repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
miladh/lgn-simulator
tools/analysis/plotting_tools.py
1
18502
import matplotlib.pyplot as plt import colormaps as cmaps import numpy as np import pretty_plotting as pp def raster(spike_times, ax = None, figsize = (12,8), ylabel = "Cell Id", title = None, color="k"): """ Raster plot """ if not isinstance(spike_times, list): spike_times = [spike_times] num_cells = len(spike_times) if ax ==None: f = plt.figure(figsize=figsize) ax = f.add_subplot(111) #pretty plot functions pp.spines_edge_color(ax) pp.remove_ticks(ax) pp.set_font() for i in range(num_cells): for t in spike_times[i][:]: ax.vlines(t, i + .9, i + 1.1, color=color) plt.ylim(0.8, num_cells+0.2) plt.xlabel('t [s]') plt.ylabel(ylabel) plt.yticks(range(1,num_cells+1)) if not title==None: ax.set_title(title) plt.tight_layout() return ax def animate_imshow_plots(data, dt = None, figsize = (8,15), cmap = cmaps.inferno, colorbar = False, remove_axes = True, save_animation = False, animation_name = "unnamed" ): """ Animate imshow plots """ import matplotlib.animation as animation from mpl_toolkits.mplot3d import axes3d from mpl_toolkits.axes_grid1 import make_axes_locatable import time num_subplots = len(data) plots = [] nStates = len(data[0]["t_points"]) dt = 1 if dt==None else data[0]["t_points"][1]-data[0]["t_points"][0] num_cols = 2 if num_subplots >= 2 else num_subplots num_rows = int(np.ceil((num_subplots-1)/2.))+1 fig = plt.figure(figsize=figsize) def init(): for i in range(num_subplots): plots[i].set_data(data[i]["value"][0,:,:]) ttl.set_text("") return plots, ttl def animate(j): for i in range(num_subplots): plots[i].set_data(data[i]["value"][j,:,:]) # plots[i].autoscale() t = j*dt ttl.set_text("Time = " + str('%.2f' % (t,)) + "s") return plots, ttl ttl = plt.suptitle("",fontsize = 16) extent=[data[0]["spatial_vec"][0],data[0]["spatial_vec"][-1], data[0]["spatial_vec"][0],data[0]["spatial_vec"][-1]] # ttl = plt.suptitle("",fontsize = 16, x = 0.45, horizontalalignment = "left") #Plot stimulus colspanStim = 2 ax = plt.subplot2grid((num_rows, num_cols),(0, 0), colspan = colspanStim) if remove_axes: simpleaxis(ax) ax.set_title(data[0]["type"]) ax.set_xlabel(r"$x(\theta)$") ax.set_ylabel(r"$y(\theta)$") plots.append(ax.imshow(data[0]["value"][0,:,:], origin = "lower",cmap="gray", interpolation="none", extent = extent)) if(colorbar): divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(plots[-1], ax=ax, orientation='vertical', cax = cax) k = 1 for i in range(1, num_rows): for j in range(num_cols): if(k>= num_subplots): break ax = plt.subplot2grid((num_rows, num_cols),(i, j)) if remove_axes: simpleaxis(ax) ax.set_title(data[k]["type"]) ax.set_xlabel(r"$x(\theta)$") ax.set_ylabel(r"$y(\theta)$") plots.append(ax.imshow(data[k]["value"][0,:,:], cmap=cmap, interpolation="none", origin = "lower", extent = extent, vmin = (data[k]["value"]).min(), vmax = (data[k]["value"]).max())) if(colorbar): divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(plots[-1], ax=ax, orientation='vertical',cax = cax) k+=1 plt.tight_layout() plt.subplots_adjust(top=0.95) anim = animation.FuncAnimation(fig, animate, init_func=init, frames=nStates, interval=20, blit=False) if(save_animation): anim.save(animation_name + ".mp4",fps=30, writer="avconv", codec="libx264") plt.show() return anim def imshowPlotsOfImpulseResponses(data, x_imshow=True, y_imshow=True, idx=0, idy=0, figsize=(14,8), cmap=cmaps.viridis, colorbar=True, save_figure=False, figure_name="unnamed"): """ Imshow plots of impulse response functions """ num_cols = len(data) num_rows = int(x_imshow) + int(y_imshow) fig, axarr = plt.subplots(num_rows, num_cols, figsize=figsize, sharey=True) # pp.set_font() # for j in range(num_cols): # for i in range(num_rows): # ax = axarr[i,j] # pp.spines_edge_color(ax) # pp.remove_ticks(ax) if(num_rows == 1): axarr = np.array(axarr).reshape(1,num_cols) if(num_cols ==1): axarr = np.array(axarr).reshape(num_rows,1) levels = np.arange(-5., 5., 0.23) for j in range(num_cols): axarr[0,j].set_title(data[j]["type"]) i=0 if(x_imshow): axarr[i,j].set_adjustable('box-forced') extent=[data[j]["spatial_vec"][0],data[j]["spatial_vec"][-1], data[j]["t_points"][0],data[j]["t_points"][-1]] im = axarr[i,j].imshow(data[j]["value"][:,idy,:], extent= extent, cmap=cmap, origin="lower", aspect="auto", interpolation="gaussian") axarr[i,j].contour(data[j]["value"][:,idy,:], levels, colors='w',linewidths=0.4, extent= extent, aspect="auto") axarr[i,j].set_xlabel(r"$x(\theta)$") axarr[i,0].set_ylabel(r"$\tau(s)$") if(colorbar): fig.colorbar(im, ax=axarr[i,j],orientation='horizontal') i+=1 if(y_imshow): axarr[i,j].set_adjustable('box-forced') extent=[data[j]["spatial_vec"][0],data[j]["spatial_vec"][-1], data[j]["t_points"][0],data[j]["t_points"][-1]] im = axarr[i,j].imshow(data[j]["value"][:,:,idx], extent= extent, cmap=cmap, origin="lower",aspect="auto", interpolation="gaussian") axarr[i,j].contour(data[j]["value"][:,:,idx], levels, colors='w',linewidths=0.4, extent= extent, aspect="auto") axarr[i,j].set_xlabel(r"$y(\theta)$") axarr[i,0].set_ylabel(r"$\tau(s)$") if(colorbar): fig.colorbar(im, ax=axarr[i,j], orientation='horizontal') i+=1 if(save_figure): fig.save(animation_name + ".svg") plt.show() def plot3dOfImpulseResponses(data, x_3d=True, y_3d=True, num_skip = 2, idx=0, idy=0, figsize=(15,10), cmap=cmaps.inferno, colorbar=False, save_figure=False, figure_name="unnamed"): """ 3D plots of impulse response functions """ from mpl_toolkits.mplot3d import Axes3D num_cols = len(data) num_rows = int(x_3d) + int(y_3d) fig = plt.figure(figsize=figsize) for j in range(num_cols): S = data[j]["spatial_vec"] T = data[j]["t_points"] T, S = np.meshgrid(S, T) i=0 if(x_3d): ax = plt.subplot2grid((num_rows, num_cols),(i,j), projection='3d') surf = ax.plot_surface(S[::num_skip,::num_skip], T[::num_skip,::num_skip], data[j]["value"][::num_skip, idy, ::num_skip], cmap=cmap, edgecolors="k", alpha=0.9, shade=False, vmin = (data[j]["value"]).min(), vmax = (data[j]["value"]).max(), rstride=1, cstride=1, linewidth=0.0, antialiased=False) ax.set_title(data[j]["type"]) ax.set_ylabel(r"$x(\theta)$") ax.set_xlabel(r"$\tau(s)$") ax.set_zlabel(r"$W$") ax.set_zlim3d(np.min(data[j]["value"][::num_skip, idy, ::num_skip]), np.max(data[j]["value"][::num_skip, idy, ::num_skip])) ax.view_init(elev=46., azim=130) if(colorbar): cbar = plt.colorbar(surf, ax=ax, orientation='horizontal') i+=1 if(y_3d): ax = plt.subplot2grid((num_rows, num_cols),(i,j), projection='3d') surf = ax.plot_surface(S[::num_skip,::num_skip], T[::num_skip,::num_skip], data[j]["value"][::num_skip, ::num_skip, idx], cmap=cmap, edgecolors="k", alpha=0.9, shade=False, vmin = (data[j]["value"]).min(), vmax = (data[j]["value"]).max(), rstride=1, cstride=1, linewidth=0.0, antialiased=False) ax.set_title(data[j]["type"]) ax.set_ylabel(r"$y(\theta)$") ax.set_xlabel(r"$\tau(s)$") ax.set_zlabel(r"$W$") ax.set_zlim3d(np.min(data[j]["value"][::num_skip, ::num_skip, idx]), np.max(data[j]["value"][::num_skip, ::num_skip, idx])) ax.view_init(elev=46., azim=130) if(colorbar): fig.colorbar(surf, ax=ax, orientation='horizontal') i+=1 fig.tight_layout() if(save_figure): fig.save(animation_name + ".svg") plt.show() def line3dPlotsOfImpulseResponses(data, x_line3d=True, y_line3d=True, num_skip = 10, idx=64, idy=64, figsize = (14,8), cmap = cmaps.inferno, colorbar = False, save_figure = False, figure_name = "unnamed"): """ 3D line plot of impulse response functions """ from mpl_toolkits.mplot3d import Axes3D num_cols = len(data) num_rows = int(x_line3d) + int(y_line3d) fig = plt.figure(figsize=figsize) for j in range(num_cols): ids = range(0, len(data[j]["spatial_vec"]), num_skip) i=0 if(x_line3d): ax = plt.subplot2grid((num_rows, num_cols),(i,j), projection='3d') for x in ids: ax.plot(data[j]["t_points"], data[j]["spatial_vec"][x]*np.ones(len(data[j]["t_points"])), data[j]["value"][:,idy, x], color=pp.colormap(0), linewidth=1.0) ax.set_title(data[j]["type"]) ax.set_xlabel(r"$\tau(s)$") ax.set_ylabel(r"$x(\theta)$") ax.set_zlabel(r"$W(x, y_a, \tau)$") # ax.view_init(elev=17., azim=128) ax.set_xlim3d(data[j]["t_points"][0], data[j]["t_points"][-1]) ax.set_ylim3d(data[j]["spatial_vec"][0], data[j]["spatial_vec"][-1]) ax.set_zlim3d(np.min(data[j]["value"][:,idy, ids]), np.max(data[j]["value"][:,idy, ids])) #pretty plot functions pp.spines_edge_color(ax) pp.remove_ticks(ax) pp.set_font() i+=1 if(y_line3d): ax = plt.subplot2grid((num_rows, num_cols),(i,j), projection='3d') for y in ids: ax.plot(data[j]["t_points"], data[j]["spatial_vec"][y]*np.ones(len(data[j]["t_points"])), data[j]["value"][:,y, idx], "-b", linewidth=1.0) ax.set_title(data[j]["type"]) ax.set_xlabel(r"$\tau(s)$") ax.set_ylabel(r"$y(\theta)$") ax.set_zlabel(r"$W(x_a, y, \tau)$") # ax.view_init(elev=17., azim=128) ax.set_xlim3d(data[j]["t_points"][0], data[j]["t_points"][-1]) ax.set_ylim3d(data[j]["spatial_vec"][0], data[j]["spatial_vec"][-1]) ax.set_zlim3d(np.min(data[j]["value"][:,ids, idx]), np.max(data[j]["value"][:,ids, idx])) i+=1 plt.tight_layout() if(save_figure): fig.save(animation_name + ".svg") plt.show() if __name__ == "__main__": import h5py from glob import glob import Simulation as sim plt.close("all") outputFile = "/home/milad/Dropbox/projects/lgn/code/lgn-simulator/apps/firingSynchrony/firingSynchrony.h5" f = h5py.File(outputFile, "r") exp = sim.Simulation(None, f) Ns = exp.integrator.Ns Nt = exp.integrator.Nt # S = {"type" : "Stimulus", # "value" : exp.stimulus.spatio_temporal(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } # Wg = {"type" : "Ganglion", # "value" : exp.ganglion.irf(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } # Wr = {"type" : "Relay", # "value" : exp.relay.irf(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } # Wi = {"type" : "Interneuron", # "value" : exp.interneuron.irf(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } # # Wc = {"type" : "Cortical", # "value" : exp.cortical.irf(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } # # # # Wr_ft = {"type" : "Relay", # "value" : exp.relay.irf_ft().imag, # "t_points" : exp.integrator.w_points, # "spatial_vec" : exp.integrator.k_points # } # # # Response FT-------------------------------------------------------------------------- # S_ft = {"type" : "Stimulus", # "value" : exp.stimulus.fourier_transform().real, # "t_points" : exp.integrator.w_points, # "spatial_vec" : exp.integrator.k_points # } # Rg_ft = {"type" : "Ganglion", # "value" : np.real(exp.ganglion.resp_ft()), # "t_points" : exp.integrator.w_points, # "spatial_vec" : exp.integrator.k_points # } # Rr_ft = {"type" : "Relay", # "value" : np.real(exp.relay.resp_ft()), # "t_points" : exp.integrator.w_points, # "spatial_vec" : exp.integrator.k_points # } # Ri_ft = {"type" : "Interneuron", # "value" : np.real(exp.interneuron.resp_ft()), # "t_points" : exp.integrator.w_points, # "spatial_vec" : exp.integrator.k_points # } # # Rc_ft = {"type" : "Cortical", # "t_points" : exp.integrator.w_points, # "value" : np.real(exp.cortical.resp_ft()), # "spatial_vec" : exp.integrator.k_points # } # # Response -------------------------------------------------------------------------- # Rg = {"type" : "Ganglion", # "value" : exp.ganglion.resp(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } Rr = {"type" : "Relay", "value" : exp.relay.resp(), "t_points" : exp.integrator.t_points, "spatial_vec" : exp.integrator.s_points } # # Ri = {"type" : "Interneuron", # "value" : exp.interneuron.resp(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } # Rc = {"type" : "Cortical", # "value" : exp.cortical.resp(), # "t_points" : exp.integrator.t_points, # "spatial_vec" : exp.integrator.s_points # } ############################################################################################# # data = [S, Rg_ft, Rr_ft, Ri_ft, Rc_ft] #line3dPlotsOfImpulseResponses([Wg, Wr], num_skip = 30, idx=Ns/2, idy=Ns/2,y_line3d=False,) # imshowPlotsOfImpulseResponses([Wg, Wr, Wi, Wc], idx=Ns/2, idy=Ns/2,y_imshow=False,) # plt.figure() # plt.plot(exp.integrator.t_points, exp.stimulus.spatio_temporal()[:, Ns/2,Ns/2], '-r', label="S") # plt.plot(exp.integrator.t_points, exp.ganglion.resp()[:,Ns/2,Ns/2], '-g', label="G") plt.plot(exp.integrator.t_points, exp.relay.resp()[:,Ns/2,Ns/2], '-b', label="R") # plt.legend() animate_imshow_plots([Rr, Rr], exp.integrator.dt, colorbar = True, remove_axes = False, save_animation = False, animation_name = "newTest") # plt.figure() # # plt.plot( exp.integrator.k_points,exp.stimulus.fourier_transform()[0,Ns/2,:], '-g', label="S_ft") # # plt.plot( exp.integrator.k_points,exp.ganglion.irf_ft()[0,Ns/2,:], '-r', label="irf_ft") # plt.plot( exp.integrator.k_points,exp.ganglion.resp_ft()[0,Ns/2,:], '-b', label="resp_ft") # plt.legend() # # plt.figure() # plt.plot( exp.integrator.s_points,exp.ganglion.irf()[0,Ns/2,:], '-r', label="irf") # plt.plot( exp.integrator.s_points,exp.ganglion.resp()[0,Ns/2,:], '-b', label="resp") # # plt.legend() # plt.legend() # plt.plot( exp.relay.irf()[:,1,1]) # print np.argmax(exp.relay.irf()[:,1,1]) # print np.argmin(exp.relay.irf()[:,1,1]) #plt.plot( exp.relay.irf()[:,2,2]) plt.show()
gpl-3.0
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/matplotlib/texmanager.py
2
22890
""" This module supports embedded TeX expressions in matplotlib via dvipng and dvips for the raster and postscript backends. The tex and dvipng/dvips information is cached in ~/.matplotlib/tex.cache for reuse between sessions Requirements: * latex * \\*Agg backends: dvipng>=1.6 * PS backend: psfrag, dvips, and Ghostscript>=8.60 Backends: * \\*Agg * PS * PDF For raster output, you can get RGBA numpy arrays from TeX expressions as follows:: texmanager = TexManager() s = ('\\TeX\\ is Number ' '$\\displaystyle\\sum_{n=1}^\\infty\\frac{-e^{i\\pi}}{2^n}$!') Z = texmanager.get_rgba(s, fontsize=12, dpi=80, rgb=(1,0,0)) To enable tex rendering of all text in your matplotlib figure, set text.usetex in your matplotlibrc file or include these two lines in your script:: from matplotlib import rc rc('text', usetex=True) """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import copy import glob import os import shutil import sys import warnings from hashlib import md5 import distutils.version import numpy as np import matplotlib as mpl from matplotlib import rcParams from matplotlib._png import read_png from matplotlib.cbook import mkdirs, Locked from matplotlib.compat.subprocess import subprocess, Popen, PIPE, STDOUT import matplotlib.dviread as dviread import re DEBUG = False if sys.platform.startswith('win'): cmd_split = '&' else: cmd_split = ';' @mpl.cbook.deprecated("2.1") def dvipng_hack_alpha(): try: p = Popen([str('dvipng'), '-version'], stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=(sys.platform != 'win32')) stdout, stderr = p.communicate() except OSError: mpl.verbose.report('No dvipng was found', 'helpful') return False lines = stdout.decode(sys.getdefaultencoding()).split('\n') for line in lines: if line.startswith('dvipng '): version = line.split()[-1] mpl.verbose.report('Found dvipng version %s' % version, 'helpful') version = distutils.version.LooseVersion(version) return version < distutils.version.LooseVersion('1.6') mpl.verbose.report('Unexpected response from dvipng -version', 'helpful') return False class TexManager(object): """ Convert strings to dvi files using TeX, caching the results to a working dir """ oldpath = mpl.get_home() if oldpath is None: oldpath = mpl.get_data_path() oldcache = os.path.join(oldpath, '.tex.cache') cachedir = mpl.get_cachedir() if cachedir is not None: texcache = os.path.join(cachedir, 'tex.cache') else: # Should only happen in a restricted environment (such as Google App # Engine). Deal with this gracefully by not creating a cache directory. texcache = None if os.path.exists(oldcache): if texcache is not None: try: shutil.move(oldcache, texcache) except IOError as e: warnings.warn('File could not be renamed: %s' % e) else: warnings.warn("""\ Found a TeX cache dir in the deprecated location "%s". Moving it to the new default location "%s".""" % (oldcache, texcache)) else: warnings.warn("""\ Could not rename old TeX cache dir "%s": a suitable configuration directory could not be found.""" % oldcache) if texcache is not None: mkdirs(texcache) # mappable cache of rgba_arrayd = {} grey_arrayd = {} postscriptd = {} pscnt = 0 serif = ('cmr', '') sans_serif = ('cmss', '') monospace = ('cmtt', '') cursive = ('pzc', '\\usepackage{chancery}') font_family = 'serif' font_families = ('serif', 'sans-serif', 'cursive', 'monospace') font_info = {'new century schoolbook': ('pnc', r'\renewcommand{\rmdefault}{pnc}'), 'bookman': ('pbk', r'\renewcommand{\rmdefault}{pbk}'), 'times': ('ptm', '\\usepackage{mathptmx}'), 'palatino': ('ppl', '\\usepackage{mathpazo}'), 'zapf chancery': ('pzc', '\\usepackage{chancery}'), 'cursive': ('pzc', '\\usepackage{chancery}'), 'charter': ('pch', '\\usepackage{charter}'), 'serif': ('cmr', ''), 'sans-serif': ('cmss', ''), 'helvetica': ('phv', '\\usepackage{helvet}'), 'avant garde': ('pag', '\\usepackage{avant}'), 'courier': ('pcr', '\\usepackage{courier}'), 'monospace': ('cmtt', ''), 'computer modern roman': ('cmr', ''), 'computer modern sans serif': ('cmss', ''), 'computer modern typewriter': ('cmtt', '')} _rc_cache = None _rc_cache_keys = (('text.latex.preamble', ) + tuple(['font.' + n for n in ('family', ) + font_families])) def __init__(self): if self.texcache is None: raise RuntimeError( ('Cannot create TexManager, as there is no cache directory ' 'available')) mkdirs(self.texcache) ff = rcParams['font.family'] if len(ff) == 1 and ff[0].lower() in self.font_families: self.font_family = ff[0].lower() elif isinstance(ff, six.string_types) and ff.lower() in self.font_families: self.font_family = ff.lower() else: mpl.verbose.report( 'font.family must be one of (%s) when text.usetex is True. ' 'serif will be used by default.' % ', '.join(self.font_families), 'helpful') self.font_family = 'serif' fontconfig = [self.font_family] for font_family, font_family_attr in [(ff, ff.replace('-', '_')) for ff in self.font_families]: for font in rcParams['font.' + font_family]: if font.lower() in self.font_info: setattr(self, font_family_attr, self.font_info[font.lower()]) if DEBUG: print('family: %s, font: %s, info: %s' % (font_family, font, self.font_info[font.lower()])) break else: if DEBUG: print('$s font is not compatible with usetex') else: mpl.verbose.report('No LaTeX-compatible font found for the ' '%s font family in rcParams. Using ' 'default.' % font_family, 'helpful') setattr(self, font_family_attr, self.font_info[font_family]) fontconfig.append(getattr(self, font_family_attr)[0]) # Add a hash of the latex preamble to self._fontconfig so that the # correct png is selected for strings rendered with same font and dpi # even if the latex preamble changes within the session preamble_bytes = six.text_type(self.get_custom_preamble()).encode('utf-8') fontconfig.append(md5(preamble_bytes).hexdigest()) self._fontconfig = ''.join(fontconfig) # The following packages and commands need to be included in the latex # file's preamble: cmd = [self.serif[1], self.sans_serif[1], self.monospace[1]] if self.font_family == 'cursive': cmd.append(self.cursive[1]) while '\\usepackage{type1cm}' in cmd: cmd.remove('\\usepackage{type1cm}') cmd = '\n'.join(cmd) self._font_preamble = '\n'.join(['\\usepackage{type1cm}', cmd, '\\usepackage{textcomp}']) def get_basefile(self, tex, fontsize, dpi=None): """ returns a filename based on a hash of the string, fontsize, and dpi """ s = ''.join([tex, self.get_font_config(), '%f' % fontsize, self.get_custom_preamble(), str(dpi or '')]) # make sure hash is consistent for all strings, regardless of encoding: bytes = six.text_type(s).encode('utf-8') return os.path.join(self.texcache, md5(bytes).hexdigest()) def get_font_config(self): """Reinitializes self if relevant rcParams on have changed.""" if self._rc_cache is None: self._rc_cache = dict.fromkeys(self._rc_cache_keys) changed = [par for par in self._rc_cache_keys if rcParams[par] != self._rc_cache[par]] if changed: if DEBUG: print('DEBUG following keys changed:', changed) for k in changed: if DEBUG: print('DEBUG %-20s: %-10s -> %-10s' % (k, self._rc_cache[k], rcParams[k])) # deepcopy may not be necessary, but feels more future-proof self._rc_cache[k] = copy.deepcopy(rcParams[k]) if DEBUG: print('DEBUG RE-INIT\nold fontconfig:', self._fontconfig) self.__init__() if DEBUG: print('DEBUG fontconfig:', self._fontconfig) return self._fontconfig def get_font_preamble(self): """ returns a string containing font configuration for the tex preamble """ return self._font_preamble def get_custom_preamble(self): """returns a string containing user additions to the tex preamble""" return '\n'.join(rcParams['text.latex.preamble']) def make_tex(self, tex, fontsize): """ Generate a tex file to render the tex string at a specific font size returns the file name """ basefile = self.get_basefile(tex, fontsize) texfile = '%s.tex' % basefile custom_preamble = self.get_custom_preamble() fontcmd = {'sans-serif': r'{\sffamily %s}', 'monospace': r'{\ttfamily %s}'}.get(self.font_family, r'{\rmfamily %s}') tex = fontcmd % tex if rcParams['text.latex.unicode']: unicode_preamble = """\\usepackage{ucs} \\usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' s = """\\documentclass{article} %s %s %s \\usepackage[papersize={72in,72in},body={70in,70in},margin={1in,1in}]{geometry} \\pagestyle{empty} \\begin{document} \\fontsize{%f}{%f}%s \\end{document} """ % (self._font_preamble, unicode_preamble, custom_preamble, fontsize, fontsize * 1.25, tex) with open(texfile, 'wb') as fh: if rcParams['text.latex.unicode']: fh.write(s.encode('utf8')) else: try: fh.write(s.encode('ascii')) except UnicodeEncodeError as err: mpl.verbose.report("You are using unicode and latex, but " "have not enabled the matplotlib " "'text.latex.unicode' rcParam.", 'helpful') raise return texfile _re_vbox = re.compile( r"MatplotlibBox:\(([\d.]+)pt\+([\d.]+)pt\)x([\d.]+)pt") def make_tex_preview(self, tex, fontsize): """ Generate a tex file to render the tex string at a specific font size. It uses the preview.sty to determine the dimension (width, height, descent) of the output. returns the file name """ basefile = self.get_basefile(tex, fontsize) texfile = '%s.tex' % basefile custom_preamble = self.get_custom_preamble() fontcmd = {'sans-serif': r'{\sffamily %s}', 'monospace': r'{\ttfamily %s}'}.get(self.font_family, r'{\rmfamily %s}') tex = fontcmd % tex if rcParams['text.latex.unicode']: unicode_preamble = """\\usepackage{ucs} \\usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' # newbox, setbox, immediate, etc. are used to find the box # extent of the rendered text. s = """\\documentclass{article} %s %s %s \\usepackage[active,showbox,tightpage]{preview} \\usepackage[papersize={72in,72in},body={70in,70in},margin={1in,1in}]{geometry} %% we override the default showbox as it is treated as an error and makes %% the exit status not zero \\def\\showbox#1{\\immediate\\write16{MatplotlibBox:(\\the\\ht#1+\\the\\dp#1)x\\the\\wd#1}} \\begin{document} \\begin{preview} {\\fontsize{%f}{%f}%s} \\end{preview} \\end{document} """ % (self._font_preamble, unicode_preamble, custom_preamble, fontsize, fontsize * 1.25, tex) with open(texfile, 'wb') as fh: if rcParams['text.latex.unicode']: fh.write(s.encode('utf8')) else: try: fh.write(s.encode('ascii')) except UnicodeEncodeError as err: mpl.verbose.report("You are using unicode and latex, but " "have not enabled the matplotlib " "'text.latex.unicode' rcParam.", 'helpful') raise return texfile def make_dvi(self, tex, fontsize): """ generates a dvi file containing latex's layout of tex string returns the file name """ if rcParams['text.latex.preview']: return self.make_dvi_preview(tex, fontsize) basefile = self.get_basefile(tex, fontsize) dvifile = '%s.dvi' % basefile if DEBUG or not os.path.exists(dvifile): texfile = self.make_tex(tex, fontsize) command = [str("latex"), "-interaction=nonstopmode", os.path.basename(texfile)] mpl.verbose.report(command, 'debug') with Locked(self.texcache): try: report = subprocess.check_output(command, cwd=self.texcache, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as exc: raise RuntimeError( ('LaTeX was not able to process the following ' 'string:\n%s\n\n' 'Here is the full report generated by LaTeX:\n%s ' '\n\n' % (repr(tex.encode('unicode_escape')), exc.output.decode("utf-8")))) mpl.verbose.report(report, 'debug') for fname in glob.glob(basefile + '*'): if fname.endswith('dvi'): pass elif fname.endswith('tex'): pass else: try: os.remove(fname) except OSError: pass return dvifile def make_dvi_preview(self, tex, fontsize): """ generates a dvi file containing latex's layout of tex string. It calls make_tex_preview() method and store the size information (width, height, descent) in a separte file. returns the file name """ basefile = self.get_basefile(tex, fontsize) dvifile = '%s.dvi' % basefile baselinefile = '%s.baseline' % basefile if (DEBUG or not os.path.exists(dvifile) or not os.path.exists(baselinefile)): texfile = self.make_tex_preview(tex, fontsize) command = [str("latex"), "-interaction=nonstopmode", os.path.basename(texfile)] mpl.verbose.report(command, 'debug') try: report = subprocess.check_output(command, cwd=self.texcache, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as exc: raise RuntimeError( ('LaTeX was not able to process the following ' 'string:\n%s\n\n' 'Here is the full report generated by LaTeX:\n%s ' '\n\n' % (repr(tex.encode('unicode_escape')), exc.output.decode("utf-8")))) mpl.verbose.report(report, 'debug') # find the box extent information in the latex output # file and store them in ".baseline" file m = TexManager._re_vbox.search(report.decode("utf-8")) with open(basefile + '.baseline', "w") as fh: fh.write(" ".join(m.groups())) for fname in glob.glob(basefile + '*'): if fname.endswith('dvi'): pass elif fname.endswith('tex'): pass elif fname.endswith('baseline'): pass else: try: os.remove(fname) except OSError: pass return dvifile def make_png(self, tex, fontsize, dpi): """ generates a png file containing latex's rendering of tex string returns the filename """ basefile = self.get_basefile(tex, fontsize, dpi) pngfile = '%s.png' % basefile # see get_rgba for a discussion of the background if DEBUG or not os.path.exists(pngfile): dvifile = self.make_dvi(tex, fontsize) command = [str("dvipng"), "-bg", "Transparent", "-D", str(dpi), "-T", "tight", "-o", os.path.basename(pngfile), os.path.basename(dvifile)] mpl.verbose.report(command, 'debug') try: report = subprocess.check_output(command, cwd=self.texcache, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as exc: raise RuntimeError( ('dvipng was not able to process the following ' 'string:\n%s\n\n' 'Here is the full report generated by dvipng:\n%s ' '\n\n' % (repr(tex.encode('unicode_escape')), exc.output.decode("utf-8")))) mpl.verbose.report(report, 'debug') return pngfile def make_ps(self, tex, fontsize): """ generates a postscript file containing latex's rendering of tex string returns the file name """ basefile = self.get_basefile(tex, fontsize) psfile = '%s.epsf' % basefile if DEBUG or not os.path.exists(psfile): dvifile = self.make_dvi(tex, fontsize) command = [str("dvips"), "-q", "-E", "-o", os.path.basename(psfile), os.path.basename(dvifile)] mpl.verbose.report(command, 'debug') try: report = subprocess.check_output(command, cwd=self.texcache, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as exc: raise RuntimeError( ('dvips was not able to process the following ' 'string:\n%s\n\n' 'Here is the full report generated by dvips:\n%s ' '\n\n' % (repr(tex.encode('unicode_escape')), exc.output.decode("utf-8")))) mpl.verbose.report(report, 'debug') return psfile def get_ps_bbox(self, tex, fontsize): """ returns a list containing the postscript bounding box for latex's rendering of the tex string """ psfile = self.make_ps(tex, fontsize) with open(psfile) as ps: for line in ps: if line.startswith('%%BoundingBox:'): return [int(val) for val in line.split()[1:]] raise RuntimeError('Could not parse %s' % psfile) def get_grey(self, tex, fontsize=None, dpi=None): """returns the alpha channel""" key = tex, self.get_font_config(), fontsize, dpi alpha = self.grey_arrayd.get(key) if alpha is None: pngfile = self.make_png(tex, fontsize, dpi) X = read_png(os.path.join(self.texcache, pngfile)) self.grey_arrayd[key] = alpha = X[:, :, -1] return alpha def get_rgba(self, tex, fontsize=None, dpi=None, rgb=(0, 0, 0)): """ Returns latex's rendering of the tex string as an rgba array """ if not fontsize: fontsize = rcParams['font.size'] if not dpi: dpi = rcParams['savefig.dpi'] r, g, b = rgb key = tex, self.get_font_config(), fontsize, dpi, tuple(rgb) Z = self.rgba_arrayd.get(key) if Z is None: alpha = self.get_grey(tex, fontsize, dpi) Z = np.zeros((alpha.shape[0], alpha.shape[1], 4), float) Z[:, :, 0] = r Z[:, :, 1] = g Z[:, :, 2] = b Z[:, :, 3] = alpha self.rgba_arrayd[key] = Z return Z def get_text_width_height_descent(self, tex, fontsize, renderer=None): """ return width, heigth and descent of the text. """ if tex.strip() == '': return 0, 0, 0 if renderer: dpi_fraction = renderer.points_to_pixels(1.) else: dpi_fraction = 1. if rcParams['text.latex.preview']: # use preview.sty basefile = self.get_basefile(tex, fontsize) baselinefile = '%s.baseline' % basefile if DEBUG or not os.path.exists(baselinefile): dvifile = self.make_dvi_preview(tex, fontsize) with open(baselinefile) as fh: l = fh.read().split() height, depth, width = [float(l1) * dpi_fraction for l1 in l] return width, height + depth, depth else: # use dviread. It sometimes returns a wrong descent. dvifile = self.make_dvi(tex, fontsize) with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi: page = next(iter(dvi)) # A total height (including the descent) needs to be returned. return page.width, page.height + page.descent, page.descent
mit
jzt5132/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
georgyberdyshev/ascend
pygtk/matplotlib-example/pygladematplotlib.py
1
9904
import sys import matplotlib matplotlib.use('GTK') from matplotlib.figure import Figure from matplotlib.axes import Subplot from matplotlib.backends.backend_gtk import FigureCanvasGTK, NavigationToolbar from matplotlib.numerix import arange, sin, pi try: import pygtk pygtk.require("2.0") except: pass try: import gtk import gtk.glade except: sys.exit(1) host = "***" user = "***" passwd = "***" db = "***" class appGui: def __init__(self): gladefile = "project2.glade" self.windowname = "gtkbench" self.wTree = gtk.glade.XML(gladefile, self.windowname) self.win = self.wTree.get_widget("gtkbench") self.win.maximize() dic = {"on_window1_destroy" : gtk.main_quit, "on_button1_clicked" : self.submitDB, "on_button3_clicked" : self.fillTree, "on_notebook1_switch_page" : self.selectNotebookPage, "on_treeview1_button_press_event" : self.clickTree, "on_button2_clicked" : self.createProjectGraph } self.wTree.signal_autoconnect(dic) # start with database selection self.wDialog = gtk.glade.XML("project2.glade", "dbSelector") # setup matplotlib stuff on first notebook page (empty graph) self.figure = Figure(figsize=(6,4), dpi=72) self.axis = self.figure.add_subplot(111) self.axis.set_xlabel('Yepper') self.axis.set_ylabel('Flabber') self.axis.set_title('An Empty Graph') self.axis.grid(True) self.canvas = FigureCanvasGTK(self.figure) # a gtk.DrawingArea self.canvas.show() self.graphview = self.wTree.get_widget("vbox1") self.graphview.pack_start(self.canvas, True, True) # setup listview for database self.listview = self.wTree.get_widget("treeview1") self.listmodel = gtk.ListStore(str, int, int, str, str) self.listview.set_model(self.listmodel) renderer = gtk.CellRendererText() column = gtk.TreeViewColumn("Name",renderer, text=0) column.set_clickable(True) column.set_sort_column_id(0) column.connect("clicked", self.createDBGraph) column.set_resizable(True) self.listview.append_column(column) #renderer = gtk.CellRendererText() column = gtk.TreeViewColumn("Age",renderer, text=1) column.set_clickable(True) column.set_sort_column_id(1) column.connect("clicked", self.createDBGraph) column.set_resizable(True) self.listview.append_column(column) #self.listview.show() column = gtk.TreeViewColumn("Shoesize",renderer, text=2) column.set_clickable(True) column.set_sort_column_id(2) column.connect("clicked", self.createDBGraph) column.set_resizable(True) self.listview.append_column(column) #self.listview.show() column = gtk.TreeViewColumn("Created",renderer, text=3) column.set_clickable(True) column.set_sort_column_id(3) column.connect("clicked", self.createDBGraph) column.set_resizable(True) self.listview.append_column(column) #self.listview.show() #renderer = gtk.CellRendererText() column = gtk.TreeViewColumn("Updated",renderer, text=4) column.set_clickable(True) column.set_sort_column_id(4) column.connect("clicked", self.createDBGraph) column.set_resizable(True) self.listview.append_column(column) return # callbacks. def submitDB(self, widget): while True: try: name = self.wTree.get_widget("entry1").get_text() age = self.wTree.get_widget("entry2").get_text() size = self.wTree.get_widget("entry3").get_text() assert name != "" assert age != "" assert size != "" dataUsr = name, age, size sd = DBStuff.Eb_db(host, user, passwd, db) sd.subMit(dataUsr) break except AssertionError: self.wDialog = gtk.glade.XML("project2.glade", "dbWarningEmpty") close = self.wDialog.get_widget("dbWarningEmpty") response = close.run() if response == gtk.RESPONSE_CLOSE: close.destroy() break except DBStuff.MySQLdb.IntegrityError: def callback(): self.wDialog = gtk.glade.XML("project2.glade", "dbWarningOverwrite") close = self.wDialog.get_widget("dbWarningOverwrite") response = close.run() if response == gtk.RESPONSE_CANCEL: close.destroy() if response == gtk.RESPONSE_OK: sd.delRow(name) wd = DBStuff.Eb_db(host, user, passwd, db) wd.subMit(dataUsr) close.destroy() callback() break def fillTree(self, widget): model = self.listmodel self.listmodel.clear() fg = DBStuff.Eb_db(host, user, passwd, db) fg.getData("Age") for i in range(len(fg.data)): # note: all data from table "bench" is appended, but that is something you don't want # possible solution: create a seperate table for the listbox (eg. ommit Timestamp, keep it in another table) self.listmodel.append(fg.data[i]) self.createDBGraph(self) def selectNotebookPage(self, widget, notebookpage, page_number): # if database page is selected (nr. 1 for now!), retrieve data if page_number == 1: self.fillTree(self) if page_number == 0: print "clicked first tab" def clickTree(self, treeview, event): if event.button == 3: x = int(event.x) y = int(event.y) time = event.time pthinfo = treeview.get_path_at_pos(x, y) if pthinfo != None: path, col, cellx, celly = pthinfo treeview.grab_focus() treeview.set_cursor( path, col, 0) self.wDialog = gtk.glade.XML("project2.glade", "treeRightClick") close = self.wDialog.get_widget("treeRightClick") response = close.run() if response == gtk.RESPONSE_OK: close.destroy() print x print y print pthinfo #self.popup.popup( None, None, None, event.button, time) return 1 def createProjectGraph(self, widget): while True: try: # empty axis if neccesary, and reset title and stuff self.axis.clear() self.axis.set_xlabel('Yepper') self.axis.set_ylabel('Flabber') self.axis.set_title('A Graph') self.axis.grid(True) # get data age = self.wTree.get_widget("entry2").get_text() size = self.wTree.get_widget("entry3").get_text() age != "" size != "" N = 1 ind = arange(N) # the x locations for the groups width = 0.35 # the width of the bars p1 = self.axis.bar(ind, int(age), width, color='r') p2 = self.axis.bar(ind+width, int(size), width, color='y') self.axis.legend((p1[0], p2[0]), ("Age", "Size"), shadow = True) #self.axis.set_xticks(ind+width, ('G1') ) self.axis.set_xlim(-width,len(ind)) self.canvas.destroy() self.canvas = FigureCanvasGTK(self.figure) # a gtk.DrawingArea self.canvas.show() self.grahview = self.wTree.get_widget("vbox1") self.grahview.pack_start(self.canvas, True, True) break except ValueError: self.wDialog = gtk.glade.XML("project2.glade", "cannotCreateProjGraph") close = self.wDialog.get_widget("cannotCreateProjGraph") response = close.run() if response == gtk.RESPONSE_OK: close.destroy() break def createDBGraph(self, widget): self.axis.clear() self.axis.set_xlabel('Samples (n)') self.axis.set_ylabel('Value (-)') self.axis.set_title('Another Graph (click on the columnheader to sort)') self.axis.grid(True) # get columns from listmodel age = [] for row in self.listmodel: age.append(row[1]) size = [] for row in self.listmodel: size.append(row[2]) # get number of rows N = len(age) ind = arange(N) # the x locations for the groups width = 0.35 # the width of the bars p1 = self.axis.bar(ind, age, width, color='b') p2 = self.axis.bar(ind+width, size, width, color='r') # destroy graph if it already exists while True: try: self.canvas2.destroy() break except: print "nothing to destroy" break self.canvas2 = FigureCanvasGTK(self.figure) # a gtk.DrawingArea self.canvas2.show() self.grahview = self.wTree.get_widget("vbox2") self.grahview.pack_start(self.canvas2, True, True) app = appGui() gtk.main()
gpl-2.0
astropy/astropy
astropy/visualization/wcsaxes/tests/test_grid_paths.py
6
1050
import numpy as np import pytest from matplotlib.lines import Path from astropy.visualization.wcsaxes.grid_paths import get_lon_lat_path @pytest.mark.parametrize('step_in_degrees', [10, 1, 0.01]) def test_round_trip_visibility(step_in_degrees): zero = np.zeros(100) # The pixel values are irrelevant for this test pixel = np.stack([zero, zero]).T # Create a grid line of constant latitude with a point every step line = np.stack([np.arange(100), zero]).T * step_in_degrees # Create a modified grid line where the point spacing is larger by 5% # Starting with point 20, the discrepancy between `line` and `line_round` is greater than `step` line_round = line * 1.05 # Perform the round-trip check path = get_lon_lat_path(line, pixel, line_round) # The grid line should be visible for only the initial part line (19 points) codes_check = np.full(100, Path.MOVETO) codes_check[line_round[:, 0] - line[:, 0] < step_in_degrees] = Path.LINETO assert np.all(path.codes[1:] == codes_check[1:])
bsd-3-clause
jreback/pandas
pandas/tests/indexes/interval/test_setops.py
1
8030
import numpy as np import pytest from pandas import Index, IntervalIndex, Timestamp, interval_range import pandas._testing as tm def monotonic_index(start, end, dtype="int64", closed="right"): return IntervalIndex.from_breaks(np.arange(start, end, dtype=dtype), closed=closed) def empty_index(dtype="int64", closed="right"): return IntervalIndex(np.array([], dtype=dtype), closed=closed) class TestIntervalIndex: def test_union(self, closed, sort): index = monotonic_index(0, 11, closed=closed) other = monotonic_index(5, 13, closed=closed) expected = monotonic_index(0, 13, closed=closed) result = index[::-1].union(other, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) result = other[::-1].union(index, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) tm.assert_index_equal(index.union(index, sort=sort), index) tm.assert_index_equal(index.union(index[:1], sort=sort), index) def test_union_empty_result(self, closed, sort): # GH 19101: empty result, same dtype index = empty_index(dtype="int64", closed=closed) result = index.union(index, sort=sort) tm.assert_index_equal(result, index) # GH 19101: empty result, different numeric dtypes -> common dtype is f8 other = empty_index(dtype="float64", closed=closed) result = index.union(other, sort=sort) expected = other tm.assert_index_equal(result, expected) other = index.union(index, sort=sort) tm.assert_index_equal(result, expected) other = empty_index(dtype="uint64", closed=closed) result = index.union(other, sort=sort) tm.assert_index_equal(result, expected) result = other.union(index, sort=sort) tm.assert_index_equal(result, expected) def test_intersection(self, closed, sort): index = monotonic_index(0, 11, closed=closed) other = monotonic_index(5, 13, closed=closed) expected = monotonic_index(5, 11, closed=closed) result = index[::-1].intersection(other, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) result = other[::-1].intersection(index, sort=sort) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) tm.assert_index_equal(index.intersection(index, sort=sort), index) # GH 26225: nested intervals index = IntervalIndex.from_tuples([(1, 2), (1, 3), (1, 4), (0, 2)]) other = IntervalIndex.from_tuples([(1, 2), (1, 3)]) expected = IntervalIndex.from_tuples([(1, 2), (1, 3)]) result = index.intersection(other) tm.assert_index_equal(result, expected) # GH 26225 index = IntervalIndex.from_tuples([(0, 3), (0, 2)]) other = IntervalIndex.from_tuples([(0, 2), (1, 3)]) expected = IntervalIndex.from_tuples([(0, 2)]) result = index.intersection(other) tm.assert_index_equal(result, expected) # GH 26225: duplicate nan element index = IntervalIndex([np.nan, np.nan]) other = IntervalIndex([np.nan]) expected = IntervalIndex([np.nan]) result = index.intersection(other) tm.assert_index_equal(result, expected) def test_intersection_empty_result(self, closed, sort): index = monotonic_index(0, 11, closed=closed) # GH 19101: empty result, same dtype other = monotonic_index(300, 314, closed=closed) expected = empty_index(dtype="int64", closed=closed) result = index.intersection(other, sort=sort) tm.assert_index_equal(result, expected) # GH 19101: empty result, different numeric dtypes -> common dtype is float64 other = monotonic_index(300, 314, dtype="float64", closed=closed) result = index.intersection(other, sort=sort) expected = other[:0] tm.assert_index_equal(result, expected) other = monotonic_index(300, 314, dtype="uint64", closed=closed) result = index.intersection(other, sort=sort) tm.assert_index_equal(result, expected) def test_intersection_duplicates(self): # GH#38743 index = IntervalIndex.from_tuples([(1, 2), (1, 2), (2, 3), (3, 4)]) other = IntervalIndex.from_tuples([(1, 2), (2, 3)]) expected = IntervalIndex.from_tuples([(1, 2), (2, 3)]) result = index.intersection(other) tm.assert_index_equal(result, expected) def test_difference(self, closed, sort): index = IntervalIndex.from_arrays([1, 0, 3, 2], [1, 2, 3, 4], closed=closed) result = index.difference(index[:1], sort=sort) expected = index[1:] if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) # GH 19101: empty result, same dtype result = index.difference(index, sort=sort) expected = empty_index(dtype="int64", closed=closed) tm.assert_index_equal(result, expected) # GH 19101: empty result, different dtypes other = IntervalIndex.from_arrays( index.left.astype("float64"), index.right, closed=closed ) result = index.difference(other, sort=sort) tm.assert_index_equal(result, expected) def test_symmetric_difference(self, closed, sort): index = monotonic_index(0, 11, closed=closed) result = index[1:].symmetric_difference(index[:-1], sort=sort) expected = IntervalIndex([index[0], index[-1]]) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) # GH 19101: empty result, same dtype result = index.symmetric_difference(index, sort=sort) expected = empty_index(dtype="int64", closed=closed) if sort is None: tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) # GH 19101: empty result, different dtypes other = IntervalIndex.from_arrays( index.left.astype("float64"), index.right, closed=closed ) result = index.symmetric_difference(other, sort=sort) expected = empty_index(dtype="float64", closed=closed) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "op_name", ["union", "intersection", "difference", "symmetric_difference"] ) def test_set_incompatible_types(self, closed, op_name, sort): index = monotonic_index(0, 11, closed=closed) set_op = getattr(index, op_name) # TODO: standardize return type of non-union setops type(self vs other) # non-IntervalIndex if op_name == "difference": expected = index else: expected = getattr(index.astype("O"), op_name)(Index([1, 2, 3])) result = set_op(Index([1, 2, 3]), sort=sort) tm.assert_index_equal(result, expected) # mixed closed msg = ( "can only do set operations between two IntervalIndex objects " "that are closed on the same side and have compatible dtypes" ) for other_closed in {"right", "left", "both", "neither"} - {closed}: other = monotonic_index(0, 11, closed=other_closed) with pytest.raises(TypeError, match=msg): set_op(other, sort=sort) # GH 19016: incompatible dtypes other = interval_range(Timestamp("20180101"), periods=9, closed=closed) msg = ( "can only do set operations between two IntervalIndex objects " "that are closed on the same side and have compatible dtypes" ) with pytest.raises(TypeError, match=msg): set_op(other, sort=sort)
bsd-3-clause
jlegendary/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/table.py
69
16757
""" Place a table below the x-axis at location loc. The table consists of a grid of cells. The grid need not be rectangular and can have holes. Cells are added by specifying their row and column. For the purposes of positioning the cell at (0, 0) is assumed to be at the top left and the cell at (max_row, max_col) is assumed to be at bottom right. You can add additional cells outside this range to have convenient ways of positioning more interesting grids. Author : John Gill <[email protected]> Copyright : 2004 John Gill and John Hunter License : matplotlib license """ from __future__ import division import warnings import artist from artist import Artist from patches import Rectangle from cbook import is_string_like from text import Text from transforms import Bbox class Cell(Rectangle): """ A cell is a Rectangle with some associated text. """ PAD = 0.1 # padding between text and rectangle def __init__(self, xy, width, height, edgecolor='k', facecolor='w', fill=True, text='', loc=None, fontproperties=None ): # Call base Rectangle.__init__(self, xy, width=width, height=height, edgecolor=edgecolor, facecolor=facecolor, ) self.set_clip_on(False) # Create text object if loc is None: loc = 'right' self._loc = loc self._text = Text(x=xy[0], y=xy[1], text=text, fontproperties=fontproperties) self._text.set_clip_on(False) def set_transform(self, trans): Rectangle.set_transform(self, trans) # the text does not get the transform! def set_figure(self, fig): Rectangle.set_figure(self, fig) self._text.set_figure(fig) def get_text(self): 'Return the cell Text intance' return self._text def set_fontsize(self, size): self._text.set_fontsize(size) def get_fontsize(self): 'Return the cell fontsize' return self._text.get_fontsize() def auto_set_font_size(self, renderer): """ Shrink font size until text fits. """ fontsize = self.get_fontsize() required = self.get_required_width(renderer) while fontsize > 1 and required > self.get_width(): fontsize -= 1 self.set_fontsize(fontsize) required = self.get_required_width(renderer) return fontsize def draw(self, renderer): if not self.get_visible(): return # draw the rectangle Rectangle.draw(self, renderer) # position the text self._set_text_position(renderer) self._text.draw(renderer) def _set_text_position(self, renderer): """ Set text up so it draws in the right place. Currently support 'left', 'center' and 'right' """ bbox = self.get_window_extent(renderer) l, b, w, h = bbox.bounds # draw in center vertically self._text.set_verticalalignment('center') y = b + (h / 2.0) # now position horizontally if self._loc == 'center': self._text.set_horizontalalignment('center') x = l + (w / 2.0) elif self._loc == 'left': self._text.set_horizontalalignment('left') x = l + (w * self.PAD) else: self._text.set_horizontalalignment('right') x = l + (w * (1.0 - self.PAD)) self._text.set_position((x, y)) def get_text_bounds(self, renderer): """ Get text bounds in axes co-ordinates. """ bbox = self._text.get_window_extent(renderer) bboxa = bbox.inverse_transformed(self.get_data_transform()) return bboxa.bounds def get_required_width(self, renderer): """ Get width required for this cell. """ l,b,w,h = self.get_text_bounds(renderer) return w * (1.0 + (2.0 * self.PAD)) def set_text_props(self, **kwargs): 'update the text properties with kwargs' self._text.update(kwargs) class Table(Artist): """ Create a table of cells. Table can have (optional) row and column headers. Each entry in the table can be either text or patches. Column widths and row heights for the table can be specifified. Return value is a sequence of text, line and patch instances that make up the table """ codes = {'best' : 0, 'upper right' : 1, # default 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'center left' : 5, 'center right' : 6, 'lower center' : 7, 'upper center' : 8, 'center' : 9, 'top right' : 10, 'top left' : 11, 'bottom left' : 12, 'bottom right' : 13, 'right' : 14, 'left' : 15, 'top' : 16, 'bottom' : 17, } FONTSIZE = 10 AXESPAD = 0.02 # the border between the axes and table edge def __init__(self, ax, loc=None, bbox=None): Artist.__init__(self) if is_string_like(loc) and loc not in self.codes: warnings.warn('Unrecognized location %s. Falling back on bottom; valid locations are\n%s\t' %(loc, '\n\t'.join(self.codes.keys()))) loc = 'bottom' if is_string_like(loc): loc = self.codes.get(loc, 1) self.set_figure(ax.figure) self._axes = ax self._loc = loc self._bbox = bbox # use axes coords self.set_transform(ax.transAxes) self._texts = [] self._cells = {} self._autoRows = [] self._autoColumns = [] self._autoFontsize = True self._cachedRenderer = None def add_cell(self, row, col, *args, **kwargs): """ Add a cell to the table. """ xy = (0,0) cell = Cell(xy, *args, **kwargs) cell.set_figure(self.figure) cell.set_transform(self.get_transform()) cell.set_clip_on(False) self._cells[(row, col)] = cell def _approx_text_height(self): return self.FONTSIZE/72.0*self.figure.dpi/self._axes.bbox.height * 1.2 def draw(self, renderer): # Need a renderer to do hit tests on mouseevent; assume the last one will do if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') self._cachedRenderer = renderer if not self.get_visible(): return renderer.open_group('table') self._update_positions(renderer) keys = self._cells.keys() keys.sort() for key in keys: self._cells[key].draw(renderer) #for c in self._cells.itervalues(): # c.draw(renderer) renderer.close_group('table') def _get_grid_bbox(self, renderer): """Get a bbox, in axes co-ordinates for the cells. Only include those in the range (0,0) to (maxRow, maxCol)""" boxes = [self._cells[pos].get_window_extent(renderer) for pos in self._cells.keys() if pos[0] >= 0 and pos[1] >= 0] bbox = Bbox.union(boxes) return bbox.inverse_transformed(self.get_transform()) def contains(self,mouseevent): """Test whether the mouse event occurred in the table. Returns T/F, {} """ if callable(self._contains): return self._contains(self,mouseevent) # TODO: Return index of the cell containing the cursor so that the user # doesn't have to bind to each one individually. if self._cachedRenderer is not None: boxes = [self._cells[pos].get_window_extent(self._cachedRenderer) for pos in self._cells.keys() if pos[0] >= 0 and pos[1] >= 0] bbox = bbox_all(boxes) return bbox.contains(mouseevent.x,mouseevent.y),{} else: return False,{} def get_children(self): 'Return the Artists contained by the table' return self._cells.values() get_child_artists = get_children # backward compatibility def get_window_extent(self, renderer): 'Return the bounding box of the table in window coords' boxes = [c.get_window_extent(renderer) for c in self._cells] return bbox_all(boxes) def _do_cell_alignment(self): """ Calculate row heights and column widths. Position cells accordingly. """ # Calculate row/column widths widths = {} heights = {} for (row, col), cell in self._cells.iteritems(): height = heights.setdefault(row, 0.0) heights[row] = max(height, cell.get_height()) width = widths.setdefault(col, 0.0) widths[col] = max(width, cell.get_width()) # work out left position for each column xpos = 0 lefts = {} cols = widths.keys() cols.sort() for col in cols: lefts[col] = xpos xpos += widths[col] ypos = 0 bottoms = {} rows = heights.keys() rows.sort() rows.reverse() for row in rows: bottoms[row] = ypos ypos += heights[row] # set cell positions for (row, col), cell in self._cells.iteritems(): cell.set_x(lefts[col]) cell.set_y(bottoms[row]) def auto_set_column_width(self, col): self._autoColumns.append(col) def _auto_set_column_width(self, col, renderer): """ Automagically set width for column. """ cells = [key for key in self._cells if key[1] == col] # find max width width = 0 for cell in cells: c = self._cells[cell] width = max(c.get_required_width(renderer), width) # Now set the widths for cell in cells: self._cells[cell].set_width(width) def auto_set_font_size(self, value=True): """ Automatically set font size. """ self._autoFontsize = value def _auto_set_font_size(self, renderer): if len(self._cells) == 0: return fontsize = self._cells.values()[0].get_fontsize() cells = [] for key, cell in self._cells.iteritems(): # ignore auto-sized columns if key[1] in self._autoColumns: continue size = cell.auto_set_font_size(renderer) fontsize = min(fontsize, size) cells.append(cell) # now set all fontsizes equal for cell in self._cells.itervalues(): cell.set_fontsize(fontsize) def scale(self, xscale, yscale): """ Scale column widths by xscale and row heights by yscale. """ for c in self._cells.itervalues(): c.set_width(c.get_width() * xscale) c.set_height(c.get_height() * yscale) def set_fontsize(self, size): """ Set the fontsize of the cell text ACCEPTS: a float in points """ for cell in self._cells.itervalues(): cell.set_fontsize(size) def _offset(self, ox, oy): 'Move all the artists by ox,oy (axes coords)' for c in self._cells.itervalues(): x, y = c.get_x(), c.get_y() c.set_x(x+ox) c.set_y(y+oy) def _update_positions(self, renderer): # called from renderer to allow more precise estimates of # widths and heights with get_window_extent # Do any auto width setting for col in self._autoColumns: self._auto_set_column_width(col, renderer) if self._autoFontsize: self._auto_set_font_size(renderer) # Align all the cells self._do_cell_alignment() bbox = self._get_grid_bbox(renderer) l,b,w,h = bbox.bounds if self._bbox is not None: # Position according to bbox rl, rb, rw, rh = self._bbox self.scale(rw/w, rh/h) ox = rl - l oy = rb - b self._do_cell_alignment() else: # Position using loc (BEST, UR, UL, LL, LR, CL, CR, LC, UC, C, TR, TL, BL, BR, R, L, T, B) = range(len(self.codes)) # defaults for center ox = (0.5-w/2)-l oy = (0.5-h/2)-b if self._loc in (UL, LL, CL): # left ox = self.AXESPAD - l if self._loc in (BEST, UR, LR, R, CR): # right ox = 1 - (l + w + self.AXESPAD) if self._loc in (BEST, UR, UL, UC): # upper oy = 1 - (b + h + self.AXESPAD) if self._loc in (LL, LR, LC): # lower oy = self.AXESPAD - b if self._loc in (LC, UC, C): # center x ox = (0.5-w/2)-l if self._loc in (CL, CR, C): # center y oy = (0.5-h/2)-b if self._loc in (TL, BL, L): # out left ox = - (l + w) if self._loc in (TR, BR, R): # out right ox = 1.0 - l if self._loc in (TR, TL, T): # out top oy = 1.0 - b if self._loc in (BL, BR, B): # out bottom oy = - (b + h) self._offset(ox, oy) def get_celld(self): 'return a dict of cells in the table' return self._cells def table(ax, cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): """ TABLE(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None) Factory function to generate a Table instance. Thanks to John Gill for providing the class and table. """ # Check we have some cellText if cellText is None: # assume just colours are needed rows = len(cellColours) cols = len(cellColours[0]) cellText = [[''] * rows] * cols rows = len(cellText) cols = len(cellText[0]) for row in cellText: assert len(row) == cols if cellColours is not None: assert len(cellColours) == rows for row in cellColours: assert len(row) == cols else: cellColours = ['w' * cols] * rows # Set colwidths if not given if colWidths is None: colWidths = [1.0/cols] * cols # Check row and column labels rowLabelWidth = 0 if rowLabels is None: if rowColours is not None: rowLabels = [''] * cols rowLabelWidth = colWidths[0] elif rowColours is None: rowColours = 'w' * rows if rowLabels is not None: assert len(rowLabels) == rows offset = 0 if colLabels is None: if colColours is not None: colLabels = [''] * rows offset = 1 elif colColours is None: colColours = 'w' * cols offset = 1 if rowLabels is not None: assert len(rowLabels) == rows # Set up cell colours if not given if cellColours is None: cellColours = ['w' * cols] * rows # Now create the table table = Table(ax, loc, bbox) height = table._approx_text_height() # Add the cells for row in xrange(rows): for col in xrange(cols): table.add_cell(row+offset, col, width=colWidths[col], height=height, text=cellText[row][col], facecolor=cellColours[row][col], loc=cellLoc) # Do column labels if colLabels is not None: for col in xrange(cols): table.add_cell(0, col, width=colWidths[col], height=height, text=colLabels[col], facecolor=colColours[col], loc=colLoc) # Do row labels if rowLabels is not None: for row in xrange(rows): table.add_cell(row+offset, -1, width=rowLabelWidth or 1e-15, height=height, text=rowLabels[row], facecolor=rowColours[row], loc=rowLoc) if rowLabelWidth == 0: table.auto_set_column_width(-1) ax.add_table(table) return table artist.kwdocd['Table'] = artist.kwdoc(Table)
gpl-3.0
phoebe-project/phoebe2-docs
2.3/examples/extinction_eclipse_depth_v_teff.py
2
6679
#!/usr/bin/env python # coding: utf-8 # Extinction: Eclipse Depth Difference as Function of Temperature # ============================ # # In this example, we'll reproduce Figure 3 in the extinction release paper ([Jones et al. 2020](http://phoebe-project.org/publications/2020Jones+)). # # **NOTE**: this script takes a long time to run. # # <img src="jones+20_fig3.png" alt="Figure 3" width="800px"/> # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.3 installed (uncomment this line if running in an online notebook session such as colab). # In[ ]: #!pip install -I "phoebe>=2.3,<2.4" # As always, let's do imports and initialize a logger and a new bundle. # In[1]: import matplotlib matplotlib.rcParams['text.usetex'] = True matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' from matplotlib import gridspec # In[2]: get_ipython().run_line_magic('matplotlib', 'inline') # In[3]: from astropy.table import Table # In[4]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger('error') b = phoebe.default_binary() # First we'll define the system parameters # In[5]: b['period@orbit']=10*u.d b['teff@secondary']=5780.*u.K b['requiv@secondary']=1.0*u.solRad b.flip_constraint('mass@primary', solve_for='sma@binary') b.flip_constraint('mass@secondary', solve_for='q') # And then create three light curve datasets at the same times, but in different passbands # In[6]: times = phoebe.linspace(0, 10, 301) b.add_dataset('lc', times=times, dataset='B', passband="Johnson:B") b.add_dataset('lc', times=times, dataset='R', passband="Cousins:R") # Now we'll set some atmosphere and limb-darkening options # In[7]: b.set_value_all('gravb_bol', 0.0) b.set_value_all('ld_mode', 'manual') b.set_value_all('ld_func', 'linear') b.set_value_all('ld_coeffs', [0.0]) # And flip the extinction constraint so we can provide E(B-V). # In[9]: b.flip_constraint('ebv', solve_for='Av') # In[10]: masses=np.array([ 0.6 , 0.7 , 0.8 , 0.9 , 1. , 1.1 , 1.2 , 1.3 , 1.4 , 1.5 , 1.6 , 1.7 , 1.8 , 1.9 , 1.95, 2. , 2.1 , 2.2 , 2.3 , 2.5 , 3. , 3.5 , 4. , 4.5 , 5. , 6. , 7. , 8. , 10. , 12. , 15. , 20. ]) temps=np.array([ 4285., 4471., 4828., 5242., 5616., 5942., 6237., 6508., 6796., 7121., 7543., 7968., 8377., 8759., 8947., 9130., 9538., 9883., 10155., 10801., 12251., 13598., 14852., 16151., 17092., 19199., 21013., 22526., 25438., 27861., 30860., 34753.]) radii=np.array([0.51, 0.63, 0.72, 0.80, 0.90, 1.01, 1.13, 1.26, 1.36, 1.44, 1.48, 1.51, 1.54, 1.57, 1.59, 1.61, 1.65, 1.69, 1.71, 1.79, 1.97, 2.14, 2.30, 2.48, 2.59, 2.90, 3.17, 3.39, 3.87, 4.29, 4.85, 5.69]) t=Table(names=('Mass','Tdiff','B1','B2','R1','R2'), dtype=('f4', 'f4', 'f8', 'f8', 'f8', 'f8')) # In[11]: def binmodel(teff,requiv,mass): b.set_value('teff', component='primary', value=teff*u.K) b.set_value('requiv', component='primary', value=requiv*u.solRad) b.set_value('mass', component='primary', value=mass*u.solMass) b.set_value('mass', component='secondary', value=1.0*u.solMass) b.set_value('ebv', value=0.0) b.run_compute(distortion_method='rotstar', irrad_method='none', model='noext', overwrite=True) b.set_value('ebv', value=1.0) b.run_compute(distortion_method='rotstar', irrad_method='none', model='ext', overwrite=True) Bextmags=-2.5*np.log10(b['value@fluxes@B@ext@model']) Bnoextmags=-2.5*np.log10(b['value@fluxes@B@noext@model']) Bdiff=(Bextmags-Bextmags.min())-(Bnoextmags-Bnoextmags.min()) Rextmags=-2.5*np.log10(b['value@fluxes@R@ext@model']) Rnoextmags=-2.5*np.log10(b['value@fluxes@R@noext@model']) Rdiff=(Rextmags-Rextmags.min())-(Rnoextmags-Rnoextmags.min()) tdiff=teff-5780 t.add_row((mass, tdiff, Bdiff[0],Bdiff[150],Rdiff[0],Rdiff[150])) # In[12]: def binmodel_teff(teff): b.set_value('teff', component='primary', value=teff*u.K) b.set_value('ebv', value=0.0) b.run_compute(distortion_method='rotstar', irrad_method='none', model='noext', overwrite=True) b.set_value('ebv', value=1.0) b.run_compute(distortion_method='rotstar', irrad_method='none', model='ext', overwrite=True) Bextmags=-2.5*np.log10(b['value@fluxes@B@ext@model']) Bnoextmags=-2.5*np.log10(b['value@fluxes@B@noext@model']) Bdiff=(Bextmags-Bextmags.min())-(Bnoextmags-Bnoextmags.min()) Rextmags=-2.5*np.log10(b['value@fluxes@R@ext@model']) Rnoextmags=-2.5*np.log10(b['value@fluxes@R@noext@model']) Rdiff=(Rextmags-Rextmags.min())-(Rnoextmags-Rnoextmags.min()) tdiff=teff-5780 t_teff.add_row((tdiff, Bdiff[0],Bdiff[150],Rdiff[0],Rdiff[150])) # In[13]: # NOTE: this loop takes a long time to run for i in range(0,len(masses)): binmodel(temps[i], radii[i], masses[i]) #t.write("Extinction_G2V_ZAMS.dat", format='ascii', overwrite=True) # In[15]: #t=Table.read("Extinction_G2V_ZAMS.dat", format='ascii') plt.clf() plt.plot(t['Tdiff'],t['B1'],color="b",ls="-", label="G2V eclipsed") plt.plot(t['Tdiff'],t['B2'],color="b",ls="--", label="Secondary eclipsed") plt.plot(t['Tdiff'],t['R1'],color="r",ls="-", label="") plt.plot(t['Tdiff'],t['R2'],color="r",ls="--", label="") plt.ylabel(r'$\Delta m$ ') plt.xlabel(r'$T_\mathrm{secondary} - T_\mathrm{G2V}$') plt.legend() plt.xlim([-1450,25000]) # In[14]: t_teff=Table(names=('Tdiff','B1','B2','R1','R2'), dtype=('f4', 'f8', 'f8', 'f8', 'f8')) b.set_value('requiv', component='primary', value=1.0*u.solRad) b.set_value('mass', component='primary', value=1.0*u.solMass) b.set_value('mass', component='secondary', value=1.0*u.solMass) # NOTE: this loop takes a long time to run for i in range(0,len(temps)): binmodel_teff(temps[i]) #t_teff.write("Extinction_Solar_exceptTeff_test.dat", format='ascii', overwrite=True) # In[16]: #t_teff=Table.read("Extinction_Solar_exceptTeff_test.dat", format='ascii') plt.clf() plt.plot(t_teff['Tdiff'],t_teff['B1'],color="b",ls="-", label="G2V eclipsed") plt.plot(t_teff['Tdiff'],t_teff['B2'],color="b",ls="--", label="Secondary eclipsed") plt.plot(t_teff['Tdiff'],t_teff['R1'],color="r",ls="-", label="") plt.plot(t_teff['Tdiff'],t_teff['R2'],color="r",ls="--", label="") plt.ylabel(r'$\Delta m$ ') plt.xlabel(r'$T_\mathrm{secondary} - T_\mathrm{G2V}$') plt.legend() plt.xlim([-1450,25000]) # In[ ]:
gpl-3.0
PanDAWMS/panda-server
pandaserver/dataservice/DDMHandler.py
1
1988
''' master hander for DDM ''' import re import threading from pandaserver.dataservice.Finisher import Finisher from pandaserver.dataservice.Activator import Activator from pandacommon.pandalogger.PandaLogger import PandaLogger from pandacommon.pandalogger.LogWrapper import LogWrapper # logger _logger = PandaLogger().getLogger('DDMHandler') class DDMHandler (threading.Thread): # constructor def __init__(self,taskBuffer,vuid,site=None,dataset=None,scope=None): threading.Thread.__init__(self) self.vuid = vuid self.taskBuffer = taskBuffer self.site = site self.scope = scope self.dataset = dataset # main def run(self): # get logger tmpLog = LogWrapper(_logger,'<vuid={0} site={1} name={2}>'.format(self.vuid, self.site, self.dataset)) # query dataset tmpLog.debug("start") if self.vuid is not None: dataset = self.taskBuffer.queryDatasetWithMap({'vuid':self.vuid}) else: dataset = self.taskBuffer.queryDatasetWithMap({'name':self.dataset}) if dataset is None: tmpLog.error("Not found") tmpLog.debug("end") return tmpLog.debug("type:%s name:%s" % (dataset.type,dataset.name)) if dataset.type == 'dispatch': # activate jobs in jobsDefined Activator(self.taskBuffer,dataset).start() if dataset.type == 'output': if dataset.name is not None and re.search('^panda\..*_zip$',dataset.name) is not None: # start unmerge jobs Activator(self.taskBuffer,dataset,enforce=True).start() else: # finish transferring jobs Finisher(self.taskBuffer,dataset,site=self.site).start() tmpLog.debug("end")
apache-2.0
scls19fr/morse-talk
morse_talk/plot.py
1
1932
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A Morse Binary plot Copyright (C) 2015 by Sébastien Celles <[email protected]> All rights reserved. """ import matplotlib.pyplot as plt from morse_talk.encoding import _encode_binary def _create_ax(ax): """ Create a Matplotlib Axe from ax if ax is None a new Matplotlib figure is create and also an ax else ax is returned """ if ax is None: _, axs = plt.subplots(1, 1) return axs else: return ax def _create_x_y(l, duration=1): """ Create 2 lists x: time (as unit of dot (dit) y: bits from a list of bit >>> l = [1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1] >>> x, y = _create_x_y(l) >>> x [-1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28] >>> y [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0] """ l = [0] + l + [0] y = [] x = [] for i, bit in enumerate(l): y.append(bit) y.append(bit) x.append((i - 1) * duration) x.append(i * duration) return x, y def plot(message, duration=1, ax = None): """ Plot a message Returns: ax a Matplotlib Axe """ lst_bin = _encode_binary(message) x, y = _create_x_y(lst_bin, duration) ax = _create_ax(ax) ax.plot(x, y, linewidth=2.0) delta_y = 0.1 ax.set_ylim(-delta_y, 1 + delta_y) ax.set_yticks([0, 1]) delta_x = 0.5 * duration ax.set_xlim(-delta_x, len(lst_bin) * duration + delta_x) return ax def main(): import doctest doctest.testmod() if __name__ == '__main__': main()
gpl-2.0
ptrendx/mxnet
example/rcnn/symdata/loader.py
11
8759
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx import numpy as np from symdata.anchor import AnchorGenerator, AnchorSampler from symdata.image import imdecode, resize, transform, get_image, tensor_vstack def load_test(filename, short, max_size, mean, std): # read and transform image im_orig = imdecode(filename) im, im_scale = resize(im_orig, short, max_size) height, width = im.shape[:2] im_info = mx.nd.array([height, width, im_scale]) # transform into tensor and normalize im_tensor = transform(im, mean, std) # for 1-batch inference purpose, cannot use batchify (or nd.stack) to expand dims im_tensor = mx.nd.array(im_tensor).expand_dims(0) im_info = mx.nd.array(im_info).expand_dims(0) # transform cv2 BRG image to RGB for matplotlib im_orig = im_orig[:, :, (2, 1, 0)] return im_tensor, im_info, im_orig def generate_batch(im_tensor, im_info): """return batch""" data = [im_tensor, im_info] data_shapes = [('data', im_tensor.shape), ('im_info', im_info.shape)] data_batch = mx.io.DataBatch(data=data, label=None, provide_data=data_shapes, provide_label=None) return data_batch class TestLoader(mx.io.DataIter): def __init__(self, roidb, batch_size, short, max_size, mean, std): super(TestLoader, self).__init__() # save parameters as properties self._roidb = roidb self._batch_size = batch_size self._short = short self._max_size = max_size self._mean = mean self._std = std # infer properties from roidb self._size = len(self._roidb) self._index = np.arange(self._size) # decide data and label names (only for training) self._data_name = ['data', 'im_info'] self._label_name = None # status variable self._cur = 0 self._data = None self._label = None # get first batch to fill in provide_data and provide_label self.next() self.reset() @property def provide_data(self): return [(k, v.shape) for k, v in zip(self._data_name, self._data)] @property def provide_label(self): return None def reset(self): self._cur = 0 def iter_next(self): return self._cur + self._batch_size <= self._size def next(self): if self.iter_next(): data_batch = mx.io.DataBatch(data=self.getdata(), label=self.getlabel(), pad=self.getpad(), index=self.getindex(), provide_data=self.provide_data, provide_label=self.provide_label) self._cur += self._batch_size return data_batch else: raise StopIteration def getdata(self): indices = self.getindex() im_tensor, im_info = [], [] for index in indices: roi_rec = self._roidb[index] b_im_tensor, b_im_info, _ = get_image(roi_rec, self._short, self._max_size, self._mean, self._std) im_tensor.append(b_im_tensor) im_info.append(b_im_info) im_tensor = mx.nd.array(tensor_vstack(im_tensor, pad=0)) im_info = mx.nd.array(tensor_vstack(im_info, pad=0)) self._data = im_tensor, im_info return self._data def getlabel(self): return None def getindex(self): cur_from = self._cur cur_to = min(cur_from + self._batch_size, self._size) return np.arange(cur_from, cur_to) def getpad(self): return max(self._cur + self.batch_size - self._size, 0) class AnchorLoader(mx.io.DataIter): def __init__(self, roidb, batch_size, short, max_size, mean, std, feat_sym, anchor_generator: AnchorGenerator, anchor_sampler: AnchorSampler, shuffle=False): super(AnchorLoader, self).__init__() # save parameters as properties self._roidb = roidb self._batch_size = batch_size self._short = short self._max_size = max_size self._mean = mean self._std = std self._feat_sym = feat_sym self._ag = anchor_generator self._as = anchor_sampler self._shuffle = shuffle # infer properties from roidb self._size = len(roidb) self._index = np.arange(self._size) # decide data and label names self._data_name = ['data', 'im_info', 'gt_boxes'] self._label_name = ['label', 'bbox_target', 'bbox_weight'] # status variable self._cur = 0 self._data = None self._label = None # get first batch to fill in provide_data and provide_label self.next() self.reset() @property def provide_data(self): return [(k, v.shape) for k, v in zip(self._data_name, self._data)] @property def provide_label(self): return [(k, v.shape) for k, v in zip(self._label_name, self._label)] def reset(self): self._cur = 0 if self._shuffle: np.random.shuffle(self._index) def iter_next(self): return self._cur + self._batch_size <= self._size def next(self): if self.iter_next(): data_batch = mx.io.DataBatch(data=self.getdata(), label=self.getlabel(), pad=self.getpad(), index=self.getindex(), provide_data=self.provide_data, provide_label=self.provide_label) self._cur += self._batch_size return data_batch else: raise StopIteration def getdata(self): indices = self.getindex() im_tensor, im_info, gt_boxes = [], [], [] for index in indices: roi_rec = self._roidb[index] b_im_tensor, b_im_info, b_gt_boxes = get_image(roi_rec, self._short, self._max_size, self._mean, self._std) im_tensor.append(b_im_tensor) im_info.append(b_im_info) gt_boxes.append(b_gt_boxes) im_tensor = mx.nd.array(tensor_vstack(im_tensor, pad=0)) im_info = mx.nd.array(tensor_vstack(im_info, pad=0)) gt_boxes = mx.nd.array(tensor_vstack(gt_boxes, pad=-1)) self._data = im_tensor, im_info, gt_boxes return self._data def getlabel(self): im_tensor, im_info, gt_boxes = self._data # all stacked image share same anchors _, out_shape, _ = self._feat_sym.infer_shape(data=im_tensor.shape) feat_height, feat_width = out_shape[0][-2:] anchors = self._ag.generate(feat_height, feat_width) # assign anchor according to their real size encoded in im_info label, bbox_target, bbox_weight = [], [], [] for batch_ind in range(im_info.shape[0]): b_im_info = im_info[batch_ind].asnumpy() b_gt_boxes = gt_boxes[batch_ind].asnumpy() b_im_height, b_im_width = b_im_info[:2] b_label, b_bbox_target, b_bbox_weight = self._as.assign(anchors, b_gt_boxes, b_im_height, b_im_width) b_label = b_label.reshape((feat_height, feat_width, -1)).transpose((2, 0, 1)).flatten() b_bbox_target = b_bbox_target.reshape((feat_height, feat_width, -1)).transpose((2, 0, 1)) b_bbox_weight = b_bbox_weight.reshape((feat_height, feat_width, -1)).transpose((2, 0, 1)) label.append(b_label) bbox_target.append(b_bbox_target) bbox_weight.append(b_bbox_weight) label = mx.nd.array(tensor_vstack(label, pad=-1)) bbox_target = mx.nd.array(tensor_vstack(bbox_target, pad=0)) bbox_weight = mx.nd.array(tensor_vstack(bbox_weight, pad=0)) self._label = label, bbox_target, bbox_weight return self._label def getindex(self): cur_from = self._cur cur_to = min(cur_from + self._batch_size, self._size) return np.arange(cur_from, cur_to) def getpad(self): return max(self._cur + self.batch_size - self._size, 0)
apache-2.0
dsquareindia/scikit-learn
examples/model_selection/plot_precision_recall.py
23
6873
""" ================ Precision-Recall ================ Example of Precision-Recall metric to evaluate classifier output quality. In information retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are returned. A high area under the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high recall). A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when compared to the training labels. A system with high precision but low recall is just the opposite, returning very few results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high precision and high recall will return many results, with all results labeled correctly. Precision (:math:`P`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false positives (:math:`F_p`). :math:`P = \\frac{T_p}{T_p+F_p}` Recall (:math:`R`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false negatives (:math:`F_n`). :math:`R = \\frac{T_p}{T_p + F_n}` These quantities are also related to the (:math:`F_1`) score, which is defined as the harmonic mean of precision and recall. :math:`F1 = 2\\frac{P \\times R}{P+R}` It is important to note that the precision may not decrease with recall. The definition of precision (:math:`\\frac{T_p}{T_p + F_p}`) shows that lowering the threshold of a classifier may increase the denominator, by increasing the number of results returned. If the threshold was previously set too high, the new results may all be true positives, which will increase precision. If the previous threshold was about right or too low, further lowering the threshold will introduce false positives, decreasing precision. Recall is defined as :math:`\\frac{T_p}{T_p+F_n}`, where :math:`T_p+F_n` does not depend on the classifier threshold. This means that lowering the classifier threshold may increase recall, by increasing the number of true positive results. It is also possible that lowering the threshold may leave recall unchanged, while the precision fluctuates. The relationship between recall and precision can be observed in the stairstep area of the plot - at the edges of these steps a small change in the threshold considerably reduces precision, with only a minor gain in recall. See the corner at recall = .59, precision = .8 for an example of this phenomenon. Precision-recall curves are typically used in binary classification to study the output of a classifier. In order to extend Precision-recall curve and average precision to multi-class or multi-label classification, it is necessary to binarize the output. One curve can be drawn per label, but one can also draw a precision-recall curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). .. note:: See also :func:`sklearn.metrics.average_precision_score`, :func:`sklearn.metrics.recall_score`, :func:`sklearn.metrics.precision_score`, :func:`sklearn.metrics.f1_score` """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) lw = 2 # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # Split into training and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=random_state) # Run classifier classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute Precision-Recall and plot curve precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:, i]) average_precision[i] = average_precision_score(y_test[:, i], y_score[:, i]) # Compute micro-average ROC curve and ROC area precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(), y_score.ravel()) average_precision["micro"] = average_precision_score(y_test, y_score, average="micro") # Plot Precision-Recall curve plt.clf() plt.plot(recall[0], precision[0], lw=lw, color='navy', label='Precision-Recall curve') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('Precision-Recall example: AUC={0:0.2f}'.format(average_precision[0])) plt.legend(loc="lower left") plt.show() # Plot Precision-Recall curve for each class and iso-f1 curves plt.clf() f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=lw) lines.append(l) labels.append('micro-average Precision-recall curve (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=lw) lines.append(l) labels.append('Precision-recall curve of class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) fig = plt.gcf() fig.set_size_inches(7, 7) fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.figlegend(lines, labels, loc='lower center') plt.show()
