knownfailureif(not (sys.version_info[:2] < (2, 7))) def test_rcparams_init(): if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager " "not supported with Python < 2.7") with assert_raises(ValueError): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='.*(validate)', category=UserWarning) mpl.RcParams({'figure.figsize': (3.5, 42, 1)}) @cleanup def test_Bug_2543(): # Test that it possible to add all values to itself / deepcopy # This was not possible because validate_bool_maybe_none did not # accept None as an argument. # https://github.com/matplotlib/matplotlib/issues/2543 # We filter warnings at this stage since a number of them are raised # for deprecated rcparams as they should. We dont want these in the # printed in the test suite. with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='.*(deprecated|obsolete)', category=UserWarning) with mpl.rc_context(): _copy = mpl.rcParams.copy() for key in six.iterkeys(_copy): mpl.rcParams[key] = _copy[key] mpl.rcParams['text.dvipnghack'] = None with mpl.rc_context(): from copy import deepcopy _deep_copy = deepcopy(mpl.rcParams) # real test is that this does not raise assert_true(validate_bool_maybe_none(None) is None) assert_true(validate_bool_maybe_none("none") is None) _fonttype = mpl.rcParams['svg.fonttype'] assert_true(_fonttype == mpl.rcParams['svg.embed_char_paths']) with mpl.rc_context(): mpl.rcParams['svg.embed_char_paths'] = False assert_true(mpl.rcParams['svg.fonttype'] == "none") @cleanup def test_Bug_2543_newer_python(): # only split from above because of the usage of assert_raises # as a context manager, which only works in 2.7 and above if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager not supported with Python < 2.7") from matplotlib.rcsetup import validate_bool_maybe_none, validate_bool with assert_raises(ValueError): validate_bool_maybe_none("blah") with assert_raises(ValueError): validate_bool(None) with assert_raises(ValueError): with mpl.rc_context(): mpl.rcParams['svg.fonttype'] = True if __name__ == '__main__': nose.runmodule(argv=['-s', '--with-doctest'], exit=False) def _validation_test_helper(validator, arg, target): res = validator(arg) assert_equal(res, target) def _validation_fail_helper(validator, arg, exception_type): if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager not " "supported with Python < 2.7") with assert_raises(exception_type): validator(arg) def test_validators(): validation_tests = ( {'validator': validate_bool, 'success': chain(((_, True) for _ in ('t', 'y', 'yes', 'on', 'true', '1', 1, True)), ((_, False) for _ in ('f', 'n', 'no', 'off', 'false', '0', 0, False))), 'fail': ((_, ValueError) for _ in ('aardvark', 2, -1, [], ))}, {'validator': validate_stringlist, 'success': (('', []), ('a,b', ['a', 'b']), ('aardvark', ['aardvark']), ('aardvark, ', ['aardvark']), ('aardvark, ,', ['aardvark']), (['a', 'b'], ['a', 'b']), (('a', 'b'), ['a', 'b']), ((1, 2), ['1', '2'])), 'fail': ((dict(), AssertionError), (1, AssertionError),) }, {'validator': validate_nseq_int(2), 'success': ((_, [1, 2]) for _ in ('1, 2', [1.5, 2.5], [1, 2], (1, 2), np.array((1, 2)))), 'fail': ((_, ValueError) for _ in ('aardvark', ('a', 1), (1, 2, 3) )) }, {'validator': validate_nseq_float(2), 'success': ((_, [1.5, 2.5]) for _ in ('1.5, 2.5', [1.5, 2.5], [1.5, 2.5], (1.5, 2.5), np.array((1.5, 2.5)))), 'fail': ((_, ValueError) for _ in ('aardvark', ('a', 1), (1, 2, 3) )) } ) for validator_dict in validation_tests: validator = validator_dict['validator'] for arg, target in validator_dict['success']: yield _validation_test_helper, validator, arg, target for arg, error_type in validator_dict['fail']: yield _validation_fail_helper, validator, arg, error_type def test_keymaps(): key_list = [k for k in mpl.rcParams if 'keymap' in k] for k in key_list: assert(isinstance(mpl.rcParams[k], list)) def test_rcparams_reset_after_fail(): # There was previously a bug that meant that if rc_context failed and # raised an exception due to issues in the supplied rc parameters, the # global rc parameters were left in a modified state. if sys.version_info[:2] >= (2, 7): from collections import OrderedDict else: raise SkipTest("Test can only be run in Python >= 2.7 as it requires OrderedDict") with mpl.rc_context(rc={'text.usetex': False}): assert mpl.rcParams['text.usetex'] is False with assert_raises(KeyError): with mpl.rc_context(rc=OrderedDict([('text.usetex', True),('test.blah', True)])): pass assert mpl.rcParams['text.usetex'] is False
gpl-2.0
shusenl/scikit-learn
sklearn/tests/test_naive_bayes.py
70
17509
import pickle from io import BytesIO import numpy as np import scipy.sparse from sklearn.datasets import load_digits, load_iris from sklearn.cross_validation import cross_val_score, train_test_split from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) # A bit more random tests rng = np.random.RandomState(0) X1 = rng.normal(size=(10, 3)) y1 = (rng.normal(size=(10)) > 0).astype(np.int) # Data is 6 random integer points in a 100 dimensional space classified to # three classes. X2 = rng.randint(5, size=(6, 100)) y2 = np.array([1, 1, 2, 2, 3, 3]) def test_gnb(): # Gaussian Naive Bayes classification. # This checks that GaussianNB implements fit and predict and returns # correct values for a simple toy dataset. clf = GaussianNB() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Test whether label mismatch between target y and classes raises # an Error # FIXME Remove this test once the more general partial_fit tests are merged assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1]) def test_gnb_prior(): # Test whether class priors are properly set. clf = GaussianNB().fit(X, y) assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) clf.fit(X1, y1) # Check that the class priors sum to 1 assert_array_almost_equal(clf.class_prior_.sum(), 1) def test_gnb_sample_weight(): """Test whether sample weights are properly used in GNB. """ # Sample weights all being 1 should not change results sw = np.ones(6) clf = GaussianNB().fit(X, y) clf_sw = GaussianNB().fit(X, y, sw) assert_array_almost_equal(clf.theta_, clf_sw.theta_) assert_array_almost_equal(clf.sigma_, clf_sw.sigma_) # Fitting twice with half sample-weights should result # in same result as fitting once with full weights sw = rng.rand(y.shape[0]) clf1 = GaussianNB().fit(X, y, sample_weight=sw) clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) clf2.partial_fit(X, y, sample_weight=sw / 2) assert_array_almost_equal(clf1.theta_, clf2.theta_) assert_array_almost_equal(clf1.sigma_, clf2.sigma_) # Check that duplicate entries and correspondingly increased sample # weights yield the same result ind = rng.randint(0, X.shape[0], 20) sample_weight = np.bincount(ind, minlength=X.shape[0]) clf_dupl = GaussianNB().fit(X[ind], y[ind]) clf_sw = GaussianNB().fit(X, y, sample_weight) assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_) def test_discrete_prior(): # Test whether class priors are properly set. for cls in [BernoulliNB, MultinomialNB]: clf = cls().fit(X2, y2) assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8) def test_mnnb(): # Test Multinomial Naive Bayes classification. # This checks that MultinomialNB implements fit and predict and returns # correct values for a simple toy dataset. for X in [X2, scipy.sparse.csr_matrix(X2)]: # Check the ability to predict the learning set. clf = MultinomialNB() assert_raises(ValueError, clf.fit, -X, y2) y_pred = clf.fit(X, y2).predict(X) assert_array_equal(y_pred, y2) # Verify that np.log(clf.predict_proba(X)) gives the same results as # clf.predict_log_proba(X) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Check that incremental fitting yields the same results clf2 = MultinomialNB() clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) clf2.partial_fit(X[2:5], y2[2:5]) clf2.partial_fit(X[5:], y2[5:]) y_pred2 = clf2.predict(X) assert_array_equal(y_pred2, y2) y_pred_proba2 = clf2.predict_proba(X) y_pred_log_proba2 = clf2.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) assert_array_almost_equal(y_pred_proba2, y_pred_proba) assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) # Partial fit on the whole data at once should be the same as fit too clf3 = MultinomialNB() clf3.partial_fit(X, y2, classes=np.unique(y2)) y_pred3 = clf3.predict(X) assert_array_equal(y_pred3, y2) y_pred_proba3 = clf3.predict_proba(X) y_pred_log_proba3 = clf3.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) assert_array_almost_equal(y_pred_proba3, y_pred_proba) assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) def check_partial_fit(cls): clf1 = cls() clf1.fit([[0, 1], [1, 0]], [0, 1]) clf2 = cls() clf2.partial_fit([[0, 1], [1, 0]], [0, 1], classes=[0, 1]) assert_array_equal(clf1.class_count_, clf2.class_count_) assert_array_equal(clf1.feature_count_, clf2.feature_count_) clf3 = cls() clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) clf3.partial_fit([[1, 0]], [1]) assert_array_equal(clf1.class_count_, clf3.class_count_) assert_array_equal(clf1.feature_count_, clf3.feature_count_) def test_discretenb_partial_fit(): for cls in [MultinomialNB, BernoulliNB]: yield check_partial_fit, cls def test_gnb_partial_fit(): clf = GaussianNB().fit(X, y) clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) assert_array_almost_equal(clf.theta_, clf_pf.theta_) assert_array_almost_equal(clf.sigma_, clf_pf.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) clf_pf2.partial_fit(X[1::2], y[1::2]) assert_array_almost_equal(clf.theta_, clf_pf2.theta_) assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) def test_discretenb_pickle(): # Test picklability of discrete naive Bayes classifiers for cls in [BernoulliNB, MultinomialNB, GaussianNB]: clf = cls().fit(X2, y2) y_pred = clf.predict(X2) store = BytesIO() pickle.dump(clf, store) clf = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf.predict(X2)) if cls is not GaussianNB: # TODO re-enable me when partial_fit is implemented for GaussianNB # Test pickling of estimator trained with partial_fit clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2)) clf2.partial_fit(X2[3:], y2[3:]) store = BytesIO() pickle.dump(clf2, store) clf2 = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf2.predict(X2)) def test_input_check_fit(): # Test input checks for the fit method for cls in [BernoulliNB, MultinomialNB, GaussianNB]: # check shape consistency for number of samples at fit time assert_raises(ValueError, cls().fit, X2, y2[:-1]) # check shape consistency for number of input features at predict time clf = cls().fit(X2, y2) assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_input_check_partial_fit(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency assert_raises(ValueError, cls().partial_fit, X2, y2[:-1], classes=np.unique(y2)) # classes is required for first call to partial fit assert_raises(ValueError, cls().partial_fit, X2, y2) # check consistency of consecutive classes values clf = cls() clf.partial_fit(X2, y2, classes=np.unique(y2)) assert_raises(ValueError, clf.partial_fit, X2, y2, classes=np.arange(42)) # check consistency of input shape for partial_fit assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2) # check consistency of input shape for predict assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_discretenb_predict_proba(): # Test discrete NB classes' probability scores # The 100s below distinguish Bernoulli from multinomial. # FIXME: write a test to show this. X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] X_multinomial = [[0, 1], [1, 3], [4, 0]] # test binary case (1-d output) y = [0, 0, 2] # 2 is regression test for binary case, 02e673 for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict(X[-1:]), 2) assert_equal(clf.predict_proba([X[0]]).shape, (1, 2)) assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1), np.array([1., 1.]), 6) # test multiclass case (2-d output, must sum to one) y = [0, 1, 2] for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict_proba(X[0:1]).shape, (1, 3)) assert_equal(clf.predict_proba(X[:2]).shape, (2, 3)) assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1) assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1) assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1) def test_discretenb_uniform_prior(): # Test whether discrete NB classes fit a uniform prior # when fit_prior=False and class_prior=None for cls in [BernoulliNB, MultinomialNB]: clf = cls() clf.set_params(fit_prior=False) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) def test_discretenb_provide_prior(): # Test whether discrete NB classes use provided prior for cls in [BernoulliNB, MultinomialNB]: clf = cls(class_prior=[0.5, 0.5]) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) # Inconsistent number of classes with prior assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2]) assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1], classes=[0, 1, 1]) def test_discretenb_provide_prior_with_partial_fit(): # Test whether discrete NB classes use provided prior # when using partial_fit iris = load_iris() iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( iris.data, iris.target, test_size=0.4, random_state=415) for cls in [BernoulliNB, MultinomialNB]: for prior in [None, [0.3, 0.3, 0.4]]: clf_full = cls(class_prior=prior) clf_full.fit(iris.data, iris.target) clf_partial = cls(class_prior=prior) clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) clf_partial.partial_fit(iris_data2, iris_target2) assert_array_almost_equal(clf_full.class_log_prior_, clf_partial.class_log_prior_) def test_sample_weight_multiclass(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency for number of samples at fit time yield check_sample_weight_multiclass, cls def check_sample_weight_multiclass(cls): X = [ [0, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 0], ] y = [0, 0, 1, 2] sample_weight = np.array([1, 1, 2, 2], dtype=np.float) sample_weight /= sample_weight.sum() clf = cls().fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) # Check sample weight using the partial_fit method clf = cls() clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) def test_sample_weight_mnb(): clf = MultinomialNB() clf.fit([[1, 2], [1, 2], [1, 0]], [0, 0, 1], sample_weight=[1, 1, 4]) assert_array_equal(clf.predict([[1, 0]]), [1]) positive_prior = np.exp(clf.intercept_[0]) assert_array_almost_equal([1 - positive_prior, positive_prior], [1 / 3., 2 / 3.]) def test_coef_intercept_shape(): # coef_ and intercept_ should have shapes as in other linear models. # Non-regression test for issue #2127. X = [[1, 0, 0], [1, 1, 1]] y = [1, 2] # binary classification for clf in [MultinomialNB(), BernoulliNB()]: clf.fit(X, y) assert_equal(clf.coef_.shape, (1, 3)) assert_equal(clf.intercept_.shape, (1,)) def test_check_accuracy_on_digits(): # Non regression test to make sure that any further refactoring / optim # of the NB models do not harm the performance on a slightly non-linearly # separable dataset digits = load_digits() X, y = digits.data, digits.target binary_3v8 = np.logical_or(digits.target == 3, digits.target == 8) X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] # Multinomial NB scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) assert_greater(scores.mean(), 0.86) scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.94) # Bernoulli NB scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) assert_greater(scores.mean(), 0.83) scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) assert_greater(scores.mean(), 0.92) # Gaussian NB scores = cross_val_score(GaussianNB(), X, y, cv=10) assert_greater(scores.mean(), 0.77) scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.86) def test_feature_log_prob_bnb(): # Test for issue #4268. # Tests that the feature log prob value computed by BernoulliNB when # alpha=1.0 is equal to the expression given in Manning, Raghavan, # and Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) Y = np.array([0, 0, 1, 2, 2]) # Fit Bernoulli NB w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Manually form the (log) numerator and denominator that # constitute P(feature presence | class) num = np.log(clf.feature_count_ + 1.0) denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T # Check manual estimate matches assert_array_equal(clf.feature_log_prob_, (num - denom)) def test_bnb(): # Tests that BernoulliNB when alpha=1.0 gives the same values as # those given for the toy example in Manning, Raghavan, and # Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo X = np.array([[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]) # Classes are China (0), Japan (1) Y = np.array([0, 0, 0, 1]) # Fit BernoulliBN w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Check the class prior is correct class_prior = np.array([0.75, 0.25]) assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) # Check the feature probabilities are correct feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2], [1/3.0, 2/3.0, 2/3.0, 1/3.0, 1/3.0, 2/3.0]]) assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) # Testing data point is: # Chinese Chinese Chinese Tokyo Japan X_test = np.array([[0, 1, 1, 0, 0, 1]]) # Check the predictive probabilities are correct unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) assert_array_almost_equal(clf.predict_proba(X_test), predict_proba)
bsd-3-clause
liyi193328/seq2seq
seq2seq/contrib/learn/learn_io/pandas_io_test.py
111
7865
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 102) a = np.arange(2) b = np.arange(32, 34) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -30), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=128, shuffle=False, num_epochs=2) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1, 0, 1]) self.assertAllEqual(features['b'], [32, 33, 32, 33]) self.assertAllEqual(target, [-32, -31, -32, -31]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 105) a = np.arange(5) b = np.arange(32, 37) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -27), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) features, target = session.run(results) self.assertAllEqual(features['a'], [2, 3]) self.assertAllEqual(features['b'], [34, 35]) self.assertAllEqual(target, [-30, -29]) features, target = session.run(results) self.assertAllEqual(features['a'], [4]) self.assertAllEqual(features['b'], [36]) self.assertAllEqual(target, [-28]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.test_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.test_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
apache-2.0
mpi2/PhenotypeData
external_tools/src/main/python/images/qc_get_urls_from_download_file_path.py
1
3400
"""Get urls from nfs file paths This script uses download_file_paths from solr (imagename column in csv file from xray QC) to obtain the download_urls in the csv file provided by Federico. The download_file_paths are nfs paths of the form: impc_base_dir/site/pipeline_stable_id/ procedure_stable_id/parameter_stable_id/filename These need to be mapped to the download_urls for DCC. """ from pathlib import Path import argparse import pandas as pd from qc_mappings import PARAMETER_ID_TO_CLASS_MAP, CLASS_TO_PARAMETER_ID_MAP # Local function to get parameters using class labels def _parameter_from_class(classlabel, prefix="IMPC"): try: return prefix + "_XRY_" + \ CLASS_TO_PARAMETER_ID_MAP[int(classlabel)]+"_001" except (ValueError, KeyError,): return "UNKNOWN_PARAMETER_STABLE_ID" except: return "PARAMETER_MAP_ERROR" parser = argparse.ArgumentParser( description = "Get urls from nfs file paths" ) parser.add_argument( '-u', '--url-csv-path', dest='url_csv_path', required=True, help='path to csv containing urls. This is normally provided by ' + \ 'Federico at the start of the data-release' ) parser.add_argument( '-i', '--input-base-dir', dest='input_base_dir', required=True, help='Base directory containing verified QC files' ) parser.add_argument( '-o', '--output-base-dir', dest='output_base_dir', help='Directory to store output containing mapped csvs. Defauts to ' + \ 'input-base-dir if not supplied' ) args = parser.parse_args() # Read in file with urls and create key using pipeline, procedure, parameter and filename df_urls = pd.read_csv(args.url_csv_path) df_urls['key'] = df_urls['pipeline_stable_id'] + df_urls['procedure_stable_id'] + df_urls['parameter_stable_id'] + df_urls['download_file_path'].map(lambda x: x.split('/')[-1]) df_urls = df_urls.set_index('key') input_base_dir = Path(args.input_base_dir) if args.output_base_dir is None: output_base_dir = Path(args.input_base_dir) else: output_base_dir = Path(args.output_base_dir) to_process = [str(p) for p in input_base_dir.glob('**/*structures*processed.csv')] for fpath in to_process: fname = fpath.split('/')[-1] # Get prefix for parameter_stable_id prefix = fname.split('_')[1] df = pd.read_csv(fpath) if 'verified_classlabel' not in df.columns: print(f"No 'verified classlabel' column in {fname} - not processing") continue # Filter out records with wrong parameter IDs parameter_id = fname.split('_')[3] expected_label = PARAMETER_ID_TO_CLASS_MAP[parameter_id] df = df[df['verified_classlabel'] != expected_label] if len(df) == 0: print(f"No incorrectly annotated images for {fname}") continue df['key'] = df['imagename'].map(lambda s: "".join(s.split('/')[-4:])) df.set_index('key', inplace=True) df['download_file_path'] = df_urls.loc[df.index]['download_file_path'] df['correct_parameter_id'] = \ df['verified_classlabel'].map(lambda x: _parameter_from_class(x,prefix)) df.sort_values('correct_parameter_id', inplace=True) out_fname = fname[:-4]+"_url.csv" out_path = output_base_dir.joinpath(out_fname) df.to_csv(out_path, index=False, columns=['download_file_path', 'correct_parameter_id']) print(f"Written output to {out_path}")
apache-2.0
J535D165/recordlinkage
tests/test_measures.py
1
4180
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import recordlinkage as rl import numpy import pandas FULL_INDEX = pandas.MultiIndex.from_product( [[1, 2, 3], [1, 2, 3]], # 3x3 matrix names=['first', 'second']) LINKS_TRUE = pandas.MultiIndex.from_tuples( [(1, 1), (2, 2), (3, 3)], # the diagonal names=['first', 'second']) LINKS_PRED = pandas.MultiIndex.from_tuples( [(1, 1), (2, 1), (3, 1), (1, 2)], # L shape names=['first', 'second']) class TestMeasures(object): def test_confusion_matrix(self): result_len = rl.confusion_matrix(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) result_full_index = rl.confusion_matrix(LINKS_TRUE, LINKS_PRED, FULL_INDEX) expected = numpy.array([[1, 2], [3, 3]]) numpy.testing.assert_array_equal(result_len, expected) numpy.testing.assert_array_equal(result_full_index, expected) def test_tp_fp_tn_fn(self): tp = rl.true_positives(LINKS_TRUE, LINKS_PRED) assert tp == 1 fp = rl.false_positives(LINKS_TRUE, LINKS_PRED) assert fp == 3 tn = rl.true_negatives(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) assert tn == 3 fn = rl.false_negatives(LINKS_TRUE, LINKS_PRED) assert fn == 2 def test_recall(self): # confusion matrix cm = rl.confusion_matrix(LINKS_TRUE, LINKS_PRED) assert rl.recall(LINKS_TRUE, LINKS_PRED) == 1 / 3 assert rl.recall(cm) == 1 / 3 def test_precision(self): # confusion matrix cm = rl.confusion_matrix(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) assert rl.precision(LINKS_TRUE, LINKS_PRED) == 1 / 4 assert rl.precision(cm) == 1 / 4 def test_accuracy(self): # confusion matrix cm = rl.confusion_matrix(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) assert rl.accuracy(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) == 4 / 9 assert rl.accuracy(cm) == 4 / 9 assert rl.accuracy(LINKS_TRUE, LINKS_PRED, FULL_INDEX) == 4 / 9 def test_specificity(self): # confusion matrix cm = rl.confusion_matrix(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) assert rl.specificity(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) == 1 / 2 assert rl.specificity(cm) == 1 / 2 assert rl.specificity(LINKS_TRUE, LINKS_PRED, FULL_INDEX) == 1 / 2 def test_fscore(self): # confusion matrix cm = rl.confusion_matrix(LINKS_TRUE, LINKS_PRED, len(FULL_INDEX)) prec = rl.precision(LINKS_TRUE, LINKS_PRED) rec = rl.recall(LINKS_TRUE, LINKS_PRED) expected = float(2 * prec * rec / (prec + rec)) assert rl.fscore(LINKS_TRUE, LINKS_PRED) == expected assert rl.fscore(cm) == expected def test_full_index_size(self): df_a = pandas.DataFrame(numpy.arange(10)) df_b = pandas.DataFrame(numpy.arange(10)) assert rl.full_index_size(df_a) == 45 assert rl.full_index_size(len(df_a)) == 45 assert rl.full_index_size((len(df_a))) == 45 assert rl.full_index_size([len(df_a)]) == 45 assert rl.full_index_size(df_a, df_b) == 100 assert rl.full_index_size(len(df_a), len(df_b)) == 100 assert rl.full_index_size((len(df_a), len(df_b))) == 100 assert rl.full_index_size([len(df_a), len(df_b)]) == 100 def test_reduction_ratio(self): df_a = pandas.DataFrame(numpy.arange(10)) df_b = pandas.DataFrame(numpy.arange(10)) candidate_pairs_link = pandas.MultiIndex.from_product( [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]) candidate_pairs_dedup = pandas.MultiIndex.from_arrays( [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]) assert rl.reduction_ratio(candidate_pairs_dedup, df_a) == 8 / 9 assert rl.reduction_ratio(candidate_pairs_dedup, (df_a)) == 8 / 9 assert rl.reduction_ratio(candidate_pairs_dedup, (df_a, )) == 8 / 9 assert rl.reduction_ratio(candidate_pairs_link, df_a, df_b) == 3 / 4 assert rl.reduction_ratio(candidate_pairs_link, (df_a, df_b)) == 3 / 4 assert rl.reduction_ratio(candidate_pairs_link, [df_a, df_b]) == 3 / 4
bsd-3-clause
lenovor/scikit-learn
examples/svm/plot_oneclass.py
249
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
whitews/dpconverge
dpconverge/data_collection.py
1
6939
from data_set import DataSet from flowstats import cluster import numpy as np import pandas as pd import multiprocessing def bem_cluster(input_dict): model = cluster.DPMixtureModel( input_dict['component_count'], input_dict['iteration_count'], burn_in=0, model='bem' ) bem_results = model.fit( input_dict['data'], 0, seed=input_dict['random_seed'], munkres_id=False, verbose=True ) dp_mixture_iter = bem_results.get_iteration(0) log_like = dp_mixture_iter.log_likelihood(input_dict['data']) print log_like true_comp_count = np.sum(bem_results.pis > 0.0001) return { 'comp': input_dict['component_count'], 'true_comp': true_comp_count, 'seed': input_dict['random_seed'], 'log_like': log_like } class DataCollection(object): """ A collection of DataSet objects """ def __init__(self): self._parameter_count = None self.data_sets = [] @property def data_set_count(self): return len(self.data_sets) def add_data_set(self, data_set): if not isinstance(data_set, DataSet): raise TypeError("data_set must be of type DataSet") if self._parameter_count is None: self._parameter_count = data_set.parameter_count if self._parameter_count != data_set.parameter_count: raise ValueError( "Data set parameter count must match the existing data sets" ) else: self.data_sets.append(data_set) def reset_results(self): for ds in self.data_sets: ds.results = None ds.raw_results = None def estimate_initial_conditions(self, max_comp=128, max_iter=5000): # now run bem on the combined data set to get initial conditions max_log_like = None # the highest value for all runs converged = False component_count = max_comp iteration_count = max_iter results = [] # will be a list of dicts to convert to a DataFrame cpu_count = multiprocessing.cpu_count() bem_pool = multiprocessing.Pool(processes=cpu_count) data = np.vstack( [np.vstack(ds.blobs.values()) for ds in self.data_sets] ) while not converged: print component_count new_comp_counts = [] # set of dictionaries for this comp run, one for each seed input_dicts = [ { 'data': data, 'component_count': component_count, 'iteration_count': iteration_count, 'random_seed': seed } for seed in range(1, 17) ] tmp_results_list = bem_pool.map(bem_cluster, input_dicts) for r in tmp_results_list: if r['log_like'] > max_log_like: max_log_like = r['log_like'] for r in tmp_results_list: # if the new log_like is close to the max (within 1%), # see if there are any empty components (pi < 0.0001) if abs(max_log_like - r['log_like']) < abs(max_log_like * 0.01): new_comp_counts.append(r['true_comp']) # save good run to our results results.append(r) if len(new_comp_counts) > 0: if int(np.mean(new_comp_counts)) < component_count: component_count = int(np.min(new_comp_counts)) else: converged = True else: converged = True results_df = pd.DataFrame( results, columns=['comp', 'true_comp', 'seed', 'log_like'] ) min_comp = results_df.comp.min() best_index = results_df[results_df.comp == min_comp].log_like.argmax() best_run = results[best_index] # create a data set that's the combination of all data sets prelim_ds = DataSet(parameter_count=self._parameter_count) for i, ds in enumerate(self.data_sets): # start blob labels at 1 (i + 1) prelim_ds.add_blob(i + 1, np.vstack(ds.blobs.values())) prelim_ds.cluster( component_count=best_run['comp'], burn_in=0, iteration_count=iteration_count, random_seed=best_run['seed'], model='bem' ) log_like = prelim_ds.get_log_likelihood_trace()[0] print log_like # get classifications to calculate weights for each data set pis = [] for label in sorted(prelim_ds.labels): label_classes = prelim_ds.get_classifications(0, [label]) ds_pis = [] for c in range(best_run['comp']): ds_pis.append(np.sum(label_classes == c) / float(len(label_classes))) pis.append(ds_pis) # list of lists # convert LoL pis to numpy array pis = np.array(pis) prelim_ds.plot_classifications(0) # Re-run a chain using the initial conditions from the last iteration last_iter = prelim_ds.raw_results.get_iteration(0) initial_conditions = { 'pis': pis, 'mus': last_iter.mus, 'sigmas': last_iter.sigmas } return best_run['comp'], initial_conditions def cluster( self, component_count, burn_in, iteration_count, random_seed, initial_conditions=None ): # local 'data_sets' holds the raw data values for each DataSet data_sets = list() for ds in self.data_sets: data = np.vstack(ds.blobs.values()) if data.size == 0: raise ValueError("Found an empty data set") data_sets.append(data) if len(data_sets) < 2: # nothing for us to do raise ValueError("HDP needs at least 2 data sets") model = cluster.HDPMixtureModel( component_count, iteration_count, burn_in ) if initial_conditions is not None: # should check keys of initial values, the # shapes & values should be taken care of in FlowStats initial_weights = initial_conditions['pis'] model.load_mu(initial_conditions['mus']) model.load_sigma(initial_conditions['sigmas']) else: initial_weights = None fitted_results = model.fit( data_sets, 0, seed=random_seed, munkres_id=False, verbose=True, initial_weights=initial_weights ) # save results for each DataSet for i, ds in enumerate(self.data_sets): ds.add_results(fitted_results[i]) return fitted_results
bsd-3-clause
NunoEdgarGub1/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
andrewnc/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
yhat/db.py
db/column.py
1
7909