bsd-3-clause
kperkins411/morphing_faces
visualize.py
3
2399
#!/usr/bin/env python """ Interactive face generator Dependends on: * numpy 1.7 * matplotlib """ from morpher import Morpher from matplotlib import pyplot if __name__ == "__main__": # Initialize face generator morpher = Morpher() # Make sure I/O doesn't hang when displaying the image pyplot.ion() # Build visualization window fig = pyplot.figure(figsize=(1, 1), dpi=300) im = pyplot.imshow(X=morpher.generate_face(), interpolation='nearest', cmap='gray') pyplot.axis('off') def onmove(event): width, height = fig.canvas.get_width_height() x = 2 * event.x / float(width) - 1 y = 2 * event.y / float(height) - 1 morpher.set_coordinates(x, y) im.set_array(morpher.generate_face()) pyplot.draw() def onclick(event): morpher.toggle_freeze() fig.canvas.mpl_connect('motion_notify_event', onmove) fig.canvas.mpl_connect('button_press_event', onclick) pyplot.show() # Program loop quit = False help_message = ( "\n" + "Move your mouse over the image to make it morph, click it to\n" + "freeze / unfreeze the image.\n" + "\n" + "COMMANDS:\n" + " h Display this help message\n" + " q Quit the program\n" + " r Randomize face\n" + " d D1 D2 Select dimensions D1 and D2\n" ) print help_message while not quit: command_args = raw_input('Type a command: ').strip().split(" ") if command_args[0] == 'h': print help_message elif command_args[0] == 'q': quit = True elif command_args[0] == 'r': morpher.shuffle() im.set_array(morpher.generate_face()) pyplot.draw() elif command_args[0] == 'd': if len(command_args) < 3: print" ERROR: need two dimensions to select" else: try: arg0 = int(command_args[1]) arg1 = int(command_args[2]) morpher.select_dimensions(arg0, arg1) except ValueError: print " ERROR: Dimensions must be integers in [0, 28]" except KeyError: print " ERROR: Dimensions must be integers in [0, 28]"
gpl-2.0
mhue/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
12
10796
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
CartoDB/crankshaft
release/python/0.8.2/crankshaft/test/test_clustering_kmeans.py
6
2722
import unittest import numpy as np from helper import fixture_file from crankshaft.clustering import Kmeans from crankshaft.analysis_data_provider import AnalysisDataProvider import crankshaft.clustering as cc from crankshaft import random_seeds import json from collections import OrderedDict class FakeDataProvider(AnalysisDataProvider): def __init__(self, mocked_result): self.mocked_result = mocked_result def get_spatial_kmeans(self, query): return self.mocked_result def get_nonspatial_kmeans(self, query): return self.mocked_result class KMeansTest(unittest.TestCase): """Testing class for k-means spatial""" def setUp(self): self.cluster_data = json.loads( open(fixture_file('kmeans.json')).read()) self.params = {"subquery": "select * from table", "no_clusters": "10"} def test_kmeans(self): """ """ data = [{'xs': d['xs'], 'ys': d['ys'], 'ids': d['ids']} for d in self.cluster_data] random_seeds.set_random_seeds(1234) kmeans = Kmeans(FakeDataProvider(data)) clusters = kmeans.spatial('subquery', 2) labels = [a[1] for a in clusters] c1 = [a for a in clusters if a[1] == 0] c2 = [a for a in clusters if a[1] == 1] self.assertEqual(len(np.unique(labels)), 2) self.assertEqual(len(c1), 20) self.assertEqual(len(c2), 20) class KMeansNonspatialTest(unittest.TestCase): """Testing class for k-means non-spatial""" def setUp(self): self.params = {"subquery": "SELECT * FROM TABLE", "n_clusters": 5} def test_kmeans_nonspatial(self): """ test for k-means non-spatial """ # data from: # http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn-cluster-kmeans data_raw = [OrderedDict([("arr_col1", [1, 1, 1, 4, 4, 4]), ("arr_col2", [2, 4, 0, 2, 4, 0]), ("rowid", [1, 2, 3, 4, 5, 6])])] random_seeds.set_random_seeds(1234) kmeans = Kmeans(FakeDataProvider(data_raw)) clusters = kmeans.nonspatial('subquery', ['col1', 'col2'], 2) cl1 = clusters[0][0] cl2 = clusters[3][0] for idx, val in enumerate(clusters): if idx < 3: self.assertEqual(val[0], cl1) else: self.assertEqual(val[0], cl2) # raises exception for no data with self.assertRaises(Exception): kmeans = Kmeans(FakeDataProvider([])) kmeans.nonspatial('subquery', ['col1', 'col2'], 2)
bsd-3-clause
pmorissette/bt
tests/test_core.py
1
94648
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy from bt.core import FixedIncomeStrategy, HedgeSecurity, FixedIncomeSecurity from bt.core import CouponPayingSecurity, CouponPayingHedgeSecurity from bt.core import is_zero import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree1(): # Create a regular strategy c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c1 assert p['c1'] != c2 c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root # Create a new parent strategy with a child sub-strategy m = Node('m', children=[p, c1]) p = m['p'] mc1 = m['c1'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 2 assert 'p' in m.children assert 'c1' in m.children assert mc1 != c1 assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent assert m == p.root assert m == c1.root assert m == c2.root # Add a new node into the strategy c0 = Node('c0', parent=p) c0 = p['c0'] assert 'c0' in p.children assert p == c0.parent assert m == c0.root assert len(p.children) == 3 # Add a new sub-strategy into the parent strategy p2 = Node( 'p2', children = [c0, c1], parent=m ) p2 = m['p2'] c0 = p2['c0'] c1 = p2['c1'] assert 'p2' in m.children assert p2.parent == m assert len(p2.children) == 2 assert 'c0' in p2.children assert 'c1' in p2.children assert c0 != p['c0'] assert c1 != p['c1'] assert p2 == c0.parent assert p2 == c1.parent assert m == p2.root assert m == c0.root assert m == c1.root def test_node_tree2(): # Just like test_node_tree1, but using the dictionary constructor c = Node('template') p = Node('p', children={'c1':c, 'c2':c, 'c3':'', 'c4':''}) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c assert p['c1'] != c c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert c1.name == 'c1' assert c2.name == 'c2' assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root def test_node_tree3(): c1 = Node('c1') c2 = Node('c1') # Same name! raised = False try: p = Node('p', children=[c1, c2, 'c3', 'c4']) except ValueError: raised = True assert raised raised = False try: p = Node('p', children=['c1', 'c1']) except ValueError: raised = True assert raised c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) raised = False try: Node('c1', parent = p ) except ValueError: raised = True assert raised # This does not raise, as it's just providing an implementation of 'c3', # which had been declared earlier c3 = Node('c3', parent = p ) assert 'c3' in p.children def test_integer_positions(): c1 = Node('c1') c2 = Node('c2') c1.integer_positions = False p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert p.integer_positions assert c1.integer_positions assert c2.integer_positions p.use_integer_positions(False) assert not p.integer_positions assert not c1.integer_positions assert not c2.integer_positions c3 = Node('c3', parent=p) c3 = p['c3'] assert not c3.integer_positions p2 = Node( 'p2', children = [p] ) p = p2['p'] c1 = p['c1'] c2 = p['c2'] assert p2.integer_positions assert p.integer_positions assert c1.integer_positions assert c2.integer_positions def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 s.update(dts[0]) assert s.flows[ dts[0] ] == 1000 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert c2.price == 95 i = 2 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.loc[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.loc[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.loc[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert s.price == 100 s.adjust(1000) assert s.price == 100 assert s.value == 1000 assert s._value == 1000 c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.position == 5 assert c1.value == 525 assert c1.weight == 525.0 / 1025 assert s.capital == 1000 - 500 assert s.value == 1025 assert np.allclose(s.price, 102.5) def test_strategybase_universe(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 def test_strategybase_allocate(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 def test_strategybase_lazy(): # A mix of test_strategybase_universe and test_strategybase_allocate # to make sure that assets with lazy_add work correctly. c1 = SecurityBase('c1', multiplier=2, lazy_add=True, ) c2 = FixedIncomeSecurity('c2', lazy_add=True) s = StrategyBase('s', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 s.adjust(1000) s.allocate(100, 'c1') s.allocate(100, 'c2') c1 = s['c1'] c2 = s['c2'] assert c1.multiplier == 2 assert isinstance( c2, FixedIncomeSecurity) def test_strategybase_close(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 s.close('c1') assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_flatten(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] s.allocate(100, 'c2') c2 = s['c2'] assert c1.position == 1 assert c1.value == 100 assert c2.position == 1 assert c2.value == 100 assert s.value == 1000 s.flatten() assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_multiple_calls(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) c2 = s['c2'] assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1050.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1 == s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_preset_secs(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('s', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 2 assert c2.value == 1000 assert c2.weight == 1000.0 / 1050. assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_no_post_update(): s = StrategyBase('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 999 assert s.capital == 49 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 999 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1049 assert s.capital == 49 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1049.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1047 assert s.capital == 2 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1047 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1102 assert s.capital == 2 assert c1.value == 1100 assert c1.weight == 1100.0 / 1102 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1096 assert s.capital == 51 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1096 assert c2.price == 95 def test_strategybase_prices(): dts = pd.date_range('2010-01-01', periods=21) rawd = [13.555, 13.75, 14.16, 13.915, 13.655, 13.765, 14.02, 13.465, 13.32, 14.65, 14.59, 14.175, 13.865, 13.865, 13.89, 13.85, 13.565, 13.47, 13.225, 13.385, 12.89] data = pd.DataFrame(index=dts, data=rawd, columns=['a']) s = StrategyBase('s') s.set_commissions(lambda q, p: 1) s.setup(data) # buy 100 shares on day 1 - hold until end # just enough to buy 100 shares + 1$ commission s.adjust(1356.50) s.update(dts[0]) # allocate all capital to child a # a should be dynamically created and should have # 100 shares allocated. s.capital should be 0 s.allocate(s.value, 'a') assert s.capital == 0 assert s.value == 1355.50 assert len(s.children) == 1 aae(s.price, 99.92628, 5) a = s['a'] assert a.position == 100 assert a.value == 1355.50 assert a.weight == 1 assert a.price == 13.555 assert len(a.prices) == 1 # update through all dates and make sure price is ok s.update(dts[1]) aae(s.price, 101.3638, 4) s.update(dts[2]) aae(s.price, 104.3863, 4) s.update(dts[3]) aae(s.price, 102.5802, 4) # finish updates and make sure ok at end for i in range(4, 21): s.update(dts[i]) assert len(s.prices) == 21 aae(s.prices[-1], 95.02396, 5) aae(s.prices[-2], 98.67306, 5) def test_fail_if_root_value_negative(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) s.adjust(-100) # trigger update s.update(dts[0]) assert s.bankrupt # make sure only triggered if root negative c1 = StrategyBase('c1') s = StrategyBase('s', children=[c1]) c1 = s['c1'] s.setup(data) s.adjust(1000) c1.adjust(-100) s.update(dts[0]) # now make it trigger c1.adjust(-1000) # trigger update s.update(dts[0]) assert s.bankrupt def test_fail_if_0_base_in_return_calc(): dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 # must setup tree because if not negative root error pops up first c1 = StrategyBase('c1') s = StrategyBase('s', children=[c1]) c1 = s['c1'] s.setup(data) s.adjust(1000) c1.adjust(100) s.update(dts[0]) c1.adjust(-100) s.update(dts[1]) try: c1.adjust(-100) s.update(dts[1]) assert False except ZeroDivisionError as e: if 'Could not update' not in str(e): assert False def test_strategybase_tree_rebalance(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance c1 s.rebalance(0.5, 'c1', update=True) assert s.root.stale == True assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 # Check that rebalance with update=False # does not mark the node as stale s.rebalance(0.6, 'c1', update=False) assert s.root.stale == False def test_strategybase_tree_decimal_position_rebalance(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.use_integer_positions(False) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000.2) s.rebalance(0.42, 'c1') s.rebalance(0.58, 'c2') aae(c1.value, 420.084) aae(c2.value, 580.116) aae(c1.value + c2.value, 1000.2) def test_rebalance_child_not_in_tree(): s = StrategyBase('p') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) # rebalance to 0 w/ child that is not present - should ignore s.rebalance(0, 'c2') assert s.value == 1000 assert s.capital == 1000 assert len(s.children) == 0 def test_strategybase_tree_rebalance_to_0(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance c1 s.rebalance(0.5, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 # now rebalance c1 s.rebalance(0, 'c1') assert c1.position == 0 assert c1.value == 0 assert s.capital == 1000 assert s.value == 1000 assert c1.weight == 0 assert c2.weight == 0 def test_strategybase_tree_rebalance_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now rebalance child s1 - since its children are 0, no waterfall alloc m.rebalance(0.5, 's1') assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child s1.rebalance(0.4, 'c1') assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 # now rebalance child s1 again and make sure c1 also gets proportional # increase m.rebalance(0.8, 's1') assert s1.value == 800 aae(m.capital, 200, 1) assert m.value == 1000 assert s1.weight == 800 / 1000 assert s2.weight == 0 assert c1.value == 300.0 assert c1.weight == 300.0 / 800 assert c1.position == 3 # now rebalance child s1 to 0 - should close out s1 and c1 as well m.rebalance(0, 's1') assert s1.value == 0 assert m.capital == 1000 assert m.value == 1000 assert s1.weight == 0 assert s2.weight == 0 assert c1.weight == 0 def test_strategybase_tree_rebalance_base(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # check that 2 rebalances of equal weight lead to two different allocs # since value changes after first call s.rebalance(0.5, 'c1') assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 s.rebalance(0.5, 'c2') assert c2.position == 4 assert c2.value == 400 assert s.capital == 1000 - 401 - 401 assert s.value == 998 assert c2.weight == 400.0 / 998 assert c1.weight == 400.0 / 998 # close out everything s.flatten() # adjust to get back to 1000 s.adjust(4) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance but set fixed base base = s.value s.rebalance(0.5, 'c1', base=base) assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 s.rebalance(0.5, 'c2', base=base) assert c2.position == 4 assert c2.value == 400 assert s.capital == 1000 - 401 - 401 assert s.value == 998 assert c2.weight == 400.0 / 998 assert c1.weight == 400.0 / 998 def test_algo_stack(): a1 = mock.MagicMock(return_value=True) a2 = mock.MagicMock(return_value=False) a3 = mock.MagicMock(return_value=True) # no run_always for now del a1.run_always del a2.run_always del a3.run_always stack = AlgoStack(a1, a2, a3) target = mock.MagicMock() assert not stack(target) assert a1.called assert a2.called assert not a3.called # now test that run_always marked are run a1 = mock.MagicMock(return_value=True) a2 = mock.MagicMock(return_value=False) a3 = mock.MagicMock(return_value=True) # a3 will have run_always del a1.run_always del a2.run_always stack = AlgoStack(a1, a2, a3) target = mock.MagicMock() assert not stack(target) assert a1.called assert a2.called assert a3.called def test_set_commissions(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.set_commissions(lambda x, y: 1.0) s.setup(data) s.update(dts[0]) s.adjust(1000) s.allocate(500, 'c1') assert s.capital == 599 s.set_commissions(lambda x, y: 0.0) s.allocate(-400, 'c1') assert s.capital == 999 def test_strategy_tree_proper_return_calcs(): s1 = StrategyBase('s1') s2 = StrategyBase('s2') m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.loc['c1', dts[1]] = 105 data.loc['c2', dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert m.price == 100 assert s1.value == 0 assert s2.value == 0 # now allocate directly to child s1.allocate(500) assert m.capital == 500 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.weight == 0 # allocate to child2 via parent method m.allocate(500, 's2') assert m.capital == 0 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.value == 500 assert s2.weight == 500.0 / 1000 assert s2.price == 100 # now allocate and incur commission fee s1.allocate(500, 'c1') assert m.capital == 0 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.value == 500 assert s2.weight == 500.0 / 1000.0 assert s2.price == 100 def test_strategy_tree_proper_universes(): def do_nothing(x): return True child1 = Strategy('c1', [do_nothing], ['b', 'c']) parent = Strategy('m', [do_nothing], [child1, 'a']) child1 = parent['c1'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame( {'a': pd.Series(data=1, index=dts, name='a'), 'b': pd.Series(data=2, index=dts, name='b'), 'c': pd.Series(data=3, index=dts, name='c')}) parent.setup(data, test_data1 = 'test1') assert len(parent.children) == 1 assert 'c1' in parent.children assert len(parent._universe.columns) == 2 assert 'c1' in parent._universe.columns assert 'a' in parent._universe.columns assert len(child1._universe.columns) == 2 assert 'b' in child1._universe.columns assert 'c' in child1._universe.columns assert parent._has_strat_children assert len(parent._strat_children) == 1 assert parent.get_data( 'test_data1' ) == 'test1' # New child strategy with parent (and using dictionary notation} child2 = Strategy('c2', [do_nothing], {'a' : SecurityBase(''), 'b' : ''}, parent=parent) # Setup the child from the parent, but pass in some additional data child2.setup_from_parent(test_data2 = 'test2') assert 'a' in child2._universe.columns assert 'b' in child2._universe.columns assert 'c2' in parent._universe.columns # Make sure child has data from the parent and the additional data assert child2.get_data('test_data1') == 'test1' assert child2.get_data('test_data2') == 'test2' assert len(parent._strat_children) == 2 def test_strategy_tree_paper(): dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['a'], data=100.) data['a'].loc[dts[1]] = 101 data['a'].loc[dts[2]] = 102 s = Strategy('s', [bt.algos.SelectWhere(data > 100), bt.algos.WeighEqually(), bt.algos.Rebalance()]) m = Strategy('m', [], [s]) s = m['s'] m.setup(data) m.update(dts[0]) m.run() assert m.price == 100 assert s.price == 100 assert s._paper_trade assert s._paper.price == 100 s.update(dts[1]) m.run() assert m.price == 100 assert m.value == 0 assert s.value == 0 assert s.price == 100 s.update(dts[2]) m.run() assert m.price == 100 assert m.value == 0 assert s.value == 0 assert np.allclose(s.price, 100. * (102 / 101.)) def test_dynamic_strategy(): def do_nothing(x): return True # Start with an empty parent parent = Strategy('p', [do_nothing], []) dts = pd.date_range('2010-01-01', periods=4) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[2]] = 105. data['c2'][dts[2]] = 95. parent.setup( data ) # NOTE: Price of the sub-strategy won't be correct in this example because # we are not using the algo stack to impact weights, and so the paper # trading strategy does not see the same actions as we are doing. i = 0 parent.adjust( 1e6 ) parent.update( dts[i] ) assert parent.price == 100. assert parent.value == 1e6 i = 1 parent.update( dts[i] ) # On this step, we decide to put a trade on c1 vs c2 and track it as a strategy trade = Strategy('c1_vs_c2', [], children = ['c1', 'c2'], parent = parent ) trade.setup_from_parent() trade.update( parent.now ) assert trade.price == 100. assert trade.value == 0 # Allocate capital to the trade parent.allocate( 1e5, trade.name ) assert trade.value == 1e5 assert trade.price == 100. # Go long 'c1' and short 'c2' trade.rebalance( 1., 'c1') trade.rebalance( -1., 'c2') assert parent.universe[ trade.name ][ dts[i] ] == 100. assert parent.positions['c1'][ dts[i] ] == 1e3 assert parent.positions['c2'][ dts[i] ] == -1e3 i = 2 parent.update( dts[i] ) assert trade.value == 1e5 + 10 * 1e3 assert parent.value == 1e6 + 10 * 1e3 # On this step, we close the trade, and allocate capital back to the parent trade.flatten() trade.update( trade.now ) # Need to update after flattening (for now) parent.allocate( -trade.capital, trade.name ) assert trade.value == 0 assert trade.capital == 0 assert parent.value == 1e6 + 10 * 1e3 assert parent.capital == parent.value assert parent.positions['c1'][ dts[i] ] == 0. assert parent.positions['c2'][ dts[i] ] == 0. i = 3 parent.update( dts[i] ) # Just make sure we can update one step beyond closing # Note that "trade" is still a child of parent, and it also has children, # so it will keep getting updated (and paper trading will still happen). assert trade.value == 0 assert trade.capital == 0 assert trade.values[ dts[i] ] == 0. def test_dynamic_strategy2(): # Start with an empty parent parent = Strategy('p', [], []) dts = pd.date_range('2010-01-01', periods=4) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=100.) data['c1'][dts[2]] = 105. data['c2'][dts[2]] = 95. data['c1'][dts[3]] = 101. data['c2'][dts[3]] = 99. parent.setup( data ) i = 0 parent.adjust( 1e6 ) parent.update( dts[i] ) assert parent.price == 100. assert parent.value == 1e6 i = 1 parent.update( dts[i] ) # On this step, we decide to put a trade on c1 vs c2 and track it as a strategy def trade_c1_vs_c2( strategy ): if strategy.now == dts[1]: strategy.rebalance( 1., 'c1') strategy.rebalance( -1., 'c2') trade = Strategy('c1_vs_c2', [trade_c1_vs_c2], children = ['c1', 'c2'], parent = parent ) trade.setup_from_parent() trade.update( parent.now ) assert trade.price == 100. assert trade.value == 0 # Allocate capital to the trade parent.allocate( 1e5, trade.name ) assert trade.value == 1e5 assert trade.price == 100. # Run the strategy for the timestep parent.run() assert parent.universe[ trade.name ][ dts[i] ] == 100. assert np.isnan( parent.universe[ trade.name ][ dts[0] ] ) assert parent.positions['c1'][ dts[i] ] == 1e3 assert parent.positions['c2'][ dts[i] ] == -1e3 i = 2 parent.update( dts[i] ) trade = parent[ trade.name ] assert trade.value == 1e5 + 10 * 1e3 assert parent.value == 1e6 + 10 * 1e3 aae( trade.price, 110.) # Next we close the trade by flattening positions trade.flatten() trade.update( trade.now ) # Need to update after flattening (for now) aae( trade.price, 110.) # Finally we allocate capital back to the parent to be re-deployed parent.allocate( -trade.capital, trade.name ) assert trade.value == 0 assert trade.capital == 0 aae( trade.price, 110.) # Price stays the same even after capital de-allocated assert parent.value == 1e6 + 10 * 1e3 assert parent.capital == parent.value assert parent.positions['c1'][ dts[i] ] == 0. assert parent.positions['c2'][ dts[i] ] == 0. i = 3 parent.update( dts[i] ) # Just make sure we can update one step beyond closing assert parent.value == 1e6 + 10 * 1e3 # Note that "trade" is still a child of parent, and it also has children, # so it will keep getting updated (and paper trading will still happen). assert trade.value == 0 assert trade.capital == 0 assert trade.values[ dts[i] ] == 0. # Paper trading price, as asset prices have moved, paper trading price # keeps updating. Note that if the flattening of the position was part # of the definition of trade_c1_vs_c2, then the paper trading price # would be fixed after flattening, as it would apply to both real and paper. aae( trade.price, 102.) aae( parent.universe[ trade.name ][ dts[i] ], 102. ) def test_outlays(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) # allocate 1000 to strategy s.adjust(1000) # now let's see what happens when we allocate 500 to each child c1.allocate(500) c2.allocate(500) #calling outlays should automatically update the strategy, since stale assert c1.outlays[dts[0]] == (4 * 105) assert c2.outlays[dts[0]] == (5 * 95) assert c1.data['outlay'][dts[0]] == (4 * 105) assert c2.data['outlay'][dts[0]] == (5 * 95) i = 1 s.update(dts[i], data.loc[dts[i]]) c1.allocate(-400) c2.allocate(100) # out update assert c1.outlays[dts[1]] == (-4 * 100) assert c2.outlays[dts[1]] == 100 assert c1.data['outlay'][dts[1]] == (-4 * 100) assert c2.data['outlay'][dts[1]] == 100 def test_child_weight_above_1(): # check for child weights not exceeding 1 s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(np.random.randn(3, 2) + 100, index=dts, columns=['c1', 'c2']) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1e6) s.allocate(1e6, 'c1') c1 = s['c1'] assert c1.weight <= 1 def test_fixed_commissions(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) # fixed $1 commission per transaction s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) # allocate 1000 to strategy s.adjust(1000) # now let's see what happens when we allocate 500 to each child c1.allocate(500) c2.allocate(500) # out update s.update(dts[i]) assert c1.value == 400 assert c2.value == 400 assert s.capital == 198 # de-alloc 100 from c1. This should force c1 to sell 2 units to raise at # least 100 (because of commissions) c1.allocate(-100) s.update(dts[i]) assert c1.value == 200 assert s.capital == 198 + 199 # allocate 100 to c2. This should leave things unchaged, since c2 cannot # buy one unit since the commission will cause total outlay to exceed # allocation c2.allocate(100) s.update(dts[i]) assert c2.value == 400 assert s.capital == 198 + 199 # ok try again w/ 101 allocation. This time, it should work c2.allocate(101) s.update(dts[i]) assert c2.value == 500 assert s.capital == 198 + 199 - 101 # ok now let's close the whole position. Since we are closing, we expect # the allocation to go through, even though the outlay > amount c2.allocate(-500) s.update(dts[i]) assert c2.value == 0 assert s.capital == 198 + 199 - 101 + 499 # now we are going to go short c2 # we want to 'raise' 100 dollars. Since we need at a minimum 100, but we # also have commissions, we will actually short 2 units in order to raise # at least 100 c2.allocate(-100) s.update(dts[i]) assert c2.value == -200 assert s.capital == 198 + 199 - 101 + 499 + 199 def test_degenerate_shorting(): # can have situation where you short infinitely if commission/share > share # price c1 = SecurityBase('c1') s = StrategyBase('p', [c1]) # $1/share commission s.set_commissions(lambda q, p: abs(q) * 1) c1 = s['c1'] dts = pd.date_range('2010-01-01', periods=3) # c1 trades at 0.01 data = pd.DataFrame(index=dts, columns=['c1'], data=0.01) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) try: c1.allocate(-10) assert False except Exception as e: assert 'full_outlay should always be approaching amount' in str(e) def test_securitybase_allocate(): c1 = SecurityBase('c1') s = StrategyBase('p', [c1]) c1 = s['c1'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100.) # set the price data['c1'][dts[0]] = 91.40246706608193 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) # allocate 100000 to strategy original_capital = 100000. s.adjust(original_capital) # not integer positions c1.integer_positions = False # set the full_outlay and amount full_outlay = 1999.693706988672 amount = 1999.6937069886717 c1.allocate(amount) # the results that we want to be true assert np.isclose(full_outlay ,amount,rtol=0.) # check that the quantity wasn't decreased and the full_outlay == amount # we can get the full_outlay that was calculated by # original capital - current capital assert np.isclose(full_outlay, original_capital - s._capital, rtol=0.) def test_securitybase_allocate_commisions(): date_span = pd.date_range(start='10/1/2017', end='10/11/2017', freq='B') numper = len(date_span.values) comms = 0.01 data = [[10, 15, 20, 25, 30, 35, 40, 45], [10, 10, 10, 10, 20, 20, 20, 20], [20, 20, 20, 30, 30, 30, 40, 40], [20, 10, 20, 10, 20, 10, 20, 10]] data = [[row[i] for row in data] for i in range(len(data[0]))] # Transpose price = pd.DataFrame(data=data, index=date_span) price.columns = ['a', 'b', 'c', 'd'] # price = price[['a', 'b']] sig1 = pd.DataFrame(price['a'] >= price['b'] + 10, columns=['a']) sig2 = pd.DataFrame(price['a'] < price['b'] + 10, columns=['b']) signal = sig1.join(sig2) signal1 = price.diff(1) > 0 signal2 = price.diff(1) < 0 tw = price.copy() tw.loc[:,:] = 0 # Initialize Set everything to 0 tw[signal1] = -1.0 tw[signal2] = 1.0 s1 = bt.Strategy('long_short', [bt.algos.WeighTarget(tw), bt.algos.RunDaily(), bt.algos.Rebalance()]) ####now we create the Backtest , commissions=(lambda q, p: abs(p * q) * comms) t = bt.Backtest(s1, price, initial_capital=1000000, commissions=(lambda q, p: abs(p * q) * comms), progress_bar=False) ####and let's run it! res = bt.run(t) ######################## def test_strategybase_tree_transact(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.transact(1) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.transact(5) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 # now transact the parent since weights are nonzero s.transact(2) assert c1.position == 6 assert c1.value == 600 assert s.capital == 1000 - 600 assert s.value == 1000 assert c1.weight == 600.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_transact_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.transact(1) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now transact in c1 s.transact(5, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_transact_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.transact(1) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now transact directly in child. No weights, so nothing happens s1.transact(1) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now transact directly in child of child s1.allocate(500) c1.transact(2) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 # now transact directly in child again s1.transact(5) assert s1.value == 500 assert s1.capital == 500 - 400 assert c1.value == 400 assert c1.weight == 400.0 / 500 assert c1.position == 4 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_precision(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') c3 = SecurityBase('c3') s = StrategyBase('p', [c1, c2, c3]) s.use_integer_positions(False) c1 = s['c1'] c2 = s['c2'] c3 = s['c3'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3'], data=1.) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1.0) s.rebalance(0.1, 'c1') s.rebalance(0.1, 'c2') s.rebalance(0.1, 'c3') s.adjust(-0.7) aae( s.capital, 0. ) aae( s.value, 0.3 ) aae( s.price, 100. ) assert s.capital != 0 # Due to numerical precision assert s.value != 0.3 # Created non-zero value out of numerical precision errors assert s.price != 100. # Make sure we can still update and calculate return i=1 s.update(dts[i]) aae( s.price, 100. ) aae( s.value, 0.3 ) assert s.price != 100. assert s.value != 0.3 def test_securitybase_transact(): c1 = SecurityBase('c1') s = StrategyBase('p', [c1]) c1 = s['c1'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100.) # set the price price = 91.40246706608193 data['c1'][dts[0]] = 91.40246706608193 s.setup(data) i = 0 s.update(dts[i]) # allocate 100000 to strategy original_capital = 100000. s.adjust(original_capital) # not integer positions c1.integer_positions = False # set the full_outlay and amount q = 1000. amount = q * price c1.transact(q) assert np.isclose( c1.value, amount, rtol=0.) assert np.isclose( c1.weight, amount/original_capital, rtol=0.) assert c1.position == q assert np.isclose( c1.outlays[0], amount, rtol=0.) assert np.isclose( s.capital, (original_capital - amount) ) assert s.weight == 1 assert s.value == original_capital assert np.isclose( s.outlays[c1.name][0], amount, rtol=0.) # Call again on the same step (and again) to make sure all updates are working c1.transact(q) c1.transact(q) assert c1.position == 3*q assert np.isclose( c1.outlays[0], 3*amount, rtol=0.) assert np.isclose( c1.value, 3*amount, rtol=0.) assert np.isclose( s.capital, (original_capital - 3*amount) ) assert s.weight == 1 assert s.value == original_capital assert np.isclose( s.outlays[c1.name][0], 3*amount, rtol=0.) def test_security_setup_positions(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) assert c1.position == 0 assert len(c1.positions) == 1 assert c1.positions[0] == 0 assert c2.position == 0 assert len(c2.positions) == 1 assert c2.positions[0] == 0 def test_couponpayingsecurity_setup(): c1 = CouponPayingSecurity('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 coupons = pd.DataFrame(index=dts, columns=['c1'], data=0.1) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) assert 'coupon' in c1.data assert c1.coupon == 0.0 assert len(c1.coupons) == 1 assert c1.coupons[0] == 0.0 assert 'holding_cost' in c1.data assert c1.holding_cost == 0.0 assert len(c1.holding_costs) == 1 assert c1.holding_costs[0] == 0.0 assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_couponpayingsecurity_setup_costs(): c1 = CouponPayingSecurity('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 coupons = pd.DataFrame(index=dts, columns=['c1'], data=0.) cost_long = pd.DataFrame(index=dts, columns=['c1'], data=0.01) cost_short = pd.DataFrame(index=dts, columns=['c1'], data=0.05) s.setup(data, coupons=coupons, cost_long=cost_long, cost_short=cost_short) i = 0 s.update(dts[i]) assert 'coupon' in c1.data assert c1.coupon == 0.0 assert len(c1.coupons) == 1 assert c1.coupons[0] == 0.0 assert 'holding_cost' in c1.data assert c1.holding_cost == 0.0 assert len(c1.holding_costs) == 1 assert c1.holding_costs[0] == 0.0 assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_couponpayingsecurity_carry(): c1 = CouponPayingSecurity('c1') s = StrategyBase('p', [c1]) c1 = s['c1'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=1.) coupons = pd.DataFrame(index=dts, columns=['c1'], data=0.) coupons['c1'][dts[0]] = 0.1 cost_long = pd.DataFrame(index=dts, columns=['c1'], data=0.) cost_long['c1'][dts[0]] = 0.01 cost_short = pd.DataFrame(index=dts, columns=['c1'], data=0.05) s.setup(data, coupons=coupons, cost_long=cost_long, cost_short=cost_short) i = 0 s.update(dts[i]) # allocate 1000 to strategy original_capital = 1000. s.adjust(original_capital) # set the full_outlay and amount q = 1000. c1.transact(q) assert c1.coupon == 100. assert len(c1.coupons) == 1 assert c1.coupons[0] == 100. assert c1.holding_cost == 10. assert len(c1.holding_costs) == 1 assert c1.holding_costs[0] == 10. assert s.capital == 0. assert s.cash[0] == 0. # On this step, the coupon/costs will be accounted for from the last holding i = 1 s.update(dts[i]) assert c1.coupon == 0. assert len(c1.coupons) == 2 assert c1.coupons[1] == 0. assert c1.holding_cost == 0. assert len(c1.holding_costs) == 2 assert c1.holding_costs[1] == 0. assert s.capital == 100. - 10. assert s.cash[0] == 0. assert s.cash[1] == 100. - 10. # Go short q c1.transact( -2*q ) # Note cost is positive even though we are short. assert c1.holding_cost == 50. assert len(c1.holding_costs) == 2 assert c1.holding_costs[1] == 50. def test_couponpayingsecurity_transact(): c1 = CouponPayingSecurity('c1') s = StrategyBase('p', [c1]) c1 = s['c1'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100.) # set the price price = 91.40246706608193 data['c1'][dts[0]] = 91.40246706608193 data['c1'][dts[1]] = 91.40246706608193 coupon = 0.1 coupons = pd.DataFrame(index=dts, columns=['c1'], data=0.) coupons['c1'][dts[0]] = coupon s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) # allocate 100000 to strategy original_capital = 100000. s.adjust(original_capital) # set the full_outlay and amount q = 1000. amount = q * price c1.transact(q) # The coupon is nonzero, but will only be counted in "value" the next day assert c1.coupon == coupon * q assert len(c1.coupons) == 1 assert c1.coupons[0] == coupon * q assert np.isclose( c1.value, amount, rtol=0.) assert np.isclose( c1.weight, amount/original_capital, rtol=0.) assert c1.position == q assert s.capital == (original_capital - amount) assert s.cash[0] == (original_capital - amount) assert s.weight == 1 assert s.value == original_capital assert c1._capital == coupon * q # On this step, the coupon will be paid i = 1 s.update(dts[i]) new_capital = original_capital + coupon * q assert c1.coupon == 0 assert len(c1.coupons) == 2 assert c1.coupons[0] == coupon * q assert c1.coupons[1] == 0 assert np.isclose( c1.value, amount, rtol=0.) assert np.isclose( c1.weight, amount/new_capital, rtol=0.) assert c1.position == q assert s.capital == (new_capital - amount) assert s.weight == 1 assert s.value == new_capital assert s.cash[0] == (original_capital - amount) assert s.cash[1] == (new_capital - amount) assert c1._capital == 0 # Close the position c1.transact(-q) assert c1.coupon == 0 assert len(c1.coupons) == 2 assert c1.coupons[0] == coupon * q assert c1.coupons[1] == 0 assert np.isclose( c1.value, 0., rtol=0.) assert np.isclose( c1.weight, 0./new_capital, rtol=0.) assert c1.position == 0 assert s.capital == new_capital assert s.weight == 1 assert s.value == new_capital assert s.cash[0] == (original_capital - amount) assert s.cash[1] == new_capital assert c1._capital == 0 def test_bidoffer(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 bidoffer = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=1.) bidoffer['c1'][dts[0]] = 2 bidoffer['c2'][dts[0]] = 1.5 s.setup(data, bidoffer=bidoffer) s.adjust(100000) i = 0 s.update(dts[i]) assert c1.bidoffer == 2 assert len(c1.bidoffers) == 1 assert c1.bidoffers[0] == 2 assert c2.bidoffer == 1.5 assert len(c2.bidoffers) == 1 assert c2.bidoffers[0] == 1.5 # Check the outlays are adjusted for bid/offer s.set_commissions( lambda q,p : 0.1 ) total, outlay, fee, bidoffer = c1.outlay( 100 ) assert bidoffer == 100 * 1 assert fee == 0.1 assert outlay == 100 * (105 + 1) assert total == outlay + fee total, outlay, fee, bidoffer = c1.outlay( -100 ) assert bidoffer == 100 * 1 assert fee == 0.1 assert outlay == -100 * (105 - 1) assert total == outlay + fee total, outlay, fee, bidoffer = c2.outlay( 100 ) assert bidoffer == 100 * 0.75 assert fee == 0.1 assert outlay == 100 * (95 + 0.75) assert total == outlay + fee total, outlay, fee, bidoffer = c2.outlay( -100 ) assert bidoffer == 100 * 0.75 assert fee == 0.1 assert outlay == -100 * (95 - 0.75) assert total == outlay + fee # Do some transactions, and check that bidoffer_paid is updated c1.transact(100) assert c1.bidoffer_paid == 100 * 1 assert c1.bidoffers_paid[i] == c1.bidoffer_paid c1.transact(100) assert c1.bidoffer_paid == 200 * 1 assert c1.bidoffers_paid[i] == c1.bidoffer_paid c2.transact(-100) assert c2.bidoffer_paid == 100 * 0.75 assert c2.bidoffers_paid[i] == c2.bidoffer_paid assert s.bidoffer_paid == 100 * 0.75 + 200 * 1 assert s.bidoffers_paid[i] == s.bidoffer_paid assert s.fees.iloc[i] == 3 * 0.1 i = 1 s.update(dts[i]) assert c1.bidoffer_paid == 0. assert c1.bidoffers_paid[i] == c1.bidoffer_paid assert c2.bidoffer_paid == 0. assert c2.bidoffers_paid[i] == c2.bidoffer_paid assert s.bidoffer_paid == 0. assert s.bidoffers_paid[i] == s.bidoffer_paid assert s.fees[i] == 0. def test_outlay_custom(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 s.setup(data) s.adjust(100000) i = 0 s.update(dts[i]) # Check the outlays are adjusted for custom prices s.set_commissions( lambda q,p : 0.1*p ) total, outlay, fee, bidoffer = c1.outlay( 100, 106 ) assert bidoffer == 100 * 1 assert fee == 0.1 * 106 assert outlay == 100 * (106) assert total == outlay + fee total, outlay, fee, bidoffer = c1.outlay( -100, 106 ) assert bidoffer == -100 * 1 assert fee == 0.1 * 106 assert outlay == -100 * 106 assert total == outlay + fee def test_bidoffer_custom(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 # Note: In order to access bidoffer_paid, # need to pass bidoffer kwarg during setup s.setup(data, bidoffer = {}) s.adjust(100000) i = 0 s.update(dts[i]) c1.transact(100, price=106) assert c1.bidoffer_paid == 100 * 1 assert s.bidoffer_paid == c1.bidoffer_paid assert s.capital == 100000 - 100*106 assert c1.bidoffers_paid[i] == c1.bidoffer_paid assert s.bidoffers_paid[i] == s.bidoffer_paid c1.transact(100, price=106) assert c1.bidoffer_paid == 200 * 1 assert s.bidoffer_paid == c1.bidoffer_paid assert s.capital == 100000 - 100*106 - 100*106 assert c1.bidoffers_paid[i] == c1.bidoffer_paid assert s.bidoffers_paid[i] == s.bidoffer_paid c1.transact(-100, price=107) assert c1.bidoffer_paid == 0 assert s.bidoffer_paid == c1.bidoffer_paid assert s.capital == 100000 - 100*106 - 100*106 + 100*107 assert c1.bidoffers_paid[i] == c1.bidoffer_paid assert s.bidoffers_paid[i] == s.bidoffer_paid def test_security_notional_value(): c1 = SecurityBase('c1') c2 = CouponPayingSecurity('c2') c3 = HedgeSecurity('c3') c4 = CouponPayingHedgeSecurity('c4') c5 = FixedIncomeSecurity('c5') s = StrategyBase('p', children = [c1, c2, c3, c4, c5]) c1 = s['c1']; c2 = s['c2']; c3 = s['c3']; c4 = s['c4']; c5 = s['c5'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4', 'c5'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) c1.transact(1000) c2.transact(1000) c3.transact(1000) c4.transact(1000) c5.transact(1000) for c in [ c1, c2, c3, c4, c5 ]: assert c.position == 1000 assert c.price == 100 assert c1.notional_value == 1000*100. assert c2.notional_value == 1000 assert c3.notional_value == 0 assert c4.notional_value == 0 assert c5.notional_value == 1000 for c in [ c1, c2, c3, c4, c5 ]: assert len( c.notional_values ) == 1 assert c.notional_values[ dts[i] ] == c.notional_value assert s.notional_value == 2000 + 1000*100 # Strategy notional value always positive i = 1 s.update(dts[i]) c1.transact(-3000) c2.transact(-3000) c3.transact(-3000) c4.transact(-3000) c5.transact(-3000) for c in [ c1, c2, c3, c4, c5 ]: assert c.position == -2000 assert c.price == 100 assert c1.notional_value == -2000*100. assert c2.notional_value == -2000 assert c3.notional_value == 0 assert c4.notional_value == 0 assert c5.notional_value == -2000 for c in [ c1, c2, c3, c4, c5 ]: assert len( c.notional_values ) == 2 assert c.notional_values[ dts[i] ] == c.notional_value assert s.notional_value == 2000*100 + 4000 # Strategy notional value always positive # FixedIncomeStrategy Tests def test_fi_strategy_flag(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', children = [s1, s2]) assert s.fixed_income == False s = FixedIncomeStrategy('p', [s1, s2]) assert s.fixed_income == True def test_fi_strategy_no_bankruptcy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = FixedIncomeStrategy('p', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.transact( 10, 'c2') assert s.value == 0. assert s.capital == -10*100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert s.value == -5*10 assert s.capital == -10*100 assert s.bankrupt == False def test_fi_strategy_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = FixedIncomeStrategy('p', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) # Basic setup works with no adjustment assert s.value == 0 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 assert c1.notional_value == 0 assert c2.notional_value == 0 # Positive or negative capital adjustments are fine s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 s.adjust(-2000) assert s.capital == -1000 assert s.value == -1000 def test_fi_strategy_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = FixedIncomeStrategy('p', children = [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = -5 # Test negative prices data['c2'][dts[2]] = 0 # Test zero price s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert c2.price == -5 i = 2 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 0 def test_fi_strategy_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = FixedIncomeStrategy('p', children = [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.notional_value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.notional_value == 500 # Capital does not count towards notl assert c1.weight == 1. assert c2.weight == 0 def test_fi_strategy_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = FixedIncomeStrategy('p', children = [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 1.0 assert c2.weight == 0 def test_fi_strategy_close(): c1 = SecurityBase('c1') c2 = CouponPayingSecurity('c2') c3 = HedgeSecurity('c3') c4 = CouponPayingHedgeSecurity('c4') s = FixedIncomeStrategy('p', children = [c1, c2, c3, c4]) c1 = s['c1']; c2 = s['c2']; c3 = s['c3']; c4 = s['c4'] dts = pd.date_range('2010-01-01', periods=3) # Price data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) for c in [ c1, c2, c3, c4 ]: s.transact(10, c.name) assert c.position == 10 assert c.value == 1000 assert s.capital == -1000 assert s.value == 0 s.close( c.name ) assert c.position == 0 assert c.value == 0 assert s.capital == 0 assert s.value == 0 s.transact(-10, c.name) assert c.position == -10 assert c.value == -1000 assert s.capital == 1000 assert s.value == 0 s.close( c.name ) assert c.position == 0 assert c.value == 0 assert s.capital == 0 assert s.value == 0 def test_fi_strategy_close_zero_price(): c1 = SecurityBase('c1') c2 = CouponPayingSecurity('c2') c3 = HedgeSecurity('c3') c4 = CouponPayingHedgeSecurity('c4') s = FixedIncomeStrategy('p', children = [c1, c2, c3, c4]) c1 = s['c1']; c2 = s['c2']; c3 = s['c3']; c4 = s['c4'] dts = pd.date_range('2010-01-01', periods=3) # Zero prices are OK in fixed income space (i.e. swaps) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4'], data=0.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) for c in [ c1, c2, c3, c4 ]: s.transact(10, c.name) assert c.position == 10 assert c.value == 0 s.close( c.name ) assert c.position == 0 assert c.value == 0 s.transact(-10, c.name) assert c.position == -10 assert c.value == 0 s.close( c.name ) assert c.position == 0 assert c.value == 0 def test_fi_strategy_flatten(): c1 = SecurityBase('c1') c2 = CouponPayingSecurity('c2') c3 = HedgeSecurity('c3') c4 = CouponPayingHedgeSecurity('c4') s = FixedIncomeStrategy('p', children = [c1, c2, c3, c4]) c1 = s['c1']; c2 = s['c2']; c3 = s['c3']; c4 = s['c4'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4'], data=100.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) for c in [ c1, c2, c3, c4 ]: s.transact(10, c.name) for c in [ c1, c2, c3, c4 ]: assert c.position == 10 assert c.value == 1000 s.flatten() for c in [ c1, c2, c3, c4 ]: assert c.position == 0 assert c.value == 0 def test_fi_strategy_prices(): c1 = CouponPayingSecurity('c1') s = FixedIncomeStrategy('s', children = [c1] ) c1 = s['c1'] dts = pd.date_range('2010-01-01', periods=4) rawd = [2, -3, 0, 1] data = pd.DataFrame(index=dts, data=rawd, columns=['c1']) coupons = pd.DataFrame(index=dts, columns=['c1'], data=[1,2,3,4]) s.setup(data, coupons = coupons) i = 0 s.update(dts[i]) s.transact( 10, 'c1') assert c1.coupon == 10*1 assert s.capital == -10*2 assert s.value == 0 assert len(s.children) == 1 assert s.price == 100 assert s.notional_value == 10 last_coupon = c1.coupon last_value = s.value last_notional_value = s.notional_value last_price = 100. i=1 s.update(dts[i]) cpn = last_coupon assert c1.coupon == 10*2 assert s.capital == -10*2 + cpn assert s.value == -5*10 + cpn # MTM + coupon assert s.notional_value == 10 assert s.price == last_price + 100 * (s.value-last_value)/last_notional_value last_value = s.value last_notional_value = s.notional_value last_price = s.price last_coupon = c1.coupon i=2 s.update(dts[i]) cpn += last_coupon assert c1.coupon == 10*3 assert s.capital == -10*2 + cpn assert s.value == -2*10 + cpn # MTM + coupon assert s.notional_value == 10 assert s.price == last_price + 100 * (s.value - last_value)/last_notional_value last_value = s.value last_notional_value = s.notional_value last_price = s.price last_coupon = c1.coupon i=3 s.update(dts[i]) s.transact( 10, 'c1') # Coupon still from previous period - not affected by new transaction cpn += last_coupon assert c1.coupon == 20*4 assert s.capital == -10*2 -10*1 + cpn assert s.value == -1*10 + 0 + cpn # MTM + coupon assert s.notional_value == 20 assert s.price == last_price + 100 * (s.value - last_value)/last_notional_value def test_fi_fail_if_0_base_in_return_calc(): c1 = HedgeSecurity('c1') s = FixedIncomeStrategy('s', children = [c1] ) c1 = s['c1'] dts = pd.date_range('2010-01-01', periods=4) rawd = [2, -3, 0, 1] data = pd.DataFrame(index=dts, data=rawd, columns=['c1']) s.setup(data) i=0 s.update(dts[i]) assert s.notional_value == 0 # Hedge security has no notional value, so strategy doesn't either # and thus shouldn't be making PNL. i = 1 try: s.update(dts[i]) except ZeroDivisionError as e: if 'Could not update' not in str(e): assert False def test_fi_strategy_tree_rebalance(): c1 = SecurityBase('c1') c2 = CouponPayingSecurity('c2') c3 = HedgeSecurity('c3') c4 = CouponPayingHedgeSecurity('c4') s = FixedIncomeStrategy('p', children = [c1, c2, c3, c4]) c1 = s['c1']; c2 = s['c2']; c3 = s['c3']; c4 = s['c4'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2', 'c3', 'c4'], data=50.) coupons = pd.DataFrame(index=dts, columns=['c2', 'c4'], data=0.) s.setup(data, coupons = coupons) i = 0 s.update(dts[i], data.loc[dts[i]]) assert s.value == 0 assert s.capital == 0 assert c1.value == 0 assert c2.value == 0 # now rebalance c1 s.rebalance(0.5, 'c1', base = 1000) assert c1.position == 10 assert c1.value == 500 assert c1.notional_value == 500 assert s.capital == -500 assert s.value == 0 assert s.notional_value == 500 assert c1.weight == 1.0 assert c2.weight == 0 assert c2.notional_value == 0 # Now rebalance to s2, with no base weight. # It takes base weight from strategy weight (500) s.rebalance(0.5, 'c2') assert c1.position == 10 assert c1.notional_value == 500 assert c2.position == 250 assert c2.notional_value == 250 assert s.notional_value == c1.notional_value + c2.notional_value assert c1.weight == 2./3. assert c2.weight == 1./3. assert s.value == 0 i = 1 s.update(dts[i], data.loc[dts[i]]) # Now rebalance to a new, higher base with given target weights (including negative) s.rebalance(0.5, 'c1', 1000, update=False) s.rebalance(-0.5, 'c2', 1000) assert c1.weight == 0.5 assert c2.weight == -0.5 assert c1.position == 10 assert c1.notional_value == 500 assert c2.position == -500 assert c2.notional_value == -500 def test_fi_strategy_tree_rebalance_nested(): c1 = CouponPayingSecurity('c1') c2 = CouponPayingSecurity('c2') s1 = FixedIncomeStrategy('s1', children = [c1, c2]) s2 = FixedIncomeStrategy('s2', children = [c1, c2]) s = FixedIncomeStrategy('s', children = [s1, s2]) p = FixedIncomeStrategy('p', children = [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=50.) coupons = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=0.) s.setup(data, coupons = coupons) p.setup(data, coupons = coupons) i = 0 s.update(dts[i]) p.update(dts[i]) s['s1'].transact( 100, 'c1') s['s2'].transact( 100, 'c2') p.transact( 100, 'c1') p.transact( 100, 'c2') assert s['s1']['c1'].position == 100 assert s['s2']['c2'].position == 100 assert p['c1'].position == 100 assert p['c2'].position == 100 s.update(dts[i]) # Force update to be safe base = s.notional_value s.rebalance(0.5, 's1', base*10, update=False) s.rebalance(-0.5, 's2', base*10) p.rebalance(5, 'c1', update=False ) p.rebalance(-5, 'c2' ) s.update(dts[i]) # Force update to be safe assert s['s1']['c1'].position == 1000 assert s['s2']['c2'].position == -1000 assert s['s1']['c1'].weight == 1. assert s['s2']['c2'].weight == -1 assert p['c1'].position == 1000 assert p['c2'].position == -1000 # Note that even though the security weights are signed, # the strategy weights are all positive (and hence not equal) # to the weight passed in to the rebalance call assert s['s1'].weight == 0.5 assert s['s2'].weight == 0.5 assert s.value == 0. assert p.value == 0. assert s.capital == 0 assert p.capital == 0 def test_fi_strategy_precision(): N = 100 children = [ SecurityBase('c%i' %i ) for i in range(N) ] s = FixedIncomeStrategy('p', children = children) children = [ s[ c.name ] for c in children ] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=[c.name for c in children], data=1.) s.setup(data) i = 0 s.update(dts[i]) for c in children: c.transact(0.1) # Even within tolerance, value is nonzero aae( s.value, 0, 14) assert not is_zero( s.value ) # Notional value not quite equal to N * 0.1 assert s.notional_value == sum( 0.1 for _ in range(N) ) assert s.notional_value != N*0.1 assert s.price == 100. old_value = s.value old_notional_value = s.notional_value # Still make sure we can update - PNL nonzero, and last notional value is zero i = 1 s.update(dts[i]) assert s.price == 100. # Even within tolerance, value is nonzero assert s.value == old_value assert s.notional_value == old_notional_value # The weights also have numerical precision issues aae( children[0].weight, 1/float(N), 16) assert children[0].weight != 1/float(N) # Now rebalance "out" of an asset with the almost zero weight new_weight = children[0].weight - 1/float(N) s.rebalance( new_weight, children[0].name ) # Check that the position is still closed completely assert children[0].position == 0 def test_fi_strategy_bidoffer(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = FixedIncomeStrategy('p', children=[c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 bidoffer = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=1.) bidoffer['c1'][dts[0]] = 2 bidoffer['c2'][dts[0]] = 1.5 s.setup(data, bidoffer=bidoffer) i = 0 s.update(dts[i]) assert s.value == 0. assert s.price == 100. # Do some transactions, and check that bidoffer_paid is updated c1.transact(100) assert c1.bidoffer_paid == 100 * 1 assert c1.bidoffers_paid[i] == c1.bidoffer_paid c1.transact(100) assert c1.bidoffer_paid == 200 * 1 assert c1.bidoffers_paid[i] == c1.bidoffer_paid c2.transact(-100) assert c2.bidoffer_paid == 100 * 0.75 assert c2.bidoffers_paid[i] == c2.bidoffer_paid s.update(dts[i]) assert s.bidoffer_paid == 275. assert s.bidoffers_paid[i] == s.bidoffer_paid assert s.value == -275. assert s.notional_value == 105*200 + 95*100 assert s.price == 100 * (1. - 275. / (105*200 + 95*100)) old_notional = s.notional_value old_value = s.value old_price = s.price i=1 s.update(dts[i]) assert s.bidoffer_paid == 0. assert s.bidoffers_paid[i] == s.bidoffer_paid assert s.value == -275. - 200*5 - 100*5 # Bid-offer paid assert s.notional_value == 100*200 + 100*100 new_value = s.value assert s.price == old_price + 100 * ( new_value-old_value) / old_notional
mit
KallyopeBio/StarCluster
utils/scimage_12_04.py
20
17216
#!/usr/bin/env python """ This script is meant to be run inside of a ubuntu cloud image available at uec-images.ubuntu.com:: $ EC2_UBUNTU_IMG_URL=http://uec-images.ubuntu.com/precise/current $ wget $EC2_UBUNTU_IMG_URL/precise-server-cloudimg-amd64.tar.gz or:: $ wget $EC2_UBUNTU_IMG_URL/precise-server-cloudimg-i386.tar.gz After downloading a Ubuntu cloud image the next step is to extract the image:: $ tar xvzf precise-server-cloudimg-amd64.tar.gz Then resize it to 10GB:: $ e2fsck -f precise-server-cloudimg-amd64.img $ resize2fs precise-server-cloudimg-amd64.img 10G Next you need to mount the image:: $ mkdir /tmp/img-mount $ mount precise-server-cloudimg-amd64.img /tmp/img-mount $ mount -t proc none /tmp/img-mount/proc $ mount -t sysfs none /tmp/img-mount/sys $ mount -o bind /dev /tmp/img-mount/dev $ mount -t devpts none /tmp/img-mount/dev/pts $ mount -o rbind /var/run/dbus /tmp/img-mount/var/run/dbus Copy /etc/resolv.conf and /etc/mtab to the image:: $ mkdir -p /tmp/img-mount/var/run/resolvconf $ cp /etc/resolv.conf /tmp/img-mount/var/run/resolvconf/resolv.conf $ grep -v rootfs /etc/mtab > /tmp/img-mount/etc/mtab Next copy this script inside the image:: $ cp /path/to/scimage.py /tmp/img-mount/root/scimage.py Finally chroot inside the image and run this script: $ chroot /tmp/img-mount /bin/bash $ cd $HOME $ python scimage.py """ import os import sys import glob import shutil import fileinput import subprocess import multiprocessing SRC_DIR = "/usr/local/src" APT_SOURCES_FILE = "/etc/apt/sources.list" BUILD_UTILS_PKGS = "build-essential devscripts debconf debconf-utils dpkg-dev " BUILD_UTILS_PKGS += "gfortran llvm-3.2-dev swig cdbs patch python-dev " BUILD_UTILS_PKGS += "python-distutils-extra python-setuptools python-pip " BUILD_UTILS_PKGS += "python-nose" CLOUD_CFG_FILE = '/etc/cloud/cloud.cfg' GRID_SCHEDULER_GIT = 'git://github.com/jtriley/gridscheduler.git' CLOUDERA_ARCHIVE_KEY = 'http://archive.cloudera.com/debian/archive.key' CLOUDERA_APT = 'http://archive.cloudera.com/debian maverick-cdh3u5 contrib' CONDOR_APT = 'http://www.cs.wisc.edu/condor/debian/development lenny contrib' NUMPY_SCIPY_SITE_CFG = """\ [DEFAULT] library_dirs = /usr/lib include_dirs = /usr/include:/usr/include/suitesparse [blas_opt] libraries = ptf77blas, ptcblas, atlas [lapack_opt] libraries = lapack, ptf77blas, ptcblas, atlas [amd] amd_libs = amd [umfpack] umfpack_libs = umfpack [fftw] libraries = fftw3 """ STARCLUSTER_MOTD = """\ #!/bin/sh cat<<"EOF" _ _ _ __/\_____| |_ __ _ _ __ ___| |_ _ ___| |_ ___ _ __ \ / __| __/ _` | '__/ __| | | | / __| __/ _ \ '__| /_ _\__ \ || (_| | | | (__| | |_| \__ \ || __/ | \/ |___/\__\__,_|_| \___|_|\__,_|___/\__\___|_| StarCluster Ubuntu 12.04 AMI Software Tools for Academics and Researchers (STAR) Homepage: http://star.mit.edu/cluster Documentation: http://star.mit.edu/cluster/docs/latest Code: https://github.com/jtriley/StarCluster Mailing list: [email protected] This AMI Contains: * Open Grid Scheduler (OGS - formerly SGE) queuing system * Condor workload management system * OpenMPI compiled with Open Grid Scheduler support * OpenBLAS - Highly optimized Basic Linear Algebra Routines * NumPy/SciPy linked against OpenBlas * IPython 0.13 with parallel and notebook support * and more! (use 'dpkg -l' to show all installed packages) Open Grid Scheduler/Condor cheat sheet: * qstat/condor_q - show status of batch jobs * qhost/condor_status- show status of hosts, queues, and jobs * qsub/condor_submit - submit batch jobs (e.g. qsub -cwd ./job.sh) * qdel/condor_rm - delete batch jobs (e.g. qdel 7) * qconf - configure Open Grid Scheduler system Current System Stats: EOF landscape-sysinfo | grep -iv 'graph this data' """ CLOUD_INIT_CFG = """\ user: ubuntu disable_root: 0 preserve_hostname: False # datasource_list: [ "NoCloud", "OVF", "Ec2" ] cloud_init_modules: - bootcmd - resizefs - set_hostname - update_hostname - update_etc_hosts - rsyslog - ssh cloud_config_modules: - mounts - ssh-import-id - locale - set-passwords - grub-dpkg - timezone - puppet - chef - mcollective - disable-ec2-metadata - runcmd cloud_final_modules: - rightscale_userdata - scripts-per-once - scripts-per-boot - scripts-per-instance - scripts-user - keys-to-console - final-message apt_sources: - source: deb $MIRROR $RELEASE multiverse - source: deb %(CLOUDERA_APT)s - source: deb-src %(CLOUDERA_APT)s - source: deb %(CONDOR_APT)s """ % dict(CLOUDERA_APT=CLOUDERA_APT, CONDOR_APT=CONDOR_APT) def run_command(cmd, ignore_failure=False, failure_callback=None, get_output=False): kwargs = {} if get_output: kwargs.update(dict(stdout=subprocess.PIPE, stderr=subprocess.PIPE)) p = subprocess.Popen(cmd, shell=True, **kwargs) output = [] if get_output: line = None while line != '': line = p.stdout.readline() if line != '': output.append(line) print line, for line in p.stderr.readlines(): if line != '': output.append(line) print line, retval = p.wait() if retval != 0: errmsg = "command '%s' failed with status %d" % (cmd, retval) if failure_callback: ignore_failure = failure_callback(retval) if not ignore_failure: raise Exception(errmsg) else: sys.stderr.write(errmsg + '\n') if get_output: return retval, ''.join(output) return retval def apt_command(cmd): dpkg_opts = "Dpkg::Options::='--force-confnew'" cmd = "apt-get -o %s -y --force-yes %s" % (dpkg_opts, cmd) cmd = "DEBIAN_FRONTEND='noninteractive' " + cmd run_command(cmd) def apt_install(pkgs): apt_command('install %s' % pkgs) def chdir(directory): opts = glob.glob(directory) isdirlist = [o for o in opts if os.path.isdir(o)] if len(isdirlist) > 1: raise Exception("more than one dir matches: %s" % directory) os.chdir(isdirlist[0]) def _fix_atlas_rules(rules_file='debian/rules'): for line in fileinput.input(rules_file, inplace=1): if 'ATLAS=None' not in line: print line, def configure_apt_sources(): srcfile = open(APT_SOURCES_FILE) contents = srcfile.readlines() srcfile.close() srclines = [] for line in contents: if not line.strip() or line.startswith('#'): continue parts = line.split() if parts[0] == 'deb': parts[0] = 'deb-src' srclines.append(' '.join(parts).strip()) srcfile = open(APT_SOURCES_FILE, 'w') srcfile.write(''.join(contents)) srcfile.write('\n'.join(srclines) + '\n') srcfile.write('deb %s\n' % CLOUDERA_APT) srcfile.write('deb-src %s\n' % CLOUDERA_APT) srcfile.write('deb %s\n' % CONDOR_APT) srcfile.close() run_command('add-apt-repository ppa:staticfloat/julia-deps -y') run_command('gpg --keyserver keyserver.ubuntu.com --recv-keys 0F932C9C') run_command('curl -s %s | sudo apt-key add -' % CLOUDERA_ARCHIVE_KEY) apt_install('debian-archive-keyring') def upgrade_packages(): apt_command('update') apt_command('upgrade') def install_build_utils(): """docstring for configure_build""" apt_install(BUILD_UTILS_PKGS) def install_gridscheduler(): chdir(SRC_DIR) apt_command('build-dep gridengine') if os.path.isfile('gridscheduler-scbuild.tar.gz'): run_command('tar xvzf gridscheduler-scbuild.tar.gz') run_command('mv gridscheduler /opt/sge6-fresh') return run_command('git clone %s' % GRID_SCHEDULER_GIT) sts, out = run_command('readlink -f `which java`', get_output=True) java_home = out.strip().split('/jre')[0] chdir(os.path.join(SRC_DIR, 'gridscheduler', 'source')) run_command('git checkout -t -b develop origin/develop') env = 'JAVA_HOME=%s' % java_home run_command('%s ./aimk -only-depend' % env) run_command('%s scripts/zerodepend' % env) run_command('%s ./aimk depend' % env) run_command('%s ./aimk -no-secure -no-gui-inst' % env) sge_root = '/opt/sge6-fresh' os.mkdir(sge_root) env += ' SGE_ROOT=%s' % sge_root run_command('%s scripts/distinst -all -local -noexit -y -- man' % env) def install_condor(): chdir(SRC_DIR) run_command("rm /var/lock") apt_install('condor=7.7.2-1') run_command('echo condor hold | dpkg --set-selections') run_command('ln -s /etc/condor/condor_config /etc/condor_config.local') run_command('mkdir /var/lib/condor/log') run_command('mkdir /var/lib/condor/run') run_command('chown -R condor:condor /var/lib/condor/log') run_command('chown -R condor:condor /var/lib/condor/run') def install_torque(): chdir(SRC_DIR) apt_install('torque-server torque-mom torque-client') def install_pydrmaa(): chdir(SRC_DIR) run_command('pip install drmaa') def install_blas_lapack(): """docstring for install_openblas""" chdir(SRC_DIR) apt_install("libopenblas-dev") def install_numpy_scipy(): """docstring for install_numpy""" chdir(SRC_DIR) run_command('pip install -d . numpy') run_command('unzip numpy*.zip') run_command("sed -i 's/return None #/pass #/' numpy*/numpy/core/setup.py") run_command('pip install scipy') def install_pandas(): """docstring for install_pandas""" chdir(SRC_DIR) apt_command('build-dep pandas') run_command('pip install pandas') def install_matplotlib(): chdir(SRC_DIR) run_command('pip install matplotlib') def install_julia(): apt_install("libsuitesparse-dev libncurses5-dev " "libopenblas-dev libarpack2-dev libfftw3-dev libgmp-dev " "libunwind7-dev libreadline-dev zlib1g-dev") buildopts = """\ BUILDOPTS="LLVM_CONFIG=llvm-config-3.2 USE_QUIET=0 USE_LIB64=0"; for lib in \ LLVM ZLIB SUITESPARSE ARPACK BLAS FFTW LAPACK GMP LIBUNWIND READLINE GLPK \ NGINX; do export BUILDOPTS="$BUILDOPTS USE_SYSTEM_$lib=1"; done""" chdir(SRC_DIR) if not os.path.exists("julia"): run_command("git clone git://github.com/JuliaLang/julia.git") run_command("%s && cd julia && make $BUILDOPTS PREFIX=/usr install" % buildopts) def install_mpi(): chdir(SRC_DIR) apt_install('mpich2') apt_command('build-dep openmpi') apt_install('blcr-util') if glob.glob('*openmpi*.deb'): run_command('dpkg -i *openmpi*.deb') else: apt_command('source openmpi') chdir('openmpi*') for line in fileinput.input('debian/rules', inplace=1): print line, if '--enable-heterogeneous' in line: print ' --with-sge \\' def _deb_failure_callback(retval): if not glob.glob('../*openmpi*.deb'): return False return True run_command('dch --local=\'+custom\' ' '"custom build on: `uname -s -r -v -m -p -i -o`"') run_command('dpkg-buildpackage -rfakeroot -b', failure_callback=_deb_failure_callback) run_command('dpkg -i ../*openmpi*.deb') sts, out = run_command('ompi_info | grep -i grid', get_output=True) if 'gridengine' not in out: raise Exception("failed to build OpenMPI with " "Open Grid Scheduler support") run_command('echo libopenmpi1.3 hold | dpkg --set-selections') run_command('echo libopenmpi-dev hold | dpkg --set-selections') run_command('echo libopenmpi-dbg hold | dpkg --set-selections') run_command('echo openmpi-bin hold | dpkg --set-selections') run_command('echo openmpi-checkpoint hold | dpkg --set-selections') run_command('echo openmpi-common hold | dpkg --set-selections') run_command('echo openmpi-doc hold | dpkg --set-selections') run_command('pip install mpi4py') def install_hadoop(): chdir(SRC_DIR) hadoop_pkgs = ['namenode', 'datanode', 'tasktracker', 'jobtracker', 'secondarynamenode'] pkgs = ['hadoop-0.20'] + ['hadoop-0.20-%s' % pkg for pkg in hadoop_pkgs] apt_install(' '.join(pkgs)) run_command('easy_install dumbo') def install_ipython(): chdir(SRC_DIR) apt_install('libzmq-dev') run_command('pip install ipython tornado pygments pyzmq') mjax_install = 'from IPython.external.mathjax import install_mathjax' mjax_install += '; install_mathjax()' run_command("python -c '%s'" % mjax_install) def configure_motd(): for f in glob.glob('/etc/update-motd.d/*'): os.unlink(f) motd = open('/etc/update-motd.d/00-starcluster', 'w') motd.write(STARCLUSTER_MOTD) motd.close() os.chmod(motd.name, 0755) def configure_cloud_init(): """docstring for configure_cloud_init""" cloudcfg = open('/etc/cloud/cloud.cfg', 'w') cloudcfg.write(CLOUD_INIT_CFG) cloudcfg.close() def configure_bash(): completion_line_found = False for line in fileinput.input('/etc/bash.bashrc', inplace=1): if 'bash_completion' in line and line.startswith('#'): print line.replace('#', ''), completion_line_found = True elif completion_line_found: print line.replace('#', ''), completion_line_found = False else: print line, aliasfile = open('/root/.bash_aliases', 'w') aliasfile.write("alias ..='cd ..'\n") aliasfile.close() def setup_environ(): num_cpus = multiprocessing.cpu_count() os.environ['MAKEFLAGS'] = '-j%d' % (num_cpus + 1) os.environ['DEBIAN_FRONTEND'] = "noninteractive" if os.path.isfile('/sbin/initctl') and not os.path.islink('/sbin/initctl'): run_command('mv /sbin/initctl /sbin/initctl.bak') run_command('ln -s /bin/true /sbin/initctl') def install_nfs(): chdir(SRC_DIR) run_command('initctl reload-configuration') apt_install('nfs-kernel-server') run_command('ln -s /etc/init.d/nfs-kernel-server /etc/init.d/nfs') def install_default_packages(): # stop mysql for interactively asking for password preseedf = '/tmp/mysql-preseed.txt' mysqlpreseed = open(preseedf, 'w') preseeds = """\ mysql-server mysql-server/root_password select mysql-server mysql-server/root_password seen true mysql-server mysql-server/root_password_again select mysql-server mysql-server/root_password_again seen true """ mysqlpreseed.write(preseeds) mysqlpreseed.close() run_command('debconf-set-selections < %s' % mysqlpreseed.name) run_command('rm %s' % mysqlpreseed.name) pkgs = ["git", "mercurial", "subversion", "cvs", "vim", "vim-scripts", "emacs", "tmux", "screen", "zsh", "ksh", "csh", "tcsh", "encfs", "keychain", "unzip", "rar", "unace", "ec2-api-tools", "ec2-ami-tools", "mysql-server", "mysql-client", "apache2", "libapache2-mod-wsgi", "sysv-rc-conf", "pssh", "cython", "irssi", "htop", "mosh", "default-jdk", "xvfb", "python-imaging", "python-ctypes"] apt_install(' '.join(pkgs)) def install_python_packges(): pypkgs = ['python-boto', 'python-paramiko', 'python-django', 'python-pudb'] for pypkg in pypkgs: if pypkg.startswith('python-'): apt_command('build-dep %s' % pypkg.split('python-')[1]) run_command('pip install %s') def configure_init(): for script in ['nfs-kernel-server', 'hadoop', 'condor', 'apache', 'mysql']: run_command('find /etc/rc* -iname \*%s\* -delete' % script) def cleanup(): run_command('rm -f /etc/resolv.conf') run_command('rm -rf /var/run/resolvconf') run_command('rm -f /etc/mtab') run_command('rm -rf /root/*') exclude = ['/root/.bashrc', '/root/.profile', '/root/.bash_aliases'] for dot in glob.glob("/root/.*"): if dot not in exclude: run_command('rm -rf %s' % dot) for path in glob.glob('/usr/local/src/*'): if os.path.isdir(path): shutil.rmtree(path) run_command('rm -f /var/cache/apt/archives/*.deb') run_command('rm -f /var/cache/apt/archives/partial/*') for f in glob.glob('/etc/profile.d'): if 'byobu' in f: run_command('rm -f %s' % f) if os.path.islink('/sbin/initctl') and os.path.isfile('/sbin/initctl.bak'): run_command('mv -f /sbin/initctl.bak /sbin/initctl') def main(): """docstring for main""" if os.getuid() != 0: sys.stderr.write('you must be root to run this script\n') return setup_environ() configure_motd() configure_cloud_init() configure_bash() configure_apt_sources() upgrade_packages() install_build_utils() install_default_packages() install_gridscheduler() install_condor() #install_torque() install_pydrmaa() install_blas_lapack() install_numpy_scipy() install_matplotlib() install_pandas() install_ipython() install_mpi() install_hadoop() install_nfs() install_julia() configure_init() cleanup() if __name__ == '__main__': main()
lgpl-3.0
kimhungGCZ/combinedAL
study_armi_2_with_decay.py
1
6337
import numpy as np import pandas as pd from scipy.stats import norm import statsmodels.api as sm import matplotlib.pyplot as plt import scripts.common_functions as cmfunc import sklearn.neighbors as nb import warnings warnings.simplefilter('ignore') def getCSVData(dataPath): try: data = pd.read_csv(dataPath) except IOError("Invalid path to data file."): return return data dataPath_result_bayes = './results/bayesChangePt/realKnownCause/bayesChangePt_dta_tsing.csv' #dataPath_result = './results/relativeEntropy/realKnownCause/relativeEntropy_dta_tsing.csv' dataPath_result_numenta = './results/numenta/realKnownCause/numenta_dta_tsing.csv' #dataPath_result = './results/skyline/realKnownCause/skyline_dta_tsing.csv' dataPath_raw = './data/realKnownCause/dta_tsing.csv' result_dta_bayes = getCSVData(dataPath_result_bayes)if dataPath_result_bayes else None result_dta_numenta = getCSVData(dataPath_result_numenta)if dataPath_result_numenta else None raw_dta = getCSVData(dataPath_raw)if dataPath_raw else None result_dta_numenta.anomaly_score[0:150] = np.min(result_dta_numenta.anomaly_score) # dao ham bac 1 der = cmfunc.change_after_k_seconds(raw_dta.value, k=1) # dao ham bac 2 sec_der = cmfunc.change_after_k_seconds(raw_dta.value, k=1) median_sec_der = np.median(sec_der) std_sec_der = np.std(sec_der) breakpoint_candidates = list(map(lambda x: (x[1] - median_sec_der) - np.abs(std_sec_der) if (x[1] - median_sec_der) - np.abs(std_sec_der) > 0 else 0, enumerate(sec_der))) breakpoint_candidates = (breakpoint_candidates - np.min(breakpoint_candidates))/(np.max(breakpoint_candidates) - np.min(breakpoint_candidates)) breakpoint_candidates = np.insert(breakpoint_candidates, 0,0) #result_dta = result_dta_numenta[150:400].copy() result_dta = result_dta_numenta.copy() #result_dta.anomaly_score = result_dta_numenta[150:400].anomaly_score + result_dta_bayes[150:400].anomaly_score #breakpoint_candidates # + 0.5 * result_dta.anomaly_score = 0.3*result_dta_numenta.anomaly_score + 0.7*breakpoint_candidates #+ result_dta_bayes.anomaly_score #breakpoint_candidates # + 0.5 * # plt.subplot(411) # plt.plot(result_dta_bayes.anomaly_score) # plt.subplot(412) # plt.plot(result_dta_numenta.anomaly_score) # plt.subplot(413) # plt.plot(result_dta.anomaly_score) # plt.subplot(414) # plt.plot(raw_dta.value) # plt.show() dta_full = result_dta # dta_noiss = dta_full.copy() # dta_miss = dta_full.copy() # dta_truth = raw_dta['truth'].values # # dta_noiss.value.index = result_dta.timestamp # dta_miss.value.index = result_dta.timestamp dta_full.value.index = result_dta.timestamp #dta_reverse.value.index = dta_reverse.timestamp five_percentage = int((0.02* len(result_dta['anomaly_score'])) ) #anomaly_detected = np.array(result_dta.loc[result_dta['anomaly_score'] > 1].value.index) np.argsort(result_dta['anomaly_score']) #correct_detected = np.array(result_dta.loc[result_dta['anomaly_score'] == 0].value.index) anomaly_index = np.array(np.argsort(result_dta['anomaly_score']))[-five_percentage:] normal_index = np.array(np.argsort(result_dta['anomaly_score']))[:int((0.2* len(result_dta['anomaly_score'])) )] #anomaly_index = [15, 143, 1860, 1700] print("Anomaly Point Found", anomaly_index) print("Correct Point Found", normal_index) alpha = 0.05 Y = np.zeros(len(result_dta['anomaly_score'])) Z = np.zeros(len(result_dta['anomaly_score'])) X = list(map(lambda x: [x,result_dta.values[x][1]], np.arange(len(result_dta.values)))) tree = nb.KDTree(X, leaf_size=20) for anomaly_point in anomaly_index: anomaly_neighboor = np.array(cmfunc.find_inverneghboor_of_point(tree, X, anomaly_point), dtype=np.int32) for NN_pair in anomaly_neighboor: Y[NN_pair[1]] = Y[NN_pair[1]] + result_dta['anomaly_score'][anomaly_point] - NN_pair[0] * alpha if result_dta['anomaly_score'][anomaly_point] - NN_pair[0] * alpha > 0 else Y[NN_pair[1]] for normal_point in normal_index: anomaly_neighboor = np.array(cmfunc.find_inverneghboor_of_point(tree, X, normal_point), dtype=np.int32) for NN_pair in anomaly_neighboor: Z[NN_pair[1]] = Z[NN_pair[1]] + (1-result_dta['anomaly_score'][normal_point]) - NN_pair[0] * alpha if (1-result_dta['anomaly_score'][normal_point]) - NN_pair[0] * alpha > 0 else Z[NN_pair[1]] plt.subplot(411) plt.plot(result_dta.anomaly_score, label='Metric of Score') plt.legend(loc='upper center') plt.subplot(412) plt.plot(Y, label='Spreading Anomaly Score') plt.legend(loc='upper center') plt.subplot(413) plt.plot(Z, label='Spreading Normal Score') plt.legend(loc='upper center') plt.subplot(414) plt.plot(raw_dta.value, label='Final Score') plt.legend(loc='upper center') plt.show() result_dta.anomaly_score = result_dta.anomaly_score + Y - Z final_score = map(lambda x: 0 if x < 0 else x, result_dta.anomaly_score); #final_score = (final_score - np.min(final_score))/(np.max(final_score) - np.min(final_score - np.min(final_score))) plt.subplot(511) plt.plot(raw_dta.value, label='Raw data') plt.legend(loc='upper center') plt.subplot(512) plt.plot(result_dta_bayes.anomaly_score, label='Bayes Result') plt.legend(loc='upper center') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,2)) plt.subplot(513) plt.plot(result_dta_numenta.anomaly_score, label='Numenta Result') plt.legend(loc='upper center') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,2)) # plt.subplot(514) # plt.plot(breakpoint_candidates) # plt.legend(loc='upper center') # x1,x2,y1,y2 = plt.axis() # plt.axis((x1,x2,0,2)) plt.subplot(515) plt.plot(final_score, label='Our result') plt.legend(loc='upper center') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,max(final_score))) plt.show() plt.subplot(511) plt.plot(raw_dta.value[720:800], label='Raw data') plt.legend(loc='upper center') plt.subplot(512) plt.plot(result_dta_bayes.anomaly_score[720:800], label='Bayes Result') plt.legend(loc='upper center') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,2)) plt.subplot(513) plt.plot(result_dta_numenta.anomaly_score[720:800], label='Numenta Result') plt.legend(loc='upper center') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,2)) # plt.subplot(514) # plt.plot(breakpoint_candidates[720:800]) # x1,x2,y1,y2 = plt.axis() # plt.axis((x1,x2,0,2)) plt.subplot(515) plt.plot(final_score[720:800], label='Our result') plt.legend(loc='upper center') x1,x2,y1,y2 = plt.axis() plt.axis((x1,x2,0,max(final_score[720:800]))) plt.show()
agpl-3.0
Bam4d/neon
examples/timeseries_lstm.py
1
14730
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright 2015 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- """ Example that shows how to train on synthetic multi-dimensional time series After training, the network is able to generate the sequences Usage: python examples/timeseries_lstm.py -e 10 -eval 1 Then look at the PNG plots generated. """ try: import matplotlib.pyplot as plt except ImportError: print 'matplotlib needs to be installed manually to generate plots needed for this example' raise ImportError() import numpy as np import math from neon.backends import gen_backend from neon.initializers import GlorotUniform from neon.layers import GeneralizedCost, LSTM, Affine, RecurrentLast from neon.models import Model from neon.optimizers import RMSProp from neon.transforms import Logistic, Tanh, Identity, MeanSquared from neon.callbacks.callbacks import Callbacks from neon import NervanaObject from neon.util.argparser import NeonArgparser, extract_valid_args def rolling_window(a, lag): """ Convert a into time-lagged vectors a : (n, p) lag : time steps used for prediction returns (n-lag+1, lag, p) array (Building time-lagged vectors is not necessary for neon.) """ assert a.shape[0] > lag shape = [a.shape[0] - lag + 1, lag, a.shape[-1]] strides = [a.strides[0], a.strides[0], a.strides[-1]] return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) class TimeSeries(object): def __init__(self, npoints=30, ncycles=3, divide=0.2, amplitude=1, curvetype='Lissajous1'): """ curvetype (str, optional): 'Lissajous1' or 'Lissajous2' """ self.nsamples = npoints * ncycles self.x = np.linspace(0, ncycles * 2 * math.pi, self.nsamples) if curvetype not in ('Lissajous1', 'Lissajous2'): raise NotImplementedError() sin_scale = 2 if curvetype is 'Lissajous1' else 1 def y_x(x): return 4.0/5 * math.sin(x/sin_scale) def y_y(x): return 4.0/5 * math.cos(x/2) self.data = np.zeros((self.nsamples, 2)) self.data[:, 0] = np.asarray([y_x(xs) for xs in self.x]).astype(np.float32) self.data[:, 1] = np.asarray([y_y(xs) for xs in self.x]).astype(np.float32) L = len(self.data) c = int(L * (1 - divide)) self.train = self.data[:c] self.test = self.data[c:] class DataIteratorSequence(NervanaObject): """ This class takes a sequence and returns an iterator providing data in batches suitable for RNN prediction. Meant for use when the entire dataset is small enough to fit in memory. """ def __init__(self, X, time_steps, forward=1, return_sequences=True): """ Implements loading of given data into backend tensor objects. If the backend is specific to an accelerator device, the data is copied over to that device. Args: X (ndarray): Input sequence with feature size within the dataset. Shape should be specified as (num examples, feature size] time_steps (int): The number of examples to be put into one sequence. forward (int, optional): how many forward steps the sequence should predict. default is 1, which is the next example return_sequences (boolean, optional): whether the target is a sequence or single step. Also determines whether data will be formatted as strides or rolling windows. If true, target value be a sequence, input data will be reshaped as strides. If false, target value will be a single step, input data will be a rolling_window """ self.seq_length = time_steps self.forward = forward self.batch_index = 0 self.nfeatures = self.nclass = X.shape[1] self.nsamples = X.shape[0] self.shape = (self.nfeatures, time_steps) self.return_sequences = return_sequences target_steps = time_steps if return_sequences else 1 # pre-allocate the device buffer to provide data for each minibatch # buffer size is nfeatures x (times * batch_size), which is handled by backend.iobuf() self.X_dev = self.be.iobuf((self.nfeatures, time_steps)) self.y_dev = self.be.iobuf((self.nfeatures, target_steps)) if return_sequences is True: # truncate to make the data fit into multiples of batches extra_examples = self.nsamples % (self.be.bsz * time_steps) if extra_examples: X = X[:-extra_examples] # calculate how many batches self.nsamples -= extra_examples self.nbatches = self.nsamples / (self.be.bsz * time_steps) self.ndata = self.nbatches * self.be.bsz * time_steps # no leftovers # y is the lagged version of X y = np.concatenate((X[forward:], X[:forward])) self.y_series = y # reshape this way so sequence is continuous along the batches self.X = X.reshape(self.be.bsz, self.nbatches, time_steps, self.nfeatures) self.y = y.reshape(self.be.bsz, self.nbatches, time_steps, self.nfeatures) else: self.X = rolling_window(X, time_steps) self.X = self.X[:-1] self.y = X[time_steps:] self.nsamples = self.X.shape[0] extra_examples = self.nsamples % (self.be.bsz) if extra_examples: self.X = self.X[:-extra_examples] self.y = self.y[:-extra_examples] # calculate how many batches self.nsamples -= extra_examples self.nbatches = self.nsamples / (self.be.bsz) self.ndata = self.nbatches * self.be.bsz self.y_series = self.y Xshape = (self.nbatches, self.be.bsz, time_steps, self.nfeatures) Yshape = (self.nbatches, self.be.bsz, 1, self.nfeatures) self.X = self.X.reshape(Xshape).transpose(1, 0, 2, 3) self.y = self.y.reshape(Yshape).transpose(1, 0, 2, 3) def reset(self): """ For resetting the starting index of this dataset back to zero. """ self.batch_index = 0 def __iter__(self): """ Generator that can be used to iterate over this dataset. Yields: tuple : the next minibatch of data. """ self.batch_index = 0 while self.batch_index < self.nbatches: # get the data for this batch and reshape to fit the device buffer shape X_batch = self.X[:, self.batch_index].reshape(self.X_dev.shape[::-1]).T.copy() y_batch = self.y[:, self.batch_index].reshape(self.y_dev.shape[::-1]).T.copy() # make the data for this batch as backend tensor self.X_dev.set(X_batch) self.y_dev.set(y_batch) self.batch_index += 1 yield self.X_dev, self.y_dev # replicate neon's mse error metric def err(y, t): feature_axis = 1 return (0.5 * np.square(y - t).mean(axis=feature_axis).mean()) if __name__ == '__main__': # parse the command line arguments parser = NeonArgparser(__doc__) parser.add_argument('--curvetype', default='Lissajous1', choices=['Lissajous1', 'Lissajous2'], help='type of input curve data to use (Lissajous1 or Lissajous2)') args = parser.parse_args(gen_be=False) # network hyperparameters hidden = 32 args.batch_size = 1 # The following flag will switch between 2 training strategies: # 1. return_sequence True: # Inputs are sequences, and target outputs will be sequences. # The RNN layer's output at EVERY step will be used for errors and optimized. # The RNN model contains a RNN layer and an Affine layer # The data iterator will format the data accordingly, and will stride along the # whole series with no overlap # 2. return_sequence False: # Inputs are sequences, and target output will be a single step. # The RNN layer's output at LAST step will be used for errors and optimized. # The RNN model contains a RNN layer and RNN-output layer (i.g. RecurrentLast, etc.) # and an Affine layer # The data iterator will format the data accordingly, using a rolling window to go # through the data return_sequences = False # Note that when the time series has higher or lower frequency, it requires different amounts # of data to learn the temporal pattern, the sequence length and the batch size for the # training process also makes a difference on learning performance. seq_len = 30 npoints = 10 ncycles = 100 num_predict = 200 seed_seq_len = 30 # ================= Main neon script ==================== be = gen_backend(**extract_valid_args(args, gen_backend)) # a file to save the trained model if args.save_path is None: args.save_path = 'timeseries.pkl' if args.callback_args['save_path'] is None: args.callback_args['save_path'] = args.save_path if args.callback_args['serialize'] is None: args.callback_args['serialize'] = 1 # create synthetic data as a whole series time_series = TimeSeries(npoints, ncycles=ncycles, curvetype=args.curvetype) # use data iterator to feed X, Y. return_sequence determines training strategy train_set = DataIteratorSequence(time_series.train, seq_len, return_sequences=return_sequences) valid_set = DataIteratorSequence(time_series.test, seq_len, return_sequences=return_sequences) # define weights initialization init = GlorotUniform() # Uniform(low=-0.08, high=0.08) # define model: model is different for the 2 strategies (sequence target or not) if return_sequences is True: layers = [ LSTM(hidden, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=False), Affine(train_set.nfeatures, init, bias=init, activation=Identity()) ] else: layers = [ LSTM(hidden, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=True), RecurrentLast(), Affine(train_set.nfeatures, init, bias=init, activation=Identity()) ] model = Model(layers=layers) cost = GeneralizedCost(MeanSquared()) optimizer = RMSProp(stochastic_round=args.rounding) callbacks = Callbacks(model, train_set, eval_set=valid_set, **args.callback_args) # fit model model.fit(train_set, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks) # =======visualize how the model does on validation set============== # run the trained model on train and valid dataset and see how the outputs match train_output = model.get_outputs(train_set).reshape(-1, train_set.nfeatures) valid_output = model.get_outputs(valid_set).reshape(-1, valid_set.nfeatures) train_target = train_set.y_series valid_target = valid_set.y_series # calculate accuracy terr = err(train_output, train_target) verr = err(valid_output, valid_target) print 'terr = %g, verr = %g' % (terr, verr) plt.figure() plt.plot(train_output[:, 0], train_output[:, 1], 'bo', label='prediction') plt.plot(train_target[:, 0], train_target[:, 1], 'r.', label='target') plt.legend() plt.title('Neon on training set') plt.savefig('neon_series_training_output.png') plt.figure() plt.plot(valid_output[:, 0], valid_output[:, 1], 'bo', label='prediction') plt.plot(valid_target[:, 0], valid_target[:, 1], 'r.', label='target') plt.legend() plt.title('Neon on validatation set') plt.savefig('neon_series_validation_output.png') # =====================generate sequence ================================== # when generating sequence, set sequence length to 1, since it doesn't make a difference be.bsz = 1 seq_len = 1 if return_sequences is True: layers = [ LSTM(hidden, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=False), Affine(train_set.nfeatures, init, bias=init, activation=Identity()) ] else: layers = [ LSTM(hidden, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=False), RecurrentLast(), Affine(train_set.nfeatures, init, bias=init, activation=Identity()) ] model_new = Model(layers=layers) model_new.load_params(args.save_path) model_new.initialize(dataset=(train_set.nfeatures, seq_len)) output = np.zeros((train_set.nfeatures, num_predict)) seed = time_series.train[:seed_seq_len] x = model_new.be.empty((train_set.nfeatures, seq_len)) for s_in in seed: x.set(s_in.reshape(train_set.nfeatures, seq_len)) y = model_new.fprop(x, inference=False) for i in range(num_predict): # Take last prediction and feed into next fprop pred = y.get()[:, -1] output[:, i] = pred x[:] = pred.reshape(train_set.nfeatures, seq_len) y = model_new.fprop(x, inference=False) output_seq = np.vstack([seed, output.T]) plt.figure() plt.plot(output_seq[:, 0], output_seq[:, 1], 'b.-', label='generated sequence') plt.plot(seed[:, 0], seed[:, 1], 'r.', label='seed sequence') plt.legend() plt.title('neon generated sequence') plt.savefig('neon_generated_sequence_2d.png') plt.figure() plt.plot(output_seq, 'b.-', label='generated sequence') plt.plot(seed, 'r.', label='seed sequence') plt.legend() plt.title('neon generated sequence') plt.savefig('neon_generated_sequence.png')
apache-2.0
fabian-paul/PyEMMA
pyemma/coordinates/clustering/tests/util.py
3
2962
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import numpy as np def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std : float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box : pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. """ from scipy._lib._util import check_random_state generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: from bhmm._external.sklearn.utils import check_array centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y
lgpl-3.0
vivekmishra1991/scikit-learn
sklearn/utils/tests/test_testing.py
107
4210
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message) from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LinearDiscriminantAnalysis() tree = DecisionTreeClassifier() # Linear Discriminant Analysis doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) def _no_raise(): pass assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) # multiple exceptions in a tuple assert_raises(AssertionError, assert_raise_message, (ValueError, AttributeError), "test", _no_raise) # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
anirudhjayaraman/scikit-learn
sklearn/utils/tests/test_validation.py
79
18547
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( NotFittedError, has_fit_parameter, check_is_fitted, check_consistent_length, DataConversionWarning, ) from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=(10, 10), dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M.ravel()) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) @ignore_warnings def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d assert_warns(DeprecationWarning, check_array, [0, 1, 2]) X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [[]]) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = assert_warns(DeprecationWarning, check_array, [42], ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
dboyliao/Scipy_Numpy_Learning
python_examples/scipy_352_ex1.py
2
1996
import numpy as np from scipy.spatial.distance import pdist, squareform import scipy.cluster.hierarchy as hy import matplotlib.pyplot as plt # Creating a cluster of clusters function def clusters(number=20, cnumber=5, csize=10): # Note that the way the clusters are positioned is Gaussian randomness. rnum = np.random.rand(cnumber, 2) rn = rnum[:, 0] * number rn = rn.astype(int) rn[np.where(rn < 5)] = 5 rn[np.where(rn > number / 2.)] = round(number / 2., 0) ra = rnum[:, 1] * 2.9 ra[np.where(ra < 1.5)] = 1.5 cls = np.random.randn(number, 3) * csize # Random multipliers for central point of cluster rxyz = np.random.randn(cnumber - 1, 3) for i in xrange(cnumber - 1): tmp = np.random.randn(rn[i + 1], 3) x = tmp[:, 0] + (rxyz[i, 0] * csize) y = tmp[:, 1] + (rxyz[i, 1] * csize) z = tmp[:, 2] + (rxyz[i, 2] * csize) tmp = np.column_stack([x, y, z]) cls = np.vstack([cls, tmp]) return cls # Generate a cluster of clusters and distance matrix. cls = clusters() D = pdist(cls[:, 0:2]) D = squareform(D) # Compute and plot first dendrogram. fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6]) Y1 = hy.linkage(D, method='complete') cutoff = 0.3 * np.max(Y1[:, 2]) Z1 = hy.dendrogram(Y1, orientation='right', color_threshold=cutoff) ax1.xaxis.set_visible(False) ax1.yaxis.set_visible(False) # Compute and plot second dendrogram. ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2]) Y2 = hy.linkage(D, method='average') cutoff = 0.3 * np.max(Y2[:, 2]) Z2 = hy.dendrogram(Y2, color_threshold=cutoff) ax2.xaxis.set_visible(False) ax2.yaxis.set_visible(False) # Plot distance matrix. ax3 = fig.add_axes([0.3, 0.1, 0.6, 0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = D[idx1, :] D = D[:, idx2] ax3.matshow(D, aspect='auto', origin='lower', cmap=plt.cm.YlGnBu) ax3.xaxis.set_visible(False) ax3.yaxis.set_visible(False) # Plot colorbar. fig.savefig('scipy_352_ex1.pdf', bbox='tight')
mit
intuition-io/intuition
intuition/data/forex.py
1
2448
# -*- coding: utf-8 -*- # vim:fenc=utf-8 ''' Forex access thanks to truefx.com --------------------------------- :copyright (c) 2014 Xavier Bruhiere. :license: Apache2.0, see LICENSE for more details. ''' import os import requests import string import random from pandas import DataFrame, Series import dna.logging log = dna.logging.logger(__name__) def _clean_pairs(pairs): if not isinstance(pairs, list): pairs = [pairs] return ','.join(map(str.upper, pairs)) def _fx_mapping(raw_rates): ''' Map raw output to clearer labels ''' return {pair[0].lower(): { 'timeStamp': pair[1], 'bid': float(pair[2] + pair[3]), 'ask': float(pair[4] + pair[5]), 'high': float(pair[6]), 'low': float(pair[7]) } for pair in map(lambda x: x.split(','), raw_rates)} class TrueFX(object): _api_url = 'http://webrates.truefx.com/rates/connect.html' _full_snapshot = 'y' _output_format = 'csv' def __init__(self, credentials='', pairs=[]): if not credentials: log.info('No credentials provided, inspecting environment') credentials = os.environ.get('TRUEFX_API', ':') self._user = credentials.split(':')[0] self._pwd = credentials.split(':')[1] self.state_pairs = _clean_pairs(pairs) #self._qualifier = 'ozrates' self._qualifier = ''.join( random.choice(string.ascii_lowercase) for _ in range(8)) def connect(self): payload = { 'u': self._user, 'p': self._pwd, 'q': self._qualifier, 'c': self.state_pairs, 'f': self._output_format, 's': self._full_snapshot } auth = requests.get(self._api_url, params=payload) if auth.ok: log.debug('Truefx authentification successful') # Remove '\r\n' self._session = auth.content[:-2] return auth.ok def query_rates(self, pairs=[]): ''' Perform a request against truefx data ''' # If no pairs, TrueFx will use the ones given the last time payload = {'id': self._session} if pairs: payload['c'] = _clean_pairs(pairs) response = requests.get(self._api_url, params=payload) mapped_data = _fx_mapping(response.content.split('\n')[:-2]) return Series(mapped_data) if len(mapped_data) == 1 \ else DataFrame(mapped_data)
apache-2.0
liyu1990/sklearn
examples/applications/wikipedia_principal_eigenvector.py
233
7819
""" =============================== Wikipedia principal eigenvector =============================== A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality score: http://en.wikipedia.org/wiki/Eigenvector_centrality On the graph of webpages and links those values are called the PageRank scores by Google. The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance according to this eigenvector centrality. The traditional way to compute the principal eigenvector is to use the power iteration method: http://en.wikipedia.org/wiki/Power_iteration Here the computation is achieved thanks to Martinsson's Randomized SVD algorithm implemented in the scikit. The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the Wikipedia content. """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from bz2 import BZ2File import os from datetime import datetime from pprint import pprint from time import time import numpy as np from scipy import sparse from sklearn.decomposition import randomized_svd from sklearn.externals.joblib import Memory from sklearn.externals.six.moves.urllib.request import urlopen from sklearn.externals.six import iteritems print(__doc__) ############################################################################### # Where to download the data, if not already on disk redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2" redirects_filename = redirects_url.rsplit("/", 1)[1] page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2" page_links_filename = page_links_url.rsplit("/", 1)[1] resources = [ (redirects_url, redirects_filename), (page_links_url, page_links_filename), ] for url, filename in resources: if not os.path.exists(filename): print("Downloading data from '%s', please wait..." % url) opener = urlopen(url) open(filename, 'wb').write(opener.read()) print() ############################################################################### # Loading the redirect files memory = Memory(cachedir=".") def index(redirects, index_map, k): """Find the index of an article name after redirect resolution""" k = redirects.get(k, k) return index_map.setdefault(k, len(index_map)) DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/") SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1) def short_name(nt_uri): """Remove the < and > URI markers and the common URI prefix""" return nt_uri[SHORTNAME_SLICE] def get_redirects(redirects_filename): """Parse the redirections and build a transitively closed map out of it""" redirects = {} print("Parsing the NT redirect file") for l, line in enumerate(BZ2File(redirects_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue redirects[short_name(split[0])] = short_name(split[2]) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) # compute the transitive closure print("Computing the transitive closure of the redirect relation") for l, source in enumerate(redirects.keys()): transitive_target = None target = redirects[source] seen = set([source]) while True: transitive_target = target target = redirects.get(target) if target is None or target in seen: break seen.add(target) redirects[source] = transitive_target if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) return redirects # disabling joblib as the pickling of large dicts seems much too slow #@memory.cache def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None): """Extract the adjacency graph as a scipy sparse matrix Redirects are resolved first. Returns X, the scipy sparse adjacency matrix, redirects as python dict from article names to article names and index_map a python dict from article names to python int (article indexes). """ print("Computing the redirect map") redirects = get_redirects(redirects_filename) print("Computing the integer index map") index_map = dict() links = list() for l, line in enumerate(BZ2File(page_links_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue i = index(redirects, index_map, short_name(split[0])) j = index(redirects, index_map, short_name(split[2])) links.append((i, j)) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) if limit is not None and l >= limit - 1: break print("Computing the adjacency matrix") X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32) for i, j in links: X[i, j] = 1.0 del links print("Converting to CSR representation") X = X.tocsr() print("CSR conversion done") return X, redirects, index_map # stop after 5M links to make it possible to work in RAM X, redirects, index_map = get_adjacency_matrix( redirects_filename, page_links_filename, limit=5000000) names = dict((i, name) for name, i in iteritems(index_map)) print("Computing the principal singular vectors using randomized_svd") t0 = time() U, s, V = randomized_svd(X, 5, n_iter=3) print("done in %0.3fs" % (time() - t0)) # print the names of the wikipedia related strongest compenents of the the # principal singular vector which should be similar to the highest eigenvector print("Top wikipedia pages according to principal singular vectors") pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]]) pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]]) def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10): """Power iteration computation of the principal eigenvector This method is also known as Google PageRank and the implementation is based on the one from the NetworkX project (BSD licensed too) with copyrights by: Aric Hagberg <[email protected]> Dan Schult <[email protected]> Pieter Swart <[email protected]> """ n = X.shape[0] X = X.copy() incoming_counts = np.asarray(X.sum(axis=1)).ravel() print("Normalizing the graph") for i in incoming_counts.nonzero()[0]: X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i] dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel() scores = np.ones(n, dtype=np.float32) / n # initial guess for i in range(max_iter): print("power iteration #%d" % i) prev_scores = scores scores = (alpha * (scores * X + np.dot(dangle, prev_scores)) + (1 - alpha) * prev_scores.sum() / n) # check convergence: normalized l_inf norm scores_max = np.abs(scores).max() if scores_max == 0.0: scores_max = 1.0 err = np.abs(scores - prev_scores).max() / scores_max print("error: %0.6f" % err) if err < n * tol: return scores return scores print("Computing principal eigenvector score using a power iteration method") t0 = time() scores = centrality_scores(X, max_iter=100, tol=1e-10) print("done in %0.3fs" % (time() - t0)) pprint([names[i] for i in np.abs(scores).argsort()[-10:]])
bsd-3-clause
maheshakya/scikit-learn
sklearn/neighbors/unsupervised.py
16
3198
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False) array([[2]]) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs)
bsd-3-clause
mikelane/FaceRecognition
Sklearn_Face_Recognition/SVM.py
1
5114
# coding: utf-8 # In[25]: from datetime import datetime import logging import itertools import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.datasets import fetch_lfw_people from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.decomposition import PCA from sklearn.svm import SVC import PIL import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') # In[11]: lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print('n_samples: {ns}'.format(ns=n_samples)) print('n_features: {nf}'.format(nf=n_features)) print('n_classes: {}'.format(n_classes)) # In[12]: # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=np.random.RandomState()) # In[13]: n_components = 150 print("Extracting the top {nc} eigenfaces from {nf} faces".format(nc=n_components, nf=X_train.shape[0])) start = datetime.now() pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True).fit(X_train) print("done in {dur:.3f}s".format(dur=(datetime.now() - start).total_seconds())) eigenfaces = pca.components_.reshape((n_components, h, w)) print('Projecting the input data on the eigenfaces orthonormal basis') start = datetime.now() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in {dur:.3f}s".format(dur=(datetime.now() - start).total_seconds())) # In[14]: print('Fitting the classifier to the training set') start = datetime.now() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) clf = clf.fit(X_train_pca, y_train) print('done in {dur:.3f}s'.format(dur=(datetime.now() - start).total_seconds())) print('Best estimator found by grid search:') print(clf.best_estimator_) # In[33]: def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. """ plt.figure(figsize=(7,7)) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title, fontsize=28) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45, fontsize=12) plt.yticks(tick_marks, classes, fontsize=12) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black", fontsize=18) plt.tight_layout() plt.ylabel('True label', fontsize=18) plt.xlabel('Predicted label', fontsize=18) plt.style.use('seaborn-dark') plt.show() # In[35]: print("Predicting people's names on the test set") start = datetime.now() y_pred = clf.predict(X_test_pca) print("done in {dur:.3f}s".format(dur=(datetime.now() - start).total_seconds())) print('\nAccuracy: {:.2f}'.format(accuracy_score(y_test, y_pred))) print(classification_report(y_test, y_pred, target_names=target_names)) cm = confusion_matrix(y_test, y_pred, labels=range(n_classes)) plot_confusion_matrix(cm=cm, classes=np.array(target_names)) # In[16]: def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) plt.style.use('seaborn-dark') for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) def title(y_pred, y_test, target_names, i): """Helper function to extract the prediction titles""" pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: {p}\ntrue: {t}'.format(p=pred_name, t=true_name) # In[17]: prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface {}".format(i) for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show() # In[ ]:
mit
ky822/Data_Bootcamp
Code/Python/slides_indicators_FRED.py
1
2821
""" slides_indicators_fred.py Global Economy course, handles the following: * Loads data from FRED (uses the fred python modul) * cross-correlation function and graph * business cycle scorecard (more graphs) Written by: Trevor Barnett ([email protected]) Adapted from 'slides_indicators_FRED.R', written by Paul Backus and Espend Henriksen USAGE: Just run the script. If 'DISPLAY' below is set to True, the script will display the graphs, rather than output them to the current working directory. This uses the API key provided by Kim Ruhl in the original R script. Make sure you have the scipy suite and pandas suite installed, as well as the 'fred' package (available in PyPy repository). """ import fred import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import date,datetime FRED_API_KEY="055ba538c874e5974ee22d786f27fdda" FRED_SERIES=["INDPRO", "PAYEMS", "HOUST", "RRSFS", "NAPM"] FRED_START=date(1990,1,1) #set to false to output graphs to a file, uses current working directory. All numerical analysis is printed to the console DISPLAY=False fred.key(FRED_API_KEY) def get_fred_series(series): def filter(o): return {'date': datetime.strptime(o['date'],'%Y-%m-%d').date(), series: o['value']} return pd.DataFrame(map(filter,fred.observations(series)['observations']),dtype='float64').set_index('date').dropna() fred_data=get_fred_series(FRED_SERIES[0]) # Build an initial DataFrame for s in FRED_SERIES[1:]: fred_data=fred_data.join(get_fred_series(s)) fred_data=np.log(fred_data).diff(12)[FRED_START:].dropna() def make_ccf_chart(ax,x,y,title): ax.xcorr(fred_data[x],fred_data[y],maxlags=24) ax.set_ylim(-1,1) ax.set_xlim(-24,24) ax.set_xlabel("Lag k relative to IP",fontsize=8) ax.set_title(title,fontsize=12) ax.axvline(ymin=-1,ymax=1,color='r') plt.close('all') fig,((ax1,ax2),(ax3,ax4))=plt.subplots(nrows=2,ncols=2) make_ccf_chart(ax1,'PAYEMS','INDPRO','Nonfarm Eployment') make_ccf_chart(ax2,'HOUST','INDPRO','Housing Starts') make_ccf_chart(ax3,'RRSFS','INDPRO','Retail Sales') make_ccf_chart(ax4,'NAPM','INDPRO','Purchasing Managers Index') plt.tight_layout() if DISPLAY: plt.show() else: plt.savefig('ccf.png') mean= fred_data.mean() std=fred_data.std() corr=fred_data.corr() print " == MEAN ==" print mean print " == STD. DEV. ==" print std print " == CORR ==" print corr def make_bcs_chart(ax,n,title): ax.plot(fred_data.index,fred_data[n]) ax.set_title(title) xlim,ylim=ax.get_xlim(),ax.get_ylim() ax.fill_between(xlim,mean[n]+std[n],mean[n]-std[n],facecolor='yellow',alpha=0.5) plt.close('all') fig,(ax1,ax2)=plt.subplots(nrows=2,ncols=1) make_bcs_chart(ax1,'INDPRO','Industrial Production') make_bcs_chart(ax2,'PAYEMS','Nonfarm Employment') if DISPLAY: plt.show() else: plt.savefig('bcs.png')
mit
RBlakes/MusicPredictor
graphaccuracy.py
1
1147
# graphs the accuracy of the predictions using # the different combinations of attributes import matplotlib.pyplot as plt; plt.rcdefaults() import numpy as np import matplotlib.pyplot as plt objects = ('All', 'Artist Hotness', 'Duration', 'End of Fade in', 'Key', 'Key Confidence', 'Loudness', 'Mode', 'Mode Confidence', 'Tempo', 'Start of Fade out', 'Time Signature', 'Time Signature Confidence', 'Year') y_pos = np.arange(len(objects)) #performance = [97.27,95.74,97.06,96.46,96.9,97.03,97.14,96.31,95.77,97.25,97.1,97.06,97.1,96.65] performance = [98.6,98.04,98.08,98.24,97.5,98.47,98.27,97.27,98.54,98.23,98.54,98.16,98.61,98.35] plt.bar(y_pos, performance, align='center', alpha=0.75) plt.xticks(rotation=90) plt.xticks(y_pos, objects) plt.ylabel('Percentage of Accuracy') plt.xlabel('Attributes') plt.title('Prediction Accuracy for Attributes') rects = plt.bar(y_pos, performance, align='center', alpha=0.75) for rect in rects: height = rect.get_height() plt.text(rect.get_x() + rect.get_width()/2., height, float(height), ha='center', va='bottom') plt.show()
gpl-3.0
olafhauk/mne-python
mne/evoked.py
3
49843
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <[email protected]> # Matti Hämäläinen <[email protected]> # Denis Engemann <[email protected]> # Andrew Dykstra <[email protected]> # Mads Jensen <[email protected]> # Jona Sassenhagen <[email protected]> # # License: BSD (3-clause) from copy import deepcopy import numpy as np from .baseline import rescale from .channels.channels import (ContainsMixin, UpdateChannelsMixin, SetChannelsMixin, InterpolationMixin) from .channels.layout import _merge_ch_data, _pair_grad_sensors from .defaults import _EXTRAPOLATE_DEFAULT, _BORDER_DEFAULT from .filter import detrend, FilterMixin from .utils import (check_fname, logger, verbose, _time_mask, warn, sizeof_fmt, SizeMixin, copy_function_doc_to_method_doc, _validate_type, fill_doc, _check_option, ShiftTimeMixin, _build_data_frame, _check_pandas_installed, _check_pandas_index_arguments, _convert_times, _scale_dataframe_data, _check_time_format) from .viz import (plot_evoked, plot_evoked_topomap, plot_evoked_field, plot_evoked_image, plot_evoked_topo) from .viz.evoked import plot_evoked_white, plot_evoked_joint from .viz.topomap import _topomap_animation from .io.constants import FIFF from .io.open import fiff_open from .io.tag import read_tag from .io.tree import dir_tree_find from .io.pick import pick_types, _picks_to_idx, _FNIRS_CH_TYPES_SPLIT from .io.meas_info import read_meas_info, write_meas_info from .io.proj import ProjMixin from .io.write import (start_file, start_block, end_file, end_block, write_int, write_string, write_float_matrix, write_id, write_float, write_complex_float_matrix) from .io.base import TimeMixin, _check_maxshield _aspect_dict = { 'average': FIFF.FIFFV_ASPECT_AVERAGE, 'standard_error': FIFF.FIFFV_ASPECT_STD_ERR, 'single_epoch': FIFF.FIFFV_ASPECT_SINGLE, 'partial_average': FIFF.FIFFV_ASPECT_SUBAVERAGE, 'alternating_subaverage': FIFF.FIFFV_ASPECT_ALTAVERAGE, 'sample_cut_out_by_graph': FIFF.FIFFV_ASPECT_SAMPLE, 'power_density_spectrum': FIFF.FIFFV_ASPECT_POWER_DENSITY, 'dipole_amplitude_cuvre': FIFF.FIFFV_ASPECT_DIPOLE_WAVE, 'squid_modulation_lower_bound': FIFF.FIFFV_ASPECT_IFII_LOW, 'squid_modulation_upper_bound': FIFF.FIFFV_ASPECT_IFII_HIGH, 'squid_gate_setting': FIFF.FIFFV_ASPECT_GATE, } _aspect_rev = {val: key for key, val in _aspect_dict.items()} @fill_doc class Evoked(ProjMixin, ContainsMixin, UpdateChannelsMixin, SetChannelsMixin, InterpolationMixin, FilterMixin, TimeMixin, SizeMixin, ShiftTimeMixin): """Evoked data. Parameters ---------- fname : str Name of evoked/average FIF file to load. If None no data is loaded. condition : int, or str Dataset ID number (int) or comment/name (str). Optional if there is only one data set in file. proj : bool, optional Apply SSP projection vectors. kind : str Either 'average' or 'standard_error'. The type of data to read. Only used if 'condition' is a str. allow_maxshield : bool | str (default False) If True, allow loading of data that has been recorded with internal active compensation (MaxShield). Data recorded with MaxShield should generally not be loaded directly, but should first be processed using SSS/tSSS to remove the compensation signals that may also affect brain activity. Can also be "yes" to load without eliciting a warning. %(verbose)s Attributes ---------- info : dict Measurement info. ch_names : list of str List of channels' names. nave : int Number of averaged epochs. kind : str Type of data, either average or standard_error. comment : str Comment on dataset. Can be the condition. data : array of shape (n_channels, n_times) Evoked response. first : int First time sample. last : int Last time sample. tmin : float The first time point in seconds. tmax : float The last time point in seconds. times : array Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval between consecutive time samples is equal to the inverse of the sampling frequency. %(verbose)s Notes ----- Evoked objects contain a single condition only. """ @verbose def __init__(self, fname, condition=None, proj=True, kind='average', allow_maxshield=False, verbose=None): # noqa: D102 _validate_type(proj, bool, "'proj'") # Read the requested data self.info, self.nave, self._aspect_kind, self.comment, self.times, \ self.data = _read_evoked(fname, condition, kind, allow_maxshield) self._update_first_last() self.verbose = verbose self.preload = True # project and baseline correct if proj: self.apply_proj() @property def kind(self): """The data kind.""" return _aspect_rev[self._aspect_kind] @kind.setter def kind(self, kind): _check_option('kind', kind, list(_aspect_dict.keys())) self._aspect_kind = _aspect_dict[kind] @property def data(self): """The data matrix.""" return self._data @data.setter def data(self, data): """Set the data matrix.""" self._data = data @verbose def apply_baseline(self, baseline=(None, 0), *, verbose=None): """Baseline correct evoked data. Parameters ---------- %(baseline_evoked)s Defaults to ``(None, 0)``, i.e. beginning of the the data until time point zero. %(verbose_meth)s Returns ------- evoked : instance of Evoked The baseline-corrected Evoked object. Notes ----- Baseline correction can be done multiple times. .. versionadded:: 0.13.0 """ self.data = rescale(self.data, self.times, baseline, copy=False) return self def save(self, fname): """Save dataset to file. Parameters ---------- fname : str The name of the file, which should end with -ave.fif or -ave.fif.gz. Notes ----- To write multiple conditions into a single file, use :func:`mne.write_evokeds`. """ write_evokeds(fname, self) def __repr__(self): # noqa: D105 s = "'%s' (%s, N=%s)" % (self.comment, self.kind, self.nave) s += ", [%0.5g, %0.5g] sec" % (self.times[0], self.times[-1]) s += ", %s ch" % self.data.shape[0] s += ", ~%s" % (sizeof_fmt(self._size),) return "<Evoked | %s>" % s @property def ch_names(self): """Channel names.""" return self.info['ch_names'] @property def tmin(self): """First time point. .. versionadded:: 0.21 """ return self.times[0] @property def tmax(self): """Last time point. .. versionadded:: 0.21 """ return self.times[-1] @fill_doc def crop(self, tmin=None, tmax=None, include_tmax=True, verbose=None): """Crop data to a given time interval. Parameters ---------- tmin : float | None Start time of selection in seconds. tmax : float | None End time of selection in seconds. %(include_tmax)s %(verbose_meth)s Returns ------- evoked : instance of Evoked The cropped Evoked object, modified in-place. Notes ----- %(notes_tmax_included_by_default)s """ mask = _time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq'], include_tmax=include_tmax) self.times = self.times[mask] self._update_first_last() self.data = self.data[:, mask] return self @verbose def decimate(self, decim, offset=0, verbose=None): """Decimate the evoked data. Parameters ---------- %(decim)s %(decim_offset)s %(verbose_meth)s Returns ------- evoked : instance of Evoked The decimated Evoked object. See Also -------- Epochs.decimate Epochs.resample mne.io.Raw.resample Notes ----- %(decim_notes)s .. versionadded:: 0.13.0 """ decim, offset, new_sfreq = _check_decim(self.info, decim, offset) start_idx = int(round(self.times[0] * (self.info['sfreq'] * decim))) i_start = start_idx % decim + offset decim_slice = slice(i_start, None, decim) self.info['sfreq'] = new_sfreq self.data = self.data[:, decim_slice].copy() self.times = self.times[decim_slice].copy() self._update_first_last() return self @copy_function_doc_to_method_doc(plot_evoked) def plot(self, picks=None, exclude='bads', unit=True, show=True, ylim=None, xlim='tight', proj=False, hline=None, units=None, scalings=None, titles=None, axes=None, gfp=False, window_title=None, spatial_colors=False, zorder='unsorted', selectable=True, noise_cov=None, time_unit='s', sphere=None, verbose=None): return plot_evoked( self, picks=picks, exclude=exclude, unit=unit, show=show, ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units, scalings=scalings, titles=titles, axes=axes, gfp=gfp, window_title=window_title, spatial_colors=spatial_colors, zorder=zorder, selectable=selectable, noise_cov=noise_cov, time_unit=time_unit, sphere=sphere, verbose=verbose) @copy_function_doc_to_method_doc(plot_evoked_image) def plot_image(self, picks=None, exclude='bads', unit=True, show=True, clim=None, xlim='tight', proj=False, units=None, scalings=None, titles=None, axes=None, cmap='RdBu_r', colorbar=True, mask=None, mask_style=None, mask_cmap='Greys', mask_alpha=.25, time_unit='s', show_names=None, group_by=None, sphere=None): return plot_evoked_image( self, picks=picks, exclude=exclude, unit=unit, show=show, clim=clim, xlim=xlim, proj=proj, units=units, scalings=scalings, titles=titles, axes=axes, cmap=cmap, colorbar=colorbar, mask=mask, mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha, time_unit=time_unit, show_names=show_names, group_by=group_by, sphere=sphere) @copy_function_doc_to_method_doc(plot_evoked_topo) def plot_topo(self, layout=None, layout_scale=0.945, color=None, border='none', ylim=None, scalings=None, title=None, proj=False, vline=[0.0], fig_background=None, merge_grads=False, legend=True, axes=None, background_color='w', noise_cov=None, show=True): """ Notes ----- .. versionadded:: 0.10.0 """ return plot_evoked_topo( self, layout=layout, layout_scale=layout_scale, color=color, border=border, ylim=ylim, scalings=scalings, title=title, proj=proj, vline=vline, fig_background=fig_background, merge_grads=merge_grads, legend=legend, axes=axes, background_color=background_color, noise_cov=noise_cov, show=show) @copy_function_doc_to_method_doc(plot_evoked_topomap) def plot_topomap(self, times="auto", ch_type=None, vmin=None, vmax=None, cmap=None, sensors=True, colorbar=True, scalings=None, units=None, res=64, size=1, cbar_fmt="%3.1f", time_unit='s', time_format=None, proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', average=None, axes=None, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None, border=_BORDER_DEFAULT, nrows=1, ncols='auto'): return plot_evoked_topomap( self, times=times, ch_type=ch_type, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, scalings=scalings, units=units, res=res, size=size, cbar_fmt=cbar_fmt, time_unit=time_unit, time_format=time_format, proj=proj, show=show, show_names=show_names, title=title, mask=mask, mask_params=mask_params, outlines=outlines, contours=contours, image_interp=image_interp, average=average, axes=axes, extrapolate=extrapolate, sphere=sphere, border=border, nrows=nrows, ncols=ncols) @copy_function_doc_to_method_doc(plot_evoked_field) def plot_field(self, surf_maps, time=None, time_label='t = %0.0f ms', n_jobs=1, fig=None, vmax=None, n_contours=21, verbose=None): return plot_evoked_field(self, surf_maps, time=time, time_label=time_label, n_jobs=n_jobs, fig=fig, vmax=vmax, n_contours=n_contours, verbose=verbose) @copy_function_doc_to_method_doc(plot_evoked_white) def plot_white(self, noise_cov, show=True, rank=None, time_unit='s', sphere=None, axes=None, verbose=None): return plot_evoked_white( self, noise_cov=noise_cov, rank=rank, show=show, time_unit=time_unit, sphere=sphere, axes=axes, verbose=verbose) @copy_function_doc_to_method_doc(plot_evoked_joint) def plot_joint(self, times="peaks", title='', picks=None, exclude='bads', show=True, ts_args=None, topomap_args=None): return plot_evoked_joint(self, times=times, title=title, picks=picks, exclude=exclude, show=show, ts_args=ts_args, topomap_args=topomap_args) @fill_doc def animate_topomap(self, ch_type=None, times=None, frame_rate=None, butterfly=False, blit=True, show=True, time_unit='s', sphere=None, *, extrapolate=_EXTRAPOLATE_DEFAULT, verbose=None): """Make animation of evoked data as topomap timeseries. The animation can be paused/resumed with left mouse button. Left and right arrow keys can be used to move backward or forward in time. Parameters ---------- ch_type : str | None Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg', 'hbo', 'hbr', 'fnirs_cw_amplitude', 'fnirs_fd_ac_amplitude', 'fnirs_fd_phase', and 'fnirs_od'. If None, first available channel type from the above list is used. Defaults to None. times : array of float | None The time points to plot. If None, 10 evenly spaced samples are calculated over the evoked time series. Defaults to None. frame_rate : int | None Frame rate for the animation in Hz. If None, frame rate = sfreq / 10. Defaults to None. butterfly : bool Whether to plot the data as butterfly plot under the topomap. Defaults to False. blit : bool Whether to use blit to optimize drawing. In general, it is recommended to use blit in combination with ``show=True``. If you intend to save the animation it is better to disable blit. Defaults to True. show : bool Whether to show the animation. Defaults to True. time_unit : str The units for the time axis, can be "ms" (default in 0.16) or "s" (will become the default in 0.17). .. versionadded:: 0.16 %(topomap_sphere_auto)s %(topomap_extrapolate)s .. versionadded:: 0.22 %(verbose_meth)s Returns ------- fig : instance of matplotlib.figure.Figure The figure. anim : instance of matplotlib.animation.FuncAnimation Animation of the topomap. Notes ----- .. versionadded:: 0.12.0 """ return _topomap_animation( self, ch_type=ch_type, times=times, frame_rate=frame_rate, butterfly=butterfly, blit=blit, show=show, time_unit=time_unit, sphere=sphere, extrapolate=extrapolate, verbose=verbose) def as_type(self, ch_type='grad', mode='fast'): """Compute virtual evoked using interpolated fields. .. Warning:: Using virtual evoked to compute inverse can yield unexpected results. The virtual channels have ``'_v'`` appended at the end of the names to emphasize that the data contained in them are interpolated. Parameters ---------- ch_type : str The destination channel type. It can be 'mag' or 'grad'. mode : str Either ``'accurate'`` or ``'fast'``, determines the quality of the Legendre polynomial expansion used. ``'fast'`` should be sufficient for most applications. Returns ------- evoked : instance of mne.Evoked The transformed evoked object containing only virtual channels. Notes ----- This method returns a copy and does not modify the data it operates on. It also returns an EvokedArray instance. .. versionadded:: 0.9.0 """ from .forward import _as_meg_type_inst return _as_meg_type_inst(self, ch_type=ch_type, mode=mode) @fill_doc def detrend(self, order=1, picks=None): """Detrend data. This function operates in-place. Parameters ---------- order : int Either 0 or 1, the order of the detrending. 0 is a constant (DC) detrend, 1 is a linear detrend. %(picks_good_data)s Returns ------- evoked : instance of Evoked The detrended evoked object. """ picks = _picks_to_idx(self.info, picks) self.data[picks] = detrend(self.data[picks], order, axis=-1) return self def copy(self): """Copy the instance of evoked. Returns ------- evoked : instance of Evoked A copy of the object. """ evoked = deepcopy(self) return evoked def __neg__(self): """Negate channel responses. Returns ------- evoked_neg : instance of Evoked The Evoked instance with channel data negated and '-' prepended to the comment. """ out = self.copy() out.data *= -1 out.comment = '-' + (out.comment or 'unknown') return out def get_peak(self, ch_type=None, tmin=None, tmax=None, mode='abs', time_as_index=False, merge_grads=False, return_amplitude=False): """Get location and latency of peak amplitude. Parameters ---------- ch_type : str | None The channel type to use. Defaults to None. If more than one sensor Type is present in the data the channel type has to be explicitly set. tmin : float | None The minimum point in time to be considered for peak getting. If None (default), the beginning of the data is used. tmax : float | None The maximum point in time to be considered for peak getting. If None (default), the end of the data is used. mode : {'pos', 'neg', 'abs'} How to deal with the sign of the data. If 'pos' only positive values will be considered. If 'neg' only negative values will be considered. If 'abs' absolute values will be considered. Defaults to 'abs'. time_as_index : bool Whether to return the time index instead of the latency in seconds. merge_grads : bool If True, compute peak from merged gradiometer data. return_amplitude : bool If True, return also the amplitude at the maximum response. .. versionadded:: 0.16 Returns ------- ch_name : str The channel exhibiting the maximum response. latency : float | int The time point of the maximum response, either latency in seconds or index. amplitude : float The amplitude of the maximum response. Only returned if return_amplitude is True. .. versionadded:: 0.16 """ # noqa: E501 supported = ('mag', 'grad', 'eeg', 'seeg', 'ecog', 'misc', 'None') + _FNIRS_CH_TYPES_SPLIT types_used = self.get_channel_types(unique=True, only_data_chs=True) _check_option('ch_type', str(ch_type), supported) if ch_type is not None and ch_type not in types_used: raise ValueError('Channel type `{ch_type}` not found in this ' 'evoked object.'.format(ch_type=ch_type)) elif len(types_used) > 1 and ch_type is None: raise RuntimeError('More than one sensor type found. `ch_type` ' 'must not be `None`, pass a sensor type ' 'value instead') if merge_grads: if ch_type != 'grad': raise ValueError('Channel type must be grad for merge_grads') elif mode == 'neg': raise ValueError('Negative mode (mode=neg) does not make ' 'sense with merge_grads=True') meg = eeg = misc = seeg = ecog = fnirs = False picks = None if ch_type in ('mag', 'grad'): meg = ch_type elif ch_type == 'eeg': eeg = True elif ch_type == 'misc': misc = True elif ch_type == 'seeg': seeg = True elif ch_type == 'ecog': ecog = True elif ch_type in _FNIRS_CH_TYPES_SPLIT: fnirs = ch_type if ch_type is not None: if merge_grads: picks = _pair_grad_sensors(self.info, topomap_coords=False) else: picks = pick_types(self.info, meg=meg, eeg=eeg, misc=misc, seeg=seeg, ecog=ecog, ref_meg=False, fnirs=fnirs) data = self.data ch_names = self.ch_names if picks is not None: data = data[picks] ch_names = [ch_names[k] for k in picks] if merge_grads: data, _ = _merge_ch_data(data, ch_type, []) ch_names = [ch_name[:-1] + 'X' for ch_name in ch_names[::2]] ch_idx, time_idx, max_amp = _get_peak(data, self.times, tmin, tmax, mode) out = (ch_names[ch_idx], time_idx if time_as_index else self.times[time_idx]) if return_amplitude: out += (max_amp,) return out @fill_doc def to_data_frame(self, picks=None, index=None, scalings=None, copy=True, long_format=False, time_format='ms'): """Export data in tabular structure as a pandas DataFrame. Channels are converted to columns in the DataFrame. By default, an additional column "time" is added, unless ``index='time'`` (in which case time values form the DataFrame's index). Parameters ---------- %(picks_all)s %(df_index_evk)s Defaults to ``None``. %(df_scalings)s %(df_copy)s %(df_longform_raw)s %(df_time_format)s .. versionadded:: 0.20 Returns ------- %(df_return)s """ # check pandas once here, instead of in each private utils function pd = _check_pandas_installed() # noqa # arg checking valid_index_args = ['time'] valid_time_formats = ['ms', 'timedelta'] index = _check_pandas_index_arguments(index, valid_index_args) time_format = _check_time_format(time_format, valid_time_formats) # get data picks = _picks_to_idx(self.info, picks, 'all', exclude=()) data = self.data[picks, :] times = self.times data = data.T if copy: data = data.copy() data = _scale_dataframe_data(self, data, picks, scalings) # prepare extra columns / multiindex mindex = list() times = _convert_times(self, times, time_format) mindex.append(('time', times)) # build DataFrame df = _build_data_frame(self, data, picks, long_format, mindex, index, default_index=['time']) return df def _check_decim(info, decim, offset): """Check decimation parameters.""" if decim < 1 or decim != int(decim): raise ValueError('decim must be an integer > 0') decim = int(decim) new_sfreq = info['sfreq'] / float(decim) lowpass = info['lowpass'] if decim > 1 and lowpass is None: warn('The measurement information indicates data is not low-pass ' 'filtered. The decim=%i parameter will result in a sampling ' 'frequency of %g Hz, which can cause aliasing artifacts.' % (decim, new_sfreq)) elif decim > 1 and new_sfreq < 3 * lowpass: warn('The measurement information indicates a low-pass frequency ' 'of %g Hz. The decim=%i parameter will result in a sampling ' 'frequency of %g Hz, which can cause aliasing artifacts.' % (lowpass, decim, new_sfreq)) # > 50% nyquist lim offset = int(offset) if not 0 <= offset < decim: raise ValueError('decim must be at least 0 and less than %s, got ' '%s' % (decim, offset)) return decim, offset, new_sfreq @fill_doc class EvokedArray(Evoked): """Evoked object from numpy array. Parameters ---------- data : array of shape (n_channels, n_times) The channels' evoked response. See notes for proper units of measure. info : instance of Info Info dictionary. Consider using ``create_info`` to populate this structure. tmin : float Start time before event. Defaults to 0. comment : str Comment on dataset. Can be the condition. Defaults to ''. nave : int Number of averaged epochs. Defaults to 1. kind : str Type of data, either average or standard_error. Defaults to 'average'. %(verbose)s See Also -------- EpochsArray, io.RawArray, create_info Notes ----- Proper units of measure: * V: eeg, eog, seeg, emg, ecg, bio, ecog * T: mag * T/m: grad * M: hbo, hbr * Am: dipole * AU: misc """ @verbose def __init__(self, data, info, tmin=0., comment='', nave=1, kind='average', verbose=None): # noqa: D102 dtype = np.complex128 if np.iscomplexobj(data) else np.float64 data = np.asanyarray(data, dtype=dtype) if data.ndim != 2: raise ValueError('Data must be a 2D array of shape (n_channels, ' 'n_samples), got shape %s' % (data.shape,)) if len(info['ch_names']) != np.shape(data)[0]: raise ValueError('Info (%s) and data (%s) must have same number ' 'of channels.' % (len(info['ch_names']), np.shape(data)[0])) self.data = data self.first = int(round(tmin * info['sfreq'])) self.last = self.first + np.shape(data)[-1] - 1 self.times = np.arange(self.first, self.last + 1, dtype=np.float64) / info['sfreq'] self.info = info.copy() # do not modify original info self.nave = nave self.kind = kind self.comment = comment self.picks = None self.verbose = verbose self.preload = True self._projector = None _validate_type(self.kind, "str", "kind") if self.kind not in _aspect_dict: raise ValueError('unknown kind "%s", should be "average" or ' '"standard_error"' % (self.kind,)) self._aspect_kind = _aspect_dict[self.kind] def _get_entries(fid, evoked_node, allow_maxshield=False): """Get all evoked entries.""" comments = list() aspect_kinds = list() for ev in evoked_node: for k in range(ev['nent']): my_kind = ev['directory'][k].kind pos = ev['directory'][k].pos if my_kind == FIFF.FIFF_COMMENT: tag = read_tag(fid, pos) comments.append(tag.data) my_aspect = _get_aspect(ev, allow_maxshield)[0] for k in range(my_aspect['nent']): my_kind = my_aspect['directory'][k].kind pos = my_aspect['directory'][k].pos if my_kind == FIFF.FIFF_ASPECT_KIND: tag = read_tag(fid, pos) aspect_kinds.append(int(tag.data)) comments = np.atleast_1d(comments) aspect_kinds = np.atleast_1d(aspect_kinds) if len(comments) != len(aspect_kinds) or len(comments) == 0: fid.close() raise ValueError('Dataset names in FIF file ' 'could not be found.') t = [_aspect_rev[a] for a in aspect_kinds] t = ['"' + c + '" (' + tt + ')' for tt, c in zip(t, comments)] t = '\n'.join(t) return comments, aspect_kinds, t def _get_aspect(evoked, allow_maxshield): """Get Evoked data aspect.""" is_maxshield = False aspect = dir_tree_find(evoked, FIFF.FIFFB_ASPECT) if len(aspect) == 0: _check_maxshield(allow_maxshield) aspect = dir_tree_find(evoked, FIFF.FIFFB_IAS_ASPECT) is_maxshield = True if len(aspect) > 1: logger.info('Multiple data aspects found. Taking first one.') return aspect[0], is_maxshield def _get_evoked_node(fname): """Get info in evoked file.""" f, tree, _ = fiff_open(fname) with f as fid: _, meas = read_meas_info(fid, tree, verbose=False) evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED) return evoked_node def _check_evokeds_ch_names_times(all_evoked): evoked = all_evoked[0] ch_names = evoked.ch_names for ii, ev in enumerate(all_evoked[1:]): if ev.ch_names != ch_names: if set(ev.ch_names) != set(ch_names): raise ValueError( "%s and %s do not contain the same channels." % (evoked, ev)) else: warn("Order of channels differs, reordering channels ...") ev = ev.copy() ev.reorder_channels(ch_names) all_evoked[ii + 1] = ev if not np.max(np.abs(ev.times - evoked.times)) < 1e-7: raise ValueError("%s and %s do not contain the same time instants" % (evoked, ev)) return all_evoked def combine_evoked(all_evoked, weights): """Merge evoked data by weighted addition or subtraction. Each `~mne.Evoked` in ``all_evoked`` should have the same channels and the same time instants. Subtraction can be performed by passing ``weights=[1, -1]``. .. Warning:: Other than cases like simple subtraction mentioned above (where all weights are -1 or 1), if you provide numeric weights instead of using ``'equal'`` or ``'nave'``, the resulting `~mne.Evoked` object's ``.nave`` attribute (which is used to scale noise covariance when applying the inverse operator) may not be suitable for inverse imaging. Parameters ---------- all_evoked : list of Evoked The evoked datasets. weights : list of float | 'equal' | 'nave' The weights to apply to the data of each evoked instance, or a string describing the weighting strategy to apply: ``'nave'`` computes sum-to-one weights proportional to each object's ``nave`` attribute; ``'equal'`` weights each `~mne.Evoked` by ``1 / len(all_evoked)``. Returns ------- evoked : Evoked The new evoked data. Notes ----- .. versionadded:: 0.9.0 """ naves = np.array([evk.nave for evk in all_evoked], float) if isinstance(weights, str): _check_option('weights', weights, ['nave', 'equal']) if weights == 'nave': weights = naves / naves.sum() else: weights = np.ones_like(naves) / len(naves) else: weights = np.array(weights, float) if weights.ndim != 1 or weights.size != len(all_evoked): raise ValueError('weights must be the same size as all_evoked') # cf. https://en.wikipedia.org/wiki/Weighted_arithmetic_mean, section on # "weighted sample variance". The variance of a weighted sample mean is: # # σ² = w₁² σ₁² + w₂² σ₂² + ... + wₙ² σₙ² # # We estimate the variance of each evoked instance as 1 / nave to get: # # σ² = w₁² / nave₁ + w₂² / nave₂ + ... + wₙ² / naveₙ # # And our resulting nave is the reciprocal of this: new_nave = 1. / np.sum(weights ** 2 / naves) # This general formula is equivalent to formulae in Matti's manual # (pp 128-129), where: # new_nave = sum(naves) when weights='nave' and # new_nave = 1. / sum(1. / naves) when weights are all 1. all_evoked = _check_evokeds_ch_names_times(all_evoked) evoked = all_evoked[0].copy() # use union of bad channels bads = list(set(b for e in all_evoked for b in e.info['bads'])) evoked.info['bads'] = bads evoked.data = sum(w * e.data for w, e in zip(weights, all_evoked)) evoked.nave = new_nave evoked.comment = ' + '.join(f'{w:0.3f} × {e.comment or "unknown"}' for w, e in zip(weights, all_evoked)) return evoked @verbose def read_evokeds(fname, condition=None, baseline=None, kind='average', proj=True, allow_maxshield=False, verbose=None): """Read evoked dataset(s). Parameters ---------- fname : str The file name, which should end with -ave.fif or -ave.fif.gz. condition : int or str | list of int or str | None The index or list of indices of the evoked dataset to read. FIF files can contain multiple datasets. If None, all datasets are returned as a list. %(baseline_evoked)s Defaults to ``None``, i.e. no baseline correction. kind : str Either 'average' or 'standard_error', the type of data to read. proj : bool If False, available projectors won't be applied to the data. allow_maxshield : bool | str (default False) If True, allow loading of data that has been recorded with internal active compensation (MaxShield). Data recorded with MaxShield should generally not be loaded directly, but should first be processed using SSS/tSSS to remove the compensation signals that may also affect brain activity. Can also be "yes" to load without eliciting a warning. %(verbose)s Returns ------- evoked : Evoked or list of Evoked The evoked dataset(s); one Evoked if condition is int or str, or list of Evoked if condition is None or list. See Also -------- write_evokeds """ check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz', '_ave.fif', '_ave.fif.gz')) logger.info('Reading %s ...' % fname) return_list = True if condition is None: evoked_node = _get_evoked_node(fname) condition = range(len(evoked_node)) elif not isinstance(condition, list): condition = [condition] return_list = False out = [Evoked(fname, c, kind=kind, proj=proj, allow_maxshield=allow_maxshield, verbose=verbose).apply_baseline(baseline) for c in condition] return out if return_list else out[0] def _read_evoked(fname, condition=None, kind='average', allow_maxshield=False): """Read evoked data from a FIF file.""" if fname is None: raise ValueError('No evoked filename specified') f, tree, _ = fiff_open(fname) with f as fid: # Read the measurement info info, meas = read_meas_info(fid, tree, clean_bads=True) # Locate the data of interest processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA) if len(processed) == 0: raise ValueError('Could not find processed data') evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED) if len(evoked_node) == 0: raise ValueError('Could not find evoked data') # find string-based entry if isinstance(condition, str): if kind not in _aspect_dict.keys(): raise ValueError('kind must be "average" or ' '"standard_error"') comments, aspect_kinds, t = _get_entries(fid, evoked_node, allow_maxshield) goods = (np.in1d(comments, [condition]) & np.in1d(aspect_kinds, [_aspect_dict[kind]])) found_cond = np.where(goods)[0] if len(found_cond) != 1: raise ValueError('condition "%s" (%s) not found, out of ' 'found datasets:\n%s' % (condition, kind, t)) condition = found_cond[0] elif condition is None: if len(evoked_node) > 1: _, _, conditions = _get_entries(fid, evoked_node, allow_maxshield) raise TypeError("Evoked file has more than one " "condition, the condition parameters " "must be specified from:\n%s" % conditions) else: condition = 0 if condition >= len(evoked_node) or condition < 0: raise ValueError('Data set selector out of range') my_evoked = evoked_node[condition] # Identify the aspects my_aspect, info['maxshield'] = _get_aspect(my_evoked, allow_maxshield) # Now find the data in the evoked block nchan = 0 sfreq = -1 chs = [] comment = last = first = first_time = nsamp = None for k in range(my_evoked['nent']): my_kind = my_evoked['directory'][k].kind pos = my_evoked['directory'][k].pos if my_kind == FIFF.FIFF_COMMENT: tag = read_tag(fid, pos) comment = tag.data elif my_kind == FIFF.FIFF_FIRST_SAMPLE: tag = read_tag(fid, pos) first = int(tag.data) elif my_kind == FIFF.FIFF_LAST_SAMPLE: tag = read_tag(fid, pos) last = int(tag.data) elif my_kind == FIFF.FIFF_NCHAN: tag = read_tag(fid, pos) nchan = int(tag.data) elif my_kind == FIFF.FIFF_SFREQ: tag = read_tag(fid, pos) sfreq = float(tag.data) elif my_kind == FIFF.FIFF_CH_INFO: tag = read_tag(fid, pos) chs.append(tag.data) elif my_kind == FIFF.FIFF_FIRST_TIME: tag = read_tag(fid, pos) first_time = float(tag.data) elif my_kind == FIFF.FIFF_NO_SAMPLES: tag = read_tag(fid, pos) nsamp = int(tag.data) if comment is None: comment = 'No comment' # Local channel information? if nchan > 0: if chs is None: raise ValueError('Local channel information was not found ' 'when it was expected.') if len(chs) != nchan: raise ValueError('Number of channels and number of ' 'channel definitions are different') info['chs'] = chs logger.info(' Found channel information in evoked data. ' 'nchan = %d' % nchan) if sfreq > 0: info['sfreq'] = sfreq # Read the data in the aspect block nave = 1 epoch = [] for k in range(my_aspect['nent']): kind = my_aspect['directory'][k].kind pos = my_aspect['directory'][k].pos if kind == FIFF.FIFF_COMMENT: tag = read_tag(fid, pos) comment = tag.data elif kind == FIFF.FIFF_ASPECT_KIND: tag = read_tag(fid, pos) aspect_kind = int(tag.data) elif kind == FIFF.FIFF_NAVE: tag = read_tag(fid, pos) nave = int(tag.data) elif kind == FIFF.FIFF_EPOCH: tag = read_tag(fid, pos) epoch.append(tag) nepoch = len(epoch) if nepoch != 1 and nepoch != info['nchan']: raise ValueError('Number of epoch tags is unreasonable ' '(nepoch = %d nchan = %d)' % (nepoch, info['nchan'])) if nepoch == 1: # Only one epoch data = epoch[0].data # May need a transpose if the number of channels is one if data.shape[1] == 1 and info['nchan'] == 1: data = data.T else: # Put the old style epochs together data = np.concatenate([e.data[None, :] for e in epoch], axis=0) if np.isrealobj(data): data = data.astype(np.float64) else: data = data.astype(np.complex128) if first_time is not None and nsamp is not None: times = first_time + np.arange(nsamp) / info['sfreq'] elif first is not None: nsamp = last - first + 1 times = np.arange(first, last + 1) / info['sfreq'] else: raise RuntimeError('Could not read time parameters') del first, last if nsamp is not None and data.shape[1] != nsamp: raise ValueError('Incorrect number of samples (%d instead of ' ' %d)' % (data.shape[1], nsamp)) logger.info(' Found the data of interest:') logger.info(' t = %10.2f ... %10.2f ms (%s)' % (1000 * times[0], 1000 * times[-1], comment)) if info['comps'] is not None: logger.info(' %d CTF compensation matrices available' % len(info['comps'])) logger.info(' nave = %d - aspect type = %d' % (nave, aspect_kind)) # Calibrate cals = np.array([info['chs'][k]['cal'] * info['chs'][k].get('scale', 1.0) for k in range(info['nchan'])]) data *= cals[:, np.newaxis] return info, nave, aspect_kind, comment, times, data def write_evokeds(fname, evoked): """Write an evoked dataset to a file. Parameters ---------- fname : str The file name, which should end with -ave.fif or -ave.fif.gz. evoked : Evoked instance, or list of Evoked instances The evoked dataset, or list of evoked datasets, to save in one file. Note that the measurement info from the first evoked instance is used, so be sure that information matches. See Also -------- read_evokeds """ _write_evokeds(fname, evoked) def _write_evokeds(fname, evoked, check=True): """Write evoked data.""" from .epochs import _compare_epochs_infos if check: check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz', '_ave.fif', '_ave.fif.gz')) if not isinstance(evoked, list): evoked = [evoked] warned = False # Create the file and save the essentials with start_file(fname) as fid: start_block(fid, FIFF.FIFFB_MEAS) write_id(fid, FIFF.FIFF_BLOCK_ID) if evoked[0].info['meas_id'] is not None: write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info['meas_id']) # Write measurement info write_meas_info(fid, evoked[0].info) # One or more evoked data sets start_block(fid, FIFF.FIFFB_PROCESSED_DATA) for ei, e in enumerate(evoked): if ei: _compare_epochs_infos(evoked[0].info, e.info, f'evoked[{ei}]') start_block(fid, FIFF.FIFFB_EVOKED) # Comment is optional if e.comment is not None and len(e.comment) > 0: write_string(fid, FIFF.FIFF_COMMENT, e.comment) # First time, num. samples, first and last sample write_float(fid, FIFF.FIFF_FIRST_TIME, e.times[0]) write_int(fid, FIFF.FIFF_NO_SAMPLES, len(e.times)) write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first) write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last) # The epoch itself if e.info.get('maxshield'): aspect = FIFF.FIFFB_IAS_ASPECT else: aspect = FIFF.FIFFB_ASPECT start_block(fid, aspect) write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind) # convert nave to integer to comply with FIFF spec nave_int = int(round(e.nave)) if nave_int != e.nave and not warned: warn('converting "nave" to integer before saving evoked; this ' 'can have a minor effect on the scale of source ' 'estimates that are computed using "nave".') warned = True write_int(fid, FIFF.FIFF_NAVE, nave_int) del nave_int decal = np.zeros((e.info['nchan'], 1)) for k in range(e.info['nchan']): decal[k] = 1.0 / (e.info['chs'][k]['cal'] * e.info['chs'][k].get('scale', 1.0)) if np.iscomplexobj(e.data): write_function = write_complex_float_matrix else: write_function = write_float_matrix write_function(fid, FIFF.FIFF_EPOCH, decal * e.data) end_block(fid, aspect) end_block(fid, FIFF.FIFFB_EVOKED) end_block(fid, FIFF.FIFFB_PROCESSED_DATA) end_block(fid, FIFF.FIFFB_MEAS) end_file(fid) def _get_peak(data, times, tmin=None, tmax=None, mode='abs'): """Get feature-index and time of maximum signal from 2D array. Note. This is a 'getter', not a 'finder'. For non-evoked type data and continuous signals, please use proper peak detection algorithms. Parameters ---------- data : instance of numpy.ndarray (n_locations, n_times) The data, either evoked in sensor or source space. times : instance of numpy.ndarray (n_times) The times in seconds. tmin : float | None The minimum point in time to be considered for peak getting. tmax : float | None The maximum point in time to be considered for peak getting. mode : {'pos', 'neg', 'abs'} How to deal with the sign of the data. If 'pos' only positive values will be considered. If 'neg' only negative values will be considered. If 'abs' absolute values will be considered. Defaults to 'abs'. Returns ------- max_loc : int The index of the feature with the maximum value. max_time : int The time point of the maximum response, index. max_amp : float Amplitude of the maximum response. """ _check_option('mode', mode, ['abs', 'neg', 'pos']) if tmin is None: tmin = times[0] if tmax is None: tmax = times[-1] if tmin < times.min(): raise ValueError('The tmin value is out of bounds. It must be ' 'within {} and {}'.format(times.min(), times.max())) if tmax > times.max(): raise ValueError('The tmax value is out of bounds. It must be ' 'within {} and {}'.format(times.min(), times.max())) if tmin > tmax: raise ValueError('The tmin must be smaller or equal to tmax') time_win = (times >= tmin) & (times <= tmax) mask = np.ones_like(data).astype(bool) mask[:, time_win] = False maxfun = np.argmax if mode == 'pos': if not np.any(data > 0): raise ValueError('No positive values encountered. Cannot ' 'operate in pos mode.') elif mode == 'neg': if not np.any(data < 0): raise ValueError('No negative values encountered. Cannot ' 'operate in neg mode.') maxfun = np.argmin masked_index = np.ma.array(np.abs(data) if mode == 'abs' else data, mask=mask) max_loc, max_time = np.unravel_index(maxfun(masked_index), data.shape) return max_loc, max_time, data[max_loc, max_time]
bsd-3-clause
ninoxcello/mscs710-project
src/utils.py
1
2465
""" Author: Patrick Handley Description: Helper functions. Ex: loading data, plotting forecast trend """ import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing, cross_validation def load_data(input_dir, file_name, forecast_col='Close'): """ Reading data csv file and split into train and test set by 80/20 ratio. Args: input_dir: path to directory containing data csv files. file_name: name of currency file to be used. forecast_col: feature to be used as target. Returns: x_train: training samples. y_train: training labels. x_test: test samples. y_test: test labels. x_recent: subset used for prediction df: pandas dataframe for currency """ # read in csv df = pd.read_csv('{}/{}'.format(input_dir, file_name), parse_dates=['Date'], index_col=0) # select & add feature columns df.fillna(0, inplace=True) df = df[['Open', 'High', 'Low', 'Close']] df['HL_PCT'] = (df['High'] - df['Low']) / df['Close'] * 100. df['PCT_Change'] = (df['Close'] - df['Open']) / df['Open'] * 100. df = df.iloc[::-1] df.fillna(value=-9999, inplace=True) # set # of days to forecast out and shift column to be used as labels days_forecast = 15 df['label'] = df[forecast_col].shift(-days_forecast) # set up feature & label matrices X = np.array(df.drop(['label'], 1)) X = preprocessing.scale(X) x_recent = X[-days_forecast:] X = X[:-days_forecast] df.dropna(inplace=True) y = np.array(df['label']) # split data 80/20 for train & test respectively x_train, x_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) return x_train, x_test, x_recent, y_train, y_test, df def forecast_plot(df, predictions): """ show plot of historical values as well as prediction values. """ df['Forecast'] = np.nan last_date = df.iloc[-1].name last_unix = last_date.timestamp() one_day = 86400 # sec in day next_unix = last_unix + one_day for i in predictions: next_date = datetime.datetime.fromtimestamp(next_unix) next_unix += one_day df.loc[next_date] = [np.nan for _ in range(len(df.columns) - 1)] + [i] plt.plot(df['Close']) plt.plot(df['Forecast']) plt.legend(bbox_to_anchor=(1.01, 1)) plt.xlabel('Time(Yr-M)') plt.ylabel('Value(USD)') plt.show()
mit
Djabbz/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
bmcfee/mir_eval
tests/mpl_ic.py
3
12171