from prettytable import PrettyTable import pandas as pd class Column(object): """ A Columns is an in-memory reference to a column in a particular table. You can use it to do some basic DB exploration and you can also use it to execute simple queries. """ def __init__(self, con, query_templates, schema, table, name, dtype, keys_per_column): self._con = con self._query_templates = query_templates self.schema = schema self.table = table self.name = name self.type = dtype self.keys_per_column = keys_per_column self.foreign_keys = [] self.ref_keys = [] def __repr__(self): tbl = PrettyTable(["Table", "Name", "Type", "Foreign Keys", "Reference Keys"]) tbl.add_row([self.table, self.name, self.type, self._str_foreign_keys(), self._str_ref_keys()]) return str(tbl) def __str__(self): return "Column({0})<{1}>".format(self.name, self.__hash__()) def _repr_html_(self): tbl = PrettyTable(["Table", "Name", "Type"]) tbl.add_row([self.table, self.name, self.type]) return tbl.get_html_string() def _str_foreign_keys(self): keys = [] for col in self.foreign_keys: keys.append("%s.%s" % (col.table, col.name)) if self.keys_per_column is not None and len(keys) > self.keys_per_column: keys = keys[0:self.keys_per_column] + ['(+ {0} more)'.format(len(keys) - self.keys_per_column)] return ", ".join(keys) def _str_ref_keys(self): keys = [] for col in self.ref_keys: keys.append("%s.%s" % (col.table, col.name)) if self.keys_per_column is not None and len(keys) > self.keys_per_column: keys = keys[0:self.keys_per_column] + ['(+ {0} more)'.format(len(keys) - self.keys_per_column)] return ", ".join(keys) def head(self, n=6): """ Returns first n values of your column as a DataFrame. This is executing: SELECT <name_of_the_column> FROM <name_of_the_table> LIMIT <n> Parameters ---------- n: int number of rows to return Examples -------- >>> from db import DemoDB >>> db = DemoDB() >>> db.tables.Customer.City.head() 0 Sao Jose dos Campos 1 Stuttgart 2 Montreal 3 Oslo 4 Prague 5 Prague Name: City, dtype: object >>> db.tables.Customer.City.head(2) 0 Sao Jose dos Campos 1 Stuttgart Name: City, dtype: object """ q = self._query_templates['column']['head'].format(column=self.name, schema=self.schema, table=self.table, n=n) return pd.read_sql(q, self._con)[self.name] def all(self): """ Returns entire column as a DataFrame. This is executing: SELECT DISTINCT <name_of_the_column> FROM <name_of_the_table> Examples -------- >>> from db import DemoDB >>> db = DemoDB() >>> db.tables.Customer.Email.all().head() 0 [email protected] 1 [email protected] 2 [email protected] 3 [email protected] 4 [email protected] Name: Email, dtype: object >>> df = db.tables.Customer.Email.all() >>> len(df) 59 """ q = self._query_templates['column']['all'].format(column=self.name, schema=self.schema, table=self.table) return pd.read_sql(q, self._con)[self.name] def unique(self): """ Returns all unique values as a DataFrame. This is executing: SELECT DISTINCT <name_of_the_column> FROM <name_of_the_table> Examples -------- >>> from db import DemoDB >>> db = DemoDB() >>> db.tables.Customer.FirstName.unique().head(10) 0 Luis 1 Leonie 2 Francois 3 Bjorn 4 Franti\u0161ek 5 Helena 6 Astrid 7 Daan 8 Kara 9 Eduardo Name: FirstName, dtype: object >>> len(db.tables.Customer.LastName.unique()) 59 """ q = self._query_templates['column']['unique'].format(column=self.name, schema=self.schema, table=self.table) return pd.read_sql(q, self._con)[self.name] def sample(self, n=10): """ Returns random sample of n rows as a DataFrame. This is executing: SELECT <name_of_the_column> FROM <name_of_the_table> ORDER BY RANDOM() LIMIT <n> Parameters ---------- n: int number of rows to sample Examples (removed from doctest as we can't predict random names...) -------- from db import DemoDB db = DemoDB() db.tables.Artist.Name.sample(10) 0 Pedro Luis & A Parede 1 Santana Feat. Eric Clapton 2 Os Mutantes 3 Banda Black Rio 4 Adrian Leaper & Doreen de Feis 5 Chicago Symphony Orchestra & Fritz Reiner 6 Smashing Pumpkins 7 Spyro Gyra 8 Aaron Copland & London Symphony Orchestra 9 Sir Georg Solti & Wiener Philharmoniker Name: Name, dtype: object >>> from db import DemoDB >>> db = DemoDB() >>> df = db.tables.Artist.Name.sample(10) >>> len(df) 10 """ q = self._query_templates['column']['sample'].format(column=self.name, schema=self.schema, table=self.table, n=n) return pd.read_sql(q, self._con)[self.name] def to_dict(self): """ Serialize representation of the column for local caching. """ return {'schema': self.schema, 'table': self.table, 'name': self.name, 'type': self.type} class ColumnSet(object): """ Set of Columns. Used for displaying search results in terminal/ipython notebook. """ def __init__(self, columns): self.columns = columns self.pretty_tbl_cols = ["Table", "Column Name", "Type"] self.use_schema = False for col in columns: if col.schema and not self.use_schema: self.use_schema = True self.pretty_tbl_cols.insert(0, "Schema") def __getitem__(self, i): return self.columns[i] def _tablify(self): tbl = PrettyTable(self.pretty_tbl_cols) for col in self.pretty_tbl_cols: tbl.align[col] = "l" for col in self.columns: row_data = [col.table, col.name, col.type] if self.use_schema: row_data.insert(0, col.schema) tbl.add_row(row_data) return tbl def __repr__(self): tbl = str(self._tablify()) return tbl def _repr_html_(self): return self._tablify().get_html_string() def to_dict(self): """Serialize representation of the tableset for local caching.""" return {'columns': [col.to_dict() for col in self.columns]}
bsd-2-clause
SCECcode/BBP
bbp/utils/batch/combine_map_gof_gen.py
1
13475
#!/usr/bin/env python """ Copyright 2010-2019 University Of Southern California Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. This program created a map-based GOF, combining information from all realizations into a single map plot where the color of each station is the average bias from all realizations. """ # Import Python modules import os import glob import optparse import matplotlib if (matplotlib.get_backend() != 'agg'): matplotlib.use('Agg') # Disables use of Tk/X11 import matplotlib.colors as mcolors import matplotlib.cm as cm from matplotlib.ticker import FormatStrFormatter import pylab import numpy # Import Broadband modules from install_cfg import InstallCfg import PlotMap import fault_utils import plot_config import bband_utils # Constants # Use an extra buffer to plot the region around all stations (in degrees) BUFFER_LATITUDE = 0.25 BUFFER_LONGITUDE = 0.25 DIST_PERIODS = [0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0] # -------------------------------------------------------------------------- # Functions # -------------------------------------------------------------------------- def set_boundaries_from_lon_lat(all_sta_lon, all_sta_lat): """ This function sets the north, south, east, and west boundaries of the region we should plot, using the stations' locations in a lat/lon list """ # Start without anything north = None south = None east = None west = None all_lon = [] all_lat = [] for lon_list, lat_list in zip(all_sta_lon, all_sta_lat): for sta_lon, sta_lat in zip(lon_list, lat_list): all_lon.append(sta_lon) all_lat.append(sta_lat) for lon, lat in zip(all_lon, all_lat): # If this is the first station, use its location if north is None: north = lat south = lat east = lon west = lon # Next station continue if lat > north: north = lat elif lat < south: south = lat if lon > east: east = lon elif lon < west: west = lon # Try to make the plot more symmetric lat_range = abs(north - south) lon_range = abs(east - west) if (lat_range > lon_range): diff = lat_range - lon_range diff = diff / 2.0 east = east + diff west = west - diff elif (lon_range > lat_range): diff = lon_range - lat_range diff = diff / 2.0 north = north + diff south = south - diff # Great, now we just add a buffer on each side if north < (90 - BUFFER_LATITUDE): north = north + BUFFER_LATITUDE else: north = 90 if south > (-90 + BUFFER_LATITUDE): south = south - BUFFER_LATITUDE else: south = -90 if east < (180 - BUFFER_LONGITUDE): east = east + BUFFER_LONGITUDE else: east = 180 if west > (-180 + BUFFER_LONGITUDE): west = west - BUFFER_LONGITUDE else: west = -180 return north, south, east, west def combine_realization_data(tmpdir, period): """ This function reads the resid-map files from all realizations and returns the combined data set """ data = {} realizations = sorted(os.listdir(tmpdir)) for realization in realizations: basedir = os.path.join(tmpdir, realization) resid_file = glob.glob("%s%s*-resid-map-%.3f-rotd50.txt" % (basedir, os.sep, period)) if len(resid_file) != 1: raise bband_utils.ProcessingError("Residuals file not found for " "realization %s!" % (realization)) resid_file = resid_file[0] input_file = open(resid_file, 'r') for line in input_file: line = line.strip() # Skip comments and empty lines if line.startswith("#") or line.startswith("%") or not line: continue pieces = line.split() # Make sure we have enough tokens if len(pieces) != 3: continue # Convert to floats pieces = [float(piece) for piece in pieces] lon = pieces[0] lat = pieces[1] val = pieces[2] if (lon, lat) in data: data[(lon, lat)].append(val) else: data[(lon, lat)] = [val] input_file.close() # Ok, processed all realizations, now combine the data sta_x_data = [] sta_y_data = [] sta_resid_data = [] for item in data: sta_x_data.append(item[0]) sta_y_data.append(item[1]) sta_resid_data.append(numpy.mean(data[item])) # Return the data we found return sta_x_data, sta_y_data, sta_resid_data def plot_combined_map_gof(indir, tmpdir, outdir, codebase): """ This function reads data from the residuals files from multiple realizations and plots a map gof plot with a number of periods. """ # Capture number of realizations and event label num_realizations = len(os.listdir(tmpdir)) basedir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) resid_file = glob.glob("%s%s*-resid-map*rotd50.txt" % (basedir, os.sep))[0] event_label = os.path.basename(resid_file).split("-")[0] # Get one trace file basedir = os.path.join(indir, os.listdir(indir)[0]) trace_file = glob.glob("%s%s*.trace" % (basedir, os.sep))[0] # Now get the SRC (or SRF file) in order to get the hypocenter # location. Note that this function will look for the hypocenter # location from the first realization. If the simulation was # created using randomized hypocenter locations, the plot will # only display the location of the hypocenter from the first # realization. src_file = glob.glob("%s%s*.src" % (basedir, os.sep)) if not len(src_file): srf_file = glob.glob("%s%s*.srf" % (basedir, os.sep)) if not len(srf_file): raise bband_utils.ProcessingError("Cannot find SRC/SRF file!") source_file = srf_file[0] else: source_file = src_file[0] # Get hypo_lon, hypo_lat from src/srf file hypo_lon, hypo_lat = fault_utils.calculate_epicenter(source_file) # Collect all the data from the residuals file all_sta_x_data = [] all_sta_y_data = [] all_sta_resid_data = [] for period in DIST_PERIODS: (sta_x_data, sta_y_data, sta_resid_data) = combine_realization_data(tmpdir, period) all_sta_x_data.append(sta_x_data) all_sta_y_data.append(sta_y_data) all_sta_resid_data.append(sta_resid_data) # Get plot boundaries (north, south, east, west) = set_boundaries_from_lon_lat(all_sta_x_data, all_sta_y_data) # Get directory names install = InstallCfg.getInstance() # Prepare to plot map GOF plotregion = [west, east, south, north] topo = os.path.join(install.A_PLOT_DATA_DIR, 'calTopo18.bf') coastal = os.path.join(install.A_PLOT_DATA_DIR, 'gshhs_h.txt') border = os.path.join(install.A_PLOT_DATA_DIR, 'wdb_borders_h.txt') # Now create the map GOF outfile = os.path.join(outdir, "gof-map-combined-%s-%s-rotd50.png" % (codebase, event_label)) create_combined_map_gof(all_sta_x_data, all_sta_y_data, all_sta_resid_data, plotregion, topo, coastal, border, trace_file, event_label, num_realizations, codebase, outfile, hypo_lat=hypo_lat, hypo_lon=hypo_lon) def create_combined_map_gof(all_sta_x_data, all_sta_y_data, all_sta_resid_data, plotregion, topo, coastal, border, fault, event_label, num_realizations, codebase, outfile, hypo_lat=None, hypo_lon=None): """ Creates a combined gof map plot for all the data and distances provided """ plottitle = ("GOF Comparison for %s\n%d Realizations\n%s Method" % (event_label, num_realizations, codebase.upper())) # Read in topo data topo_points = PlotMap.read_topo(topo, plotregion) # Read in fault data fault_x, fault_y = PlotMap.read_fault(fault) # Read coastlines coast_x, coast_y = PlotMap.read_coastal(coastal, plotregion) # Read borders bord_x, bord_y = PlotMap.read_coastal(border, plotregion) # Create figure num_plots = len(DIST_PERIODS) if len(DIST_PERIODS) % 2: num_plots = num_plots + 1 num_columns = num_plots / 2 fig, axs = pylab.plt.subplots(2, num_columns) fig.set_size_inches(12, 6.5) fig.autofmt_xdate() # Setup color scale cmap = cm.gist_gray norm = mcolors.Normalize(vmin=-2000.0, vmax=3000.0) # Convert to list subfigs = [] for y_subplot in range(0, 2): for x_subplot in range(0, num_columns): subfigs.append(axs[y_subplot, x_subplot]) # Fixed vmin and vmax for all plots vmin = -1.5 vmax = 1.5 # Good, now walk through each subfig for (subfig, sta_x_data, sta_y_data, sta_resid_data, period) in zip(subfigs, all_sta_x_data, all_sta_y_data, all_sta_resid_data, DIST_PERIODS): # Plot basemap subfig.imshow(topo_points, cmap=cmap, norm=norm, extent=plotregion, interpolation='nearest') # Freeze the axis extents subfig.set_autoscale_on(False) # Plot coast lines for idx in xrange(0, len(coast_x)): subfig.plot(coast_x[idx], coast_y[idx], linestyle='-', color='0.75') # Plot borders for idx in xrange(0, len(bord_x)): subfig.plot(bord_x[idx], bord_y[idx], linestyle='-', color='0.75') # Plot fault trace subfig.plot(fault_x, fault_y, linestyle='-', color='k') # Plot hypocenter if hypo_lat is not None and hypo_lon is not None: hypo_lat = [hypo_lat] hypo_lon = [hypo_lon] subfig.scatter(hypo_lon, hypo_lat, marker=(5,1,0), color='y', s=50) # Plot the stations im = subfig.scatter(sta_x_data, sta_y_data, s=20, c=sta_resid_data, cmap=cm.jet_r, vmin=vmin, vmax=vmax, marker='o') # Set degree formatting of tick values major_formatter = FormatStrFormatter(u'%.1f\u00b0') subfig.xaxis.set_major_formatter(major_formatter) subfig.yaxis.set_major_formatter(major_formatter) #Disable colorbar on each plot #subfig.figure.colorbar(im, ax=subfig) # Set font size for tick in subfig.get_xticklabels(): tick.set_fontsize(6) for tick in subfig.get_yticklabels(): tick.set_fontsize(6) subfig.set_title("Period = %.3f s" % (period), size=8) # Slightly different values for top/bottom since the combined plot # has 3 title lines fig.subplots_adjust(left = 0.05, right = 0.91, hspace = 0.0, top = 0.92, bottom = 0.02) colorbar_ax = fig.add_axes([0.93, 0.17, 0.02, 0.6]) fig.colorbar(im, cax=colorbar_ax) fig.suptitle('%s' % (plottitle), size=12) print "Saving map GoF plot to %s" % (outfile) fig.savefig(outfile, format="png", transparent=False, dpi=plot_config.dpi) # -------------------------------------------------------------------------- # Main # -------------------------------------------------------------------------- PARSER = optparse.OptionParser() PARSER.add_option("-d", "--dir", dest="input_dir", help="Input directory containing simulation results") PARSER.add_option("-o", "--output_dir", dest="output_dir", help="Directory where produced map plot will go") PARSER.add_option("-c", "--codebase", dest="codebase", help="Method used for the simulation") (OPTIONS, ARGS) = PARSER.parse_args() if OPTIONS.input_dir is None: PARSER.error("Please specify the input directory!") TOP_INPUT_DIR = OPTIONS.input_dir if not os.path.isdir(TOP_INPUT_DIR): PARSER.error("Invalid input directory!") if not "Sims" in os.listdir(TOP_INPUT_DIR): PARSER.error("Please provide the top-level simulation directory!\n" "This is the directory given to the cluster script") INPUT_OUTDIR = os.path.join(TOP_INPUT_DIR, "Sims" , "outdata") INPUT_INDIR = os.path.join(TOP_INPUT_DIR, "Sims", "indata") if OPTIONS.output_dir is None: PARSER.error("error specify output directory!") else: OUTPUT_DIR = OPTIONS.output_dir if not os.path.isdir(OUTPUT_DIR): PARSER.error("Invalid output directory!") if OPTIONS.codebase is None: PARSER.error("Please specify codebase!") # Create combined map gof plot plot_combined_map_gof(INPUT_INDIR, INPUT_OUTDIR, OUTPUT_DIR, OPTIONS.codebase) # All done! print "All Done!"
apache-2.0
anorfleet/turntable
test/lib/python2.7/site-packages/scipy/cluster/hierarchy.py
7
93813
""" ======================================================== Hierarchical clustering (:mod:`scipy.cluster.hierarchy`) ======================================================== .. currentmodule:: scipy.cluster.hierarchy These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation. .. autosummary:: :toctree: generated/ fcluster fclusterdata leaders These are routines for agglomerative clustering. .. autosummary:: :toctree: generated/ linkage single complete average weighted centroid median ward These routines compute statistics on hierarchies. .. autosummary:: :toctree: generated/ cophenet from_mlab_linkage inconsistent maxinconsts maxdists maxRstat to_mlab_linkage Routines for visualizing flat clusters. .. autosummary:: :toctree: generated/ dendrogram These are data structures and routines for representing hierarchies as tree objects. .. autosummary:: :toctree: generated/ ClusterNode leaves_list to_tree These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments. .. autosummary:: :toctree: generated/ is_valid_im is_valid_linkage is_isomorphic is_monotonic correspond num_obs_linkage Utility routines for plotting: .. autosummary:: :toctree: generated/ set_link_color_palette References ---------- .. [1] "Statistics toolbox." API Reference Documentation. The MathWorks. http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007. .. [2] "Hierarchical clustering." API Reference Documentation. The Wolfram Research, Inc. http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/ HierarchicalClustering.html. Accessed October 1, 2007. .. [3] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage Cluster Analysis." Applied Statistics. 18(1): pp. 54--64. 1969. .. [4] Ward Jr, JH. "Hierarchical grouping to optimize an objective function." Journal of the American Statistical Association. 58(301): pp. 236--44. 1963. .. [5] Johnson, SC. "Hierarchical clustering schemes." Psychometrika. 32(2): pp. 241--54. 1966. .. [6] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp. 855--60. 1962. .. [7] Batagelj, V. "Comparing resemblance measures." Journal of Classification. 12: pp. 73--90. 1995. .. [8] Sokal, RR and Michener, CD. "A statistical method for evaluating systematic relationships." Scientific Bulletins. 38(22): pp. 1409--38. 1958. .. [9] Edelbrock, C. "Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody." Multivariate Behavioral Research. 14: pp. 367--84. 1979. .. [10] Jain, A., and Dubes, R., "Algorithms for Clustering Data." Prentice-Hall. Englewood Cliffs, NJ. 1988. .. [11] Fisher, RA "The use of multiple measurements in taxonomic problems." Annals of Eugenics, 7(2): 179-188. 1936 * MATLAB and MathWorks are registered trademarks of The MathWorks, Inc. * Mathematica is a registered trademark of The Wolfram Research, Inc. """ from __future__ import division, print_function, absolute_import # Copyright (C) Damian Eads, 2007-2008. New BSD License. # hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com) # # Author: Damian Eads # Date: September 22, 2007 # # Copyright (c) 2007, 2008, Damian Eads # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # - Neither the name of the author nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import warnings import numpy as np from . import _hierarchy import scipy.spatial.distance as distance from scipy.lib.six import string_types from scipy.lib.six import xrange _cpy_non_euclid_methods = {'single': 0, 'complete': 1, 'average': 2, 'weighted': 6} _cpy_euclid_methods = {'centroid': 3, 'median': 4, 'ward': 5} _cpy_linkage_methods = set(_cpy_non_euclid_methods.keys()).union( set(_cpy_euclid_methods.keys())) __all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet', 'correspond', 'dendrogram', 'fcluster', 'fclusterdata', 'from_mlab_linkage', 'inconsistent', 'is_isomorphic', 'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders', 'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts', 'median', 'num_obs_linkage', 'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree', 'ward', 'weighted', 'distance'] def _warning(s): warnings.warn('scipy.cluster: %s' % s, stacklevel=3) def _copy_array_if_base_present(a): """ Copies the array if its base points to a parent array. """ if a.base is not None: return a.copy() elif np.issubsctype(a, np.float32): return np.array(a, dtype=np.double) else: return a def _copy_arrays_if_base_present(T): """ Accepts a tuple of arrays T. Copies the array T[i] if its base array points to an actual array. Otherwise, the reference is just copied. This is useful if the arrays are being passed to a C function that does not do proper striding. """ l = [_copy_array_if_base_present(a) for a in T] return l def _randdm(pnts): """ Generates a random distance matrix stored in condensed form. A pnts * (pnts - 1) / 2 sized vector is returned. """ if pnts >= 2: D = np.random.rand(pnts * (pnts - 1) / 2) else: raise ValueError("The number of points in the distance matrix " "must be at least 2.") return D def single(y): """ Performs single/min/nearest linkage on the condensed distance matrix ``y`` Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray The linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='single', metric='euclidean') def complete(y): """ Performs complete/max/farthest point linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage """ return linkage(y, method='complete', metric='euclidean') def average(y): """ Performs average/UPGMA linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='average', metric='euclidean') def weighted(y): """ Performs weighted/WPGMA linkage on the condensed distance matrix. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage : for advanced creation of hierarchical clusterings. """ return linkage(y, method='weighted', metric='euclidean') def centroid(y): """ Performs centroid/UPGMC linkage. See ``linkage`` for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = centroid(y)`` Performs centroid/UPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = centroid(X)`` Performs centroid/UPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- Q : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='centroid', metric='euclidean') def median(y): """ Performs median/WPGMC linkage. See ``linkage`` for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = median(y)`` Performs median/WPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = median(X)`` Performs median/WPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- Q : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='median', metric='euclidean') def ward(y): """ Performs Ward's linkage on a condensed or redundant distance matrix. See linkage for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = ward(y)`` Performs Ward's linkage on the condensed distance matrix ``Z``. See linkage for more information on the return structure and algorithm. 2. ``Z = ward(X)`` Performs Ward's linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- Q : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='ward', metric='euclidean') def linkage(y, method='single', metric='euclidean'): """ Performs hierarchical/agglomerative clustering on the condensed distance matrix y. y must be a :math:`{n \\choose 2}` sized vector where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function. A 4 by :math:`(n-1)` matrix ``Z`` is returned. At the :math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and ``Z[i, 1]`` are combined to form cluster :math:`n + i`. A cluster with an index less than :math:`n` corresponds to one of the :math:`n` original observations. The distance between clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The fourth value ``Z[i, 3]`` represents the number of original observations in the newly formed cluster. The following linkage methods are used to compute the distance :math:`d(s, t)` between two clusters :math:`s` and :math:`t`. The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters :math:`s` and :math:`t` from this forest are combined into a single cluster :math:`u`, :math:`s` and :math:`t` are removed from the forest, and :math:`u` is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root. A distance matrix is maintained at each iteration. The ``d[i,j]`` entry corresponds to the distance between cluster :math:`i` and :math:`j` in the original forest. At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster u with the remaining clusters in the forest. Suppose there are :math:`|u|` original observations :math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and :math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in cluster :math:`v`. Recall :math:`s` and :math:`t` are combined to form cluster :math:`u`. Let :math:`v` be any remaining cluster in the forest that is not :math:`u`. The following are methods for calculating the distance between the newly formed cluster :math:`u` and each :math:`v`. * method='single' assigns .. math:: d(u,v) = \\min(dist(u[i],v[j])) for all points :math:`i` in cluster :math:`u` and :math:`j` in cluster :math:`v`. This is also known as the Nearest Point Algorithm. * method='complete' assigns .. math:: d(u, v) = \\max(dist(u[i],v[j])) for all points :math:`i` in cluster u and :math:`j` in cluster :math:`v`. This is also known by the Farthest Point Algorithm or Voor Hees Algorithm. * method='average' assigns .. math:: d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])} {(|u|*|v|)} for all points :math:`i` and :math:`j` where :math:`|u|` and :math:`|v|` are the cardinalities of clusters :math:`u` and :math:`v`, respectively. This is also called the UPGMA algorithm. * method='weighted' assigns .. math:: d(u,v) = (dist(s,v) + dist(t,v))/2 where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called WPGMA) * method='centroid' assigns .. math:: dist(s,t) = ||c_s-c_t||_2 where :math:`c_s` and :math:`c_t` are the centroids of clusters :math:`s` and :math:`t`, respectively. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the new centroid is computed over all the original objects in clusters :math:`s` and :math:`t`. The distance then becomes the Euclidean distance between the centroid of :math:`u` and the centroid of a remaining cluster :math:`v` in the forest. This is also known as the UPGMC algorithm. * method='median' assigns math:`d(s,t)` like the ``centroid`` method. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the average of centroids s and t give the new centroid :math:`u`. This is also known as the WPGMC algorithm. * method='ward' uses the Ward variance minimization algorithm. The new entry :math:`d(u,v)` is computed as follows, .. math:: d(u,v) = \\sqrt{\\frac{|v|+|s|} {T}d(v,s)^2 + \\frac{|v|+|t|} {T}d(v,t)^2 + \\frac{|v|} {T}d(s,t)^2} where :math:`u` is the newly joined cluster consisting of clusters :math:`s` and :math:`t`, :math:`v` is an unused cluster in the forest, :math:`T=|v|+|s|+|t|`, and :math:`|*|` is the cardinality of its argument. This is also known as the incremental algorithm. Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may chose a different minimum than the MATLAB version. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of :math:`m` observation vectors in n dimensions may be passed as an :math:`m` by :math:`n` array. method : str, optional The linkage algorithm to use. See the ``Linkage Methods`` section below for full descriptions. metric : str, optional The distance metric to use. See the ``distance.pdist`` function for a list of valid distance metrics. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. """ if not isinstance(method, string_types): raise TypeError("Argument 'method' must be a string.") y = _convert_to_double(np.asarray(y, order='c')) s = y.shape if len(s) == 1: distance.is_valid_y(y, throw=True, name='y') d = distance.num_obs_y(y) if method not in _cpy_non_euclid_methods: raise ValueError("Valid methods when the raw observations are " "omitted are 'single', 'complete', 'weighted', " "and 'average'.") # Since the C code does not support striding using strides. [y] = _copy_arrays_if_base_present([y]) Z = np.zeros((d - 1, 4)) if method == 'single': _hierarchy.slink(y, Z, int(d)) else: _hierarchy.linkage(y, Z, int(d), int(_cpy_non_euclid_methods[method])) elif len(s) == 2: X = y n = s[0] if method not in _cpy_linkage_methods: raise ValueError('Invalid method: %s' % method) if method in _cpy_non_euclid_methods: dm = distance.pdist(X, metric) Z = np.zeros((n - 1, 4)) if method == 'single': _hierarchy.slink(dm, Z, n) else: _hierarchy.linkage(dm, Z, n, int(_cpy_non_euclid_methods[method])) elif method in _cpy_euclid_methods: if metric != 'euclidean': raise ValueError(("Method '%s' requires the distance metric " "to be euclidean") % method) dm = distance.pdist(X, metric) Z = np.zeros((n - 1, 4)) _hierarchy.linkage(dm, Z, n, int(_cpy_euclid_methods[method])) return Z class ClusterNode: """ A tree node class for representing a cluster. Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters. The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation. See Also -------- to_tree : for converting a linkage matrix ``Z`` into a tree object. """ def __init__(self, id, left=None, right=None, dist=0, count=1): if id < 0: raise ValueError('The id must be non-negative.') if dist < 0: raise ValueError('The distance must be non-negative.') if (left is None and right is not None) or \ (left is not None and right is None): raise ValueError('Only full or proper binary trees are permitted.' ' This node has one child.') if count < 1: raise ValueError('A cluster must contain at least one original ' 'observation.') self.id = id self.left = left self.right = right self.dist = dist if self.left is None: self.count = count else: self.count = left.count + right.count def get_id(self): """ The identifier of the target node. For ``0 <= i < n``, `i` corresponds to original observation i. For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed at iteration ``i-n``. Returns ------- id : int The identifier of the target node. """ return self.id def get_count(self): """ The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf, 1 is returned. Returns ------- get_count : int The number of leaf nodes below the target node. """ return self.count def get_left(self): """ Return a reference to the left child tree object. Returns ------- left : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.left def get_right(self): """ Returns a reference to the right child tree object. Returns ------- right : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.right def is_leaf(self): """ Returns True if the target node is a leaf. Returns ------- leafness : bool True if the target node is a leaf node. """ return self.left is None def pre_order(self, func=(lambda x: x.id)): """ Performs pre-order traversal without recursive function calls. When a leaf node is first encountered, ``func`` is called with the leaf node as its argument, and its result is appended to the list. For example, the statement:: ids = root.pre_order(lambda x: x.id) returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right. Parameters ---------- func : function Applied to each leaf ClusterNode object in the pre-order traversal. Given the i'th leaf node in the pre-ordeR traversal ``n[i]``, the result of func(n[i]) is stored in L[i]. If not provided, the index of the original observation to which the node corresponds is used. Returns ------- L : list The pre-order traversal. """ # Do a preorder traversal, caching the result. To avoid having to do # recursion, we'll store the previous index we've visited in a vector. n = self.count curNode = [None] * (2 * n) lvisited = set() rvisited = set() curNode[0] = self k = 0 preorder = [] while k >= 0: nd = curNode[k] ndid = nd.id if nd.is_leaf(): preorder.append(func(nd)) k = k - 1 else: if ndid not in lvisited: curNode[k + 1] = nd.left lvisited.add(ndid) k = k + 1 elif ndid not in rvisited: curNode[k + 1] = nd.right rvisited.add(ndid) k = k + 1 # If we've visited the left and right of this non-leaf # node already, go up in the tree. else: k = k - 1 return preorder _cnode_bare = ClusterNode(0) _cnode_type = type(ClusterNode) def to_tree(Z, rd=False): """ Converts a hierarchical clustering encoded in the matrix ``Z`` (by linkage) into an easy-to-use tree object. The reference r to the root ClusterNode object is returned. Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object is a leaf node, its count must be 1, and its distance is meaningless but set to 0. Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of the functions in this library. Parameters ---------- Z : ndarray The linkage matrix in proper form (see the ``linkage`` function documentation). rd : bool, optional When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple (r,d) is returned. ``r`` is a reference to the root node while ``d`` is a dictionary mapping cluster ids to ClusterNode references. If a cluster id is less than n, then it corresponds to a singleton cluster (leaf node). See ``linkage`` for more information on the assignment of cluster ids to clusters. Returns ------- L : list The pre-order traversal. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # The number of original objects is equal to the number of rows minus # 1. n = Z.shape[0] + 1 # Create a list full of None's to store the node objects d = [None] * (n * 2 - 1) # Create the nodes corresponding to the n original objects. for i in xrange(0, n): d[i] = ClusterNode(i) nd = None for i in xrange(0, n - 1): fi = int(Z[i, 0]) fj = int(Z[i, 1]) if fi > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 0') % fi) if fj > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 1') % fj) nd = ClusterNode(i + n, d[fi], d[fj], Z[i, 2]) # ^ id ^ left ^ right ^ dist if Z[i, 3] != nd.count: raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is ' 'incorrect.') % i) d[n + i] = nd if rd: return (nd, d) else: return nd def _convert_to_bool(X): if X.dtype != np.bool: X = X.astype(np.bool) if not X.flags.contiguous: X = X.copy() return X def _convert_to_double(X): if X.dtype != np.double: X = X.astype(np.double) if not X.flags.contiguous: X = X.copy() return X def cophenet(Z, Y=None): """ Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the linkage ``Z``. Suppose ``p`` and ``q`` are original observations in disjoint clusters ``s`` and ``t``, respectively and ``s`` and ``t`` are joined by a direct parent cluster ``u``. The cophenetic distance between observations ``i`` and ``j`` is simply the distance between clusters ``s`` and ``t``. Parameters ---------- Z : ndarray The hierarchical clustering encoded as an array (see ``linkage`` function). Y : ndarray (optional) Calculates the cophenetic correlation coefficient ``c`` of a hierarchical clustering defined by the linkage matrix `Z` of a set of :math:`n` observations in :math:`m` dimensions. `Y` is the condensed distance matrix from which `Z` was generated. Returns ------- c : ndarray The cophentic correlation distance (if ``y`` is passed). d : ndarray The cophenetic distance matrix in condensed form. The :math:`ij` th entry is the cophenetic distance between original observations :math:`i` and :math:`j`. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 zz = np.zeros((n * (n - 1)) // 2, dtype=np.double) # Since the C code does not support striding using strides. # The dimensions are used instead. Z = _convert_to_double(Z) _hierarchy.cophenetic_distances(Z, zz, int(n)) if Y is None: return zz Y = np.asarray(Y, order='c') distance.is_valid_y(Y, throw=True, name='Y') z = zz.mean() y = Y.mean() Yy = Y - y Zz = zz - z numerator = (Yy * Zz) denomA = Yy ** 2 denomB = Zz ** 2 c = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum())) return (c, zz) def inconsistent(Z, d=2): """ Calculates inconsistency statistics on a linkage. Note: This function behaves similarly to the MATLAB(TM) inconsistent function. Parameters ---------- Z : ndarray The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical clustering). See ``linkage`` documentation for more information on its form. d : int, optional The number of links up to `d` levels below each non-singleton cluster. Returns ------- R : ndarray A :math:`(n-1)` by 5 matrix where the ``i``'th row contains the link statistics for the non-singleton cluster ``i``. The link statistics are computed over the link heights for links :math:`d` levels below the cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard deviation of the link heights, respectively; ``R[i,2]`` is the number of links included in the calculation; and ``R[i,3]`` is the inconsistency coefficient, .. math:: \\frac{\\mathtt{Z[i,2]}-\\mathtt{R[i,0]}} {R[i,1]} """ Z = np.asarray(Z, order='c') Zs = Z.shape is_valid_linkage(Z, throw=True, name='Z') if (not d == np.floor(d)) or d < 0: raise ValueError('The second argument d must be a nonnegative ' 'integer value.') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) n = Zs[0] + 1 R = np.zeros((n - 1, 4), dtype=np.double) _hierarchy.inconsistent(Z, R, int(n), int(d)) return R def from_mlab_linkage(Z): """ Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module. The conversion does two things: * the indices are converted from ``1..N`` to ``0..(N-1)`` form, and * a fourth column Z[:,3] is added where Z[i,3] is represents the number of original observations (leaves) in the non-singleton cluster i. This function is useful when loading in linkages from legacy data files generated by MATLAB. Parameters ---------- Z : ndarray A linkage matrix generated by MATLAB(TM). Returns ------- ZS : ndarray A linkage matrix compatible with this library. """ Z = np.asarray(Z, dtype=np.double, order='c') Zs = Z.shape # If it's empty, return it. if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() if len(Zs) != 2: raise ValueError("The linkage array must be rectangular.") # If it contains no rows, return it. if Zs[0] == 0: return Z.copy() Zpart = Z.copy() if Zpart[:, 0:2].min() != 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]: raise ValueError('The format of the indices is not 1..N') Zpart[:, 0:2] -= 1.0 CS = np.zeros((Zs[0],), dtype=np.double) _hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1) return np.hstack([Zpart, CS.reshape(Zs[0], 1)]) def to_mlab_linkage(Z): """ Converts a linkage matrix to a MATLAB(TM) compatible one. Converts a linkage matrix ``Z`` generated by the linkage function of this module to a MATLAB(TM) compatible one. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. Parameters ---------- Z : ndarray A linkage matrix generated by this library. Returns ------- to_mlab_linkage : ndarray A linkage matrix compatible with MATLAB(TM)'s hierarchical clustering functions. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. """ Z = np.asarray(Z, order='c', dtype=np.double) Zs = Z.shape if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() is_valid_linkage(Z, throw=True, name='Z') ZP = Z[:, 0:3].copy() ZP[:, 0:2] += 1.0 return ZP def is_monotonic(Z): """ Returns True if the linkage passed is monotonic. The linkage is monotonic if for every cluster :math:`s` and :math:`t` joined, the distance between them is no less than the distance between any previously joined clusters. Parameters ---------- Z : ndarray The linkage matrix to check for monotonicity. Returns ------- b : bool A boolean indicating whether the linkage is monotonic. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # We expect the i'th value to be greater than its successor. return (Z[1:, 2] >= Z[:-1, 2]).all() def is_valid_im(R, warning=False, throw=False, name=None): """Returns True if the inconsistency matrix passed is valid. It must be a :math:`n` by 4 numpy array of doubles. The standard deviations ``R[:,1]`` must be nonnegative. The link counts ``R[:,2]`` must be positive and no greater than :math:`n-1`. Parameters ---------- R : ndarray The inconsistency matrix to check for validity. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid. """ R = np.asarray(R, order='c') valid = True try: if type(R) != np.ndarray: if name: raise TypeError(('Variable \'%s\' passed as inconsistency ' 'matrix is not a numpy array.') % name) else: raise TypeError('Variable passed as inconsistency matrix ' 'is not a numpy array.') if R.dtype != np.double: if name: raise TypeError(('Inconsistency matrix \'%s\' must contain ' 'doubles (double).') % name) else: raise TypeError('Inconsistency matrix must contain doubles ' '(double).') if len(R.shape) != 2: if name: raise ValueError(('Inconsistency matrix \'%s\' must have ' 'shape=2 (i.e. be two-dimensional).') % name) else: raise ValueError('Inconsistency matrix must have shape=2 ' '(i.e. be two-dimensional).') if R.shape[1] != 4: if name: raise ValueError(('Inconsistency matrix \'%s\' must have 4 ' 'columns.') % name) else: raise ValueError('Inconsistency matrix must have 4 columns.') if R.shape[0] < 1: if name: raise ValueError(('Inconsistency matrix \'%s\' must have at ' 'least one row.') % name) else: raise ValueError('Inconsistency matrix must have at least ' 'one row.') if (R[:, 0] < 0).any(): if name: raise ValueError(('Inconsistency matrix \'%s\' contains ' 'negative link height means.') % name) else: raise ValueError('Inconsistency matrix contains negative ' 'link height means.') if (R[:, 1] < 0).any(): if name: raise ValueError(('Inconsistency matrix \'%s\' contains ' 'negative link height standard ' 'deviations.') % name) else: raise ValueError('Inconsistency matrix contains negative ' 'link height standard deviations.') if (R[:, 2] < 0).any(): if name: raise ValueError(('Inconsistency matrix \'%s\' contains ' 'negative link counts.') % name) else: raise ValueError('Inconsistency matrix contains negative ' 'link counts.') except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def is_valid_linkage(Z, warning=False, throw=False, name=None): """ Checks the validity of a linkage matrix. A linkage matrix is valid if it is a two dimensional ndarray (type double) with :math:`n` rows and 4 columns. The first two columns must contain indices between 0 and :math:`2n-1`. For a given row ``i``, :math:`0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1` and :math:`0 \\leq Z[i,1] \\leq i+n-1` (i.e. a cluster cannot join another cluster unless the cluster being joined has been generated.) Parameters ---------- Z : array_like Linkage matrix. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True iff the inconsistency matrix is valid. """ Z = np.asarray(Z, order='c') valid = True try: if type(Z) != np.ndarray: if name: raise TypeError(('\'%s\' passed as a linkage is not a valid ' 'array.') % name) else: raise TypeError('Variable is not a valid array.') if Z.dtype != np.double: if name: raise TypeError('Linkage matrix \'%s\' must contain doubles.' % name) else: raise TypeError('Linkage matrix must contain doubles.') if len(Z.shape) != 2: if name: raise ValueError(('Linkage matrix \'%s\' must have shape=2 ' '(i.e. be two-dimensional).') % name) else: raise ValueError('Linkage matrix must have shape=2 ' '(i.e. be two-dimensional).') if Z.shape[1] != 4: if name: raise ValueError('Linkage matrix \'%s\' must have 4 columns.' % name) else: raise ValueError('Linkage matrix must have 4 columns.') if Z.shape[0] == 0: raise ValueError('Linkage must be computed on at least two ' 'observations.') n = Z.shape[0] if n > 1: if ((Z[:, 0] < 0).any() or (Z[:, 1] < 0).any()): if name: raise ValueError(('Linkage \'%s\' contains negative ' 'indices.') % name) else: raise ValueError('Linkage contains negative indices.') if (Z[:, 2] < 0).any(): if name: raise ValueError(('Linkage \'%s\' contains negative ' 'distances.') % name) else: raise ValueError('Linkage contains negative distances.') if (Z[:, 3] < 0).any(): if name: raise ValueError('Linkage \'%s\' contains negative counts.' % name) else: raise ValueError('Linkage contains negative counts.') if _check_hierarchy_uses_cluster_before_formed(Z): if name: raise ValueError(('Linkage \'%s\' uses non-singleton cluster ' 'before its formed.') % name) else: raise ValueError("Linkage uses non-singleton cluster before " "it's formed.") if _check_hierarchy_uses_cluster_more_than_once(Z): if name: raise ValueError(('Linkage \'%s\' uses the same cluster more ' 'than once.') % name) else: raise ValueError('Linkage uses the same cluster more than ' 'once.') except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def _check_hierarchy_uses_cluster_before_formed(Z): n = Z.shape[0] + 1 for i in xrange(0, n - 1): if Z[i, 0] >= n + i or Z[i, 1] >= n + i: return True return False def _check_hierarchy_uses_cluster_more_than_once(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]: return True chosen.add(Z[i, 0]) chosen.add(Z[i, 1]) return False def _check_hierarchy_not_all_clusters_used(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): chosen.add(int(Z[i, 0])) chosen.add(int(Z[i, 1])) must_chosen = set(range(0, 2 * n - 2)) return len(must_chosen.difference(chosen)) > 0 def num_obs_linkage(Z): """ Returns the number of original observations of the linkage matrix passed. Parameters ---------- Z : ndarray The linkage matrix on which to perform the operation. Returns ------- n : int The number of original observations in the linkage. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') return (Z.shape[0] + 1) def correspond(Z, Y): """ Checks for correspondence between linkage and condensed distance matrices They must have the same number of original observations for the check to succeed. This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that must correspond to the same set of original observations. Parameters ---------- Z : array_like The linkage matrix to check for correspondence. Y : array_like The condensed distance matrix to check for correspondence. Returns ------- b : bool A boolean indicating whether the linkage matrix and distance matrix could possibly correspond to one another. """ is_valid_linkage(Z, throw=True) distance.is_valid_y(Y, throw=True) Z = np.asarray(Z, order='c') Y = np.asarray(Y, order='c') return distance.num_obs_y(Y) == num_obs_linkage(Z) def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None): """ Forms flat clusters from the hierarchical clustering defined by the linkage matrix ``Z``. Parameters ---------- Z : ndarray The hierarchical clustering encoded with the matrix returned by the `linkage` function. t : float The threshold to apply when forming flat clusters. criterion : str, optional The criterion to use in forming flat clusters. This can be any of the following values: ``inconsistent`` : If a cluster node and all its descendants have an inconsistent value less than or equal to `t` then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default) ``distance`` : Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than `t`. ``maxclust`` : Finds a minimum threshold ``r`` so that the cophenetic distance between any two original observations in the same flat cluster is no more than ``r`` and no more than `t` flat clusters are formed. ``monocrit`` : Forms a flat cluster from a cluster node c with index i when ``monocrit[j] <= t``. For example, to threshold on the maximum mean distance as computed in the inconsistency matrix R with a threshold of 0.8 do: MR = maxRstat(Z, R, 3) cluster(Z, t=0.8, criterion='monocrit', monocrit=MR) ``maxclust_monocrit`` : Forms a flat cluster from a non-singleton cluster node ``c`` when ``monocrit[i] <= r`` for all cluster indices ``i`` below and including ``c``. ``r`` is minimized such that no more than ``t`` flat clusters are formed. monocrit must be monotonic. For example, to minimize the threshold t on maximum inconsistency values so that no more than 3 flat clusters are formed, do: MI = maxinconsts(Z, R) cluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI) depth : int, optional The maximum depth to perform the inconsistency calculation. It has no meaning for the other criteria. Default is 2. R : ndarray, optional The inconsistency matrix to use for the 'inconsistent' criterion. This matrix is computed if not provided. monocrit : ndarray, optional An array of length n-1. `monocrit[i]` is the statistics upon which non-singleton i is thresholded. The monocrit vector must be monotonic, i.e. given a node c with index i, for all node indices j corresponding to nodes below c, `monocrit[i] >= monocrit[j]`. Returns ------- fcluster : ndarray An array of length n. T[i] is the flat cluster number to which original observation i belongs. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 T = np.zeros((n,), dtype='i') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) if criterion == 'inconsistent': if R is None: R = inconsistent(Z, depth) else: R = np.asarray(R, order='c') is_valid_im(R, throw=True, name='R') # Since the C code does not support striding using strides. # The dimensions are used instead. [R] = _copy_arrays_if_base_present([R]) _hierarchy.cluster_in(Z, R, T, float(t), int(n)) elif criterion == 'distance': _hierarchy.cluster_dist(Z, T, float(t), int(n)) elif criterion == 'maxclust': _hierarchy.cluster_maxclust_dist(Z, T, int(n), int(t)) elif criterion == 'monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n)) elif criterion == 'maxclust_monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t)) else: raise ValueError('Invalid cluster formation criterion: %s' % str(criterion)) return T def fclusterdata(X, t, criterion='inconsistent', metric='euclidean', depth=2, method='single', R=None): """ Cluster observation data using a given metric. Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with `t` as the cut-off threshold. A one-dimensional array T of length n is returned. T[i] is the index of the flat cluster to which the original observation i belongs. Parameters ---------- X : (N, M) ndarray N by M data matrix with N observations in M dimensions. t : float The threshold to apply when forming flat clusters. criterion : str, optional Specifies the criterion for forming flat clusters. Valid values are 'inconsistent' (default), 'distance', or 'maxclust' cluster formation algorithms. See `fcluster` for descriptions. metric : str, optional The distance metric for calculating pairwise distances. See `distance.pdist` for descriptions and linkage to verify compatibility with the linkage method. depth : int, optional The maximum depth for the inconsistency calculation. See `inconsistent` for more information. method : str, optional The linkage method to use (single, complete, average, weighted, median centroid, ward). See `linkage` for more information. Default is "single". R : ndarray, optional The inconsistency matrix. It will be computed if necessary if it is not passed. Returns ------- fclusterdata : ndarray A vector of length n. T[i] is the flat cluster number to which original observation i belongs. Notes ----- This function is similar to the MATLAB function clusterdata. """ X = np.asarray(X, order='c', dtype=np.double) if type(X) != np.ndarray or len(X.shape) != 2: raise TypeError('The observation matrix X must be an n by m numpy ' 'array.') Y = distance.pdist(X, metric=metric) Z = linkage(Y, method=method) if R is None: R = inconsistent(Z, d=depth) else: R = np.asarray(R, order='c') T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t) return T def leaves_list(Z): """ Returns a list of leaf node ids The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage matrix. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. `Z` is a linkage matrix. See ``linkage`` for more information. Returns ------- leaves_list : ndarray The list of leaf node ids. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 ML = np.zeros((n,), dtype='i') [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.prelist(Z, ML, int(n)) return ML # Maps number of leaves to text size. # # p <= 20, size="12" # 20 < p <= 30, size="10" # 30 < p <= 50, size="8" # 50 < p <= np.inf, size="6" _dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5} _drotation = {20: 0, 40: 45, np.inf: 90} _dtextsortedkeys = list(_dtextsizes.keys()) _dtextsortedkeys.sort() _drotationsortedkeys = list(_drotation.keys()) _drotationsortedkeys.sort() def _remove_dups(L): """ Removes duplicates AND preserves the original order of the elements. The set class is not guaranteed to do this. """ seen_before = set([]) L2 = [] for i in L: if i not in seen_before: seen_before.add(i) L2.append(i) return L2 def _get_tick_text_size(p): for k in _dtextsortedkeys: if p <= k: return _dtextsizes[k] def _get_tick_rotation(p): for k in _drotationsortedkeys: if p <= k: return _drotation[k] def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=None, leaf_rotation=None, contraction_marks=None, ax=None): # Import matplotlib here so that it's not imported unless dendrograms # are plotted. Raise an informative error if importing fails. try: # if an axis is provided, don't use pylab at all if ax is None: import matplotlib.pylab import matplotlib.patches import matplotlib.collections except ImportError: raise ImportError("You must install the matplotlib library to plot the dendrogram. Use no_plot=True to calculate the dendrogram without plotting.") if ax is None: ax = matplotlib.pylab.gca() # if we're using pylab, we want to trigger a draw at the end trigger_redraw = True else: trigger_redraw = False # Independent variable plot width ivw = len(ivl) * 10 # Depenendent variable plot height dvw = mh + mh * 0.05 ivticks = np.arange(5, len(ivl) * 10 + 5, 10) if orientation == 'top': ax.set_ylim([0, dvw]) ax.set_xlim([0, ivw]) xlines = icoords ylines = dcoords if no_labels: ax.set_xticks([]) ax.set_xticklabels([]) else: ax.set_xticks(ivticks) ax.set_xticklabels(ivl) ax.xaxis.set_ticks_position('bottom') lbls = ax.get_xticklabels() if leaf_rotation: map(lambda lbl: lbl.set_rotation(leaf_rotation), lbls) else: leaf_rot = float(_get_tick_rotation(len(ivl))) map(lambda lbl: lbl.set_rotation(leaf_rot), lbls) if leaf_font_size: map(lambda lbl: lbl.set_size(leaf_font_size), lbls) else: leaf_fs = float(_get_tick_text_size(len(ivl))) map(lambda lbl: lbl.set_rotation(leaf_fs), lbls) # Make the tick marks invisible because they cover up the links for line in ax.get_xticklines(): line.set_visible(False) elif orientation == 'bottom': ax.set_ylim([dvw, 0]) ax.set_xlim([0, ivw]) xlines = icoords ylines = dcoords if no_labels: ax.set_xticks([]) ax.set_xticklabels([]) else: ax.set_xticks(ivticks) ax.set_xticklabels(ivl) lbls = ax.get_xticklabels() if leaf_rotation: map(lambda lbl: lbl.set_rotation(leaf_rotation), lbls) else: leaf_rot = float(_get_tick_rotation(p)) map(lambda lbl: lbl.set_rotation(leaf_rot), lbls) if leaf_font_size: map(lambda lbl: lbl.set_size(leaf_font_size), lbls) else: leaf_fs = float(_get_tick_text_size(p)) map(lambda lbl: lbl.set_rotation(leaf_fs), lbls) ax.xaxis.set_ticks_position('top') # Make the tick marks invisible because they cover up the links for line in ax.get_xticklines(): line.set_visible(False) elif orientation == 'left': ax.set_xlim([0, dvw]) ax.set_ylim([0, ivw]) xlines = dcoords ylines = icoords if no_labels: ax.set_yticks([]) ax.set_yticklabels([]) else: ax.set_yticks(ivticks) ax.set_yticklabels(ivl) lbls = ax.get_yticklabels() if leaf_rotation: map(lambda lbl: lbl.set_rotation(leaf_rotation), lbls) if leaf_font_size: map(lambda lbl: lbl.set_size(leaf_font_size), lbls) ax.yaxis.set_ticks_position('left') # Make the tick marks invisible because they cover up the # links for line in ax.get_yticklines(): line.set_visible(False) elif orientation == 'right': ax.set_xlim([dvw, 0]) ax.set_ylim([0, ivw]) xlines = dcoords ylines = icoords if no_labels: ax.set_yticks([]) ax.set_yticklabels([]) else: ax.set_yticks(ivticks) ax.set_yticklabels(ivl) lbls = ax.get_yticklabels() if leaf_rotation: map(lambda lbl: lbl.set_rotation(leaf_rotation), lbls) if leaf_font_size: map(lambda lbl: lbl.set_size(leaf_font_size), lbls) ax.yaxis.set_ticks_position('right') # Make the tick marks invisible because they cover up the links for line in ax.get_yticklines(): line.set_visible(False) # Let's use collections instead. This way there is a separate legend # item for each tree grouping, rather than stupidly one for each line # segment. colors_used = _remove_dups(color_list) color_to_lines = {} for color in colors_used: color_to_lines[color] = [] for (xline, yline, color) in zip(xlines, ylines, color_list): color_to_lines[color].append(list(zip(xline, yline))) colors_to_collections = {} # Construct the collections. for color in colors_used: coll = matplotlib.collections.LineCollection(color_to_lines[color], colors=(color,)) colors_to_collections[color] = coll # Add all the non-blue link groupings, i.e. those groupings below the # color threshold. for color in colors_used: if color != 'b': ax.add_collection(colors_to_collections[color]) # If there is a blue grouping (i.e., links above the color threshold), # it should go last. if 'b' in colors_to_collections: ax.add_collection(colors_to_collections['b']) if contraction_marks is not None: if orientation in ('left', 'right'): for (x, y) in contraction_marks: e = matplotlib.patches.Ellipse((y, x), width=dvw / 100, height=1.0) ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(0.5) e.set_facecolor('k') if orientation in ('top', 'bottom'): for (x, y) in contraction_marks: e = matplotlib.patches.Ellipse((x, y), width=1.0, height=dvw / 100) ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(0.5) e.set_facecolor('k') if trigger_redraw: matplotlib.pylab.draw_if_interactive() _link_line_colors = ['g', 'r', 'c', 'm', 'y', 'k'] def set_link_color_palette(palette): """ Set list of matplotlib color codes for dendrogram color_threshold. Parameters ---------- palette : list A list of matplotlib color codes. The order of the color codes is the order in which the colors are cycled through when color thresholding in the dendrogram. """ if type(palette) not in (list, tuple): raise TypeError("palette must be a list or tuple") _ptypes = [isinstance(p, string_types) for p in palette] if False in _ptypes: raise TypeError("all palette list elements must be color strings") for i in list(_link_line_colors): _link_line_colors.remove(i) _link_line_colors.extend(list(palette)) def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=True, no_plot=False, no_labels=False, color_list=None, leaf_font_size=None, leaf_rotation=None, leaf_label_func=None, no_leaves=False, show_contracted=False, link_color_func=None, ax=None): """ Plots the hierarchical clustering as a dendrogram. The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is also the cophenetic distance between original observations in the two children clusters. It is expected that the distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram. Parameters ---------- Z : ndarray The linkage matrix encoding the hierarchical clustering to render as a dendrogram. See the ``linkage`` function for more information on the format of ``Z``. p : int, optional The ``p`` parameter for ``truncate_mode``. truncate_mode : str, optional The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes: ``None/'none'`` No truncation is performed (Default). ``'lastp'`` The last ``p`` non-singleton formed in the linkage are the only non-leaf nodes in the linkage; they correspond to rows ``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are contracted into leaf nodes. ``'mlab'`` This corresponds to MATLAB(TM) behavior. (not implemented yet) ``'level'/'mtica'`` No more than ``p`` levels of the dendrogram tree are displayed. This corresponds to Mathematica(TM) behavior. color_threshold : double, optional For brevity, let :math:`t` be the ``color_threshold``. Colors all the descendent links below a cluster node :math:`k` the same color if :math:`k` is the first node below the cut threshold :math:`t`. All links connecting nodes with distances greater than or equal to the threshold are colored blue. If :math:`t` is less than or equal to zero, all nodes are colored blue. If ``color_threshold`` is None or 'default', corresponding with MATLAB(TM) behavior, the threshold is set to ``0.7*max(Z[:,2])``. get_leaves : bool, optional Includes a list ``R['leaves']=H`` in the result dictionary. For each :math:`i`, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. orientation : str, optional The direction to plot the dendrogram, which can be any of the following strings: ``'top'`` Plots the root at the top, and plot descendent links going downwards. (default). ``'bottom'`` Plots the root at the bottom, and plot descendent links going upwards. ``'left'`` Plots the root at the left, and plot descendent links going right. ``'right'`` Plots the root at the right, and plot descendent links going left. labels : ndarray, optional By default ``labels`` is None so the index of the original observation is used to label the leaf nodes. Otherwise, this is an :math:`n` -sized list (or tuple). The ``labels[i]`` value is the text to put under the :math:`i` th leaf node only if it corresponds to an original observation and not a non-singleton cluster. count_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum number of original objects in its cluster is plotted first. ``'descendent'`` The child with the maximum number of original objects in its cluster is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. distance_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum distance between its direct descendents is plotted first. ``'descending'`` The child with the maximum distance between its direct descendents is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. show_leaf_counts : bool, optional When True, leaf nodes representing :math:`k>1` original observation are labeled with the number of observations they contain in parentheses. no_plot : bool, optional When True, the final rendering is not performed. This is useful if only the data structures computed for the rendering are needed or if matplotlib is not available. no_labels : bool, optional When True, no labels appear next to the leaf nodes in the rendering of the dendrogram. leaf_rotation : double, optional Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation is based on the number of nodes in the dendrogram (default is 0). leaf_font_size : int, optional Specifies the font size (in points) of the leaf labels. When unspecified, the size based on the number of nodes in the dendrogram. leaf_label_func : lambda or function, optional When leaf_label_func is a callable function, for each leaf with cluster index :math:`k < 2n-1`. The function is expected to return a string with the label for the leaf. Indices :math:`k < n` correspond to original observations while indices :math:`k \\geq n` correspond to non-singleton clusters. For example, to label singletons with their node id and non-singletons with their id, count, and inconsistency coefficient, simply do: >>> # First define the leaf label function. >>> def llf(id): ... if id < n: ... return str(id) ... else: >>> return '[%d %d %1.2f]' % (id, count, R[n-id,3]) >>> >>> # The text for the leaf nodes is going to be big so force >>> # a rotation of 90 degrees. >>> dendrogram(Z, leaf_label_func=llf, leaf_rotation=90) show_contracted : bool, optional When True the heights of non-singleton nodes contracted into a leaf node are plotted as crosses along the link connecting that leaf node. This really is only useful when truncation is used (see ``truncate_mode`` parameter). link_color_func : callable, optional If given, `link_color_function` is called with each non-singleton id corresponding to each U-shaped link it will paint. The function is expected to return the color to paint the link, encoded as a matplotlib color string code. For example: >>> dendrogram(Z, link_color_func=lambda k: colors[k]) colors the direct links below each untruncated non-singleton node ``k`` using ``colors[k]``. ax : matplotlib Axes instance, optional If None and `no_plot` is not True, the dendrogram will be plotted on the current axes. Otherwise if `no_plot` is not True the dendrogram will be plotted on the given ``Axes`` instance. This can be useful if the dendrogram is part of a more complex figure. Returns ------- R : dict A dictionary of data structures computed to render the dendrogram. Its has the following keys: ``'color_list'`` A list of color names. The k'th element represents the color of the k'th link. ``'icoord'`` and ``'dcoord'`` Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]`` where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]`` where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is ``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``. ``'ivl'`` A list of labels corresponding to the leaf nodes. ``'leaves'`` For each i, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the ``i``-th leaf node corresponds to an original observation. Otherwise, it corresponds to a non-singleton cluster. """ # Features under consideration. # # ... = dendrogram(..., leaves_order=None) # # Plots the leaves in the order specified by a vector