# CREATED:2015-02-17 14:41:28 by Brian McFee <[email protected]> # this function is lifted wholesale from matploblib v1.4.2, # and modified so that images are stored explicitly under the tests path from __future__ import (absolute_import, division, print_function, unicode_literals) import six import functools import gc import os import sys import shutil import warnings import unittest import nose import numpy as np import matplotlib.units from matplotlib import cbook from matplotlib import ticker from matplotlib import pyplot as plt from matplotlib import ft2font from matplotlib.testing.noseclasses import KnownFailure from matplotlib.testing.exceptions import ImageComparisonFailure from matplotlib.testing.compare import comparable_formats, compare_images, \ make_test_filename def knownfailureif(fail_condition, msg=None, known_exception_class=None): """ Assume a will fail if *fail_condition* is True. *fail_condition* may also be False or the string 'indeterminate'. *msg* is the error message displayed for the test. If *known_exception_class* is not None, the failure is only known if the exception is an instance of this class. (Default = None) """ # based on numpy.testing.dec.knownfailureif if msg is None: msg = 'Test known to fail' def known_fail_decorator(f): # Local import to avoid a hard nose dependency and only incur the # import time overhead at actual test-time. import nose def failer(*args, **kwargs): try: # Always run the test (to generate images). result = f(*args, **kwargs) except Exception as err: if fail_condition: if known_exception_class is not None: if not isinstance(err, known_exception_class): # This is not the expected exception raise # (Keep the next ultra-long comment so in shows in # console.) # An error here when running nose means that you don't have # the matplotlib.testing.noseclasses:KnownFailure plugin in # use. raise KnownFailure(msg) else: raise if fail_condition and fail_condition != 'indeterminate': raise KnownFailureDidNotFailTest(msg) return result return nose.tools.make_decorator(f)(failer) return known_fail_decorator def _do_cleanup(original_units_registry): plt.close('all') gc.collect() import matplotlib.testing matplotlib.testing.setup() matplotlib.units.registry.clear() matplotlib.units.registry.update(original_units_registry) warnings.resetwarnings() # reset any warning filters set in tests class KnownFailureDidNotFailTest(KnownFailure): pass class CleanupTest(object): @classmethod def setup_class(cls): cls.original_units_registry = matplotlib.units.registry.copy() @classmethod def teardown_class(cls): _do_cleanup(cls.original_units_registry) def test(self): self._func() class CleanupTestCase(unittest.TestCase): '''A wrapper for unittest.TestCase that includes cleanup operations''' @classmethod def setUpClass(cls): import matplotlib.units cls.original_units_registry = matplotlib.units.registry.copy() @classmethod def tearDownClass(cls): _do_cleanup(cls.original_units_registry) def cleanup(func): @functools.wraps(func) def wrapped_function(*args, **kwargs): original_units_registry = matplotlib.units.registry.copy() try: func(*args, **kwargs) finally: _do_cleanup(original_units_registry) return wrapped_function def check_freetype_version(ver): if ver is None: return True from distutils import version if isinstance(ver, six.string_types): ver = (ver, ver) ver = [version.StrictVersion(x) for x in ver] found = version.StrictVersion(ft2font.__freetype_version__) return found >= ver[0] and found <= ver[1] class ImageComparisonTest(CleanupTest): @classmethod def setup_class(cls): CleanupTest.setup_class() cls._func() @staticmethod def remove_text(figure): figure.suptitle("") for ax in figure.get_axes(): ax.set_title("") ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.NullFormatter()) ax.yaxis.set_major_formatter(ticker.NullFormatter()) ax.yaxis.set_minor_formatter(ticker.NullFormatter()) try: ax.zaxis.set_major_formatter(ticker.NullFormatter()) ax.zaxis.set_minor_formatter(ticker.NullFormatter()) except AttributeError: pass def test(self): baseline_dir, result_dir = _image_directories(self._func) for fignum, baseline in zip(plt.get_fignums(), self._baseline_images): for extension in self._extensions: will_fail = extension not in comparable_formats() if will_fail: fail_msg = ('Cannot compare %s files on this system' % extension) else: fail_msg = 'No failure expected' orig_expected_fname = ( os.path.join(baseline_dir, baseline) + '.' + extension) if (extension == 'eps' and not os.path.exists(orig_expected_fname)): orig_expected_fname = ( os.path.join(baseline_dir, baseline) + '.pdf') expected_fname = make_test_filename(os.path.join( result_dir, os.path.basename(orig_expected_fname)), 'expected') actual_fname = ( os.path.join(result_dir, baseline) + '.' + extension) if os.path.exists(orig_expected_fname): shutil.copyfile(orig_expected_fname, expected_fname) else: will_fail = True fail_msg = 'Do not have baseline image %s' % expected_fname @knownfailureif( will_fail, fail_msg, known_exception_class=ImageComparisonFailure) def do_test(): figure = plt.figure(fignum) if self._remove_text: self.remove_text(figure) figure.savefig(actual_fname, **self._savefig_kwarg) plt.close(figure) err = compare_images(expected_fname, actual_fname, self._tol, in_decorator=True) try: if not os.path.exists(expected_fname): raise ImageComparisonFailure( 'image does not exist: %s' % expected_fname) if err: raise ImageComparisonFailure( 'images not close: %(actual)s vs. %(expected)s' ' (RMS %(rms).3f)' % err) except ImageComparisonFailure: if not check_freetype_version(self._freetype_version): raise KnownFailure( "Mismatched version of freetype. Test " "requires '%s', you have '%s'" % (self._freetype_version, ft2font.__freetype_version__)) raise yield (do_test,) def image_comparison(baseline_images=None, extensions=None, tol=13, freetype_version=None, remove_text=False, savefig_kwarg=None): """ call signature:: image_comparison(baseline_images=['my_figure'], extensions=None) Compare images generated by the test with those specified in *baseline_images*, which must correspond else an ImageComparisonFailure exception will be raised. Keyword arguments: *baseline_images*: list A list of strings specifying the names of the images generated by calls to :meth:`matplotlib.figure.savefig`. *extensions*: [ None | list ] If *None*, default to all supported extensions. Otherwise, a list of extensions to test. For example ['png','pdf']. *tol*: (default 13) The RMS threshold above which the test is considered failed. *freetype_version*: str or tuple The expected freetype version or range of versions for this test to pass. *remove_text*: bool Remove the title and tick text from the figure before comparison. This does not remove other, more deliberate, text, such as legends and annotations. *savefig_kwarg*: dict Optional arguments that are passed to the savefig method. """ if baseline_images is None: raise ValueError('baseline_images must be specified') if extensions is None: # default extensions to test extensions = ['png', 'pdf', 'svg'] if savefig_kwarg is None: # default no kwargs to savefig savefig_kwarg = dict() def compare_images_decorator(func): # We want to run the setup function (the actual test function # that generates the figure objects) only once for each type # of output file. The only way to achieve this with nose # appears to be to create a test class with "setup_class" and # "teardown_class" methods. Creating a class instance doesn't # work, so we use type() to actually create a class and fill # it with the appropriate methods. name = func.__name__ # For nose 1.0, we need to rename the test function to # something without the word "test", or it will be run as # well, outside of the context of our image comparison test # generator. func = staticmethod(func) func.__get__(1).__name__ = str('_private') new_class = type( name, (ImageComparisonTest,), {'_func': func, '_baseline_images': baseline_images, '_extensions': extensions, '_tol': tol, '_freetype_version': freetype_version, '_remove_text': remove_text, '_savefig_kwarg': savefig_kwarg}) return new_class return compare_images_decorator def _image_directories(func): """ Compute the baseline and result image directories for testing *func*. Create the result directory if it doesn't exist. """ module_name = func.__module__ # mods = module_name.split('.') # mods.pop(0) # <- will be the name of the package being tested (in # most cases "matplotlib") # assert mods.pop(0) == 'tests' # subdir = os.path.join(*mods) subdir = module_name import imp def find_dotted_module(module_name, path=None): """A version of imp which can handle dots in the module name""" res = None for sub_mod in module_name.split('.'): try: res = file, path, _ = imp.find_module(sub_mod, path) path = [path] if file is not None: file.close() except ImportError: # assume namespace package path = sys.modules[sub_mod].__path__ res = None, path, None return res mod_file = find_dotted_module(func.__module__)[1] basedir = os.path.dirname(mod_file) baseline_dir = os.path.join(basedir, 'baseline_images', subdir) result_dir = os.path.abspath(os.path.join('result_images', subdir)) if not os.path.exists(result_dir): cbook.mkdirs(result_dir) return baseline_dir, result_dir
mit
mdeff/ntds_2017
projects/reports/stackoverflow_survey/functions.py
1
2492
import numpy as np from sklearn import linear_model def crossvad_build_k_indices(y, k_fold, seed = 1): """build k indices for k-fold.""" num_row = y.shape[0] interval = int(num_row / k_fold) np.random.seed(seed) indices = np.random.permutation(num_row) k_indices = [indices[k * interval: (k + 1) * interval] for k in range(k_fold)] return np.array(k_indices) def cross_validation(y, x, k_indices, k_fold): """use cross validation on method. return the mean of the mse error of the training sets and of the testing sets as well as the accuracy and the variance (over kfold) of the accuracy""" # *************************************************** #creating list of possible k's k_list=np.arange(k_indices.shape[0]) # define lists to store the w, the loss of training data and the loss of test data mse_tr_list = np.zeros(k_fold) mse_te_list = np.zeros(k_fold) accuracy_te_list = np.zeros(k_fold) y_pr_stack = np.zeros(len(y)) for k in range(0,k_fold): # get k'th subgroup in test, others in train y_te = y[k_indices[k]] x_te = x[k_indices[k]] y_tr = y[np.ravel(k_indices[k_list[k*np.ones(len(k_list))!=k_list]])] x_tr = x[np.ravel(k_indices[k_list[k*np.ones(len(k_list))!=k_list]])] #standardize the data x_tr, mean_tr, std_tr = standardize(x_tr) x_te = standardize_given(x_te, mean_tr, std_tr) #logistic regression logreg = linear_model.LogisticRegression(solver ='liblinear', class_weight ='balanced') logreg.fit(x_tr, y_tr) y_pr = logreg.predict(x_te) y_pr_stack[int(k*len(y)/k_fold):int((k+1)*len(y)/k_fold)] = y_pr accuracy_te_list[k] = sum(np.equal(y_pr,y_te))/len(y_te) mse_tr_mean = np.mean(mse_tr_list) mse_te_mean = np.mean(mse_te_list) accuracy_te_mean = np.mean(accuracy_te_list) accuracy_te_var = np.std(accuracy_te_list) return y_pr_stack, accuracy_te_mean, accuracy_te_var def standardize(x): """Standardize the original data set.""" #standardize is done feature by feature to have equal weights. mean_x = np.mean(x,axis=0) x = x - mean_x std_x = np.std(x,axis=0) x = x / std_x return x, mean_x, std_x def standardize_given(x, mean_x, std_x): """Standardize the original data set with given mean_x and std_x.""" x = x - mean_x x = x / std_x #handle outliers return x
mit
rohanp/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
73
2074
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, color='lightgreen', linewidth=2, label='Elastic net coefficients') plt.plot(lasso.coef_, color='gold', linewidth=2, label='Lasso coefficients') plt.plot(coef, '--', color='navy', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
ahmadia/bokeh
examples/charts/file/scatter.py
37
1607
from collections import OrderedDict import pandas as pd from bokeh.charts import Scatter, output_file, show, vplot from bokeh.sampledata.iris import flowers setosa = flowers[(flowers.species == "setosa")][["petal_length", "petal_width"]] versicolor = flowers[(flowers.species == "versicolor")][["petal_length", "petal_width"]] virginica = flowers[(flowers.species == "virginica")][["petal_length", "petal_width"]] xyvalues = OrderedDict([("setosa", setosa.values), ("versicolor", versicolor.values), ("virginica", virginica.values)]) scatter1 = Scatter(xyvalues, title="iris dataset, dict_input", xlabel="petal_length", ylabel="petal_width", legend='top_left', marker="triangle") groupped_df = flowers[["petal_length", "petal_width", "species"]].groupby("species") scatter2 = Scatter(groupped_df, title="iris dataset, dict_input", xlabel="petal_length", ylabel="petal_width", legend='top_left') pdict = OrderedDict() for i in groupped_df.groups.keys(): labels = groupped_df.get_group(i).columns xname = labels[0] yname = labels[1] x = getattr(groupped_df.get_group(i), xname) y = getattr(groupped_df.get_group(i), yname) pdict[i] = list(zip(x, y)) df = pd.DataFrame(pdict) scatter3 = Scatter( df, title="iris dataset, dict_input", xlabel="petal_length", ylabel="petal_width", legend='top_left') scatter4 = Scatter( list(xyvalues.values()), title="iris dataset, dict_input", xlabel="petal_length", ylabel="petal_width", legend='top_left') output_file("scatter.html") show(vplot(scatter1, scatter2, scatter3, scatter4))
bsd-3-clause
ephes/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
227
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <[email protected]> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
RachitKansal/scikit-learn
sklearn/utils/tests/test_multiclass.py
128
12853
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formated as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that were'nt supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
herilalaina/scikit-learn
sklearn/datasets/tests/test_20news.py
75
3266
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_length_consistency(): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract the full dataset data = datasets.fetch_20newsgroups(subset='all') assert_equal(len(data['data']), len(data.data)) assert_equal(len(data['target']), len(data.target)) assert_equal(len(data['filenames']), len(data.filenames)) def test_20news_vectorized(): try: datasets.fetch_20newsgroups(subset='all', download_if_missing=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # test subset = train bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 130107)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) # test subset = test bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 130107)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) # test subset = all bunch = datasets.fetch_20newsgroups_vectorized(subset='all') assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 130107)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
ahellander/pyurdme
examples/yeast_polarization/polarisome_model.py
5
4149
#!/usr/bin/env python """ pyURDME model file for the model found in Lawson et al. PloS Comp Bio (2013). """ import os import pyurdme import dolfin import math import matplotlib.pyplot as plt import numpy class Cdc42(pyurdme.URDMEDataFunction): def __init__(self, a=-4*numpy.pi, b=4*numpy.pi, N=160): """ 1D domain from a to b. """ pyurdme.URDMEDataFunction.__init__(self, name="Cdc42") self.a = a self.b = b self.N = N def map(self, x): #ligand_c[i] = 100*Gradient_max*exp( (-1*pow((i-floor(N/2))*360.0/N,2))/(2*pow(Gradient_sigma,2)) ); # x[0] == i*l Gradient_max = 3.0*160/self.N Gradient_max = Gradient_max*0.7917 Gradient_sigma = 20.3837 return 100*Gradient_max*numpy.exp( -1*((x[0]*(360)/(self.b - self.a))**2) / (2*Gradient_sigma**2) ) class polarisome_1D(pyurdme.URDMEModel): def __init__(self,model_name="polarisome_1D"): pyurdme.URDMEModel.__init__(self,model_name) default_D = 0.0053 fast_D = 1000*default_D # Species Bni1c = pyurdme.Species(name="Bni1c", diffusion_constant=fast_D) Bni1m = pyurdme.Species(name="Bni1m", diffusion_constant=default_D) Spa2c = pyurdme.Species(name="Spa2c", diffusion_constant=fast_D) Spa2m = pyurdme.Species(name="Spa2m", diffusion_constant=default_D) Actinc = pyurdme.Species(name="Actinc", diffusion_constant=fast_D) Actinm = pyurdme.Species(name="Actinm", diffusion_constant=default_D) self.add_species([Bni1c, Bni1m, Spa2c, Spa2m, Actinc, Actinm]) NUM_VOXEL = 160 self.mesh = pyurdme.URDMEMesh.generate_interval_mesh(nx=NUM_VOXEL, a=-4*numpy.pi, b=4*numpy.pi, periodic=True) Bon = pyurdme.Parameter(name="Bon", expression=1.6e-6) Boff = pyurdme.Parameter(name="Boff", expression=0.25) Bfb = pyurdme.Parameter(name="Bfb", expression=1.9e-5) Aon = pyurdme.Parameter(name="Aon", expression=7.7e-5) Aoff = pyurdme.Parameter(name="Aoff", expression=0.018) Km = pyurdme.Parameter(name="Km", expression=3500) Son = pyurdme.Parameter(name="Son", expression=0.16) Soff = pyurdme.Parameter(name="Soff", expression=0.35) self.add_parameter([Bon, Boff, Bfb, Aon, Aoff, Km, Son, Soff]) # Add Data Function to model the mating pheromone gradient. self.add_data_function(Cdc42()) # Reactions R0 = pyurdme.Reaction(name="R0", reactants={Bni1c:1}, products={Bni1m:1}, propensity_function="Bon*Bni1c*NUM_VOXELS*Cdc42") R1 = pyurdme.Reaction(name="R1", reactants={Bni1m:1}, products={Bni1c:1}, massaction=True, rate=Boff) R2 = pyurdme.Reaction(name="R2", reactants={Actinc:1}, products={Actinm:1}, propensity_function="Aon*Bni1m*Actinc*NUM_VOXELS") R3 = pyurdme.Reaction(name="R3", reactants={Actinm:1}, products={Actinc:1}, propensity_function="Aoff*Km/(Km+Spa2m)*Actinm") R4 = pyurdme.Reaction(name="R4", reactants={Spa2c:1}, products={Spa2m:1}, propensity_function="Son*Spa2c*NUM_VOXELS*Actinm") R5 = pyurdme.Reaction(name="R5", reactants={Spa2m:1}, products={Spa2c:1}, massaction=True, rate=Soff) R6 = pyurdme.Reaction(name="R6", reactants={Bni1c:1}, products={Bni1m:1}, propensity_function="Bfb*Bni1c*NUM_VOXELS*Spa2m") self.add_reaction([R0,R1,R2,R3,R4,R5,R6]) # Distribute molecules randomly over the mesh according to their initial values self.set_initial_condition_scatter({Bni1c:1000}) self.set_initial_condition_scatter({Spa2c:5000}) self.set_initial_condition_scatter({Actinc:40}) #self.timespan(range(0,3601,30)) self.timespan(range(0,201,10)) if __name__=="__main__": """ Dump model to a file. """ model = polarisome_1D() result = model.run() x_vals = model.mesh.coordinates()[:, 0] Bni1 = result.get_species("Bni1m", timepoints=20) Spa2 = result.get_species("Spa2m", timepoints=20) plt.plot(x_vals, Spa2) plt.title('Spa2_m at t={0}'.format(model.tspan[20])) plt.show()
gpl-3.0
d-lee/airflow
airflow/hooks/base_hook.py
18
2571
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import object import logging import os import random from airflow import settings from airflow.models import Connection from airflow.exceptions import AirflowException CONN_ENV_PREFIX = 'AIRFLOW_CONN_' class BaseHook(object): """ Abstract base class for hooks, hooks are meant as an interface to interact with external systems. MySqlHook, HiveHook, PigHook return object that can handle the connection and interaction to specific instances of these systems, and expose consistent methods to interact with them. """ def __init__(self, source): pass @classmethod def get_connections(cls, conn_id): session = settings.Session() db = ( session.query(Connection) .filter(Connection.conn_id == conn_id) .all() ) if not db: raise AirflowException( "The conn_id `{0}` isn't defined".format(conn_id)) session.expunge_all() session.close() return db @classmethod def get_connection(cls, conn_id): environment_uri = os.environ.get(CONN_ENV_PREFIX + conn_id.upper()) conn = None if environment_uri: conn = Connection(conn_id=conn_id, uri=environment_uri) else: conn = random.choice(cls.get_connections(conn_id)) if conn.host: logging.info("Using connection to: " + conn.host) return conn @classmethod def get_hook(cls, conn_id): connection = cls.get_connection(conn_id) return connection.get_hook() def get_conn(self): raise NotImplementedError() def get_records(self, sql): raise NotImplementedError() def get_pandas_df(self, sql): raise NotImplementedError() def run(self, sql): raise NotImplementedError()
apache-2.0
ishanic/scikit-learn
sklearn/svm/tests/test_sparse.py
32
12988
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
hh-italian-group/h-tautau
Instruments/python/create_cache_splitting.py
1
1072
#!/usr/bin/env python # Create splitting for cache jobs. # This file is part of https://github.com/hh-italian-group/h-tautau. import argparse import os import numpy as np import pandas parser = argparse.ArgumentParser(description='Create splitting for cache jobs') parser.add_argument('--input', type=str, required=True, help="Input csv file with summary") parser.add_argument('--max-exe-time', type=float, required=True, help="Maximal desired execution time in hours") args = parser.parse_args() def create_splits(df, max_exe_time): jobs = {} n_splits = np.ceil(df.exeTime_h.values / max_exe_time) for n in range(df.shape[0]): if n_splits[n] > 1: job_name = df.index.values[n] jobs[job_name] = int(n_splits[n]) return jobs df = pandas.read_csv(args.input) df['exeTime_h'] = df.exeTime / (60. * 60.) df['job_name'] = df.sample_name + '_' + df.channel df_gr = df.groupby(['job_name']) jobs = create_splits(df_gr.sum(), args.max_exe_time) for job_name in sorted(jobs): print('{} {}'.format(job_name, jobs[job_name]))
gpl-2.0
ClimbsRocks/scikit-learn
sklearn/exceptions.py
35
4329
""" The :mod:`sklearn.exceptions` module includes all custom warnings and error classes used across scikit-learn. """ __all__ = ['NotFittedError', 'ChangedBehaviorWarning', 'ConvergenceWarning', 'DataConversionWarning', 'DataDimensionalityWarning', 'EfficiencyWarning', 'FitFailedWarning', 'NonBLASDotWarning', 'UndefinedMetricWarning'] class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting. This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. Examples -------- >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import NotFittedError >>> try: ... LinearSVC().predict([[1, 2], [2, 3], [3, 4]]) ... except NotFittedError as e: ... print(repr(e)) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS NotFittedError('This LinearSVC instance is not fitted yet',) """ class ChangedBehaviorWarning(UserWarning): """Warning class used to notify the user of any change in the behavior.""" class ConvergenceWarning(UserWarning): """Custom warning to capture convergence problems""" class DataConversionWarning(UserWarning): """Warning used to notify implicit data conversions happening in the code. This warning occurs when some input data needs to be converted or interpreted in a way that may not match the user's expectations. For example, this warning may occur when the user - passes an integer array to a function which expects float input and will convert the input - requests a non-copying operation, but a copy is required to meet the implementation's data-type expectations; - passes an input whose shape can be interpreted ambiguously. """ class DataDimensionalityWarning(UserWarning): """Custom warning to notify potential issues with data dimensionality. For example, in random projection, this warning is raised when the number of components, which quantifies the dimensionality of the target projection space, is higher than the number of features, which quantifies the dimensionality of the original source space, to imply that the dimensionality of the problem will not be reduced. """ class EfficiencyWarning(UserWarning): """Warning used to notify the user of inefficient computation. This warning notifies the user that the efficiency may not be optimal due to some reason which may be included as a part of the warning message. This may be subclassed into a more specific Warning class. """ class FitFailedWarning(RuntimeWarning): """Warning class used if there is an error while fitting the estimator. This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV and the cross-validation helper function cross_val_score to warn when there is an error while fitting the estimator. Examples -------- >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import FitFailedWarning >>> import warnings >>> warnings.simplefilter('always', FitFailedWarning) >>> gs = GridSearchCV(LinearSVC(), {'C': [-1, -2]}, error_score=0) >>> X, y = [[1, 2], [3, 4], [5, 6], [7, 8], [8, 9]], [0, 0, 0, 1, 1] >>> with warnings.catch_warnings(record=True) as w: ... try: ... gs.fit(X, y) # This will raise a ValueError since C is < 0 ... except ValueError: ... pass ... print(repr(w[-1].message)) ... # doctest: +NORMALIZE_WHITESPACE FitFailedWarning("Classifier fit failed. The score on this train-test partition for these parameters will be set to 0.000000. Details: \\nValueError('Penalty term must be positive; got (C=-2)',)",) """ class NonBLASDotWarning(EfficiencyWarning): """Warning used when the dot operation does not use BLAS. This warning is used to notify the user that BLAS was not used for dot operation and hence the efficiency may be affected. """ class UndefinedMetricWarning(UserWarning): """Warning used when the metric is invalid"""
bsd-3-clause
dmccloskey/SBaaS_isotopomer
SBaaS_isotopomer/main.py
1
4464
import sys sys.path.append('C:/Users/dmccloskey-sbrg/Documents/GitHub/SBaaS_base') from SBaaS_base.postgresql_settings import postgresql_settings from SBaaS_base.postgresql_orm import postgresql_orm # read in the settings file filename = 'C:/Users/dmccloskey-sbrg/Google Drive/SBaaS_settings/settings_metabolomics.ini'; pg_settings = postgresql_settings(filename); # connect to the database from the settings file pg_orm = postgresql_orm(); pg_orm.set_sessionFromSettings(pg_settings.database_settings); session = pg_orm.get_session(); engine = pg_orm.get_engine(); # your app... sys.path.append(pg_settings.datadir_settings['github']+'/SBaaS_LIMS') sys.path.append(pg_settings.datadir_settings['github']+'/SBaaS_isotopomer') sys.path.append(pg_settings.datadir_settings['github']+'/io_utilities') sys.path.append(pg_settings.datadir_settings['github']+'/MDV_utilities') sys.path.append(pg_settings.datadir_settings['github']+'/molmass') sys.path.append(pg_settings.datadir_settings['github']+'/matplotlib_utilities') sys.path.append(pg_settings.datadir_settings['github']+'/quantification_analysis') sys.path.append(pg_settings.datadir_settings['github']+'/python_statistics') sys.path.append(pg_settings.datadir_settings['github']+'/r_statistics') sys.path.append(pg_settings.datadir_settings['github']+'/listDict') sys.path.append(pg_settings.datadir_settings['github']+'/ddt_python') # TODO: # 1 control 12-C experiment (use: C:\Users\dmccloskey-sbrg\Documents\GitHub\sbaas_workspace\sbaas_workspace\workspace\isotopomer\WTEColi12C02.py) #make the normalized methods tables from SBaaS_isotopomer.stage01_isotopomer_normalized_execute import stage01_isotopomer_normalized_execute normalized01 = stage01_isotopomer_normalized_execute(session,engine,pg_settings.datadir_settings); ## update the database from .csv #normalized01.import_dataStage01IsotopomerNormalized_update('C:/Users/dmccloskey-sbrg/Desktop/dataStage01IsotopomerNormalized_WTEColi_113C80_U13C20_01_backup.csv'); ## export the data to excel #normalized01.export_dataStage01IsotopomerNormalized_csv('WTEColi_113C80_U13C20_01', # filename_O = pg_settings.datadir_settings['workspace_data']+'/_output/WTEColi_113C80_U13C20_01_averagesNormSum.csv', # sample_name_abbreviation_I='%', # time_point_I='%', # scan_type_I='EPI', # met_id_I='%') #export spectrums to js ##TODO: bug in plots #normalized01.export_dataStage01IsotopomerNormalized_js('ALEsKOs01', # sample_name_abbreviations_I=[ # "OxicEvo04sdhCBEvo01EPEcoli13CGlc", # ], # met_ids_I=[], # scan_types_I=[], # single_plot_I = False, # ); #make the averages methods tables from SBaaS_isotopomer.stage01_isotopomer_averages_execute import stage01_isotopomer_averages_execute ave01 = stage01_isotopomer_averages_execute(session,engine,pg_settings.datadir_settings); #ave01.import_dataStage01IsotopomerAveragesNormSum_updateUsedAndComment('C:/Users/dmccloskey-sbrg/Desktop/dataStage01IsotopomerAveragesNormSum_WTEColi_113C80_U13C20_01_update.csv'); ## export the spectrums to .js #ave01.export_dataStage01IsotopomerAveragesNormSum_csv('WTEColi_113C80_U13C20_01',pg_settings.datadir_settings['workspace_data']+'/_output/WTEColi_113C80_U13C20_01_averagesNormSum.csv'); # plot specific scan-types and met_ids ave01.export_dataStage01IsotopomerAveragesNormSum_js('ALEsKOs01', sample_name_abbreviations_I=[ "OxicEvo04ptsHIcrrEcoli13CGlc", "OxicEvo04ptsHIcrrEvo01EPEcoli13CGlc", ], # met_ids_I=[ # #'fad', # 'pyr', # 'phpyr', # ], #scan_types_I=['EPI'], single_plot_I = False, ); ##make the spectrumAccuracy methods tables #from SBaaS_isotopomer.stage01_isotopomer_spectrumAccuracy_execute import stage01_isotopomer_spectrumAccuracy_execute #specaccuracy01 = stage01_isotopomer_spectrumAccuracy_execute(session,engine,pg_settings.datadir_settings); #specaccuracy01.drop_dataStage01_isotopomer_spectrumAccuracy(); #specaccuracy01.initialize_dataStage01_isotopomer_spectrumAccuracy(); #specaccuracy01.reset_dataStage01_isotopomer_spectrumAccuracy('chemoCLim01'); ##make the QC methods tables #from SBaaS_isotopomer.stage01_isotopomer_QCs_execute import stage01_isotopomer_QCs_execute #exqcs01 = stage01_isotopomer_QCs_execute(session,engine,pg_settings.datadir_settings); #exqcs01.drop_dataStage01_isotopomer_QCs(); #exqcs01.initialize_dataStage01_isotopomer_QCs(); #exqcs01.reset_dataStage01_isotopomer_QCs('chemoCLim01');
mit
madjelan/scikit-learn
benchmarks/bench_lasso.py
297
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
StongeEtienne/dipy
doc/examples/reconst_dti.py
4
9303
""" ============================================================ Reconstruction of the diffusion signal with the Tensor model ============================================================ The diffusion tensor model is a model that describes the diffusion within a voxel. First proposed by Basser and colleagues [Basser1994]_, it has been very influential in demonstrating the utility of diffusion MRI in characterizing the micro-structure of white matter tissue and of the biophysical properties of tissue, inferred from local diffusion properties and it is still very commonly used. The diffusion tensor models the diffusion signal as: .. math:: \frac{S(\mathbf{g}, b)}{S_0} = e^{-b\mathbf{g}^T \mathbf{D} \mathbf{g}} Where $\mathbf{g}$ is a unit vector in 3 space indicating the direction of measurement and b are the parameters of measurement, such as the strength and duration of diffusion-weighting gradient. $S(\mathbf{g}, b)$ is the diffusion-weighted signal measured and $S_0$ is the signal conducted in a measurement with no diffusion weighting. $\mathbf{D}$ is a positive-definite quadratic form, which contains six free parameters to be fit. These six parameters are: .. math:: \mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \\ \end{pmatrix} This matrix is a variance/covariance matrix of the diffusivity along the three spatial dimensions. Note that we can assume that diffusivity has antipodal symmetry, so elements across the diagonal are equal. For example: $D_{xy} = D_{yx}$. This is why there are only 6 free parameters to estimate here. In the following example we show how to reconstruct your diffusion datasets using a single tensor model. First import the necessary modules: ``numpy`` is for numerical computation """ import numpy as np """ ``nibabel`` is for loading imaging datasets """ import nibabel as nib """ ``dipy.reconst`` is for the reconstruction algorithms which we use to create voxel models from the raw data. """ import dipy.reconst.dti as dti """ ``dipy.data`` is used for small datasets that we use in tests and examples. """ from dipy.data import fetch_stanford_hardi """ Fetch will download the raw dMRI dataset of a single subject. The size of the dataset is 87 MBytes. You only need to fetch once. """ fetch_stanford_hardi() """ Next, we read the saved dataset """ from dipy.data import read_stanford_hardi img, gtab = read_stanford_hardi() """ img contains a nibabel Nifti1Image object (with the data) and gtab contains a GradientTable object (information about the gradients e.g. b-values and b-vectors). """ data = img.get_data() print('data.shape (%d, %d, %d, %d)' % data.shape) """ data.shape ``(81, 106, 76, 160)`` First of all, we mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image. This is done using dipy's mask module. """ from dipy.segment.mask import median_otsu maskdata, mask = median_otsu(data, 3, 1, True, vol_idx=range(10, 50), dilate=2) print('maskdata.shape (%d, %d, %d, %d)' % maskdata.shape) """ maskdata.shape ``(72, 87, 59, 160)`` Now that we have prepared the datasets we can go forward with the voxel reconstruction. First, we instantiate the Tensor model in the following way. """ tenmodel = dti.TensorModel(gtab) """ Fitting the data is very simple. We just need to call the fit method of the TensorModel in the following way: """ tenfit = tenmodel.fit(maskdata) """ The fit method creates a TensorFit object which contains the fitting parameters and other attributes of the model. For example we can generate fractional anisotropy (FA) from the eigen-values of the tensor. FA is used to characterize the degree to which the distribution of diffusion in a voxel is directional. That is, whether there is relatively unrestricted diffusion in one particular direction. Mathematically, FA is defined as the normalized variance of the eigen-values of the tensor: .. math:: FA = \sqrt{\frac{1}{2}\frac{(\lambda_1-\lambda_2)^2+(\lambda_1- \lambda_3)^2+(\lambda_2-\lambda_3)^2}{\lambda_1^2+ \lambda_2^2+\lambda_3^2}} Note that FA should be interpreted carefully. It may be an indication of the density of packing of fibers in a voxel, and the amount of myelin wrapping these axons, but it is not always a measure of "tissue integrity". For example, FA may decrease in locations in which there is fanning of white matter fibers, or where more than one population of white matter fibers crosses. """ print('Computing anisotropy measures (FA, MD, RGB)') from dipy.reconst.dti import fractional_anisotropy, color_fa, lower_triangular FA = fractional_anisotropy(tenfit.evals) """ In the background of the image the fitting will not be accurate there is no signal and possibly we will find FA values with nans (not a number). We can easily remove these in the following way. """ FA[np.isnan(FA)] = 0 """ Saving the FA images is very easy using nibabel. We need the FA volume and the affine matrix which transform the image's coordinates to the world coordinates. Here, we choose to save the FA in float32. """ fa_img = nib.Nifti1Image(FA.astype(np.float32), img.get_affine()) nib.save(fa_img, 'tensor_fa.nii.gz') """ You can now see the result with any nifti viewer or check it slice by slice using matplotlib_'s imshow. In the same way you can save the eigen values, the eigen vectors or any other properties of the Tensor. """ evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), img.get_affine()) nib.save(evecs_img, 'tensor_evecs.nii.gz') """ Other tensor statistics can be calculated from the `tenfit` object. For example, a commonly calculated statistic is the mean diffusivity (MD). This is simply the mean of the eigenvalues of the tensor. Since FA is a normalized measure of variance and MD is the mean, they are often used as complimentary measures. In `dipy`, there are two equivalent ways to calculate the mean diffusivity. One is by calling the `mean_diffusivity` module function on the eigen-values of the TensorFit class instance: """ MD1 = dti.mean_diffusivity(tenfit.evals) nib.save(nib.Nifti1Image(MD1.astype(np.float32), img.get_affine()), 'tensors_md.nii.gz') """ The other is to call the TensorFit class method: """ MD2 = tenfit.md """ Obviously, the quantities are identical. We can also compute the colored FA or RGB-map [Pajevic1999]_. First, we make sure that the FA is scaled between 0 and 1, we compute the RGB map and save it. """ FA = np.clip(FA, 0, 1) RGB = color_fa(FA, tenfit.evecs) nib.save(nib.Nifti1Image(np.array(255 * RGB, 'uint8'), img.get_affine()), 'tensor_rgb.nii.gz') """ Let's try to visualize the tensor ellipsoids of a small rectangular area in an axial slice of the splenium of the corpus callosum (CC). """ print('Computing tensor ellipsoids in a part of the splenium of the CC') from dipy.data import get_sphere sphere = get_sphere('symmetric724') from dipy.viz import fvtk ren = fvtk.ren() evals = tenfit.evals[13:43, 44:74, 28:29] evecs = tenfit.evecs[13:43, 44:74, 28:29] """ We can color the ellipsoids using the ``color_fa`` values that we calculated above. In this example we additionally normalize the values to increase the contrast. """ cfa = RGB[13:43, 44:74, 28:29] cfa /= cfa.max() fvtk.add(ren, fvtk.tensor(evals, evecs, cfa, sphere)) print('Saving illustration as tensor_ellipsoids.png') fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png', size=(600, 600)) """ .. figure:: tensor_ellipsoids.png :align: center **Tensor Ellipsoids**. """ fvtk.clear(ren) """ Finally, we can visualize the tensor orientation distribution functions for the same area as we did with the ellipsoids. """ tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere) fvtk.add(ren, fvtk.sphere_funcs(tensor_odfs, sphere, colormap=None)) #fvtk.show(r) print('Saving illustration as tensor_odfs.png') fvtk.record(ren, n_frames=1, out_path='tensor_odfs.png', size=(600, 600)) """ .. figure:: tensor_odfs.png :align: center **Tensor ODFs**. Note that while the tensor model is an accurate and reliable model of the diffusion signal in the white matter, it has the drawback that it only has one principal diffusion direction. Therefore, in locations in the brain that contain multiple fiber populations crossing each other, the tensor model may indicate that the principal diffusion direction is intermediate to these directions. Therefore, using the principal diffusion direction for tracking in these locations may be misleading and may lead to errors in defining the tracks. Fortunately, other reconstruction methods can be used to represent the diffusion and fiber orientations in those locations. These are presented in other examples. .. [Basser1994] Basser PJ, Mattielo J, LeBihan (1994). MR diffusion tensor spectroscopy and imaging. .. [Pajevic1999] Pajevic S, Pierpaoli (1999). Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. .. include:: ../links_names.inc """
bsd-3-clause
CitizensCode/OSMSurfaceParking
populationVehicles.py
1
1424
from pandas import DataFrame, Series import pandas as pd import plotly.plotly as py from plotly.graph_objs import * # Locate the cansim data adultPopulation = "./Data/NBAdultPopulationCansim.csv" vehicleRegistrations = "./Data/NBVehicleRegistrationsCansim.csv" # Read in the population data pop_df = pd.read_csv(adultPopulation) pop_df = pop_df.drop(['GEO', 'SEX', 'AGE'], axis=1).set_index('Ref_Date') pop_df.columns = ['New Brunswick Population 18+'] pop_df # Read in the registration data reg_df = pd.read_csv(vehicleRegistrations) reg_df = reg_df.drop(['REGION', 'TYPE'], axis=1).set_index('Ref_Date') reg_df.columns = ['Vehicles Registered in NB < 4500kg'] reg_df # Merge them both together merged = pd.merge(reg_df, pop_df, left_index=True, right_index=True) merged # Calculate the number of vehicles per adult vehic_per_adult = merged.ix[:,0] / merged.ix[:,1] vehic_per_adult # Makes it possible to plot a pandas DataFrame in plotly def df_to_plotly(df): ''' Coverting a Pandas Data Frame to Plotly interface ''' x = df.index.values lines={} for key in df: lines[key]={} lines[key]["x"]=x lines[key]["y"]=df[key].values lines[key]["name"]=key #Appending all lines lines_plotly=[lines[key] for key in df] return lines_plotly # Convert the data using the above function plotly_data = df_to_plotly(merged) # Plot it py.plot(plotly_data)
apache-2.0
marqh/iris
docs/iris/example_code/General/lineplot_with_legend.py
18
1131
""" Multi-line temperature profile plot ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ """ import matplotlib.pyplot as plt import iris import iris.plot as iplt import iris.quickplot as qplt def main(): fname = iris.sample_data_path('air_temp.pp') # Load exactly one cube from the given file. temperature = iris.load_cube(fname) # We only want a small number of latitudes, so filter some out # using "extract". temperature = temperature.extract( iris.Constraint(latitude=lambda cell: 68 <= cell < 78)) for cube in temperature.slices('longitude'): # Create a string label to identify this cube (i.e. latitude: value). cube_label = 'latitude: %s' % cube.coord('latitude').points[0] # Plot the cube, and associate it with a label. qplt.plot(cube, label=cube_label) # Add the legend with 2 columns. plt.legend(ncol=2) # Put a grid on the plot. plt.grid(True) # Tell matplotlib not to extend the plot axes range to nicely # rounded numbers. plt.axis('tight') # Finally, show it. iplt.show() if __name__ == '__main__': main()
lgpl-3.0
gkc1000/pyscf
pyscf/nao/prod_basis.py
1
34330
from __future__ import print_function, division import numpy as np from scipy.sparse import coo_matrix from pyscf.nao.lsofcsr import lsofcsr_c from numpy import array, einsum, zeros, int64, sqrt, int32 from ctypes import POINTER, c_double, c_int64, byref from pyscf.nao.m_libnao import libnao from timeit import default_timer as timer libnao.init_vrtx_cc_apair.argtypes = (POINTER(c_double), POINTER(c_int64)) libnao.init_vrtx_cc_batch.argtypes = (POINTER(c_double), POINTER(c_int64)) libnao.vrtx_cc_apair.argtypes = ( POINTER(c_int64), # sp12(1:2) ! chemical species indices POINTER(c_double), # rc12(1:3,1:2) ! positions of species POINTER(c_int64), # lscc(ncc) ! list of contributing centers POINTER(c_int64), # ncc ! number of contributing centers POINTER(c_double), # dout(nout) ! vertex & converting coefficients POINTER(c_int64)) # nout ! size of the buffer for vertex & converting coefficients libnao.vrtx_cc_batch.argtypes = ( POINTER(c_int64), # npairs ! chemical species indices POINTER(c_double), # p2srncc ! species indices, positions of species, number of cc, cc POINTER(c_int64), # ncc ! leading dimension of p2srncc POINTER(c_int64)) # p2ndp ! pair -> number of dominant products in this pair libnao.get_vrtx_cc_batch.argtypes = ( POINTER(c_int64), # ps ! start pair POINTER(c_int64), # pf ! finish pair POINTER(c_double), # data ! output data buffer POINTER(c_int64)) # ndat ! size of data buffer # # # class prod_basis(): ''' Holder of local and bilocal product functions and vertices. Args: system_vars, i.e. holder of the geometry, and orbitals description tol : tolerance to keep the linear combinations Returns: For each specie returns a set of radial functions defining a product basis These functions are sufficient to represent the products of original atomic orbitals via a product vertex coefficients and conversion coefficients. Examples: ''' def __init__(self, nao=None, **kw): """ Variable belonging to the class prod_basis_c: From input: self.sv: copy of sv (system variable), probably not necessary?? self.tol_loc: tolerance for local basis self.tol_biloc: tolerance for bilocal basis self.ac_rcut_ratio: ac rcut ratio?? self.ac_npc_max: maximal number of participating centers Output: self.prod_log: Holder of (local) product functions and vertices self.hkernel_csr: hartree kernel: local part of Coulomb interaction self.c2s: global product Center (atom) -> start in case of atom-centered basis self.bp2info: some information including indices of atoms, list of contributing centres, conversion coefficients self.dpc2s, self.dpc2t, self.dpc2sp: product Center -> list of the size of the basis set in this center,of center's types,of product species """ self.nao = nao self.tol_loc = kw['tol_loc'] if 'tol_loc' in kw else 1e-5 self.tol_biloc = kw['tol_biloc'] if 'tol_biloc' in kw else 1e-6 self.tol_elim = kw['tol_elim'] if 'tol_elim' in kw else 1e-16 self.ac_rcut_ratio = kw['ac_rcut_ratio'] if 'ac_rcut_ratio' in kw else 1.0 self.ac_npc_max = kw['ac_npc_max'] if 'ac_npc_max' in kw else 8 self.pb_algorithm = kw['pb_algorithm'].lower() if 'pb_algorithm' in kw else 'pp' self.jcutoff = kw['jcutoff'] if 'jcutoff' in kw else 14 self.metric_type = kw['metric_type'] if 'metric_type' in kw else 2 self.optimize_centers = kw['optimize_centers'] if 'optimize_centers' in kw else 0 self.ngl = kw['ngl'] if 'ngl' in kw else 96 if nao is None: return if self.pb_algorithm=='pp': self.init_prod_basis_pp_batch(nao, **kw) elif self.pb_algorithm=='fp': from pyscf.nao.m_pb_ae import pb_ae pb_ae(self, nao, self.tol_loc, self.tol_biloc, self.ac_rcut_ratio) else: print( 'self.pb_algorithm', self.pb_algorithm ) raise RuntimeError('unknown pb_algorithm') return def init_prod_basis_pp(self, sv, **kvargs): """ Talman's procedure should be working well with Pseudo-Potential starting point.""" from pyscf.nao.m_prod_biloc import prod_biloc_c #t1 = timer() self.init_inp_param_prod_log_dp(sv, **kvargs) data = self.chain_data() libnao.init_vrtx_cc_apair(data.ctypes.data_as(POINTER(c_double)), c_int64(len(data))) self.sv_pbloc_data = True #t2 = timer(); print(t2-t1); t1=timer(); self.bp2info = [] # going to be some information including indices of atoms, list of contributing centres, conversion coefficients for ia1 in range(sv.natoms): rc1 = sv.ao_log.sp2rcut[sv.atom2sp[ia1]] for ia2 in range(ia1+1,sv.natoms): rc2,dist = sv.ao_log.sp2rcut[sv.atom2sp[ia2]], sqrt(((sv.atom2coord[ia1]-sv.atom2coord[ia2])**2).sum()) if dist>rc1+rc2 : continue pbiloc = self.comp_apair_pp_libint(ia1,ia2) if pbiloc is not None : self.bp2info.append(pbiloc) self.dpc2s,self.dpc2t,self.dpc2sp = self.init_c2s_domiprod() # dominant product's counting self.npdp = self.dpc2s[-1] self.norbs = self.sv.norbs return self def init_prod_basis_pp_batch(self, nao, **kw): """ Talman's procedure should be working well with Pseudo-Potential starting point.""" from pyscf.nao.prod_log import prod_log from pyscf.nao.m_prod_biloc import prod_biloc_c sv = nao t1 = timer() self.norbs = sv.norbs self.init_inp_param_prod_log_dp(sv, **kw) #t2 = timer(); print(' after init_inp_param_prod_log_dp ', t2-t1); t1=timer() data = self.chain_data() libnao.init_vrtx_cc_batch(data.ctypes.data_as(POINTER(c_double)), c_int64(len(data))) self.sv_pbloc_data = True aos = sv.ao_log p2srncc,p2npac,p2atoms = [],[],[] for a1,[sp1,ra1] in enumerate(zip(sv.atom2sp, sv.atom2coord)): rc1 = aos.sp2rcut[sp1] for a2,[sp2,ra2] in enumerate(zip(sv.atom2sp[a1+1:], sv.atom2coord[a1+1:])): a2+=a1+1 rc2,dist = aos.sp2rcut[sp2], sqrt(((ra1-ra2)**2).sum()) if dist>rc1+rc2 : continue cc2atom = self.ls_contributing(a1,a2) p2atoms.append([a1,a2]) p2srncc.append([sp1,sp2]+list(ra1)+list(ra2)+[len(cc2atom)]+list(cc2atom)) p2npac.append( sum([self.prod_log.sp2norbs[sv.atom2sp[ia]] for ia in cc2atom ])) #print(np.asarray(p2srncc)) p2ndp = np.require( zeros(len(p2srncc), dtype=np.int64), requirements='CW') p2srncc_cp = np.require( np.asarray(p2srncc), requirements='C') npairs = p2srncc_cp.shape[0] self.npairs = npairs self.bp2info = [] # going to be indices of atoms, list of contributing centres, conversion coefficients if npairs>0 : # Conditional fill of the self.bp2info if there are bilocal pairs (natoms>1) ld = p2srncc_cp.shape[1] if nao.verbosity>0: #print(__name__,'npairs {} and p2srncc_cp.shape is {}'.format(npairs, p2srncc_cp.shape)) t2 = timer(); print(__name__,'\t====> Time for call vrtx_cc_batch: {:.2f} sec, npairs: {}'.format(t2-t1, npairs)); t1=timer() libnao.vrtx_cc_batch( c_int64(npairs), p2srncc_cp.ctypes.data_as(POINTER(c_double)), c_int64(ld), p2ndp.ctypes.data_as(POINTER(c_int64))) if nao.verbosity>0: print(__name__,'\t====> libnao.vrtx_cc_batch is done!') t2 = timer(); print(__name__,'\t====> Time after vrtx_cc_batch:\t {:.2f} sec'.format(t2-t1)); t1=timer() nout = 0 sp2norbs = sv.ao_log.sp2norbs for srncc,ndp,npac in zip(p2srncc,p2ndp,p2npac): sp1,sp2 = srncc[0],srncc[1] nout = nout + ndp*sp2norbs[sp1]*sp2norbs[sp2]+npac*ndp dout = np.require( zeros(nout), requirements='CW') if nao.verbosity>3:print(__name__,'\t====>libnao.get_vrtx_cc_batch is calling') libnao.get_vrtx_cc_batch(c_int64(0),c_int64(npairs),dout.ctypes.data_as(POINTER(c_double)),c_int64(nout)) f = 0 for srncc,ndp,npac,[a1,a2] in zip(p2srncc,p2ndp,p2npac,p2atoms): if ndp<1 : continue sp1,sp2,ncc = srncc[0],srncc[1],srncc[8] icc2a = array(srncc[9:9+ncc], dtype=int64) nnn = np.array((ndp,sp2norbs[sp2],sp2norbs[sp1]), dtype=int64) nnc = np.array([ndp,npac], dtype=int64) s = f; f=s+np.prod(nnn); vrtx = dout[s:f].reshape(nnn) s = f; f=s+np.prod(nnc); ccoe = dout[s:f].reshape(nnc) icc2s = zeros(len(icc2a)+1, dtype=int64) for icc,a in enumerate(icc2a): icc2s[icc+1] = icc2s[icc] + self.prod_log.sp2norbs[sv.atom2sp[a]] pbiloc = prod_biloc_c(atoms=array([a2,a1]),vrtx=vrtx,cc2a=icc2a,cc2s=icc2s,cc=ccoe) self.bp2info.append(pbiloc) #t2 = timer(); print('after loop ', t2-t1); t1=timer() self.dpc2s,self.dpc2t,self.dpc2sp = self.init_c2s_domiprod() # dominant product's counting self.npdp = self.dpc2s[-1] #t2 = timer(); print('after init_c2s_domiprod ', t2-t1); t1=timer() return self def init_inp_param_prod_log_dp(self, sv, tol_loc=1e-5, tol_biloc=1e-6, ac_rcut_ratio=1.0, ac_npc_max=8, jcutoff=14, metric_type=2, optimize_centers=0, ngl=96, **kw): """ Talman's procedure should be working well with a pseudo-potential hamiltonians. This subroutine prepares the class for a later atom pair by atom pair generation of the dominant product vertices and the conversion coefficients by calling subroutines from the library libnao. """ from pyscf.nao.prod_log import prod_log from pyscf.nao.m_libnao import libnao self.sv = sv self.tol_loc,self.tol_biloc,self.ac_rcut_ratio,self.ac_npc_max = tol_loc, tol_biloc, ac_rcut_ratio, ac_npc_max self.jcutoff,self.metric_type,self.optimize_centers,self.ngl = jcutoff, metric_type, optimize_centers, ngl self.ac_rcut = ac_rcut_ratio*max(sv.ao_log.sp2rcut) lload = kw['load_from_hdf5'] if 'load_from_hdf5' in kw else False if lload : self.prod_log = prod_log(ao_log=sv.ao_log, sp2charge=sv.sp2charge, tol_loc=tol_loc, load=True) # tests Fortran input else : self.prod_log = prod_log(ao_log=sv.ao_log, tol_loc=tol_loc, **kw) # local basis (for each specie) self.c2s = zeros((sv.natm+1), dtype=int64) # global product Center (atom) -> start in case of atom-centered basis for gc,sp in enumerate(sv.atom2sp): self.c2s[gc+1]=self.c2s[gc]+self.prod_log.sp2norbs[sp] # return self def chain_data(self): """ This subroutine creates a buffer of information to communicate the system variables and the local product vertex to libnao. Later, one will be able to generate the bilocal vertex and conversion coefficient for a given pair of atom species and their coordinates .""" from numpy import concatenate as conc aos,sv,pl = self.sv.ao_log, self.sv, self.prod_log assert aos.nr==pl.nr assert aos.nspecies==pl.nspecies nr,nsp,nmt,nrt = aos.nr,aos.nspecies, sum(aos.sp2nmult),aos.nr*sum(aos.sp2nmult) nat,na1,tna,nms = sv.natoms,sv.natoms+1,3*sv.natoms,sum(aos.sp2nmult)+aos.nspecies nmtp,nrtp,nmsp = sum(pl.sp2nmult),pl.nr*sum(pl.sp2nmult),sum(pl.sp2nmult)+pl.nspecies nvrt = sum(aos.sp2norbs*aos.sp2norbs*pl.sp2norbs) ndat = 200 + 2*nr + 4*nsp + 2*nmt + nrt + nms + 3*3 + nat + 2*na1 + tna + \ 4*nsp + 2*nmtp + nrtp + nmsp + nvrt dat = zeros(ndat) # Simple parameters i = 0 dat[i] = -999.0; i+=1 # pointer to the empty space in simple parameter dat[i] = aos.nspecies; i+=1 dat[i] = aos.nr; i+=1 dat[i] = aos.rmin; i+=1; dat[i] = aos.rmax; i+=1; dat[i] = aos.kmax; i+=1; dat[i] = aos.jmx; i+=1; dat[i] = conc(aos.psi_log).sum(); i+=1; dat[i] = conc(pl.psi_log).sum(); i+=1; dat[i] = sv.natoms; i+=1 dat[i] = sv.norbs; i+=1 dat[i] = sv.norbs_sc; i+=1 dat[i] = sv.nspin; i+=1 dat[i] = self.tol_loc; i+=1 dat[i] = self.tol_biloc; i+=1 dat[i] = self.ac_rcut_ratio; i+=1 dat[i] = self.ac_npc_max; i+=1 dat[i] = self.jcutoff; i+=1 dat[i] = self.metric_type; i+=1 dat[i] = self.optimize_centers; i+=1 dat[i] = self.ngl; i+=1 dat[0] = i # Pointers to data i = 99 s = 199 dat[i] = s+1; i+=1; f=s+nr; dat[s:f] = aos.rr; s=f; # pointer to rr dat[i] = s+1; i+=1; f=s+nr; dat[s:f] = aos.pp; s=f; # pointer to pp dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = aos.sp2nmult; s=f; # pointer to sp2nmult dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = aos.sp2rcut; s=f; # pointer to sp2rcut dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = aos.sp2norbs; s=f; # pointer to sp2norbs dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = aos.sp2charge; s=f; # pointer to sp2charge dat[i] = s+1; i+=1; f=s+nmt; dat[s:f] = conc(aos.sp_mu2j); s=f; # pointer to sp_mu2j dat[i] = s+1; i+=1; f=s+nmt; dat[s:f] = conc(aos.sp_mu2rcut); s=f; # pointer to sp_mu2rcut dat[i] = s+1; i+=1; f=s+nrt; dat[s:f] = conc(aos.psi_log).reshape(nrt); s=f; # pointer to psi_log dat[i] = s+1; i+=1; f=s+nms; dat[s:f] = conc(aos.sp_mu2s); s=f; # pointer to sp_mu2s dat[i] = s+1; i+=1; f=s+3*3; dat[s:f] = conc(sv.ucell); s=f; # pointer to ucell (123,xyz) ? dat[i] = s+1; i+=1; f=s+nat; dat[s:f] = sv.atom2sp; s=f; # pointer to atom2sp dat[i] = s+1; i+=1; f=s+na1; dat[s:f] = sv.atom2s; s=f; # pointer to atom2s dat[i] = s+1; i+=1; f=s+na1; dat[s:f] = sv.atom2mu_s; s=f; # pointer to atom2mu_s dat[i] = s+1; i+=1; f=s+tna; dat[s:f] = conc(sv.atom2coord); s=f; # pointer to atom2coord dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = pl.sp2nmult; s=f; # sp2nmult of product basis dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = pl.sp2rcut; s=f; # sp2nmult of product basis dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = pl.sp2norbs; s=f; # sp2norbs of product basis dat[i] = s+1; i+=1; f=s+nsp; dat[s:f] = pl.sp2charge; s=f; # sp2norbs of product basis dat[i] = s+1; i+=1; f=s+nmtp; dat[s:f] = conc(pl.sp_mu2j); s=f; # pointer to sp_mu2j dat[i] = s+1; i+=1; f=s+nmtp; dat[s:f] = conc(pl.sp_mu2rcut); s=f; # pointer to sp_mu2rcut dat[i] = s+1; i+=1; f=s+nrtp; dat[s:f] = conc(pl.psi_log).reshape(nrtp); s=f; # pointer to psi_log dat[i] = s+1; i+=1; f=s+nmsp; dat[s:f] = conc(pl.sp_mu2s); s=f; # pointer to sp_mu2s dat[i] = s+1; i+=1; f=s+nvrt; dat[s:f] = conc([v.flatten() for v in pl.sp2vertex]); s=f; # pointer to sp2vertex dat[i] = s+1; # this is a terminator to simplify operation return dat def comp_apair_pp_libint(self, a1,a2): """ Get's the vertex coefficient and conversion coefficients for a pair of atoms given by their atom indices """ from operator import mul from pyscf.nao.m_prod_biloc import prod_biloc_c if not hasattr(self, 'sv_pbloc_data') : raise RuntimeError('.sv_pbloc_data is absent') assert a1>=0 assert a2>=0 t1 = timer() sv = self.sv aos = self.sv.ao_log sp12 = np.require( np.array([sv.atom2sp[a] for a in (a1,a2)], dtype=c_int64), requirements='C') rc12 = np.require( np.array([sv.atom2coord[a,:] for a in (a1,a2)]), requirements='C') icc2a = np.require( np.array(self.ls_contributing(a1,a2), dtype=c_int64), requirements='C') npmx = aos.sp2norbs[sv.atom2sp[a1]]*aos.sp2norbs[sv.atom2sp[a2]] npac = sum([self.prod_log.sp2norbs[sv.atom2sp[ia]] for ia in icc2a ]) nout = c_int64(npmx**2+npmx*npac+10) dout = np.require( zeros(nout.value), requirements='CW') libnao.vrtx_cc_apair( sp12.ctypes.data_as(POINTER(c_int64)), rc12.ctypes.data_as(POINTER(c_double)), icc2a.ctypes.data_as(POINTER(c_int64)), c_int64(len(icc2a)), dout.ctypes.data_as(POINTER(c_double)), nout ) if dout[0]<1: return None nnn = np.array(dout[0:3], dtype=int) nnc = np.array([dout[8],dout[7]], dtype=int) ncc = int(dout[9]) if ncc!=len(icc2a): raise RuntimeError('ncc!=len(icc2a)') s = 10; f=s+np.prod(nnn); vrtx = dout[s:f].reshape(nnn) s = f; f=s+np.prod(nnc); ccoe = dout[s:f].reshape(nnc) icc2s = zeros(len(icc2a)+1, dtype=np.int64) for icc,a in enumerate(icc2a): icc2s[icc+1] = icc2s[icc] + self.prod_log.sp2norbs[sv.atom2sp[a]] pbiloc = prod_biloc_c(atoms=array([a2,a1]),vrtx=vrtx,cc2a=icc2a,cc2s=icc2s,cc=ccoe) return pbiloc def ls_contributing(self, a1,a2): """ Get the list of contributing centers """ from pyscf.nao.m_ls_contributing import ls_contributing sp12 = np.array([self.sv.atom2sp[a] for a in (a1,a2)]) rc12 = np.array([self.sv.atom2coord[a,:] for a in (a1,a2)]) return ls_contributing(self, sp12, rc12) def get_da2cc_den(self, dtype=np.float64): """ Returns Conversion Coefficients as dense matrix """ nfdp,nfap = self.dpc2s[-1],self.c2s[-1] da2cc = zeros((nfdp,nfap), dtype=dtype) for sd,fd,pt in zip(self.dpc2s,self.dpc2s[1:],self.dpc2t): if pt==1: da2cc[sd:fd,sd:fd] = np.identity(fd-sd) for sd,fd,pt,spp in zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp): if pt==1: continue inf = self.bp2info[spp] for c,ls,lf in zip(inf.cc2a, inf.cc2s, inf.cc2s[1:]): da2cc[sd:fd, self.c2s[c]:self.c2s[c+1]] = inf.cc[:,ls:lf] return da2cc def get_da2cc_nnz(self): """ Computes the number of non-zero matrix elements in the conversion matrix ac <=> dp """ nnz = 0 for sd,fd,pt in zip(self.dpc2s,self.dpc2s[1:],self.dpc2t): if pt==1: nnz = nnz + (fd-sd) for sd,fd,pt,spp in zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp): if pt==1: continue inf = self.bp2info[spp] for c,ls,lf in zip(inf.cc2a, inf.cc2s, inf.cc2s[1:]): nnz = nnz + (fd-sd)*(lf-ls) return nnz # should we not keep only the sparse matrix and get rid of the original data ?? def get_da2cc_sparse(self, dtype=np.float64, sparseformat=coo_matrix): """ Returns Conversion Coefficients as sparse COO matrix """ nfdp,nfap = self.dpc2s[-1],self.c2s[-1] nnz = self.get_da2cc_nnz() irow,icol,data = zeros(nnz, dtype=int),zeros(nnz, dtype=int), zeros(nnz, dtype=dtype) # Start to construct coo matrix inz = 0 for atom, [sd,fd,pt] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t)): if pt!=1: continue for d in range(sd,fd): irow[inz],icol[inz],data[inz] = d,d,1.0 inz+=1 for atom, [sd,fd,pt,spp] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp)): if pt==1: continue inf = self.bp2info[spp] for c,ls,lf in zip(inf.cc2a, inf.cc2s, inf.cc2s[1:]): for d in range(sd,fd): for a in range(self.c2s[c],self.c2s[c+1]): irow[inz],icol[inz],data[inz] = d,a,inf.cc[d-sd,a-self.c2s[c]+ls] inz+=1 return sparseformat((data,(irow,icol)), dtype=dtype, shape=(nfdp, nfap)) def get_ac_vertex_array(self, dtype=np.float64): """ Returns the product vertex coefficients as 3d array (dense table) """ atom2so = self.sv.atom2s nfap = self.c2s[-1] n = self.sv.atom2s[-1] pab2v = np.require( zeros((nfap,n,n), dtype=dtype), requirements='CW') for atom,[sd,fd,pt,spp] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp)): if pt!=1: continue s,f = atom2so[atom:atom+2] pab2v[sd:fd,s:f,s:f] = self.prod_log.sp2vertex[spp] for sd,fd,pt,spp in zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp): if pt!=2: continue inf= self.bp2info[spp] lab = einsum('dl,dab->lab', inf.cc, inf.vrtx) a,b = inf.atoms sa,fa,sb,fb = atom2so[a],atom2so[a+1],atom2so[b],atom2so[b+1] for c,ls,lf in zip(inf.cc2a, inf.cc2s, inf.cc2s[1:]): pab2v[self.c2s[c]:self.c2s[c+1],sa:fa,sb:fb] = lab[ls:lf,:,:] pab2v[self.c2s[c]:self.c2s[c+1],sb:fb,sa:fa] = einsum('pab->pba', lab[ls:lf,:,:]) return pab2v def get_dp_vertex_array(self, dtype=np.float64): """ Returns the product vertex coefficients as 3d array for dominant products """ atom2so = self.sv.atom2s nfdp = self.dpc2s[-1] n = self.sv.atom2s[-1] pab2v = np.require(zeros((nfdp,n,n), dtype=dtype), requirements='CW') for atom,[sd,fd,pt,spp] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp)): if pt!=1: continue s,f = atom2so[atom:atom+2] pab2v[sd:fd,s:f,s:f] = self.prod_log.sp2vertex[spp] for sd,fd,pt,spp in zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp): if pt!=2: continue inf= self.bp2info[spp] a,b = inf.atoms sa,fa,sb,fb = atom2so[a],atom2so[a+1],atom2so[b],atom2so[b+1] pab2v[sd:fd,sa:fa,sb:fb] = inf.vrtx pab2v[sd:fd,sb:fb,sa:fa] = einsum('pab->pba', inf.vrtx) return pab2v def get_dp_vertex_nnz(self): """ Number of non-zero elements in the dominant product vertex : can be speedup, but...""" nnz = 0 for pt,spp in zip(self.dpc2t,self.dpc2sp): if pt==1: nnz += self.prod_log.sp2vertex[spp].size elif pt==2: nnz += 2*self.bp2info[spp].vrtx.size else: raise RuntimeError('pt?') return nnz def get_dp_vertex_doubly_sparse(self, dtype=np.float64, sparseformat=lsofcsr_c, axis=0): """ Returns the product vertex coefficients for dominant products as a one-dimensional array of sparse matrices """ nnz = self.get_dp_vertex_nnz() i1,i2,i3,data = zeros(nnz, dtype=int), zeros(nnz, dtype=int), zeros(nnz, dtype=int), zeros(nnz, dtype=dtype) atom2s,dpc2s,nfdp,n = self.sv.atom2s, self.dpc2s,self.dpc2s[-1],self.sv.atom2s[-1] inz = 0 for s,f,sd,fd,pt,spp in zip(atom2s,atom2s[1:],dpc2s,dpc2s[1:],self.dpc2t,self.dpc2sp): size = self.prod_log.sp2vertex[spp].size lv = self.prod_log.sp2vertex[spp].reshape(size) dd,aa,bb = np.mgrid[sd:fd,s:f,s:f].reshape((3,size)) i1[inz:inz+size],i2[inz:inz+size],i3[inz:inz+size],data[inz:inz+size] = dd,aa,bb,lv inz+=size for sd,fd,pt,spp in zip(dpc2s,dpc2s[1:],self.dpc2t,self.dpc2sp): if pt!=2: continue inf,(a,b),size = self.bp2info[spp],self.bp2info[spp].atoms,self.bp2info[spp].vrtx.size sa,fa,sb,fb = atom2s[a],atom2s[a+1],atom2s[b],atom2s[b+1] dd,aa,bb = np.mgrid[sd:fd,sa:fa,sb:fb].reshape((3,size)) i1[inz:inz+size],i2[inz:inz+size],i3[inz:inz+size] = dd,aa,bb data[inz:inz+size] = inf.vrtx.reshape(size) inz+=size i1[inz:inz+size],i2[inz:inz+size],i3[inz:inz+size] = dd,bb,aa data[inz:inz+size] = inf.vrtx.reshape(size) inz+=size return sparseformat((data, (i1, i2, i3)), dtype=dtype, shape=(nfdp,n,n), axis=axis) def get_dp_vertex_doubly_sparse_loops(self, dtype=np.float64, sparseformat=lsofcsr_c, axis=0): """ Returns the product vertex coefficients for dominant products as a one-dimensional array of sparse matrices, slow version """ nnz = self.get_dp_vertex_nnz() i1,i2,i3,data = zeros(nnz, dtype=int), zeros(nnz, dtype=int), zeros(nnz, dtype=int), zeros(nnz, dtype=dtype) a2s,n,nfdp,lv = self.sv.atom2s,self.sv.atom2s[-1],self.dpc2s[-1],self.prod_log.sp2vertex # local "aliases" inz = 0 for atom,[sd,fd,pt,spp] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp)): if pt!=1: continue s,f = a2s[atom:atom+2] for p in range(sd,fd): for a in range(s,f): for b in range(s,f): i1[inz],i2[inz],i3[inz],data[inz] = p,a,b,lv[spp][p-sd,a-s,b-s] inz+=1 for atom, [sd,fd,pt,spp] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp)): if pt!=2: continue inf= self.bp2info[spp] a,b = inf.atoms sa,fa,sb,fb = a2s[a],a2s[a+1],a2s[b],a2s[b+1] for p in range(sd,fd): for a in range(sa,fa): for b in range(sb,fb): i1[inz],i2[inz],i3[inz],data[inz] = p,a,b,inf.vrtx[p-sd,a-sa,b-sb]; inz+=1; i1[inz],i2[inz],i3[inz],data[inz] = p,b,a,inf.vrtx[p-sd,a-sa,b-sb]; inz+=1; return sparseformat((data, (i1, i2, i3)), dtype=dtype, shape=(nfdp,n,n), axis=axis) def get_dp_vertex_sparse(self, dtype=np.float64, sparseformat=coo_matrix): """ Returns the product vertex coefficients as 3d array for dominant products, in a sparse format coo(p,ab) by default""" nnz = self.get_dp_vertex_nnz() #Number of non-zero elements in the dominant product vertex irow,icol,data = zeros(nnz, dtype=int), zeros(nnz, dtype=int), zeros(nnz, dtype=dtype) # Start to construct coo matrix atom2s,dpc2s,nfdp,n = self.sv.atom2s, self.dpc2s,self.dpc2s[-1],self.sv.atom2s[-1] #self.dpc2s, self.dpc2t, self.dpc2sp: product Center -> list of the size of the basis set in this center,of center's types,of product species inz = 0 for s,f,sd,fd,pt,spp in zip(atom2s,atom2s[1:],dpc2s,dpc2s[1:],self.dpc2t,self.dpc2sp): size = self.prod_log.sp2vertex[spp].size lv = self.prod_log.sp2vertex[spp].reshape(size) dd,aa,bb = np.mgrid[sd:fd,s:f,s:f].reshape((3,size)) irow[inz:inz+size],icol[inz:inz+size],data[inz:inz+size] = dd, aa+bb*n, lv inz+=size for sd,fd,pt,spp in zip(dpc2s,dpc2s[1:],self.dpc2t,self.dpc2sp): if pt!=2: continue inf,(a,b),size = self.bp2info[spp],self.bp2info[spp].atoms,self.bp2info[spp].vrtx.size sa,fa,sb,fb = atom2s[a],atom2s[a+1],atom2s[b],atom2s[b+1] dd,aa,bb = np.mgrid[sd:fd,sa:fa,sb:fb].reshape((3,size)) irow[inz:inz+size],icol[inz:inz+size] = dd,aa+bb*n data[inz:inz+size] = inf.vrtx.reshape(size) inz+=size irow[inz:inz+size],icol[inz:inz+size] = dd,bb+aa*n data[inz:inz+size] = inf.vrtx.reshape(size) inz+=size return sparseformat((data, (irow, icol)), dtype=dtype, shape=(nfdp,n*n)) def get_dp_vertex_sparse2(self, dtype=np.float64, sparseformat=coo_matrix): """ Returns the product vertex coefficients as 3d array for dominant products, in a sparse format coo(pa,b) by default""" import numpy as np from scipy.sparse import csr_matrix, coo_matrix nnz = self.get_dp_vertex_nnz() irow,icol,data = np.zeros(nnz, dtype=int), np.zeros(nnz, dtype=int), np.zeros(nnz, dtype=dtype) atom2s,dpc2s,nfdp,n = self.sv.atom2s, self.dpc2s, self.dpc2s[-1],self.sv.atom2s[-1] inz = 0 for s,f,sd,fd,pt,spp in zip(atom2s,atom2s[1:],dpc2s,dpc2s[1:],self.dpc2t,self.dpc2sp): size = self.prod_log.sp2vertex[spp].size lv = self.prod_log.sp2vertex[spp].reshape(size) dd,aa,bb = np.mgrid[sd:fd,s:f,s:f].reshape((3,size)) irow[inz:inz+size],icol[inz:inz+size],data[inz:inz+size] = dd+aa*nfdp, bb, lv inz+=size for sd,fd,pt,spp in zip(dpc2s,dpc2s[1:],self.dpc2t, self.dpc2sp): if pt!=2: continue inf,(a,b),size = self.bp2info[spp],self.bp2info[spp].atoms,self.bp2info[spp].vrtx.size sa,fa,sb,fb = atom2s[a],atom2s[a+1],atom2s[b],atom2s[b+1] dd,aa,bb = np.mgrid[sd:fd,sa:fa,sb:fb].reshape((3,size)) irow[inz:inz+size],icol[inz:inz+size] = dd+aa*nfdp, bb data[inz:inz+size] = inf.vrtx.reshape(size) inz+=size irow[inz:inz+size],icol[inz:inz+size] = dd+bb*nfdp, aa data[inz:inz+size] = inf.vrtx.reshape(size) inz+=size return coo_matrix((data, (irow, icol)), dtype=dtype, shape=(nfdp*n,n)) def get_dp_vertex_sparse_loops(self, dtype=np.float64, sparseformat=coo_matrix): """ Returns the product vertex coefficients as 3d array for dominant products, in a sparse format coo(p,ab) slow version""" nnz = self.get_dp_vertex_nnz() irow,icol,data = zeros(nnz, dtype=int), zeros(nnz, dtype=int), zeros(nnz, dtype=dtype) # Start to construct coo matrix atom2so = self.sv.atom2s nfdp = self.dpc2s[-1] n = self.sv.atom2s[-1] inz = 0 for atom,[sd,fd,pt,spp] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp)): if pt!=1: continue s,f = atom2so[atom:atom+2] for p in range(sd,fd): for a in range(s,f): for b in range(s,f): irow[inz],icol[inz],data[inz] = p,a+b*n,self.prod_log.sp2vertex[spp][p-sd,a-s,b-s] inz+=1 for atom, [sd,fd,pt,spp] in enumerate(zip(self.dpc2s,self.dpc2s[1:],self.dpc2t,self.dpc2sp)): if pt!=2: continue inf= self.bp2info[spp] a,b = inf.atoms sa,fa,sb,fb = atom2so[a],atom2so[a+1],atom2so[b],atom2so[b+1] for p in range(sd,fd): for a in range(sa,fa): for b in range(sb,fb): irow[inz],icol[inz],data[inz] = p,a+b*n,inf.vrtx[p-sd,a-sa,b-sb]; inz+=1; irow[inz],icol[inz],data[inz] = p,b+a*n,inf.vrtx[p-sd,a-sa,b-sb]; inz+=1; return sparseformat((data, (irow, icol)), dtype=dtype, shape=(nfdp,n*n)) def comp_fci_den(self, hk, dtype=np.float64): """ Compute the four-center integrals and return it in a dense storage """ pab2v = self.get_ac_vertex_array(dtype=dtype) pcd = np.einsum('pq,qcd->pcd', hk, pab2v) abcd = np.einsum('pab,pcd->abcd', pab2v, pcd) return abcd def init_c2s_domiprod(self): """Compute the array of start indices for dominant product basis set """ c2n,c2t,c2sp = [],[],[] # product Center -> list of the size of the basis set in this center,of center's types,of product species for atom,sp in enumerate(self.sv.atom2sp): c2n.append(self.prod_log.sp2vertex[sp].shape[0]); c2t.append(1); c2sp.append(sp); for ibp,inf in enumerate(self.bp2info): c2n.append(inf.vrtx.shape[0]); c2t.append(2); c2sp.append(ibp); ndpc = len(c2n) # number of product centers in this vertex c2s = zeros(ndpc+1, np.int64 ) # product Center -> Start index of a product function in a global counting for this vertex for c in range(ndpc): c2s[c+1] = c2s[c] + c2n[c] return c2s,c2t,c2sp def comp_moments(self, dtype=np.float64): """ Computes the scalar and dipole moments for the all functions in the product basis """ sp2mom0, sp2mom1 = self.prod_log.comp_moments() n = self.c2s[-1] mom0 = np.require(zeros(n, dtype=dtype), requirements='CW') mom1 = np.require(zeros((n,3), dtype=dtype), requirements='CW') for a,[sp,coord,s,f] in enumerate(zip(self.sv.atom2sp,self.sv.atom2coord,self.c2s,self.c2s[1:])): mom0[s:f],mom1[s:f,:] = sp2mom0[sp], einsum('j,k->jk', sp2mom0[sp],coord)+sp2mom1[sp] return mom0,mom1 def comp_coulomb_pack(self, **kw): """ Computes the packed version of the Hartree kernel """ from pyscf.nao.m_comp_coulomb_pack import comp_coulomb_pack return comp_coulomb_pack(self.sv, self.prod_log, **kw) def comp_coulomb_den(self, **kw): """ Computes the dense (square) version of the Hartree kernel """ from pyscf.nao.m_comp_coulomb_den import comp_coulomb_den return comp_coulomb_den(self.sv, self.prod_log, **kw) def comp_fxc_lil(self, **kw): """ Computes the sparse version of the xc kernel """ from pyscf.nao.m_vxc_lil import vxc_lil return vxc_lil(self.sv, deriv=2, ao_log=self.prod_log, **kw) def comp_fxc_pack(self, **kw): """ Computes the packed version of the xc kernel """ from pyscf.nao.m_vxc_pack import vxc_pack return vxc_pack(self.sv, deriv=2, ao_log=self.prod_log, **kw) def overlap_check(self, **kw): """ Our standard minimal check comparing with overlaps """ sref = self.sv.overlap_coo(**kw).toarray() mom0,mom1 = self.comp_moments() vpab = self.get_ac_vertex_array() sprd = np.einsum('p,pab->ab', mom0,vpab) return [[abs(sref-sprd).sum()/sref.size, np.amax(abs(sref-sprd))]] def dipole_check(self, **kw): """ Our standard minimal check """ dipcoo = self.sv.dipole_coo(**kw) mom0,mom1 = self.comp_moments() vpab = self.get_ac_vertex_array() xyz2err = [] for i,dref in enumerate(dipcoo): dref = dref.toarray() dprd = np.einsum('p,pab->ab', mom1[:,i],vpab) xyz2err.append([abs(dprd-dref).sum()/dref.size, np.amax(abs(dref-dprd))]) return xyz2err def get_nprod(self): """ Number of (atom-centered) products """ return self.c2s[-1] def generate_png_spy_dp_vertex(self): """Produces pictures of the dominant product vertex in a common black-and-white way""" import matplotlib.pyplot as plt plt.ioff() dab2v = self.get_dp_vertex_doubly_sparse() for i,ab2v in enumerate(dab2v): plt.spy(ab2v.toarray()) fname = "spy-v-{:06d}.png".format(i) print(fname) plt.savefig(fname, bbox_inches='tight') plt.close() return 0 def generate_png_chess_dp_vertex(self): """Produces pictures of the dominant product vertex a chessboard convention""" import matplotlib.pylab as plt plt.ioff() dab2v = self.get_dp_vertex_doubly_sparse() for i, ab in enumerate(dab2v): fname = "chess-v-{:06d}.png".format(i) print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname) if type(ab) != 'numpy.ndarray': ab = ab.toarray() fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.set_aspect('equal') plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() plt.savefig(fname) plt.close(fig) def reshape_COO(a, shape): """Reshape the sparse matrix (a) and returns a coo_matrix with favourable shape.""" from scipy.sparse import coo_matrix if not hasattr(shape, '__len__') or len(shape) != 2: raise ValueError('`shape` must be a sequence of two integers') c = a.tocoo() nrows, ncols = c.shape size = nrows * ncols new_size = shape[0] * shape[1] if new_size != size: raise ValueError('total size of new array must be unchanged') flat_indices = ncols * c.row + c.col new_row, new_col = divmod(flat_indices, shape[1]) b = coo_matrix((c.data, (new_row, new_col)), shape=shape) return b # # # if __name__=='__main__': from pyscf.nao import prod_basis_c, nao from pyscf.nao.m_overlap_coo import overlap_coo from pyscf import gto import numpy as np mol = gto.M(atom='O 0 0 0; H 0 0 0.5; H 0 0.5 0', basis='ccpvdz') # coordinates in Angstrom! sv = nao(gto=mol) print(sv.atom2s) s_ref = overlap_coo(sv).todense() pb = prod_basis_c() pb.init_prod_basis_pp_batch(sv) mom0,mom1=pb.comp_moments() pab2v = pb.get_ac_vertex_array() s_chk = einsum('pab,p->ab', pab2v,mom0) print(abs(s_chk-s_ref).sum()/s_chk.size, abs(s_chk-s_ref).max())
apache-2.0
glmcdona/FoosAI
Code/RawDataProcessing/raw_data_processing.py
1
1416
# Dependencies: # !pip install numpy # !pip install imageio # !pip install matplotlib import sys from experiment import * # Settings #data_path = ".\\..\\Recorder\\FeatureSetBuilder\\Experiments\\experiment4.config" if len(sys.argv) != 3: print("ERROR: You need to pass in two arguments.") print("raw_data_processing.py play <path to recording.config of recording to view>") print("Eg: raw_data_processing.py play .\\..\\..\\TrainingData\\Raw\\Am1\\recording.config\n") print("raw_data_processing.py process <path to experiment.config>") print("Eg: raw_data_processing.py process .\\..\\..\\TrainingData\\Processed\\AmateurDefender\\experiment.config") elif( sys.argv[1] == "play" ): # Play the video live print("Playing recording config frames from path %s." % (sys.argv[2])) rec = Recording(sys.argv[2]) rec.play() elif( sys.argv[1] == "playexp" ): # Play the video live print("Playing experiment config frames from path %s." % (sys.argv[2])) exp = Experiment(sys.argv[2]) exp.play() elif( sys.argv[1] == "process" ): print("Processing experimient config frames from path %s." % (sys.argv[2])) exp = Experiment(sys.argv[2]) exp.process() elif( sys.argv[1] == "play_rod" ): # Play the video live print("Playing recording config frames from path %s." % (sys.argv[2])) rec = Recording(sys.argv[2]) rec.play() else: print("ERROR: Invalid command %s. Must be play or process." % sys.argv[1])
mit
edhuckle/statsmodels
statsmodels/sandbox/distributions/mv_measures.py
33
6257
'''using multivariate dependence and divergence measures The standard correlation coefficient measures only linear dependence between random variables. kendall's tau measures any monotonic relationship also non-linear. mutual information measures any kind of dependence, but does not distinguish between positive and negative relationship mutualinfo_kde and mutualinfo_binning follow Khan et al. 2007 Shiraj Khan, Sharba Bandyopadhyay, Auroop R. Ganguly, Sunil Saigal, David J. Erickson, III, Vladimir Protopopescu, and George Ostrouchov, Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data, Phys. Rev. E 76, 026209 (2007) http://pre.aps.org/abstract/PRE/v76/i2/e026209 ''' import numpy as np from scipy import stats from scipy.stats import gaussian_kde import statsmodels.sandbox.infotheo as infotheo def mutualinfo_kde(y, x, normed=True): '''mutual information of two random variables estimated with kde ''' nobs = len(x) if not len(y) == nobs: raise ValueError('both data arrays need to have the same size') x = np.asarray(x, float) y = np.asarray(y, float) yx = np.vstack((y,x)) kde_x = gaussian_kde(x)(x) kde_y = gaussian_kde(y)(y) kde_yx = gaussian_kde(yx)(yx) mi_obs = np.log(kde_yx) - np.log(kde_x) - np.log(kde_y) mi = mi_obs.sum() / nobs if normed: mi_normed = np.sqrt(1. - np.exp(-2 * mi)) return mi_normed else: return mi def mutualinfo_kde_2sample(y, x, normed=True): '''mutual information of two random variables estimated with kde ''' nobs = len(x) x = np.asarray(x, float) y = np.asarray(y, float) #yx = np.vstack((y,x)) kde_x = gaussian_kde(x.T)(x.T) kde_y = gaussian_kde(y.T)(x.T) #kde_yx = gaussian_kde(yx)(yx) mi_obs = np.log(kde_x) - np.log(kde_y) if len(mi_obs) != nobs: raise ValueError("Wrong number of observations") mi = mi_obs.mean() if normed: mi_normed = np.sqrt(1. - np.exp(-2 * mi)) return mi_normed else: return mi def mutualinfo_binned(y, x, bins, normed=True): '''mutual information of two random variables estimated with kde Notes ----- bins='auto' selects the number of bins so that approximately 5 observations are expected to be in each bin under the assumption of independence. This follows roughly the description in Kahn et al. 2007 ''' nobs = len(x) if not len(y) == nobs: raise ValueError('both data arrays need to have the same size') x = np.asarray(x, float) y = np.asarray(y, float) #yx = np.vstack((y,x)) ## fyx, binsy, binsx = np.histogram2d(y, x, bins=bins) ## fx, binsx_ = np.histogram(x, bins=binsx) ## fy, binsy_ = np.histogram(y, bins=binsy) if bins == 'auto': ys = np.sort(y) xs = np.sort(x) #quantiles = np.array([0,0.25, 0.4, 0.6, 0.75, 1]) qbin_sqr = np.sqrt(5./nobs) quantiles = np.linspace(0, 1, 1./qbin_sqr) quantile_index = ((nobs-1)*quantiles).astype(int) #move edges so that they don't coincide with an observation shift = 1e-6 + np.ones(quantiles.shape) shift[0] -= 2*1e-6 binsy = ys[quantile_index] + shift binsx = xs[quantile_index] + shift elif np.size(bins) == 1: binsy = bins binsx = bins elif (len(bins) == 2): binsy, binsx = bins ## if np.size(bins[0]) == 1: ## binsx = bins[0] ## if np.size(bins[1]) == 1: ## binsx = bins[1] fx, binsx = np.histogram(x, bins=binsx) fy, binsy = np.histogram(y, bins=binsy) fyx, binsy, binsx = np.histogram2d(y, x, bins=(binsy, binsx)) pyx = fyx * 1. / nobs px = fx * 1. / nobs py = fy * 1. / nobs mi_obs = pyx * (np.log(pyx+1e-10) - np.log(py)[:,None] - np.log(px)) mi = mi_obs.sum() if normed: mi_normed = np.sqrt(1. - np.exp(-2 * mi)) return mi_normed, (pyx, py, px, binsy, binsx), mi_obs else: return mi if __name__ == '__main__': import statsmodels.api as sm funtype = ['linear', 'quadratic'][1] nobs = 200 sig = 2#5. #x = np.linspace(-3, 3, nobs) + np.random.randn(nobs) x = np.sort(3*np.random.randn(nobs)) exog = sm.add_constant(x, prepend=True) #y = 0 + np.log(1+x**2) + sig * np.random.randn(nobs) if funtype == 'quadratic': y = 0 + x**2 + sig * np.random.randn(nobs) if funtype == 'linear': y = 0 + x + sig * np.random.randn(nobs) print('correlation') print(np.corrcoef(y,x)[0, 1]) print('pearsonr', stats.pearsonr(y,x)) print('spearmanr', stats.spearmanr(y,x)) print('kendalltau', stats.kendalltau(y,x)) pxy, binsx, binsy = np.histogram2d(x,y, bins=5) px, binsx_ = np.histogram(x, bins=binsx) py, binsy_ = np.histogram(y, bins=binsy) print('mutualinfo', infotheo.mutualinfo(px*1./nobs, py*1./nobs, 1e-15+pxy*1./nobs, logbase=np.e)) print('mutualinfo_kde normed', mutualinfo_kde(y,x)) print('mutualinfo_kde ', mutualinfo_kde(y,x, normed=False)) mi_normed, (pyx2, py2, px2, binsy2, binsx2), mi_obs = \ mutualinfo_binned(y, x, 5, normed=True) print('mutualinfo_binned normed', mi_normed) print('mutualinfo_binned ', mi_obs.sum()) mi_normed, (pyx2, py2, px2, binsy2, binsx2), mi_obs = \ mutualinfo_binned(y, x, 'auto', normed=True) print('auto') print('mutualinfo_binned normed', mi_normed) print('mutualinfo_binned ', mi_obs.sum()) ys = np.sort(y) xs = np.sort(x) by = ys[((nobs-1)*np.array([0, 0.25, 0.4, 0.6, 0.75, 1])).astype(int)] bx = xs[((nobs-1)*np.array([0, 0.25, 0.4, 0.6, 0.75, 1])).astype(int)] mi_normed, (pyx2, py2, px2, binsy2, binsx2), mi_obs = \ mutualinfo_binned(y, x, (by,bx), normed=True) print('quantiles') print('mutualinfo_binned normed', mi_normed) print('mutualinfo_binned ', mi_obs.sum()) doplot = 1#False if doplot: import matplotlib.pyplot as plt plt.plot(x, y, 'o') olsres = sm.OLS(y, exog).fit() plt.plot(x, olsres.fittedvalues)
bsd-3-clause
waynenilsen/statsmodels
statsmodels/datasets/elnino/data.py
25
1779
"""El Nino dataset, 1950 - 2010""" __docformat__ = 'restructuredtext' COPYRIGHT = """This data is in the public domain.""" TITLE = """El Nino - Sea Surface Temperatures""" SOURCE = """ National Oceanic and Atmospheric Administration's National Weather Service ERSST.V3B dataset, Nino 1+2 http://www.cpc.ncep.noaa.gov/data/indices/ """ DESCRSHORT = """Averaged monthly sea surface temperature - Pacific Ocean.""" DESCRLONG = """This data contains the averaged monthly sea surface temperature in degrees Celcius of the Pacific Ocean, between 0-10 degrees South and 90-80 degrees West, from 1950 to 2010. This dataset was obtained from NOAA. """ NOTE = """:: Number of Observations - 61 x 12 Number of Variables - 1 Variable name definitions:: TEMPERATURE - average sea surface temperature in degrees Celcius (12 columns, one per month). """ from numpy import recfromtxt, column_stack, array from pandas import DataFrame from statsmodels.datasets.utils import Dataset from os.path import dirname, abspath def load(): """ Load the El Nino data and return a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. Notes ----- The elnino Dataset instance does not contain endog and exog attributes. """ data = _get_data() names = data.dtype.names dataset = Dataset(data=data, names=names) return dataset def load_pandas(): dataset = load() dataset.data = DataFrame(dataset.data) return dataset def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/elnino.csv', 'rb'), delimiter=",", names=True, dtype=float) return data
bsd-3-clause
chenyyx/scikit-learn-doc-zh
examples/en/model_selection/plot_precision_recall.py
13
10108
""" ================ Precision-Recall ================ Example of Precision-Recall metric to evaluate classifier output quality. Precision-Recall is a useful measure of success of prediction when the classes are very imbalanced. In information retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are returned. The precision-recall curve shows the tradeoff between precision and recall for different threshold. A high area under the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high recall). A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when compared to the training labels. A system with high precision but low recall is just the opposite, returning very few results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high precision and high recall will return many results, with all results labeled correctly. Precision (:math:`P`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false positives (:math:`F_p`). :math:`P = \\frac{T_p}{T_p+F_p}` Recall (:math:`R`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false negatives (:math:`F_n`). :math:`R = \\frac{T_p}{T_p + F_n}` These quantities are also related to the (:math:`F_1`) score, which is defined as the harmonic mean of precision and recall. :math:`F1 = 2\\frac{P \\times R}{P+R}` Note that the precision may not decrease with recall. The definition of precision (:math:`\\frac{T_p}{T_p + F_p}`) shows that lowering the threshold of a classifier may increase the denominator, by increasing the number of results returned. If the threshold was previously set too high, the new results may all be true positives, which will increase precision. If the previous threshold was about right or too low, further lowering the threshold will introduce false positives, decreasing precision. Recall is defined as :math:`\\frac{T_p}{T_p+F_n}`, where :math:`T_p+F_n` does not depend on the classifier threshold. This means that lowering the classifier threshold may increase recall, by increasing the number of true positive results. It is also possible that lowering the threshold may leave recall unchanged, while the precision fluctuates. The relationship between recall and precision can be observed in the stairstep area of the plot - at the edges of these steps a small change in the threshold considerably reduces precision, with only a minor gain in recall. **Average precision** summarizes such a plot as the weighted mean of precisions achieved at each threshold, with the increase in recall from the previous threshold used as the weight: :math:`\\text{AP} = \\sum_n (R_n - R_{n-1}) P_n` where :math:`P_n` and :math:`R_n` are the precision and recall at the nth threshold. A pair :math:`(R_k, P_k)` is referred to as an *operating point*. Precision-recall curves are typically used in binary classification to study the output of a classifier. In order to extend the precision-recall curve and average precision to multi-class or multi-label classification, it is necessary to binarize the output. One curve can be drawn per label, but one can also draw a precision-recall curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). .. note:: See also :func:`sklearn.metrics.average_precision_score`, :func:`sklearn.metrics.recall_score`, :func:`sklearn.metrics.precision_score`, :func:`sklearn.metrics.f1_score` """ from __future__ import print_function ############################################################################### # In binary classification settings # -------------------------------------------------------- # # Create simple data # .................. # # Try to differentiate the two first classes of the iris data from sklearn import svm, datasets from sklearn.model_selection import train_test_split import numpy as np iris = datasets.load_iris() X = iris.data y = iris.target # Add noisy features random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # Limit to the two first classes, and split into training and test X_train, X_test, y_train, y_test = train_test_split(X[y < 2], y[y < 2], test_size=.5, random_state=random_state) # Create a simple classifier classifier = svm.LinearSVC(random_state=random_state) classifier.fit(X_train, y_train) y_score = classifier.decision_function(X_test) ############################################################################### # Compute the average precision score # ................................... from sklearn.metrics import average_precision_score average_precision = average_precision_score(y_test, y_score) print('Average precision-recall score: {0:0.2f}'.format( average_precision)) ############################################################################### # Plot the Precision-Recall curve # ................................ from sklearn.metrics import precision_recall_curve import matplotlib.pyplot as plt precision, recall, _ = precision_recall_curve(y_test, y_score) plt.step(recall, precision, color='b', alpha=0.2, where='post') plt.fill_between(recall, precision, step='post', alpha=0.2, color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('2-class Precision-Recall curve: AUC={0:0.2f}'.format( average_precision)) ############################################################################### # In multi-label settings # ------------------------ # # Create multi-label data, fit, and predict # ........................................... # # We create a multi-label dataset, to illustrate the precision-recall in # multi-label settings from sklearn.preprocessing import label_binarize # Use label_binarize to be multi-label like settings Y = label_binarize(y, classes=[0, 1, 2]) n_classes = Y.shape[1] # Split into training and test X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5, random_state=random_state) # We use OneVsRestClassifier for multi-label prediction from sklearn.multiclass import OneVsRestClassifier # Run classifier classifier = OneVsRestClassifier(svm.LinearSVC(random_state=random_state)) classifier.fit(X_train, Y_train) y_score = classifier.decision_function(X_test) ############################################################################### # The average precision score in multi-label settings # .................................................... from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score # For each class precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(Y_test[:, i], y_score[:, i]) average_precision[i] = average_precision_score(Y_test[:, i], y_score[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = precision_recall_curve(Y_test.ravel(), y_score.ravel()) average_precision["micro"] = average_precision_score(Y_test, y_score, average="micro") print('Average precision score, micro-averaged over all classes: {0:0.2f}' .format(average_precision["micro"])) ############################################################################### # Plot the micro-averaged Precision-Recall curve # ............................................... # plt.figure() plt.step(recall['micro'], precision['micro'], color='b', alpha=0.2, where='post') plt.fill_between(recall["micro"], precision["micro"], step='post', alpha=0.2, color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title( 'Average precision score, micro-averaged over all classes: AUC={0:0.2f}' .format(average_precision["micro"])) ############################################################################### # Plot Precision-Recall curve for each class and iso-f1 curves # ............................................................. # from itertools import cycle # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(7, 8)) f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14)) plt.show()
gpl-3.0
benoitsteiner/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io_test.py
111
7865
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 102) a = np.arange(2) b = np.arange(32, 34) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -30), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=128, shuffle=False, num_epochs=2) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1, 0, 1]) self.assertAllEqual(features['b'], [32, 33, 32, 33]) self.assertAllEqual(target, [-32, -31, -32, -31]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 105) a = np.arange(5) b = np.arange(32, 37) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -27), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) features, target = session.run(results) self.assertAllEqual(features['a'], [2, 3]) self.assertAllEqual(features['b'], [34, 35]) self.assertAllEqual(target, [-30, -29]) features, target = session.run(results) self.assertAllEqual(features['a'], [4]) self.assertAllEqual(features['b'], [36]) self.assertAllEqual(target, [-28]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.test_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.test_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
apache-2.0
umuzungu/zipline
zipline/data/loader.py
1
17284
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import OrderedDict import logbook import pandas as pd from pandas.io.data import DataReader import pytz from six import iteritems from six.moves.urllib_error import HTTPError from .benchmarks import get_benchmark_returns from . import treasuries, treasuries_can from ..utils.paths import ( cache_root, data_root, ) from ..utils.deprecate import deprecated from ..utils.tradingcalendar import ( trading_day as trading_day_nyse, trading_days as trading_days_nyse, ) logger = logbook.Logger('Loader') # Mapping from index symbol to appropriate bond data INDEX_MAPPING = { '^GSPC': (treasuries, 'treasury_curves.csv', 'www.federalreserve.gov'), '^GSPTSE': (treasuries_can, 'treasury_curves_can.csv', 'bankofcanada.ca'), '^FTSE': # use US treasuries until UK bonds implemented (treasuries, 'treasury_curves.csv', 'www.federalreserve.gov'), } ONE_HOUR = pd.Timedelta(hours=1) def last_modified_time(path): """ Get the last modified time of path as a Timestamp. """ return pd.Timestamp(os.path.getmtime(path), unit='s', tz='UTC') def get_data_filepath(name): """ Returns a handle to data file. Creates containing directory, if needed. """ dr = data_root() if not os.path.exists(dr): os.makedirs(dr) return os.path.join(dr, name) def get_cache_filepath(name): cr = cache_root() if not os.path.exists(cr): os.makedirs(cr) return os.path.join(cr, name) def get_benchmark_filename(symbol): return "%s_benchmark.csv" % symbol def has_data_for_dates(series_or_df, first_date, last_date): """ Does `series_or_df` have data on or before first_date and on or after last_date? """ dts = series_or_df.index if not isinstance(dts, pd.DatetimeIndex): raise TypeError("Expected a DatetimeIndex, but got %s." % type(dts)) first, last = dts[[0, -1]] return (first <= first_date) and (last >= last_date) def load_market_data(trading_day=trading_day_nyse, trading_days=trading_days_nyse, bm_symbol='^GSPC'): """ Load benchmark returns and treasury yield curves for the given calendar and benchmark symbol. Benchmarks are downloaded as a Series from Yahoo Finance. Treasury curves are US Treasury Bond rates and are downloaded from 'www.federalreserve.gov' by default. For Canadian exchanges, a loader for Canadian bonds from the Bank of Canada is also available. Results downloaded from the internet are cached in ~/.zipline/data. Subsequent loads will attempt to read from the cached files before falling back to redownload. Parameters ---------- trading_day : pandas.CustomBusinessDay, optional A trading_day used to determine the latest day for which we expect to have data. Defaults to an NYSE trading day. trading_days : pd.DatetimeIndex, optional A calendar of trading days. Also used for determining what cached dates we should expect to have cached. Defaults to the NYSE calendar. bm_symbol : str, optional Symbol for the benchmark index to load. Defaults to '^GSPC', the Yahoo ticker for the S&P 500. Returns ------- (benchmark_returns, treasury_curves) : (pd.Series, pd.DataFrame) Notes ----- Both return values are DatetimeIndexed with values dated to midnight in UTC of each stored date. The columns of `treasury_curves` are: '1month', '3month', '6month', '1year','2year','3year','5year','7year','10year','20year','30year' """ first_date = trading_days[0] now = pd.Timestamp.utcnow() # We expect to have benchmark and treasury data that's current up until # **two** full trading days prior to the most recently completed trading # day. # Example: # On Thu Oct 22 2015, the previous completed trading day is Wed Oct 21. # However, data for Oct 21 doesn't become available until the early morning # hours of Oct 22. This means that there are times on the 22nd at which we # cannot reasonably expect to have data for the 21st available. To be # conservative, we instead expect that at any time on the 22nd, we can # download data for Tuesday the 20th, which is two full trading days prior # to the date on which we're running a test. # We'll attempt to download new data if the latest entry in our cache is # before this date. last_date = trading_days[trading_days.get_loc(now, method='ffill') - 2] br = ensure_benchmark_data( bm_symbol, first_date, last_date, now, # We need the trading_day to figure out the close prior to the first # date so that we can compute returns for the first date. trading_day, ) tc = ensure_treasury_data( bm_symbol, first_date, last_date, now, ) benchmark_returns = br[br.index.slice_indexer(first_date, last_date)] treasury_curves = tc[tc.index.slice_indexer(first_date, last_date)] return benchmark_returns, treasury_curves def ensure_benchmark_data(symbol, first_date, last_date, now, trading_day): """ Ensure we have benchmark data for `symbol` from `first_date` to `last_date` Parameters ---------- symbol : str The symbol for the benchmark to load. first_date : pd.Timestamp First required date for the cache. last_date : pd.Timestamp Last required date for the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. trading_day : pd.CustomBusinessDay A trading day delta. Used to find the day before first_date so we can get the close of the day prior to first_date. We attempt to download data unless we already have data stored at the data cache for `symbol` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. If we perform a download and the cache criteria are not satisfied, we wait at least one hour before attempting a redownload. This is determined by comparing the current time to the result of os.path.getmtime on the cache path. """ path = get_data_filepath(get_benchmark_filename(symbol)) # If the path does not exist, it means the first download has not happened # yet, so don't try to read from 'path'. if os.path.exists(path): try: data = pd.Series.from_csv(path).tz_localize('UTC') if has_data_for_dates(data, first_date, last_date): return data # Don't re-download if we've successfully downloaded and written a # file in the last hour. last_download_time = last_modified_time(path) if (now - last_download_time) <= ONE_HOUR: logger.warn( "Refusing to download new benchmark data because a " "download succeeded at %s." % last_download_time ) return data except (OSError, IOError, ValueError) as e: # These can all be raised by various versions of pandas on various # classes of malformed input. Treat them all as cache misses. logger.info( "Loading data for {path} failed with error [{error}].".format( path=path, error=e, ) ) logger.info( "Cache at {path} does not have data from {start} to {end}.\n" "Downloading benchmark data for '{symbol}'.", start=first_date, end=last_date, symbol=symbol, path=path, ) try: data = get_benchmark_returns( symbol, first_date - trading_day, last_date, ) data.to_csv(path) except (OSError, IOError, HTTPError): logger.exception('failed to cache the new benchmark returns') if not has_data_for_dates(data, first_date, last_date): logger.warn("Still don't have expected data after redownload!") return data def ensure_treasury_data(bm_symbol, first_date, last_date, now): """ Ensure we have treasury data from treasury module associated with `bm_symbol`. Parameters ---------- bm_symbol : str Benchmark symbol for which we're loading associated treasury curves. first_date : pd.Timestamp First date required to be in the cache. last_date : pd.Timestamp Last date required to be in the cache. now : pd.Timestamp The current time. This is used to prevent repeated attempts to re-download data that isn't available due to scheduling quirks or other failures. We attempt to download data unless we already have data stored in the cache for `module_name` whose first entry is before or on `first_date` and whose last entry is on or after `last_date`. If we perform a download and the cache criteria are not satisfied, we wait at least one hour before attempting a redownload. This is determined by comparing the current time to the result of os.path.getmtime on the cache path. """ loader_module, filename, source = INDEX_MAPPING.get( bm_symbol, INDEX_MAPPING['^GSPC'] ) first_date = max(first_date, loader_module.earliest_possible_date()) path = get_data_filepath(filename) # If the path does not exist, it means the first download has not happened # yet, so don't try to read from 'path'. if os.path.exists(path): try: data = pd.DataFrame.from_csv(path).tz_localize('UTC') if has_data_for_dates(data, first_date, last_date): return data # Don't re-download if we've successfully downloaded and written a # file in the last hour. last_download_time = last_modified_time(path) if (now - last_download_time) <= ONE_HOUR: logger.warn( "Refusing to download new treasury data because a " "download succeeded at %s." % last_download_time ) return data except (OSError, IOError, ValueError) as e: # These can all be raised by various versions of pandas on various # classes of malformed input. Treat them all as cache misses. logger.info( "Loading data for {path} failed with error [{error}].".format( path=path, error=e, ) ) try: data = loader_module.get_treasury_data(first_date, last_date) data.to_csv(path) except (OSError, IOError, HTTPError): logger.exception('failed to cache treasury data') if not has_data_for_dates(data, first_date, last_date): logger.warn("Still don't have expected data after redownload!") return data def _load_raw_yahoo_data(indexes=None, stocks=None, start=None, end=None): """Load closing prices from yahoo finance. :Optional: indexes : dict (Default: {'SPX': '^GSPC'}) Financial indexes to load. stocks : list (Default: ['AAPL', 'GE', 'IBM', 'MSFT', 'XOM', 'AA', 'JNJ', 'PEP', 'KO']) Stock closing prices to load. start : datetime (Default: datetime(1993, 1, 1, 0, 0, 0, 0, pytz.utc)) Retrieve prices from start date on. end : datetime (Default: datetime(2002, 1, 1, 0, 0, 0, 0, pytz.utc)) Retrieve prices until end date. :Note: This is based on code presented in a talk by Wes McKinney: http://wesmckinney.com/files/20111017/notebook_output.pdf """ assert indexes is not None or stocks is not None, """ must specify stocks or indexes""" if start is None: start = pd.datetime(1990, 1, 1, 0, 0, 0, 0, pytz.utc) if start is not None and end is not None: assert start < end, "start date is later than end date." data = OrderedDict() if stocks is not None: for stock in stocks: logger.info('Loading stock: {}'.format(stock)) stock_pathsafe = stock.replace(os.path.sep, '--') cache_filename = "{stock}-{start}-{end}.csv".format( stock=stock_pathsafe, start=start, end=end).replace(':', '-') cache_filepath = get_cache_filepath(cache_filename) if os.path.exists(cache_filepath): stkd = pd.DataFrame.from_csv(cache_filepath) else: stkd = DataReader(stock, 'yahoo', start, end).sort_index() stkd.to_csv(cache_filepath) data[stock] = stkd if indexes is not None: for name, ticker in iteritems(indexes): logger.info('Loading index: {} ({})'.format(name, ticker)) stkd = DataReader(ticker, 'yahoo', start, end).sort_index() data[name] = stkd return data def load_from_yahoo(indexes=None, stocks=None, start=None, end=None, adjusted=True): """ Loads price data from Yahoo into a dataframe for each of the indicated assets. By default, 'price' is taken from Yahoo's 'Adjusted Close', which removes the impact of splits and dividends. If the argument 'adjusted' is False, then the non-adjusted 'close' field is used instead. :param indexes: Financial indexes to load. :type indexes: dict :param stocks: Stock closing prices to load. :type stocks: list :param start: Retrieve prices from start date on. :type start: datetime :param end: Retrieve prices until end date. :type end: datetime :param adjusted: Adjust the price for splits and dividends. :type adjusted: bool """ data = _load_raw_yahoo_data(indexes, stocks, start, end) if adjusted: close_key = 'Adj Close' else: close_key = 'Close' df = pd.DataFrame({key: d[close_key] for key, d in iteritems(data)}) df.index = df.index.tz_localize(pytz.utc) return df @deprecated( 'load_bars_from_yahoo is deprecated, please register a' ' yahoo_equities data bundle instead', ) def load_bars_from_yahoo(indexes=None, stocks=None, start=None, end=None, adjusted=True): """ Loads data from Yahoo into a panel with the following column names for each indicated security: - open - high - low - close - volume - price Note that 'price' is Yahoo's 'Adjusted Close', which removes the impact of splits and dividends. If the argument 'adjusted' is True, then the open, high, low, and close values are adjusted as well. :param indexes: Financial indexes to load. :type indexes: dict :param stocks: Stock closing prices to load. :type stocks: list :param start: Retrieve prices from start date on. :type start: datetime :param end: Retrieve prices until end date. :type end: datetime :param adjusted: Adjust open/high/low/close for splits and dividends. The 'price' field is always adjusted. :type adjusted: bool """ data = _load_raw_yahoo_data(indexes, stocks, start, end) panel = pd.Panel(data) # Rename columns panel.minor_axis = ['open', 'high', 'low', 'close', 'volume', 'price'] panel.major_axis = panel.major_axis.tz_localize(pytz.utc) # Adjust data if adjusted: adj_cols = ['open', 'high', 'low', 'close'] for ticker in panel.items: ratio = (panel[ticker]['price'] / panel[ticker]['close']) ratio_filtered = ratio.fillna(0).values for col in adj_cols: panel[ticker][col] *= ratio_filtered return panel def load_prices_from_csv(filepath, identifier_col, tz='UTC'): data = pd.read_csv(filepath, index_col=identifier_col) data.index = pd.DatetimeIndex(data.index, tz=tz) data.sort_index(inplace=True) return data def load_prices_from_csv_folder(folderpath, identifier_col, tz='UTC'): data = None for file in os.listdir(folderpath): if '.csv' not in file: continue raw = load_prices_from_csv(os.path.join(folderpath, file), identifier_col, tz) if data is None: data = raw else: data = pd.concat([data, raw], axis=1) return data
apache-2.0
akrherz/iem
htdocs/plotting/auto/scripts/p95.py
1
7455
"""Average T and precip""" import datetime import psycopg2.extras import numpy as np import pandas as pd from scipy import stats import matplotlib.colors as mpcolors from pyiem import network from pyiem.plot import get_cmap, figure from pyiem.plot.use_agg import plt from pyiem.util import get_autoplot_context, get_dbconn from pyiem.exceptions import NoDataFound PDICT = {"none": "Show all values", "hide": 'Show "strong" events'} def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc["data"] = True desc[ "description" ] = """This chart displays the combination of average temperature and total precipitation for one or more months of your choice. The dots are colorized based on the Southern Oscillation Index (SOI) value for a month of your choice. Many times, users want to compare the SOI value with monthly totals for a period a few months after the validity of the SOI value. The thought is that there is some lag time for the impacts of a given SOI to be felt in the midwestern US. """ desc["arguments"] = [ dict( type="station", name="station", default="IA0000", label="Select Station", network="IACLIMATE", ), dict(type="month", name="month", default=9, label="Start Month:"), dict( type="int", name="months", default=2, label="Number of Months to Average:", ), dict( type="int", name="lag", default=-3, label="Number of Months to Lag for SOI Value:", ), dict( type="select", name="h", default="none", options=PDICT, label="Hide/Show week SOI events -0.5 to 0.5", ), dict( type="text", default=str(datetime.date.today().year), name="year", label="Year(s) to Highlight in Chart (comma delimited)", ), dict(type="cmap", name="cmap", default="RdYlGn", label="Color Ramp:"), ] return desc def title(wanted): """ Make a title """ t1 = datetime.date(2000, wanted[0], 1) t2 = datetime.date(2000, wanted[-1], 1) return "Avg Precip + Temp for %s%s" % ( t1.strftime("%B"), " thru %s" % (t2.strftime("%B"),) if wanted[0] != wanted[-1] else "", ) def plotter(fdict): """ Go """ pgconn = get_dbconn("coop") ccursor = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor) ctx = get_autoplot_context(fdict, get_description()) station = ctx["station"] lagmonths = ctx["lag"] months = ctx["months"] month = ctx["month"] highyears = [int(x) for x in ctx["year"].split(",")] h = ctx["h"] wantmonth = month + lagmonths yearoffset = 0 if month + lagmonths < 1: wantmonth = 12 - (month + lagmonths) yearoffset = 1 wanted = [] deltas = [] for m in range(month, month + months): if m < 13: wanted.append(m) deltas.append(0) else: wanted.append(m - 12) deltas.append(-1) table = "alldata_%s" % (station[:2],) nt = network.Table("%sCLIMATE" % (station[:2],)) elnino = {} ccursor.execute("SELECT monthdate, soi_3m, anom_34 from elnino") for row in ccursor: if row[0].month != wantmonth: continue elnino[row[0].year + yearoffset] = dict(soi_3m=row[1], anom_34=row[2]) ccursor.execute( "SELECT year, month, sum(precip), avg((high+low)/2.) " f"from {table} where station = %s GROUP by year, month", (station,), ) if ccursor.rowcount == 0: raise NoDataFound("No Data Found.") yearly = {} for row in ccursor: (_year, _month, _precip, _temp) = row if _month not in wanted: continue effectiveyear = _year + deltas[wanted.index(_month)] nino = elnino.get(effectiveyear, {}).get("soi_3m", None) if nino is None: continue data = yearly.setdefault( effectiveyear, dict(precip=0, temp=[], nino=nino) ) data["precip"] += _precip data["temp"].append(float(_temp)) title2 = "[%s] %s %s" % ( station, nt.sts[station]["name"], title(wanted), ) subtitle = "%s SOI (3 month average)" % ( datetime.date(2000, wantmonth, 1).strftime("%B"), ) fig = figure(title=title2, subtitle=subtitle) ax = fig.add_axes([0.07, 0.12, 0.53, 0.75]) cmap = get_cmap(ctx["cmap"]) zdata = np.arange(-2.0, 2.1, 0.5) norm = mpcolors.BoundaryNorm(zdata, cmap.N) rows = [] xs = [] ys = [] for year in yearly: x = yearly[year]["precip"] y = np.average(yearly[year]["temp"]) xs.append(x) ys.append(y) val = yearly[year]["nino"] c = cmap(norm([val])[0]) if h == "hide" and val > -0.5 and val < 0.5: ax.scatter( x, y, facecolor="#EEEEEE", edgecolor="#EEEEEE", s=30, zorder=2, marker="s", ) else: ax.scatter( x, y, facecolor=c, edgecolor="k", s=60, zorder=3, marker="o" ) if year in highyears: ax.text( x, y + 0.2, "%s" % (year,), ha="center", va="bottom", zorder=5 ) rows.append(dict(year=year, precip=x, tmpf=y, soi3m=val)) ax.axhline(np.average(ys), lw=2, color="k", linestyle="-.", zorder=2) ax.axvline(np.average(xs), lw=2, color="k", linestyle="-.", zorder=2) sm = plt.cm.ScalarMappable(norm, cmap) sm.set_array(zdata) cb = fig.colorbar(sm, extend="both") cb.set_label("<-- El Nino :: SOI :: La Nina -->") ax.grid(True) ax.set_xlim(left=-0.01) ax.set_xlabel("Total Precipitation [inch], Avg: %.2f" % (np.average(xs),)) ax.set_ylabel( (r"Average Temperature $^\circ$F, " "Avg: %.1f") % (np.average(ys),) ) df = pd.DataFrame(rows) ax2 = fig.add_axes([0.67, 0.55, 0.28, 0.35]) ax2.scatter(df["soi3m"].values, df["tmpf"].values) ax2.set_xlabel("<-- El Nino :: SOI :: La Nina -->") ax2.set_ylabel(r"Avg Temp $^\circ$F") slp, intercept, r_value, _, _ = stats.linregress( df["soi3m"].values, df["tmpf"].values ) y1 = -2.0 * slp + intercept y2 = 2.0 * slp + intercept ax2.plot([-2, 2], [y1, y2]) ax2.text( 0.97, 0.9, "R$^2$=%.2f" % (r_value ** 2,), ha="right", transform=ax2.transAxes, bbox=dict(color="white"), ) ax2.grid(True) ax3 = fig.add_axes([0.67, 0.1, 0.28, 0.35]) ax3.scatter(df["soi3m"].values, df["precip"].values) ax3.set_xlabel("<-- El Nino :: SOI :: La Nina -->") ax3.set_ylabel("Total Precip [inch]") slp, intercept, r_value, _, _ = stats.linregress( df["soi3m"].values, df["precip"].values ) y1 = -2.0 * slp + intercept y2 = 2.0 * slp + intercept ax3.plot([-2, 2], [y1, y2]) ax3.text( 0.97, 0.9, "R$^2$=%.2f" % (r_value ** 2,), ha="right", transform=ax3.transAxes, bbox=dict(color="white"), ) ax3.grid(True) return fig, df if __name__ == "__main__": plotter(dict())
mit
meteorcloudy/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
23
77821
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.linear_optimizer.python import sdca_optimizer as sdca_optimizer_lib from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.platform import test from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import server_lib def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = base.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris class LinearClassifierTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearClassifier( n_classes=3, feature_columns=cont_features), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': sparse_tensor.SparseTensor( values=['1'], indices=[[0, 0]], dense_shape=[1, 1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.sparse_column_with_hash_bucket('age', 2) classifier = linear.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_column = feature_column_lib.real_valued_column('', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[language_column], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100, 1], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [language_column, fc_core.numeric_column('age')] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column_lib.real_valued_column('', dimension=4)] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('linear/feature/weight', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertEqual( 4, len(classifier.get_variable_value('linear/feature/weight'))) self.assertEqual( 3, len(classifier.get_variable_value('linear/bias_weight'))) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) def _optimizer(): return ftrl.FtrlOptimizer(learning_rate=0.1) classifier = linear.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]], dtype=dtypes.float32) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = linear.LinearClassifier( feature_columns=[feature_column_lib.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Tests the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([[1], [2]]), num_epochs=num_epochs), }, constant_op.constant( [[.7], [0]], dtype=dtypes.float32) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the labels column, which proves that the # classifier learns from float input. self.assertAllClose([[.3, .7], [1., 0.]], predictions_proba, atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=sparse_features, config=config) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([1]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]), }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out1_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list( classifier2.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out2_proba = list( classifier2.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = linear.LinearClassifier( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_label_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean label should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_label_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': constant_op.constant([[20], [20], [20]]), 'weights': constant_op.constant([[100], [1], [1]]), } labels = constant_op.constant([[1], [0], [0]]) return features, labels age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = linear.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertIn('linear/binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['hindi'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = linear.LinearClassifier(feature_columns=[language]) classifier_with_reg = linear.LinearClassifier( feature_columns=[language], optimizer=ftrl.FtrlOptimizer( learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[1], [1], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier = linear.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'maintenance_cost': constant_op.constant([[500.0], [200.0]]), 'sq_footage': constant_op.constant([[800.0], [600.0]]), 'weights': constant_op.constant([[1.0], [1.0]]) }, constant_op.constant([[0], [1]]) maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'dense_feature': constant_op.constant([[500.0, 800.0], [200.0, 600.0]]) }, constant_op.constant([[0], [1]]) dense_feature = feature_column_lib.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': constant_op.constant([[1000.0], [600.0], [700.0]]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = linear.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.4, 0.6, 0.3]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClassifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeaturesOOVWithNoOOVBuckets(self): """LinearClassifier with SDCAOptimizer with OOV features (-1 IDs).""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( # 'GB' is out of the vocabulary. values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_keys( 'country', keys=['US', 'CA', 'MK', 'IT', 'CN']) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'language': sparse_tensor.SparseTensor( values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'country': sparse_tensor.SparseTensor( values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[0], [0], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = feature_column_lib.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerPartitionedVariables(self): """Tests LinearClassifier with SDCAOptimizer with partitioned variables.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2, axis=0)) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer, config=config) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) print('all scores = {}'.format(scores)) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': constant_op.constant([[1], [2]]), 'language': sparse_tensor.SparseTensor( values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], dense_shape=[2, 1]), }, constant_op.constant([[1], [0]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearRegressor(feature_columns=cont_features), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearRegressor(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] regressor = linear.LinearRegressor( feature_columns=cont_features, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = regressor.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = list( regressor.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list( regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7), feature_column_lib.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=feature_columns, config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = estimator.infer_real_valued_columns_from_input(x) regressor = linear.LinearRegressor( feature_columns=feature_columns, optimizer=ftrl.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) self.assertIn('linear//weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear//weight') # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor_weights.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'x': constant_op.constant(x), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant(y) x_column = feature_column_lib.real_valued_column('x', dimension=3) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertIn('linear/x/weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear/x/weight') self.assertAllClose( [w[0] for w in weights], regressor_weights.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerPartitionedVariables(self): """Tests LinearRegressor with SDCAOptimizer with partitioned variables.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0, partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2, axis=0)) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer, config=config) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.4], [0.6], [0.3]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant([[1.4], [-0.8], [2.6]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] variable_names = regressor.get_variable_names() self.assertIn('linear/price/weight', variable_names) self.assertIn('linear/country/weights', variable_names) no_l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Regressor with L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': constant_op.constant([[0.0]] * num_examples), }, constant_op.constant( [[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = feature_column_lib.real_valued_column('place_holder') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant( [[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half / 10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half / 10)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant([[1 if x % 10 == 0 else 0] for x in range(half)] + [[-1 if x % 10 == 0 else 0] for x in range(half)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.1, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], -0.1, err=0.05) class LinearEstimatorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearEstimator(feature_columns=cont_features, head=head_lib.regression_head()), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearEstimator) def testLinearRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator(feature_columns=[age, language], head=head_lib.regression_head()) linear_estimator.fit(input_fn=input_fn, steps=100) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=400) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testPoissonRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator( feature_columns=[age, language], head=head_lib.poisson_regression_head()) linear_estimator.fit(input_fn=input_fn, steps=10) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=100) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) # Here loss of 2.1 implies a prediction of ~9.9998 self.assertLess(loss2, 2.1) def testSDCANotSupported(self): """Tests that we detect error for SDCA.""" maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') with self.assertRaises(ValueError): linear.LinearEstimator( head=head_lib.regression_head(label_dimension=1), feature_columns=[maintenance_cost, sq_footage], optimizer=sdca_optimizer, _joint_weights=True) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = linear.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/matplotlib/backends/backend_gtkcairo.py
8
2374
""" GTK+ Matplotlib interface using cairo (not GDK) drawing operations. Author: Steve Chaplin """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import gtk if gtk.pygtk_version < (2,7,0): import cairo.gtk from matplotlib.backends import backend_cairo from matplotlib.backends.backend_gtk import * backend_version = 'PyGTK(%d.%d.%d) ' % gtk.pygtk_version + \ 'Pycairo(%s)' % backend_cairo.backend_version _debug = False #_debug = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if _debug: print('backend_gtkcairo.%s()' % fn_name()) FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTKCairo(figure) return FigureManagerGTK(canvas, num) class RendererGTKCairo (backend_cairo.RendererCairo): if gtk.pygtk_version >= (2,7,0): def set_pixmap (self, pixmap): self.gc.ctx = pixmap.cairo_create() else: def set_pixmap (self, pixmap): self.gc.ctx = cairo.gtk.gdk_cairo_create (pixmap) class FigureCanvasGTKCairo(backend_cairo.FigureCanvasCairo, FigureCanvasGTK): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(backend_cairo.FigureCanvasCairo.filetypes) def _renderer_init(self): """Override to use cairo (rather than GDK) renderer""" if _debug: print('%s.%s()' % (self.__class__.__name__, _fn_name())) self._renderer = RendererGTKCairo (self.figure.dpi) class FigureManagerGTKCairo(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKCairo (canvas, self.window) else: toolbar = None return toolbar class NavigationToolbar2Cairo(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKCairo(fig) FigureCanvas = FigureCanvasGTKCairo FigureManager = FigureManagerGTKCairo
mit
NervanaSystems/coach
rl_coach/tests/trace_tests.py
1
12370
# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import glob import os import shutil import subprocess import multiprocessing import sys import signal import pandas as pd import time from configparser import ConfigParser from importlib import import_module from os import path sys.path.append('.') from rl_coach.logger import screen processes = [] def sigint_handler(signum, frame): for proc in processes: os.killpg(os.getpgid(proc[2].pid), signal.SIGTERM) for f in os.listdir('experiments/'): if '__test_trace' in f: shutil.rmtree(os.path.join('experiments', f)) for f in os.listdir('.'): if 'trace_test_log' in f: os.remove(f) exit() signal.signal(signal.SIGINT, sigint_handler) def read_csv_paths(test_path, filename_pattern, read_csv_tries=100): csv_paths = [] tries_counter = 0 while not csv_paths: csv_paths = glob.glob(path.join(test_path, '*', filename_pattern)) if tries_counter > read_csv_tries: break tries_counter += 1 time.sleep(1) return csv_paths def clean_df(df): if 'Wall-Clock Time' in df.keys(): df.drop(['Wall-Clock Time'], 1, inplace=True) return df def run_trace_based_test(preset_name, num_env_steps, level=None): test_name = '__test_trace_{}{}'.format(preset_name, '_' + level if level else '').replace(':', '_') test_path = os.path.join('./experiments', test_name) if path.exists(test_path): shutil.rmtree(test_path) # run the experiment in a separate thread screen.log_title("Running test {}{}".format(preset_name, ' - ' + level if level else '')) log_file_name = 'trace_test_log_{preset_name}.txt'.format(preset_name=test_name[13:]) config_file = './tmp.cred' cmd = ( 'python3 rl_coach/coach.py ' '-p {preset_name} ' '-e {test_name} ' '--seed 42 ' '-c ' '-dcp {template} ' '--no_summary ' '-cp {custom_param} ' '{level} ' '&> {log_file_name} ' ).format( preset_name=preset_name, test_name=test_name, template=config_file, log_file_name=log_file_name, level='-lvl ' + level if level else '', custom_param='\"improve_steps=EnvironmentSteps({n});' 'steps_between_evaluation_periods=EnvironmentSteps({n});' 'evaluation_steps=EnvironmentSteps(1);' 'heatup_steps=EnvironmentSteps(1024)\"'.format(n=num_env_steps) ) p = subprocess.Popen(cmd, shell=True, executable="/bin/bash", preexec_fn=os.setsid) return test_path, log_file_name, p def wait_and_check(args, processes, force=False): if not force and len(processes) < args.max_threads: return None test_path = processes[0][0] test_name = test_path.split('/')[-1] log_file_name = processes[0][1] p = processes[0][2] p.wait() filename_pattern = '*.csv' # get the csv with the results csv_paths = read_csv_paths(test_path, filename_pattern) test_passed = False screen.log('Results for {}: '.format(test_name[13:])) if not csv_paths: screen.error("csv file never found", crash=False) if args.verbose: screen.error("command exitcode: {}".format(p.returncode), crash=False) screen.error(open(log_file_name).read(), crash=False) else: trace_path = os.path.join('./rl_coach', 'traces', test_name[13:]) if not os.path.exists(trace_path): screen.log('No trace found, creating new trace in: {}'.format(trace_path)) os.makedirs(trace_path) df = pd.read_csv(csv_paths[0]) df = clean_df(df) try: df.to_csv(os.path.join(trace_path, 'trace.csv'), index=False) except: pass screen.success("Successfully created new trace.") test_passed = True else: test_df = pd.read_csv(csv_paths[0]) test_df = clean_df(test_df) new_trace_csv_path = os.path.join(trace_path, 'trace_new.csv') test_df.to_csv(new_trace_csv_path, index=False) test_df = pd.read_csv(new_trace_csv_path) trace_csv_path = glob.glob(path.join(trace_path, 'trace.csv')) trace_csv_path = trace_csv_path[0] trace_df = pd.read_csv(trace_csv_path) test_passed = test_df.equals(trace_df) if test_passed: screen.success("Passed successfully.") os.remove(new_trace_csv_path) test_passed = True else: screen.error("Trace test failed.", crash=False) if args.overwrite: os.remove(trace_csv_path) os.rename(new_trace_csv_path, trace_csv_path) screen.error("Overwriting old trace.", crash=False) else: screen.error("bcompare {} {}".format(trace_csv_path, new_trace_csv_path), crash=False) shutil.rmtree(test_path) os.remove(log_file_name) processes.pop(0) return test_passed def generate_config(image, memory_backend, s3_end_point, s3_bucket_name, s3_creds_file, config_file): """ Generate the s3 config file to be used and also the dist-coach-config.template to be used for the test It reads the `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` env vars and fails if they are not provided. """ # Write s3 creds aws_config = ConfigParser({ 'aws_access_key_id': os.environ.get('AWS_ACCESS_KEY_ID'), 'aws_secret_access_key': os.environ.get('AWS_SECRET_ACCESS_KEY') }, default_section='default') with open(s3_creds_file, 'w') as f: aws_config.write(f) coach_config = ConfigParser({ 'image': image, 'memory_backend': memory_backend, 'data_store': 's3', 's3_end_point': s3_end_point, 's3_bucket_name': s3_bucket_name, 's3_creds_file': s3_creds_file }, default_section="coach") with open(config_file, 'w') as f: coach_config.write(f) def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--preset', '--presets', help="(string) Name of preset(s) to run (comma separated, as configured in presets.py)", default=None, type=str) parser.add_argument('-ip', '--ignore_presets', help="(string) Name of preset(s) to ignore (comma separated, and as configured in presets.py)", default=None, type=str) parser.add_argument('-v', '--verbose', help="(flag) display verbose logs in the event of an error", action='store_true') parser.add_argument('--stop_after_first_failure', help="(flag) stop executing tests after the first error", action='store_true') parser.add_argument('-ow', '--overwrite', help="(flag) overwrite old trace with new ones in trace testing mode", action='store_true') parser.add_argument('-prl', '--parallel', help="(flag) run tests in parallel", action='store_true') parser.add_argument('-ut', '--update_traces', help="(flag) update traces on repository", action='store_true') parser.add_argument('-mt', '--max_threads', help="(int) maximum number of threads to run in parallel", default=multiprocessing.cpu_count()-2, type=int) parser.add_argument( '-i', '--image', help="(string) Name of the testing image", type=str, default=None ) parser.add_argument( '-mb', '--memory_backend', help="(string) Name of the memory backend", type=str, default="redispubsub" ) parser.add_argument( '-e', '--endpoint', help="(string) Name of the s3 endpoint", type=str, default='s3.amazonaws.com' ) parser.add_argument( '-cr', '--creds_file', help="(string) Path of the s3 creds file", type=str, default='.aws_creds' ) parser.add_argument( '-b', '--bucket', help="(string) Name of the bucket for s3", type=str, default=None ) args = parser.parse_args() if args.update_traces: if not args.bucket: print("bucket_name required for s3") exit(1) if not os.environ.get('AWS_ACCESS_KEY_ID') or not os.environ.get('AWS_SECRET_ACCESS_KEY'): print("AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY env vars need to be set") exit(1) config_file = './tmp.cred' generate_config(args.image, args.memory_backend, args.endpoint, args.bucket, args.creds_file, config_file) if not args.parallel: args.max_threads = 1 if args.preset is not None: presets_lists = args.preset.split(',') else: presets_lists = [f[:-3] for f in os.listdir(os.path.join('rl_coach', 'presets')) if f[-3:] == '.py' and not f == '__init__.py'] fail_count = 0 test_count = 0 if args.ignore_presets is not None: presets_to_ignore = args.ignore_presets.split(',') else: presets_to_ignore = [] for idx, preset_name in enumerate(sorted(presets_lists)): if args.stop_after_first_failure and fail_count > 0: break if preset_name not in presets_to_ignore: try: preset = import_module('rl_coach.presets.{}'.format(preset_name)) except: screen.error("Failed to load preset <{}>".format(preset_name), crash=False) fail_count += 1 test_count += 1 continue preset_validation_params = preset.graph_manager.preset_validation_params num_env_steps = preset_validation_params.trace_max_env_steps if preset_validation_params.test_using_a_trace_test: if preset_validation_params.trace_test_levels: for level in preset_validation_params.trace_test_levels: test_count += 1 test_path, log_file, p = run_trace_based_test(preset_name, num_env_steps, level) processes.append((test_path, log_file, p)) test_passed = wait_and_check(args, processes) if test_passed is not None and not test_passed: fail_count += 1 else: test_count += 1 test_path, log_file, p = run_trace_based_test(preset_name, num_env_steps) processes.append((test_path, log_file, p)) test_passed = wait_and_check(args, processes) if test_passed is not None and not test_passed: fail_count += 1 while len(processes) > 0: test_passed = wait_and_check(args, processes, force=True) if test_passed is not None and not test_passed: fail_count += 1 screen.separator() if fail_count == 0: screen.success(" Summary: " + str(test_count) + "/" + str(test_count) + " tests passed successfully") else: screen.error(" Summary: " + str(test_count - fail_count) + "/" + str(test_count) + " tests passed successfully", crash=False) # check fail counts just if update traces is not activated! if not args.update_traces: assert fail_count == 0 if __name__ == '__main__': os.environ['DISABLE_MUJOCO_RENDERING'] = '1' main() del os.environ['DISABLE_MUJOCO_RENDERING']
apache-2.0
nealchenzhang/EODAnalyzer
untitled1.py
1
2952
# -*- coding: utf-8 -*- """ Created on Tue Jun 13 14:22:01 2017 @author: Aian Fund """ import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.ticker as mticker from matplotlib.finance import candlestick_ohlc from matplotlib import style import numpy as np import urllib import datetime as dt style.use('fivethirtyeight') print(plt.style.available) print(plt.__file__) def bytespdate2num(fmt, encoding='utf-8'): strconverter = mdates.strpdate2num(fmt) def bytesconverter(b): s = b.decode(encoding) return strconverter(s) return bytesconverter def graph_data(stock): fig = plt.figure() ax1 = plt.subplot2grid((1,1), (0,0)) stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=1m/csv' source_code = urllib.request.urlopen(stock_price_url).read().decode() stock_data = [] split_source = source_code.split('\n') for line in split_source: split_line = line.split(',') if len(split_line) == 6: if 'values' not in line and 'labels' not in line: stock_data.append(line) date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data, delimiter=',', unpack=True, converters={0: bytespdate2num('%Y%m%d')}) x = 0 y = len(date) ohlc = [] while x < y: append_me = date[x], openp[x], highp[x], lowp[x], closep[x], volume[x] ohlc.append(append_me) x+=1 candlestick_ohlc(ax1, ohlc, width=0.4, colorup='#77d879', colordown='#db3f3f') for label in ax1.xaxis.get_ticklabels(): label.set_rotation(45) ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) ax1.xaxis.set_major_locator(mticker.MaxNLocator(10)) ax1.grid(True) bbox_props = dict(boxstyle='round',fc='w', ec='k',lw=1) ax1.annotate(str(closep[-1]), (date[-1], closep[-1]), xytext = (date[-1]+3, closep[-1]), bbox=bbox_props) ## # Annotation example with arrow ## ax1.annotate('Bad News!',(date[11],highp[11]), ## xytext=(0.8, 0.9), textcoords='axes fraction', ## arrowprops = dict(facecolor='grey',color='grey')) ## ## ## # Font dict example ## font_dict = {'family':'serif', ## 'color':'darkred', ## 'size':15} ## # Hard coded text ## ax1.text(date[10], closep[1],'Text Example', fontdict=font_dict) plt.xlabel('Date') plt.ylabel('Price') plt.title(stock) #plt.legend() plt.subplots_adjust(left=0.11, bottom=0.24, right=0.87, top=0.90, wspace=0.2, hspace=0) plt.show() graph_data('EBAY')
mit
nomadcube/scikit-learn
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
costypetrisor/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
ky822/scikit-learn
sklearn/utils/tests/test_extmath.py
70
16531
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.extmath import density from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import norm, squared_norm from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import fast_dot, _fast_dot from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _batch_mean_variance_update from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.utils.extmath import softmax from sklearn.datasets.samples_generator import make_low_rank_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert_equal(density(X_), density(X)) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis) assert_true(np.all(mode == mode2)) assert_true(np.all(score == score2)) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum()) X = np.vstack([x, x]) logX = np.vstack([logx, logx]) assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0)) assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1)) def test_randomized_svd_low_rank(): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method U, s, V = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_equal(Ua.shape, (n_samples, k)) assert_equal(sa.shape, (k,)) assert_equal(Va.shape, (k, n_features)) # ensure that the singular values of both methods are equal up to the real # rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va)) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_almost_equal(s[:rank], sa[:rank]) def test_norm_squared_norm(): X = np.random.RandomState(42).randn(50, 63) X *= 100 # check stability X += 200 assert_almost_equal(np.linalg.norm(X.ravel()), norm(X)) assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6) assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6) def test_row_norms(): X = np.random.RandomState(42).randn(100, 100) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X)) Xcsr = sparse.csr_matrix(X, dtype=np.float32) assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr)) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.05) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.1) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is still managing to get most of the structure # at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limit impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, V = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, V = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation naive_logistic = lambda x: 1 / (1 + np.exp(-x)) naive_log_logistic = lambda x: np.log(naive_logistic(x)) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) def test_fast_dot(): # Check fast dot blas wrapper function if fast_dot is np.dot: return rng = np.random.RandomState(42) A = rng.random_sample([2, 10]) B = rng.random_sample([2, 10]) try: linalg.get_blas_funcs(['gemm'])[0] has_blas = True except (AttributeError, ValueError): has_blas = False if has_blas: # Test _fast_dot for invalid input. # Maltyped data. for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]: assert_raises(ValueError, _fast_dot, A.astype(dt1), B.astype(dt2).T) # Malformed data. ## ndim == 0 E = np.empty(0) assert_raises(ValueError, _fast_dot, E, E) ## ndim == 1 assert_raises(ValueError, _fast_dot, A, A[0]) ## ndim > 2 assert_raises(ValueError, _fast_dot, A.T, np.array([A, A])) ## min(shape) == 1 assert_raises(ValueError, _fast_dot, A, A[0, :][None, :]) # test for matrix mismatch error assert_raises(ValueError, _fast_dot, A, A) # Test cov-like use case + dtypes. for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) # col < row C = np.dot(A.T, A) C_ = fast_dot(A.T, A) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A, B.T) C_ = fast_dot(A, B.T) assert_almost_equal(C, C_, decimal=5) # Test square matrix * rectangular use case. A = rng.random_sample([2, 2]) for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) C = np.dot(A, B) C_ = fast_dot(A, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) if has_blas: for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]: assert_raises(ValueError, _fast_dot, x, x.T) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from http://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = X1.shape[0] final_means, final_variances, final_count = _batch_mean_variance_update( X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = batch.shape[0] else: result = _batch_mean_variance_update( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis]) def test_softmax(): rng = np.random.RandomState(0) X = rng.randn(3, 5) exp_X = np.exp(X) sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1)) assert_array_almost_equal(softmax(X), exp_X / sum_exp_X)
bsd-3-clause
ElDeveloper/scikit-learn
examples/plot_johnson_lindenstrauss_bound.py
127
7477
r""" ===================================================================== The Johnson-Lindenstrauss bound for embedding with random projections ===================================================================== The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly projected into a lower dimensional Euclidean space while controlling the distortion in the pairwise distances. .. _`Johnson-Lindenstrauss lemma`: http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma Theoretical bounds ================== The distortion introduced by a random projection `p` is asserted by the fact that `p` is defining an eps-embedding with good probability as defined by: .. math:: (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantees the eps-embedding is given by: .. math:: n\_components >= 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3) The first plot shows that with an increasing number of samples ``n_samples``, the minimal number of dimensions ``n_components`` increased logarithmically in order to guarantee an ``eps``-embedding. The second plot shows that an increase of the admissible distortion ``eps`` allows to reduce drastically the minimal number of dimensions ``n_components`` for a given number of samples ``n_samples`` Empirical validation ==================== We validate the above bounds on the the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies) dataset: - for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected to spaces for various larger number of dimensions ``n_components``. - for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions ``n_components``. The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the --twenty-newsgroups command line argument to this script. For each value of ``n_components``, we plot: - 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respectively. - 1D histogram of the ratio of those distances (projected / original). We can see that for low values of ``n_components`` the distribution is wide with many distorted pairs and a skewed distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of n_components the distortion is controlled and the distances are well preserved by the random projection. Remarks ======= According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands dimensions, irrespective of the number of features of the original dataset. Hence using random projections on the digits dataset which only has 64 features in the input space does not make sense: it does not allow for dimensionality reduction in this case. On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while reasonably preserving pairwise distances. """ print(__doc__) import sys from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import SparseRandomProjection from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import load_digits from sklearn.metrics.pairwise import euclidean_distances # Part 1: plot the theoretical dependency between n_components_min and # n_samples # range of admissible distortions eps_range = np.linspace(0.1, 0.99, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range))) # range of number of samples (observation) to embed n_samples_range = np.logspace(1, 9, 9) plt.figure() for eps, color in zip(eps_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps) plt.loglog(n_samples_range, min_n_components, color=color) plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right") plt.xlabel("Number of observations to eps-embed") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components") # range of admissible distortions eps_range = np.linspace(0.01, 0.99, 100) # range of number of samples (observation) to embed n_samples_range = np.logspace(2, 6, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range))) plt.figure() for n_samples, color in zip(n_samples_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range) plt.semilogy(eps_range, min_n_components, color=color) plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right") plt.xlabel("Distortion eps") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps") # Part 2: perform sparse random projection of some digits images which are # quite low dimensional and dense or documents of the 20 newsgroups dataset # which is both high dimensional and sparse if '--twenty-newsgroups' in sys.argv: # Need an internet connection hence not enabled by default data = fetch_20newsgroups_vectorized().data[:500] else: data = load_digits().data[:500] n_samples, n_features = data.shape print("Embedding %d samples with dim %d using various random projections" % (n_samples, n_features)) n_components_range = np.array([300, 1000, 10000]) dists = euclidean_distances(data, squared=True).ravel() # select only non-identical samples pairs nonzero = dists != 0 dists = dists[nonzero] for n_components in n_components_range: t0 = time() rp = SparseRandomProjection(n_components=n_components) projected_data = rp.fit_transform(data) print("Projected %d samples from %d to %d in %0.3fs" % (n_samples, n_features, n_components, time() - t0)) if hasattr(rp, 'components_'): n_bytes = rp.components_.data.nbytes n_bytes += rp.components_.indices.nbytes print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6)) projected_dists = euclidean_distances( projected_data, squared=True).ravel()[nonzero] plt.figure() plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu) plt.xlabel("Pairwise squared distances in original space") plt.ylabel("Pairwise squared distances in projected space") plt.title("Pairwise distances distribution for n_components=%d" % n_components) cb = plt.colorbar() cb.set_label('Sample pairs counts') rates = projected_dists / dists print("Mean distances rate: %0.2f (%0.2f)" % (np.mean(rates), np.std(rates))) plt.figure() plt.hist(rates, bins=50, normed=True, range=(0., 2.)) plt.xlabel("Squared distances rate: projected / original") plt.ylabel("Distribution of samples pairs") plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components) # TODO: compute the expected value of eps and add them to the previous plot # as vertical lines / region plt.show()
bsd-3-clause
simon-pepin/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
47
8095
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
ppegusii/cs689-final
src/representation.py
1
3863
#!/usr/bin/env python from __future__ import print_function import argparse import gzip import numpy as np import pandas as pd import sys import load def main(): args = parseArgs(sys.argv) raw = load.data(args.input) rep = None if args.representation == 'last': rep = last(raw) elif args.representation == 'change': rep = change(raw) else: print('Invalid representation requested: {}'.format( args.representation)) sys.exit(1) write(rep, args.output) def last(df): # XOR with self shifted by 1 row (change) # Find the indices that have value 1 # Forward fill the rows between the indices feat = df.iloc[:, :-1].values # print('feat.shape = {}'.format(feat.shape)) # create the shifted sequence by copying the first row and deleting the last # print('feat[0:1, :].shape = {}'.format(feat[0:1, :].shape)) # print('feat[:-1, :].shape = {}'.format(feat[:-1, :].shape)) shifted = np.concatenate([feat[0:1, :], feat[:-1, :]]) change = np.logical_xor(feat, shifted).astype(int) idxs = np.where(change) idxs, inv = np.unique(idxs[0], return_inverse=True) # print('idxs = {}'.format(idxs)) if len(idxs) != len(inv): print('{} simultaneous sensor firings occurred!'.format( len(inv) - len(idxs))) for i in xrange(len(idxs)): # print('*****') # print(change) if i != len(idxs) - 1: change[idxs[i]+1:idxs[i+1], :] = change[idxs[i]:idxs[i]+1, :] else: change[idxs[i]+1:, :] = change[idxs[i]:idxs[i]+1, :] # print(change) newDf = df.copy() newDf.iloc[:, :-1] = change return newDf def change(df): # XOR with self shifted by 1 row (change) feat = df.iloc[:, :-1].values # create the shifted sequence by copying the first row and deleting the last shifted = np.concatenate([feat[0:1, :], feat[:-1, :]]) change = np.logical_xor(feat, shifted).astype(int) newDf = df.copy() newDf.iloc[:, :-1] = change return newDf def testChange(): # From paper data = pd.DataFrame( np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 0], [0, 1, 0], [0, 0, 0]])) result = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 0], [1, 0, 0], [0, 1, 0]]) print('Input') print(data.values) output = change(data).values print('Output') print(output) print('True') print(result) assert np.array_equal(output, result) def testLast(): # From paper data = pd.DataFrame( np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 0], [0, 1, 0], [0, 0, 0]])) result = np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [0, 1, 0]]) print('Input') print(data.values) output = last(data).values print('Output') print(output) print('True') print(result) assert np.array_equal(output, result) def write(df, fileName): with gzip.open(fileName, 'w') as f: df.to_csv(f, float_format='%.0f') def parseArgs(args): parser = argparse.ArgumentParser( description=('Parse Kasteren data into canonical form. ' 'Written in Python 2.7.'), formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input', help='CSV of sequence in Raw format.') parser.add_argument('output', help='Path of CSV output.') parser.add_argument('-r', '--representation', default='last', help=('Feature representation of output. ' 'Choices {last, change}.')) return parser.parse_args() if __name__ == '__main__': main()
gpl-2.0
fredhusser/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
Silmathoron/nest-simulator
pynest/examples/intrinsic_currents_spiking.py
12
6788
# -*- coding: utf-8 -*- # # intrinsic_currents_spiking.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # """Intrinsic currents spiking ------------------------------- This example illustrates a neuron receiving spiking input through several different receptors (AMPA, NMDA, GABA_A, GABA_B), provoking spike output. The model, ``ht_neuron``, also has intrinsic currents (``I_NaP``, ``I_KNa``, ``I_T``, and ``I_h``). It is a slightly simplified implementation of neuron model proposed in [1]_. The neuron is bombarded with spike trains from four Poisson generators, which are connected to the AMPA, NMDA, GABA_A, and GABA_B receptors, respectively. References ~~~~~~~~~~~ .. [1] Hill and Tononi (2005) Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93:1671 http://dx.doi.org/10.1152/jn.00915.2004. See Also ~~~~~~~~~~ :doc:`intrinsic_currents_subthreshold` """ ############################################################################### # We imported all necessary modules for simulation, analysis and plotting. import nest import matplotlib.pyplot as plt ############################################################################### # Additionally, we set the verbosity using ``set_verbosity`` to suppress info # messages. We also reset the kernel to be sure to start with a clean NEST. nest.set_verbosity("M_WARNING") nest.ResetKernel() ############################################################################### # We define the simulation parameters: # # - The rate of the input spike trains # - The weights of the different receptors (names must match receptor types) # - The time to simulate # # Note that all parameter values should be doubles, since NEST expects doubles. rate_in = 100. w_recep = {'AMPA': 30., 'NMDA': 30., 'GABA_A': 5., 'GABA_B': 10.} t_sim = 250. num_recep = len(w_recep) ############################################################################### # We create # # - one neuron instance # - one Poisson generator instance for each synapse type # - one multimeter to record from the neuron: # - membrane potential # - threshold potential # - synaptic conductances # - intrinsic currents # # See :doc:`intrinsic_currents_subthreshold` for more details on ``multimeter`` # configuration. nrn = nest.Create('ht_neuron') p_gens = nest.Create('poisson_generator', 4, params={'rate': rate_in}) mm = nest.Create('multimeter', params={'interval': 0.1, 'record_from': ['V_m', 'theta', 'g_AMPA', 'g_NMDA', 'g_GABA_A', 'g_GABA_B', 'I_NaP', 'I_KNa', 'I_T', 'I_h']}) ############################################################################### # We now connect each Poisson generator with the neuron through a different # receptor type. # # First, we need to obtain the numerical codes for the receptor types from # the model. The ``receptor_types`` entry of the default dictionary for the # ``ht_neuron`` model is a dictionary mapping receptor names to codes. # # In the loop, we use Python's tuple unpacking mechanism to unpack # dictionary entries from our `w_recep` dictionary. # # Note that we need to pack the `pg` variable into a list before # passing it to ``Connect``, because iterating over the `p_gens` list # makes `pg` a "naked" node ID. receptors = nest.GetDefaults('ht_neuron')['receptor_types'] for index, (rec_name, rec_wgt) in enumerate(w_recep.items()): nest.Connect(p_gens[index], nrn, syn_spec={'receptor_type': receptors[rec_name], 'weight': rec_wgt}) ############################################################################### # We then connnect the ``multimeter``. Note that the multimeter is connected to # the neuron, not the other way around. nest.Connect(mm, nrn) ############################################################################### # We are now ready to simulate. nest.Simulate(t_sim) ############################################################################### # We now fetch the data recorded by the multimeter. The data are returned as # a dictionary with entry ``times`` containing timestamps for all # recorded data, plus one entry per recorded quantity. # All data is contained in the ``events`` entry of the status dictionary # returned by the multimeter. Because all NEST function return arrays, # we need to pick out element `0` from the result of ``GetStatus``. data = mm.events t = data['times'] ############################################################################### # The following function turns a name such as ``I_NaP`` into proper TeX code # :math:`I_{\mathrm{NaP}}` for a pretty label. def texify_name(name): return r'${}_{{\mathrm{{{}}}}}$'.format(*name.split('_')) ############################################################################### # The next step is to plot the results. We create a new figure, and add one # subplot each for membrane and threshold potential, synaptic conductances, # and intrinsic currents. fig = plt.figure() Vax = fig.add_subplot(311) Vax.plot(t, data['V_m'], 'b', lw=2, label=r'$V_m$') Vax.plot(t, data['theta'], 'g', lw=2, label=r'$\Theta$') Vax.set_ylabel('Potential [mV]') try: Vax.legend(fontsize='small') except TypeError: Vax.legend() # work-around for older Matplotlib versions Vax.set_title('ht_neuron driven by Poisson processes') Gax = fig.add_subplot(312) for gname in ('g_AMPA', 'g_NMDA', 'g_GABA_A', 'g_GABA_B'): Gax.plot(t, data[gname], lw=2, label=texify_name(gname)) try: Gax.legend(fontsize='small') except TypeError: Gax.legend() # work-around for older Matplotlib versions Gax.set_ylabel('Conductance [nS]') Iax = fig.add_subplot(313) for iname, color in (('I_h', 'maroon'), ('I_T', 'orange'), ('I_NaP', 'crimson'), ('I_KNa', 'aqua')): Iax.plot(t, data[iname], color=color, lw=2, label=texify_name(iname)) try: Iax.legend(fontsize='small') except TypeError: Iax.legend() # work-around for older Matplotlib versions Iax.set_ylabel('Current [pA]') Iax.set_xlabel('Time [ms]')
gpl-2.0
tjlaboss/openmc
openmc/mgxs/mgxs.py
3
303367