of # original observation indices. If the vector contains duplicates # or results in a crossing, an exception will be thrown. Passing # None orders leaf nodes based on the order they appear in the # pre-order traversal. Z = np.asarray(Z, order='c') if orientation not in ["top", "left", "bottom", "right"]: raise ValueError("orientation must be one of 'top', 'left', " "'bottom', or 'right'") is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 if type(p) in (int, float): p = int(p) else: raise TypeError('The second argument must be a number') if truncate_mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None): raise ValueError('Invalid truncation mode.') if truncate_mode == 'lastp' or truncate_mode == 'mlab': if p > n or p == 0: p = n if truncate_mode == 'mtica' or truncate_mode == 'level': if p <= 0: p = np.inf if get_leaves: lvs = [] else: lvs = None icoord_list = [] dcoord_list = [] color_list = [] current_color = [0] currently_below_threshold = [False] if no_leaves: ivl = None else: ivl = [] if color_threshold is None or \ (isinstance(color_threshold, string_types) and color_threshold == 'default'): color_threshold = max(Z[:, 2]) * 0.7 R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl, 'leaves': lvs, 'color_list': color_list} if show_contracted: contraction_marks = [] else: contraction_marks = None _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=2 * n - 2, iv=0.0, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, contraction_marks=contraction_marks, link_color_func=link_color_func) if not no_plot: mh = max(Z[:, 2]) _plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=leaf_font_size, leaf_rotation=leaf_rotation, contraction_marks=contraction_marks, ax=ax) return R def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) # If leaf node labels are to be displayed... if ivl is not None: # If a leaf_label_func has been provided, the label comes from the # string returned from the leaf_label_func, which is a function # passed to dendrogram. if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: # Otherwise, if the dendrogram caller has passed a labels list # for the leaf nodes, use it. if labels is not None: ivl.append(labels[int(i - n)]) else: # Otherwise, use the id as the label for the leaf.x ivl.append(str(int(i))) def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) if ivl is not None: if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: if show_leaf_counts: ivl.append("(" + str(int(Z[i - n, 3])) + ")") else: ivl.append("") def _append_contraction_marks(Z, iv, i, n, contraction_marks): _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks): if i >= n: contraction_marks.append((iv, Z[i - n, 2])) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _dendrogram_calculate_info(Z, p, truncate_mode, color_threshold=np.inf, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=False, i=-1, iv=0.0, ivl=[], n=0, icoord_list=[], dcoord_list=[], lvs=None, mhr=False, current_color=[], color_list=[], currently_below_threshold=[], leaf_label_func=None, level=0, contraction_marks=None, link_color_func=None): """ Calculates the endpoints of the links as well as the labels for the the dendrogram rooted at the node with index i. iv is the independent variable value to plot the left-most leaf node below the root node i (if orientation='top', this would be the left-most x value where the plotting of this root node i and its descendents should begin). ivl is a list to store the labels of the leaf nodes. The leaf_label_func is called whenever ivl != None, labels == None, and leaf_label_func != None. When ivl != None and labels != None, the labels list is used only for labeling the leaf nodes. When ivl == None, no labels are generated for leaf nodes. When get_leaves==True, a list of leaves is built as they are visited in the dendrogram. Returns a tuple with l being the independent variable coordinate that corresponds to the midpoint of cluster to the left of cluster i if i is non-singleton, otherwise the independent coordinate of the leaf node if i is a leaf node. Returns ------- A tuple (left, w, h, md), where: * left is the independent variable coordinate of the center of the the U of the subtree * w is the amount of space used for the subtree (in independent variable units) * h is the height of the subtree in dependent variable units * md is the max(Z[*,2]) for all nodes * below and including the target node. """ if n == 0: raise ValueError("Invalid singleton cluster count n.") if i == -1: raise ValueError("Invalid root cluster index i.") if truncate_mode == 'lastp': # If the node is a leaf node but corresponds to a non-single cluster, # it's label is either the empty string or the number of original # observations belonging to cluster i. if i < 2 * n - p and i >= n: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mtica', 'level'): if i > n and level > p: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mlab',): pass # Otherwise, only truncate if we have a leaf node. # # If the truncate_mode is mlab, the linkage has been modified # with the truncated tree. # # Only place leaves if they correspond to original observations. if i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) # !!! Otherwise, we don't have a leaf node, so work on plotting a # non-leaf node. # Actual indices of a and b aa = int(Z[i - n, 0]) ab = int(Z[i - n, 1]) if aa > n: # The number of singletons below cluster a na = Z[aa - n, 3] # The distance between a's two direct children. da = Z[aa - n, 2] else: na = 1 da = 0.0 if ab > n: nb = Z[ab - n, 3] db = Z[ab - n, 2] else: nb = 1 db = 0.0 if count_sort == 'ascending' or count_sort == True: # If a has a count greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if na > nb: # The cluster index to draw to the left (ua) will be ab # and the one to draw to the right (ub) will be aa ua = ab ub = aa else: ua = aa ub = ab elif count_sort == 'descending': # If a has a count less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if na > nb: ua = aa ub = ab else: ua = ab ub = aa elif distance_sort == 'ascending' or distance_sort == True: # If a has a distance greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if da > db: ua = ab ub = aa else: ua = aa ub = ab elif distance_sort == 'descending': # If a has a distance less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if da > db: ua = aa ub = ab else: ua = ab ub = aa else: ua = aa ub = ab # Updated iv variable and the amount of space used. (uiva, uwa, uah, uamd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ua, iv=iv, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func) h = Z[i - n, 2] if h >= color_threshold or color_threshold <= 0: c = 'b' if currently_below_threshold[0]: current_color[0] = (current_color[0] + 1) % len(_link_line_colors) currently_below_threshold[0] = False else: currently_below_threshold[0] = True c = _link_line_colors[current_color[0]] (uivb, uwb, ubh, ubmd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ub, iv=iv + uwa, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func) max_dist = max(uamd, ubmd, h) icoord_list.append([uiva, uiva, uivb, uivb]) dcoord_list.append([uah, h, h, ubh]) if link_color_func is not None: v = link_color_func(int(i)) if not isinstance(v, string_types): raise TypeError("link_color_func must return a matplotlib " "color string!") color_list.append(v) else: color_list.append(c) return (((uiva + uivb) / 2), uwa + uwb, h, max_dist) def is_isomorphic(T1, T2): """ Determines if two different cluster assignments are equivalent. Parameters ---------- T1 : array_like An assignment of singleton cluster ids to flat cluster ids. T2 : array_like An assignment of singleton cluster ids to flat cluster ids. Returns ------- b : bool Whether the flat cluster assignments `T1` and `T2` are equivalent. """ T1 = np.asarray(T1, order='c') T2 = np.asarray(T2, order='c') if type(T1) != np.ndarray: raise TypeError('T1 must be a numpy array.') if type(T2) != np.ndarray: raise TypeError('T2 must be a numpy array.') T1S = T1.shape T2S = T2.shape if len(T1S) != 1: raise ValueError('T1 must be one-dimensional.') if len(T2S) != 1: raise ValueError('T2 must be one-dimensional.') if T1S[0] != T2S[0]: raise ValueError('T1 and T2 must have the same number of elements.') n = T1S[0] d = {} for i in xrange(0, n): if T1[i] in d: if d[T1[i]] != T2[i]: return False else: d[T1[i]] = T2[i] return True def maxdists(Z): """ Returns the maximum distance between any non-singleton cluster. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. Returns ------- maxdists : ndarray A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents the maximum distance between any cluster (including singletons) below and including the node with index i. More specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the set of all node indices below and including node i. """ Z = np.asarray(Z, order='c', dtype=np.double) is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 MD = np.zeros((n - 1,)) [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n)) return MD def maxinconsts(Z, R): """ Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. R : ndarray The inconsistency matrix. Returns ------- MI : ndarray A monotonic ``(n-1)``-sized numpy array of doubles. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') n = Z.shape[0] + 1 if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") MI = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3) return MI def maxRstat(Z, R, i): """ Returns the maximum statistic for each non-singleton cluster and its descendents. Parameters ---------- Z : array_like The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. R : array_like The inconsistency matrix. i : int The column of `R` to use as the statistic. Returns ------- MR : ndarray Calculates the maximum statistic for the i'th column of the inconsistency matrix `R` for each non-singleton cluster node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]`` where ``Q(j)`` the set of all node ids corresponding to nodes below and including ``j``. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') if type(i) is not int: raise TypeError('The third argument must be an integer.') if i < 0 or i > 3: raise ValueError('i must be an integer between 0 and 3 inclusive.') if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") n = Z.shape[0] + 1 MR = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i) return MR def leaders(Z, T): """ Returns the root nodes in a hierarchical clustering. Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector ``T``. See the ``fcluster`` function for more information on the format of ``T``. For each flat cluster :math:`j` of the :math:`k` flat clusters represented in the n-sized flat cluster assignment vector ``T``, this function finds the lowest cluster node :math:`i` in the linkage tree Z such that: * leaf descendents belong only to flat cluster j (i.e. ``T[p]==j`` for all :math:`p` in :math:`S(i)` where :math:`S(i)` is the set of leaf ids of leaf nodes descendent with cluster node :math:`i`) * there does not exist a leaf that is not descendent with :math:`i` that also belongs to cluster :math:`j` (i.e. ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`). If this condition is violated, ``T`` is not a valid cluster assignment vector, and an exception will be thrown. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. T : ndarray The flat cluster assignment vector. Returns ------- L : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. ``L[j]=i`` is the linkage cluster node id that is the leader of flat cluster with id M[j]. If ``i < n``, ``i`` corresponds to an original observation, otherwise it corresponds to a non-singleton cluster. For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with id 8's leader is linkage node 2. M : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. This allows the set of flat cluster ids to be any arbitrary set of ``k`` integers. """ Z = np.asarray(Z, order='c') T = np.asarray(T, order='c') if type(T) != np.ndarray or T.dtype != 'i': raise TypeError('T must be a one-dimensional numpy array of integers.') is_valid_linkage(Z, throw=True, name='Z') if len(T) != Z.shape[0] + 1: raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.') Cl = np.unique(T) kk = len(Cl) L = np.zeros((kk,), dtype='i') M = np.zeros((kk,), dtype='i') n = Z.shape[0] + 1 [Z, T] = _copy_arrays_if_base_present([Z, T]) s = _hierarchy.leaders(Z, T, L, M, int(kk), int(n)) if s >= 0: raise ValueError(('T is not a valid assignment vector. Error found ' 'when examining linkage node %d (< 2n-1).') % s) return (L, M) # These are test functions to help me test the leaders function. def _leaders_test(Z, T): tr = to_tree(Z) _leaders_test_recurs_mark(tr, T) return tr def _leader_identify(tr, T): if tr.is_leaf(): return T[tr.id] else: left = tr.get_left() right = tr.get_right() lfid = _leader_identify(left, T) rfid = _leader_identify(right, T) print('ndid: %d lid: %d lfid: %d rid: %d rfid: %d' % (tr.get_id(), left.get_id(), lfid, right.get_id(), rfid)) if lfid != rfid: if lfid != -1: print('leader: %d with tag %d' % (left.id, lfid)) if rfid != -1: print('leader: %d with tag %d' % (right.id, rfid)) return -1 else: return lfid def _leaders_test_recurs_mark(tr, T): if tr.is_leaf(): tr.asgn = T[tr.id] else: tr.asgn = -1 _leaders_test_recurs_mark(tr.left, T) _leaders_test_recurs_mark(tr.right, T)
mit
HKuz/Test_Code
pythonCheatsheet.py
1
6673
#!/usr/local/bin/python # Python Numpy and Pandas Cheatsheet # Source: https://elitedatascience.com/python-cheat-sheet # Importing Data ''' pd.read_csv(filename) # From a CSV file pd.read_table(filename) # From a delimited text file (like TSV) pd.read_excel(filename) # From an Excel file pd.read_sql(query, connection_object) # Reads from a SQL table/database pd.read_json(json_string) # Reads from a JSON formatted string, URL or file. pd.read_html(url) # Parses an html URL, string or file and extracts tables to # a list of dataframes pd.read_clipboard() # Takes the contents of your clipboard and # passes it to read_table() pd.DataFrame(dict) # From a dict, keys for columns names, values for # data as lists ''' # Exploring Data ''' df.shape() # Prints number of rows and columns in dataframe df.head(n) # Prints first n rows of the DataFrame df.tail(n) # Prints last n rows of the DataFrame df.info() # Index, Datatype and Memory information df.describe() # Summary statistics for numerical columns s.value_counts(dropna=False) # Views unique values and counts df.apply(pd.Series.value_counts) # Unique values and counts for all columns df.describe() # Summary statistics for numerical columns df.mean() # Returns the mean of all columns df.corr() # Returns the correlation between columns in a DataFrame df.count() # Returns the number of non-null values in each DataFrame column df.max() # Returns the highest value in each column df.min() # Returns the lowest value in each column df.median() # Returns the median of each column df.std() # Returns the standard deviation of each column ''' # Selecting ''' df[col] # Returns column with label col as Series df[[col1, col2]] # Returns Columns as a new DataFrame s.iloc[0] # Selection by position (selects first element) s.loc[0] # Selection by index (selects element at index 0) df.iloc[0,:] # First row df.iloc[0,0] # First element of first column ''' # Data Cleaning ''' df.columns = ['a','b','c'] # Renames columns pd.isnull() # Checks for null Values, Returns Boolean Array pd.notnull() # Opposite of s.isnull() df.dropna() # Drops all rows that contain null values df.dropna(axis=1) # Drops all columns that contain null values df.dropna(axis=1,thresh=n) # Drops all rows have have less than n non null # values df.fillna(x) # Replaces all null values with x s.fillna(s.mean()) # Replaces all null values with the mean (mean can be # replaced with almost any function from the statistics section) s.astype(float) # Converts the datatype of the series to float s.replace(1,'one') # Replaces all values equal to 1 with 'one' s.replace([1,3],['one','three']) # Replaces all 1 with 'one' and 3 # with 'three' df.rename(columns=lambda x: x + 1) # Mass renaming of columns df.rename(columns={'old_name': 'new_ name'}) # Selective renaming df.set_index('column_one') # Changes the index df.rename(index=lambda x: x + 1) # Mass renaming of index ''' # Filter, Sort, and Group By ''' df[df[col] > 0.5] # Rows where the col column is greater than 0.5 df[(df[col] > 0.5) & (df[col] < 0.7)] # Rows where 0.5 < col < 0.7 df.sort_values(col1) # Sorts values by col1 in ascending order df.sort_values(col2,ascending=False) # Sorts values by col2 in descending # order df.sort_values([col1,col2], ascending=[True,False]) # Sorts values by col1 in # ascending order then col2 in descending order df.groupby(col) # Returns a groupby object for values from one column df.groupby([col1,col2]) # Returns a groupby object values from multiple # columns df.groupby(col1)[col2].mean() # Returns the mean of the values in col2, # grouped by the values in col1 (mean can be replaced with almost any function # from the statistics section) df.pivot_table(index=col1, values= col2,col3], aggfunc=mean) # Creates a # pivot table that groups by col1 and calculates the mean of col2 and col3 df.groupby(col1).agg(np.mean) # Finds the average across all columns for # every unique column 1 group df.apply(np.mean) # Applies a function across each column df.apply(np.max, axis=1) # Applies a function across each row ''' # Joining and Combining ''' df1.append(df2) # Adds the rows in df1 to the end of df2 (columns should be #identical) pd.concat([df1, df2],axis=1) # Adds the columns in df1 to the end of df2 # (rows should be identical) df1.join(df2,on=col1,how='inner') # SQL-style joins the columns in df1 with # the columns on df2 where the rows for col have identical values. how can be # one of 'left', 'right', 'outer', 'inner' ''' # Writing Data ''' df.to_csv(filename) # Writes to a CSV file df.to_excel(filename) # Writes to an Excel file df.to_sql(table_name, connection_object) # Writes to a SQL table df.to_json(filename) # Writes to a file in JSON format df.to_html(filename) # Saves as an HTML table df.to_clipboard() # Writes to the clipboard ''' # Machine Learning # Import libraries and modules import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error, r2_score from sklearn.externals import joblib # Load red wine data. dataset_url = ('http://mlr.cs.umass.edu/ml/machine-learning-databases/' 'wine-quality/winequality-red.csv') data = pd.read_csv(dataset_url, sep=';') # Split data into training and test sets y = data.quality X = data.drop('quality', axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123, stratify=y) # Declare data preprocessing steps pipeline = make_pipeline(preprocessing.StandardScaler(), RandomForestRegressor(n_estimators=100)) # Declare hyperparameters to tune hyperparameters = {'randomforestregressor__max_features': ['auto', 'sqrt', 'log2'], 'randomforestregressor__max_depth': [None, 5, 3, 1]} # Tune model using cross-validation pipeline clf = GridSearchCV(pipeline, hyperparameters, cv=10) clf.fit(X_train, y_train) # Refit on the entire training set # No additional code needed if clf.refit == True (default is True) # Evaluate model pipeline on test data pred = clf.predict(X_test) print(r2_score(y_test, pred)) print(mean_squared_error(y_test, pred)) # Save model for future use joblib.dump(clf, 'rf_regressor.pkl') # To load: clf2 = joblib.load('rf_regressor.pkl')
mit
pjryan126/solid-start-careers
store/api/zillow/venv/lib/python2.7/site-packages/pandas/io/json.py
1
25993
# pylint: disable-msg=E1101,W0613,W0603 import os import copy from collections import defaultdict import numpy as np import pandas.json as _json from pandas.tslib import iNaT from pandas.compat import long, u from pandas import compat, isnull from pandas import Series, DataFrame, to_datetime from pandas.io.common import get_filepath_or_buffer from pandas.core.common import AbstractMethodError import pandas.core.common as com loads = _json.loads dumps = _json.dumps # interface to/from def to_json(path_or_buf, obj, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None): if isinstance(obj, Series): s = SeriesWriter( obj, orient=orient, date_format=date_format, double_precision=double_precision, ensure_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler).write() elif isinstance(obj, DataFrame): s = FrameWriter( obj, orient=orient, date_format=date_format, double_precision=double_precision, ensure_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler).write() else: raise NotImplementedError("'obj' should be a Series or a DataFrame") if isinstance(path_or_buf, compat.string_types): with open(path_or_buf, 'w') as fh: fh.write(s) elif path_or_buf is None: return s else: path_or_buf.write(s) class Writer(object): def __init__(self, obj, orient, date_format, double_precision, ensure_ascii, date_unit, default_handler=None): self.obj = obj if orient is None: orient = self._default_orient self.orient = orient self.date_format = date_format self.double_precision = double_precision self.ensure_ascii = ensure_ascii self.date_unit = date_unit self.default_handler = default_handler self.is_copy = None self._format_axes() def _format_axes(self): raise AbstractMethodError(self) def write(self): return dumps( self.obj, orient=self.orient, double_precision=self.double_precision, ensure_ascii=self.ensure_ascii, date_unit=self.date_unit, iso_dates=self.date_format == 'iso', default_handler=self.default_handler) class SeriesWriter(Writer): _default_orient = 'index' def _format_axes(self): if not self.obj.index.is_unique and self.orient == 'index': raise ValueError("Series index must be unique for orient=" "'%s'" % self.orient) class FrameWriter(Writer): _default_orient = 'columns' def _format_axes(self): """ try to axes if they are datelike """ if not self.obj.index.is_unique and self.orient in ( 'index', 'columns'): raise ValueError("DataFrame index must be unique for orient=" "'%s'." % self.orient) if not self.obj.columns.is_unique and self.orient in ( 'index', 'columns', 'records'): raise ValueError("DataFrame columns must be unique for orient=" "'%s'." % self.orient) def read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None): """ Convert a JSON string to pandas object Parameters ---------- path_or_buf : a valid JSON string or file-like, default: None The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be ``file://localhost/path/to/table.json`` orient * `Series` - default is ``'index'`` - allowed values are: ``{'split','records','index'}`` - The Series index must be unique for orient ``'index'``. * `DataFrame` - default is ``'columns'`` - allowed values are: {'split','records','index','columns','values'} - The DataFrame index must be unique for orients 'index' and 'columns'. - The DataFrame columns must be unique for orients 'index', 'columns', and 'records'. * The format of the JSON string - split : dict like ``{index -> [index], columns -> [columns], data -> [values]}`` - records : list like ``[{column -> value}, ... , {column -> value}]`` - index : dict like ``{index -> {column -> value}}`` - columns : dict like ``{column -> {index -> value}}`` - values : just the values array typ : type of object to recover (series or frame), default 'frame' dtype : boolean or dict, default True If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don't infer dtypes at all, applies only to the data. convert_axes : boolean, default True Try to convert the axes to the proper dtypes. convert_dates : boolean, default True List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if * it ends with ``'_at'``, * it ends with ``'_time'``, * it begins with ``'timestamp'``, * it is ``'modified'``, or * it is ``'date'`` keep_default_dates : boolean, default True If parsing dates, then parse the default datelike columns numpy : boolean, default False Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True. precise_float : boolean, default False Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality date_unit : string, default None The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively. Returns ------- result : Series or DataFrame """ filepath_or_buffer, _, _ = get_filepath_or_buffer(path_or_buf) if isinstance(filepath_or_buffer, compat.string_types): try: exists = os.path.exists(filepath_or_buffer) # if the filepath is too long will raise here # 5874 except (TypeError, ValueError): exists = False if exists: with open(filepath_or_buffer, 'r') as fh: json = fh.read() else: json = filepath_or_buffer elif hasattr(filepath_or_buffer, 'read'): json = filepath_or_buffer.read() else: json = filepath_or_buffer obj = None if typ == 'frame': obj = FrameParser(json, orient, dtype, convert_axes, convert_dates, keep_default_dates, numpy, precise_float, date_unit).parse() if typ == 'series' or obj is None: if not isinstance(dtype, bool): dtype = dict(data=dtype) obj = SeriesParser(json, orient, dtype, convert_axes, convert_dates, keep_default_dates, numpy, precise_float, date_unit).parse() return obj class Parser(object): _STAMP_UNITS = ('s', 'ms', 'us', 'ns') _MIN_STAMPS = { 's': long(31536000), 'ms': long(31536000000), 'us': long(31536000000000), 'ns': long(31536000000000000)} def __init__(self, json, orient, dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=False, numpy=False, precise_float=False, date_unit=None): self.json = json if orient is None: orient = self._default_orient self.orient = orient self.dtype = dtype if orient == "split": numpy = False if date_unit is not None: date_unit = date_unit.lower() if date_unit not in self._STAMP_UNITS: raise ValueError('date_unit must be one of %s' % (self._STAMP_UNITS,)) self.min_stamp = self._MIN_STAMPS[date_unit] else: self.min_stamp = self._MIN_STAMPS['s'] self.numpy = numpy self.precise_float = precise_float self.convert_axes = convert_axes self.convert_dates = convert_dates self.date_unit = date_unit self.keep_default_dates = keep_default_dates self.obj = None def check_keys_split(self, decoded): "checks that dict has only the appropriate keys for orient='split'" bad_keys = set(decoded.keys()).difference(set(self._split_keys)) if bad_keys: bad_keys = ", ".join(bad_keys) raise ValueError(u("JSON data had unexpected key(s): %s") % com.pprint_thing(bad_keys)) def parse(self): # try numpy numpy = self.numpy if numpy: self._parse_numpy() else: self._parse_no_numpy() if self.obj is None: return None if self.convert_axes: self._convert_axes() self._try_convert_types() return self.obj def _convert_axes(self): """ try to convert axes """ for axis in self.obj._AXIS_NUMBERS.keys(): new_axis, result = self._try_convert_data( axis, self.obj._get_axis(axis), use_dtypes=False, convert_dates=True) if result: setattr(self.obj, axis, new_axis) def _try_convert_types(self): raise AbstractMethodError(self) def _try_convert_data(self, name, data, use_dtypes=True, convert_dates=True): """ try to parse a ndarray like into a column by inferring dtype """ # don't try to coerce, unless a force conversion if use_dtypes: if self.dtype is False: return data, False elif self.dtype is True: pass else: # dtype to force dtype = (self.dtype.get(name) if isinstance(self.dtype, dict) else self.dtype) if dtype is not None: try: dtype = np.dtype(dtype) return data.astype(dtype), True except: return data, False if convert_dates: new_data, result = self._try_convert_to_date(data) if result: return new_data, True result = False if data.dtype == 'object': # try float try: data = data.astype('float64') result = True except: pass if data.dtype.kind == 'f': if data.dtype != 'float64': # coerce floats to 64 try: data = data.astype('float64') result = True except: pass # do't coerce 0-len data if len(data) and (data.dtype == 'float' or data.dtype == 'object'): # coerce ints if we can try: new_data = data.astype('int64') if (new_data == data).all(): data = new_data result = True except: pass # coerce ints to 64 if data.dtype == 'int': # coerce floats to 64 try: data = data.astype('int64') result = True except: pass return data, result def _try_convert_to_date(self, data): """ try to parse a ndarray like into a date column try to coerce object in epoch/iso formats and integer/float in epcoh formats, return a boolean if parsing was successful """ # no conversion on empty if not len(data): return data, False new_data = data if new_data.dtype == 'object': try: new_data = data.astype('int64') except: pass # ignore numbers that are out of range if issubclass(new_data.dtype.type, np.number): in_range = (isnull(new_data.values) | (new_data > self.min_stamp) | (new_data.values == iNaT)) if not in_range.all(): return data, False date_units = (self.date_unit,) if self.date_unit else self._STAMP_UNITS for date_unit in date_units: try: new_data = to_datetime(new_data, errors='raise', unit=date_unit) except OverflowError: continue except: break return new_data, True return data, False def _try_convert_dates(self): raise AbstractMethodError(self) class SeriesParser(Parser): _default_orient = 'index' _split_keys = ('name', 'index', 'data') def _parse_no_numpy(self): json = self.json orient = self.orient if orient == "split": decoded = dict((str(k), v) for k, v in compat.iteritems(loads( json, precise_float=self.precise_float))) self.check_keys_split(decoded) self.obj = Series(dtype=None, **decoded) else: self.obj = Series( loads(json, precise_float=self.precise_float), dtype=None) def _parse_numpy(self): json = self.json orient = self.orient if orient == "split": decoded = loads(json, dtype=None, numpy=True, precise_float=self.precise_float) decoded = dict((str(k), v) for k, v in compat.iteritems(decoded)) self.check_keys_split(decoded) self.obj = Series(**decoded) elif orient == "columns" or orient == "index": self.obj = Series(*loads(json, dtype=None, numpy=True, labelled=True, precise_float=self.precise_float)) else: self.obj = Series(loads(json, dtype=None, numpy=True, precise_float=self.precise_float)) def _try_convert_types(self): if self.obj is None: return obj, result = self._try_convert_data( 'data', self.obj, convert_dates=self.convert_dates) if result: self.obj = obj class FrameParser(Parser): _default_orient = 'columns' _split_keys = ('columns', 'index', 'data') def _parse_numpy(self): json = self.json orient = self.orient if orient == "columns": args = loads(json, dtype=None, numpy=True, labelled=True, precise_float=self.precise_float) if args: args = (args[0].T, args[2], args[1]) self.obj = DataFrame(*args) elif orient == "split": decoded = loads(json, dtype=None, numpy=True, precise_float=self.precise_float) decoded = dict((str(k), v) for k, v in compat.iteritems(decoded)) self.check_keys_split(decoded) self.obj = DataFrame(**decoded) elif orient == "values": self.obj = DataFrame(loads(json, dtype=None, numpy=True, precise_float=self.precise_float)) else: self.obj = DataFrame(*loads(json, dtype=None, numpy=True, labelled=True, precise_float=self.precise_float)) def _parse_no_numpy(self): json = self.json orient = self.orient if orient == "columns": self.obj = DataFrame( loads(json, precise_float=self.precise_float), dtype=None) elif orient == "split": decoded = dict((str(k), v) for k, v in compat.iteritems(loads( json, precise_float=self.precise_float))) self.check_keys_split(decoded) self.obj = DataFrame(dtype=None, **decoded) elif orient == "index": self.obj = DataFrame( loads(json, precise_float=self.precise_float), dtype=None).T else: self.obj = DataFrame( loads(json, precise_float=self.precise_float), dtype=None) def _process_converter(self, f, filt=None): """ take a conversion function and possibly recreate the frame """ if filt is None: filt = lambda col, c: True needs_new_obj = False new_obj = dict() for i, (col, c) in enumerate(self.obj.iteritems()): if filt(col, c): new_data, result = f(col, c) if result: c = new_data needs_new_obj = True new_obj[i] = c if needs_new_obj: # possibly handle dup columns new_obj = DataFrame(new_obj, index=self.obj.index) new_obj.columns = self.obj.columns self.obj = new_obj def _try_convert_types(self): if self.obj is None: return if self.convert_dates: self._try_convert_dates() self._process_converter( lambda col, c: self._try_convert_data(col, c, convert_dates=False)) def _try_convert_dates(self): if self.obj is None: return # our columns to parse convert_dates = self.convert_dates if convert_dates is True: convert_dates = [] convert_dates = set(convert_dates) def is_ok(col): """ return if this col is ok to try for a date parse """ if not isinstance(col, compat.string_types): return False col_lower = col.lower() if (col_lower.endswith('_at') or col_lower.endswith('_time') or col_lower == 'modified' or col_lower == 'date' or col_lower == 'datetime' or col_lower.startswith('timestamp')): return True return False self._process_converter( lambda col, c: self._try_convert_to_date(c), lambda col, c: ((self.keep_default_dates and is_ok(col)) or col in convert_dates)) # --------------------------------------------------------------------- # JSON normalization routines def nested_to_record(ds, prefix="", level=0): """a simplified json_normalize converts a nested dict into a flat dict ("record"), unlike json_normalize, it does not attempt to extract a subset of the data. Parameters ---------- ds : dict or list of dicts prefix: the prefix, optional, default: "" level: the number of levels in the jason string, optional, default: 0 Returns ------- d - dict or list of dicts, matching `ds` Examples -------- IN[52]: nested_to_record(dict(flat1=1,dict1=dict(c=1,d=2), nested=dict(e=dict(c=1,d=2),d=2))) Out[52]: {'dict1.c': 1, 'dict1.d': 2, 'flat1': 1, 'nested.d': 2, 'nested.e.c': 1, 'nested.e.d': 2} """ singleton = False if isinstance(ds, dict): ds = [ds] singleton = True new_ds = [] for d in ds: new_d = copy.deepcopy(d) for k, v in d.items(): # each key gets renamed with prefix if level == 0: newkey = str(k) else: newkey = prefix + '.' + str(k) # only dicts gets recurse-flattend # only at level>1 do we rename the rest of the keys if not isinstance(v, dict): if level != 0: # so we skip copying for top level, common case v = new_d.pop(k) new_d[newkey] = v continue else: v = new_d.pop(k) new_d.update(nested_to_record(v, newkey, level + 1)) new_ds.append(new_d) if singleton: return new_ds[0] return new_ds def json_normalize(data, record_path=None, meta=None, meta_prefix=None, record_prefix=None): """ "Normalize" semi-structured JSON data into a flat table Parameters ---------- data : dict or list of dicts Unserialized JSON objects record_path : string or list of strings, default None Path in each object to list of records. If not passed, data will be assumed to be an array of records meta : list of paths (string or list of strings), default None Fields to use as metadata for each record in resulting table record_prefix : string, default None If True, prefix records with dotted (?) path, e.g. foo.bar.field if path to records is ['foo', 'bar'] meta_prefix : string, default None Returns ------- frame : DataFrame Examples -------- >>> data = [{'state': 'Florida', ... 