from collections import OrderedDict import copy from numbers import Integral import os import warnings import h5py import numpy as np import openmc from openmc.data import REACTION_MT, REACTION_NAME, FISSION_MTS import openmc.checkvalue as cv from ..tallies import ESTIMATOR_TYPES from . import EnergyGroups # Supported cross section types MGXS_TYPES = ( 'total', 'transport', 'nu-transport', 'absorption', 'capture', 'fission', 'nu-fission', 'kappa-fission', 'scatter', 'nu-scatter', 'scatter matrix', 'nu-scatter matrix', 'multiplicity matrix', 'nu-fission matrix', 'scatter probability matrix', 'consistent scatter matrix', 'consistent nu-scatter matrix', 'chi', 'chi-prompt', 'inverse-velocity', 'prompt-nu-fission', 'prompt-nu-fission matrix', 'current', 'diffusion-coefficient', 'nu-diffusion-coefficient' ) # Some scores from REACTION_MT are not supported, or are simply overkill to # support and test (like inelastic levels), remoev those from consideration _BAD_SCORES = ["(n,misc)", "(n,absorption)", "(n,total)", "fission"] _BAD_SCORES += [REACTION_NAME[mt] for mt in FISSION_MTS] ARBITRARY_VECTOR_TYPES = tuple(k for k in REACTION_MT.keys() if k not in _BAD_SCORES) ARBITRARY_MATRIX_TYPES = [] for rxn in ARBITRARY_VECTOR_TYPES: # Preclude the fission channels from being treated as a matrix if rxn not in [REACTION_NAME[mt] for mt in FISSION_MTS]: split_rxn = rxn.strip("()").split(",") if len(split_rxn) > 1 and "n" in split_rxn[1]: # Then there is a neutron product, so it can also be a matrix ARBITRARY_MATRIX_TYPES.append(rxn + " matrix") ARBITRARY_MATRIX_TYPES = tuple(ARBITRARY_MATRIX_TYPES) # Supported domain types DOMAIN_TYPES = ( 'cell', 'distribcell', 'universe', 'material', 'mesh' ) # Filter types corresponding to each domain _DOMAIN_TO_FILTER = { 'cell': openmc.CellFilter, 'distribcell': openmc.DistribcellFilter, 'universe': openmc.UniverseFilter, 'material': openmc.MaterialFilter, 'mesh': openmc.MeshFilter } # Supported domain classes _DOMAINS = ( openmc.Cell, openmc.Universe, openmc.Material, openmc.RegularMesh ) # Supported ScatterMatrixXS angular distribution types. Note that 'histogram' is # defined here and used in mgxs_library.py, but it is not used for the current # module SCATTER_TABULAR = 'tabular' SCATTER_LEGENDRE = 'legendre' SCATTER_HISTOGRAM = 'histogram' MU_TREATMENTS = ( SCATTER_LEGENDRE, SCATTER_HISTOGRAM ) # Maximum Legendre order supported by OpenMC _MAX_LEGENDRE = 10 def _df_column_convert_to_bin(df, current_name, new_name, values_to_bin, reverse_order=False): """Convert a Pandas DataFrame column from the bin edges to an index for each bin. This method operates on the DataFrame, df, in-place. Parameters ---------- df : pandas.DataFrame A Pandas DataFrame containing the cross section data. current_name : str Name of the column to replace with bins new_name : str New name for column after the data is replaced with bins values_to_bin : Iterable of Real Values of the bin edges to be used for identifying the bins reverse_order : bool Whether the bin indices should be reversed """ # Get the current values df_bins = np.asarray(df[current_name]) new_vals = np.zeros_like(df_bins, dtype=int) # Replace the values with the index of the closest entry in values_to_bin # The closest is used because it is expected that the values in df could # have lost precision along the way for i, df_val in enumerate(df_bins): idx = np.searchsorted(values_to_bin, df_val) # Check to make sure if the value is just above the search result if idx > 0 and np.isclose(values_to_bin[idx - 1], df_val): idx -= 1 # If it is just below the search result then we are done new_vals[i] = idx # Switch to a one-based indexing new_vals += 1 # Reverse the ordering if requested (this is for energy group ordering) if reverse_order: new_vals = (len(values_to_bin) - 1) - new_vals + 1 # Assign the values df[current_name] = new_vals[:] # And rename the column df.rename(columns={current_name: new_name}, inplace=True) class MGXS: """An abstract multi-group cross section for some energy group structure within some spatial domain. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. .. note:: Users should instantiate the subclasses of this abstract class. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file) and the number of mesh cells for 'mesh' domain types. num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ # Store whether or not the number density should be removed for microscopic # values of this data _divide_by_density = True def __init__(self, domain=None, domain_type=None, energy_groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): self._name = '' self._rxn_type = None self._by_nuclide = None self._nuclides = None self._estimator = 'tracklength' self._domain = None self._domain_type = None self._energy_groups = None self._num_polar = 1 self._num_azimuthal = 1 self._tally_trigger = None self._tallies = None self._rxn_rate_tally = None self._xs_tally = None self._sparse = False self._loaded_sp = False self._derived = False self._hdf5_key = None self._valid_estimators = ESTIMATOR_TYPES self.name = name self.by_nuclide = by_nuclide if domain_type is not None: self.domain_type = domain_type if domain is not None: self.domain = domain if energy_groups is not None: self.energy_groups = energy_groups self.num_polar = num_polar self.num_azimuthal = num_azimuthal def __deepcopy__(self, memo): existing = memo.get(id(self)) # If this object has been copied before, return the first copy made if existing is not None: return existing # If this is the first time we have tried to copy this object, copy it clone = type(self).__new__(type(self)) clone._name = self.name clone._rxn_type = self.rxn_type clone._by_nuclide = self.by_nuclide clone._nuclides = copy.deepcopy(self._nuclides, memo) clone._domain = self.domain clone._domain_type = self.domain_type clone._energy_groups = copy.deepcopy(self.energy_groups, memo) clone._num_polar = self._num_polar clone._num_azimuthal = self._num_azimuthal clone._tally_trigger = copy.deepcopy(self.tally_trigger, memo) clone._rxn_rate_tally = copy.deepcopy(self._rxn_rate_tally, memo) clone._xs_tally = copy.deepcopy(self._xs_tally, memo) clone._sparse = self.sparse clone._loaded_sp = self._loaded_sp clone._derived = self.derived clone._hdf5_key = self._hdf5_key clone._tallies = OrderedDict() for tally_type, tally in self.tallies.items(): clone.tallies[tally_type] = copy.deepcopy(tally, memo) memo[id(self)] = clone return clone def _add_angle_filters(self, filters): """Add the azimuthal and polar bins to the MGXS filters if needed. Filters will be provided as a ragged 2D list of openmc.Filter objects. Parameters ---------- filters : Iterable of Iterable of openmc.Filter Ragged 2D list of openmc.Filter objects for the energy and spatial domains. The angle filters will be added to the list. Returns ------- Iterable of Iterable of openmc.Filter Ragged 2D list of openmc.Filter objects for the energy and spatial domains with the angle filters added to the list. """ if self.num_polar > 1 or self.num_azimuthal > 1: # Then the user has requested angular data, so create the bins pol_bins = np.linspace(0., np.pi, num=self.num_polar + 1, endpoint=True) azi_bins = np.linspace(-np.pi, np.pi, num=self.num_azimuthal + 1, endpoint=True) for filt in filters: filt.insert(0, openmc.PolarFilter(pol_bins)) filt.insert(1, openmc.AzimuthalFilter(azi_bins)) return filters def _squeeze_xs(self, xs): """Remove dimensions which are not needed from a cross section array due to user options. This is used by the openmc.Mgxs.get_xs(...) method Parameters ---------- xs : np.ndarray Cross sections array with dimensions to be squeezed Returns ------- np.ndarray Squeezed array of cross sections """ # numpy.squeeze will return a ValueError if the axis has a size # greater than 1, to avoid this we will try each axis one at a # time to preclude the ValueError. initial_shape = len(xs.shape) for axis in range(initial_shape - 1, -1, -1): if axis not in self._dont_squeeze and xs.shape[axis] == 1: xs = np.squeeze(xs, axis=axis) return xs def _df_convert_columns_to_bins(self, df): """This method converts all relevant and present DataFrame columns from their bin boundaries to the index for each bin. This method operates on the DataFrame, df, in place. The method returns a list of the columns in which it has operated on. Parameters ---------- df : pandas.DataFrame A Pandas DataFrame containing the cross section data. Returns ------- columns : Iterable of str Names of the re-named and re-valued columns """ # Override polar and azimuthal bounds with indices if self.num_polar > 1 or self.num_azimuthal > 1: # First for polar bins = np.linspace(0., np.pi, self.num_polar + 1, True) _df_column_convert_to_bin(df, 'polar low', 'polar bin', bins) del df['polar high'] # Second for azimuthal bins = np.linspace(-np.pi, np.pi, self.num_azimuthal + 1, True) _df_column_convert_to_bin(df, 'azimuthal low', 'azimuthal bin', bins) del df['azimuthal high'] columns = ['polar bin', 'azimuthal bin'] else: columns = [] # Override energy groups bounds with indices if 'energy low [eV]' in df: _df_column_convert_to_bin(df, 'energy low [eV]', 'group in', self.energy_groups.group_edges, reverse_order=True) del df['energy high [eV]'] columns += ['group in'] if 'energyout low [eV]' in df: _df_column_convert_to_bin(df, 'energyout low [eV]', 'group out', self.energy_groups.group_edges, reverse_order=True) del df['energyout high [eV]'] columns += ['group out'] if 'mu low' in df and hasattr(self, 'histogram_bins'): # Only the ScatterMatrix class has the histogram_bins attribute bins = np.linspace(-1., 1., self.histogram_bins + 1, True) _df_column_convert_to_bin(df, 'mu low', 'mu bin', bins) del df['mu high'] columns += ['mu bin'] return columns @property def _dont_squeeze(self): """Create a tuple of axes which should not be removed during the get_xs process """ if self.num_polar > 1 or self.num_azimuthal > 1: return (0, 1, 3) else: return (1, ) @property def name(self): return self._name @property def rxn_type(self): return self._rxn_type @property def by_nuclide(self): return self._by_nuclide @property def domain(self): return self._domain @property def domain_type(self): return self._domain_type @property def energy_groups(self): return self._energy_groups @property def num_polar(self): return self._num_polar @property def num_azimuthal(self): return self._num_azimuthal @property def tally_trigger(self): return self._tally_trigger @property def num_groups(self): return self.energy_groups.num_groups @property def scores(self): return ['flux', self.rxn_type] @property def filters(self): group_edges = self.energy_groups.group_edges energy_filter = openmc.EnergyFilter(group_edges) filters = [] for i in range(len(self.scores)): filters.append([energy_filter]) return self._add_angle_filters(filters) @property def tally_keys(self): return self.scores @property def estimator(self): return self._estimator @property def tallies(self): # Instantiate tallies if they do not exist if self._tallies is None: # Initialize a collection of Tallies self._tallies = OrderedDict() # Create a domain Filter object filter_type = _DOMAIN_TO_FILTER[self.domain_type] if self.domain_type == 'mesh': domain_filter = filter_type(self.domain) else: domain_filter = filter_type(self.domain.id) if isinstance(self.estimator, str): estimators = [self.estimator] * len(self.scores) else: estimators = self.estimator # Create each Tally needed to compute the multi group cross section tally_metadata = \ zip(self.scores, self.tally_keys, self.filters, estimators) for score, key, filters, estimator in tally_metadata: self._tallies[key] = openmc.Tally(name=self.name) self._tallies[key].scores = [score] self._tallies[key].estimator = estimator if score != 'current': self._tallies[key].filters = [domain_filter] # If a tally trigger was specified, add it to each tally if self.tally_trigger: trigger_clone = copy.deepcopy(self.tally_trigger) trigger_clone.scores = [score] self._tallies[key].triggers.append(trigger_clone) # Add non-domain specific Filters (e.g., 'energy') to the Tally for add_filter in filters: self._tallies[key].filters.append(add_filter) # If this is a by-nuclide cross-section, add nuclides to Tally if self.by_nuclide and score != 'flux': self._tallies[key].nuclides += self.get_nuclides() else: self._tallies[key].nuclides.append('total') return self._tallies @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: self._rxn_rate_tally = self.tallies[self.rxn_type] self._rxn_rate_tally.sparse = self.sparse return self._rxn_rate_tally @property def xs_tally(self): if self._xs_tally is None: if self.tallies is None: msg = 'Unable to get xs_tally since tallies have ' \ 'not been loaded from a statepoint' raise ValueError(msg) self._xs_tally = self.rxn_rate_tally / self.tallies['flux'] self._compute_xs() return self._xs_tally @property def sparse(self): return self._sparse @property def num_subdomains(self): if self.domain_type.startswith('sum('): domain_type = self.domain_type[4:-1] else: domain_type = self.domain_type if self._rxn_type == 'current': filter_type = openmc.MeshSurfaceFilter else: filter_type = _DOMAIN_TO_FILTER[domain_type] domain_filter = self.xs_tally.find_filter(filter_type) return domain_filter.num_bins @property def num_nuclides(self): if self.by_nuclide: return len(self.get_nuclides()) else: return 1 @property def nuclides(self): if self.by_nuclide: return self.get_nuclides() else: return ['sum'] @property def loaded_sp(self): return self._loaded_sp @property def derived(self): return self._derived @property def hdf5_key(self): if self._hdf5_key is not None: return self._hdf5_key else: return self._rxn_type @name.setter def name(self, name): cv.check_type('name', name, str) self._name = name @by_nuclide.setter def by_nuclide(self, by_nuclide): cv.check_type('by_nuclide', by_nuclide, bool) self._by_nuclide = by_nuclide @nuclides.setter def nuclides(self, nuclides): cv.check_iterable_type('nuclides', nuclides, str) self._nuclides = nuclides @estimator.setter def estimator(self, estimator): cv.check_value('estimator', estimator, self._valid_estimators) self._estimator = estimator @domain.setter def domain(self, domain): cv.check_type('domain', domain, _DOMAINS) self._domain = domain # Assign a domain type if self.domain_type is None: if isinstance(domain, openmc.Material): self._domain_type = 'material' elif isinstance(domain, openmc.Cell): self._domain_type = 'cell' elif isinstance(domain, openmc.Universe): self._domain_type = 'universe' elif isinstance(domain, openmc.RegularMesh): self._domain_type = 'mesh' @domain_type.setter def domain_type(self, domain_type): cv.check_value('domain type', domain_type, DOMAIN_TYPES) self._domain_type = domain_type @energy_groups.setter def energy_groups(self, energy_groups): cv.check_type('energy groups', energy_groups, openmc.mgxs.EnergyGroups) self._energy_groups = energy_groups @num_polar.setter def num_polar(self, num_polar): cv.check_type('num_polar', num_polar, Integral) cv.check_greater_than('num_polar', num_polar, 0) self._num_polar = num_polar @num_azimuthal.setter def num_azimuthal(self, num_azimuthal): cv.check_type('num_azimuthal', num_azimuthal, Integral) cv.check_greater_than('num_azimuthal', num_azimuthal, 0) self._num_azimuthal = num_azimuthal @tally_trigger.setter def tally_trigger(self, tally_trigger): cv.check_type('tally trigger', tally_trigger, openmc.Trigger) self._tally_trigger = tally_trigger @sparse.setter def sparse(self, sparse): """Convert tally data from NumPy arrays to SciPy list of lists (LIL) sparse matrices, and vice versa. This property may be used to reduce the amount of data in memory during tally data processing. The tally data will be stored as SciPy LIL matrices internally within the Tally object. All tally data access properties and methods will return data as a dense NumPy array. """ cv.check_type('sparse', sparse, bool) # Sparsify or densify the derived MGXS tallies and the base tallies if self._xs_tally: self.xs_tally.sparse = sparse if self._rxn_rate_tally: self.rxn_rate_tally.sparse = sparse for tally_name in self.tallies: self.tallies[tally_name].sparse = sparse self._sparse = sparse @staticmethod def get_mgxs(mgxs_type, domain=None, domain_type=None, energy_groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): """Return a MGXS subclass object for some energy group structure within some spatial domain for some reaction type. This is a factory method which can be used to quickly create MGXS subclass objects for various reaction types. Parameters ---------- mgxs_type : str or Integral The type of multi-group cross section object to return; valid values are members of MGXS_TYPES, or the reaction types that are the keys of REACTION_MT. Note that if a reaction type from REACTION_MT is used, it can be appended with ' matrix' to obtain a multigroup matrix (from incoming to outgoing energy groups) for reactions with a neutron in an outgoing channel. domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain. Defaults to False name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. Defaults to the empty string. num_polar : Integral, optional Number of equi-width polar angles for angle discretization; defaults to no discretization num_azimuthal : Integral, optional Number of equi-width azimuthal angles for angle discretization; defaults to no discretization Returns ------- openmc.mgxs.MGXS A subclass of the abstract MGXS class for the multi-group cross section type requested by the user """ cv.check_value( "mgxs_type", mgxs_type, MGXS_TYPES + ARBITRARY_VECTOR_TYPES + ARBITRARY_MATRIX_TYPES) if mgxs_type == 'total': mgxs = TotalXS(domain, domain_type, energy_groups) elif mgxs_type == 'transport': mgxs = TransportXS(domain, domain_type, energy_groups) elif mgxs_type == 'nu-transport': mgxs = TransportXS(domain, domain_type, energy_groups, nu=True) elif mgxs_type == 'absorption': mgxs = AbsorptionXS(domain, domain_type, energy_groups) elif mgxs_type == 'capture': mgxs = CaptureXS(domain, domain_type, energy_groups) elif mgxs_type == 'fission': mgxs = FissionXS(domain, domain_type, energy_groups) elif mgxs_type == 'nu-fission': mgxs = FissionXS(domain, domain_type, energy_groups, nu=True) elif mgxs_type == 'kappa-fission': mgxs = KappaFissionXS(domain, domain_type, energy_groups) elif mgxs_type == 'scatter': mgxs = ScatterXS(domain, domain_type, energy_groups) elif mgxs_type == 'nu-scatter': mgxs = ScatterXS(domain, domain_type, energy_groups, nu=True) elif mgxs_type == 'scatter matrix': mgxs = ScatterMatrixXS(domain, domain_type, energy_groups) elif mgxs_type == 'nu-scatter matrix': mgxs = ScatterMatrixXS(domain, domain_type, energy_groups, nu=True) elif mgxs_type == 'multiplicity matrix': mgxs = MultiplicityMatrixXS(domain, domain_type, energy_groups) elif mgxs_type == 'scatter probability matrix': mgxs = ScatterProbabilityMatrix(domain, domain_type, energy_groups) elif mgxs_type == 'consistent scatter matrix': mgxs = ScatterMatrixXS(domain, domain_type, energy_groups) mgxs.formulation = 'consistent' elif mgxs_type == 'consistent nu-scatter matrix': mgxs = ScatterMatrixXS(domain, domain_type, energy_groups, nu=True) mgxs.formulation = 'consistent' elif mgxs_type == 'nu-fission matrix': mgxs = NuFissionMatrixXS(domain, domain_type, energy_groups) elif mgxs_type == 'chi': mgxs = Chi(domain, domain_type, energy_groups) elif mgxs_type == 'chi-prompt': mgxs = Chi(domain, domain_type, energy_groups, prompt=True) elif mgxs_type == 'inverse-velocity': mgxs = InverseVelocity(domain, domain_type, energy_groups) elif mgxs_type == 'prompt-nu-fission': mgxs = FissionXS(domain, domain_type, energy_groups, prompt=True) elif mgxs_type == 'prompt-nu-fission matrix': mgxs = NuFissionMatrixXS(domain, domain_type, energy_groups, prompt=True) elif mgxs_type == 'current': mgxs = Current(domain, domain_type, energy_groups) elif mgxs_type == 'diffusion-coefficient': mgxs = DiffusionCoefficient(domain, domain_type, energy_groups) elif mgxs_type == 'nu-diffusion-coefficient': mgxs = DiffusionCoefficient(domain, domain_type, energy_groups, nu=True) elif mgxs_type in ARBITRARY_VECTOR_TYPES: # Then it is a reaction not covered by the above that is # supported by the ArbitraryXS Class mgxs = ArbitraryXS(mgxs_type, domain, domain_type, energy_groups) elif mgxs_type in ARBITRARY_MATRIX_TYPES: mgxs = ArbitraryMatrixXS(mgxs_type, domain, domain_type, energy_groups) mgxs.by_nuclide = by_nuclide mgxs.name = name mgxs.num_polar = num_polar mgxs.num_azimuthal = num_azimuthal return mgxs def get_nuclides(self): """Get all nuclides in the cross section's spatial domain. Returns ------- list of str A list of the string names for each nuclide in the spatial domain (e.g., ['U235', 'U238', 'O16']) Raises ------ ValueError When this method is called before the spatial domain has been set. """ if self.domain is None: raise ValueError('Unable to get all nuclides without a domain') # If the user defined nuclides, return them if self._nuclides: return self._nuclides # Otherwise, return all nuclides in the spatial domain else: return self.domain.get_nuclides() def get_nuclide_density(self, nuclide): """Get the atomic number density in units of atoms/b-cm for a nuclide in the cross section's spatial domain. Parameters ---------- nuclide : str A nuclide name string (e.g., 'U235') Returns ------- float The atomic number density (atom/b-cm) for the nuclide of interest """ cv.check_type('nuclide', nuclide, str) # Get list of all nuclides in the spatial domain nuclides = self.domain.get_nuclide_densities() return nuclides[nuclide][1] if nuclide in nuclides else 0.0 def get_nuclide_densities(self, nuclides='all'): """Get an array of atomic number densities in units of atom/b-cm for all nuclides in the cross section's spatial domain. Parameters ---------- nuclides : Iterable of str or 'all' or 'sum' A list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will return the atom densities for all nuclides in the spatial domain. The special string 'sum' will return the atom density summed across all nuclides in the spatial domain. Defaults to 'all'. Returns ------- numpy.ndarray of float An array of the atomic number densities (atom/b-cm) for each of the nuclides in the spatial domain Raises ------ ValueError When this method is called before the spatial domain has been set. """ if self.domain is None: raise ValueError('Unable to get nuclide densities without a domain') # Sum the atomic number densities for all nuclides if nuclides == 'sum': nuclides = self.get_nuclides() densities = np.zeros(1, dtype=np.float) for nuclide in nuclides: densities[0] += self.get_nuclide_density(nuclide) # Tabulate the atomic number densities for all nuclides elif nuclides == 'all': nuclides = self.get_nuclides() densities = np.zeros(self.num_nuclides, dtype=np.float) for i, nuclide in enumerate(nuclides): densities[i] += self.get_nuclide_density(nuclide) # Tabulate the atomic number densities for each specified nuclide else: densities = np.zeros(len(nuclides), dtype=np.float) for i, nuclide in enumerate(nuclides): densities[i] = self.get_nuclide_density(nuclide) return densities def _compute_xs(self): """Performs generic cleanup after a subclass' uses tally arithmetic to compute a multi-group cross section as a derived tally. This method replaces CrossNuclides generated by tally arithmetic with the original Nuclide objects in the xs_tally instance attribute. The simple Nuclides allow for cleaner output through Pandas DataFrames as well as simpler data access through the get_xs(...) class method. In addition, this routine resets NaNs in the multi group cross section array to 0.0. This may be needed occur if no events were scored in certain tally bins, which will lead to a divide-by-zero situation. """ # If computing xs for each nuclide, replace CrossNuclides with originals if self.by_nuclide: self.xs_tally._nuclides = [] nuclides = self.get_nuclides() for nuclide in nuclides: self.xs_tally.nuclides.append(openmc.Nuclide(nuclide)) # Remove NaNs which may have resulted from divide-by-zero operations self.xs_tally._mean = np.nan_to_num(self.xs_tally.mean) self.xs_tally._std_dev = np.nan_to_num(self.xs_tally.std_dev) self.xs_tally.sparse = self.sparse def load_from_statepoint(self, statepoint): """Extracts tallies in an OpenMC StatePoint with the data needed to compute multi-group cross sections. This method is needed to compute cross section data from tallies in an OpenMC StatePoint object. .. note:: The statepoint must be linked with an OpenMC Summary object. Parameters ---------- statepoint : openmc.StatePoint An OpenMC StatePoint object with tally data Raises ------ ValueError When this method is called with a statepoint that has not been linked with a summary object. """ cv.check_type('statepoint', statepoint, openmc.StatePoint) if statepoint.summary is None: msg = 'Unable to load data from a statepoint which has not been ' \ 'linked with a summary file' raise ValueError(msg) # Override the domain object that loaded from an OpenMC summary file # NOTE: This is necessary for micro cross-sections which require # the isotopic number densities as computed by OpenMC su = statepoint.summary if self.domain_type in ('cell', 'distribcell'): self.domain = su._fast_cells[self.domain.id] elif self.domain_type == 'universe': self.domain = su._fast_universes[self.domain.id] elif self.domain_type == 'material': self.domain = su._fast_materials[self.domain.id] elif self.domain_type == 'mesh': self.domain = statepoint.meshes[self.domain.id] else: msg = 'Unable to load data from a statepoint for domain type {0} ' \ 'which is not yet supported'.format(self.domain_type) raise ValueError(msg) # Use tally "slicing" to ensure that tallies correspond to our domain # NOTE: This is important if tally merging was used if self.domain_type == 'mesh': filters = [_DOMAIN_TO_FILTER[self.domain_type]] filter_bins = [tuple(self.domain.indices)] elif self.domain_type != 'distribcell': filters = [_DOMAIN_TO_FILTER[self.domain_type]] filter_bins = [(self.domain.id,)] # Distribcell filters only accept single cell - neglect it when slicing else: filters = [] filter_bins = [] # Clear any tallies previously loaded from a statepoint if self.loaded_sp: self._tallies = None self._xs_tally = None self._rxn_rate_tally = None self._loaded_sp = False # Find, slice and store Tallies from StatePoint # The tally slicing is needed if tally merging was used for tally_type, tally in self.tallies.items(): sp_tally = statepoint.get_tally( tally.scores, tally.filters, tally.nuclides, estimator=tally.estimator, exact_filters=True) sp_tally = sp_tally.get_slice( tally.scores, filters, filter_bins, tally.nuclides) sp_tally.sparse = self.sparse self.tallies[tally_type] = sp_tally self._loaded_sp = True def get_xs(self, groups='all', subdomains='all', nuclides='all', xs_type='macro', order_groups='increasing', value='mean', squeeze=True, **kwargs): r"""Returns an array of multi-group cross sections. This method constructs a 3D NumPy array for the requested multi-group cross section data for one or more subdomains (1st dimension), energy groups (2nd dimension), and nuclides (3rd dimension). Parameters ---------- groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. subdomains : Iterable of Integral or 'all' Subdomain IDs of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' A list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will return the cross sections for all nuclides in the spatial domain. The special string 'sum' will return the cross section summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Return the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. order_groups: {'increasing', 'decreasing'} Return the cross section indexed according to increasing or decreasing energy groups (decreasing or increasing energies). Defaults to 'increasing'. value : {'mean', 'std_dev', 'rel_err'} A string for the type of value to return. Defaults to 'mean'. squeeze : bool A boolean representing whether to eliminate the extra dimensions of the multi-dimensional array to be returned. Defaults to True. Returns ------- numpy.ndarray A NumPy array of the multi-group cross section indexed in the order each group, subdomain and nuclide is listed in the parameters. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ cv.check_value('value', value, ['mean', 'std_dev', 'rel_err']) cv.check_value('xs_type', xs_type, ['macro', 'micro']) # FIXME: Unable to get microscopic xs for mesh domain because the mesh # cells do not know the nuclide densities in each mesh cell. if self.domain_type == 'mesh' and xs_type == 'micro': msg = 'Unable to get micro xs for mesh domain since the mesh ' \ 'cells do not know the nuclide densities in each mesh cell.' raise ValueError(msg) filters = [] filter_bins = [] # Construct a collection of the domain filter bins if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral, max_depth=3) filters.append(_DOMAIN_TO_FILTER[self.domain_type]) subdomain_bins = [] for subdomain in subdomains: subdomain_bins.append(subdomain) filter_bins.append(tuple(subdomain_bins)) # Construct list of energy group bounds tuples for all requested groups if not isinstance(groups, str): cv.check_iterable_type('groups', groups, Integral) filters.append(openmc.EnergyFilter) energy_bins = [] for group in groups: energy_bins.append( (self.energy_groups.get_group_bounds(group),)) filter_bins.append(tuple(energy_bins)) # Construct a collection of the nuclides to retrieve from the xs tally if self.by_nuclide: if nuclides == 'all' or nuclides == 'sum' or nuclides == ['sum']: query_nuclides = self.get_nuclides() else: query_nuclides = nuclides else: query_nuclides = ['total'] # If user requested the sum for all nuclides, use tally summation if nuclides == 'sum' or nuclides == ['sum']: xs_tally = self.xs_tally.summation(nuclides=query_nuclides) xs = xs_tally.get_values(filters=filters, filter_bins=filter_bins, value=value) else: xs = self.xs_tally.get_values(filters=filters, filter_bins=filter_bins, nuclides=query_nuclides, value=value) # Divide by atom number densities for microscopic cross sections if xs_type == 'micro' and self._divide_by_density: if self.by_nuclide: densities = self.get_nuclide_densities(nuclides) else: densities = self.get_nuclide_densities('sum') if value == 'mean' or value == 'std_dev': xs /= densities[np.newaxis, :, np.newaxis] # Eliminate the trivial score dimension xs = np.squeeze(xs, axis=len(xs.shape) - 1) xs = np.nan_to_num(xs) if groups == 'all': num_groups = self.num_groups else: num_groups = len(groups) # Reshape tally data array with separate axes for domain and energy # Accomodate the polar and azimuthal bins if needed num_subdomains = int(xs.shape[0] / (num_groups * self.num_polar * self.num_azimuthal)) if self.num_polar > 1 or self.num_azimuthal > 1: new_shape = (self.num_polar, self.num_azimuthal, num_subdomains, num_groups) else: new_shape = (num_subdomains, num_groups) new_shape += xs.shape[1:] xs = np.reshape(xs, new_shape) # Reverse data if user requested increasing energy groups since # tally data is stored in order of increasing energies if order_groups == 'increasing': xs = xs[..., ::-1, :] if squeeze: # We want to squeeze out everything but the polar, azimuthal, # and energy group data. xs = self._squeeze_xs(xs) return xs def get_flux(self, groups='all', subdomains='all', order_groups='increasing', value='mean', squeeze=True, **kwargs): r"""Returns an array of the fluxes used to weight the MGXS. This method constructs a 2D NumPy array for the requested weighting flux for one or more subdomains (1st dimension), and energy groups (2nd dimension). Parameters ---------- groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. subdomains : Iterable of Integral or 'all' Subdomain IDs of interest. Defaults to 'all'. order_groups: {'increasing', 'decreasing'} Return the cross section indexed according to increasing or decreasing energy groups (decreasing or increasing energies). Defaults to 'increasing'. value : {'mean', 'std_dev', 'rel_err'} A string for the type of value to return. Defaults to 'mean'. squeeze : bool A boolean representing whether to eliminate the extra dimensions of the multi-dimensional array to be returned. Defaults to True. Returns ------- numpy.ndarray A NumPy array of the flux indexed in the order each group and subdomain is listed in the parameters. Raises ------ ValueError When this method is called before the data is available from tally data, or, when this is used on an MGXS type without a flux score. """ cv.check_value('value', value, ['mean', 'std_dev', 'rel_err']) filters = [] filter_bins = [] # Construct a collection of the domain filter bins if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral, max_depth=3) filters.append(_DOMAIN_TO_FILTER[self.domain_type]) subdomain_bins = [] for subdomain in subdomains: subdomain_bins.append(subdomain) filter_bins.append(tuple(subdomain_bins)) # Construct list of energy group bounds tuples for all requested groups if not isinstance(groups, str): cv.check_iterable_type('groups', groups, Integral) filters.append(openmc.EnergyFilter) energy_bins = [] for group in groups: energy_bins.append( (self.energy_groups.get_group_bounds(group),)) filter_bins.append(tuple(energy_bins)) # Determine which flux to obtain # Step through in order of usefulness for key in ['flux', 'flux (tracklength)', 'flux (analog)']: if key in self.tally_keys: tally = self.tallies[key] break else: msg = "MGXS of Type {} do not have an explicit weighting flux!" raise ValueError(msg.format(self.__name__)) flux = tally.get_values(filters=filters, filter_bins=filter_bins, nuclides=['total'], value=value) # Eliminate the trivial score dimension flux = np.squeeze(flux, axis=len(flux.shape) - 1) # Eliminate the trivial nuclide dimension flux = np.squeeze(flux, axis=len(flux.shape) - 1) flux = np.nan_to_num(flux) if groups == 'all': num_groups = self.num_groups else: num_groups = len(groups) # Reshape tally data array with separate axes for domain and energy # Accomodate the polar and azimuthal bins if needed num_subdomains = int(flux.shape[0] / (num_groups * self.num_polar * self.num_azimuthal)) if self.num_polar > 1 or self.num_azimuthal > 1: new_shape = (self.num_polar, self.num_azimuthal, num_subdomains, num_groups) else: new_shape = (num_subdomains, num_groups) new_shape += flux.shape[1:] flux = np.reshape(flux, new_shape) # Reverse data if user requested increasing energy groups since # tally data is stored in order of increasing energies if order_groups == 'increasing': flux = flux[..., ::-1] if squeeze: # We want to squeeze out everything but the polar, azimuthal, # and energy group data. flux = self._squeeze_xs(flux) return flux def get_condensed_xs(self, coarse_groups): """Construct an energy-condensed version of this cross section. Parameters ---------- coarse_groups : openmc.mgxs.EnergyGroups The coarse energy group structure of interest Returns ------- MGXS A new MGXS condensed to the group structure of interest """ cv.check_type('coarse_groups', coarse_groups, EnergyGroups) cv.check_less_than('coarse groups', coarse_groups.num_groups, self.num_groups, equality=True) cv.check_value('upper coarse energy', coarse_groups.group_edges[-1], [self.energy_groups.group_edges[-1]]) cv.check_value('lower coarse energy', coarse_groups.group_edges[0], [self.energy_groups.group_edges[0]]) # Clone this MGXS to initialize the condensed version condensed_xs = copy.deepcopy(self) condensed_xs._rxn_rate_tally = None condensed_xs._xs_tally = None condensed_xs._sparse = False condensed_xs._energy_groups = coarse_groups # Build energy indices to sum across energy_indices = [] for group in range(coarse_groups.num_groups, 0, -1): low, high = coarse_groups.get_group_bounds(group) low_index = np.where(self.energy_groups.group_edges == low)[0][0] energy_indices.append(low_index) fine_edges = self.energy_groups.group_edges # Condense each of the tallies to the coarse group structure for tally in condensed_xs.tallies.values(): # Make condensed tally derived and null out sum, sum_sq tally._derived = True tally._sum = None tally._sum_sq = None # Get tally data arrays reshaped with one dimension per filter mean = tally.get_reshaped_data(value='mean') std_dev = tally.get_reshaped_data(value='std_dev') # Sum across all applicable fine energy group filters for i, tally_filter in enumerate(tally.filters): if not isinstance(tally_filter, (openmc.EnergyFilter, openmc.EnergyoutFilter)): continue elif len(tally_filter.bins) != len(fine_edges) - 1: continue elif not np.allclose(tally_filter.bins[:, 0], fine_edges[:-1]): continue else: cedge = coarse_groups.group_edges tally_filter.values = cedge tally_filter.bins = np.vstack((cedge[:-1], cedge[1:])).T mean = np.add.reduceat(mean, energy_indices, axis=i) std_dev = np.add.reduceat(std_dev**2, energy_indices, axis=i) std_dev = np.sqrt(std_dev) # Reshape condensed data arrays with one dimension for all filters mean = np.reshape(mean, tally.shape) std_dev = np.reshape(std_dev, tally.shape) # Override tally's data with the new condensed data tally._mean = mean tally._std_dev = std_dev # Compute the energy condensed multi-group cross section condensed_xs.sparse = self.sparse return condensed_xs def get_subdomain_avg_xs(self, subdomains='all'): """Construct a subdomain-averaged version of this cross section. This method is useful for averaging cross sections across distribcell instances. The method performs spatial homogenization to compute the scalar flux-weighted average cross section across the subdomains. Parameters ---------- subdomains : Iterable of Integral or 'all' The subdomain IDs to average across. Defaults to 'all'. Returns ------- openmc.mgxs.MGXS A new MGXS averaged across the subdomains of interest Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ # Construct a collection of the subdomain filter bins to average across if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral) subdomains = [(subdomain,) for subdomain in subdomains] subdomains = [tuple(subdomains)] elif self.domain_type == 'distribcell': subdomains = [i for i in range(self.num_subdomains)] subdomains = [tuple(subdomains)] else: subdomains = None # Clone this MGXS to initialize the subdomain-averaged version avg_xs = copy.deepcopy(self) avg_xs._rxn_rate_tally = None avg_xs._xs_tally = None # Average each of the tallies across subdomains for tally_type, tally in avg_xs.tallies.items(): filt_type = _DOMAIN_TO_FILTER[self.domain_type] tally_avg = tally.summation(filter_type=filt_type, filter_bins=subdomains) avg_xs.tallies[tally_type] = tally_avg avg_xs._domain_type = 'sum({0})'.format(self.domain_type) avg_xs.sparse = self.sparse return avg_xs def _get_homogenized_mgxs(self, other_mgxs, denom_score='flux'): """Construct a homogenized MGXS with other MGXS objects. This method constructs a new MGXS object that is the flux-weighted combination of two MGXS objects. It is equivalent to what one would obtain if the tally spatial domain were designed to encompass the individual domains for both MGXS objects. This is accomplished by summing the rxn rate (numerator) tally and the denominator tally (often a tally of the flux over the spatial domain) that are used to compute a multi-group cross-section. Parameters ---------- other_mgxs : openmc.mgxs.MGXS or Iterable of openmc.mgxs.MGXS The MGXS to homogenize with this one. denom_score : str The denominator score in the denominator of computing the MGXS. Returns ------- openmc.mgxs.MGXS A new homogenized MGXS Raises ------ ValueError If the other_mgxs is of a different type. """ # Check type of denom score cv.check_type('denom_score', denom_score, str) # Construct a collection of the subdomain filter bins to homogenize # across if isinstance(other_mgxs, openmc.mgxs.MGXS): other_mgxs = [other_mgxs] cv.check_iterable_type('other_mgxs', other_mgxs, openmc.mgxs.MGXS) for mgxs in other_mgxs: if mgxs.rxn_type != self.rxn_type: msg = 'Not able to homogenize two MGXS with different rxn types' raise ValueError(msg) # Clone this MGXS to initialize the homogenized version homogenized_mgxs = copy.deepcopy(self) homogenized_mgxs._derived = True name = 'hom({}, '.format(self.domain.name) # Get the domain filter filter_type = _DOMAIN_TO_FILTER[self.domain_type] self_filter = self.rxn_rate_tally.find_filter(filter_type) # Get the rxn rate and denom tallies rxn_rate_tally = self.rxn_rate_tally denom_tally = self.tallies[denom_score] for mgxs in other_mgxs: # Swap the domain filter bins for the other mgxs rxn rate tally other_rxn_rate_tally = copy.deepcopy(mgxs.rxn_rate_tally) other_filter = other_rxn_rate_tally.find_filter(filter_type) other_filter._bins = self_filter._bins # Swap the domain filter bins for the denom tally other_denom_tally = copy.deepcopy(mgxs.tallies[denom_score]) other_filter = other_denom_tally.find_filter(filter_type) other_filter._bins = self_filter._bins # Add the rxn rate and denom tallies rxn_rate_tally += other_rxn_rate_tally denom_tally += other_denom_tally # Update the name for the homogenzied MGXS name += '{}, '.format(mgxs.domain.name) # Set the properties of the homogenized MGXS homogenized_mgxs._rxn_rate_tally = rxn_rate_tally homogenized_mgxs.tallies[denom_score] = denom_tally homogenized_mgxs._domain.name = name[:-2] + ')' return homogenized_mgxs def get_homogenized_mgxs(self, other_mgxs): """Construct a homogenized mgxs with other MGXS objects. Parameters ---------- other_mgxs : openmc.mgxs.MGXS or Iterable of openmc.mgxs.MGXS The MGXS to homogenize with this one. Returns ------- openmc.mgxs.MGXS A new homogenized MGXS Raises ------ ValueError If the other_mgxs is of a different type. """ return self._get_homogenized_mgxs(other_mgxs, 'flux') def get_slice(self, nuclides=[], groups=[]): """Build a sliced MGXS for the specified nuclides and energy groups. This method constructs a new MGXS to encapsulate a subset of the data represented by this MGXS. The subset of data to include in the tally slice is determined by the nuclides and energy groups specified in the input parameters. Parameters ---------- nuclides : list of str A list of nuclide name strings (e.g., ['U235', 'U238']; default is []) groups : list of int A list of energy group indices starting at 1 for the high energies (e.g., [1, 2, 3]; default is []) Returns ------- openmc.mgxs.MGXS A new MGXS object which encapsulates the subset of data requested for the nuclide(s) and/or energy group(s) requested in the parameters. """ cv.check_iterable_type('nuclides', nuclides, str) cv.check_iterable_type('energy_groups', groups, Integral) # Build lists of filters and filter bins to slice filters = [] filter_bins = [] if len(groups) != 0: energy_bins = [] for group in groups: group_bounds = self.energy_groups.get_group_bounds(group) energy_bins.append(group_bounds) filter_bins.append(tuple(energy_bins)) filters.append(openmc.EnergyFilter) # Clone this MGXS to initialize the sliced version slice_xs = copy.deepcopy(self) slice_xs._rxn_rate_tally = None slice_xs._xs_tally = None # Slice each of the tallies across nuclides and energy groups for tally_type, tally in slice_xs.tallies.items(): slice_nuclides = [nuc for nuc in nuclides if nuc in tally.nuclides] if len(groups) != 0 and tally.contains_filter(openmc.EnergyFilter): tally_slice = tally.get_slice(filters=filters, filter_bins=filter_bins, nuclides=slice_nuclides) else: tally_slice = tally.get_slice(nuclides=slice_nuclides) slice_xs.tallies[tally_type] = tally_slice # Assign sliced energy group structure to sliced MGXS if groups: new_group_edges = [] for group in groups: group_edges = self.energy_groups.get_group_bounds(group) new_group_edges.extend(group_edges) new_group_edges = np.unique(new_group_edges) slice_xs.energy_groups.group_edges = sorted(new_group_edges) # Assign sliced nuclides to sliced MGXS if nuclides: slice_xs.nuclides = nuclides slice_xs.sparse = self.sparse return slice_xs def can_merge(self, other): """Determine if another MGXS can be merged with this one If results have been loaded from a statepoint, then MGXS are only mergeable along one and only one of enegy groups or nuclides. Parameters ---------- other : openmc.mgxs.MGXS MGXS to check for merging """ if not isinstance(other, type(self)): return False # Compare reaction type, energy groups, nuclides, domain type if self.rxn_type != other.rxn_type: return False elif not self.energy_groups.can_merge(other.energy_groups): return False elif self.by_nuclide != other.by_nuclide: return False elif self.domain_type != other.domain_type: return False elif 'distribcell' not in self.domain_type and self.domain != other.domain: return False elif not self.xs_tally.can_merge(other.xs_tally): return False elif not self.rxn_rate_tally.can_merge(other.rxn_rate_tally): return False # If all conditionals pass then MGXS are mergeable return True def merge(self, other): """Merge another MGXS with this one MGXS are only mergeable if their energy groups and nuclides are either identical or mutually exclusive. If results have been loaded from a statepoint, then MGXS are only mergeable along one and only one of energy groups or nuclides. Parameters ---------- other : openmc.mgxs.MGXS MGXS to merge with this one Returns ------- merged_mgxs : openmc.mgxs.MGXS Merged MGXS """ if not self.can_merge(other): raise ValueError('Unable to merge MGXS') # Create deep copy of tally to return as merged tally merged_mgxs = copy.deepcopy(self) merged_mgxs._derived = True # Merge energy groups if self.energy_groups != other.energy_groups: merged_groups = self.energy_groups.merge(other.energy_groups) merged_mgxs.energy_groups = merged_groups # Merge nuclides if self.nuclides != other.nuclides: # The nuclides must be mutually exclusive for nuclide in self.nuclides: if nuclide in other.nuclides: msg = 'Unable to merge MGXS with shared nuclides' raise ValueError(msg) # Concatenate lists of nuclides for the merged MGXS merged_mgxs.nuclides = self.nuclides + other.nuclides # Null base tallies but merge reaction rate and cross section tallies merged_mgxs._tallies = OrderedDict() merged_mgxs._rxn_rate_tally = self.rxn_rate_tally.merge(other.rxn_rate_tally) merged_mgxs._xs_tally = self.xs_tally.merge(other.xs_tally) return merged_mgxs def print_xs(self, subdomains='all', nuclides='all', xs_type='macro'): """Print a string representation for the multi-group cross section. Parameters ---------- subdomains : Iterable of Integral or 'all' The subdomain IDs of the cross sections to include in the report. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' The nuclides of the cross-sections to include in the report. This may be a list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will report the cross sections for all nuclides in the spatial domain. The special string 'sum' will report the cross sections summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Return the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. """ # Construct a collection of the subdomains to report if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral) elif self.domain_type == 'distribcell': subdomains = np.arange(self.num_subdomains, dtype=np.int) elif self.domain_type == 'mesh': subdomains = list(self.domain.indices) else: subdomains = [self.domain.id] # Construct a collection of the nuclides to report if self.by_nuclide: if nuclides == 'all': nuclides = self.get_nuclides() elif nuclides == 'sum': nuclides = ['sum'] else: cv.check_iterable_type('nuclides', nuclides, str) else: nuclides = ['sum'] cv.check_value('xs_type', xs_type, ['macro', 'micro']) # Build header for string with type and domain info string = 'Multi-Group XS\n' string += '{0: <16}=\t{1}\n'.format('\tReaction Type', self.rxn_type) string += '{0: <16}=\t{1}\n'.format('\tDomain Type', self.domain_type) string += '{0: <16}=\t{1}\n'.format('\tDomain ID', self.domain.id) # Generate the header for an individual XS xs_header = '\tCross Sections [{0}]:'.format(self.get_units(xs_type)) # If cross section data has not been computed, only print string header if self.tallies is None: print(string) return # Set polar/azimuthal bins if self.num_polar > 1 or self.num_azimuthal > 1: pol_bins = np.linspace(0., np.pi, num=self.num_polar + 1, endpoint=True) azi_bins = np.linspace(-np.pi, np.pi, num=self.num_azimuthal + 1, endpoint=True) # Loop over all subdomains for subdomain in subdomains: if self.domain_type == 'distribcell' or self.domain_type == 'mesh': string += '{0: <16}=\t{1}\n'.format('\tSubdomain', subdomain) # Loop over all Nuclides for nuclide in nuclides: # Build header for nuclide type if nuclide != 'sum': string += '{0: <16}=\t{1}\n'.format('\tNuclide', nuclide) # Build header for cross section type string += '{0: <16}\n'.format(xs_header) template = '{0: <12}Group {1} [{2: <10} - {3: <10}eV]:\t' average_xs = self.get_xs(nuclides=[nuclide], subdomains=[subdomain], xs_type=xs_type, value='mean') rel_err_xs = self.get_xs(nuclides=[nuclide], subdomains=[subdomain], xs_type=xs_type, value='rel_err') rel_err_xs = rel_err_xs * 100. if self.num_polar > 1 or self.num_azimuthal > 1: # Loop over polar, azimuthal, and energy group ranges for pol in range(len(pol_bins) - 1): pol_low, pol_high = pol_bins[pol: pol + 2] for azi in range(len(azi_bins) - 1): azi_low, azi_high = azi_bins[azi: azi + 2] string += '\t\tPolar Angle: [{0:5f} - {1:5f}]'.format( pol_low, pol_high) + \ '\tAzimuthal Angle: [{0:5f} - {1:5f}]'.format( azi_low, azi_high) + '\n' for group in range(1, self.num_groups + 1): bounds = \ self.energy_groups.get_group_bounds(group) string += '\t' + template.format('', group, bounds[0], bounds[1]) string += '{0:.2e} +/- {1:.2e}%'.format( average_xs[pol, azi, group - 1], rel_err_xs[pol, azi, group - 1]) string += '\n' string += '\n' else: # Loop over energy groups for group in range(1, self.num_groups + 1): bounds = self.energy_groups.get_group_bounds(group) string += template.format('', group, bounds[0], bounds[1]) string += '{0:.2e} +/- {1:.2e}%'.format( average_xs[group - 1], rel_err_xs[group - 1]) string += '\n' string += '\n' string += '\n' print(string) def build_hdf5_store(self, filename='mgxs.h5', directory='mgxs', subdomains='all', nuclides='all', xs_type='macro', row_column='inout', append=True, libver='earliest'): """Export the multi-group cross section data to an HDF5 binary file. This method constructs an HDF5 file which stores the multi-group cross section data. The data is stored in a hierarchy of HDF5 groups from the domain type, domain id, subdomain id (for distribcell domains), nuclides and cross section type. Two datasets for the mean and standard deviation are stored for each subdomain entry in the HDF5 file. .. note:: This requires the h5py Python package. Parameters ---------- filename : str Filename for the HDF5 file. Defaults to 'mgxs.h5'. directory : str Directory for the HDF5 file. Defaults to 'mgxs'. subdomains : Iterable of Integral or 'all' The subdomain IDs of the cross sections to include in the report. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' The nuclides of the cross-sections to include in the report. This may be a list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will report the cross sections for all nuclides in the spatial domain. The special string 'sum' will report the cross sections summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Store the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. row_column: {'inout', 'outin'} Store scattering matrices indexed first by incoming group and second by outgoing group ('inout'), or vice versa ('outin'). Defaults to 'inout'. append : bool If true, appends to an existing HDF5 file with the same filename directory (if one exists). Defaults to True. libver : {'earliest', 'latest'} Compatibility mode for the HDF5 file. 'latest' will produce files that are less backwards compatible but have performance benefits. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) filename = os.path.join(directory, filename) filename = filename.replace(' ', '-') if append and os.path.isfile(filename): xs_results = h5py.File(filename, 'a') else: xs_results = h5py.File(filename, 'w', libver=libver) # Construct a collection of the subdomains to report if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral) elif self.domain_type == 'distribcell': subdomains = np.arange(self.num_subdomains, dtype=np.int) elif self.domain_type == 'sum(distribcell)': domain_filter = self.xs_tally.find_filter('sum(distribcell)') subdomains = domain_filter.bins elif self.domain_type == 'mesh': subdomains = list(self.domain.indices) else: subdomains = [self.domain.id] # Construct a collection of the nuclides to report if self.by_nuclide: if nuclides == 'all': nuclides = self.get_nuclides() densities = np.zeros(len(nuclides), dtype=np.float) elif nuclides == 'sum': nuclides = ['sum'] else: cv.check_iterable_type('nuclides', nuclides, str) else: nuclides = ['sum'] cv.check_value('xs_type', xs_type, ['macro', 'micro']) # Create an HDF5 group within the file for the domain domain_type_group = xs_results.require_group(self.domain_type) domain_group = domain_type_group.require_group(str(self.domain.id)) # Determine number of digits to pad subdomain group keys num_digits = len(str(self.num_subdomains)) # Create a separate HDF5 group for each subdomain for subdomain in subdomains: # Create an HDF5 group for the subdomain if self.domain_type == 'distribcell': group_name = ''.zfill(num_digits) subdomain_group = domain_group.require_group(group_name) else: subdomain_group = domain_group # Create a separate HDF5 group for this cross section rxn_group = subdomain_group.require_group(self.hdf5_key) # Create a separate HDF5 group for each nuclide for j, nuclide in enumerate(nuclides): if nuclide != 'sum': density = densities[j] nuclide_group = rxn_group.require_group(nuclide) nuclide_group.require_dataset('density', dtype=np.float64, data=[density], shape=(1,)) else: nuclide_group = rxn_group # Extract the cross section for this subdomain and nuclide average = self.get_xs(subdomains=[subdomain], nuclides=[nuclide], xs_type=xs_type, value='mean', row_column=row_column) std_dev = self.get_xs(subdomains=[subdomain], nuclides=[nuclide], xs_type=xs_type, value='std_dev', row_column=row_column) # Add MGXS results data to the HDF5 group nuclide_group.require_dataset('average', dtype=np.float64, shape=average.shape, data=average) nuclide_group.require_dataset('std. dev.', dtype=np.float64, shape=std_dev.shape, data=std_dev) # Close the results HDF5 file xs_results.close() def export_xs_data(self, filename='mgxs', directory='mgxs', format='csv', groups='all', xs_type='macro'): """Export the multi-group cross section data to a file. This method leverages the functionality in the Pandas library to export the multi-group cross section data in a variety of output file formats for storage and/or post-processing. Parameters ---------- filename : str Filename for the exported file. Defaults to 'mgxs'. directory : str Directory for the exported file. Defaults to 'mgxs'. format : {'csv', 'excel', 'pickle', 'latex'} The format for the exported data file. Defaults to 'csv'. groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. xs_type: {'macro', 'micro'} Store the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. """ cv.check_type('filename', filename, str) cv.check_type('directory', directory, str) cv.check_value('format', format, ['csv', 'excel', 'pickle', 'latex']) cv.check_value('xs_type', xs_type, ['macro', 'micro']) # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) filename = os.path.join(directory, filename) filename = filename.replace(' ', '-') # Get a Pandas DataFrame for the data df = self.get_pandas_dataframe(groups=groups, xs_type=xs_type) # Export the data using Pandas IO API if format == 'csv': df.to_csv(filename + '.csv', index=False) elif format == 'excel': if self.domain_type == 'mesh': df.to_excel(filename + '.xls') else: df.to_excel(filename + '.xls', index=False) elif format == 'pickle': df.to_pickle(filename + '.pkl') elif format == 'latex': if self.domain_type == 'distribcell': msg = 'Unable to export distribcell multi-group cross section' \ 'data to a LaTeX table' raise NotImplementedError(msg) df.to_latex(filename + '.tex', bold_rows=True, longtable=True, index=False) # Surround LaTeX table with code needed to run pdflatex with open(filename + '.tex', 'r') as original: data = original.read() with open(filename + '.tex', 'w') as modified: modified.write( '\\documentclass[preview, 12pt, border=1mm]{standalone}\n') modified.write('\\usepackage{caption}\n') modified.write('\\usepackage{longtable}\n') modified.write('\\usepackage{booktabs}\n') modified.write('\\begin{document}\n\n') modified.write(data) modified.write('\n\\end{document}') def get_pandas_dataframe(self, groups='all', nuclides='all', xs_type='macro', paths=True): """Build a Pandas DataFrame for the MGXS data. This method leverages :meth:`openmc.Tally.get_pandas_dataframe`, but renames the columns with terminology appropriate for cross section data. Parameters ---------- groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' The nuclides of the cross-sections to include in the dataframe. This may be a list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will include the cross sections for all nuclides in the spatial domain. The special string 'sum' will include the cross sections summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Return macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. paths : bool, optional Construct columns for distribcell tally filters (default is True). The geometric information in the Summary object is embedded into a Multi-index column with a geometric "path" to each distribcell instance. Returns ------- pandas.DataFrame A Pandas DataFrame for the cross section data. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ if not isinstance(groups, str): cv.check_iterable_type('groups', groups, Integral) if nuclides != 'all' and nuclides != 'sum': cv.check_iterable_type('nuclides', nuclides, str) cv.check_value('xs_type', xs_type, ['macro', 'micro']) # Get a Pandas DataFrame from the derived xs tally if self.by_nuclide and nuclides == 'sum': # Use tally summation to sum across all nuclides xs_tally = self.xs_tally.summation(nuclides=self.get_nuclides()) df = xs_tally.get_pandas_dataframe(paths=paths) # Remove nuclide column since it is homogeneous and redundant if self.domain_type == 'mesh': df.drop('sum(nuclide)', axis=1, level=0, inplace=True) else: df.drop('sum(nuclide)', axis=1, inplace=True) # If the user requested a specific set of nuclides elif self.by_nuclide and nuclides != 'all': xs_tally = self.xs_tally.get_slice(nuclides=nuclides) df = xs_tally.get_pandas_dataframe(paths=paths) # If the user requested all nuclides, keep nuclide column in dataframe else: df = self.xs_tally.get_pandas_dataframe(paths=paths) # Remove the score column since it is homogeneous and redundant if self.domain_type == 'mesh': df = df.drop('score', axis=1, level=0) else: df = df.drop('score', axis=1) # Convert azimuthal, polar, energy in and energy out bin values in to # bin indices columns = self._df_convert_columns_to_bins(df) # Select out those groups the user requested if not isinstance(groups, str): if 'group in' in df: df = df[df['group in'].isin(groups)] if 'group out' in df: df = df[df['group out'].isin(groups)] # If user requested micro cross sections, divide out the atom densities if xs_type == 'micro' and self._divide_by_density: if self.by_nuclide: densities = self.get_nuclide_densities(nuclides) else: densities = self.get_nuclide_densities('sum') densities = np.repeat(densities, len(self.rxn_rate_tally.scores)) tile_factor = int(df.shape[0] / len(densities)) df['mean'] /= np.tile(densities, tile_factor) df['std. dev.'] /= np.tile(densities, tile_factor) # Replace NaNs by zeros (happens if nuclide density is zero) df['mean'].replace(np.nan, 0.0, inplace=True) df['std. dev.'].replace(np.nan, 0.0, inplace=True) # Sort the dataframe by domain type id (e.g., distribcell id) and # energy groups such that data is from fast to thermal if self.domain_type == 'mesh': mesh_str = 'mesh {0}'.format(self.domain.id) df.sort_values(by=[(mesh_str, 'x'), (mesh_str, 'y'), (mesh_str, 'z')] + columns, inplace=True) else: df.sort_values(by=[self.domain_type] + columns, inplace=True) return df def get_units(self, xs_type='macro'): """This method returns the units of a MGXS based on a desired xs_type. Parameters ---------- xs_type: {'macro', 'micro'} Return the macro or micro cross section units. Defaults to 'macro'. Returns ------- str A string representing the units of the MGXS. """ cv.check_value('xs_type', xs_type, ['macro', 'micro']) return 'cm^-1' if xs_type == 'macro' else 'barns' class MatrixMGXS(MGXS): """An abstract multi-group cross section for some energy group structure within some spatial domain. This class is specifically intended for cross sections which depend on both the incoming and outgoing energy groups and are therefore represented by matrices. Examples of this include the scattering and nu-fission matrices. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. .. note:: Users should instantiate the subclasses of this abstract class. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file) and the number of mesh cells for 'mesh' domain types. num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ @property def _dont_squeeze(self): """Create a tuple of axes which should not be removed during the get_xs process """ if self.num_polar > 1 or self.num_azimuthal > 1: return (0, 1, 3, 4) else: return (1, 2) @property def filters(self): # Create the non-domain specific Filters for the Tallies group_edges = self.energy_groups.group_edges energy = openmc.EnergyFilter(group_edges) energyout = openmc.EnergyoutFilter(group_edges) filters = [[energy], [energy, energyout]] return self._add_angle_filters(filters) def get_xs(self, in_groups='all', out_groups='all', subdomains='all', nuclides='all', xs_type='macro', order_groups='increasing', row_column='inout', value='mean', squeeze=True, **kwargs): """Returns an array of multi-group cross sections. This method constructs a 4D NumPy array for the requested multi-group cross section data for one or more subdomains (1st dimension), energy groups in (2nd dimension), energy groups out (3rd dimension), and nuclides (4th dimension). Parameters ---------- in_groups : Iterable of Integral or 'all' Incoming energy groups of interest. Defaults to 'all'. out_groups : Iterable of Integral or 'all' Outgoing energy groups of interest. Defaults to 'all'. subdomains : Iterable of Integral or 'all' Subdomain IDs of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' A list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will return the cross sections for all nuclides in the spatial domain. The special string 'sum' will return the cross section summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Return the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. order_groups: {'increasing', 'decreasing'} Return the cross section indexed according to increasing or decreasing energy groups (decreasing or increasing energies). Defaults to 'increasing'. row_column: {'inout', 'outin'} Return the cross section indexed first by incoming group and second by outgoing group ('inout'), or vice versa ('outin'). Defaults to 'inout'. value : {'mean', 'std_dev', 'rel_err'} A string for the type of value to return. Defaults to 'mean'. squeeze : bool A boolean representing whether to eliminate the extra dimensions of the multi-dimensional array to be returned. Defaults to True. Returns ------- numpy.ndarray A NumPy array of the multi-group cross section indexed in the order each group and subdomain is listed in the parameters. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ cv.check_value('value', value, ['mean', 'std_dev', 'rel_err']) cv.check_value('xs_type', xs_type, ['macro', 'micro']) # FIXME: Unable to get microscopic xs for mesh domain because the mesh # cells do not know the nuclide densities in each mesh cell. if self.domain_type == 'mesh' and xs_type == 'micro': msg = 'Unable to get micro xs for mesh domain since the mesh ' \ 'cells do not know the nuclide densities in each mesh cell.' raise ValueError(msg) filters = [] filter_bins = [] # Construct a collection of the domain filter bins if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral, max_depth=3) filters.append(_DOMAIN_TO_FILTER[self.domain_type]) subdomain_bins = [] for subdomain in subdomains: subdomain_bins.append(subdomain) filter_bins.append(tuple(subdomain_bins)) # Construct list of energy group bounds tuples for all requested groups if not isinstance(in_groups, str): cv.check_iterable_type('groups', in_groups, Integral) filters.append(openmc.EnergyFilter) energy_bins = [] for group in in_groups: energy_bins.append((self.energy_groups.get_group_bounds(group),)) filter_bins.append(tuple(energy_bins)) # Construct list of energy group bounds tuples for all requested groups if not isinstance(out_groups, str): cv.check_iterable_type('groups', out_groups, Integral) for group in out_groups: filters.append(openmc.EnergyoutFilter) filter_bins.append(( self.energy_groups.get_group_bounds(group),)) # Construct a collection of the nuclides to retrieve from the xs tally if self.by_nuclide: if nuclides == 'all' or nuclides == 'sum' or nuclides == ['sum']: query_nuclides = self.get_nuclides() else: query_nuclides = nuclides else: query_nuclides = ['total'] # Use tally summation if user requested the sum for all nuclides if nuclides == 'sum' or nuclides == ['sum']: xs_tally = self.xs_tally.summation(nuclides=query_nuclides) xs = xs_tally.get_values(filters=filters, filter_bins=filter_bins, value=value) else: xs = self.xs_tally.get_values(filters=filters, filter_bins=filter_bins, nuclides=query_nuclides, value=value) # Divide by atom number densities for microscopic cross sections if xs_type == 'micro' and self._divide_by_density: if self.by_nuclide: densities = self.get_nuclide_densities(nuclides) else: densities = self.get_nuclide_densities('sum') if value == 'mean' or value == 'std_dev': xs /= densities[np.newaxis, :, np.newaxis] # Eliminate the trivial score dimension xs = np.squeeze(xs, axis=len(xs.shape) - 1) xs = np.nan_to_num(xs) if in_groups == 'all': num_in_groups = self.num_groups else: num_in_groups = len(in_groups) if out_groups == 'all': num_out_groups = self.num_groups else: num_out_groups = len(out_groups) # Reshape tally data array with separate axes for domain and energy # Accomodate the polar and azimuthal bins if needed num_subdomains = int(xs.shape[0] / (num_in_groups * num_out_groups * self.num_polar * self.num_azimuthal)) if self.num_polar > 1 or self.num_azimuthal > 1: new_shape = (self.num_polar, self.num_azimuthal, num_subdomains, num_in_groups, num_out_groups) new_shape += xs.shape[1:] xs = np.reshape(xs, new_shape) # Transpose the matrix if requested by user if row_column == 'outin': xs = np.swapaxes(xs, 3, 4) else: new_shape = (num_subdomains, num_in_groups, num_out_groups) new_shape += xs.shape[1:] xs = np.reshape(xs, new_shape) # Transpose the matrix if requested by user if row_column == 'outin': xs = np.swapaxes(xs, 1, 2) # Reverse data if user requested increasing energy groups since # tally data is stored in order of increasing energies if order_groups == 'increasing': xs = xs[..., ::-1, ::-1, :] if squeeze: # We want to squeeze out everything but the polar, azimuthal, # and in/out energy group data. xs = self._squeeze_xs(xs) return xs def get_slice(self, nuclides=[], in_groups=[], out_groups=[]): """Build a sliced MatrixMGXS object for the specified nuclides and energy groups. This method constructs a new MGXS to encapsulate a subset of the data represented by this MGXS. The subset of data to include in the tally slice is determined by the nuclides and energy groups specified in the input parameters. Parameters ---------- nuclides : list of str A list of nuclide name strings (e.g., ['U235', 'U238']; default is []) in_groups : list of int A list of incoming energy group indices starting at 1 for the high energies (e.g., [1, 2, 3]; default is []) out_groups : list of int A list of outgoing energy group indices starting at 1 for the high energies (e.g., [1, 2, 3]; default is []) Returns ------- openmc.mgxs.MatrixMGXS A new MatrixMGXS object which encapsulates the subset of data requested for the nuclide(s) and/or energy group(s) requested in the parameters. """ # Call super class method and null out derived tallies slice_xs = super().get_slice(nuclides, in_groups) slice_xs._rxn_rate_tally = None slice_xs._xs_tally = None # Slice outgoing energy groups if needed if len(out_groups) != 0: filter_bins = [] for group in out_groups: group_bounds = self.energy_groups.get_group_bounds(group) filter_bins.append(group_bounds) filter_bins = [tuple(filter_bins)] # Slice each of the tallies across energyout groups for tally_type, tally in slice_xs.tallies.items(): if tally.contains_filter(openmc.EnergyoutFilter): tally_slice = tally.get_slice( filters=[openmc.EnergyoutFilter], filter_bins=filter_bins) slice_xs.tallies[tally_type] = tally_slice slice_xs.sparse = self.sparse return slice_xs def print_xs(self, subdomains='all', nuclides='all', xs_type='macro'): """Prints a string representation for the multi-group cross section. Parameters ---------- subdomains : Iterable of Integral or 'all' The subdomain IDs of the cross sections to include in the report. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' The nuclides of the cross-sections to include in the report. This may be a list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will report the cross sections for all nuclides in the spatial domain. The special string 'sum' will report the cross sections summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Return the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. """ # Construct a collection of the subdomains to report if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral) elif self.domain_type == 'distribcell': subdomains = np.arange(self.num_subdomains, dtype=np.int) elif self.domain_type == 'mesh': subdomains = list(self.domain.indices) else: subdomains = [self.domain.id] # Construct a collection of the nuclides to report if self.by_nuclide: if nuclides == 'all': nuclides = self.get_nuclides() if nuclides == 'sum': nuclides = ['sum'] else: cv.check_iterable_type('nuclides', nuclides, str) else: nuclides = ['sum'] cv.check_value('xs_type', xs_type, ['macro', 'micro']) # Build header for string with type and domain info string = 'Multi-Group XS\n' string += '{0: <16}=\t{1}\n'.format('\tReaction Type', self.rxn_type) string += '{0: <16}=\t{1}\n'.format('\tDomain Type', self.domain_type) string += '{0: <16}=\t{1}\n'.format('\tDomain ID', self.domain.id) # Generate the header for an individual XS xs_header = '\tCross Sections [{0}]:'.format(self.get_units(xs_type)) # If cross section data has not been computed, only print string header if self.tallies is None: print(string) return string += '{0: <16}\n'.format('\tEnergy Groups:') template = '{0: <12}Group {1} [{2: <10} - {3: <10}eV]\n' # Loop over energy groups ranges for group in range(1, self.num_groups + 1): bounds = self.energy_groups.get_group_bounds(group) string += template.format('', group, bounds[0], bounds[1]) # Set polar and azimuthal bins if necessary if self.num_polar > 1 or self.num_azimuthal > 1: pol_bins = np.linspace(0., np.pi, num=self.num_polar + 1, endpoint=True) azi_bins = np.linspace(-np.pi, np.pi, num=self.num_azimuthal + 1, endpoint=True) # Loop over all subdomains for subdomain in subdomains: if self.domain_type == 'distribcell' or self.domain_type == 'mesh': string += '{0: <16}=\t{1}\n'.format('\tSubdomain', subdomain) # Loop over all Nuclides for nuclide in nuclides: # Build header for nuclide type if xs_type != 'sum': string += '{0: <16}=\t{1}\n'.format('\tNuclide', nuclide) # Build header for cross section type string += '{0: <16}\n'.format(xs_header) template = '{0: <12}Group {1} -> Group {2}:\t\t' average_xs = self.get_xs(nuclides=[nuclide], subdomains=[subdomain], xs_type=xs_type, value='mean') rel_err_xs = self.get_xs(nuclides=[nuclide], subdomains=[subdomain], xs_type=xs_type, value='rel_err') rel_err_xs = rel_err_xs * 100. if self.num_polar > 1 or self.num_azimuthal > 1: # Loop over polar, azi, and in/out energy group ranges for pol in range(len(pol_bins) - 1): pol_low, pol_high = pol_bins[pol: pol + 2] for azi in range(len(azi_bins) - 1): azi_low, azi_high = azi_bins[azi: azi + 2] string += '\t\tPolar Angle: [{0:5f} - {1:5f}]'.format( pol_low, pol_high) + \ '\tAzimuthal Angle: [{0:5f} - {1:5f}]'.format( azi_low, azi_high) + '\n' for in_group in range(1, self.num_groups + 1): for out_group in range(1, self.num_groups + 1): string += '\t' + template.format('', in_group, out_group) string += '{0:.2e} +/- {1:.2e}%'.format( average_xs[pol, azi, in_group - 1, out_group - 1], rel_err_xs[pol, azi, in_group - 1, out_group - 1]) string += '\n' string += '\n' string += '\n' else: # Loop over incoming/outgoing energy groups ranges for in_group in range(1, self.num_groups + 1): for out_group in range(1, self.num_groups + 1): string += template.format('', in_group, out_group) string += '{0:.2e} +/- {1:.2e}%'.format( average_xs[in_group - 1, out_group - 1], rel_err_xs[in_group - 1, out_group - 1]) string += '\n' string += '\n' string += '\n' string += '\n' print(string) class TotalXS(MGXS): r"""A total multi-group cross section. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group total cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`TotalXS.energy_groups` and :attr:`TotalXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`TotalXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`TotalXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the total cross section is calculated as: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \sigma_t (r, E) \psi (r, E, \Omega)}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)}. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`TotalXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = 'total' class TransportXS(MGXS): r"""A transport-corrected total multi-group cross section. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`TransportXS.energy_groups` and :attr:`TransportXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`TransportXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`TransportXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the transport-corrected total cross section is calculated as: .. math:: \begin{aligned} \langle \sigma_t \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \sigma_t (r, E) \psi (r, E, \Omega) \\ \langle \sigma_{s1} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \int_{4\pi} d\Omega' \int_0^\infty dE' \int_{-1}^1 d\mu \; \mu \sigma_s (r, E' \rightarrow E, \Omega' \cdot \Omega) \phi (r, E', \Omega) \\ \langle \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega) \\ \sigma_{tr} &= \frac{\langle \sigma_t \phi \rangle - \langle \sigma_{s1} \phi \rangle}{\langle \phi \rangle} \end{aligned} To incorporate the effect of scattering multiplication in the above relation, the `nu` parameter can be set to `True`. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation nu : bool If True, the cross section data will include neutron multiplication; defaults to False. by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) nu : bool If True, the cross section data will include neutron multiplication by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`TransportXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, nu=False, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) # Use tracklength estimators for the total MGXS term, and # analog estimators for the transport correction term self._estimator = ['tracklength', 'tracklength', 'analog', 'analog'] self._valid_estimators = ['analog'] self.nu = nu def __deepcopy__(self, memo): clone = super().__deepcopy__(memo) clone._nu = self.nu return clone @property def scores(self): if not self.nu: return ['flux', 'total', 'flux', 'scatter'] else: return ['flux', 'total', 'flux', 'nu-scatter'] @property def tally_keys(self): return ['flux (tracklength)', 'total', 'flux (analog)', 'scatter-1'] @property def filters(self): group_edges = self.energy_groups.group_edges energy_filter = openmc.EnergyFilter(group_edges) energyout_filter = openmc.EnergyoutFilter(group_edges) p1_filter = openmc.LegendreFilter(1) filters = [[energy_filter], [energy_filter], [energy_filter], [energyout_filter, p1_filter]] return self._add_angle_filters(filters) @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: # Switch EnergyoutFilter to EnergyFilter. p1_tally = self.tallies['scatter-1'] old_filt = p1_tally.filters[-2] new_filt = openmc.EnergyFilter(old_filt.values) p1_tally.filters[-2] = new_filt # Slice Legendre expansion filter and change name of score p1_tally = p1_tally.get_slice(filters=[openmc.LegendreFilter], filter_bins=[('P1',)], squeeze=True) p1_tally._scores = ['scatter-1'] self._rxn_rate_tally = self.tallies['total'] - p1_tally self._rxn_rate_tally.sparse = self.sparse return self._rxn_rate_tally @property def xs_tally(self): if self._xs_tally is None: if self.tallies is None: msg = 'Unable to get xs_tally since tallies have ' \ 'not been loaded from a statepoint' raise ValueError(msg) # Switch EnergyoutFilter to EnergyFilter. p1_tally = self.tallies['scatter-1'] old_filt = p1_tally.filters[-2] new_filt = openmc.EnergyFilter(old_filt.values) p1_tally.filters[-2] = new_filt # Slice Legendre expansion filter and change name of score p1_tally = p1_tally.get_slice(filters=[openmc.LegendreFilter], filter_bins=[('P1',)], squeeze=True) p1_tally._scores = ['scatter-1'] # Compute total cross section total_xs = self.tallies['total'] / self.tallies['flux (tracklength)'] # Compute transport correction term trans_corr = p1_tally / self.tallies['flux (analog)'] # Compute the transport-corrected total cross section self._xs_tally = total_xs - trans_corr self._compute_xs() return self._xs_tally @property def nu(self): return self._nu @nu.setter def nu(self, nu): cv.check_type('nu', nu, bool) self._nu = nu if not nu: self._rxn_type = 'transport' else: self._rxn_type = 'nu-transport' class DiffusionCoefficient(TransportXS): r"""A diffusion coefficient multi-group cross section. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`DiffusionCoefficient.energy_groups` and :attr:`DiffusionCoefficient.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`DiffusionCoefficient.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`DiffusionCoefficient.