'shortname': 'FL', ... 'info': { ... 'governor': 'Rick Scott' ... }, ... 'counties': [{'name': 'Dade', 'population': 12345}, ... {'name': 'Broward', 'population': 40000}, ... {'name': 'Palm Beach', 'population': 60000}]}, ... {'state': 'Ohio', ... 'shortname': 'OH', ... 'info': { ... 'governor': 'John Kasich' ... }, ... 'counties': [{'name': 'Summit', 'population': 1234}, ... {'name': 'Cuyahoga', 'population': 1337}]}] >>> from pandas.io.json import json_normalize >>> result = json_normalize(data, 'counties', ['state', 'shortname', ... ['info', 'governor']]) >>> result name population info.governor state shortname 0 Dade 12345 Rick Scott Florida FL 1 Broward 40000 Rick Scott Florida FL 2 Palm Beach 60000 Rick Scott Florida FL 3 Summit 1234 John Kasich Ohio OH 4 Cuyahoga 1337 John Kasich Ohio OH """ def _pull_field(js, spec): result = js if isinstance(spec, list): for field in spec: result = result[field] else: result = result[spec] return result # A bit of a hackjob if isinstance(data, dict): data = [data] if record_path is None: if any([isinstance(x, dict) for x in compat.itervalues(data[0])]): # naive normalization, this is idempotent for flat records # and potentially will inflate the data considerably for # deeply nested structures: # {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@} # # TODO: handle record value which are lists, at least error # reasonably data = nested_to_record(data) return DataFrame(data) elif not isinstance(record_path, list): record_path = [record_path] if meta is None: meta = [] elif not isinstance(meta, list): meta = [meta] for i, x in enumerate(meta): if not isinstance(x, list): meta[i] = [x] # Disastrously inefficient for now records = [] lengths = [] meta_vals = defaultdict(list) meta_keys = ['.'.join(val) for val in meta] def _recursive_extract(data, path, seen_meta, level=0): if len(path) > 1: for obj in data: for val, key in zip(meta, meta_keys): if level + 1 == len(val): seen_meta[key] = _pull_field(obj, val[-1]) _recursive_extract(obj[path[0]], path[1:], seen_meta, level=level + 1) else: for obj in data: recs = _pull_field(obj, path[0]) # For repeating the metadata later lengths.append(len(recs)) for val, key in zip(meta, meta_keys): if level + 1 > len(val): meta_val = seen_meta[key] else: meta_val = _pull_field(obj, val[level:]) meta_vals[key].append(meta_val) records.extend(recs) _recursive_extract(data, record_path, {}, level=0) result = DataFrame(records) if record_prefix is not None: result.rename(columns=lambda x: record_prefix + x, inplace=True) # Data types, a problem for k, v in compat.iteritems(meta_vals): if meta_prefix is not None: k = meta_prefix + k if k in result: raise ValueError('Conflicting metadata name %s, ' 'need distinguishing prefix ' % k) result[k] = np.array(v).repeat(lengths) return result
gpl-2.0
TechTheLunatic/balise-t3
Benchmark/python/main.py
1
3879
from math import sqrt import matplotlib.pyplot as plt def main(): filename = "Test acquisition vanilla-chocolate" file = open("../" + filename + ".txt") data = readDataFile_orderedFormat(file) file.close() # data = adjustRawData(data, 6500) L = 3000 l = 2000 speedOfSound = 0.34 # in mm/µs positionsEq1_x = [] positionsEq1_y = [] positionsEq2_x = [] positionsEq2_y = [] k2_list = [] k3_list = [] for i in range(len(data[0])): k2_t = data[2][i] - data[0][i] k3_t = data[1][i] - data[0][i] k2 = k2_t * speedOfSound k3 = k3_t * speedOfSound k2_list.append(k2) k3_list.append(k3) position = getXY(k2, k3, L, l) aberrant = False for value in position: if value < -1500 or value > 2000: aberrant = True if not aberrant: positionsEq1_x.append(position[0]) positionsEq1_y.append(position[1]) positionsEq2_x.append(position[2]) positionsEq2_y.append(position[3]) else: print("Valeur aberrante") plt.figure() plt.plot(positionsEq1_x, positionsEq1_y, 'ro') plt.plot(positionsEq2_x, positionsEq2_y, 'go') plt.savefig("output_" + filename + ".png") plt.close() plt.figure() plt.plot(k2_list) plt.savefig("k2_" + filename + ".png") plt.close() plt.figure() plt.plot(k3_list) plt.savefig("k3_" + filename + ".png") plt.close() def readDataFile_rawFormat(file): data = [[], [], []] for line in file: splitLine = line.split(";") beaconIndex = int(splitLine[0]) timestamp = int(splitLine[1]) data[beaconIndex].append(timestamp) return data def readDataFile_orderedFormat(file): data = [[], [], []] lineCount = 0 for line in file: try: splitLine = line.split(";") data[0].append(int(splitLine[0])) data[1].append(int(splitLine[1])) data[2].append(int(splitLine[2])) except ValueError: print("Skip line nb" + str(lineCount)) lineCount += 1 return data def adjustRawData(data, maxTimeDifference): newData = data i = 0 while i < min(len(newData[0]), len(newData[1]), len(newData[2])): toDelete = [] for beacon in range(3): for otherBeacon in range(3): if otherBeacon != beacon: if newData[otherBeacon][i] - newData[beacon][i] > maxTimeDifference: toDelete.append(beacon) if len(toDelete) == 0: i += 1 else: for item in toDelete: print("pop b" + str(item) + " #" + str(i)) newData[item].pop(i) for beaconData in newData: while len(beaconData) > i: print("POP!") beaconData.pop() return newData # POSITIONING CALCULATION def getXY(k2, k3, L, l): cte = -(-2*k2+k3)**2*l**2*(k3**2-l**2)*(4*k2**2-l**2-4*L**2)*(4*k2**2-8*k2*k3+4*k3**2-l**2-4*L**2) if cte >= 0: sq = sqrt(cte) else: print("cte= " + str(cte) + " k2= " + str(k2) + " k3= " + str(k3)) return [0, 0, 0, 0] ax = -8*k2**2*k3**2*L+8*k2*k3**3*L-4*k3**2*l**2*L+2*l**4*L bx = sq cx = 4*(4*k2**2*l**2-4*k2*k3*l**2+k3**2*l**2+4*k3**2*L**2-4*l**2*L**2) ay = 16*k2**4*k3*l**2-32*k2**3*k3**2*l**2+20*k2**2*k3**3*l**2-4*k2*k3**4*l**2+16*k2**3*l**4-20*k2**2*k3*l**4+8*k2*k3**2*l**4-k3**3*l**4-16*k2**2*k3*l**2*L**2+32*k2*k3**2*l**2*L**2-12*k3**3*l**2*L**2-16*k2*l**4*L**2+8*k3*l**4*L**2 by = 2*k3*L*sq cy = 4*(2*k2-k3)*l*(4*k2**2*l**2-4*k2*k3*l**2+k3**2*l**2+4*k3**2*L**2-4*l**2*L**2) X1 = (ax + bx) / cx Y1 = (ay + by) / cy X2 = (ax - bx) / cx Y2 = (ay - by) / cy return [X1, Y1, X2, Y2] main()
gpl-3.0
LighthouseHPC/lighthouse
sandbox/ml/scikit/naiveBayes_kfold.py
1
1288
from sklearn.naive_bayes import GaussianNB import pandas import numpy as np import matplotlib.pylab as plt from sklearn.cross_validation import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report import sklearn.metrics from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier from sklearn.metrics import recall_score from sklearn.metrics import accuracy_score import time from sklearn.model_selection import KFold #Begin Code: datafile = input("Enter your datafile: ") print(datafile) target_names = ['good', 'bad', 'fair'] data = pandas.read_csv(datafile) a = len(data.T) - 1 #Again doing this to avoid as much hard coding as possible. X = data.iloc[:,0:a] Y = data.iloc[:, a] #Y X = X.values Y = Y.values kf = KFold(n_splits = 10) for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] Y_train, Y_test = Y[train_index], Y[test_index] gnb = GaussianNB() gnb.fit(X_train,Y_train) y_predict_test = gnb.predict(X_test) print(y_predict_test) result = accuracy_score(Y_test, y_predict_test) print(result) results = metrics.classification_report(Y_test, y_predict_test, target_names) print(results) print(time.clock())
mit
ekadhanda/bin
python/geodeticPlotter.py
1
7961
#!/usr/bin/env python # Vasaant Krishnan. # This script reads in the file name of the argument from the command line and plots out the multiband delays and fringe rates against universal time. The abovementioned file is any .dat output from Mark Reid's fit_geoblocs.f fortran program. # End the commandline input with the word: save - to automatically get a .eps file of the output # End the commandline input with the word: show - to display a graph import re from pylab import * import sys import matplotlib.gridspec as gridspec # Integer to keep count of the number of rows of figures which will be plotted figureNumber = 0 # Any float variable floats = '\s+([+-]?\d+.\d+)' # Array to keep track of ALL the universal times from ALL the .dat files which are being processed by this script timeKeeper = [] # The list of .dat files to be processed by this script nameList = sys.argv[1:] # To print "The mean residual delay of baseline...." in the first instance only firstBaseline = True # The scrip chooses whether to use the default figure size or not if len(nameList) >= 4: fig = figure(figsize=(1.25*len(nameList),1.25*len(nameList))) else: fig = figure() if nameList[len(nameList)-1] == "save": saveFigure = True nameList = nameList[0:len(nameList)-1] else: saveFigure = False if nameList[len(nameList)-1] == "show": showFigure = True nameList = nameList[0:len(nameList)-1] else: showFigure = False # The script starts from here! for item in nameList: universalTime = [] delayData = [] delayModel = [] delayResidual = [] rateData = [] rateModel = [] rateResidual = [] delayDataABS = [] delayModelABS = [] delayResidualABS = [] rateDataABS = [] rateModelABS = [] rateResidualABS = [] rmsDelResArray = [] # The co-ordinates for the individual points for the graphs are harvested here for line in open(item,'r'): # requiredInformation = re.search("\s+(\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)",line) requiredInformation = re.search(7*floats,line) titleInformation = re.search("(\d-\s\d)",line) if requiredInformation: universalTime.append(float(requiredInformation.group(1))) delayData.append( float(requiredInformation.group(2))) delayModel.append( float(requiredInformation.group(3))) delayResidual.append(float(requiredInformation.group(4))) rateData.append( float(requiredInformation.group(5))) rateModel.append( float(requiredInformation.group(6))) rateResidual.append( float(requiredInformation.group(7))) if titleInformation: graphTitle = titleInformation.group(1) close(item) # This next block of code is to harvest the data (as done in the previous block) but in this instance, to automatically determine the maximum and minimum values for the y-axes of both Multiband Delay and Fringe Rate plots. for line in open(item,'r'): # absRequiredInformation = re.search("\s+(\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)\s+(-?\d+.\d+)",line) absRequiredInformation = re.search(7*floats,line) if absRequiredInformation: delayDataABS.append( abs(float(absRequiredInformation.group(2)))) delayModelABS.append( abs(float(absRequiredInformation.group(3)))) delayResidualABS.append(abs(float(absRequiredInformation.group(4)))) rateDataABS.append( abs(float(absRequiredInformation.group(5)))) rateModelABS.append( abs(float(absRequiredInformation.group(6)))) rateResidualABS.append( abs(float(absRequiredInformation.group(7)))) close(item) # This bloc print out the RMS of the delays for element in delayResidual: rmsDelResArray.append(element**2) rmsDelRes = sqrt(mean(rmsDelResArray)) if firstBaseline: print "" print "The mean residual delay of baseline ("+str(graphTitle)+") = %.3f nsec"%(rmsDelRes) firstBaseline = False else: print " ("+str(graphTitle)+") = %.3f "%(rmsDelRes) # These blocs of code determine the greatest of 3 values to use as max and min of the y-axes, only if there is data in the .dat file which is being read if requiredInformation: if max(delayDataABS) > max(delayModelABS): if max(delayDataABS) > max(delayResidualABS): delayPlotAxVal = ceil(max(delayDataABS)) else: delayPlotAxVal = ceil(max(delayResidualABS)) else: if max(delayModelABS) > max(delayResidualABS): delayPlotAxVal = ceil(max(delayModelABS)) else: delayPlotAxVal = ceil(max(delayResidualABS)) if max(rateDataABS) > max(rateModelABS): if max(rateDataABS) > max(rateResidualABS): ratePlotAxVal = ceil(max(rateDataABS)) else: ratePlotAxVal = ceil(max(rateResidualABS)) else: if max(rateModelABS) > max(rateResidualABS): ratePlotAxVal = ceil(max(rateModelABS)) else: ratePlotAxVal = ceil(max(rateResidualABS)) # The next couple of lines of code are to keep track of all the universal times of all the data which have been harvested. This will be used in the plotting bloc (of code) to standarise the x-axis. for time in universalTime: timeKeeper.append(time) # The plotting and figure characteristics are determined from here on. subplot2grid((len(nameList),2),(figureNumber,0)) scatter(universalTime,delayData, c='g',edgecolors='none',label="Data") scatter(universalTime,delayModel, c='b',edgecolors='none',label="Delay Model") scatter(universalTime,delayResidual,c='r', marker='4', label="Delay Residuals'") plot([floor(min(timeKeeper))-0.5,ceil(max(timeKeeper))+0.5],[0,0],'--',c='black') xlim( floor(min(timeKeeper))-0.5,ceil(max(timeKeeper))+0.5) ylim( -delayPlotAxVal, delayPlotAxVal) yticks([-delayPlotAxVal,0,delayPlotAxVal]) title('('+graphTitle+')',fontsize=10) # Only the bottom-most figure gets axis labels and full title if figureNumber == len(nameList)-1: xticks() xlabel("Universal Time (Hours)",weight='bold') title('Baseline ('+graphTitle+')',fontsize=10) else: xticks([]) subplot2grid((len(nameList),2),(figureNumber,1)) scatter(universalTime,rateData, c='g',edgecolors='none',label="Data") scatter(universalTime,rateModel, c='b',edgecolors='none',label="Delay Model") scatter(universalTime,rateResidual,c='r', marker='4', label="Delay Residuals") plot([floor(min(timeKeeper))-0.5,ceil(max(timeKeeper))+0.5],[0,0],'--',c='black') xlim( floor(min(timeKeeper))-0.5,ceil(max(timeKeeper))+0.5) ylim( -ratePlotAxVal, ratePlotAxVal) yticks([-ratePlotAxVal,0,ratePlotAxVal]) title('('+graphTitle+')',fontsize=10) # Only the bottom-most figure gets axis labels and full title if figureNumber == len(nameList)-1: xticks() xlabel("Universal Time (Hours)",weight='bold') title('Baseline ('+graphTitle+')',fontsize=10) else: xticks([]) fig.subplots_adjust(left=0.125, right=0.9, bottom=0.05, top=0.95, wspace=0.5, hspace=0.25) figureNumber += 1 fig.text(0.05,0.55,'Multi-band Delays (nsec)',weight='bold',horizontalalignment='center',verticalalignment='top',rotation='vertical') fig.text(0.52,0.55,'Fringe Rates (MHz)', weight='bold',horizontalalignment='center',verticalalignment='top',rotation='vertical') if saveFigure: savefig("geodeticPlotter.eps", format='eps') elif showFigure: show()
mit
mhdella/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
pmlrsg/arsf_tools
las13/las13.py
1
9486
#!/usr/bin/env python #-*- coding:utf-8 -*- ########################################################### # This file has been created by ARSF Data Analysis Node and # is licensed under the GPL v3 Licence. A copy of this # licence is available to download with this file. ########################################################### ########################################################################### #This is the main interface python library for the Las1.3Reader c++ library # Use it for reading / plotting LAS 1.3 data ########################################################################### import sys import pylab import las13reader from matplotlib.backends.backend_pdf import PdfPages #wrapper class for the c++ wrapper class las13(): """ Class to wrap the las13reader class to be more user friendly """ def __init__(self,filename,quiet=True): """ Constructor: takes a LAS 1.3 file as input """ if isinstance(filename,str): self.reader=las13reader.Las1_3_handler(filename) self.reader.SetQuiet(quiet) else: raise Exception("Expected string argument for filename.") def points_in_bounds(self,bounds): """ Function that searches the LAS file and returns all points within the given rectangular bounds. Inputs: bounds - a list of 4 floating point values describing north, south, west and east bounds. Returns: An object of type las13reader.PulseManager. """ if not isinstance(bounds,list): raise Exception("Expected list argument for bounds (of length 4: north,south,west,east).") if len(bounds)!=4: raise Exception("Expected bounds list of length 4: north,south,west,east.") pmanager=self.reader.GetPointsInBounds(bounds[0],bounds[1],bounds[2],bounds[3]) return pmanager def points_with_classification(self,classification): """ Function that searches the LAS file and returns all points with the given classification value. Inputs: classification - an integer value of the classification to search for Returns: An object of type las13reader.PulseManager. """ if not isinstance(classification,int): raise Exception("Expected int argument for classification.") pmanager=self.reader.GetPointsWithClassification(classification) return pmanager def read_like_book(self,npoints=1,reset=False): """ Function that searches the LAS file and returns points in sequence up to npoints. Inputs: npoints - an integer value for the maximum number of points to read reset - a boolean that when True resets the reader back to the start of the file Returns: An object of type las13reader.PulseManager. """ if not isinstance(npoints,int): raise Exception("Expected int argument for npoints.") if not isinstance(reset,bool): raise Exception("Expected bool argument for reset.") pmanager=self.reader.ReadLikeBook(npoints,reset) return pmanager def tidy(self): """ Function to destroy and free up memory used in any current pulse managers """ self.reader.DeletePulseManagers() ############################################################################### # Static methods below here - functions do not depend on an instance of las13 ############################################################################### #function to return the waveform x,y,z and intensity values from a given pulse @staticmethod def waveform(pulse): """ Function to return the waveform of intensity values from a given pulse object Input: pulse - a las13reader.Pulse object (such that pulsemanagers contain) Returns: The waveform as a dictionary with keys 'x','y','z', and 'intensity'. """ if not isinstance(pulse,las13reader.Pulse): print("las13.waveform expects a Pulse object to be passed, not: %s"%type(pulse)) return None #number of samples nsamples=pulse.nsamples() #return a dict of lists waveform={'x':[],'y':[],'z':[],'intensity':[]} for s in range(0,nsamples): samplePos=list(pulse.sampleXYZ(s)) waveform['x'].append(samplePos[0]) waveform['y'].append(samplePos[1]) waveform['z'].append(samplePos[2]) waveform['intensity'].append(pulse.sampleintensity(s)) return waveform @staticmethod def discrete(pulse): """ Function to return the discrete point information from the given pulse """ discrete=[] for r in range(0,pulse.nreturns()): discrete.append(discretepoint(pulse,r)) return discrete #Function to return some (requested) info about the given pulse @staticmethod def get_pulse_info(pulse,keyword): """ Function to extract the requested information from the given pulse object. This is really just a helper function to convert vectors into lists. Inputs: pulse - the pulse object keyword - key to describe information requested Returns: the requested data """ keywords=['time','nreturns','nsamples','origin','offset','scanangle','classification','returnlocs','disint'] if keyword == 'time': return pulse.time() elif keyword == 'nreturns': return pulse.nreturns() elif keyword == 'nsamples': return pulse.nsamples() elif keyword == 'origin': return list(pulse.originXYZ()) elif keyword == 'offset': return list(pulse.offsetXYZ()) elif keyword == 'scanangle': return pulse.scanangle() elif keyword == 'classification': return list(pulse.classification()) elif keyword == 'returnlocs': return list(pulse.returnpointlocation()) elif keyword == 'disint': return list(pulse.discreteintensities()) else: print("Keyword should be one of: ",keywords) raise Exception("Unrecognised keyword in get_pulse_info: %s."%(keyword)) #Function to plot the pulse @staticmethod def quick_plot_pulse(pulse,title=None,filename=None): """ Function to produce a plot of the pulse waveform data Inputs: pulse - the pulse object title - a title to give the plot filename - if given the plot is saved to the filename, else displayed on screen """ waveform=las13.waveform(pulse) pylab.plot(waveform['intensity'],'b-',label='Waveform') pylab.xlabel('Sample number') pylab.ylabel('Intensity') if title: pylab.title(title) pylab.ylim([0,pylab.ylim()[1]+5]) pylab.legend() if filename: pylab.savefig(filename) else: pylab.show() @staticmethod def plot_all_pulses(pulsemanager,filename): """ Function to plot every pulse within a pulsemanager and save to a PDF file Inputs: pulsemanager - the pulsemanager object to plot data from filename - the PDF filename to save the plots to """ fileobj=PdfPages(filename) for p in range(pulsemanager.getNumOfPulses()): pulse=pulsemanager[p] waveform=las13.waveform(pulse) pylab.plot(waveform['intensity'],'b-',label='Waveform') pylab.plot( [x / pulse.sampletime() for x in las13.get_pulse_info(pulse,'returnlocs')],las13.get_pulse_info(pulse,'disint'),'ro',label='Discrete') pylab.xlabel('Sample number') pylab.ylabel('Intensity') pylab.title('Pulse with time: %f'%pulse.time()) pylab.ylim([0,pylab.ylim()[1]+5]) pylab.legend() fileobj.savefig() pylab.clf() fileobj.close() class dpoint(): """ Simple helper class to describe a points position in X,Y,Z """ def __init__(self,dposition): self.X=dposition[0] self.Y=dposition[1] self.Z=dposition[2] class discretepoint(): """ Class to hold information on discrete points in a user friendly interface """ def __init__(self,pulse,item): if not isinstance(pulse,las13reader.Pulse): raise Exception("Parameter 'pulse' should be of type las13reader.Pulse in discretepoint object") if not isinstance(item,int): raise Exception("Parameter 'item' should be of type integer in discretepoint object") #get the number of returns self.returns=pulse.nreturns() if item >= self.returns: raise Exception("Cannot create a discretepoint for return %d when only %d returns for given pulse"%(item,self.returns)) #get all the discrete points points=list(pulse.discretepoints()) #now convert and store as 'dpoint' object self.position=dpoint(points[item]) #intensity self.intensity=list(pulse.discreteintensities())[item] #classification self.classification=list(pulse.classification())[item] #return number self.returnnumber=item
gpl-3.0
flygeneticist/Thinkful-Data-Science-Examples
Unit1/Lesson3/import-into-sql-with-python.py
1
2255
# import the sql library into python import sqlite3 as lite # data to be inserted into tables stored as tuples with-in a tuple cities = (('Boston', 'MA'), ('Chicago', 'IL'), ('Miami', 'FL'), ('Dallas', 'TX'), ('Seattle', 'WA'), ('Portland', 'OR'), ('San Francisco', 'CA'), ('Los Angeles', 'CA')) weather = (('Boston', '2013', 7, 1, 59, 0), ('Chicago', '2013', 7, 1, 59, 0), ('Miami', '2013', 8, 1, 84, 0), ('Dallas', '2013', 7, 1, 77, 0), ('Seattle', '2013', 7, 1, 61, 0), ('Portland', '2013', 7, 12, 63, 0), ('San Francisco', '2013', 9, 12, 64, 0), ('Los Angeles', '2013', 9, 12, 75, 0)) # connect to your SQL database and store as a variable to call in future code con = lite.connect('my_database.db') with con: # setup the cursor for accessing records in the tables cur = con.cursor() ''' INSERTING DATA INTO SQLITE DATABASE ''' # sqlite3 versions 3.6 and up use something like the following code cur.executemany("INSERT INTO cities VALUES(?,?)", cities) cur.executemany("INSERT INTO weather VALUES(?,?,?,?,?,?)", weather) # # sqlite3 versions 3.5 and below use something like the following code # for rec in cities: # cur.execute("INSERT INTO cities VALUES (\'"+rec[0]+"\',\'"+rec[1]+"\')") # for rec in weather: # cur.execute("INSERT INTO weather VALUES (\'"+rec[0]+"\',"+str(rec[1])+","+str(rec[2])+","+str(rec[3])+","+str(rec[4])+")") ''' RETRIEVING RAW DATA FROM SQLITE DATABASE ''' # execute your search command cur.execute("SELECT * FROM cities") # grab the results rows = cur.fetchall() # iterate over the results, printing out each to std output with print for row in rows: print row ''' RETRIEVING DATA FROM DATABASE AND STORING IT IN A PANDAS DATAFRAME ''' # import the pandas library import pandas as pd # Select all rows cur.execute("SELECT * FROM cities") rows = cur.fetchall() # set column labels from the first row of data retieved from the DB cols = [desc[0] for desc in cur.description] # set the pandas dataframe with data and column labels df = pd.DataFrame(rows, columns=cols) # display the first bit of data from the pandas DataFrame print df.head()
mit
florian-f/sklearn
examples/linear_model/plot_sgd_loss_functions.py
4
1602
""" ========================== SGD: Convex Loss Functions ========================== Plot the convex loss functions supported by `sklearn.linear_model.stochastic_gradient`. """ print(__doc__) import numpy as np import pylab as pl from sklearn.linear_model.sgd_fast import SquaredHinge from sklearn.linear_model.sgd_fast import Hinge from sklearn.linear_model.sgd_fast import ModifiedHuber from sklearn.linear_model.sgd_fast import SquaredLoss ############################################################################### # Define loss functions xmin, xmax = -4, 4 hinge = Hinge(1) squared_hinge = SquaredHinge() perceptron = Hinge(0) log_loss = lambda z, p: np.log2(1.0 + np.exp(-z)) modified_huber = ModifiedHuber() squared_loss = SquaredLoss() ############################################################################### # Plot loss funcitons xx = np.linspace(xmin, xmax, 100) pl.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss") pl.plot(xx, [hinge.loss(x, 1) for x in xx], 'g-', label="Hinge loss") pl.plot(xx, [perceptron.loss(x, 1) for x in xx], 'm-', label="Perceptron loss") pl.plot(xx, [log_loss(x, 1) for x in xx], 'r-', label="Log loss") #pl.plot(xx, [2 * squared_loss.loss(x, 1) for x in xx], 'c-', # label="Squared loss") pl.plot(xx, [squared_hinge.loss(x, 1) for x in xx], 'b-', label="Squared hinge loss") pl.plot(xx, [modified_huber.loss(x, 1) for x in xx], 'y--', label="Modified huber loss") pl.ylim((0, 8)) pl.legend(loc="upper right") pl.xlabel(r"$y \cdot f(x)$") pl.ylabel("$L(y, f(x))$") pl.show()
bsd-3-clause
rohanp/scikit-learn
sklearn/cluster/tests/test_mean_shift.py
150
3651
""" Testing for mean shift clustering methods """ import numpy as np import warnings from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raise_message from sklearn.cluster import MeanShift from sklearn.cluster import mean_shift from sklearn.cluster import estimate_bandwidth from sklearn.cluster import get_bin_seeds from sklearn.datasets.samples_generator import make_blobs n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=300, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=11) def test_estimate_bandwidth(): # Test estimate_bandwidth bandwidth = estimate_bandwidth(X, n_samples=200) assert_true(0.9 <= bandwidth <= 1.5) def test_mean_shift(): # Test MeanShift algorithm bandwidth = 1.2 ms = MeanShift(bandwidth=bandwidth) labels = ms.fit(X).labels_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) cluster_centers, labels = mean_shift(X, bandwidth=bandwidth) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) def test_parallel(): ms1 = MeanShift(n_jobs=2) ms1.fit(X) ms2 = MeanShift() ms2.fit(X) assert_array_equal(ms1.cluster_centers_,ms2.cluster_centers_) assert_array_equal(ms1.labels_,ms2.labels_) def test_meanshift_predict(): # Test MeanShift.predict ms = MeanShift(bandwidth=1.2) labels = ms.fit_predict(X) labels2 = ms.predict(X) assert_array_equal(labels, labels2) def test_meanshift_all_orphans(): # init away from the data, crash with a sensible warning ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]]) msg = "No point was within bandwidth=0.1" assert_raise_message(ValueError, msg, ms.fit, X,) def test_unfitted(): # Non-regression: before fit, there should be not fitted attributes. ms = MeanShift() assert_false(hasattr(ms, "cluster_centers_")) assert_false(hasattr(ms, "labels_")) def test_bin_seeds(): # Test the bin seeding technique which can be used in the mean shift # algorithm # Data is just 6 points in the plane X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2], [2., 1.], [2.1, 1.1], [0., 0.]]) # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be # found ground_truth = set([(1., 1.), (2., 1.), (0., 0.)]) test_bins = get_bin_seeds(X, 1, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be # found ground_truth = set([(1., 1.), (2., 1.)]) test_bins = get_bin_seeds(X, 1, 2) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found # we bail and use the whole data here. with warnings.catch_warnings(record=True): test_bins = get_bin_seeds(X, 0.01, 1) assert_array_equal(test_bins, X) # tight clusters around [0, 0] and [1, 1], only get two bins X, _ = make_blobs(n_samples=100, n_features=2, centers=[[0, 0], [1, 1]], cluster_std=0.1, random_state=0) test_bins = get_bin_seeds(X, 1) assert_array_equal(test_bins, [[0, 0], [1, 1]])
bsd-3-clause
Richert/BrainNetworks
BasalGanglia/gpe_2pop_pac_tmp.py
1
2320
import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl from pyrates.utility.visualization import create_cmap, plot_connectivity from scipy.interpolate.interpolate import interp1d import scipy.io as scio linewidth = 1.2 fontsize1 = 10 fontsize2 = 10 markersize1 = 60 markersize2 = 60 dpi = 200 plt.style.reload_library() plt.style.use('seaborn-whitegrid') mpl.rcParams['text.latex.preamble'] = [r'\usepackage{sfmath} \boldmath'] #mpl.rc('text', usetex=True) mpl.rcParams["font.sans-serif"] = ["Roboto"] mpl.rcParams["font.size"] = fontsize1 mpl.rcParams["font.weight"] = "bold" mpl.rcParams['lines.linewidth'] = linewidth mpl.rcParams['axes.titlesize'] = fontsize2 mpl.rcParams['axes.titleweight'] = 'bold' mpl.rcParams['axes.labelsize'] = 'large' mpl.rcParams['axes.labelweight'] = 'bold' mpl.rcParams['xtick.color'] = 'black' mpl.rcParams['ytick.color'] = 'black' mpl.rcParams['ytick.alignment'] = 'center' mpl.rcParams['legend.fontsize'] = fontsize1 sns.set(style="whitegrid") # load data path = "/home/rgast/MatlabProjects/STN_GPe/PAC_bistable.mat" data = scio.loadmat(path) # extract from data alpha = data['stim_amps_unique'] omega = data['stim_freqs_unique'] MI = data['PAC_max'] PAA_osc = data['PAA_osc'] PAA_env = data['PAA_env'] PAA = PAA_osc / PAA_env # plot MI cmap = create_cmap("pyrates_blue", n_colors=64, as_cmap=False, reverse=False) ax = plot_connectivity(MI, cmap=cmap) ax.set_xticks(ax.get_xticks()[0::2]) ax.set_yticks(ax.get_yticks()[0::2]) ax.set_xticklabels(np.round(omega.squeeze(), decimals=1)[0::2], rotation='horizontal') ax.set_yticklabels(np.round(alpha.squeeze(), decimals=1)[0::2], rotation='horizontal') ax.set_xlabel('omega') ax.set_ylabel('alpha') ax.invert_yaxis() plt.tight_layout() plt.savefig('MI_bs.svg') plt.show() # plot PAA cmap = create_cmap("pyrates_blue", n_colors=64, as_cmap=False, reverse=False) ax = plot_connectivity(PAA, cmap=cmap, vmin=0.0, vmax=1.0) ax.set_xticks(ax.get_xticks()[0::2]) ax.set_yticks(ax.get_yticks()[0::2]) ax.set_xticklabels(np.round(omega.squeeze(), decimals=1)[0::2], rotation='horizontal') ax.set_yticklabels(np.round(alpha.squeeze(), decimals=1)[0::2], rotation='horizontal') ax.set_xlabel('omega') ax.set_ylabel('alpha') ax.invert_yaxis() plt.tight_layout() plt.savefig('PAA_bs.svg') plt.show()
apache-2.0
Barmaley-exe/scikit-learn
sklearn/feature_extraction/text.py
6
49520
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) else: # assume it's a collection return stop class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg="%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Parameters ---------- input: string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents: {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer: string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor: callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer: callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. ngram_range: tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words: string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. lowercase: boolean, default True Convert all characters to lowercase before tokenizing. token_pattern: string Regular expression denoting what constitutes a "token", only used if `analyzer == 'word'`. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, optional, (2 ** 20) by default The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, False by default. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, optional Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if `tokenize == 'word'`. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, optional, 1.0 by default When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, optional, 1 by default When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : optional, None by default If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, False by default. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df of min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, optional Enable inverse-document-frequency reweighting. smooth_idf : boolean, optional Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, optional Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log1p instead of log makes sure terms with zero idf don't get # suppressed entirely idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if `analyzer == 'word'`. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, optional, 1.0 by default When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, optional, 1 by default When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : optional, None by default If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, False by default. If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, optional Enable inverse-document-frequency reweighting. smooth_idf : boolean, optional Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, optional Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
JVillella/tensorflow
tensorflow/contrib/factorization/python/ops/gmm.py
47
5877
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of Gaussian mixture model (GMM) clustering using tf.Learn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import framework from tensorflow.contrib.factorization.python.ops import gmm_ops from tensorflow.contrib.framework.python.framework import checkpoint_utils from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops.control_flow_ops import with_dependencies def _streaming_sum(scalar_tensor): """Create a sum metric and update op.""" sum_metric = framework.local_variable(constant_op.constant(0.0)) sum_update = sum_metric.assign_add(scalar_tensor) return sum_metric, sum_update class GMM(estimator.Estimator): """An estimator for GMM clustering.""" SCORES = 'scores' ASSIGNMENTS = 'assignments' ALL_SCORES = 'all_scores' def __init__(self, num_clusters, model_dir=None, random_seed=0, params='wmc', initial_clusters='random', covariance_type='full', config=None): """Creates a model for running GMM training and inference. Args: num_clusters: number of clusters to train. model_dir: the directory to save the model results and log files. random_seed: Python integer. Seed for PRNG used to initialize centers. params: Controls which parameters are updated in the training process. Can contain any combination of "w" for weights, "m" for means, and "c" for covars. initial_clusters: specifies how to initialize the clusters for training. See gmm_ops.gmm for the possible values. covariance_type: one of "full", "diag". config: See Estimator """ self._num_clusters = num_clusters self._params = params self._training_initial_clusters = initial_clusters self._covariance_type = covariance_type self._training_graph = None self._random_seed = random_seed super(GMM, self).__init__( model_fn=self._model_builder(), model_dir=model_dir, config=config) def predict_assignments(self, input_fn=None, batch_size=None, outputs=None): """See BaseEstimator.predict.""" results = self.predict(input_fn=input_fn, batch_size=batch_size, outputs=outputs) for result in results: yield result[GMM.ASSIGNMENTS] def score(self, input_fn=None, batch_size=None, steps=None): """Predict total sum of distances to nearest clusters. Note that this function is different from the corresponding one in sklearn which returns the negative of the sum of distances. Args: input_fn: see predict. batch_size: see predict. steps: see predict. Returns: Total sum of distances to nearest clusters. """ results = self.evaluate(input_fn=input_fn, batch_size=batch_size, steps=steps) return np.sum(results[GMM.SCORES]) def weights(self): """Returns the cluster weights.""" return checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_WEIGHT) def clusters(self): """Returns cluster centers.""" clusters = checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_VARIABLE) return np.squeeze(clusters, 1) def covariances(self): """Returns the covariances.""" return checkpoint_utils.load_variable( self.model_dir, gmm_ops.GmmAlgorithm.CLUSTERS_COVS_VARIABLE) def _parse_tensor_or_dict(self, features): if isinstance(features, dict): return array_ops.concat([features[k] for k in sorted(features.keys())], 1) return features def _model_builder(self): """Creates a model function.""" def _model_fn(features, labels, mode): """Model function.""" assert labels is None, labels (all_scores, model_predictions, losses, training_op) = gmm_ops.gmm( self._parse_tensor_or_dict(features), self._training_initial_clusters, self._num_clusters, self._random_seed, self._covariance_type, self._params) incr_step = state_ops.assign_add(variables.get_global_step(), 1) loss = math_ops.reduce_sum(losses) training_op = with_dependencies([training_op, incr_step], loss) predictions = { GMM.ALL_SCORES: all_scores[0], GMM.ASSIGNMENTS: model_predictions[0][0], } eval_metric_ops = { GMM.SCORES: _streaming_sum(loss), } return model_fn_lib.ModelFnOps(mode=mode, predictions=predictions, eval_metric_ops=eval_metric_ops, loss=loss, train_op=training_op) return _model_fn
apache-2.0
mrkowalski/kaggle_santander
scikit/src/commons.py
1
7185
import pandas as pd import numpy as np from sklearn.externals import joblib from sklearn.preprocessing import LabelEncoder from functools import partial import re num_months = 4 chunk_size = 1000000 indicators = ['ind_ahor_fin_ult1', 'ind_aval_fin_ult1', 'ind_cco_fin_ult1', 'ind_cder_fin_ult1', 'ind_cno_fin_ult1', 'ind_ctju_fin_ult1', 'ind_ctma_fin_ult1', 'ind_ctop_fin_ult1', 'ind_ctpp_fin_ult1', 'ind_deco_fin_ult1', 'ind_deme_fin_ult1', 'ind_dela_fin_ult1', 'ind_ecue_fin_ult1', 'ind_fond_fin_ult1', 'ind_hip_fin_ult1', 'ind_plan_fin_ult1', 'ind_pres_fin_ult1', 'ind_reca_fin_ult1', 'ind_tjcr_fin_ult1', 'ind_valo_fin_ult1', 'ind_viv_fin_ult1', 'ind_nomina_ult1', 'ind_nom_pens_ult1', 'ind_recibo_ult1'] column_prefix = 'bd' main_dataframe = 'dataframe.pkl' dataframe_dir = 'dataframes' main_csv = 'stuff_6mo_all_indicators.csv' def read_dataframe(): return pd.read_pickle(dataframe_dir + "/" + main_dataframe) def read_dataframe_for_feature(feature): return pd.read_pickle(dataframe_dir + "/" + feature + ".pkl") def save_dataframe_for_feature(df, feature): df.to_pickle(dataframe_dir + "/" + feature + ".pkl") def save_dataframe(df): df.to_pickle(dataframe_dir + "/" + main_dataframe) def predicted_column_name(name): return "{}{}_{}".format(column_prefix, num_months, name) def save_model(clf, feature): joblib.dump(clf, "models/" + feature + ".pkl") def read_model(feature): return joblib.load("models/" + feature + ".pkl") def dtypes_range(name, upto, dtype): return {("bd{}_{}".format(i, name), dtype) for i in range(1, upto + 1)} dtypes = { 'bd1_renta': np.int32, 'bd1_sexo': np.int8, 'bd1_pais_residencia': np.int16, 'bd1_canal_entrada': np.int16, 'bd1_ind_nuevo': np.bool } dtypes.update(dtypes_range('segmento_individual', num_months, np.bool)) dtypes.update(dtypes_range('segmento_vip', num_months, np.bool)) dtypes.update(dtypes_range('segmento_graduate', num_months, np.bool)) for i in indicators: dtypes.update(dtypes_range(i, num_months, np.bool)) dtypes.update(dtypes_range('cod_prov', num_months, np.uint8)) dtypes.update(dtypes_range('ind_empleado', num_months, np.int8)) dtypes.update(dtypes_range('age', num_months, np.int)) dtypes.update(dtypes_range('indrel_99', num_months, np.bool)) dtypes.update(dtypes_range('ind_actividad_cliente', num_months, np.bool)) dtypes.update(dtypes_range('antiguedad', num_months, np.int)) dtypes.update(dtypes_range('tipodom', num_months, np.bool)) dtypes.update(dtypes_range('indfall', num_months, np.bool)) dtypes.update(dtypes_range('indext', num_months, np.bool)) dtypes.update(dtypes_range('indresi', num_months, np.bool)) dtypes.update(dtypes_range('indrel_1mes', num_months, np.int8)) dtypes.update(dtypes_range('tiprel_1mes', num_months, np.int8)) rx_prefix = re.compile('bd\\d_') le = LabelEncoder() field_values = { 'sexo': LabelEncoder().fit(['V', 'H']), 'pais_residencia': LabelEncoder().fit( ['ES', 'CA', 'CH', 'CL', 'IE', 'AT', 'NL', 'FR', 'GB', 'DE', 'DO', 'BE', 'AR', 'VE', 'US', 'MX', 'BR', 'IT', 'EC', 'PE', 'CO', 'HN', 'FI', 'SE', 'AL', 'PT', 'MZ', 'CN', 'TW', 'PL', 'IN', 'CR', 'NI', 'HK', 'AD', 'CZ', 'AE', 'MA', 'GR', 'PR', 'RO', 'IL', 'RU', 'GT', 'GA', 'NO', 'SN', 'MR', 'UA', 'BG', 'PY', 'EE', 'SV', 'ET', 'CM', 'SA', 'CI', 'QA', 'LU', 'PA', 'BA', 'BO', 'AU', 'BY', 'KE', 'SG', 'HR', 'MD', 'SK', 'TR', 'AO', 'CU', 'GQ', 'EG', 'ZA', 'DK', 'UY', 'GE', 'TH', 'DZ', 'LB', 'JP', 'NG', 'PK', 'TN', 'TG', 'KR', 'GH', 'RS', 'VN', 'PH', 'KW', 'NZ', 'MM', 'KH', 'GI', 'SL', 'GN', 'GW', 'OM', 'CG', 'LV', 'LT', 'ML', 'MK', 'HU', 'IS', 'LY', 'CF', 'GM', 'KZ', 'CD', 'BZ', 'ZW', 'DJ', 'JM', 'BM', 'MT' ]), 'ind_empleado': LabelEncoder().fit(['N', 'A', 'B', 'F', 'S']), 'canal_entrada': LabelEncoder().fit( ['KHL', 'KHE', 'KHD', 'KFA', 'KFC', 'KAT', 'KAZ', 'RED', 'KHC', 'KHK', 'KGN', 'KHM', 'KHO', 'KDH', 'KEH', 'KAD', 'KBG', 'KGC', 'KHF', 'KFK', 'KHN', 'KHA', 'KAF', 'KGX', 'KFD', 'KAG', 'KFG', 'KAB', 'KCC', 'KAE', 'KAH', 'KAR', 'KFJ', 'KFL', 'KAI', 'KFU', 'KAQ', 'KFS', 'KAA', 'KFP', 'KAJ', 'KFN', 'KGV', 'KGY', 'KFF', 'KAP', 'KDE', 'KFV', '013', 'K00', 'KAK', 'KCK', 'KCL', 'KAY', 'KBU', 'KDR', 'KAC', 'KDT', 'KCG', 'KDO', 'KDY', 'KBQ', 'KDA', 'KBO', 'KCI', 'KEC', 'KBZ', 'KES', 'KDX', 'KAS', '007', 'KEU', 'KCA', 'KAL', 'KDC', 'KAW', 'KCS', 'KCB', 'KDU', 'KDQ', 'KCN', 'KCM', '004', 'KCH', 'KCD', 'KCE', 'KEV', 'KBL', 'KEA', 'KBH', 'KDV', 'KFT', 'KEY', 'KAO', 'KEJ', 'KEO', 'KEI', 'KEW', 'KDZ', 'KBV', 'KBR', 'KBF', 'KDP', 'KCO', 'KCF', 'KCV', 'KAM', 'KEZ', 'KBD', 'KAN', 'KBY', 'KCT', 'KDD', 'KBW', 'KCU', 'KBX', 'KDB', 'KBS', 'KBE', 'KCX', 'KBP', 'KBN', 'KEB', 'KDS', 'KEL', 'KDG', 'KDF', 'KEF', 'KCP', 'KDM', 'KBB', 'KDW', 'KBJ', 'KFI', 'KBM', 'KEG', 'KEN', 'KEQ', 'KAV', 'KFH', 'KFM', 'KAU', 'KED', 'KFR', 'KEK', 'KFB', 'KGW', 'KFE', 'KGU', 'KDI', 'KDN', 'KEE', 'KCR', 'KCQ', 'KEM', 'KCJ', 'KHQ', 'KDL', '025', 'KHP', 'KHR', 'KHS']), 'indrel_1mes': LabelEncoder().fit(['1', '2', '3', '4', 'P']), 'tiprel_1mes': LabelEncoder().fit(['A', 'I', 'P', 'R', 'N']), 'indfall': LabelEncoder().fit(['N', 'S']) } def col_to_int(range, v): if v is None: return -1 else: v = v.strip() if len(v) == 0: return -1 else: return field_values[range].transform([v])[0] def col_to_intvalue(default, v): if v is None: return default else: try: return int(v) except: return default def feature_range_list(name, upto): return ["bd{}_{}".format(i, name) for i in range(1, upto + 1)] cols_as_integers = set(['segmento_', 'cod_prov', 'ind_', 'ind_empleado', 'age']) cols_to_convert = ['bd1_sexo', 'bd1_pais_residencia', 'bd1_ind_empleado', 'bd1_canal_entrada'] + feature_range_list( 'indrel_1mes', num_months) + feature_range_list('indfall', num_months) + feature_range_list( 'segmento_individual', num_months) + feature_range_list('tiprel_1mes', num_months) + feature_range_list( 'segmento_graduate', num_months) + feature_range_list( 'segmento_vip', num_months) + feature_range_list('cod_prov', num_months) + feature_range_list('age', num_months) for i in indicators: cols_to_convert = cols_to_convert + feature_range_list(i, num_months) def make_converters(): converters = {} for c in cols_to_convert: if rx_prefix.match(c[:4]): if any([c[4:].startswith(token) for token in cols_as_integers]): converters[c] = partial(col_to_intvalue, 0) else: converters[c] = partial(col_to_int, c[4:]) else: converters[c] = partial(col_to_int, c) return converters def fillna_range(data, name, upto, v): for i in range(1, upto + 1): data["bd{}_{}".format(i, name)].fillna(v, inplace=True) def read_csv(source, names=None): return pd.read_csv(source, sep=',', nrows=chunk_size, converters=make_converters(), dtype=dtypes, names=names)
mit
sinhrks/scikit-learn
benchmarks/bench_plot_nmf.py
90
5742
""" Benchmarks of Non-Negative Matrix Factorization """ from __future__ import print_function from collections import defaultdict import gc from time import time import numpy as np from scipy.linalg import norm from sklearn.decomposition.nmf import NMF, _initialize_nmf from sklearn.datasets.samples_generator import make_low_rank_matrix from sklearn.externals.six.moves import xrange def alt_nnmf(V, r, max_iter=1000, tol=1e-3, init='random'): ''' A, S = nnmf(X, r, tol=1e-3, R=None) Implement Lee & Seung's algorithm Parameters ---------- V : 2-ndarray, [n_samples, n_features] input matrix r : integer number of latent features max_iter : integer, optional maximum number of iterations (default: 1000) tol : double tolerance threshold for early exit (when the update factor is within tol of 1., the function exits) init : string Method used to initialize the procedure. Returns ------- A : 2-ndarray, [n_samples, r] Component part of the factorization S : 2-ndarray, [r, n_features] Data part of the factorization Reference --------- "Algorithms for Non-negative Matrix Factorization" by Daniel D Lee, Sebastian H Seung (available at http://citeseer.ist.psu.edu/lee01algorithms.html) ''' # Nomenclature in the function follows Lee & Seung eps = 1e-5 n, m = V.shape W, H = _initialize_nmf(V, r, init, random_state=0) for i in xrange(max_iter): updateH = np.dot(W.T, V) / (np.dot(np.dot(W.T, W), H) + eps) H *= updateH updateW = np.dot(V, H.T) / (np.dot(W, np.dot(H, H.T)) + eps) W *= updateW if i % 10 == 0: max_update = max(updateW.max(), updateH.max()) if abs(1. - max_update) < tol: break return W, H def report(error, time): print("Frobenius loss: %.5f" % error) print("Took: %.2fs" % time) print() def benchmark(samples_range, features_range, rank=50, tolerance=1e-5): timeset = defaultdict(lambda: []) err = defaultdict(lambda: []) for n_samples in samples_range: for n_features in features_range: print("%2d samples, %2d features" % (n_samples, n_features)) print('=======================') X = np.abs(make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2)) gc.collect() print("benchmarking nndsvd-nmf: ") tstart = time() m = NMF(n_components=30, tol=tolerance, init='nndsvd').fit(X) tend = time() - tstart timeset['nndsvd-nmf'].append(tend) err['nndsvd-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvda-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvda', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvda-nmf'].append(tend) err['nndsvda-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvdar-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvdar', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvdar-nmf'].append(tend) err['nndsvdar-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking random-nmf") tstart = time() m = NMF(n_components=30, init='random', max_iter=1000, tol=tolerance).fit(X) tend = time() - tstart timeset['random-nmf'].append(tend) err['random-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking alt-random-nmf") tstart = time() W, H = alt_nnmf(X, r=30, init='random', tol=tolerance) tend = time() - tstart timeset['alt-random-nmf'].append(tend) err['alt-random-nmf'].append(np.linalg.norm(X - np.dot(W, H))) report(norm(X - np.dot(W, H)), tend) return timeset, err if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection axes3d import matplotlib.pyplot as plt samples_range = np.linspace(50, 500, 3).astype(np.int) features_range = np.linspace(50, 500, 3).astype(np.int) timeset, err = benchmark(samples_range, features_range) for i, results in enumerate((timeset, err)): fig = plt.figure('scikit-learn Non-Negative Matrix Factorization' 'benchmark results') ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbgcm', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') zlabel = 'Time (s)' if i == 0 else 'reconstruction error' ax.set_zlabel(zlabel) ax.legend() plt.show()
bsd-3-clause
GunoH/intellij-community
python/helpers/pydev/pydev_ipython/inputhook.py
21
19415
# coding: utf-8 """ Inputhook management for GUI event loop integration. """ #----------------------------------------------------------------------------- # Copyright (C) 2008-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import sys import select #----------------------------------------------------------------------------- # Constants #----------------------------------------------------------------------------- # Constants for identifying the GUI toolkits. GUI_WX = 'wx' GUI_QT = 'qt' GUI_QT4 = 'qt4' GUI_QT5 = 'qt5' GUI_GTK = 'gtk' GUI_TK = 'tk' GUI_OSX = 'osx' GUI_GLUT = 'glut' GUI_PYGLET = 'pyglet' GUI_GTK3 = 'gtk3' GUI_NONE = 'none' # i.e. disable #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def ignore_CTRL_C(): """Ignore CTRL+C (not implemented).""" pass def allow_CTRL_C(): """Take CTRL+C into account (not implemented).""" pass #----------------------------------------------------------------------------- # Main InputHookManager class #----------------------------------------------------------------------------- class InputHookManager(object): """Manage PyOS_InputHook for different GUI toolkits. This class installs various hooks under ``PyOSInputHook`` to handle GUI event loop integration. """ def __init__(self): self._return_control_callback = None self._apps = {} self._reset() self.pyplot_imported = False def _reset(self): self._callback_pyfunctype = None self._callback = None self._current_gui = None def set_return_control_callback(self, return_control_callback): self._return_control_callback = return_control_callback def get_return_control_callback(self): return self._return_control_callback def return_control(self): return self._return_control_callback() def get_inputhook(self): return self._callback def set_inputhook(self, callback): """Set inputhook to callback.""" # We don't (in the context of PyDev console) actually set PyOS_InputHook, but rather # while waiting for input on xmlrpc we run this code self._callback = callback def clear_inputhook(self, app=None): """Clear input hook. Parameters ---------- app : optional, ignored This parameter is allowed only so that clear_inputhook() can be called with a similar interface as all the ``enable_*`` methods. But the actual value of the parameter is ignored. This uniform interface makes it easier to have user-level entry points in the main IPython app like :meth:`enable_gui`.""" self._reset() def clear_app_refs(self, gui=None): """Clear IPython's internal reference to an application instance. Whenever we create an app for a user on qt4 or wx, we hold a reference to the app. This is needed because in some cases bad things can happen if a user doesn't hold a reference themselves. This method is provided to clear the references we are holding. Parameters ---------- gui : None or str If None, clear all app references. If ('wx', 'qt4') clear the app for that toolkit. References are not held for gtk or tk as those toolkits don't have the notion of an app. """ if gui is None: self._apps = {} elif gui in self._apps: del self._apps[gui] def enable_wx(self, app=None): """Enable event loop integration with wxPython. Parameters ---------- app : WX Application, optional. Running application to use. If not given, we probe WX for an existing application object, and create a new one if none is found. Notes ----- This methods sets the ``PyOS_InputHook`` for wxPython, which allows the wxPython to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`wx.App` as follows:: import wx app = wx.App(redirect=False, clearSigInt=False) """ import wx from distutils.version import LooseVersion as V wx_version = V(wx.__version__).version # @UndefinedVariable if wx_version < [2, 8]: raise ValueError("requires wxPython >= 2.8, but you have %s" % wx.__version__) # @UndefinedVariable from pydev_ipython.inputhookwx import inputhook_wx self.set_inputhook(inputhook_wx) self._current_gui = GUI_WX if app is None: app = wx.GetApp() # @UndefinedVariable if app is None: app = wx.App(redirect=False, clearSigInt=False) # @UndefinedVariable app._in_event_loop = True self._apps[GUI_WX] = app return app def disable_wx(self): """Disable event loop integration with wxPython. This merely sets PyOS_InputHook to NULL. """ if GUI_WX in self._apps: self._apps[GUI_WX]._in_event_loop = False self.clear_inputhook() def enable_qt(self, app=None): from pydev_ipython.qt_for_kernel import QT_API, QT_API_PYQT5 if QT_API == QT_API_PYQT5: self.enable_qt5(app) else: self.enable_qt4(app) def enable_qt4(self, app=None): """Enable event loop integration with PyQt4. Parameters ---------- app : Qt Application, optional. Running application to use. If not given, we probe Qt for an existing application object, and create a new one if none is found. Notes ----- This methods sets the PyOS_InputHook for PyQt4, which allows the PyQt4 to integrate with terminal based applications like IPython. If ``app`` is not given we probe for an existing one, and return it if found. If no existing app is found, we create an :class:`QApplication` as follows:: from PyQt4 import QtCore app = QtGui.QApplication(sys.argv) """ from pydev_ipython.inputhookqt4 import create_inputhook_qt4 app, inputhook_qt4 = create_inputhook_qt4(self, app) self.set_inputhook(inputhook_qt4) self._current_gui = GUI_QT4 app._in_event_loop = True self._apps[GUI_QT4] = app return app def disable_qt4(self): """Disable event loop integration with PyQt4. This merely sets PyOS_InputHook to NULL. """ if GUI_QT4 in self._apps: self._apps[GUI_QT4]._in_event_loop = False self.clear_inputhook() def enable_qt5(self, app=None): from pydev_ipython.inputhookqt5 import create_inputhook_qt5 app, inputhook_qt5 = create_inputhook_qt5(self, app) self.set_inputhook(inputhook_qt5) self._current_gui = GUI_QT5 app._in_event_loop = True self._apps[GUI_QT5] = app return app def disable_qt5(self): if GUI_QT5 in self._apps: self._apps[GUI_QT5]._in_event_loop = False self.clear_inputhook() def enable_gtk(self, app=None): """Enable event loop integration with PyGTK. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for PyGTK, which allows the PyGTK to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk import create_inputhook_gtk self.set_inputhook(create_inputhook_gtk(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_tk(self, app=None): """Enable event loop integration with Tk. Parameters ---------- app : toplevel :class:`Tkinter.Tk` widget, optional. Running toplevel widget to use. If not given, we probe Tk for an existing one, and create a new one if none is found. Notes ----- If you have already created a :class:`Tkinter.Tk` object, the only thing done by this method is to register with the :class:`InputHookManager`, since creating that object automatically sets ``PyOS_InputHook``. """ self._current_gui = GUI_TK if app is None: try: import Tkinter as _TK except: # Python 3 import tkinter as _TK # @UnresolvedImport app = _TK.Tk() app.withdraw() self._apps[GUI_TK] = app from pydev_ipython.inputhooktk import create_inputhook_tk self.set_inputhook(create_inputhook_tk(app)) return app def disable_tk(self): """Disable event loop integration with Tkinter. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_glut(self, app=None): """ Enable event loop integration with GLUT. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for GLUT, which allows the GLUT to integrate with terminal based applications like IPython. Due to GLUT limitations, it is currently not possible to start the event loop without first creating a window. You should thus not create another window but use instead the created one. See 'gui-glut.py' in the docs/examples/lib directory. The default screen mode is set to: glut.GLUT_DOUBLE | glut.GLUT_RGBA | glut.GLUT_DEPTH """ import OpenGL.GLUT as glut # @UnresolvedImport from pydev_ipython.inputhookglut import glut_display_mode, \ glut_close, glut_display, \ glut_idle, inputhook_glut if GUI_GLUT not in self._apps: glut.glutInit(sys.argv) glut.glutInitDisplayMode(glut_display_mode) # This is specific to freeglut if bool(glut.glutSetOption): glut.glutSetOption(glut.GLUT_ACTION_ON_WINDOW_CLOSE, glut.GLUT_ACTION_GLUTMAINLOOP_RETURNS) glut.glutCreateWindow(sys.argv[0]) glut.glutReshapeWindow(1, 1) glut.glutHideWindow() glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) else: glut.glutWMCloseFunc(glut_close) glut.glutDisplayFunc(glut_display) glut.glutIdleFunc(glut_idle) self.set_inputhook(inputhook_glut) self._current_gui = GUI_GLUT self._apps[GUI_GLUT] = True def disable_glut(self): """Disable event loop integration with glut. This sets PyOS_InputHook to NULL and set the display function to a dummy one and set the timer to a dummy timer that will be triggered very far in the future. """ import OpenGL.GLUT as glut # @UnresolvedImport from glut_support import glutMainLoopEvent # @UnresolvedImport glut.glutHideWindow() # This is an event to be processed below glutMainLoopEvent() self.clear_inputhook() def enable_pyglet(self, app=None): """Enable event loop integration with pyglet. Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the ``PyOS_InputHook`` for pyglet, which allows pyglet to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookpyglet import inputhook_pyglet self.set_inputhook(inputhook_pyglet) self._current_gui = GUI_PYGLET return app def disable_pyglet(self): """Disable event loop integration with pyglet. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_gtk3(self, app=None): """Enable event loop integration with Gtk3 (gir bindings). Parameters ---------- app : ignored Ignored, it's only a placeholder to keep the call signature of all gui activation methods consistent, which simplifies the logic of supporting magics. Notes ----- This methods sets the PyOS_InputHook for Gtk3, which allows the Gtk3 to integrate with terminal based applications like IPython. """ from pydev_ipython.inputhookgtk3 import create_inputhook_gtk3 self.set_inputhook(create_inputhook_gtk3(self._stdin_file)) self._current_gui = GUI_GTK def disable_gtk3(self): """Disable event loop integration with PyGTK. This merely sets PyOS_InputHook to NULL. """ self.clear_inputhook() def enable_mac(self, app=None): """ Enable event loop integration with MacOSX. We call function pyplot.pause, which updates and displays active figure during pause. It's not MacOSX-specific, but it enables to avoid inputhooks in native MacOSX backend. Also we shouldn't import pyplot, until user does it. Cause it's possible to choose backend before importing pyplot for the first time only. """ def inputhook_mac(app=None): if self.pyplot_imported: pyplot = sys.modules['matplotlib.pyplot'] try: pyplot.pause(0.01) except: pass else: if 'matplotlib.pyplot' in sys.modules: self.pyplot_imported = True self.set_inputhook(inputhook_mac) self._current_gui = GUI_OSX def disable_mac(self): self.clear_inputhook() def current_gui(self): """Return a string indicating the currently active GUI or None.""" return self._current_gui inputhook_manager = InputHookManager() enable_wx = inputhook_manager.enable_wx disable_wx = inputhook_manager.disable_wx enable_qt = inputhook_manager.enable_qt enable_qt4 = inputhook_manager.enable_qt4 disable_qt4 = inputhook_manager.disable_qt4 enable_qt5 = inputhook_manager.enable_qt5 disable_qt5 = inputhook_manager.disable_qt5 enable_gtk = inputhook_manager.enable_gtk disable_gtk = inputhook_manager.disable_gtk enable_tk = inputhook_manager.enable_tk disable_tk = inputhook_manager.disable_tk enable_glut = inputhook_manager.enable_glut disable_glut = inputhook_manager.disable_glut enable_pyglet = inputhook_manager.enable_pyglet disable_pyglet = inputhook_manager.disable_pyglet enable_gtk3 = inputhook_manager.enable_gtk3 disable_gtk3 = inputhook_manager.disable_gtk3 enable_mac = inputhook_manager.enable_mac disable_mac = inputhook_manager.disable_mac clear_inputhook = inputhook_manager.clear_inputhook set_inputhook = inputhook_manager.set_inputhook current_gui = inputhook_manager.current_gui clear_app_refs = inputhook_manager.clear_app_refs # We maintain this as stdin_ready so that the individual inputhooks # can diverge as little as possible from their IPython sources stdin_ready = inputhook_manager.return_control set_return_control_callback = inputhook_manager.set_return_control_callback get_return_control_callback = inputhook_manager.get_return_control_callback get_inputhook = inputhook_manager.get_inputhook # Convenience function to switch amongst them def enable_gui(gui=None, app=None): """Switch amongst GUI input hooks by name. This is just a utility wrapper around the methods of the InputHookManager object. Parameters ---------- gui : optional, string or None If None (or 'none'), clears input hook, otherwise it must be one of the recognized GUI names (see ``GUI_*`` constants in module). app : optional, existing application object. For toolkits that have the concept of a global app, you can supply an existing one. If not given, the toolkit will be probed for one, and if none is found, a new one will be created. Note that GTK does not have this concept, and passing an app if ``gui=="GTK"`` will raise an error. Returns ------- The output of the underlying gui switch routine, typically the actual PyOS_InputHook wrapper object or the GUI toolkit app created, if there was one. """ if get_return_control_callback() is None: raise ValueError("A return_control_callback must be supplied as a reference before a gui can be enabled") guis = {GUI_NONE: clear_inputhook, GUI_OSX: enable_mac, GUI_TK: enable_tk, GUI_GTK: enable_gtk, GUI_WX: enable_wx, GUI_QT: enable_qt, GUI_QT4: enable_qt4, GUI_QT5: enable_qt5, GUI_GLUT: enable_glut, GUI_PYGLET: enable_pyglet, GUI_GTK3: enable_gtk3, } try: gui_hook = guis[gui] except KeyError: if gui is None or gui == '': gui_hook = clear_inputhook else: e = "Invalid GUI request %r, valid ones are:%s" % (gui, guis.keys()) raise ValueError(e) return gui_hook(app) __all__ = [ "GUI_WX", "GUI_QT", "GUI_QT4", "GUI_QT5", "GUI_GTK", "GUI_TK", "GUI_OSX", "GUI_GLUT", "GUI_PYGLET", "GUI_GTK3", "GUI_NONE", "ignore_CTRL_C", "allow_CTRL_C", "InputHookManager", "inputhook_manager", "enable_wx", "disable_wx", "enable_qt", "enable_qt4", "disable_qt4", "enable_qt5", "disable_qt5", "enable_gtk", "disable_gtk", "enable_tk", "disable_tk", "enable_glut", "disable_glut", "enable_pyglet", "disable_pyglet", "enable_gtk3", "disable_gtk3", "enable_mac", "disable_mac", "clear_inputhook", "set_inputhook", "current_gui", "clear_app_refs", "stdin_ready", "set_return_control_callback", "get_return_control_callback", "get_inputhook", "enable_gui"]
apache-2.0