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the diffusion coefficient is calculated as: .. math:: \begin{aligned} \langle \sigma_t \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \sigma_t (r, E) \psi (r, E, \Omega) \\ \langle \sigma_{s1} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \int_{4\pi} d\Omega' \int_0^\infty dE' \int_{-1}^1 d\mu \; \mu \sigma_s (r, E' \rightarrow E, \Omega' \cdot \Omega) \phi (r, E', \Omega) \\ \langle \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega) \\ \sigma_{tr} &= \frac{\langle \sigma_t \phi \rangle - \langle \sigma_{s1} \phi \rangle}{\langle \phi \rangle} \\ D = \frac{1}{3 \sigma_{tr}} \end{aligned} To incorporate the effect of scattering multiplication in the above relation, the `nu` parameter can be set to `True`. .. versionadded:: 0.12.1 Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation nu : bool If True, the cross section data will include neutron multiplication; defaults to False. by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) nu : bool If True, the cross section data will include neutron multiplication by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`TransportXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, nu=False, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super(DiffusionCoefficient, self).__init__(domain, domain_type, groups, nu, by_nuclide, name, num_polar, num_azimuthal) if not nu: self._rxn_type = 'diffusion-coefficient' else: self._rxn_type = 'nu-diffusion-coefficient' @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: # Switch EnergyoutFilter to EnergyFilter p1_tally = self.tallies['scatter-1'] old_filt = p1_tally.filters[-2] new_filt = openmc.EnergyFilter(old_filt.values) p1_tally.filters[-2] = new_filt # Slice Legendre expansion filter and change name of score p1_tally = p1_tally.get_slice(filters=[openmc.LegendreFilter], filter_bins=[('P1',)], squeeze=True) p1_tally._scores = ['scatter-1'] # Compute total cross section total_xs = self.tallies['total'] / self.tallies['flux (tracklength)'] # Compute transport correction term trans_corr = self.tallies['scatter-1'] / self.tallies['flux (analog)'] # Compute the diffusion coefficient transport = total_xs - trans_corr dif_coef = transport**(-1) / 3.0 self._rxn_rate_tally = dif_coef * self.tallies['flux (tracklength)'] self._rxn_rate_tally.sparse = self.sparse return self._rxn_rate_tally @property def xs_tally(self): if self._xs_tally is None: if self.tallies is None: msg = 'Unable to get xs_tally since tallies have ' \ 'not been loaded from a statepoint' raise ValueError(msg) self._xs_tally = self.rxn_rate_tally / self.tallies['flux (tracklength)'] self._compute_xs() return self._xs_tally def get_condensed_xs(self, coarse_groups): """Construct an energy-condensed version of this cross section. Parameters ---------- coarse_groups : openmc.mgxs.EnergyGroups The coarse energy group structure of interest Returns ------- MGXS A new MGXS condensed to the group structure of interest """ cv.check_type('coarse_groups', coarse_groups, EnergyGroups) cv.check_less_than('coarse groups', coarse_groups.num_groups, self.num_groups, equality=True) cv.check_value('upper coarse energy', coarse_groups.group_edges[-1], [self.energy_groups.group_edges[-1]]) cv.check_value('lower coarse energy', coarse_groups.group_edges[0], [self.energy_groups.group_edges[0]]) # Clone this MGXS to initialize the condensed version condensed_xs = copy.deepcopy(self) if self._rxn_rate_tally is None: p1_tally = self.tallies['scatter-1'] old_filt = p1_tally.filters[-2] new_filt = openmc.EnergyFilter(old_filt.values) p1_tally.filters[-2] = new_filt # Slice Legendre expansion filter and change name of score p1_tally = p1_tally.get_slice(filters=[openmc.LegendreFilter], filter_bins=[('P1',)], squeeze=True) p1_tally._scores = ['scatter-1'] total = self.tallies['total'] / self.tallies['flux (tracklength)'] trans_corr = p1_tally / self.tallies['flux (analog)'] transport = (total - trans_corr) dif_coef = transport**(-1) / 3.0 dif_coef *= self.tallies['flux (tracklength)'] else: dif_coef = self.rxn_rate_tally flux_tally = condensed_xs.tallies['flux (tracklength)'] condensed_xs._tallies = OrderedDict() condensed_xs._tallies[self._rxn_type] = dif_coef condensed_xs._tallies['flux (tracklength)'] = flux_tally condensed_xs._rxn_rate_tally = dif_coef condensed_xs._xs_tally = None condensed_xs._sparse = False condensed_xs._energy_groups = coarse_groups # Build energy indices to sum across energy_indices = [] for group in range(coarse_groups.num_groups, 0, -1): low, high = coarse_groups.get_group_bounds(group) low_index = np.where(self.energy_groups.group_edges == low)[0][0] energy_indices.append(low_index) fine_edges = self.energy_groups.group_edges # Condense each of the tallies to the coarse group structure for tally in condensed_xs.tallies.values(): # Make condensed tally derived and null out sum, sum_sq tally._derived = True tally._sum = None tally._sum_sq = None # Get tally data arrays reshaped with one dimension per filter mean = tally.get_reshaped_data(value='mean') std_dev = tally.get_reshaped_data(value='std_dev') # Sum across all applicable fine energy group filters for i, tally_filter in enumerate(tally.filters): if not isinstance(tally_filter, (openmc.EnergyFilter, openmc.EnergyoutFilter)): continue elif len(tally_filter.bins) != len(fine_edges): continue elif not np.allclose(tally_filter.bins, fine_edges): continue else: tally_filter.bins = coarse_groups.group_edges mean = np.add.reduceat(mean, energy_indices, axis=i) std_dev = np.add.reduceat(std_dev**2, energy_indices, axis=i) std_dev = np.sqrt(std_dev) # Reshape condensed data arrays with one dimension for all filters mean = np.reshape(mean, tally.shape) std_dev = np.reshape(std_dev, tally.shape) # Override tally's data with the new condensed data tally._mean = mean tally._std_dev = std_dev # Compute the energy condensed multi-group cross section condensed_xs.sparse = self.sparse return condensed_xs class AbsorptionXS(MGXS): r"""An absorption multi-group cross section. Absorption is defined as all reactions that do not produce secondary neutrons (disappearance) plus fission reactions. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group absorption cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`AbsorptionXS.energy_groups` and :attr:`AbsorptionXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`AbsorptionXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`AbsorptionXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the absorption cross section is calculated as: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \sigma_a (r, E) \psi (r, E, \Omega)}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)}. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`AbsorptionXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file) and the number of mesh cells for 'mesh' domain types. num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = 'absorption' class CaptureXS(MGXS): r"""A capture multi-group cross section. The neutron capture reaction rate is defined as the difference between OpenMC's 'absorption' and 'fission' reaction rate score types. This includes not only radiative capture, but all forms of neutron disappearance aside from fission (i.e., MT > 100). This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group capture cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`CaptureXS.energy_groups` and :attr:`CaptureXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`CaptureXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`CaptureXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the capture cross section is calculated as: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \left [ \sigma_a (r, E) \psi (r, E, \Omega) - \sigma_f (r, E) \psi (r, E, \Omega) \right ]}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)}. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`CaptureXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = 'capture' @property def scores(self): return ['flux', 'absorption', 'fission'] @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: self._rxn_rate_tally = \ self.tallies['absorption'] - self.tallies['fission'] self._rxn_rate_tally.sparse = self.sparse return self._rxn_rate_tally class FissionXS(MGXS): r"""A fission multi-group cross section. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group fission cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`FissionXS.energy_groups` and :attr:`FissionXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`FissionXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`FissionXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the fission cross section is calculated as: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \sigma_f (r, E) \psi (r, E, \Omega)}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)}. To incorporate the effect of neutron multiplication in the above relation, the `nu` parameter can be set to `True`. This class can also be used to gather a prompt-nu-fission cross section (which only includes the contributions from prompt neutrons). This is accomplished by setting the :attr:`FissionXS.prompt` attribute to `True`. Since the prompt-nu-fission cross section requires neutron multiplication, the `nu` parameter will automatically be set to `True` if `prompt` is also `True`. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation nu : bool If True, the cross section data will include neutron multiplication; defaults to False prompt : bool If true, computes cross sections which only includes prompt neutrons; defaults to False which includes prompt and delayed in total. Setting this to True will also set nu to True by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) nu : bool If True, the cross section data will include neutron multiplication prompt : bool If true, computes cross sections which only includes prompt neutrons by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`FissionXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, nu=False, prompt=False, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._nu = False self._prompt = False self.nu = nu self.prompt = prompt def __deepcopy__(self, memo): clone = super().__deepcopy__(memo) clone._nu = self.nu clone._prompt = self.prompt return clone @property def nu(self): return self._nu @property def prompt(self): return self._prompt @nu.setter def nu(self, nu): cv.check_type('nu', nu, bool) self._nu = nu if not self.prompt: if not self.nu: self._rxn_type = 'fission' else: self._rxn_type = 'nu-fission' else: self._rxn_type = 'prompt-nu-fission' @prompt.setter def prompt(self, prompt): cv.check_type('prompt', prompt, bool) self._prompt = prompt if not self.prompt: if not self.nu: self._rxn_type = 'fission' else: self._rxn_type = 'nu-fission' else: self._rxn_type = 'prompt-nu-fission' class KappaFissionXS(MGXS): r"""A recoverable fission energy production rate multi-group cross section. The recoverable energy per fission, :math:`\kappa`, is defined as the fission product kinetic energy, prompt and delayed neutron kinetic energies, prompt and delayed :math:`\gamma`-ray total energies, and the total energy released by the delayed :math:`\beta` particles. The neutrino energy does not contribute to this response. The prompt and delayed :math:`\gamma`-rays are assumed to deposit their energy locally. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`KappaFissionXS.energy_groups` and :attr:`KappaFissionXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`KappaFissionXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`KappaFissionXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the recoverable fission energy production rate cross section is calculated as: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \kappa\sigma_f (r, E) \psi (r, E, \Omega)}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)}. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`KappaFissionXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = 'kappa-fission' class ScatterXS(MGXS): r"""A scattering multi-group cross section. The scattering cross section is defined as the difference between the total and absorption cross sections. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`ScatterXS.energy_groups` and :attr:`ScatterXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`ScatterXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`ScatterXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the scattering cross section is calculated as: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \left [ \sigma_t (r, E) \psi (r, E, \Omega) - \sigma_a (r, E) \psi (r, E, \Omega) \right ]}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)}. To incorporate the effect of scattering multiplication from (n,xn) reactions in the above relation, the `nu` parameter can be set to `True`. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin nu : bool If True, the cross section data will include neutron multiplication; defaults to False Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) nu : bool If True, the cross section data will include neutron multiplication by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`ScatterXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1, nu=False): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self.nu = nu def __deepcopy__(self, memo): clone = super().__deepcopy__(memo) clone._nu = self.nu return clone @property def nu(self): return self._nu @nu.setter def nu(self, nu): cv.check_type('nu', nu, bool) self._nu = nu if not nu: self._rxn_type = 'scatter' else: self._rxn_type = 'nu-scatter' self._estimator = 'analog' self._valid_estimators = ['analog'] class ArbitraryXS(MGXS): r"""A multi-group cross section for an arbitrary reaction type. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group total cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`ArbitraryXS.energy_groups` and :attr:`ArbitraryXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`ArbitraryXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`ArbitraryXS.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the requested cross section is calculated as: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \sigma_X (r, E) \psi (r, E, \Omega)}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)} where :math:`\sigma_X` is the requested reaction type of interest. Parameters ---------- rxn_type : str Reaction type (e.g., '(n,2n)', '(n,Xt)', etc.) domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., '(n,2n)', '(n,Xt)', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`TotalXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, rxn_type, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): cv.check_value("rxn_type", rxn_type, ARBITRARY_VECTOR_TYPES) super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = rxn_type class ArbitraryMatrixXS(MatrixMGXS): r"""A multi-group matrix cross section for an arbitrary reaction type. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`ArbitraryMatrixXS.energy_groups` and :attr:`ArbitraryMatrixXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`ArbitraryMatrixXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`ArbitraryMatrixXS.xs_tally` property. For a spatial domain :math:`V`, incoming energy group :math:`[E_{g'},E_{g'-1}]`, and outgoing energy group :math:`[E_g,E_{g-1}]`, the fission production is calculated as: .. math:: \begin{aligned} \langle \sigma_{X,g'\rightarrow g} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \int_{E_g}^{E_{g-1}} dE \; \chi(E) \sigma_X (r, E') \psi(r, E', \Omega')\\ \langle \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega) \\ \sigma_{X,g'\rightarrow g} &= \frac{\langle \sigma_{X,g'\rightarrow g} \phi \rangle}{\langle \phi \rangle} \end{aligned} where :math:`\sigma_X` is the requested reaction type of interest. Parameters ---------- rxn_type : str Reaction type (e.g., '(n,2n)', '(n,nta)', etc.). Valid names have neutrons as a product. domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`NuFissionMatrixXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, rxn_type, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): cv.check_value("rxn_type", rxn_type, ARBITRARY_MATRIX_TYPES) super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = rxn_type.split(" ")[0] self._estimator = 'analog' self._valid_estimators = ['analog'] class ScatterMatrixXS(MatrixMGXS): r"""A scattering matrix multi-group cross section with the cosine of the change-in-angle represented as one or more Legendre moments or a histogram. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`ScatterMatrixXS.energy_groups` and :attr:`ScatterMatrixXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`ScatterMatrixXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`ScatterMatrixXS.xs_tally` property. For a spatial domain :math:`V`, incoming energy group :math:`[E_{g'},E_{g'-1}]`, and outgoing energy group :math:`[E_g,E_{g-1}]`, the Legendre scattering moments are calculated as: .. math:: \begin{aligned} \langle \sigma_{s,\ell,g'\rightarrow g} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; P_\ell (\Omega \cdot \Omega') \sigma_s (r, E' \rightarrow E, \Omega' \cdot \Omega) \psi(r, E', \Omega')\\ \langle \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega) \\ \sigma_{s,\ell,g'\rightarrow g} &= \frac{\langle \sigma_{s,\ell,g'\rightarrow g} \phi \rangle}{\langle \phi \rangle} \end{aligned} If the order is zero and a :math:`P_0` transport-correction is applied (default), the scattering matrix elements are: .. math:: \sigma_{s,g'\rightarrow g} = \frac{\langle \sigma_{s,0,g'\rightarrow g} \phi \rangle - \delta_{gg'} \sum_{g''} \langle \sigma_{s,1,g''\rightarrow g} \phi \rangle}{\langle \phi \rangle} To incorporate the effect of neutron multiplication from (n,xn) reactions in the above relation, the `nu` parameter can be set to `True`. An alternative form of the scattering matrix is computed when the `formulation` property is set to 'consistent' rather than the default of 'simple'. This formulation computes the scattering matrix multi-group cross section as the product of the scatter cross section and group-to-group scattering probabilities. Unlike the default 'simple' formulation, the 'consistent' formulation is computed from the groupwise scattering cross section which uses a tracklength estimator. This ensures that reaction rate balance is exactly preserved with a :class:`TotalXS` computed using a tracklength estimator. For a scattering probability matrix :math:`P_{s,\ell,g'\rightarrow g}` and scattering cross section :math:`\sigma_s (r, E)` for incoming energy group :math:`[E_{g'},E_{g'-1}]` and outgoing energy group :math:`[E_g,E_{g-1}]`, the Legendre scattering moments are calculated as: .. math:: \sigma_{s,\ell,g'\rightarrow g} = \sigma_s (r, E) \times P_{s,\ell,g'\rightarrow g} To incorporate the effect of neutron multiplication from (n,xn) reactions in the 'consistent' scattering matrix, the `nu` parameter can be set to `True` such that the Legendre scattering moments are calculated as: .. math:: \sigma_{s,\ell,g'\rightarrow g} = \upsilon_{g'\rightarrow g} \times \sigma_s (r, E) \times P_{s,\ell,g'\rightarrow g} Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : int, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : int, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin nu : bool If True, the cross section data will include neutron multiplication; defaults to False Attributes ---------- formulation : 'simple' or 'consistent' The calculation approach to use ('simple' by default). The 'simple' formulation simply divides the group-to-group scattering rates by the groupwise flux, each computed from analog tally estimators. The 'consistent' formulation multiplies the groupwise scattering rates by the group-to-group scatter probability matrix, the former computed from tracklength tallies and the latter computed from analog tallies. The 'consistent' formulation is designed to better conserve reaction rate balance with the total and absorption cross sections computed using tracklength tally estimators. correction : 'P0' or None Apply the P0 correction to scattering matrices if set to 'P0'; this is used only if :attr:`ScatterMatrixXS.scatter_format` is 'legendre' scatter_format : {'legendre', or 'histogram'} Representation of the angular scattering distribution (default is 'legendre') legendre_order : int The highest Legendre moment in the scattering matrix; this is used if :attr:`ScatterMatrixXS.scatter_format` is 'legendre'. (default is 0) histogram_bins : int The number of equally-spaced bins for the histogram representation of the angular scattering distribution; this is used if :attr:`ScatterMatrixXS.scatter_format` is 'histogram'. (default is 16) name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) nu : bool If True, the cross section data will include neutron multiplication by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : int Number of equi-width polar angle bins for angle discretization num_azimuthal : int Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`ScatterMatrixXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1, nu=False): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._formulation = 'simple' self._correction = 'P0' self._scatter_format = SCATTER_LEGENDRE self._legendre_order = 0 self._histogram_bins = 16 self._estimator = 'analog' self._valid_estimators = ['analog'] self.nu = nu def __deepcopy__(self, memo): clone = super().__deepcopy__(memo) clone._formulation = self.formulation clone._correction = self.correction clone._scatter_format = self.scatter_format clone._legendre_order = self.legendre_order clone._histogram_bins = self.histogram_bins clone._nu = self.nu return clone @property def _dont_squeeze(self): """Create a tuple of axes which should not be removed during the get_xs process """ if self.num_polar > 1 or self.num_azimuthal > 1: if self.scatter_format == SCATTER_HISTOGRAM: return (0, 1, 3, 4, 5) else: return (0, 1, 3, 4) else: if self.scatter_format == SCATTER_HISTOGRAM: return (1, 2, 3) else: return (1, 2) @property def formulation(self): return self._formulation @property def correction(self): return self._correction @property def scatter_format(self): return self._scatter_format @property def legendre_order(self): return self._legendre_order @property def histogram_bins(self): return self._histogram_bins @property def nu(self): return self._nu @property def scores(self): if self.formulation == 'simple': scores = ['flux', self.rxn_type] else: # Add scores for groupwise scattering cross section scores = ['flux', 'scatter'] # Add scores for group-to-group scattering probability matrix # these scores also contain the angular information, whether it be # Legendre expansion or histogram bins scores.append('scatter') # Add scores for multiplicity matrix; scatter info for the # denominator will come from the previous score if self.nu: scores.append('nu-scatter') # Add scores for transport correction if self.correction == 'P0' and self.legendre_order == 0: scores.extend([self.rxn_type, 'flux']) return scores @property def tally_keys(self): if self.formulation == 'simple': return super().tally_keys else: # Add keys for groupwise scattering cross section tally_keys = ['flux (tracklength)', 'scatter'] # Add keys for group-to-group scattering probability matrix tally_keys.append('scatter matrix') # Add keys for multiplicity matrix if self.nu: tally_keys.extend(['nu-scatter']) # Add keys for transport correction if self.correction == 'P0' and self.legendre_order == 0: tally_keys.extend(['correction', 'flux (analog)']) return tally_keys @property def estimator(self): if self.formulation == 'simple': return self._estimator else: # Add estimators for groupwise scattering cross section estimators = ['tracklength', 'tracklength'] # Add estimators for group-to-group scattering probabilities estimators.append('analog') # Add estimators for multiplicity matrix if self.nu: estimators.extend(['analog']) # Add estimators for transport correction if self.correction == 'P0' and self.legendre_order == 0: estimators.extend(['analog', 'analog']) return estimators @property def filters(self): if self.formulation == 'simple': group_edges = self.energy_groups.group_edges energy = openmc.EnergyFilter(group_edges) energyout = openmc.EnergyoutFilter(group_edges) if self.scatter_format == SCATTER_LEGENDRE: if self.correction == 'P0' and self.legendre_order == 0: angle_filter = openmc.LegendreFilter(order=1) else: angle_filter = \ openmc.LegendreFilter(order=self.legendre_order) elif self.scatter_format == SCATTER_HISTOGRAM: bins = np.linspace(-1., 1., num=self.histogram_bins + 1, endpoint=True) angle_filter = openmc.MuFilter(bins) filters = [[energy], [energy, energyout, angle_filter]] else: group_edges = self.energy_groups.group_edges energy = openmc.EnergyFilter(group_edges) energyout = openmc.EnergyoutFilter(group_edges) # Groupwise scattering cross section filters = [[energy], [energy]] # Group-to-group scattering probability matrix if self.scatter_format == SCATTER_LEGENDRE: angle_filter = openmc.LegendreFilter(order=self.legendre_order) elif self.scatter_format == SCATTER_HISTOGRAM: bins = np.linspace(-1., 1., num=self.histogram_bins + 1, endpoint=True) angle_filter = openmc.MuFilter(bins) filters.append([energy, energyout, angle_filter]) # Multiplicity matrix if self.nu: filters.extend([[energy, energyout]]) # Add filters for transport correction if self.correction == 'P0' and self.legendre_order == 0: filters.extend([[energyout, openmc.LegendreFilter(1)], [energy]]) return self._add_angle_filters(filters) @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: if self.formulation == 'simple': if self.scatter_format == SCATTER_LEGENDRE: # If using P0 correction subtract P1 scatter from the diag. if self.correction == 'P0' and self.legendre_order == 0: scatter_p0 = self.tallies[self.rxn_type].get_slice( filters=[openmc.LegendreFilter], filter_bins=[('P0',)]) scatter_p1 = self.tallies[self.rxn_type].get_slice( filters=[openmc.LegendreFilter], filter_bins=[('P1',)]) # Set the Legendre order of these tallies to be 0 # so they can be subtracted legendre = openmc.LegendreFilter(order=0) scatter_p0.filters[-1] = legendre scatter_p1.filters[-1] = legendre scatter_p1 = scatter_p1.summation( filter_type=openmc.EnergyFilter, remove_filter=True) energy_filter = \ scatter_p0.find_filter(openmc.EnergyFilter) # Transform scatter-p1 into an energyin/out matrix # to match scattering matrix shape for tally arithmetic energy_filter = copy.deepcopy(energy_filter) scatter_p1 = \ scatter_p1.diagonalize_filter(energy_filter, 1) self._rxn_rate_tally = scatter_p0 - scatter_p1 # Otherwise, extract scattering moment reaction rate Tally else: self._rxn_rate_tally = self.tallies[self.rxn_type] elif self.scatter_format == SCATTER_HISTOGRAM: # Extract scattering rate distribution tally self._rxn_rate_tally = self.tallies[self.rxn_type] self._rxn_rate_tally.sparse = self.sparse else: msg = 'The reaction rate tally is poorly defined' \ ' for the consistent formulation' raise NotImplementedError(msg) return self._rxn_rate_tally @property def xs_tally(self): if self._xs_tally is None: if self.tallies is None: msg = 'Unable to get xs_tally since tallies have ' \ 'not been loaded from a statepoint' raise ValueError(msg) # Use super class method if self.formulation == 'simple': self._xs_tally = MGXS.xs_tally.fget(self) else: # Compute scattering probability matrixS tally_key = 'scatter matrix' # Compute normalization factor summed across outgoing energies if self.scatter_format == SCATTER_LEGENDRE: norm = self.tallies[tally_key].get_slice( scores=['scatter'], filters=[openmc.LegendreFilter], filter_bins=[('P0',)], squeeze=True) # Compute normalization factor summed across outgoing mu bins elif self.scatter_format == SCATTER_HISTOGRAM: norm = self.tallies[tally_key].get_slice( scores=['scatter']) norm = norm.summation( filter_type=openmc.MuFilter, remove_filter=True) norm = norm.summation(filter_type=openmc.EnergyoutFilter, remove_filter=True) # Compute groupwise scattering cross section self._xs_tally = self.tallies['scatter'] * \ self.tallies[tally_key] / norm / \ self.tallies['flux (tracklength)'] # Override the nuclides for tally arithmetic self._xs_tally.nuclides = self.tallies['scatter'].nuclides # Multiply by the multiplicity matrix if self.nu: numer = self.tallies['nu-scatter'] # Get the denominator if self.scatter_format == SCATTER_LEGENDRE: denom = self.tallies[tally_key].get_slice( scores=['scatter'], filters=[openmc.LegendreFilter], filter_bins=[('P0',)], squeeze=True) # Compute normalization factor summed across mu bins elif self.scatter_format == SCATTER_HISTOGRAM: denom = self.tallies[tally_key].get_slice( scores=['scatter']) # Sum across all mu bins denom = denom.summation( filter_type=openmc.MuFilter, remove_filter=True) self._xs_tally *= (numer / denom) # If using P0 correction subtract scatter-1 from the diagonal if self.correction == 'P0' and self.legendre_order == 0: scatter_p1 = self.tallies['correction'].get_slice( filters=[openmc.LegendreFilter], filter_bins=[('P1',)]) flux = self.tallies['flux (analog)'] # Set the Legendre order of the P1 tally to be P0 # so it can be subtracted legendre = openmc.LegendreFilter(order=0) scatter_p1.filters[-1] = legendre # Transform scatter-p1 tally into an energyin/out matrix # to match scattering matrix shape for tally arithmetic energy_filter = flux.find_filter(openmc.EnergyFilter) energy_filter = copy.deepcopy(energy_filter) scatter_p1 = scatter_p1.diagonalize_filter(energy_filter, 1) # Compute the trasnport correction term correction = scatter_p1 / flux # Override the nuclides for tally arithmetic correction.nuclides = scatter_p1.nuclides # Set xs_tally to be itself with only P0 data self._xs_tally = self._xs_tally.get_slice( filters=[openmc.LegendreFilter], filter_bins=[('P0',)]) # Tell xs_tally that it is P0 legendre_xs_tally = \ self._xs_tally.find_filter(openmc.LegendreFilter) legendre_xs_tally.order = 0 # And subtract the P1 correction from the P0 matrix self._xs_tally -= correction self._compute_xs() # Force the angle filter to be the last filter if self.scatter_format == SCATTER_HISTOGRAM: angle_filter = self._xs_tally.find_filter(openmc.MuFilter) else: angle_filter = \ self._xs_tally.find_filter(openmc.LegendreFilter) angle_filter_index = self._xs_tally.filters.index(angle_filter) # If the angle filter index is not last, then make it last if angle_filter_index != len(self._xs_tally.filters) - 1: energyout_filter = \ self._xs_tally.find_filter(openmc.EnergyoutFilter) self._xs_tally._swap_filters(energyout_filter, angle_filter) return self._xs_tally @nu.setter def nu(self, nu): cv.check_type('nu', nu, bool) self._nu = nu if self.formulation == 'simple': if not nu: self._rxn_type = 'scatter' self._hdf5_key = 'scatter matrix' else: self._rxn_type = 'nu-scatter' self._hdf5_key = 'nu-scatter matrix' else: if not nu: self._rxn_type = 'scatter' self._hdf5_key = 'consistent scatter matrix' else: self._rxn_type = 'nu-scatter' self._hdf5_key = 'consistent nu-scatter matrix' @formulation.setter def formulation(self, formulation): cv.check_value('formulation', formulation, ('simple', 'consistent')) self._formulation = formulation if self.formulation == 'simple': self._valid_estimators = ['analog'] if not self.nu: self._hdf5_key = 'scatter matrix' else: self._hdf5_key = 'nu-scatter matrix' else: self._valid_estimators = ['tracklength'] if not self.nu: self._hdf5_key = 'consistent scatter matrix' else: self._hdf5_key = 'consistent nu-scatter matrix' @correction.setter def correction(self, correction): cv.check_value('correction', correction, ('P0', None)) if self.scatter_format == SCATTER_LEGENDRE: if correction == 'P0' and self.legendre_order > 0: msg = 'The P0 correction will be ignored since the ' \ 'scattering order {} is greater than '\ 'zero'.format(self.legendre_order) warnings.warn(msg) elif self.scatter_format == SCATTER_HISTOGRAM: msg = 'The P0 correction will be ignored since the ' \ 'scatter format is set to histogram' warnings.warn(msg) self._correction = correction @scatter_format.setter def scatter_format(self, scatter_format): cv.check_value('scatter_format', scatter_format, MU_TREATMENTS) self._scatter_format = scatter_format @legendre_order.setter def legendre_order(self, legendre_order): cv.check_type('legendre_order', legendre_order, Integral) cv.check_greater_than('legendre_order', legendre_order, 0, equality=True) cv.check_less_than('legendre_order', legendre_order, _MAX_LEGENDRE, equality=True) if self.scatter_format == SCATTER_LEGENDRE: if self.correction == 'P0' and legendre_order > 0: msg = 'The P0 correction will be ignored since the ' \ 'scattering order {} is greater than '\ 'zero'.format(legendre_order) warnings.warn(msg, RuntimeWarning) self.correction = None elif self.scatter_format == SCATTER_HISTOGRAM: msg = 'The legendre order will be ignored since the ' \ 'scatter format is set to histogram' warnings.warn(msg) self._legendre_order = legendre_order @histogram_bins.setter def histogram_bins(self, histogram_bins): cv.check_type('histogram_bins', histogram_bins, Integral) cv.check_greater_than('histogram_bins', histogram_bins, 0) self._histogram_bins = histogram_bins def load_from_statepoint(self, statepoint): """Extracts tallies in an OpenMC StatePoint with the data needed to compute multi-group cross sections. This method is needed to compute cross section data from tallies in an OpenMC StatePoint object. .. note:: The statepoint must be linked with an OpenMC Summary object. Parameters ---------- statepoint : openmc.StatePoint An OpenMC StatePoint object with tally data Raises ------ ValueError When this method is called with a statepoint that has not been linked with a summary object. """ # Clear any tallies previously loaded from a statepoint if self.loaded_sp: self._tallies = None self._xs_tally = None self._rxn_rate_tally = None self._loaded_sp = False super().load_from_statepoint(statepoint) def get_slice(self, nuclides=[], in_groups=[], out_groups=[], legendre_order='same'): """Build a sliced ScatterMatrix for the specified nuclides and energy groups. This method constructs a new MGXS to encapsulate a subset of the data represented by this MGXS. The subset of data to include in the tally slice is determined by the nuclides and energy groups specified in the input parameters. Parameters ---------- nuclides : list of str A list of nuclide name strings (e.g., ['U235', 'U238']; default is []) in_groups : list of int A list of incoming energy group indices starting at 1 for the high energies (e.g., [1, 2, 3]; default is []) out_groups : list of int A list of outgoing energy group indices starting at 1 for the high energies (e.g., [1, 2, 3]; default is []) legendre_order : int or 'same' The highest Legendre moment in the sliced MGXS. If order is 'same' then the sliced MGXS will have the same Legendre moments as the original MGXS (default). If order is an integer less than the original MGXS' order, then only those Legendre moments up to that order will be included in the sliced MGXS. Returns ------- openmc.mgxs.MatrixMGXS A new MatrixMGXS which encapsulates the subset of data requested for the nuclide(s) and/or energy group(s) requested in the parameters. """ # Call super class method and null out derived tallies slice_xs = super().get_slice(nuclides, in_groups) slice_xs._rxn_rate_tally = None slice_xs._xs_tally = None # Slice the Legendre order if needed if legendre_order != 'same' and self.scatter_format == SCATTER_LEGENDRE: cv.check_type('legendre_order', legendre_order, Integral) cv.check_less_than('legendre_order', legendre_order, self.legendre_order, equality=True) slice_xs.legendre_order = legendre_order # Slice the scattering tally filter_bins = [tuple(['P{}'.format(i) for i in range(self.legendre_order + 1)])] slice_xs.tallies[self.rxn_type] = \ slice_xs.tallies[self.rxn_type].get_slice( filters=[openmc.LegendreFilter], filter_bins=filter_bins) # Slice outgoing energy groups if needed if len(out_groups) != 0: filter_bins = [] for group in out_groups: group_bounds = self.energy_groups.get_group_bounds(group) filter_bins.append(group_bounds) filter_bins = [tuple(filter_bins)] # Slice each of the tallies across energyout groups for tally_type, tally in slice_xs.tallies.items(): if tally.contains_filter(openmc.EnergyoutFilter): tally_slice = tally.get_slice( filters=[openmc.EnergyoutFilter], filter_bins=filter_bins) slice_xs.tallies[tally_type] = tally_slice slice_xs.sparse = self.sparse return slice_xs def get_xs(self, in_groups='all', out_groups='all', subdomains='all', nuclides='all', moment='all', xs_type='macro', order_groups='increasing', row_column='inout', value='mean', squeeze=True): r"""Returns an array of multi-group cross sections. This method constructs a 5D NumPy array for the requested multi-group cross section data for one or more subdomains (1st dimension), energy groups in (2nd dimension), energy groups out (3rd dimension), nuclides (4th dimension), and moments/histograms (5th dimension). .. note:: The scattering moments are not multiplied by the :math:`(2\ell+1)/2` prefactor in the expansion of the scattering source into Legendre moments in the neutron transport equation. Parameters ---------- in_groups : Iterable of Integral or 'all' Incoming energy groups of interest. Defaults to 'all'. out_groups : Iterable of Integral or 'all' Outgoing energy groups of interest. Defaults to 'all'. subdomains : Iterable of Integral or 'all' Subdomain IDs of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' A list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will return the cross sections for all nuclides in the spatial domain. The special string 'sum' will return the cross section summed over all nuclides. Defaults to 'all'. moment : int or 'all' The scattering matrix moment to return. All moments will be returned if the moment is 'all' (default); otherwise, a specific moment will be returned. xs_type: {'macro', 'micro'} Return the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. order_groups: {'increasing', 'decreasing'} Return the cross section indexed according to increasing or decreasing energy groups (decreasing or increasing energies). Defaults to 'increasing'. row_column: {'inout', 'outin'} Return the cross section indexed first by incoming group and second by outgoing group ('inout'), or vice versa ('outin'). Defaults to 'inout'. value : {'mean', 'std_dev', 'rel_err'} A string for the type of value to return. Defaults to 'mean'. squeeze : bool A boolean representing whether to eliminate the extra dimensions of the multi-dimensional array to be returned. Defaults to True. Returns ------- numpy.ndarray A NumPy array of the multi-group cross section indexed in the order each group and subdomain is listed in the parameters. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ cv.check_value('value', value, ['mean', 'std_dev', 'rel_err']) cv.check_value('xs_type', xs_type, ['macro', 'micro']) # FIXME: Unable to get microscopic xs for mesh domain because the mesh # cells do not know the nuclide densities in each mesh cell. if self.domain_type == 'mesh' and xs_type == 'micro': msg = 'Unable to get micro xs for mesh domain since the mesh ' \ 'cells do not know the nuclide densities in each mesh cell.' raise ValueError(msg) filters = [] filter_bins = [] # Construct a collection of the domain filter bins if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral, max_depth=3) filters.append(_DOMAIN_TO_FILTER[self.domain_type]) subdomain_bins = [] for subdomain in subdomains: subdomain_bins.append(subdomain) filter_bins.append(tuple(subdomain_bins)) # Construct list of energy group bounds tuples for all requested groups if not isinstance(in_groups, str): cv.check_iterable_type('groups', in_groups, Integral) filters.append(openmc.EnergyFilter) energy_bins = [] for group in in_groups: energy_bins.append( (self.energy_groups.get_group_bounds(group),)) filter_bins.append(tuple(energy_bins)) # Construct list of energy group bounds tuples for all requested groups if not isinstance(out_groups, str): cv.check_iterable_type('groups', out_groups, Integral) for group in out_groups: filters.append(openmc.EnergyoutFilter) filter_bins.append((self.energy_groups.get_group_bounds(group),)) # Construct CrossScore for requested scattering moment if self.scatter_format == SCATTER_LEGENDRE: if moment != 'all': cv.check_type('moment', moment, Integral) cv.check_greater_than('moment', moment, 0, equality=True) cv.check_less_than( 'moment', moment, self.legendre_order, equality=True) filters.append(openmc.LegendreFilter) filter_bins.append(('P{}'.format(moment),)) num_angle_bins = 1 else: num_angle_bins = self.legendre_order + 1 else: num_angle_bins = self.histogram_bins # Construct a collection of the nuclides to retrieve from the xs tally if self.by_nuclide: if nuclides == 'all' or nuclides == 'sum' or nuclides == ['sum']: query_nuclides = self.get_nuclides() else: query_nuclides = nuclides else: query_nuclides = ['total'] # Use tally summation if user requested the sum for all nuclides scores = self.xs_tally.scores if nuclides == 'sum' or nuclides == ['sum']: xs_tally = self.xs_tally.summation(nuclides=query_nuclides) xs = xs_tally.get_values(scores=scores, filters=filters, filter_bins=filter_bins, value=value) else: xs = self.xs_tally.get_values(scores=scores, filters=filters, filter_bins=filter_bins, nuclides=query_nuclides, value=value) # Divide by atom number densities for microscopic cross sections if xs_type == 'micro' and self._divide_by_density: if self.by_nuclide: densities = self.get_nuclide_densities(nuclides) else: densities = self.get_nuclide_densities('sum') if value == 'mean' or value == 'std_dev': xs /= densities[np.newaxis, :, np.newaxis] # Convert and nans to zero xs = np.nan_to_num(xs) if in_groups == 'all': num_in_groups = self.num_groups else: num_in_groups = len(in_groups) if out_groups == 'all': num_out_groups = self.num_groups else: num_out_groups = len(out_groups) # Reshape tally data array with separate axes for domain and energy # Accomodate the polar and azimuthal bins if needed num_subdomains = int(xs.shape[0] / (num_angle_bins * num_in_groups * num_out_groups * self.num_polar * self.num_azimuthal)) if self.num_polar > 1 or self.num_azimuthal > 1: new_shape = (self.num_polar, self.num_azimuthal, num_subdomains, num_in_groups, num_out_groups, num_angle_bins) new_shape += xs.shape[1:] xs = np.reshape(xs, new_shape) # Transpose the scattering matrix if requested by user if row_column == 'outin': xs = np.swapaxes(xs, 3, 4) # Reverse data if user requested increasing energy groups since # tally data is stored in order of increasing energies if order_groups == 'increasing': xs = xs[:, :, :, ::-1, ::-1, ...] else: new_shape = (num_subdomains, num_in_groups, num_out_groups, num_angle_bins) new_shape += xs.shape[1:] xs = np.reshape(xs, new_shape) # Transpose the scattering matrix if requested by user if row_column == 'outin': xs = np.swapaxes(xs, 1, 2) # Reverse data if user requested increasing energy groups since # tally data is stored in order of increasing energies if order_groups == 'increasing': xs = xs[:, ::-1, ::-1, ...] if squeeze: # We want to squeeze out everything but the angles, in_groups, # out_groups, and, if needed, num_angle_bins dimension. These must # not be squeezed so 1-group, 1-angle problems have the correct # shape. xs = self._squeeze_xs(xs) return xs def get_pandas_dataframe(self, groups='all', nuclides='all', xs_type='macro', paths=False): """Build a Pandas DataFrame for the MGXS data. This method leverages :meth:`openmc.Tally.get_pandas_dataframe`, but renames the columns with terminology appropriate for cross section data. Parameters ---------- groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' The nuclides of the cross-sections to include in the dataframe. This may be a list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will include the cross sections for all nuclides in the spatial domain. The special string 'sum' will include the cross sections summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Return macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. paths : bool, optional Construct columns for distribcell tally filters (default is True). The geometric information in the Summary object is embedded into a Multi-index column with a geometric "path" to each distribcell instance. Returns ------- pandas.DataFrame A Pandas DataFrame for the cross section data. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ # Build the dataframe using the parent class method df = super().get_pandas_dataframe(groups, nuclides, xs_type, paths=paths) # If the matrix is P0, remove the legendre column if self.scatter_format == SCATTER_LEGENDRE and self.legendre_order == 0: df = df.drop(axis=1, labels=['legendre']) return df def print_xs(self, subdomains='all', nuclides='all', xs_type='macro', moment=0): """Prints a string representation for the multi-group cross section. Parameters ---------- subdomains : Iterable of Integral or 'all' The subdomain IDs of the cross sections to include in the report. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' The nuclides of the cross-sections to include in the report. This may be a list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will report the cross sections for all nuclides in the spatial domain. The special string 'sum' will report the cross sections summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} Return the macro or micro cross section in units of cm^-1 or barns. Defaults to 'macro'. moment : int The scattering moment to print (default is 0) """ # Construct a collection of the subdomains to report if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral) elif self.domain_type == 'distribcell': subdomains = np.arange(self.num_subdomains, dtype=np.int) elif self.domain_type == 'mesh': subdomains = list(self.domain.indices) else: subdomains = [self.domain.id] # Construct a collection of the nuclides to report if self.by_nuclide: if nuclides == 'all': nuclides = self.get_nuclides() if nuclides == 'sum': nuclides = ['sum'] else: cv.check_iterable_type('nuclides', nuclides, str) else: nuclides = ['sum'] cv.check_value('xs_type', xs_type, ['macro', 'micro']) if self.correction != 'P0' and self.scatter_format == SCATTER_LEGENDRE: rxn_type = '{0} (P{1})'.format(self.rxn_type, moment) else: rxn_type = self.rxn_type # Build header for string with type and domain info string = 'Multi-Group XS\n' string += '{0: <16}=\t{1}\n'.format('\tReaction Type', rxn_type) string += '{0: <16}=\t{1}\n'.format('\tDomain Type', self.domain_type) string += '{0: <16}=\t{1}\n'.format('\tDomain ID', self.domain.id) # Generate the header for an individual XS xs_header = '\tCross Sections [{0}]:'.format(self.get_units(xs_type)) # If cross section data has not been computed, only print string header if self.tallies is None: print(string) return string += '{0: <16}\n'.format('\tEnergy Groups:') template = '{0: <12}Group {1} [{2: <10} - {3: <10}eV]\n' # Loop over energy groups ranges for group in range(1, self.num_groups + 1): bounds = self.energy_groups.get_group_bounds(group) string += template.format('', group, bounds[0], bounds[1]) # Set polar and azimuthal bins if necessary if self.num_polar > 1 or self.num_azimuthal > 1: pol_bins = np.linspace(0., np.pi, num=self.num_polar + 1, endpoint=True) azi_bins = np.linspace(-np.pi, np.pi, num=self.num_azimuthal + 1, endpoint=True) # Loop over all subdomains for subdomain in subdomains: if self.domain_type == 'distribcell' or self.domain_type == 'mesh': string += '{0: <16}=\t{1}\n'.format('\tSubdomain', subdomain) # Loop over all Nuclides for nuclide in nuclides: # Build header for nuclide type if xs_type != 'sum': string += '{0: <16}=\t{1}\n'.format('\tNuclide', nuclide) # Build header for cross section type string += '{0: <16}\n'.format(xs_header) average_xs = self.get_xs(nuclides=[nuclide], subdomains=[subdomain], xs_type=xs_type, value='mean', moment=moment) rel_err_xs = self.get_xs(nuclides=[nuclide], subdomains=[subdomain], xs_type=xs_type, value='rel_err', moment=moment) rel_err_xs = rel_err_xs * 100. # Create a function for printing group and histogram data def print_groups_and_histogram(avg_xs, err_xs, num_groups, num_histogram_bins): template = '{0: <12}Group {1} -> Group {2}:\t\t' to_print = "" # Loop over incoming/outgoing energy groups ranges for in_group in range(1, num_groups + 1): for out_group in range(1, num_groups + 1): to_print += template.format('', in_group, out_group) if num_histogram_bins > 0: for i in range(num_histogram_bins): to_print += \ '\n{0: <16}Histogram Bin {1}:{2: <6}'.format( '', i + 1, '') to_print += '{0:.2e} +/- {1:.2e}%'.format( avg_xs[in_group - 1, out_group - 1, i], err_xs[in_group - 1, out_group - 1, i]) to_print += '\n' else: to_print += '{0:.2e} +/- {1:.2e}%'.format( avg_xs[in_group - 1, out_group - 1], err_xs[in_group - 1, out_group - 1]) to_print += '\n' to_print += '\n' return to_print # Set the number of histogram bins if self.scatter_format == SCATTER_HISTOGRAM: num_mu_bins = self.histogram_bins else: num_mu_bins = 0 if self.num_polar > 1 or self.num_azimuthal > 1: # Loop over polar, azi, and in/out energy group ranges for pol in range(len(pol_bins) - 1): pol_low, pol_high = pol_bins[pol: pol + 2] for azi in range(len(azi_bins) - 1): azi_low, azi_high = azi_bins[azi: azi + 2] string += \ '\t\tPolar Angle: [{0:5f} - {1:5f}]'.format( pol_low, pol_high) + \ '\tAzimuthal Angle: [{0:5f} - {1:5f}]'.format( azi_low, azi_high) + '\n' string += print_groups_and_histogram( average_xs[pol, azi, ...], rel_err_xs[pol, azi, ...], self.num_groups, num_mu_bins) string += '\n' else: string += print_groups_and_histogram( average_xs, rel_err_xs, self.num_groups, num_mu_bins) string += '\n' string += '\n' string += '\n' print(string) class MultiplicityMatrixXS(MatrixMGXS): r"""The scattering multiplicity matrix. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`MultiplicityMatrixXS.energy_groups` and :attr:`MultiplicityMatrixXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`MultiplicityMatrixXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`MultiplicityMatrixXS.xs_tally` property. For a spatial domain :math:`V`, incoming energy group :math:`[E_{g'},E_{g'-1}]`, and outgoing energy group :math:`[E_g,E_{g-1}]`, the multiplicity is calculated as: .. math:: \begin{aligned} \langle \upsilon \sigma_{s,g'\rightarrow g} \phi \rangle &= \int_{r \in D} dr \int_{4\pi} d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \sum_i \upsilon_i \sigma_i (r, E' \rightarrow E, \Omega' \cdot \Omega) \psi(r, E', \Omega') \\ \langle \sigma_{s,g'\rightarrow g} \phi \rangle &= \int_{r \in D} dr \int_{4\pi} d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \sum_i \upsilon_i \sigma_i (r, E' \rightarrow E, \Omega' \cdot \Omega) \psi(r, E', \Omega') \\ \upsilon_{g'\rightarrow g} &= \frac{\langle \upsilon \sigma_{s,g'\rightarrow g} \rangle}{\langle \sigma_{s,g'\rightarrow g} \rangle} \end{aligned} where :math:`\upsilon_i` is the multiplicity for the :math:`i`-th reaction. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`MultiplicityMatrixXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ # Store whether or not the number density should be removed for microscopic # values of this data; since a multiplicity matrix should reflect the # multiplication relative to 1, this class will not divide by density # for microscopic data _divide_by_density = False def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = 'multiplicity matrix' self._estimator = 'analog' self._valid_estimators = ['analog'] @property def scores(self): scores = ['nu-scatter', 'scatter'] return scores @property def filters(self): # Create the non-domain specific Filters for the Tallies group_edges = self.energy_groups.group_edges energy = openmc.EnergyFilter(group_edges) energyout = openmc.EnergyoutFilter(group_edges) filters = [[energy, energyout], [energy, energyout]] return self._add_angle_filters(filters) @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: self._rxn_rate_tally = self.tallies['nu-scatter'] self._rxn_rate_tally.sparse = self.sparse return self._rxn_rate_tally @property def xs_tally(self): if self._xs_tally is None: scatter = self.tallies['scatter'] # Compute the multiplicity self._xs_tally = self.rxn_rate_tally / scatter super()._compute_xs() return self._xs_tally class ScatterProbabilityMatrix(MatrixMGXS): r"""The group-to-group scattering probability matrix. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`ScatterProbabilityMatrix.energy_groups` and :attr:`ScatterProbabilityMatrix.domain` properties. Tallies for the appropriate reaction rates over the specified domain are generated automatically via the :attr:`ScatterProbabilityMatrix.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`ScatterProbabilityMatrix.xs_tally` property. For a spatial domain :math:`V`, incoming energy group :math:`[E_{g'},E_{g'-1}]`, and outgoing energy group :math:`[E_g,E_{g-1}]`, the group-to-group scattering probabilities are calculated as: .. math:: \begin{aligned} \langle \sigma_{s,g'\rightarrow g} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \sigma_{s} (r, E' \rightarrow E, \Omega' \cdot \Omega) \psi(r, E', \Omega')\\ \langle \sigma_{s,0,g'} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \int_{4\pi} d\Omega \int_{0}^{\infty} dE \; \sigma_s (r, E' \rightarrow E, \Omega' \cdot \Omega) \psi(r, E', \Omega')\\ P_{s,g'\rightarrow g} &= \frac{\langle \sigma_{s,g'\rightarrow g} \phi \rangle}{\langle \sigma_{s,g'} \phi \rangle} \end{aligned} Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`ScatterProbabilityMatrix.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ # Store whether or not the number density should be removed for microscopic # values of this data; since this probability matrix is always normalized # to 1.0, this density division is not necessary _divide_by_density = False def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = 'scatter' self._hdf5_key = 'scatter probability matrix' self._estimator = 'analog' self._valid_estimators = ['analog'] @property def scores(self): return [self.rxn_type] @property def filters(self): # Create the non-domain specific Filters for the Tallies group_edges = self.energy_groups.group_edges energy = openmc.EnergyFilter(group_edges) energyout = openmc.EnergyoutFilter(group_edges) filters = [[energy, energyout]] return self._add_angle_filters(filters) @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: self._rxn_rate_tally = self.tallies[self.rxn_type] self._rxn_rate_tally.sparse = self.sparse return self._rxn_rate_tally @property def xs_tally(self): if self._xs_tally is None: norm = self.rxn_rate_tally.get_slice(scores=[self.rxn_type]) norm = norm.summation( filter_type=openmc.EnergyoutFilter, remove_filter=True) # Compute the group-to-group probabilities self._xs_tally = self.tallies[self.rxn_type] / norm super()._compute_xs() return self._xs_tally class NuFissionMatrixXS(MatrixMGXS): r"""A fission production matrix multi-group cross section. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`NuFissionMatrixXS.energy_groups` and :attr:`NuFissionMatrixXS.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`NuFissionMatrixXS.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`NuFissionMatrixXS.xs_tally` property. For a spatial domain :math:`V`, incoming energy group :math:`[E_{g'},E_{g'-1}]`, and outgoing energy group :math:`[E_g,E_{g-1}]`, the fission production is calculated as: .. math:: \begin{aligned} \langle \nu\sigma_{f,g'\rightarrow g} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \int_{E_g}^{E_{g-1}} dE \; \chi(E) \nu\sigma_f (r, E') \psi(r, E', \Omega')\\ \langle \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega) \\ \nu\sigma_{f,g'\rightarrow g} &= \frac{\langle \nu\sigma_{f,g'\rightarrow g} \phi \rangle}{\langle \phi \rangle} \end{aligned} Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin prompt : bool If true, computes cross sections which only includes prompt neutrons; defaults to False which includes prompt and delayed in total Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) prompt : bool If true, computes cross sections which only includes prompt neutrons by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`NuFissionMatrixXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1, prompt=False): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) if not prompt: self._rxn_type = 'nu-fission' self._hdf5_key = 'nu-fission matrix' else: self._rxn_type = 'prompt-nu-fission' self._hdf5_key = 'prompt-nu-fission matrix' self._estimator = 'analog' self._valid_estimators = ['analog'] self.prompt = prompt @property def prompt(self): return self._prompt @prompt.setter def prompt(self, prompt): cv.check_type('prompt', prompt, bool) self._prompt = prompt def __deepcopy__(self, memo): clone = super().__deepcopy__(memo) clone._prompt = self.prompt return clone class Chi(MGXS): r"""The fission spectrum. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`Chi.energy_groups` and :attr:`Chi.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`Chi.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`Chi.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the fission spectrum is calculated as: .. math:: \begin{aligned} \langle \nu\sigma_{f,g' \rightarrow g} \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega' \int_0^\infty dE' \int_{E_g}^{E_{g-1}} dE \; \chi(E) \nu\sigma_f (r, E') \psi(r, E', \Omega')\\ \langle \nu\sigma_f \phi \rangle &= \int_{r \in V} dr \int_{4\pi} d\Omega' \int_0^\infty dE' \int_0^\infty dE \; \chi(E) \nu\sigma_f (r, E') \psi(r, E', \Omega') \\ \chi_g &= \frac{\langle \nu\sigma_{f,g' \rightarrow g} \phi \rangle} {\langle \nu\sigma_f \phi \rangle} \end{aligned} This class can also be used to gather a prompt-chi (which only includes the outgoing energy spectrum of prompt neutrons). This is accomplished by setting the :attr:`Chi.prompt` attribute to `True`. Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation prompt : bool If true, computes cross sections which only includes prompt neutrons; defaults to False which includes prompt and delayed in total by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) prompt : bool If true, computes cross sections which only includes prompt neutrons by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : 'analog' The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`Chi.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file). num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U238', 'O16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ # Store whether or not the number density should be removed for microscopic # values of this data; since this chi data is normalized to 1.0, the # data should not be divided by the number density _divide_by_density = False def __init__(self, domain=None, domain_type=None, groups=None, prompt=False, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) if not prompt: self._rxn_type = 'chi' else: self._rxn_type = 'chi-prompt' self._estimator = 'analog' self._valid_estimators = ['analog'] self.prompt = prompt def __deepcopy__(self, memo): clone = super().__deepcopy__(memo) clone._prompt = self.prompt return clone @property def prompt(self): return self._prompt @property def _dont_squeeze(self): """Create a tuple of axes which should not be removed during the get_xs process """ if self.num_polar > 1 or self.num_azimuthal > 1: return (0, 1, 3) else: return (1,) @property def scores(self): if not self.prompt: return ['nu-fission', 'nu-fission'] else: return ['prompt-nu-fission', 'prompt-nu-fission'] @property def filters(self): # Create the non-domain specific Filters for the Tallies group_edges = self.energy_groups.group_edges energyout = openmc.EnergyoutFilter(group_edges) energyin = openmc.EnergyFilter([group_edges[0], group_edges[-1]]) filters = [[energyin], [energyout]] return self._add_angle_filters(filters) @property def tally_keys(self): return ['nu-fission-in', 'nu-fission-out'] @property def rxn_rate_tally(self): if self._rxn_rate_tally is None: self._rxn_rate_tally = self.tallies['nu-fission-out'] self._rxn_rate_tally.sparse = self.sparse return self._rxn_rate_tally @property def xs_tally(self): if self._xs_tally is None: nu_fission_in = self.tallies['nu-fission-in'] # Remove coarse energy filter to keep it out of tally arithmetic energy_filter = nu_fission_in.find_filter(openmc.EnergyFilter) nu_fission_in.remove_filter(energy_filter) # Compute chi self._xs_tally = self.rxn_rate_tally / nu_fission_in # Add the coarse energy filter back to the nu-fission tally nu_fission_in.filters.append(energy_filter) return self._xs_tally @prompt.setter def prompt(self, prompt): cv.check_type('prompt', prompt, bool) self._prompt = prompt if not self.prompt: self._rxn_type = 'nu-fission' self._hdf5_key = 'chi' else: self._rxn_type = 'prompt-nu-fission' self._hdf5_key = 'chi-prompt' def get_homogenized_mgxs(self, other_mgxs): """Construct a homogenized mgxs with other MGXS objects. Parameters ---------- other_mgxs : openmc.mgxs.MGXS or Iterable of openmc.mgxs.MGXS The MGXS to homogenize with this one. Returns ------- openmc.mgxs.MGXS A new homogenized MGXS Raises ------ ValueError If the other_mgxs is of a different type. """ return self._get_homogenized_mgxs(other_mgxs, 'nu-fission-in') def get_slice(self, nuclides=[], groups=[]): """Build a sliced Chi for the specified nuclides and energy groups. This method constructs a new MGXS to encapsulate a subset of the data represented by this MGXS. The subset of data to include in the tally slice is determined by the nuclides and energy groups specified in the input parameters. Parameters ---------- nuclides : list of str A list of nuclide name strings (e.g., ['U235', 'U238']; default is []) groups : list of Integral A list of energy group indices starting at 1 for the high energies (e.g., [1, 2, 3]; default is []) Returns ------- openmc.mgxs.MGXS A new MGXS which encapsulates the subset of data requested for the nuclide(s) and/or energy group(s) requested in the parameters. """ # Temporarily remove energy filter from nu-fission-in since its # group structure will work in super MGXS.get_slice(...) method nu_fission_in = self.tallies['nu-fission-in'] energy_filter = nu_fission_in.find_filter(openmc.EnergyFilter) nu_fission_in.remove_filter(energy_filter) # Call super class method and null out derived tallies slice_xs = super().get_slice(nuclides, groups) slice_xs._rxn_rate_tally = None slice_xs._xs_tally = None # Slice energy groups if needed if len(groups) != 0: filter_bins = [] for group in groups: group_bounds = self.energy_groups.get_group_bounds(group) filter_bins.append(group_bounds) filter_bins = [tuple(filter_bins)] # Slice nu-fission-out tally along energyout filter nu_fission_out = slice_xs.tallies['nu-fission-out'] tally_slice = nu_fission_out.get_slice( filters=[openmc.EnergyoutFilter], filter_bins=filter_bins) slice_xs._tallies['nu-fission-out'] = tally_slice # Add energy filter back to nu-fission-in tallies self.tallies['nu-fission-in'].add_filter(energy_filter) slice_xs._tallies['nu-fission-in'].add_filter(energy_filter) slice_xs.sparse = self.sparse return slice_xs def merge(self, other): """Merge another Chi with this one If results have been loaded from a statepoint, then Chi are only mergeable along one and only one of energy groups or nuclides. Parameters ---------- other : openmc.mgxs.MGXS MGXS to merge with this one Returns ------- merged_mgxs : openmc.mgxs.MGXS Merged MGXS """ if not self.can_merge(other): raise ValueError('Unable to merge a Chi MGXS') # Create deep copy of tally to return as merged tally merged_mgxs = copy.deepcopy(self) merged_mgxs._derived = True merged_mgxs._rxn_rate_tally = None merged_mgxs._xs_tally = None # Merge energy groups if self.energy_groups != other.energy_groups: merged_groups = self.energy_groups.merge(other.energy_groups) merged_mgxs.energy_groups = merged_groups # Merge nuclides if self.nuclides != other.nuclides: # The nuclides must be mutually exclusive for nuclide in self.nuclides: if nuclide in other.nuclides: msg = 'Unable to merge a Chi MGXS with shared nuclides' raise ValueError(msg) # Concatenate lists of nuclides for the merged MGXS merged_mgxs.nuclides = self.nuclides + other.nuclides # Merge tallies for tally_key in self.tallies: merged_tally = self.tallies[tally_key].merge(other.tallies[tally_key]) merged_mgxs.tallies[tally_key] = merged_tally return merged_mgxs def get_xs(self, groups='all', subdomains='all', nuclides='all', xs_type='macro', order_groups='increasing', value='mean', squeeze=True, **kwargs): """Returns an array of the fission spectrum. This method constructs a 3D NumPy array for the requested multi-group cross section data for one or more subdomains (1st dimension), energy groups (2nd dimension), and nuclides (3rd dimension). Parameters ---------- groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. subdomains : Iterable of Integral or 'all' Subdomain IDs of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' A list of nuclide name strings (e.g., ['U235', 'U238']). The special string 'all' will return the cross sections for all nuclides in the spatial domain. The special string 'sum' will return the cross section summed over all nuclides. Defaults to 'all'. xs_type: {'macro', 'micro'} This parameter is not relevant for chi but is included here to mirror the parent MGXS.get_xs(...) class method order_groups: {'increasing', 'decreasing'} Return the cross section indexed according to increasing or decreasing energy groups (decreasing or increasing energies). Defaults to 'increasing'. value : {'mean', 'std_dev', 'rel_err'} A string for the type of value to return. Defaults to 'mean'. squeeze : bool A boolean representing whether to eliminate the extra dimensions of the multi-dimensional array to be returned. Defaults to True. Returns ------- numpy.ndarray A NumPy array of the multi-group cross section indexed in the order each group, subdomain and nuclide is listed in the parameters. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ cv.check_value('value', value, ['mean', 'std_dev', 'rel_err']) cv.check_value('xs_type', xs_type, ['macro', 'micro']) # FIXME: Unable to get microscopic xs for mesh domain because the mesh # cells do not know the nuclide densities in each mesh cell. if self.domain_type == 'mesh' and xs_type == 'micro': msg = 'Unable to get micro xs for mesh domain since the mesh ' \ 'cells do not know the nuclide densities in each mesh cell.' raise ValueError(msg) filters = [] filter_bins = [] # Construct a collection of the domain filter bins if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral, max_depth=3) filters.append(_DOMAIN_TO_FILTER[self.domain_type]) subdomain_bins = [] for subdomain in subdomains: subdomain_bins.append(subdomain) filter_bins.append(tuple(subdomain_bins)) # Construct list of energy group bounds tuples for all requested groups if not isinstance(groups, str): cv.check_iterable_type('groups', groups, Integral) filters.append(openmc.EnergyoutFilter) energy_bins = [] for group in groups: energy_bins.append( (self.energy_groups.get_group_bounds(group),)) filter_bins.append(tuple(energy_bins)) # If chi was computed for each nuclide in the domain if self.by_nuclide: # Get the sum as the fission source weighted average chi for all # nuclides in the domain if nuclides == 'sum' or nuclides == ['sum']: # Retrieve the fission production tallies nu_fission_in = self.tallies['nu-fission-in'] nu_fission_out = self.tallies['nu-fission-out'] # Sum out all nuclides nuclides = self.get_nuclides() nu_fission_in = nu_fission_in.summation(nuclides=nuclides) nu_fission_out = nu_fission_out.summation(nuclides=nuclides) # Remove coarse energy filter to keep it out of tally arithmetic energy_filter = nu_fission_in.find_filter(openmc.EnergyFilter) nu_fission_in.remove_filter(energy_filter) # Compute chi and store it as the xs_tally attribute so we can # use the generic get_xs(...) method xs_tally = nu_fission_out / nu_fission_in # Add the coarse energy filter back to the nu-fission tally nu_fission_in.filters.append(energy_filter) xs = xs_tally.get_values(filters=filters, filter_bins=filter_bins, value=value) # Get chi for all nuclides in the domain elif nuclides == 'all': nuclides = self.get_nuclides() xs = self.xs_tally.get_values(filters=filters, filter_bins=filter_bins, nuclides=nuclides, value=value) # Get chi for user-specified nuclides in the domain else: cv.check_iterable_type('nuclides', nuclides, str) xs = self.xs_tally.get_values(filters=filters, filter_bins=filter_bins, nuclides=nuclides, value=value) # If chi was computed as an average of nuclides in the domain else: xs = self.xs_tally.get_values(filters=filters, filter_bins=filter_bins, value=value) # Eliminate the trivial score dimension xs = np.squeeze(xs, axis=len(xs.shape) - 1) xs = np.nan_to_num(xs) if groups == 'all': num_groups = self.num_groups else: num_groups = len(groups) # Reshape tally data array with separate axes for domain and energy # Accomodate the polar and azimuthal bins if needed num_subdomains = int(xs.shape[0] / (num_groups * self.num_polar * self.num_azimuthal)) if self.num_polar > 1 or self.num_azimuthal > 1: new_shape = (self.num_polar, self.num_azimuthal, num_subdomains, num_groups) + xs.shape[1:] else: new_shape = (num_subdomains, num_groups) + xs.shape[1:] xs = np.reshape(xs, new_shape) # Reverse data if user requested increasing energy groups since # tally data is stored in order of increasing energies if order_groups == 'increasing': xs = xs[..., ::-1, :] if squeeze: # We want to squeeze out everything but the polar, azimuthal, # and energy group data. xs = self._squeeze_xs(xs) return xs def get_units(self, xs_type='macro'): """Returns the units of Chi. This method returns the units of Chi, which is "%" for both macro and micro xs types. Parameters ---------- xs_type: {'macro', 'micro'} Return the macro or micro cross section units. Defaults to 'macro'. Returns ------- str A string representing the units of Chi. """ cv.check_value('xs_type', xs_type, ['macro', 'micro']) # Chi has the same units (%) for both macro and micro return '%' class InverseVelocity(MGXS): r"""An inverse velocity multi-group cross section. This class can be used for both OpenMC input generation and tally data post-processing to compute spatially-homogenized and energy-integrated multi-group neutron inverse velocities for multi-group neutronics calculations. The units of inverse velocity are seconds per centimeter. At a minimum, one needs to set the :attr:`InverseVelocity.energy_groups` and :attr:`InverseVelocity.domain` properties. Tallies for the flux and appropriate reaction rates over the specified domain are generated automatically via the :attr:`InverseVelocity.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`InverseVelocity.xs_tally` property. For a spatial domain :math:`V` and energy group :math:`[E_g,E_{g-1}]`, the neutron inverse velocities are calculated by tallying the flux-weighted inverse velocity and the flux. The inverse velocity is then the flux-weighted inverse velocity divided by the flux: .. math:: \frac{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \frac{\psi (r, E, \Omega)}{v (r, E)}}{\int_{r \in V} dr \int_{4\pi} d\Omega \int_{E_g}^{E_{g-1}} dE \; \psi (r, E, \Omega)} Parameters ---------- domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh The domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool If true, computes cross sections for each nuclide in domain name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. num_polar : Integral, optional Number of equi-width polar angle bins for angle discretization; defaults to one bin num_azimuthal : Integral, optional Number of equi-width azimuthal angle bins for angle discretization; defaults to one bin Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool If true, computes cross sections for each nuclide in domain domain : openmc.Material or openmc.Cell or openmc.Universe or openmc.RegularMesh Domain for spatial homogenization domain_type : {'material', 'cell', 'distribcell', 'universe', 'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation num_polar : Integral Number of equi-width polar angle bins for angle discretization num_azimuthal : Integral Number of equi-width azimuthal angle bins for angle discretization tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'tracklength', 'collision', 'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`InverseVelocity.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is unity for 'material', 'cell' and 'universe' domain types. This is equal to the number of cell instances for 'distribcell' domain types (it is equal to unity prior to loading tally data from a statepoint file) and the number of mesh cells for 'mesh' domain types. num_nuclides : int The number of nuclides for which the multi-group cross section is being tracked. This is unity if the by_nuclide attribute is False. nuclides : Iterable of str or 'sum' The optional user-specified nuclides for which to compute cross sections (e.g., 'U-238', 'O-16'). If by_nuclide is True but nuclides are not specified by the user, all nuclides in the spatial domain are included. This attribute is 'sum' if by_nuclide is false. sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ # Store whether or not the number density should be removed for microscopic # values of this data; since the inverse velocity does not contain number # density scaling, we should not remove the number density from microscopic # values _divide_by_density = False def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name='', num_polar=1, num_azimuthal=1): super().__init__(domain, domain_type, groups, by_nuclide, name, num_polar, num_azimuthal) self._rxn_type = 'inverse-velocity' def get_units(self, xs_type='macro'): """Returns the units of InverseVelocity. This method returns the units of an InverseVelocity based on a desired xs_type. Parameters ---------- xs_type: {'macro', 'micro'} Return the macro or micro cross section units. Defaults to 'macro'. Returns ------- str A string representing the units of the InverseVelocity. """ if xs_type == 'macro': return 'second/cm' else: raise ValueError('Unable to return the units of InverseVelocity' ' for xs_type other than "macro"') class MeshSurfaceMGXS(MGXS): """An abstract multi-group cross section for some energy group structure on the surfaces of a mesh domain. This class can be used for both OpenMC input generation and tally data post-processing to compute surface- and energy-integrated multi-group cross sections for multi-group neutronics calculations. .. note:: Users should instantiate the subclasses of this abstract class. .. versionadded:: 0.12.1 Parameters ---------- domain : openmc.RegularMesh The domain for spatial homogenization domain_type : {'mesh'} The domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool Unused in MeshSurfaceMGXS name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool Unused in MeshSurfaceMGXS domain : Mesh Domain for spatial homogenization domain_type : {'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is equal to the number of mesh surfaces times two to account for both the incoming and outgoing current from the mesh cell surfaces. num_nuclides : int Unused in MeshSurfaceMGXS nuclides : Iterable of str or 'sum' Unused in MeshSurfaceMGXS sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, energy_groups=None, by_nuclide=False, name=''): super(MeshSurfaceMGXS, self).__init__(domain, domain_type, energy_groups, by_nuclide, name) self._estimator = ['analog'] self._valid_estimators = ['analog'] @property def scores(self): return [self.rxn_type] @property def domain(self): return self._domain @property def domain_type(self): return self._domain_type @domain.setter def domain(self, domain): cv.check_type('domain', domain, openmc.RegularMesh) self._domain = domain # Assign a domain type if self.domain_type is None: self._domain_type = 'mesh' @domain_type.setter def domain_type(self, domain_type): cv.check_value('domain type', domain_type, 'mesh') self._domain_type = domain_type @property def filters(self): group_edges = self.energy_groups.group_edges energy_filter = openmc.EnergyFilter(group_edges) mesh = _DOMAIN_TO_FILTER[self.domain_type](self.domain).mesh meshsurface_filter = openmc.MeshSurfaceFilter(mesh) filters = [[meshsurface_filter, energy_filter]] return self._add_angle_filters(filters) @property def xs_tally(self): if self._xs_tally is None: if self.tallies is None: msg = 'Unable to get xs_tally since tallies have ' \ 'not been loaded from a statepoint' raise ValueError(msg) self._xs_tally = self.rxn_rate_tally self._compute_xs() return self._xs_tally def load_from_statepoint(self, statepoint): """Extracts tallies in an OpenMC StatePoint with the data needed to compute multi-group cross sections. This method is needed to compute cross section data from tallies in an OpenMC StatePoint object. .. note:: The statepoint must first be linked with a :class:`openmc.Summary` object. Parameters ---------- statepoint : openmc.StatePoint An OpenMC StatePoint object with tally data Raises ------ ValueError When this method is called with a statepoint that has not been linked with a summary object. """ cv.check_type('statepoint', statepoint, openmc.statepoint.StatePoint) if statepoint.summary is None: msg = 'Unable to load data from a statepoint which has not been ' \ 'linked with a summary file' raise ValueError(msg) filters= [] filter_bins = [] # Clear any tallies previously loaded from a statepoint if self.loaded_sp: self._tallies = None self._xs_tally = None self._rxn_rate_tally = None self._loaded_sp = False # Find, slice and store Tallies from StatePoint # The tally slicing is needed if tally merging was used for tally_type, tally in self.tallies.items(): sp_tally = statepoint.get_tally( tally.scores, tally.filters, tally.nuclides, estimator=tally.estimator, exact_filters=True) sp_tally = sp_tally.get_slice( tally.scores, filters, filter_bins, tally.nuclides) sp_tally.sparse = self.sparse self.tallies[tally_type] = sp_tally self._loaded_sp = True def get_xs(self, groups='all', subdomains='all', nuclides='all', xs_type='macro', order_groups='increasing', value='mean', squeeze=True, **kwargs): r"""Returns an array of multi-group cross sections. This method constructs a 3D NumPy array for the requested multi-group cross section data for one or more subdomains (1st dimension), energy groups (2nd dimension), and nuclides (3rd dimension). Parameters ---------- groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. subdomains : Iterable of Integral or 'all' Subdomain IDs of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' Unused in MeshSurfaceMGXS, its value will be ignored. The nuclides dimension of the resultant array will always have a length of 1. xs_type: {'macro'} The 'macro'/'micro' distinction does not apply to MeshSurfaceMGXS. The calculation of a 'micro' xs_type is omited in this class. order_groups: {'increasing', 'decreasing'} Return the cross section indexed according to increasing or decreasing energy groups (decreasing or increasing energies). Defaults to 'increasing'. value : {'mean', 'std_dev', 'rel_err'} A string for the type of value to return. Defaults to 'mean'. squeeze : bool A boolean representing whether to eliminate the extra dimensions of the multi-dimensional array to be returned. Defaults to True. Returns ------- numpy.ndarray A NumPy array of the multi-group cross section indexed in the order each group, subdomain and nuclide is listed in the parameters. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ cv.check_value('value', value, ['mean', 'std_dev', 'rel_err']) cv.check_value('xs_type', xs_type, ['macro']) filters = [] filter_bins = [] # Construct a collection of the domain filter bins if not isinstance(subdomains, str): cv.check_iterable_type('subdomains', subdomains, Integral, max_depth=3) filters.append(_DOMAIN_TO_FILTER[self.domain_type]) subdomain_bins = [] for subdomain in subdomains: subdomain_bins.append(subdomain) filter_bins.append(tuple(subdomain_bins)) xs = self.xs_tally.get_values(filters=filters, filter_bins=filter_bins, value=value) # Construct list of energy group bounds tuples for all requested groups if not isinstance(groups, str): cv.check_iterable_type('groups', groups, Integral) filters.append(openmc.EnergyFilter) energy_bins = [] for group in groups: energy_bins.append( (self.energy_groups.get_group_bounds(group),)) filter_bins.append(tuple(energy_bins)) # Eliminate the trivial score dimension xs = np.squeeze(xs, axis=len(xs.shape) - 1) xs = np.nan_to_num(xs) if groups == 'all': num_groups = self.num_groups else: num_groups = len(groups) # Reshape tally data array with separate axes for domain and energy # Accomodate the polar and azimuthal bins if needed num_surfaces = 4 * self.domain.n_dimension num_subdomains = int(xs.shape[0] / (num_groups * self.num_polar * self.num_azimuthal * num_surfaces)) if self.num_polar > 1 or self.num_azimuthal > 1: new_shape = (self.num_polar, self.num_azimuthal, num_subdomains, num_groups, num_surfaces) else: new_shape = (num_subdomains, num_groups, num_surfaces) new_shape += xs.shape[1:] new_xs = np.zeros(new_shape) for cell in range(num_subdomains): for g in range(num_groups): for s in range(num_surfaces): new_xs[cell,g,s] = \ xs[cell*num_surfaces*num_groups+s*num_groups+g] xs = new_xs # Reverse data if user requested increasing energy groups since # tally data is stored in order of increasing energies if order_groups == 'increasing': xs = xs[..., ::-1, :, :] if squeeze: # We want to squeeze out everything but the polar, azimuthal, # and energy group data. xs = self._squeeze_xs(xs) return xs def get_pandas_dataframe(self, groups='all', nuclides='all', xs_type='macro', paths=True): """Build a Pandas DataFrame for the MGXS data. This method leverages :meth:`openmc.Tally.get_pandas_dataframe`, but renames the columns with terminology appropriate for cross section data. Parameters ---------- groups : Iterable of Integral or 'all' Energy groups of interest. Defaults to 'all'. nuclides : Iterable of str or 'all' or 'sum' Unused in MeshSurfaceMGXS, its value will be ignored. The nuclides dimension of the resultant array will always have a length of 1. xs_type: {'macro'} 'micro' unused in MeshSurfaceMGXS. paths : bool, optional Construct columns for distribcell tally filters (default is True). The geometric information in the Summary object is embedded into a Multi-index column with a geometric "path" to each distribcell instance. Returns ------- pandas.DataFrame A Pandas DataFrame for the cross section data. Raises ------ ValueError When this method is called before the multi-group cross section is computed from tally data. """ if not isinstance(groups, str): cv.check_iterable_type('groups', groups, Integral) cv.check_value('xs_type', xs_type, ['macro']) df = self.xs_tally.get_pandas_dataframe(paths=paths) # Remove the score column since it is homogeneous and redundant df = df.drop('score', axis=1, level=0) # Convert azimuthal, polar, energy in and energy out bin values in to # bin indices columns = self._df_convert_columns_to_bins(df) # Select out those groups the user requested if not isinstance(groups, str): if 'group in' in df: df = df[df['group in'].isin(groups)] if 'group out' in df: df = df[df['group out'].isin(groups)] mesh_str = 'mesh {0}'.format(self.domain.id) col_key = (mesh_str, 'surf') surfaces = df.pop(col_key) df.insert(len(self.domain.dimension), col_key, surfaces) if len(self.domain.dimension) == 1: df.sort_values(by=[(mesh_str, 'x'), (mesh_str, 'surf')] + columns, inplace=True) elif len(self.domain.dimension) == 2: df.sort_values(by=[(mesh_str, 'x'), (mesh_str, 'y'), (mesh_str, 'surf')] + columns, inplace=True) elif len(self.domain.dimension) == 3: df.sort_values(by=[(mesh_str, 'x'), (mesh_str, 'y'), (mesh_str, 'z'), (mesh_str, 'surf')] + columns, inplace=True) return df class Current(MeshSurfaceMGXS): r"""A current multi-group cross section. This class can be used for both OpenMC input generation and tally data post-processing to compute surface- and energy-integrated multi-group current cross sections for multi-group neutronics calculations. At a minimum, one needs to set the :attr:`Current.energy_groups` and :attr:`Current.domain` properties. Tallies for the appropriate reaction rates over the specified domain are generated automatically via the :attr:`Current.tallies` property, which can then be appended to a :class:`openmc.Tallies` instance. For post-processing, the :meth:`MGXS.load_from_statepoint` will pull in the necessary data to compute multi-group cross sections from a :class:`openmc.StatePoint` instance. The derived multi-group cross section can then be obtained from the :attr:`Current.xs_tally` property. For a spatial domain :math:`S` and energy group :math:`[E_g,E_{g-1}]`, the total cross section is calculated as: .. math:: \frac{\int_{r \in S} dS \int_{E_g}^{E_{g-1}} dE \; J(r, E)}{\int_{r \in S} dS \int_{E_g}^{E_{g-1}} dE}. .. versionadded:: 0.12.1 Parameters ---------- domain : openmc.RegularMesh The domain for spatial homogenization domain_type : ('mesh'} The domain type for spatial homogenization groups : openmc.mgxs.EnergyGroups The energy group structure for energy condensation by_nuclide : bool Unused in MeshSurfaceMGXS name : str, optional Name of the multi-group cross section. Used as a label to identify tallies in OpenMC 'tallies.xml' file. Attributes ---------- name : str, optional Name of the multi-group cross section rxn_type : str Reaction type (e.g., 'total', 'nu-fission', etc.) by_nuclide : bool Unused in MeshSurfaceMGXS domain : openmc.RegularMesh Domain for spatial homogenization domain_type : {'mesh'} Domain type for spatial homogenization energy_groups : openmc.mgxs.EnergyGroups Energy group structure for energy condensation tally_trigger : openmc.Trigger An (optional) tally precision trigger given to each tally used to compute the cross section scores : list of str The scores in each tally used to compute the multi-group cross section filters : list of openmc.Filter The filters in each tally used to compute the multi-group cross section tally_keys : list of str The keys into the tallies dictionary for each tally used to compute the multi-group cross section estimator : {'analog'} The tally estimator used to compute the multi-group cross section tallies : collections.OrderedDict OpenMC tallies needed to compute the multi-group cross section. The keys are strings listed in the :attr:`TotalXS.tally_keys` property and values are instances of :class:`openmc.Tally`. rxn_rate_tally : openmc.Tally Derived tally for the reaction rate tally used in the numerator to compute the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. xs_tally : openmc.Tally Derived tally for the multi-group cross section. This attribute is None unless the multi-group cross section has been computed. num_subdomains : int The number of subdomains is equal to the number of mesh surfaces times two to account for both the incoming and outgoing current from the mesh cell surfaces. num_nuclides : int Unused in MeshSurfaceMGXS nuclides : Iterable of str or 'sum' Unused in MeshSurfaceMGXS sparse : bool Whether or not the MGXS' tallies use SciPy's LIL sparse matrix format for compressed data storage loaded_sp : bool Whether or not a statepoint file has been loaded with tally data derived : bool Whether or not the MGXS is merged from one or more other MGXS hdf5_key : str The key used to index multi-group cross sections in an HDF5 data store """ def __init__(self, domain=None, domain_type=None, groups=None, by_nuclide=False, name=''): super(Current, self).__init__(domain, domain_type, groups, by_nuclide, name) self._rxn_type = 'current'