rs2/pandas
pandas/tests/generic/methods/test_reorder_levels.py
2
2804
import numpy as np import pytest from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm class TestReorderLevels: @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_reorder_levels(self, klass): index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=["L0", "L1", "L2"], ) df = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=index) obj = df if klass is DataFrame else df["A"] # no change, position result = obj.reorder_levels([0, 1, 2]) tm.assert_equal(obj, result) # no change, labels result = obj.reorder_levels(["L0", "L1", "L2"]) tm.assert_equal(obj, result) # rotate, position result = obj.reorder_levels([1, 2, 0]) e_idx = MultiIndex( levels=[["one", "two", "three"], [0, 1], ["bar"]], codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=["L1", "L2", "L0"], ) expected = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=e_idx) expected = expected if klass is DataFrame else expected["A"] tm.assert_equal(result, expected) result = obj.reorder_levels([0, 0, 0]) e_idx = MultiIndex( levels=[["bar"], ["bar"], ["bar"]], codes=[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], names=["L0", "L0", "L0"], ) expected = DataFrame({"A": np.arange(6), "B": np.arange(6)}, index=e_idx) expected = expected if klass is DataFrame else expected["A"] tm.assert_equal(result, expected) result = obj.reorder_levels(["L0", "L0", "L0"]) tm.assert_equal(result, expected) def test_reorder_levels_swaplevel_equivalence( self, multiindex_year_month_day_dataframe_random_data ): ymd = multiindex_year_month_day_dataframe_random_data result = ymd.reorder_levels(["month", "day", "year"]) expected = ymd.swaplevel(0, 1).swaplevel(1, 2) tm.assert_frame_equal(result, expected) result = ymd["A"].reorder_levels(["month", "day", "year"]) expected = ymd["A"].swaplevel(0, 1).swaplevel(1, 2) tm.assert_series_equal(result, expected) result = ymd.T.reorder_levels(["month", "day", "year"], axis=1) expected = ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) tm.assert_frame_equal(result, expected) with pytest.raises(TypeError, match="hierarchical axis"): ymd.reorder_levels([1, 2], axis=1) with pytest.raises(IndexError, match="Too many levels"): ymd.index.reorder_levels([1, 2, 3])
bsd-3-clause
markr622/moose
examples/ex14_pps/plot.py
14
1194
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np import csv # Python 2.7 does not have str.isnumeric()? def isInt(string): try: int(string) return True except ValueError: return False # Format of the CSV file is: # time,dofs,integral # 1,221,2.3592493758695, # 2,841,0.30939803328432, # 3,3281,0.088619511656913, # 4,12961,0.022979021365857, # 5,51521,0.0057978748995635, # 6,205441,0.0014528130907967, reader = csv.reader(file('out.csv')) dofs = [] errs = [] for row in reader: if row and isInt(row[0]): # Skip rows that don't start with numbers. dofs.append(int(row[1])) errs.append(float(row[2])) # Construct data to be plotted xdata = np.log10(np.sqrt(dofs)) ydata = np.log10(errs) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(xdata, ydata, 'bo-') ax1.set_xlabel('log (1/h)') ax1.set_ylabel('log (L2-error)') # Create linear curve fits of the data, but just the last couple data # point when we are in the asymptotic regime. fit = np.polyfit(xdata[2:-1], ydata[2:-1], 1) fit_msg = 'Slope ~ ' + '%.2f' % fit[0] ax1.text(2.0, -1.0, fit_msg) plt.savefig('plot.pdf', format='pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
gdementen/xlwings
xlwings/conversion/__init__.py
2
1220
# -*- coding: utf-8 -*- try: import pandas as pd except ImportError: pd = None try: import numpy as np except ImportError: np = None from .framework import ConversionContext, Options, Pipeline, Converter, accessors, Accessor from .standard import (DictConverter, Accessor, RangeAccessor, RawValueAccessor, ValueAccessor, AdjustDimensionsStage, CleanDataForWriteStage, CleanDataFromReadStage, Ensure2DStage, ExpandRangeStage, ReadValueFromRangeStage, TransposeStage, WriteValueToRangeStage, Options, Pipeline) if np: from .numpy_conv import NumpyArrayConverter if pd: from .pandas_conv import PandasDataFrameConverter, PandasSeriesConverter def read(rng, value, options): convert = options.get('convert', None) pipeline = accessors.get(convert, convert).reader(options) ctx = ConversionContext(rng=rng, value=value) pipeline(ctx) return ctx.value def write(value, rng, options): convert = options.get('convert', None) pipeline = accessors.get(convert, convert).router(value, rng, options).writer(options) ctx = ConversionContext(rng=rng, value=value) pipeline(ctx) return ctx.value
bsd-3-clause
jdvelasq/pytimeseries
pytimeseries/pytimeseries_test.py
1
1410
""" Test for pytimeseries library """ from transformer import transformer from AR import AR from AR import AR_Ridge_2 from AR import AR_Lasso from AR import AR_ElasticNet from HoltWinters import HoltWinters import pandas import matplotlib ts = pandas.Series.from_csv('champagne.csv', index_col = 0, header = 0) #ts = pandas.Series.from_csv('champagne_short.csv', index_col = 0, header = 0) #mytransform = transformer(trans = 'boxcox') #transformed = mytransform.fit_transform(ts) #model = AR(p = 3) #model = model.fit(transformed) #ahead = model.forecast(transformed, periods = 2) #original = mytransform.restore(ahead) #model_1 = AR_Lasso(p = 3) #model_1 = model_1.fit(ts) #result_1 = model_1.predict(ts) #model_2 = AR(p = 3) #model_2 = model_2.fit(ts) #result_2 = model_2.predict(ts) #model_3 = AR_Ridge_2(p = 3, alpha=0.1) #model_3 = model_3.fit(ts) #result_3 = model_3.predict(ts) #model_4 = AR_Ridge_2(p = 3, alpha=0.5) #model_4 = model_4.fit(ts) #result_4 = model_4.predict(ts) model = HoltWinters(alpha = 0.9, beta = False, gamma = False) result = model.predict(ts) model_2 = HoltWinters(alpha = 0.9, beta = 0.1, gamma = False) result_2 = model_2.predict(ts) matplotlib.pyplot.plot(ts) matplotlib.pyplot.plot(result) #matplotlib.pyplot.plot(result_1) matplotlib.pyplot.plot(result_2) #matplotlib.pyplot.plot(result_3) #matplotlib.pyplot.plot(result_4) matplotlib.pyplot.show()
mit
Kate-Willett/Climate_Explorer
PYTHON/PlotAllRegionsTimeSeries_APR2015.py
1
27217
#!/usr/local/sci/bin/python #*************************************** # 27 April 2015 KMW - v1 # For TEMPERATURE ONLY # Plots a time series for any or all regions # Option to overplot the same region from another source too # Option to add trends of each source # Option to add correlation of each source # #************************************************************************ # START #************************************************************************ # USE python2.7 # python2.7 PlotAllRegionsTimeSeries_APR2015.py # # REQUIRES # RandomsRanges.py # LinearTrends.py #************************************************************************ # Set up python imports import matplotlib.pyplot as plt import matplotlib.colors as mc import matplotlib.cm as mpl_cm import numpy.ma as ma import numpy as np import sys, os import scipy.stats import struct import os.path import math from mpl_toolkits.basemap import Basemap import datetime as dt from matplotlib.dates import date2num,num2date #from netCDF4 import Dataset from scipy.io import netcdf from scipy.stats.stats import pearsonr from RandomsRanges import LetterRange from LinearTrends import MedianPairwise # Set up initial run choices timetype='monthly' #'monthly', 'annual' fitlin=True # False - fit a linear trend? addcor=True # False - correlate the data? plotdiff=True # What are the units? unitees='$^{o}$C' #'deg C' # Number of sources to plot nsources=6 # this can be one to three # Source Names for Title Namey=['Globe (70$^{o}$S-70$^{o}$N)','N. Hemisphere (20$^{o}$N-70$^{o}$N)','Tropics (20$^{o}$S-20$^{o}$N)','S. Hemisphere (70$^{o}$S-20$^{o}$S)'] SourceNames=['HadISDH.2.0.1.2014p (adj)','HadISDH.2.0.1.2014p (raw)','CRUTEM4.3.0.0','GHCNM3','GISTEMP','BERKELEY EARTH'] ShortSourceNames=['HadISDH adj','HadISDH raw','CRUTEM','GHCNM','GISS','BERKELEY'] # Infiles INFIL1='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/HadISDH.landT.2.0.1.2014p_FLATgridIDPHA5by5_JAN2015_areaTS_19732014.nc' INFIL2='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/HadISDH.landT.2.0.1.2014p_FLATgridRAW5by5_JAN2015_areaTS_19732014.nc' INFIL3='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/CRUTEM4_T_areaTS_19732014.nc' #CRUTEM.4.3.0.0.anomalies_areaTS_18502014.nc INFIL4='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/GHCNM_T_areaTS_19732014.nc' #GHCNM_18802014_areaTS_18802014.nc INFIL5='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/GISS_T_areaTS_19732014.nc' INFIL6='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/BERKELEY_T_areaTS_19732014.nc' INFIL9='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/CRUTEM4_T_HadISDHMASKareaTS_19732014.nc' #CRUTEM.4.3.0.0.anomalies_areaTSMSK7605_19732014.nc INFIL10='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/GHCNM_T_HadISDHMASKareaTS_19732014.nc' #GHCNM_18802014_areaTSMSK7605_19732014.nc INFIL11='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/GISS_T_HadISDHMASKareaTS_19732014.nc' INFIL12='/data/local/hadkw/HADCRUH2/UPDATE2014/STATISTICS/TIMESERIES/BERKELEY_T_HadISDHMASKareaTS_19732014.nc' infilee=list([INFIL1,INFIL2,INFIL3,INFIL4,INFIL5,INFIL6,INFIL1,INFIL2,INFIL9,INFIL10,INFIL11,INFIL12]) # What gridbox to pull out (use long (-180 to 180) and lat (-90 to 90) centres? # If this is greater than one element then make multiple time series nREGs=4 Regions=list(['glob_T_anoms','nhem_T_anoms','trop_T_anoms','shem_T_anoms']) RegionsOTH=list(['glob_anoms','nhem_anoms','trop_anoms','shem_anoms']) OtherInfo=list([]) # could be trends or correlations or ratios # Outfiles if (plotdiff): OUTFIL='/data/local/hadkw/HADCRUH2/UPDATE2014/IMAGES/OTHER/AllRegionSourceTimeSeriesDIFFSHadISDH.landT.2.0.1.2014p' # add long box, lat box and .eps, .png else: OUTFIL='/data/local/hadkw/HADCRUH2/UPDATE2014/IMAGES/OTHER/AllRegionSourceTimeSeriesHadISDH.landT.2.0.1.2014p' # add long box, lat box and .eps, .png OUTFILC='/data/local/hadkw/HADCRUH2/UPDATE2014/IMAGES/OTHER/AllCorrsMatrixHadISDH.landT.2.0.1.2014p' # correlation matrix for each region # Set up time info #styr=list([1973,1973,1973,1850,1880,1973,1973,1973,1973,1973,1973,1973,1973]) # actual start year, start year of source 1, start year of source 2 etc. styr=list([1973,1973,1973,1973,1973,1973,1973,1973,1973,1973,1973,1973,1973]) # actual start year, start year of source 1, start year of source 2 etc. edyr=list([2014,2014,2014,2014,2014,2014,2014,2014,2014,2014,2014,2014,2014]) # actual end year, end year of source 1, end year of source 2 etc. #styr=list([1973,1973,1973,1973,1973]) # actual start year, start year of source 1, start year of source 2 etc. #edyr=list([2014,2014,2014,2014,2014]) # actual end year, end year of source 1, end year of source 2 etc. nyrs=(edyr[0]-styr[0])+1 nmons=(nyrs)*12 climst=1981 climed=2010 stcl=climst-styr[0] edcl=climed-styr[0] # Set up variables mdi=-1e30 #************************************************************************ # Subroutines #************************************************************************ # ExtractREG def ExtractREG(FileName,TheRegions,REGarr,YrStart,YrEnd,TheRCount,ThisSource): ''' Read in netCDF grid and pull out specific region time series ''' st=(YrStart[0]-YrStart[ThisSource+1])*12 # Check when source start is later than desired start if st < 0: st=0 ed=((YrEnd[0]+1)-YrStart[ThisSource+1])*12 print(st,ed) f=netcdf.netcdf_file(FileName,'r') for loo in range(TheRCount): var=f.variables[TheRegions[loo]] tmpvar=np.array(np.transpose(var.data[:])) # Can cope when source begins earlier or later than desired start REGarr[loo,len(REGarr[loo,:])-(ed-st):]=tmpvar[st:ed+1] f.close() return REGarr # ExtractREG #************************************************************************ # CALCANOMS def CalcAnoms(REGarr,StClim,EdClim,TheMDI,TheRCount): ''' Calculate climatology for each month if 50% of months present ''' ''' Get climate anomalies for all months ''' for loo in range(TheRCount): tmparr=np.reshape(REGarr[loo,:],(len(REGarr[loo,:])/12,12)) for mm in range(12): subarr=tmparr[:,mm] climarr=tmparr[StClim:EdClim+1,mm] climgots=np.where(climarr != TheMDI)[0] gots=np.where(subarr != TheMDI)[0] if len(climgots) >= 15: subarr[gots]=subarr[gots]-np.mean(climarr[climgots]) else: subarr[:]=TheMDI tmparr[:,mm]=subarr REGarr[loo,:]=np.reshape(tmparr,np.size(tmparr)) return REGarr # CalcAnoms #************************************************************************ # AVERAGEANNUALS def AverageAnnuals(REGarr,TheMDI,TheRCount): ''' Calculate the annual mean anomalies where at least 75 % of months are present ''' AnnArr=np.empty((TheRCount,len(REGarr[0,:])/12)) AnnArr.fill(TheMDI) for loo in range(TheRCount): tmparr=np.reshape(REGarr[loo,:],(len(REGarr[loo,:])/12,12)) for yy in range(len(AnnArr[loo,:])): subarr=tmparr[yy,:] gots=np.where(subarr != TheMDI)[0] if len(gots) >= 9: AnnArr[loo,yy]=np.mean(subarr[gots]) return AnnArr # AverageAnnuals #************************************************************************ # FITTREND def FitTrend(REGarr,TypeTime,TheMDI,TheRCount): ''' Use MedianPairwise to fit a trend ''' ''' return the 5th, median and 95th percentile slopes ''' ''' If annual then multiply by 10, if monthly then multiply by 120 ''' TrendStats=np.empty((TheRCount,3)) for loo in range(TheRCount): TrendStats[loo,:]=MedianPairwise(REGarr[loo,:],TheMDI,TrendStats[loo,:]) if TypeTime == 'monthly': TrendStats[loo,:]=np.array(TrendStats[loo,:])*120. else: TrendStats[loo,:]=np.array(TrendStats[loo,:])*10. return TrendStats # FitTrend #************************************************************************ # GETCORR def GetCorr(ALLarr,TypeTime,TheMDI,TheRCount,TheSCount): ''' Get simple correlation over months present ''' CorrCount=sum(range(TheSCount)) # number of unique correlating pairs CorrStats=np.empty((CorrCount,TheRCount)) point1=0 # source number point2=1 # source number for cloo in range(CorrCount): print('Source points: ',point1,point2) for rloo in range(TheRCount): tmp1=ALLarr[point1,rloo,:] tmp2=ALLarr[point2,rloo,:] gots=np.where((tmp1 > TheMDI) & (tmp2 > TheMDI)) CorrStats[cloo,rloo]=np.corrcoef(tmp1[gots],tmp2[gots])[0,1] point2=point2+1 if (point2 == TheSCount): # loop through point1=point1+1 point2=1+point1 return CorrStats # GetCorr #************************************************************************ # PlotTimeSeries def PlotTimeSeries(TheFile,ALLarr,trendALL,corrALL,ALLarrMSK,trendALLMSK,corrALLMSK,ExtraInfo,TheUnits, MonCount,YrCount,TypeTime,YrStart,YrEnd,TheMDI,SourceCount, Titlee,ShortNameSource,TheRCount): ''' Plot a multi-panel and overlay the time series ''' ''' Add a legend with colours and sources ''' ''' Annotate with trends and otherinfo ''' ''' This will be an 8 panel plot - Non-masked on the left, masked on the right ''' ''' Save as png and eps ''' # for clearer plotting MonCount=MonCount+1 YrCount=YrCount+1 # Mask the time series MSKALLarr=ma.masked_where(ALLarr <= -999.,ALLarr) # a fudge here as floating point precision issues in MDI MSKALLarrMSK=ma.masked_where(ALLarrMSK <= -999.,ALLarrMSK) # a fudge here as floating point precision issues in MDI # set up x axes if TypeTime == 'monthly': TheMonths=[] yr=YrStart[0] mon=1 for m in range(MonCount): TheMonths.append(dt.date(yr,mon,1)) mon=mon+1 if mon == 13: mon=1 yr=yr+1 TheMonths=np.array(TheMonths) else: TheMonths=[] yr=YrStart[0] mon=1 for y in range(YrCount): TheMonths.append(dt.date(yr,mon,1)) yr=yr+1 TheMonths=np.array(TheMonths) xtitlee='Years' ytitlee='Anomalies ('+TheUnits+')' # set up number of panels and number of lines nplots=TheRCount print('PLOT NUMBERS: ',nplots) nlines=[] for n in range(nplots): nlines.append(SourceCount) Letteree=[] Letteree=LetterRange(0,nplots*2) # set up dimensions and plot - this is a 2 column nvar rows plot xpos=[] ypos=[] xfat=[] ytall=[] totalyspace=0.90 # start 0.08 end 0.98 totalxspace=0.40 # start 0.12 end 0.98 for n in range(nplots): xpos.append(0.07) ypos.append(0.98-((n+1)*(totalyspace/nplots))) xfat.append(totalxspace) ytall.append(totalyspace/nplots) # set up dimensions and plot - this is a 3 column nvar rows plot if (SourceCount == 6): cols=['DimGrey','Firebrick','DodgerBlue','DarkOrange','MediumBlue','HotPink'] else: cols=['Firebrick','DodgerBlue','DarkOrange','MediumBlue','HotPink'] f,axarr=plt.subplots(TheRCount*2,figsize=(16,12),sharex=False) #6,18 for pp in range(nplots): print('Plot: ',pp) #axarr[pp].set_size(14) axarr[pp].set_position([xpos[pp],ypos[pp],xfat[pp],ytall[pp]]) if TypeTime == 'monthly': axarr[pp].set_xlim([TheMonths[0],TheMonths[MonCount-1]]) else: axarr[pp].set_xlim([TheMonths[0],TheMonths[YrCount-1]]) if pp < nplots-1: axarr[pp].set_xticklabels([]) miny=(math.floor(10.*np.min(np.append(MSKALLarr,MSKALLarrMSK))))/10. maxy=(math.ceil(10.*np.max(np.append(MSKALLarr,MSKALLarrMSK))))/10. axarr[pp].set_ylim([miny,maxy]) if TypeTime == 'monthly': for sn in range(SourceCount): axarr[pp].plot(TheMonths[0:len(TheMonths)-1],MSKALLarr[sn,pp,:],c=cols[sn],linewidth=1) else: for sn in range(SourceCount): axarr[pp].plot(TheMonths[0:len(TheMonths)-1],MSKALLarr[sn,pp,:],c=cols[sn],linewidth=2) axarr[pp].annotate(Letteree[pp]+') '+Titlee[pp],xy=(0.02,0.90),xycoords='axes fraction',size=16) # get linear trend and annotate (does this work with masked arrays?) if trendALL[0,pp,0] != TheMDI: scaletrend=([0.32,0.26,0.2,0.14,0.08,0.02]) #([0.88,0.82,0.76,0.70]) if (SourceCount == 5): scaletrend=scaletrend=([0.26,0.2,0.14,0.08,0.02]) for sn in range(SourceCount): linstr='{0:5.2f}'.format(trendALL[sn,pp,0])+' ('+'{0:5.2f}'.format(trendALL[sn,pp,1])+','+'{0:5.2f}'.format(trendALL[sn,pp,2])+') '+'{:s}'.format(TheUnits)+' dec$^{-1}$' namstr=ShortNameSource[sn]+' ('+'{0:5.2f}'.format(np.std(MSKALLarr[sn,pp,:]))+')' #linstr="%19s %5.2f (%5.2f to %5.2f) %s decade$^{-1}$ " % (NameSource[sn],trendGB[sn,0],trendGB[sn,1],trendGB[sn,2],TheUnits) axarr[pp].annotate(namstr,xy=(0.5,scaletrend[sn]),xycoords='axes fraction',size=9,ha='left',color=cols[sn]) axarr[pp].annotate(linstr,xy=(0.72,scaletrend[sn]),xycoords='axes fraction',size=9,ha='left',color=cols[sn]) ## get correlation and annotate (does this work with masked arrays?) # if corrALL[0,pp] != TheMDI: # scaletrend=([0.02,0.08,0.14,0.2,0.26,0.32]) # point1=0 # point2=1 # for sn in range(len(corrALL[:,0])): # linstr='r = '+'{0:6.3f}'.format(corrALL[sn,pp]) # #linstr="%19s %5.2f (%5.2f to %5.2f) %s decade$^{-1}$ " % (NameSource[sn],trendGB[sn,0],trendGB[sn,1],trendGB[sn,2],TheUnits) # axarr[pp].annotate(ShortNameSource[point1]+','+ShortNameSource[point2],xy=(0.6,scaletrend[sn]),xycoords='axes fraction',size=10,ha='left',color='Black') # axarr[pp].annotate(linstr,xy=(0.85,scaletrend[sn]),xycoords='axes fraction',size=10,ha='left',color='Black') # point2=point2+1 # if (point2 == SourceCount): # loop through # point1=point1+1 # point2=1+point1 # Plot a line at zero if TypeTime == 'monthly': axarr[pp].hlines(0,TheMonths[0],TheMonths[MonCount-1],color='black',linewidth=0.5) else: axarr[pp].hlines(0,TheMonths[0],TheMonths[YrCount-1],color='black',linewidth=0.5) axarr[pp].set_ylabel(ytitlee,fontsize=12) axarr[pp].set_xlabel(xtitlee,fontsize=12) # NOW DO THE MASKED PLOTS # set up dimensions and plot - this is a 2 column nvar rows plot xpos=[] ypos=[] xfat=[] ytall=[] totalyspace=0.90 # start 0.08 end 0.98 totalxspace=0.40 # start 0.12 end 0.98 for n in range(nplots): xpos.append(0.57) ypos.append(0.98-((n+1)*(totalyspace/nplots))) xfat.append(totalxspace) ytall.append(totalyspace/nplots) # set up dimensions and plot - this is a 3 column nvar rows plot # f,axarr=plt.subplots(TheRCount*2,figsize=(16,12),sharex=False) #6,18 for pp in range(nplots): print('Plot: ',pp) #axarr[pp].set_size(14) axarr[pp+4].set_position([xpos[pp],ypos[pp],xfat[pp],ytall[pp]]) if TypeTime == 'monthly': axarr[pp+4].set_xlim([TheMonths[0],TheMonths[MonCount-1]]) else: axarr[pp+4].set_xlim([TheMonths[0],TheMonths[YrCount-1]]) if pp < nplots-1: axarr[pp+4].set_xticklabels([]) # miny=(math.floor(10.*np.min(MSKALLarr)))/10. # maxy=(math.ceil(10.*np.max(MSKALLarr)))/10. axarr[pp+4].set_ylim([miny,maxy]) if TypeTime == 'monthly': for sn in range(SourceCount): axarr[pp+4].plot(TheMonths[0:len(TheMonths)-1],MSKALLarrMSK[sn,pp,:],c=cols[sn],linewidth=1) else: for sn in range(SourceCount): axarr[pp+4].plot(TheMonths[0:len(TheMonths)-1],MSKALLarrMSK[sn,pp,:],c=cols[sn],linewidth=2) axarr[pp+4].annotate(Letteree[pp+4]+') '+Titlee[pp],xy=(0.02,0.9),xycoords='axes fraction',size=16) # get linear trend and annotate (does this work with masked arrays?) if trendALLMSK[0,pp,0] != TheMDI: scaletrend=([0.32,0.26,0.2,0.14,0.08,0.02]) #([0.88,0.82,0.76,0.70]) if (SourceCount == 5): scaletrend=scaletrend=([0.26,0.2,0.14,0.08,0.02]) for sn in range(SourceCount): if (sn > 1): mush=' (masked)' else: mush='' linstr='{0:5.2f}'.format(trendALLMSK[sn,pp,0])+' ('+'{0:5.2f}'.format(trendALLMSK[sn,pp,1])+','+'{0:5.2f}'.format(trendALLMSK[sn,pp,2])+') '+'{:s}'.format(TheUnits)+' dec$^{-1}$' namstr=ShortNameSource[sn]+' ('+'{0:5.2f}'.format(np.std(MSKALLarrMSK[sn,pp,:]))+')' #linstr="%19s %5.2f (%5.2f to %5.2f) %s decade$^{-1}$ " % (NameSource[sn],trendGB[sn,0],trendGB[sn,1],trendGB[sn,2],TheUnits) axarr[pp+4].annotate(namstr,xy=(0.5,scaletrend[sn]),xycoords='axes fraction',size=9,ha='left',color=cols[sn]) axarr[pp+4].annotate(linstr,xy=(0.72,scaletrend[sn]),xycoords='axes fraction',size=9,ha='left',color=cols[sn]) ## get correlation and annotate (does this work with masked arrays?) # if corrALL[0,pp] != TheMDI: # scaletrend=([0.02,0.08,0.14,0.2,0.26,0.32]) # point1=0 # point2=1 # for sn in range(len(corrALL[:,0])): # linstr='r = '+'{0:6.3f}'.format(corrALL[sn,pp]) # #linstr="%19s %5.2f (%5.2f to %5.2f) %s decade$^{-1}$ " % (NameSource[sn],trendGB[sn,0],trendGB[sn,1],trendGB[sn,2],TheUnits) # axarr[pp+4].annotate(ShortNameSource[point1]+','+ShortNameSource[point2],xy=(0.6,scaletrend[sn]),xycoords='axes fraction',size=10,ha='left',color='Black') # axarr[pp+4].annotate(linstr,xy=(0.85,scaletrend[sn]),xycoords='axes fraction',size=10,ha='left',color='Black') # point2=point2+1 # if (point2 == SourceCount): # loop through # point1=point1+1 # point2=1+point1 # Plot a line at zero if TypeTime == 'monthly': axarr[pp+4].hlines(0,TheMonths[0],TheMonths[MonCount-1],color='black',linewidth=0.5) else: axarr[pp+4].hlines(0,TheMonths[0],TheMonths[YrCount-1],color='black',linewidth=0.5) axarr[pp+4].set_ylabel(ytitlee,fontsize=12) axarr[pp+4].set_xlabel(xtitlee,fontsize=12) # Figure Watermark and Labels # watermarkstring="/".join(os.getcwd().split('/')[4:])+'/'+os.path.basename( __file__ )+" "+dt.datetime.strftime(dt.datetime.now(), "%d-%b-%Y %H:%M") # plt.figtext(0.01,0.01,watermarkstring,size=6) #plt.show() plt.savefig(TheFile+".eps") plt.savefig(TheFile+".png") return #PlotTimeSeries #************************************************************************ # PlotCorrMatrix def PlotCorrMatrix(Filee,CorrAll,CorrAllMSK,TheRegions,TheNames): ''' This plots a correlation matrix for each region ''' ''' Upper triangle is non-masked ''' ''' Lower triangle is masked to HadISDH ''' ''' Shades of YlOrRd from 0.8 to 1 ''' # make matrix for each region RegCount=len(TheRegions) SourceCount=len(TheNames) GlobMat=np.empty((SourceCount,SourceCount)) NHemMat=np.empty((SourceCount,SourceCount)) TropMat=np.empty((SourceCount,SourceCount)) SHemMat=np.empty((SourceCount,SourceCount)) np.fill_diagonal(GlobMat,1.) np.fill_diagonal(NHemMat,1.) np.fill_diagonal(TropMat,1.) np.fill_diagonal(SHemMat,1.) print('FILLED DIAGONALS') point1=0 point2=1 for cc in range(len(CorrAll)): print(cc,point1,point2) GlobMat[point1,point2]=CorrAll[cc,0] NHemMat[point1,point2]=CorrAll[cc,1] TropMat[point1,point2]=CorrAll[cc,2] SHemMat[point1,point2]=CorrAll[cc,3] GlobMat[point2,point1]=CorrAllMSK[cc,0] NHemMat[point2,point1]=CorrAllMSK[cc,1] TropMat[point2,point1]=CorrAllMSK[cc,2] SHemMat[point2,point1]=CorrAllMSK[cc,3] point2=point2+1 if (point2 == 6): point1=point1+1 point2=point1+1 print('GOT MATRICES') # set up colours cmap=plt.get_cmap('YlOrRd') cmaplist=[cmap(i) for i in range(cmap.N)] print('CHOSEN COLOURS') # remove the darkest and lightest (white and black) - and reverse for loo in range(30): cmaplist.remove(cmaplist[0]) cmap=cmap.from_list('this_cmap',cmaplist,cmap.N) print('REFINED COLOURS') bounds=np.array([0.9,0.91,0.92,0.93,0.94,0.95,0.96,0.97,0.98,0.99,1,1.00001]) strbounds=["%4.3g" % i for i in bounds] norm=mpl_cm.colors.BoundaryNorm(bounds,cmap.N) print('SORTED COLOURS') # set up plot space and dimensions and plot - this is a 2 column nvar rows plot # xpos=list([0.12,0.62,0.12,0.62]) # ypos=list([0.54,0.54,0.08,0.08]) # xfat=list([0.36,0.36,0.36,0.36]) # ytall=list([0.32,0.32,0.32,0.32]) xpos=list([0.02,0.52,0.02,0.52]) ypos=list([0.66,0.66,0.2,0.2]) xfat=list([0.36,0.36,0.36,0.36]) ytall=list([0.30,0.3,0.3,0.3]) miny=0 maxy=6 xinds=range(7) yinds=range(6,-1,-1) ArrX,ArrY=np.meshgrid(xinds,yinds) Letteree=[] Letteree=LetterRange(0,len(TheRegions)) f,axarr=plt.subplots(len(TheRegions),figsize=(12,13),sharex=False) #6,18 for pp in range(len(TheRegions)): print('Plot: ',pp) #axarr[pp].set_size(14) axarr[pp].set_position([xpos[pp],ypos[pp],xfat[pp],ytall[pp]]) axarr[pp].set_xticklabels([]) axarr[pp].set_yticklabels([]) axarr[pp].set_ylim([miny,maxy]) axarr[pp].set_xlim([miny,maxy]) if (pp == 0): ChosenMat=GlobMat if (pp == 1): ChosenMat=NHemMat if (pp == 2): ChosenMat=TropMat if (pp == 3): ChosenMat=SHemMat print('MAKING THE GRIDS') print(ChosenMat) grids=axarr[pp].pcolor(ArrX,ArrY,ChosenMat,cmap=cmap,norm=norm, edgecolor='0.2',linewidth=0.5) #,latlon='TRUE' for sn in range(len(TheNames)): NamePos=sn*(1./6.)+(1./12.) Topsies=-0.02 Sidesies=1.02 print(sn,NamePos,Topsies,Sidesies) axarr[pp].annotate(TheNames[sn],xy=(NamePos,Topsies),xycoords='axes fraction',rotation=90,size=12,ha='center',va='top') axarr[pp].annotate(TheNames[sn],xy=(Sidesies,1-NamePos),xycoords='axes fraction',rotation=0,size=12,ha='left',va='center') axarr[pp].annotate(Letteree[pp]+') '+TheRegions[pp],xy=(0.0,1.03),xycoords='axes fraction',size=16) # loop through plots (a to d) label sources # add colour bar along righthandside cbax=f.add_axes([0.1,0.05,0.8,0.03]) cb=f.colorbar(grids,cax=cbax,orientation='horizontal',ticks=bounds) #, extend=extend cb.ax.tick_params(labelsize=12) cb.ax.set_xticklabels(strbounds) plt.figtext(0.5,0.01,'Correlation',size=16,ha='center') # save to file #plt.show() plt.savefig(Filee+".eps") plt.savefig(Filee+".png") return #PlotCorrMatrix #************************************************************************ # MAIN PROGRAM #************************************************************************ # Set up arrays if (timetype == 'monthly'): REGts=np.empty((nsources,nREGs,nmons)) REGtsMSK=np.empty((nsources,nREGs,nmons)) DIFFts=np.empty((nsources-1,nREGs,nmons)) DIFFtsMSK=np.empty((nsources-1,nREGs,nmons)) moop='MON' else: REGts=np.empty((nsources,nREGs,nyrs)) REGtsMSK=np.empty((nsources,nREGs,nyrs)) DIFFts=np.empty((nsources-1,nREGs,nyrs)) DIFFtsMSK=np.empty((nsources-1,nREGs,nyrs)) moop='ANN' REGts.fill(mdi) REGtsMSK.fill(mdi) DIFFts.fill(mdi) DIFFtsMSK.fill(mdi) if not(plotdiff): ALLtrends=np.zeros((nsources,nREGs,3)) # row for each source, columns for trend, 5thpct, 95thpct ALLcorrs=np.zeros((sum(range(nsources)),nREGs)) # row for each source, columns for trend, 5thpct, 95thpct ALLtrendsMSK=np.zeros((nsources,nREGs,3)) # row for each source, columns for trend, 5thpct, 95thpct ALLcorrsMSK=np.zeros((sum(range(nsources)),nREGs)) # row for each source, columns for trend, 5thpct, 95thpct else: ALLtrends=np.zeros((nsources-1,nREGs,3)) # row for each source, columns for trend, 5thpct, 95thpct ALLcorrs=np.zeros((sum(range(nsources-1)),nREGs)) # row for each source, columns for trend, 5thpct, 95thpct ALLtrendsMSK=np.zeros((nsources-1,nREGs,3)) # row for each source, columns for trend, 5thpct, 95thpct ALLcorrsMSK=np.zeros((sum(range(nsources-1)),nREGs)) # row for each source, columns for trend, 5thpct, 95thpct ALLtrends.fill(mdi) ALLcorrs.fill(mdi) ALLtrendsMSK.fill(mdi) ALLcorrsMSK.fill(mdi) # Can now establish the filename plottee=OUTFIL+'_'+moop if not(plotdiff): plotteeC=OUTFILC+'_'+moop # Loop through sources for ns in range(nsources): # set up tmparr for gridbox data tmp=np.empty((nREGs,nmons)) tmp.fill(mdi) tmpMSK=np.empty((nREGs,nmons)) tmpMSK.fill(mdi) # Read in netCDF set of grids and extract gridbox if (ns > 1): TheRegions=RegionsOTH else: TheRegions=Regions tmp=ExtractREG(infilee[ns],TheRegions,tmp,styr,edyr,nREGs,ns) bads=np.where(tmp < -999.)[0] tmp[bads]=mdi tmpMSK=ExtractREG(infilee[ns+6],TheRegions,tmpMSK,styr,edyr,nREGs,ns+6) bads=np.where(tmpMSK < -999.)[0] tmpMSK[bads]=mdi # Reanomalies to climatology period tmp=CalcAnoms(tmp,stcl,edcl,mdi,nREGs) # should modify tmpGB tmpMSK=CalcAnoms(tmpMSK,stcl,edcl,mdi,nREGs) # should modify tmpGB # If timetype is annual then average to annual if (timetype == 'annual'): REGts[ns,:,:]=AverageAnnuals(tmp,mdi,nREGs) REGtsMSK[ns,:,:]=AverageAnnuals(tmpMSK,mdi,nREGs) else: REGts[ns,:,:]=tmp REGtsMSK[ns,:,:]=tmpMSK if not(plotdiff): # Fit a linear trend if desired if (fitlin): ALLtrends[ns,:,:]=FitTrend(REGts[ns,:,:],timetype,mdi,nREGs) ALLtrendsMSK[ns,:,:]=FitTrend(REGtsMSK[ns,:,:],timetype,mdi,nREGs) if not(plotdiff): # Get correlations if desired (necesary for plotting correlation matrices) if (addcor): ALLcorrs=GetCorr(REGts,timetype,mdi,nREGs,nsources) ALLcorrsMSK=GetCorr(REGtsMSK,timetype,mdi,nREGs,nsources) # Pass all sources and trends and otherinfo to plotter print('Plotting...') PlotCorrMatrix(plotteeC,ALLcorrs,ALLcorrsMSK,Namey,ShortSourceNames) PlotTimeSeries(plottee,REGts,ALLtrends,ALLcorrs,REGtsMSK,ALLtrendsMSK,ALLcorrsMSK,OtherInfo,unitees,nmons,nyrs,timetype,styr,edyr,mdi,nsources,Namey,ShortSourceNames,nREGs) else: # Now sort out difference arrays, trends and source names nsources=nsources-1 NewShortSourceNames=ShortSourceNames[1:nsources+1] for ns in range(nsources): for nr in range(nREGs): gots=np.where((REGts[0,nr,:] != mdi) & (REGts[ns+1,nr,:] != mdi))[0] DIFFts[ns,nr,gots]=REGts[ns+1,nr,:]-REGts[0,nr,gots] gots=np.where((REGtsMSK[0,nr,:] != mdi) & (REGtsMSK[ns+1,nr,:] != mdi))[0] DIFFtsMSK[ns,nr,gots]=REGtsMSK[ns+1,nr,:]-REGtsMSK[0,nr,gots] # Fit a linear trend if desired if (fitlin): ALLtrends[ns,:,:]=FitTrend(DIFFts[ns,:,:],timetype,mdi,nREGs) ALLtrendsMSK[ns,:,:]=FitTrend(DIFFtsMSK[ns,:,:],timetype,mdi,nREGs) PlotTimeSeries(plottee,DIFFts,ALLtrends,ALLcorrs,DIFFtsMSK,ALLtrendsMSK,ALLcorrsMSK,OtherInfo,unitees,nmons,nyrs,timetype,styr,edyr,mdi,nsources,Namey,NewShortSourceNames,nREGs) stop() print("And, we are done!")
cc0-1.0
IndraVikas/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
kyoren/https-github.com-h2oai-h2o-3
h2o-py/h2o/model/dim_reduction.py
1
2653
""" DimReduction Models """ from metrics_base import * class H2ODimReductionModel(ModelBase): def __init__(self, dest_key, model_json): super(H2ODimReductionModel, self).__init__(dest_key, model_json,H2ODimReductionModelMetrics) def num_iterations(self): """ Get the number of iterations that it took to converge or reach max iterations. :return: number of iterations (integer) """ o = self._model_json["output"] return o["model_summary"].cell_values[0][o["model_summary"].col_header.index('number_of_iterations')] def objective(self): """ Get the final value of the objective function from the GLRM model. :return: final objective value (double) """ o = self._model_json["output"] return o["model_summary"].cell_values[0][o["model_summary"].col_header.index('final_objective_value')] def final_step(self): """ Get the final step size from the GLRM model. :return: final step size (double) """ o = self._model_json["output"] return o["model_summary"].cell_values[0][o["model_summary"].col_header.index('final_step_size')] def archetypes(self): """ :return: the archetypes (Y) of the GLRM model. """ o = self._model_json["output"] yvals = o["archetypes"].cell_values archetypes = [] for yidx, yval in enumerate(yvals): archetypes.append(list(yvals[yidx])[1:]) return archetypes def screeplot(self, type="barplot", **kwargs): """ Produce the scree plot :param type: type of plot. "barplot" and "lines" currently supported :param show: if False, the plot is not shown. matplotlib show method is blocking. :return: None """ # check for matplotlib. exit if absent. try: imp.find_module('matplotlib') import matplotlib if 'server' in kwargs.keys() and kwargs['server']: matplotlib.use('Agg', warn=False) import matplotlib.pyplot as plt except ImportError: print "matplotlib is required for this function!" return variances = [s**2 for s in self._model_json['output']['importance'].cell_values[0][1:]] plt.xlabel('Components') plt.ylabel('Variances') plt.title('Scree Plot') plt.xticks(range(1,len(variances)+1)) if type == "barplot": plt.bar(range(1,len(variances)+1), variances) elif type == "lines": plt.plot(range(1,len(variances)+1), variances, 'b--') if not ('server' in kwargs.keys() and kwargs['server']): plt.show()
apache-2.0
zihua/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
mjudsp/Tsallis
examples/linear_model/plot_ard.py
29
2828
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weights with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, color='darkblue', linestyle='-', linewidth=2, label="ARD estimate") plt.plot(ols.coef_, color='yellowgreen', linestyle=':', linewidth=2, label="OLS estimate") plt.plot(w, color='orange', linestyle='-', linewidth=2, label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, color='navy', log=True) plt.scatter(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), color='gold', marker='o', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_, color='navy', linewidth=2) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
szbokhar/AmethystBaloon
util.py
1
5528
import matplotlib.pyplot as plt import numpy as np import scipy.spatial import scipy.ndimage.filters from mpl_toolkits.mplot3d import Axes3D from matplotlib import animation from pprint import pprint from numpy.random import choice, rand, randint from RL_Config import * def center_points(pts): dx = np.sum(pts, 0)/pts.shape[0] pts = pts - dx return (pts, dx) def smooth_path(path, alpha, beta): spath = np.zeros(path.shape) spath[0, :] = path[0, :] v = np.array([0.0, 0.0, 0.0]) for i in range(1, len(path)): spath[i, :] = spath[i-1, :] + v r = path[i, :] - spath[i, :] spath[i, :] = spath[i, :] + alpha * r v = v + beta * r return spath def block_path(path, block_size): bpath = np.round(path/block_size, 0).astype(int) return bpath def make_voxel_grid(pts, colors, block_size, person, paths=None, alpha=0.2, beta=0.1): grid_coords = np.round(pts/block_size, 0).astype(int) mx = np.min(grid_coords[:,0], 0) mz = np.min(grid_coords[:,1], 0) my = np.min(grid_coords[:,2], 0) grid_coords[:,0] = grid_coords[:,0] - mx grid_coords[:,1] = grid_coords[:,1] - mz grid_coords[:,2] = grid_coords[:,2] - my if paths is not None: allpts = np.zeros((0,3)) for i in range(len(paths)): paths[i].smooth_points = smooth_path(paths[i].points, alpha, beta) paths[i].block_points = block_path(paths[i].smooth_points, block_size) paths[i].points = np.copy(paths[i].block_points) paths[i].points[:,0] = paths[i].points[:,0] - mx paths[i].points[:,1] = paths[i].points[:,1] - mz paths[i].points[:,2] = paths[i].points[:,2] - my allpts = np.concatenate((allpts, paths[i].raw_points), axis=0) t1 = np.mean(allpts, axis=0) - person[0]/5 t2 = t1 + person[0] b1 = np.round(t1/block_size, 0) - np.array([mx, mz, my]) b2 = np.round(t2/block_size, 0) - np.array([mx, mz, my]) low = int(b1[1]) high = int(b2[1]) mx = np.max(grid_coords[:,0], 0) mz = np.max(grid_coords[:,1], 0) my = np.max(grid_coords[:,2], 0) grid = np.zeros((mx+1, mz+1, my+1)) for i in range(grid_coords.shape[0]): p = grid_coords[i,:] grid[p[0], p[1], p[2]] += 1 grid = np.log(grid+1) grid = scipy.ndimage.filters.gaussian_filter(grid, 0.5/block_size) return (grid, list(range(low, high+1)), b2-b1) def do_qlearn(rl_config, num_iter, rand_count): sars = rl_config.total_SARSA_list qshape = rl_config.voxel_grid.shape alpha = rl_config.alpha gamma = rl_config.gamma state_size = len(rl_config.rl_state_ids.keys()) print(rl_config.total_SARSA_list) Q = np.zeros(rl_config.q_shape) vals = [] for t in range(num_iter): #print('-----', t) idx = choice(sars.shape[0], rand_count, replace=True) S = sars[idx,:] for i in range(len(S)): s = S[i, 0:state_size].astype(int) act = S[i, state_size] ns = S[i, (state_size+2):(2*state_size+2)].astype(int) st = tuple(s.tolist() + [act]) nst = tuple(ns.tolist() + [[x for x in range(Q.shape[-1])]]) R = S[i, state_size+1] Q[st] = Q[st] + alpha*(R + gamma*np.max(Q[nst]) - Q[st]) if t % 10 == 0: vals.append(np.sum(Q)) return (Q, vals) def do_explore_qlearn(rl_config, num_iter=2000, rand_count=500, reset_episode=100, memory=10000): memcount = len(rl_config.total_SARSA_list) qshape = rl_config.voxel_grid.shape alpha = rl_config.alpha gamma = rl_config.gamma epsilon = rl_config.epsilon state_size = len(rl_config.rl_state_ids.keys()) rid2rl_actions = rl_config.rl_actions rl_actions2rid = {v: k for k, v in rid2rl_actions.items()} Q = np.zeros(rl_config.q_shape) umap = np.zeros(rl_config.q_shape) sars = np.zeros((memory, rl_config.total_SARSA_list.shape[1])) sars[0:memcount,:] = np.copy(rl_config.total_SARSA_list) vals = [] e_state = np.zeros(state_size) next_e_state = np.zeros(state_size) e_length = 0 for t in range(num_iter): if e_length % reset_episode == 0: e_state = rl_config.get_random_state(rl_config) print("Step:", t) (next_e_state, new_sarsa_state, isFinished) = rl_config.explore_step(rl_config, Q, e_state, epsilon=epsilon) if memcount >= sars.shape[0]: ridx = randint(sars.shape[0]) sars[ridx] = new_sarsa_state else: sars[memcount] = new_sarsa_state e_state = np.copy(next_e_state) if isFinished: e_length = 0 else: e_length += 1 #print(new_sarsa_state) #print('-----', t) idx = choice(min(sars.shape[0], memcount), rand_count, replace=True) S = sars[idx,:] for i in range(len(S)): s = S[i, 0:state_size].astype(int) act = S[i, state_size] ns = S[i, (state_size+2):(2*state_size+2)].astype(int) st = tuple(s.tolist() + [act]) nst = tuple(ns.tolist() + [[x for x in range(Q.shape[-1])]]) R = S[i, state_size+1] Q[st] = Q[st] + alpha*(R + gamma*np.max(Q[nst]) - Q[st]) umap[st] += 1 if t % 50 == 0: # print(vals[-1] if len(vals) > 1 else None) vals.append(np.sum(Q)) memcount = memcount+1 if memcount < sars.shape[0] else memcount return (Q, vals, umap)
mit
aaltay/beam
sdks/python/apache_beam/io/parquetio_test.py
1
18619
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file from __future__ import absolute_import import json import logging import os import shutil import tempfile import unittest import hamcrest as hc import pandas import pytest from parameterized import param from parameterized import parameterized from apache_beam import Create from apache_beam import Map from apache_beam.io import filebasedsource from apache_beam.io import source_test_utils from apache_beam.io.iobase import RangeTracker from apache_beam.io.parquetio import ReadAllFromParquet from apache_beam.io.parquetio import ReadAllFromParquetBatched from apache_beam.io.parquetio import ReadFromParquet from apache_beam.io.parquetio import ReadFromParquetBatched from apache_beam.io.parquetio import WriteToParquet from apache_beam.io.parquetio import _create_parquet_sink from apache_beam.io.parquetio import _create_parquet_source from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to from apache_beam.transforms.display import DisplayData from apache_beam.transforms.display_test import DisplayDataItemMatcher # TODO(BEAM-8371): Use tempfile.TemporaryDirectory. from apache_beam.utils.subprocess_server_test import TemporaryDirectory try: import pyarrow as pa import pyarrow.lib as pl import pyarrow.parquet as pq except ImportError: pa = None pl = None pq = None @unittest.skipIf(pa is None, "PyArrow is not installed.") @pytest.mark.uses_pyarrow class TestParquet(unittest.TestCase): def setUp(self): # Reducing the size of thread pools. Without this test execution may fail in # environments with limited amount of resources. filebasedsource.MAX_NUM_THREADS_FOR_SIZE_ESTIMATION = 2 self.temp_dir = tempfile.mkdtemp() self.RECORDS = [{ 'name': 'Thomas', 'favorite_number': 1, 'favorite_color': 'blue' }, { 'name': 'Henry', 'favorite_number': 3, 'favorite_color': 'green' }, { 'name': 'Toby', 'favorite_number': 7, 'favorite_color': 'brown' }, { 'name': 'Gordon', 'favorite_number': 4, 'favorite_color': 'blue' }, { 'name': 'Emily', 'favorite_number': -1, 'favorite_color': 'Red' }, { 'name': 'Percy', 'favorite_number': 6, 'favorite_color': 'Green' }] self.SCHEMA = pa.schema([('name', pa.string()), ('favorite_number', pa.int64()), ('favorite_color', pa.string())]) self.SCHEMA96 = pa.schema([('name', pa.string()), ('favorite_number', pa.timestamp('ns')), ('favorite_color', pa.string())]) def tearDown(self): shutil.rmtree(self.temp_dir) def _record_to_columns(self, records, schema): col_list = [] for n in schema.names: column = [] for r in records: column.append(r[n]) col_list.append(column) return col_list def _records_as_arrow(self, schema=None, count=None): if schema is None: schema = self.SCHEMA if count is None: count = len(self.RECORDS) len_records = len(self.RECORDS) data = [] for i in range(count): data.append(self.RECORDS[i % len_records]) col_data = self._record_to_columns(data, schema) col_array = [pa.array(c, schema.types[cn]) for cn, c in enumerate(col_data)] return pa.Table.from_arrays(col_array, schema.names) def _write_data( self, directory=None, schema=None, prefix=tempfile.template, row_group_size=1000, codec='none', count=None): if directory is None: directory = self.temp_dir with tempfile.NamedTemporaryFile(delete=False, dir=directory, prefix=prefix) as f: table = self._records_as_arrow(schema, count) pq.write_table( table, f, row_group_size=row_group_size, compression=codec, use_deprecated_int96_timestamps=True) return f.name def _write_pattern(self, num_files): assert num_files > 0 temp_dir = tempfile.mkdtemp(dir=self.temp_dir) for _ in range(num_files): self._write_data(directory=temp_dir, prefix='mytemp') return temp_dir + os.path.sep + 'mytemp*' def _run_parquet_test( self, pattern, columns, desired_bundle_size, perform_splitting, expected_result): source = _create_parquet_source(pattern, columns=columns) if perform_splitting: assert desired_bundle_size sources_info = [ (split.source, split.start_position, split.stop_position) for split in source.split(desired_bundle_size=desired_bundle_size) ] if len(sources_info) < 2: raise ValueError( 'Test is trivial. Please adjust it so that at least ' 'two splits get generated') source_test_utils.assert_sources_equal_reference_source( (source, None, None), sources_info) else: read_records = source_test_utils.read_from_source(source, None, None) self.assertCountEqual(expected_result, read_records) def test_read_without_splitting(self): file_name = self._write_data() expected_result = [self._records_as_arrow()] self._run_parquet_test(file_name, None, None, False, expected_result) def test_read_with_splitting(self): file_name = self._write_data() expected_result = [self._records_as_arrow()] self._run_parquet_test(file_name, None, 100, True, expected_result) def test_source_display_data(self): file_name = 'some_parquet_source' source = \ _create_parquet_source( file_name, validate=False ) dd = DisplayData.create_from(source) expected_items = [ DisplayDataItemMatcher('compression', 'auto'), DisplayDataItemMatcher('file_pattern', file_name) ] hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items)) def test_read_display_data(self): file_name = 'some_parquet_source' read = \ ReadFromParquet( file_name, validate=False) read_batched = \ ReadFromParquetBatched( file_name, validate=False) expected_items = [ DisplayDataItemMatcher('compression', 'auto'), DisplayDataItemMatcher('file_pattern', file_name) ] hc.assert_that( DisplayData.create_from(read).items, hc.contains_inanyorder(*expected_items)) hc.assert_that( DisplayData.create_from(read_batched).items, hc.contains_inanyorder(*expected_items)) def test_sink_display_data(self): file_name = 'some_parquet_sink' sink = _create_parquet_sink( file_name, self.SCHEMA, 'none', 1024 * 1024, 1000, False, '.end', 0, None, 'application/x-parquet') dd = DisplayData.create_from(sink) expected_items = [ DisplayDataItemMatcher('schema', str(self.SCHEMA)), DisplayDataItemMatcher( 'file_pattern', 'some_parquet_sink-%(shard_num)05d-of-%(num_shards)05d.end'), DisplayDataItemMatcher('codec', 'none'), DisplayDataItemMatcher('row_group_buffer_size', str(1024 * 1024)), DisplayDataItemMatcher('compression', 'uncompressed') ] hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items)) def test_write_display_data(self): file_name = 'some_parquet_sink' write = WriteToParquet(file_name, self.SCHEMA) dd = DisplayData.create_from(write) expected_items = [ DisplayDataItemMatcher('codec', 'none'), DisplayDataItemMatcher('schema', str(self.SCHEMA)), DisplayDataItemMatcher('row_group_buffer_size', str(64 * 1024 * 1024)), DisplayDataItemMatcher( 'file_pattern', 'some_parquet_sink-%(shard_num)05d-of-%(num_shards)05d'), DisplayDataItemMatcher('compression', 'uncompressed') ] hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items)) def test_sink_transform_int96(self): with tempfile.NamedTemporaryFile() as dst: path = dst.name # pylint: disable=c-extension-no-member with self.assertRaises(pl.ArrowInvalid): # Should throw an error "ArrowInvalid: Casting from timestamp[ns] to # timestamp[us] would lose data" with TestPipeline() as p: _ = p \ | Create(self.RECORDS) \ | WriteToParquet( path, self.SCHEMA96, num_shards=1, shard_name_template='') def test_sink_transform(self): with TemporaryDirectory() as tmp_dirname: path = os.path.join(tmp_dirname + "tmp_filename") with TestPipeline() as p: _ = p \ | Create(self.RECORDS) \ | WriteToParquet( path, self.SCHEMA, num_shards=1, shard_name_template='') with TestPipeline() as p: # json used for stable sortability readback = \ p \ | ReadFromParquet(path) \ | Map(json.dumps) assert_that(readback, equal_to([json.dumps(r) for r in self.RECORDS])) def test_batched_read(self): with TemporaryDirectory() as tmp_dirname: path = os.path.join(tmp_dirname + "tmp_filename") with TestPipeline() as p: _ = p \ | Create(self.RECORDS, reshuffle=False) \ | WriteToParquet( path, self.SCHEMA, num_shards=1, shard_name_template='') with TestPipeline() as p: # json used for stable sortability readback = \ p \ | ReadFromParquetBatched(path) assert_that(readback, equal_to([self._records_as_arrow()])) @parameterized.expand([ param(compression_type='snappy'), param(compression_type='gzip'), param(compression_type='brotli'), param(compression_type='lz4'), param(compression_type='zstd') ]) def test_sink_transform_compressed(self, compression_type): if compression_type == 'lz4' and int(pa.__version__.split('.')[0]) == 1: return unittest.skip( "Writing with LZ4 compression is not supported in " "pyarrow 1.x") with TemporaryDirectory() as tmp_dirname: path = os.path.join(tmp_dirname + "tmp_filename") with TestPipeline() as p: _ = p \ | Create(self.RECORDS) \ | WriteToParquet( path, self.SCHEMA, codec=compression_type, num_shards=1, shard_name_template='') with TestPipeline() as p: # json used for stable sortability readback = \ p \ | ReadFromParquet(path + '*') \ | Map(json.dumps) assert_that(readback, equal_to([json.dumps(r) for r in self.RECORDS])) def test_read_reentrant(self): file_name = self._write_data(count=6, row_group_size=3) source = _create_parquet_source(file_name) source_test_utils.assert_reentrant_reads_succeed((source, None, None)) def test_read_without_splitting_multiple_row_group(self): file_name = self._write_data(count=12000, row_group_size=1000) # We expect 12000 elements, split into batches of 1000 elements. Create # a list of pa.Table instances to model this expecation expected_result = [ pa.Table.from_batches([batch]) for batch in self._records_as_arrow( count=12000).to_batches(chunksize=1000) ] self._run_parquet_test(file_name, None, None, False, expected_result) def test_read_with_splitting_multiple_row_group(self): file_name = self._write_data(count=12000, row_group_size=1000) # We expect 12000 elements, split into batches of 1000 elements. Create # a list of pa.Table instances to model this expecation expected_result = [ pa.Table.from_batches([batch]) for batch in self._records_as_arrow( count=12000).to_batches(chunksize=1000) ] self._run_parquet_test(file_name, None, 10000, True, expected_result) def test_dynamic_work_rebalancing(self): file_name = self._write_data(count=120, row_group_size=20) source = _create_parquet_source(file_name) splits = [split for split in source.split(desired_bundle_size=float('inf'))] assert len(splits) == 1 source_test_utils.assert_split_at_fraction_exhaustive( splits[0].source, splits[0].start_position, splits[0].stop_position) def test_min_bundle_size(self): file_name = self._write_data(count=120, row_group_size=20) source = _create_parquet_source( file_name, min_bundle_size=100 * 1024 * 1024) splits = [split for split in source.split(desired_bundle_size=1)] self.assertEqual(len(splits), 1) source = _create_parquet_source(file_name, min_bundle_size=0) splits = [split for split in source.split(desired_bundle_size=1)] self.assertNotEqual(len(splits), 1) def _convert_to_timestamped_record(self, record): timestamped_record = record.copy() timestamped_record['favorite_number'] =\ pandas.Timestamp(timestamped_record['favorite_number']) return timestamped_record def test_int96_type_conversion(self): file_name = self._write_data( count=120, row_group_size=20, schema=self.SCHEMA96) orig = self._records_as_arrow(count=120, schema=self.SCHEMA96) expected_result = [ pa.Table.from_batches([batch]) for batch in orig.to_batches(chunksize=20) ] self._run_parquet_test(file_name, None, None, False, expected_result) def test_split_points(self): file_name = self._write_data(count=12000, row_group_size=3000) source = _create_parquet_source(file_name) splits = [split for split in source.split(desired_bundle_size=float('inf'))] assert len(splits) == 1 range_tracker = splits[0].source.get_range_tracker( splits[0].start_position, splits[0].stop_position) split_points_report = [] for _ in splits[0].source.read(range_tracker): split_points_report.append(range_tracker.split_points()) # There are a total of four row groups. Each row group has 3000 records. # When reading records of the first group, range_tracker.split_points() # should return (0, iobase.RangeTracker.SPLIT_POINTS_UNKNOWN) self.assertEqual( split_points_report, [ (0, RangeTracker.SPLIT_POINTS_UNKNOWN), (1, RangeTracker.SPLIT_POINTS_UNKNOWN), (2, RangeTracker.SPLIT_POINTS_UNKNOWN), (3, 1), ]) def test_selective_columns(self): file_name = self._write_data() orig = self._records_as_arrow() expected_result = [ pa.Table.from_arrays([orig.column('name')], names=['name']) ] self._run_parquet_test(file_name, ['name'], None, False, expected_result) def test_sink_transform_multiple_row_group(self): with TemporaryDirectory() as tmp_dirname: path = os.path.join(tmp_dirname + "tmp_filename") with TestPipeline() as p: # writing 623200 bytes of data _ = p \ | Create(self.RECORDS * 4000) \ | WriteToParquet( path, self.SCHEMA, num_shards=1, codec='none', shard_name_template='', row_group_buffer_size=250000) self.assertEqual(pq.read_metadata(path).num_row_groups, 3) def test_read_all_from_parquet_single_file(self): path = self._write_data() with TestPipeline() as p: assert_that( p \ | Create([path]) \ | ReadAllFromParquet(), equal_to(self.RECORDS)) with TestPipeline() as p: assert_that( p \ | Create([path]) \ | ReadAllFromParquetBatched(), equal_to([self._records_as_arrow()])) def test_read_all_from_parquet_many_single_files(self): path1 = self._write_data() path2 = self._write_data() path3 = self._write_data() with TestPipeline() as p: assert_that( p \ | Create([path1, path2, path3]) \ | ReadAllFromParquet(), equal_to(self.RECORDS * 3)) with TestPipeline() as p: assert_that( p \ | Create([path1, path2, path3]) \ | ReadAllFromParquetBatched(), equal_to([self._records_as_arrow()] * 3)) def test_read_all_from_parquet_file_pattern(self): file_pattern = self._write_pattern(5) with TestPipeline() as p: assert_that( p \ | Create([file_pattern]) \ | ReadAllFromParquet(), equal_to(self.RECORDS * 5)) with TestPipeline() as p: assert_that( p \ | Create([file_pattern]) \ | ReadAllFromParquetBatched(), equal_to([self._records_as_arrow()] * 5)) def test_read_all_from_parquet_many_file_patterns(self): file_pattern1 = self._write_pattern(5) file_pattern2 = self._write_pattern(2) file_pattern3 = self._write_pattern(3) with TestPipeline() as p: assert_that( p \ | Create([file_pattern1, file_pattern2, file_pattern3]) \ | ReadAllFromParquet(), equal_to(self.RECORDS * 10)) with TestPipeline() as p: assert_that( p \ | Create([file_pattern1, file_pattern2, file_pattern3]) \ | ReadAllFromParquetBatched(), equal_to([self._records_as_arrow()] * 10)) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
apache-2.0