mit
0x0all/scikit-learn
sklearn/tree/tests/test_tree.py
4
43560
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import platform import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.utils.random import sample_without_replacement from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import raises from sklearn.utils.validation import check_random_state from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree.tree import SPARSE_SPLITTERS from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.preprocessing._weights import _balance_weights CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", ) CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, splitter="presort-best"), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, splitter="presort-best"), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = [name for name, Tree in ALL_TREES.items() if Tree().splitter in SPARSE_SPLITTERS] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, return_indicator=True, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): """Check classification on a toy dataset.""" for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): """Check classification on a weighted toy dataset.""" for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): """Check regression on a toy dataset.""" for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): """Check on a XOR problem""" y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): """Check consistency on dataset iris.""" for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): """Check consistency on dataset boston house prices.""" for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): """Predict probabilities using DecisionTreeClassifier.""" for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): """Check the array representation.""" # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): """Check when y is pure.""" X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): """Check numerical stability.""" X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): """Check variable importances.""" X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = clf.transform(X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): """Check if variable importance before fit raises ValueError. """ clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): """Check that gini is equivalent to mse for binary output variable""" X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): """Check max_features.""" for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): """Test that it gives proper exception on deficient input.""" for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(Exception, est.predict_proba, X) est.fit(X, y) X2 = [-2, -1, 1] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(Exception, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) def test_min_samples_leaf(): """Test if leaves contain more than leaf_count training examples""" X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_pickle(): """Check that tree estimator are pickable """ for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) serialized_object = pickle.dumps(clf) clf2 = pickle.loads(serialized_object) assert_equal(type(clf2), clf.__class__) score2 = clf2.score(iris.data, iris.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (classification) " "with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(boston.data, boston.target) score = reg.score(boston.data, boston.target) serialized_object = pickle.dumps(reg) reg2 = pickle.loads(serialized_object) assert_equal(type(reg2), reg.__class__) score2 = reg2.score(boston.data, boston.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (regression) " "with {0}".format(name)) def test_multioutput(): """Check estimators on multi-output problems.""" X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): """Test that n_classes_ and classes_ have proper shape.""" for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): """Check class rebalancing.""" unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = _balance_weights(unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): """Check that it works no matter the memory layout""" for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): """Check sample weighting.""" # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 200) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): """Check sample weighting raises errors.""" X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def test_max_leaf_nodes(): """Test greedy trees with max_depth + 1 leafs. """ from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): """Test preceedence of max_leaf_nodes over max_depth. """ X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): """Ensure property arrays' memory stays alive when tree disappears non-regression for #2726 """ for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0]], [0]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-2 <= value.flat[0] < 2, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): """Test if the warning for too large inputs is appropriate.""" X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._tree import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = int(platform.architecture()[0].rstrip('bit')) X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, X) def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if TreeEstimator().splitter in SPARSE_SPLITTERS: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name
bsd-3-clause
cowlicks/blaze
blaze/compute/tests/test_sparksql.py
3
11734
from __future__ import absolute_import, print_function, division import sys import pytest pytestmark = pytest.mark.skipif( sys.version_info.major == 3, reason="PyHive doesn't work with Python 3.x" ) pyspark = pytest.importorskip('pyspark') py4j = pytest.importorskip('py4j') sa = pytest.importorskip('sqlalchemy') pytest.importorskip('pyhive.sqlalchemy_hive') import os import itertools import shutil from functools import partial from py4j.protocol import Py4JJavaError import numpy as np import pandas as pd import pandas.util.testing as tm from blaze import compute, symbol, into, by, sin, exp, cos, tan, join from pyspark.sql import DataFrame as SparkDataFrame try: from pyspark.sql.utils import AnalysisException except ImportError: AnalysisException = Py4JJavaError from pyspark import HiveContext from pyspark.sql import Row from odo import odo, discover from odo.utils import tmpfile data = [['Alice', 100.0, 1], ['Bob', 200.0, 2], ['Alice', 50.0, 3]] date_data = [] np.random.seed(0) for attr in ('YearBegin', 'MonthBegin', 'Day', 'Hour', 'Minute', 'Second'): rng = pd.date_range(start='now', periods=len(data), freq=getattr(pd.datetools, attr)()).values date_data += list(zip(np.random.choice(['Alice', 'Bob', 'Joe', 'Lester'], size=len(data)), np.random.rand(len(data)) * 100, np.random.randint(100, size=3), rng)) cities_data = [['Alice', 'NYC'], ['Bob', 'Boston']] df = pd.DataFrame(data, columns=['name', 'amount', 'id']) date_df = pd.DataFrame(date_data, columns=['name', 'amount', 'id', 'ds']) cities_df = pd.DataFrame(cities_data, columns=['name', 'city']) # sc is from conftest.py @pytest.yield_fixture(scope='module') def sql(sc): try: yield HiveContext(sc) finally: dbpath = 'metastore_db' logpath = 'derby.log' if os.path.exists(dbpath): assert os.path.isdir(dbpath), '%s is not a directory' % dbpath shutil.rmtree(dbpath) if os.path.exists(logpath): assert os.path.isfile(logpath), '%s is not a file' % logpath os.remove(logpath) @pytest.yield_fixture(scope='module') def people(sc): with tmpfile('.txt') as fn: df.to_csv(fn, header=False, index=False) raw = sc.textFile(fn) parts = raw.map(lambda line: line.split(',')) yield parts.map( lambda person: Row( name=person[0], amount=float(person[1]), id=int(person[2]) ) ) @pytest.yield_fixture(scope='module') def cities(sc): with tmpfile('.txt') as fn: cities_df.to_csv(fn, header=False, index=False) raw = sc.textFile(fn) parts = raw.map(lambda line: line.split(',')) yield parts.map(lambda person: Row(name=person[0], city=person[1])) @pytest.yield_fixture(scope='module') def date_people(sc): with tmpfile('.txt') as fn: date_df.to_csv(fn, header=False, index=False) raw = sc.textFile(fn) parts = raw.map(lambda line: line.split(',')) yield parts.map( lambda person: Row( name=person[0], amount=float(person[1]), id=int(person[2]), ds=pd.Timestamp(person[3]).to_pydatetime() ) ) @pytest.fixture(scope='module') def ctx(sql, people, cities, date_people): sql.registerDataFrameAsTable(sql.createDataFrame(people), 't') sql.cacheTable('t') sql.registerDataFrameAsTable(sql.createDataFrame(cities), 's') sql.cacheTable('s') sql.registerDataFrameAsTable(sql.createDataFrame(date_people), 'dates') sql.cacheTable('dates') return sql @pytest.fixture(scope='module') def db(ctx): return symbol('db', discover(ctx)) def test_projection(db, ctx): expr = db.t[['id', 'name']] result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(set, result) == into(set, expected) def test_symbol_compute(db, ctx): assert isinstance(compute(db.t, ctx), SparkDataFrame) def test_field_access(db, ctx): for field in db.t.fields: expr = getattr(db.t, field) result = into(pd.Series, compute(expr, ctx)) expected = compute(expr, {db: {'t': df}}) assert result.name == expected.name np.testing.assert_array_equal(result.values, expected.values) def test_head(db, ctx): expr = db.t[['name', 'amount']].head(2) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(list, result) == into(list, expected) def test_literals(db, ctx): expr = db.t[db.t.amount >= 100] result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert list(map(set, into(list, result))) == list( map(set, into(list, expected)) ) def test_by_summary(db, ctx): t = db.t expr = by(t.name, mymin=t.amount.min(), mymax=t.amount.max()) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(set, result) == into(set, expected) def test_join(db, ctx): expr = join(db.t, db.s) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df, 's': cities_df}}) assert isinstance(result, SparkDataFrame) assert into(set, result) == into(set, expected) assert discover(result) == expr.dshape def test_join_diff_contexts(db, ctx, cities): expr = join(db.t, db.s, 'name') people = ctx.table('t') cities = into(ctx, cities, dshape=discover(ctx.table('s'))) scope = {db: {'t': people, 's': cities}} result = compute(expr, scope) expected = compute(expr, {db: {'t': df, 's': cities_df}}) assert set(map(frozenset, odo(result, set))) == set( map(frozenset, odo(expected, set)) ) def test_field_distinct(ctx, db): expr = db.t.name.distinct() result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(set, result, dshape=expr.dshape) == into(set, expected) def test_boolean(ctx, db): expr = db.t.amount > 50 result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(set, result, dshape=expr.dshape) == into(set, expected) def test_selection(ctx, db): expr = db.t[db.t.amount > 50] result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert list(map(set, into(list, result))) == list( map(set, into(list, expected)) ) def test_selection_field(ctx, db): expr = db.t[db.t.amount > 50].name result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(set, result, dshape=expr.dshape) == into(set, expected) @pytest.mark.parametrize( ['field', 'reduction'], itertools.product( ['id', 'amount'], ['sum', 'max', 'min', 'mean', 'count', 'nunique'] ) ) def test_reductions(ctx, db, field, reduction): expr = getattr(db.t[field], reduction)() result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(list, result)[0][0] == expected def test_column_arithmetic(ctx, db): expr = db.t.amount + 1 result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(set, result, dshape=expr.dshape) == into(set, expected) @pytest.mark.parametrize('func', [sin, cos, tan, exp]) def test_math(ctx, db, func): expr = func(db.t.amount) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) np.testing.assert_allclose( np.sort(odo(result, np.ndarray, dshape=expr.dshape)), np.sort(odo(expected, np.ndarray)) ) @pytest.mark.parametrize(['field', 'ascending'], itertools.product(['name', 'id', ['name', 'amount']], [True, False])) def test_sort(ctx, db, field, ascending): expr = db.t.sort(field, ascending=ascending) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert list(map(set, into(list, result))) == list( map(set, into(list, expected)) ) @pytest.mark.xfail def test_map(ctx, db): expr = db.t.id.map(lambda x: x + 1, 'int') result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert into(set, result, dshape=expr.dshape) == into(set, expected) @pytest.mark.parametrize( ['grouper', 'reducer', 'reduction'], itertools.chain( itertools.product( ['name', 'id', ['id', 'amount']], ['id', 'amount'], ['sum', 'count', 'max', 'min', 'mean', 'nunique'] ), [('name', 'name', 'count'), ('name', 'name', 'nunique')] ) ) def test_by(ctx, db, grouper, reducer, reduction): t = db.t expr = by(t[grouper], total=getattr(t[reducer], reduction)()) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert set(map(frozenset, into(list, result))) == set( map(frozenset, into(list, expected)) ) @pytest.mark.parametrize( ['reducer', 'reduction'], itertools.product(['id', 'name'], ['count', 'nunique']) ) def test_multikey_by(ctx, db, reducer, reduction): t = db.t expr = by(t[['id', 'amount']], total=getattr(t[reducer], reduction)()) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert (set(map(frozenset, into(list, result))) == set(map(frozenset, into(list, expected)))) def test_grouper_with_arith(ctx, db): expr = by(db.t[['id', 'amount']], total=(db.t.amount + 1).sum()) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert list(map(set, into(list, result))) == list(map(set, into(list, expected))) def test_by_non_native_ops(ctx, db): expr = by(db.t.id, total=db.t.id.nunique()) result = compute(expr, ctx) expected = compute(expr, {db: {'t': df}}) assert list(map(set, into(list, result))) == list(map(set, into(list, expected))) def test_strlen(ctx, db): expr = db.t.name.strlen() result = odo(compute(expr, ctx), pd.Series) expected = compute(expr, {db: {'t': df}}) assert result.name == 'name' assert expected.name == 'name' assert odo(result, set) == odo(expected, set) @pytest.mark.parametrize( 'attr', ['year', 'month', 'day', 'hour', 'minute', 'second'] + list( map( partial( pytest.mark.xfail, raises=(Py4JJavaError, AnalysisException) ), ['millisecond', 'microsecond'] ) ) ) def test_by_with_date(ctx, db, attr): # TODO: investigate CSV writing precision between pandas 0.16.0 and 0.16.1 # TODO: see if we can use odo to convert the dshape of an existing # DataFrame expr = by(getattr(db.dates.ds, attr), mean=db.dates.amount.mean()) result = odo( compute(expr, ctx), pd.DataFrame ).sort('mean').reset_index(drop=True) expected = compute( expr, {db: {'dates': date_df}} ).sort('mean').reset_index(drop=True) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.parametrize('keys', [[1], [1, 2]]) def test_isin(ctx, db, keys): expr = db.t[db.t.id.isin(keys)] result = odo(compute(expr, ctx), set) expected = odo(compute(expr, {db: {'t': df}}), set) assert (set(map(frozenset, odo(result, list))) == set(map(frozenset, odo(expected, list)))) def test_nunique_spark_dataframe(ctx, db): result = odo(compute(db.t.nunique(), ctx), int) expected = ctx.table('t').distinct().count() assert result == expected
bsd-3-clause
jinzishuai/learn2deeplearn
deeplearning.ai/C1.NN_DL/week4/Building your Deep Neural Network - Step by Step/week4ex1.py
1
39163
#!/usr/bin/python3 # coding: utf-8 # # Building your Deep Neural Network: Step by Step # # Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want! # # - In this notebook, you will implement all the functions required to build a deep neural network. # - In the next assignment, you will use these functions to build a deep neural network for image classification. # # **After this assignment you will be able to:** # - Use non-linear units like ReLU to improve your model # - Build a deeper neural network (with more than 1 hidden layer) # - Implement an easy-to-use neural network class # # **Notation**: # - Superscript $[l]$ denotes a quantity associated with the $l^{th}$ layer. # - Example: $a^{[L]}$ is the $L^{th}$ layer activation. $W^{[L]}$ and $b^{[L]}$ are the $L^{th}$ layer parameters. # - Superscript $(i)$ denotes a quantity associated with the $i^{th}$ example. # - Example: $x^{(i)}$ is the $i^{th}$ training example. # - Lowerscript $i$ denotes the $i^{th}$ entry of a vector. # - Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the $l^{th}$ layer's activations). # # Let's get started! # ## 1 - Packages # # Let's first import all the packages that you will need during this assignment. # - [numpy](www.numpy.org) is the main package for scientific computing with Python. # - [matplotlib](http://matplotlib.org) is a library to plot graphs in Python. # - dnn_utils provides some necessary functions for this notebook. # - testCases provides some test cases to assess the correctness of your functions # - np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed. # In[106]: import numpy as np import h5py import matplotlib.pyplot as plt from testCases_v3 import * from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward #get_ipython().magic('matplotlib inline') plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' #get_ipython().magic('load_ext autoreload') #get_ipython().magic('autoreload 2') np.random.seed(1) # ## 2 - Outline of the Assignment # # To build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will: # # - Initialize the parameters for a two-layer network and for an $L$-layer neural network. # - Implement the forward propagation module (shown in purple in the figure below). # - Complete the LINEAR part of a layer's forward propagation step (resulting in $Z^{[l]}$). # - We give you the ACTIVATION function (relu/sigmoid). # - Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function. # - Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer $L$). This gives you a new L_model_forward function. # - Compute the loss. # - Implement the backward propagation module (denoted in red in the figure below). # - Complete the LINEAR part of a layer's backward propagation step. # - We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward) # - Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function. # - Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function # - Finally update the parameters. # # <img src="images/final outline.png" style="width:800px;height:500px;"> # <caption><center> **Figure 1**</center></caption><br> # # # **Note** that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps. # ## 3 - Initialization # # You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to $L$ layers. # # ### 3.1 - 2-layer Neural Network # # **Exercise**: Create and initialize the parameters of the 2-layer neural network. # # **Instructions**: # - The model's structure is: *LINEAR -> RELU -> LINEAR -> SIGMOID*. # - Use random initialization for the weight matrices. Use `np.random.randn(shape)*0.01` with the correct shape. # - Use zero initialization for the biases. Use `np.zeros(shape)`. # In[107]: # GRADED FUNCTION: initialize_parameters def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: parameters -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(1) ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h, n_x)*0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h)*0.01 b2 = np.zeros((n_y, 1)) ### END CODE HERE ### assert(W1.shape == (n_h, n_x)) assert(b1.shape == (n_h, 1)) assert(W2.shape == (n_y, n_h)) assert(b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters # In[108]: parameters = initialize_parameters(3,2,1) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # **Expected output**: # # <table style="width:80%"> # <tr> # <td> **W1** </td> # <td> [[ 0.01624345 -0.00611756 -0.00528172] # [-0.01072969 0.00865408 -0.02301539]] </td> # </tr> # # <tr> # <td> **b1**</td> # <td>[[ 0.] # [ 0.]]</td> # </tr> # # <tr> # <td>**W2**</td> # <td> [[ 0.01744812 -0.00761207]]</td> # </tr> # # <tr> # <td> **b2** </td> # <td> [[ 0.]] </td> # </tr> # # </table> # ### 3.2 - L-layer Neural Network # # The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the `initialize_parameters_deep`, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. Thus for example if the size of our input $X$ is $(12288, 209)$ (with $m=209$ examples) then: # # <table style="width:100%"> # # # <tr> # <td> </td> # <td> **Shape of W** </td> # <td> **Shape of b** </td> # <td> **Activation** </td> # <td> **Shape of Activation** </td> # <tr> # # <tr> # <td> **Layer 1** </td> # <td> $(n^{[1]},12288)$ </td> # <td> $(n^{[1]},1)$ </td> # <td> $Z^{[1]} = W^{[1]} X + b^{[1]} $ </td> # # <td> $(n^{[1]},209)$ </td> # <tr> # # <tr> # <td> **Layer 2** </td> # <td> $(n^{[2]}, n^{[1]})$ </td> # <td> $(n^{[2]},1)$ </td> # <td>$Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ </td> # <td> $(n^{[2]}, 209)$ </td> # <tr> # # <tr> # <td> $\vdots$ </td> # <td> $\vdots$ </td> # <td> $\vdots$ </td> # <td> $\vdots$</td> # <td> $\vdots$ </td> # <tr> # # <tr> # <td> **Layer L-1** </td> # <td> $(n^{[L-1]}, n^{[L-2]})$ </td> # <td> $(n^{[L-1]}, 1)$ </td> # <td>$Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ </td> # <td> $(n^{[L-1]}, 209)$ </td> # <tr> # # # <tr> # <td> **Layer L** </td> # <td> $(n^{[L]}, n^{[L-1]})$ </td> # <td> $(n^{[L]}, 1)$ </td> # <td> $Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$</td> # <td> $(n^{[L]}, 209)$ </td> # <tr> # # </table> # # Remember that when we compute $W X + b$ in python, it carries out broadcasting. For example, if: # # $$ W = \begin{bmatrix} # j & k & l\\ # m & n & o \\ # p & q & r # \end{bmatrix}\;\;\; X = \begin{bmatrix} # a & b & c\\ # d & e & f \\ # g & h & i # \end{bmatrix} \;\;\; b =\begin{bmatrix} # s \\ # t \\ # u # \end{bmatrix}\tag{2}$$ # # Then $WX + b$ will be: # # $$ WX + b = \begin{bmatrix} # (ja + kd + lg) + s & (jb + ke + lh) + s & (jc + kf + li)+ s\\ # (ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t\\ # (pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri)+ u # \end{bmatrix}\tag{3} $$ # **Exercise**: Implement initialization for an L-layer Neural Network. # # **Instructions**: # - The model's structure is *[LINEAR -> RELU] $ \times$ (L-1) -> LINEAR -> SIGMOID*. I.e., it has $L-1$ layers using a ReLU activation function followed by an output layer with a sigmoid activation function. # - Use random initialization for the weight matrices. Use `np.random.rand(shape) * 0.01`. # - Use zeros initialization for the biases. Use `np.zeros(shape)`. # - We will store $n^{[l]}$, the number of units in different layers, in a variable `layer_dims`. For example, the `layer_dims` for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means `W1`'s shape was (4,2), `b1` was (4,1), `W2` was (1,4) and `b2` was (1,1). Now you will generalize this to $L$ layers! # - Here is the implementation for $L=1$ (one layer neural network). It should inspire you to implement the general case (L-layer neural network). # ```python # if L == 1: # parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01 # parameters["b" + str(L)] = np.zeros((layer_dims[1], 1)) # ``` # In[109]: # GRADED FUNCTION: initialize_parameters_deep def initialize_parameters_deep(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) ### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters # In[110]: parameters = initialize_parameters_deep([5,4,3]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # **Expected output**: # # <table style="width:80%"> # <tr> # <td> **W1** </td> # <td>[[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] # [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] # [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] # [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]</td> # </tr> # # <tr> # <td>**b1** </td> # <td>[[ 0.] # [ 0.] # [ 0.] # [ 0.]]</td> # </tr> # # <tr> # <td>**W2** </td> # <td>[[-0.01185047 -0.0020565 0.01486148 0.00236716] # [-0.01023785 -0.00712993 0.00625245 -0.00160513] # [-0.00768836 -0.00230031 0.00745056 0.01976111]]</td> # </tr> # # <tr> # <td>**b2** </td> # <td>[[ 0.] # [ 0.] # [ 0.]]</td> # </tr> # # </table> # ## 4 - Forward propagation module # # ### 4.1 - Linear Forward # Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order: # # - LINEAR # - LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid. # - [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID (whole model) # # The linear forward module (vectorized over all the examples) computes the following equations: # # $$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}\tag{4}$$ # # where $A^{[0]} = X$. # # **Exercise**: Build the linear part of forward propagation. # # **Reminder**: # The mathematical representation of this unit is $Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}$. You may also find `np.dot()` useful. If your dimensions don't match, printing `W.shape` may help. # In[111]: # GRADED FUNCTION: linear_forward def linear_forward(A, W, b): """ Implement the linear part of a layer's forward propagation. Arguments: A -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) Returns: Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently """ ### START CODE HERE ### (≈ 1 line of code) Z = np.dot(W, A) + b ### END CODE HERE ### assert(Z.shape == (W.shape[0], A.shape[1])) cache = (A, W, b) return Z, cache # In[112]: A, W, b = linear_forward_test_case() Z, linear_cache = linear_forward(A, W, b) print("Z = " + str(Z)) # **Expected output**: # # <table style="width:35%"> # # <tr> # <td> **Z** </td> # <td> [[ 3.26295337 -1.23429987]] </td> # </tr> # # </table> # ### 4.2 - Linear-Activation Forward # # In this notebook, you will use two activation functions: # # - **Sigmoid**: $\sigma(Z) = \sigma(W A + b) = \frac{1}{ 1 + e^{-(W A + b)}}$. We have provided you with the `sigmoid` function. This function returns **two** items: the activation value "`a`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call: # ``` python # A, activation_cache = sigmoid(Z) # ``` # # - **ReLU**: The mathematical formula for ReLu is $A = RELU(Z) = max(0, Z)$. We have provided you with the `relu` function. This function returns **two** items: the activation value "`A`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call: # ``` python # A, activation_cache = relu(Z) # ``` # For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step. # # **Exercise**: Implement the forward propagation of the *LINEAR->ACTIVATION* layer. Mathematical relation is: $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]})$ where the activation "g" can be sigmoid() or relu(). Use linear_forward() and the correct activation function. # In[113]: # GRADED FUNCTION: linear_activation_forward def linear_activation_forward(A_prev, W, b, activation): """ Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments: A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently """ if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = sigmoid(Z) ### END CODE HERE ### elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = relu(Z) ### END CODE HERE ### assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache) return A, cache # In[114]: A_prev, W, b = linear_activation_forward_test_case() A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid") print("With sigmoid: A = " + str(A)) A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu") print("With ReLU: A = " + str(A)) # **Expected output**: # # <table style="width:35%"> # <tr> # <td> **With sigmoid: A ** </td> # <td > [[ 0.96890023 0.11013289]]</td> # </tr> # <tr> # <td> **With ReLU: A ** </td> # <td > [[ 3.43896131 0. ]]</td> # </tr> # </table> # # **Note**: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers. # ### d) L-Layer Model # # For even more convenience when implementing the $L$-layer Neural Net, you will need a function that replicates the previous one (`linear_activation_forward` with RELU) $L-1$ times, then follows that with one `linear_activation_forward` with SIGMOID. # # <img src="images/model_architecture_kiank.png" style="width:600px;height:300px;"> # <caption><center> **Figure 2** : *[LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model</center></caption><br> # # **Exercise**: Implement the forward propagation of the above model. # # **Instruction**: In the code below, the variable `AL` will denote $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]} A^{[L-1]} + b^{[L]})$. (This is sometimes also called `Yhat`, i.e., this is $\hat{Y}$.) # # **Tips**: # - Use the functions you had previously written # - Use a for loop to replicate [LINEAR->RELU] (L-1) times # - Don't forget to keep track of the caches in the "caches" list. To add a new value `c` to a `list`, you can use `list.append(c)`. # In[115]: # GRADED FUNCTION: L_model_forward def L_model_forward(X, parameters): """ Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2) the cache of linear_sigmoid_forward() (there is one, indexed L-1) """ caches = [] A = X L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A ### START CODE HERE ### (≈ 2 lines of code) A, cache = linear_activation_forward(A_prev, parameters["W"+str(l)], parameters["b"+str(l)], activation = "relu") caches.append(cache) ### END CODE HERE ### # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. ### START CODE HERE ### (≈ 2 lines of code) AL, cache = linear_activation_forward(A, parameters["W"+str(L)], parameters["b"+str(L)], activation = "sigmoid") caches.append(cache) ### END CODE HERE ### assert(AL.shape == (1,X.shape[1])) return AL, caches # In[116]: X, parameters = L_model_forward_test_case_2hidden() AL, caches = L_model_forward(X, parameters) print("AL = " + str(AL)) print("Length of caches list = " + str(len(caches))) # <table style="width:50%"> # <tr> # <td> **AL** </td> # <td > [[ 0.03921668 0.70498921 0.19734387 0.04728177]]</td> # </tr> # <tr> # <td> **Length of caches list ** </td> # <td > 3 </td> # </tr> # </table> # Great! Now you have a full forward propagation that takes the input X and outputs a row vector $A^{[L]}$ containing your predictions. It also records all intermediate values in "caches". Using $A^{[L]}$, you can compute the cost of your predictions. # ## 5 - Cost function # # Now you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning. # # **Exercise**: Compute the cross-entropy cost $J$, using the following formula: $$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)) \tag{7}$$ # # In[117]: # GRADED FUNCTION: compute_cost def compute_cost(AL, Y): """ Implement the cost function defined by equation (7). Arguments: AL -- probability vector corresponding to your label predictions, shape (1, number of examples) Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns: cost -- cross-entropy cost """ m = Y.shape[1] # Compute loss from aL and y. ### START CODE HERE ### (≈ 1 lines of code) cost = -1/m*np.sum(np.multiply(np.log(AL),Y)+np.multiply(np.log(1-AL),1-Y)) ### END CODE HERE ### cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17). assert(cost.shape == ()) return cost # In[118]: Y, AL = compute_cost_test_case() print("cost = " + str(compute_cost(AL, Y))) # **Expected Output**: # # <table> # # <tr> # <td>**cost** </td> # <td> 0.41493159961539694</td> # </tr> # </table> # ## 6 - Backward propagation module # # Just like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters. # # **Reminder**: # <img src="images/backprop_kiank.png" style="width:650px;height:250px;"> # <caption><center> **Figure 3** : Forward and Backward propagation for *LINEAR->RELU->LINEAR->SIGMOID* <br> *The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.* </center></caption> # # <!-- # For those of you who are expert in calculus (you don't need to be to do this assignment), the chain rule of calculus can be used to derive the derivative of the loss $\mathcal{L}$ with respect to $z^{[1]}$ in a 2-layer network as follows: # # $$\frac{d \mathcal{L}(a^{[2]},y)}{{dz^{[1]}}} = \frac{d\mathcal{L}(a^{[2]},y)}{{da^{[2]}}}\frac{{da^{[2]}}}{{dz^{[2]}}}\frac{{dz^{[2]}}}{{da^{[1]}}}\frac{{da^{[1]}}}{{dz^{[1]}}} \tag{8} $$ # # In order to calculate the gradient $dW^{[1]} = \frac{\partial L}{\partial W^{[1]}}$, you use the previous chain rule and you do $dW^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial W^{[1]}}$. During the backpropagation, at each step you multiply your current gradient by the gradient corresponding to the specific layer to get the gradient you wanted. # # Equivalently, in order to calculate the gradient $db^{[1]} = \frac{\partial L}{\partial b^{[1]}}$, you use the previous chain rule and you do $db^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial b^{[1]}}$. # # This is why we talk about **backpropagation**. # !--> # # Now, similar to forward propagation, you are going to build the backward propagation in three steps: # - LINEAR backward # - LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation # - [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID backward (whole model) # ### 6.1 - Linear backward # # For layer $l$, the linear part is: $Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]}$ (followed by an activation). # # Suppose you have already calculated the derivative $dZ^{[l]} = \frac{\partial \mathcal{L} }{\partial Z^{[l]}}$. You want to get $(dW^{[l]}, db^{[l]} dA^{[l-1]})$. # # <img src="images/linearback_kiank.png" style="width:250px;height:300px;"> # <caption><center> **Figure 4** </center></caption> # # The three outputs $(dW^{[l]}, db^{[l]}, dA^{[l]})$ are computed using the input $dZ^{[l]}$.Here are the formulas you need: # $$ dW^{[l]} = \frac{\partial \mathcal{L} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} \tag{8}$$ # $$ db^{[l]} = \frac{\partial \mathcal{L} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}\tag{9}$$ # $$ dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} \tag{10}$$ # # **Exercise**: Use the 3 formulas above to implement linear_backward(). # In[119]: # GRADED FUNCTION: linear_backward def linear_backward(dZ, cache): """ Implement the linear portion of backward propagation for a single layer (layer l) Arguments: dZ -- Gradient of the cost with respect to the linear output (of current layer l) cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ A_prev, W, b = cache m = A_prev.shape[1] ### START CODE HERE ### (≈ 3 lines of code) dW = 1/m*np.dot(dZ, A_prev.T) db = 1/m*np.sum(dZ, axis=1, keepdims=True) dA_prev = np.dot(W.T, dZ) ### END CODE HERE ### assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db # In[120]: # Set up some test inputs dZ, linear_cache = linear_backward_test_case() dA_prev, dW, db = linear_backward(dZ, linear_cache) print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) # **Expected Output**: # # <table style="width:90%"> # <tr> # <td> **dA_prev** </td> # <td > [[ 0.51822968 -0.19517421] # [-0.40506361 0.15255393] # [ 2.37496825 -0.89445391]] </td> # </tr> # # <tr> # <td> **dW** </td> # <td > [[-0.10076895 1.40685096 1.64992505]] </td> # </tr> # # <tr> # <td> **db** </td> # <td> [[ 0.50629448]] </td> # </tr> # # </table> # # # ### 6.2 - Linear-Activation backward # # Next, you will create a function that merges the two helper functions: **`linear_backward`** and the backward step for the activation **`linear_activation_backward`**. # # To help you implement `linear_activation_backward`, we provided two backward functions: # - **`sigmoid_backward`**: Implements the backward propagation for SIGMOID unit. You can call it as follows: # # ```python # dZ = sigmoid_backward(dA, activation_cache) # ``` # # - **`relu_backward`**: Implements the backward propagation for RELU unit. You can call it as follows: # # ```python # dZ = relu_backward(dA, activation_cache) # ``` # # If $g(.)$ is the activation function, # `sigmoid_backward` and `relu_backward` compute $$dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}) \tag{11}$$. # # **Exercise**: Implement the backpropagation for the *LINEAR->ACTIVATION* layer. # In[121]: # GRADED FUNCTION: linear_activation_backward def linear_activation_backward(dA, cache, activation): """ Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments: dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ linear_cache, activation_cache = cache if activation == "relu": ### START CODE HERE ### (≈ 2 lines of code) dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward (dZ, linear_cache) ### END CODE HERE ### elif activation == "sigmoid": ### START CODE HERE ### (≈ 2 lines of code) dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward (dZ, linear_cache) ### END CODE HERE ### return dA_prev, dW, db # In[122]: AL, linear_activation_cache = linear_activation_backward_test_case() dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid") print ("sigmoid:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db) + "\n") dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu") print ("relu:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) # **Expected output with sigmoid:** # # <table style="width:100%"> # <tr> # <td > dA_prev </td> # <td >[[ 0.11017994 0.01105339] # [ 0.09466817 0.00949723] # [-0.05743092 -0.00576154]] </td> # # </tr> # # <tr> # <td > dW </td> # <td > [[ 0.10266786 0.09778551 -0.01968084]] </td> # </tr> # # <tr> # <td > db </td> # <td > [[-0.05729622]] </td> # </tr> # </table> # # # **Expected output with relu:** # # <table style="width:100%"> # <tr> # <td > dA_prev </td> # <td > [[ 0.44090989 0. ] # [ 0.37883606 0. ] # [-0.2298228 0. ]] </td> # # </tr> # # <tr> # <td > dW </td> # <td > [[ 0.44513824 0.37371418 -0.10478989]] </td> # </tr> # # <tr> # <td > db </td> # <td > [[-0.20837892]] </td> # </tr> # </table> # # # ### 6.3 - L-Model Backward # # Now you will implement the backward function for the whole network. Recall that when you implemented the `L_model_forward` function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the `L_model_backward` function, you will iterate through all the hidden layers backward, starting from layer $L$. On each step, you will use the cached values for layer $l$ to backpropagate through layer $l$. Figure 5 below shows the backward pass. # # # <img src="images/mn_backward.png" style="width:450px;height:300px;"> # <caption><center> **Figure 5** : Backward pass </center></caption> # # ** Initializing backpropagation**: # To backpropagate through this network, we know that the output is, # $A^{[L]} = \sigma(Z^{[L]})$. Your code thus needs to compute `dAL` $= \frac{\partial \mathcal{L}}{\partial A^{[L]}}$. # To do so, use this formula (derived using calculus which you don't need in-depth knowledge of): # ```python # dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL # ``` # # You can then use this post-activation gradient `dAL` to keep going backward. As seen in Figure 5, you can now feed in `dAL` into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a `for` loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula : # # $$grads["dW" + str(l)] = dW^{[l]}\tag{15} $$ # # For example, for $l=3$ this would store $dW^{[l]}$ in `grads["dW3"]`. # # **Exercise**: Implement backpropagation for the *[LINEAR->RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model. # In[123]: # GRADED FUNCTION: L_model_backward def L_model_backward(AL, Y, caches): """ Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments: AL -- probability vector, output of the forward propagation (L_model_forward()) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) caches -- list of caches containing: every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2) the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1]) Returns: grads -- A dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... """ grads = {} L = len(caches) # the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation ### START CODE HERE ### (1 line of code) dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL ### END CODE HERE ### # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"] ### START CODE HERE ### (approx. 2 lines) current_cache = caches[L-1] grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid") ### END CODE HERE ### for l in reversed(range(L-1)): # lth layer: (RELU -> LINEAR) gradients. # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines) current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward( grads["dA" + str(l+2)], current_cache, activation = "relu") grads["dA" + str(l + 1)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp ### END CODE HERE ### return grads # In[124]: AL, Y_assess, caches = L_model_backward_test_case() grads = L_model_backward(AL, Y_assess, caches) print_grads(grads) # **Expected Output** # # <table style="width:60%"> # # <tr> # <td > dW1 </td> # <td > [[ 0.41010002 0.07807203 0.13798444 0.10502167] # [ 0. 0. 0. 0. ] # [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] </td> # </tr> # # <tr> # <td > db1 </td> # <td > [[-0.22007063] # [ 0. ] # [-0.02835349]] </td> # </tr> # # <tr> # <td > dA1 </td> # <td > [[ 0.12913162 -0.44014127] # [-0.14175655 0.48317296] # [ 0.01663708 -0.05670698]] </td> # # </tr> # </table> # # # ### 6.4 - Update Parameters # # In this section you will update the parameters of the model, using gradient descent: # # $$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{16}$$ # $$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{17}$$ # # where $\alpha$ is the learning rate. After computing the updated parameters, store them in the parameters dictionary. # **Exercise**: Implement `update_parameters()` to update your parameters using gradient descent. # # **Instructions**: # Update parameters using gradient descent on every $W^{[l]}$ and $b^{[l]}$ for $l = 1, 2, ..., L$. # # In[125]: # GRADED FUNCTION: update_parameters def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop. ### START CODE HERE ### (≈ 3 lines of code) for l in range(1, L+1): parameters['W' + str(l)] = parameters['W' + str(l)] - learning_rate*grads["dW"+str(l)] parameters['b' + str(l)] = parameters['b' + str(l)] - learning_rate*grads["db"+str(l)] ### END CODE HERE ### return parameters # In[126]: parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads, 0.1) print ("W1 = "+ str(parameters["W1"])) print ("b1 = "+ str(parameters["b1"])) print ("W2 = "+ str(parameters["W2"])) print ("b2 = "+ str(parameters["b2"])) # **Expected Output**: # # <table style="width:100%"> # <tr> # <td > W1 </td> # <td > [[-0.59562069 -0.09991781 -2.14584584 1.82662008] # [-1.76569676 -0.80627147 0.51115557 -1.18258802] # [-1.0535704 -0.86128581 0.68284052 2.20374577]] </td> # </tr> # # <tr> # <td > b1 </td> # <td > [[-0.04659241] # [-1.28888275] # [ 0.53405496]] </td> # </tr> # <tr> # <td > W2 </td> # <td > [[-0.55569196 0.0354055 1.32964895]]</td> # </tr> # # <tr> # <td > b2 </td> # <td > [[-0.84610769]] </td> # </tr> # </table> # # # ## 7 - Conclusion # # Congrats on implementing all the functions required for building a deep neural network! # # We know it was a long assignment but going forward it will only get better. The next part of the assignment is easier. # # In the next assignment you will put all these together to build two models: # - A two-layer neural network # - An L-layer neural network # # You will in fact use these models to classify cat vs non-cat images! # In[ ]:
gpl-3.0
pypot/scikit-learn
sklearn/linear_model/omp.py
127
30417
"""Orthogonal matching pursuit algorithms """ # Author: Vlad Niculae # # License: BSD 3 clause import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel, _pre_fit from ..base import RegressorMixin from ..utils import as_float_array, check_array, check_X_y from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): # check_finite=False is an optimization available only in scipy >=0.12 solve_triangular_args = {'check_finite': False} premature = """ Orthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met. """ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True, return_path=False): """Orthogonal Matching Pursuit step using the Cholesky decomposition. Parameters ---------- X : array, shape (n_samples, n_features) Input dictionary. Columns are assumed to have unit norm. y : array, shape (n_samples,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coef : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ if copy_X: X = X.copy('F') else: # even if we are allowed to overwrite, still copy it if bad order X = np.asfortranarray(X) min_float = np.finfo(X.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,)) potrs, = get_lapack_funcs(('potrs',), (X,)) alpha = np.dot(X.T, y) residual = y gamma = np.empty(0) n_active = 0 indices = np.arange(X.shape[1]) # keeping track of swapping max_features = X.shape[1] if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=X.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=X.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(np.dot(X.T, residual))) if lam < n_active or alpha[lam] ** 2 < min_float: # atom already selected or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=2) break if n_active > 0: # Updates the Cholesky decomposition of X' X L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam]) linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=2) break L[n_active, n_active] = np.sqrt(1 - v) X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam]) alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active] indices[n_active], indices[lam] = indices[lam], indices[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma residual = y - np.dot(X[:, :n_active], gamma) if tol is not None and nrm2(residual) ** 2 <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None, copy_Gram=True, copy_Xy=True, return_path=False): """Orthogonal Matching Pursuit step on a precomputed Gram matrix. This function uses the the Cholesky decomposition method. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data matrix Xy : array, shape (n_features,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol_0 : float Squared norm of y, required if tol is not None. tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coefs : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram) if copy_Xy: Xy = Xy.copy() min_float = np.finfo(Gram.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,)) potrs, = get_lapack_funcs(('potrs',), (Gram,)) indices = np.arange(len(Gram)) # keeping track of swapping alpha = Xy tol_curr = tol_0 delta = 0 gamma = np.empty(0) n_active = 0 max_features = len(Gram) if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=Gram.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=Gram.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(alpha)) if lam < n_active or alpha[lam] ** 2 < min_float: # selected same atom twice, or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=3) break if n_active > 0: L[n_active, :n_active] = Gram[lam, :n_active] linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=3) break L[n_active, n_active] = np.sqrt(1 - v) Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam]) Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam]) indices[n_active], indices[lam] = indices[lam], indices[n_active] Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma beta = np.dot(Gram[:, :n_active], gamma) alpha = Xy - beta if tol is not None: tol_curr += delta delta = np.inner(gamma, beta[:n_active]) tol_curr -= delta if abs(tol_curr) <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, return_n_iter=False): """Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form: When parametrized by the number of non-zero coefficients using `n_nonzero_coefs`: argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs} When parametrized by error using the parameter `tol`: argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol Read more in the :ref:`User Guide <omp>`. Parameters ---------- X : array, shape (n_samples, n_features) Input data. Columns are assumed to have unit norm. y : array, shape (n_samples,) or (n_samples, n_targets) Input targets n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. precompute : {True, False, 'auto'}, Whether to perform precomputations. Improves performance when n_targets or n_samples is very large. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp_gram lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ X = check_array(X, order='F', copy=copy_X) copy_X = False if y.ndim == 1: y = y.reshape(-1, 1) y = check_array(y) if y.shape[1] > 1: # subsequent targets will be affected copy_X = True if n_nonzero_coefs is None and tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1) if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > X.shape[1]: raise ValueError("The number of atoms cannot be more than the number " "of features") if precompute == 'auto': precompute = X.shape[0] > X.shape[1] if precompute: G = np.dot(X.T, X) G = np.asfortranarray(G) Xy = np.dot(X.T, y) if tol is not None: norms_squared = np.sum((y ** 2), axis=0) else: norms_squared = None return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared, copy_Gram=copy_X, copy_Xy=False, return_path=return_path) if return_path: coef = np.zeros((X.shape[1], y.shape[1], X.shape[1])) else: coef = np.zeros((X.shape[1], y.shape[1])) n_iters = [] for k in range(y.shape[1]): out = _cholesky_omp( X, y[:, k], n_nonzero_coefs, tol, copy_X=copy_X, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if y.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True, return_path=False, return_n_iter=False): """Gram Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. Read more in the :ref:`User Guide <omp>`. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data: X.T * X Xy : array, shape (n_features,) or (n_features, n_targets) Input targets multiplied by X: X.T * y n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. norms_squared : array-like, shape (n_targets,) Squared L2 norms of the lines of y. Required if tol is not None. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ Gram = check_array(Gram, order='F', copy=copy_Gram) Xy = np.asarray(Xy) if Xy.ndim > 1 and Xy.shape[1] > 1: # or subsequent target will be affected copy_Gram = True if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if tol is not None: norms_squared = [norms_squared] if n_nonzero_coefs is None and tol is None: n_nonzero_coefs = int(0.1 * len(Gram)) if tol is not None and norms_squared is None: raise ValueError('Gram OMP needs the precomputed norms in order ' 'to evaluate the error sum of squares.') if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > len(Gram): raise ValueError("The number of atoms cannot be more than the number " "of features") if return_path: coef = np.zeros((len(Gram), Xy.shape[1], len(Gram))) else: coef = np.zeros((len(Gram), Xy.shape[1])) n_iters = [] for k in range(Xy.shape[1]): out = _gram_omp( Gram, Xy[:, k], n_nonzero_coefs, norms_squared[k] if tol is not None else None, tol, copy_Gram=copy_Gram, copy_Xy=copy_Xy, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if Xy.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): """Orthogonal Matching Pursuit model (OMP) Parameters ---------- n_nonzero_coefs : int, optional Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float, optional Maximum norm of the residual. If not None, overrides n_nonzero_coefs. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. precompute : {True, False, 'auto'}, default 'auto' Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when `n_targets` or `n_samples` is very large. Note that if you already have such matrices, you can pass them directly to the fit method. Read more in the :ref:`User Guide <omp>`. Attributes ---------- coef_ : array, shape (n_features,) or (n_features, n_targets) parameter vector (w in the formula) intercept_ : float or array, shape (n_targets,) independent term in decision function. n_iter_ : int or array-like Number of active features across every target. Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars decomposition.sparse_encode """ def __init__(self, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute='auto'): self.n_nonzero_coefs = n_nonzero_coefs self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, multi_output=True, y_numeric=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std, Gram, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if self.n_nonzero_coefs is None and self.tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1) else: self.n_nonzero_coefs_ = self.n_nonzero_coefs if Gram is False: coef_, self.n_iter_ = orthogonal_mp( X, y, self.n_nonzero_coefs_, self.tol, precompute=False, copy_X=True, return_n_iter=True) else: norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None coef_, self.n_iter_ = orthogonal_mp_gram( Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol, norms_squared=norms_sq, copy_Gram=True, copy_Xy=True, return_n_iter=True) self.coef_ = coef_.T self._set_intercept(X_mean, y_mean, X_std) return self def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True, fit_intercept=True, normalize=True, max_iter=100): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied. If False, they may be overwritten. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 100 by default. Returns ------- residues: array, shape (n_samples, max_features) Residues of the prediction on the test data """ if copy: X_train = X_train.copy() y_train = y_train.copy() X_test = X_test.copy() y_test = y_test.copy() if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None, precompute=False, copy_X=False, return_path=True) if coefs.ndim == 1: coefs = coefs[:, np.newaxis] if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] return np.dot(coefs.T, X_test.T) - y_test class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin): """Cross-validated Orthogonal Matching Pursuit model (OMP) Parameters ---------- copy : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 10% of ``n_features`` but at least 5 if available. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Read more in the :ref:`User Guide <omp>`. Attributes ---------- intercept_ : float or array, shape (n_targets,) Independent term in decision function. coef_ : array, shape (n_features,) or (n_features, n_targets) Parameter vector (w in the problem formulation). n_nonzero_coefs_ : int Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds. n_iter_ : int or array-like Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds. See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars OrthogonalMatchingPursuit LarsCV LassoLarsCV decomposition.sparse_encode """ def __init__(self, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, verbose=False): self.copy = copy self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.cv = cv self.n_jobs = n_jobs self.verbose = verbose def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. y : array-like, shape [n_samples] Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True) X = as_float_array(X, copy=False, force_all_finite=False) cv = check_cv(self.cv, X, y, classifier=False) max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1]) if not self.max_iter else self.max_iter) cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_omp_path_residues)( X[train], y[train], X[test], y[test], self.copy, self.fit_intercept, self.normalize, max_iter) for train, test in cv) min_early_stop = min(fold.shape[0] for fold in cv_paths) mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]) best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1 self.n_nonzero_coefs_ = best_n_nonzero_coefs omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs, fit_intercept=self.fit_intercept, normalize=self.normalize) omp.fit(X, y) self.coef_ = omp.coef_ self.intercept_ = omp.intercept_ self.n_iter_ = omp.n_iter_ return self
bsd-3-clause
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Interface_Mesh_Types/Interface_2/HardContact_NonLinHardSoftShear/Interface_Test_Normal_Plot.py
30
2779
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; import matplotlib; import math; from matplotlib.ticker import MaxNLocator plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Normal_Stress.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(normal_strain*100,normal_stress/1000,'-r',label='Analytical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Interface Type #") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") plt.hold(True) ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Interface_Surface_Adding_axial_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain*100,normal_stress/1000,'-k',label='Numerical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Normal Strain [%]") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") ############################################################# # # # axes = plt.gca() # # # axes.set_xlim([-7,7]) # # # axes.set_ylim([-1,1]) # outfigname = "Interface_Test_Normal_Stress.pdf"; # plt.axis([0, 5.5, 90, 101]) # legend = plt.legend() # legend.get_frame().set_linewidth(0.0) # legend.get_frame().set_facecolor('none') plt.legend() plt.savefig(outfigname, bbox_inches='tight') # plt.show()
cc0-1.0
jhmatthews/cobra
source/emissiv_trend2.py
1
6722
#!/usr/bin/python # -*- coding: utf-8 -*- ''' ....University of Southampton -- JM -- 30 September 2013 ................plot_emissiv.py Synopsis: ....Plot macro atom level emissivities and other information from ....diag file Usage: .... Arguments: ''' import matplotlib.pyplot as plt import pylab as pl import numpy as np import sys import os import subprocess import read_output as rd from constants import * t_init = 8000.0 # this is the temperatrue of the blackbody imax = 20 # maximum steps we iterate over i_temp_steps = 500 # step widths in temp space MACRO = 7 # hardwire macro atom mode # now we want a list of pywind cmds # we want to make files # we want electron density # we want neutral hydrogen density and non neutral # pywindcmds = [ 1, 'n', 't', 'i', 1, 1, 1, 1, 2, 0, 'q'] pywindcmds = [ 1, 'n', 't', 'i', 1, 1, 1, 0, 'q', ] # first write these commands to a file inp = open('input_comms', 'w') for command in pywindcmds: inp.write('%s\n' % str(command)) inp.close() rd.setpars() # set standard plotting parameters, e.g. tex # set the band you want to plot emissivities over # 3000-7000 will get the balmer continuum wavemin = 3000.0 wavemax = 7000.0 # we read from a template file template.pf print 'Reading template parameter file' (keywords, values) = np.loadtxt('template.pf', dtype='string', unpack=True) # we read a number of arguments from the command line # the user can decide to change certain keywords for i in range(len(sys.argv)): keyword = sys.argv[i] np.where(keywords == 'Line_transfer()' for j in range(len(keywords)): if keywords[j] == keyword: old_value = values[j] new_value = sys.argv[i + 1] print 'Changing keyword %s from %s to %s' % (keyword, old_value, new_value) # get the line transfer mode so we know whether to get mode = int (values[np.where(keywords == 'Line_transfer()')][0]) print mode[0] if mode == MACRO: print 'Using macro atom line transfer' print mode # empty arrays to append to hbeta_list = [] matom_emissivities = [] kpkt_emissivities = [] nh_list = [] h1_list = [] ne_list = [] t_e_list = [] hbeta_quantity = [] halpha_over = [] t_bb = [] mass_loss = float(sys.argv[2]) * 1.0e-19 print 'Mass loss rate is ', mass_loss # now do the loop over temperature for i in range(imax): # obtain temperature of the star, what we ar eiterating on tstar = t_init + i * i_temp_steps # print some info for the user print 'Starting cycle ' + str(i + 1) + ' of ' + str(imax) print 'tstar = %lf' % tstar # now we open a file for temporary pf, and write to it inp = open('input.pf', 'w') # cycle through keywords and write to file for j in range(len(keywords)): # if the keyword is tstar then we are iterating over it if keywords[j] == 'tstar': inp.write("tstar %lf\n" % tstar) else: # if not just write the value stored in the values array inp.write('%s %s\n' % (keywords[j], values[j])) # close file inp.close() # pf file created, let's run it using latest vers os.system('py76c_dev input > output') # run py_wind os.system('py_wind input < input_comms > pywindout') # now get the key values from the pywind files root = 'input' h1 = rd.thinshell_read(root + '.ioncH1.dat') ne = rd.thinshell_read(root + '.ne.dat') t_e = rd.thinshell_read(root + '.te.dat') rootfolder = 'diag_input/' convergence = rd.read_convergence(rootfolder + root) print '\nconvergence fraction = %f' % convergence # now append some important values to array # we only want to append if the model has converged! if mode == MACRO and convergence == 1.0: (matom_emiss, kpkt_emiss) = rd.read_emissivity(rootfolder + root) hbeta = matom_emiss[3] nlevels_macro = len(matom_emiss) n_array = np.arange(nlevels_macro) hbeta_list.append(hbeta) hbeta_quantity.append(PI * hbeta / (2.3e23 * ne ** 2)) halpha_over.append(matom_emiss[2] / hbeta) matom_emissivities.append(matom_emiss) kpkt_emissivities.append(kpkt_emiss) if convergence == 1.0: h1_list.append(h1) ne_list.append(ne) t_e_list.append(t_e) t_bb.append(tstar) if mode == MACRO and convergence == 1.0: print '\nt_E %8.4e ne %8.4e hbeta %8.4e 4pi j /ne^2 %8.4e h1 %8.4e' \ % (t_e, ne, hbeta, 4.0 * PI * hbeta / (2.3e23 * ne ** 2), h1) print '\nt_E %8.4e ne %8.4e' % (t_e, ne) # we need to normalise hbeta to be in units of erg cm^-3 s-1 hbeta_list = np.array(hbeta_list) halpha_over = np.array(halpha_over) ne_list = np.array(ne_list) t_e_list = np.array(t_e_list) h1_list = np.array(h1_list) fig = plt.figure() # order of things to plot # t_bb = np.arange(t_init, t_init + (imax)*i_temp_steps, i_temp_steps)# this is the temperatrue of the blackbody # pi_hbeta_over_nenep = ( 4.0*PI*hbeta_list / ne_list**2 ) / 1.3e+23 # arrays of the predicted values from Osterbrock # first the array of temperatures Osterbrock gives t_e_oster = np.arange(2500, 12500, 2500) # now line intensities oster_h_beta_absolute = np.array([2.7e-25, 1.54e-25, 8.30e-26, 4.21e-26]) # 4pi j_hbeta / ne **2 values oster_h_alpha_relative = np.array([3.42, 3.10, 2.86, 2.69]) # ratios of halpha to hbeta from osterbrock oster_h_gamma_relative = np.array([0.439, 0.458, 0.470, 0.485]) # ratios of hgamma to hbeta from osterbrock oster_h_delta_relative = np.array([0.237, 0.25, 0.262, 0.271]) # ratios of hdelta to hbeta from osterbrock # if we are in macro mode we want to plot lots of things if mode == MACRO: plot_list = [halpha_over, hbeta_quantity, hbeta_list, t_bb] oster_list = [oster_h_beta_absolute, oster_h_gamma_relative, oster_h_delta_relative] ylabel = [r'$H \alpha / H \beta$', r'$4\pi j_{H \beta} / n_e^2$', r'$H \beta$', '$T_{bb}$'] else: plot_list = [ne_list, t_bb] ylabel = ['$n_e$', '$T_{bb}$'] print t_e_list, plot_list[0] # number of things to plot n = len(plot_list) for i in range(n): ax = fig.add_subplot(n / 2, 2, i + 1) print i ax.plot(t_e_list, plot_list[i]) if i == 0: ax.scatter(t_e_oster, oster_h_alpha_relative) if i == 1: ax.scatter(t_e_oster, oster_h_beta_absolute) ax.set_ylabel(ylabel[i]) ax.set_xlabel('Electron Temp') # finally, save the figures.... if mode == MACRO: plt.savefig('macro.png') else: plt.savefig('nonmacro.png')
gpl-2.0
monkeypants/MAVProxy
MAVProxy/mavproxy.py
1
46772
#!/usr/bin/env python ''' mavproxy - a MAVLink proxy program Copyright Andrew Tridgell 2011 Released under the GNU GPL version 3 or later ''' import sys, os, time, socket, signal import fnmatch, errno, threading import serial, select import traceback import select import shlex import platform import json from imp import reload try: import queue as Queue except ImportError: import Queue from builtins import input from MAVProxy.modules.lib import textconsole from MAVProxy.modules.lib import rline from MAVProxy.modules.lib import mp_module from MAVProxy.modules.lib import dumpstacks from MAVProxy.modules.lib import mp_substitute from MAVProxy.modules.lib import multiproc from MAVProxy.modules.mavproxy_link import preferred_ports # adding all this allows pyinstaller to build a working windows executable # note that using --hidden-import does not work for these modules try: multiproc.freeze_support() from pymavlink import mavwp, mavutil import matplotlib, HTMLParser try: import readline except ImportError: import pyreadline as readline except Exception: pass if __name__ == '__main__': multiproc.freeze_support() #The MAVLink version being used (None, "1.0", "2.0") mavversion = None class MPStatus(object): '''hold status information about the mavproxy''' def __init__(self): self.gps = None self.msgs = {} self.msg_count = {} self.counters = {'MasterIn' : [], 'MasterOut' : 0, 'FGearIn' : 0, 'FGearOut' : 0, 'Slave' : 0} self.setup_mode = opts.setup self.mav_error = 0 self.altitude = 0 self.last_distance_announce = 0.0 self.exit = False self.flightmode = 'MAV' self.last_mode_announce = 0 self.last_mode_announced = 'MAV' self.logdir = None self.last_heartbeat = 0 self.last_message = 0 self.heartbeat_error = False self.last_apm_msg = None self.last_apm_msg_time = 0 self.highest_msec = 0 self.have_gps_lock = False self.lost_gps_lock = False self.last_gps_lock = 0 self.watch = None self.last_streamrate1 = -1 self.last_streamrate2 = -1 self.last_seq = 0 self.armed = False def show(self, f, pattern=None): '''write status to status.txt''' if pattern is None: f.write('Counters: ') for c in self.counters: f.write('%s:%s ' % (c, self.counters[c])) f.write('\n') f.write('MAV Errors: %u\n' % self.mav_error) f.write(str(self.gps)+'\n') for m in sorted(self.msgs.keys()): if pattern is not None and not fnmatch.fnmatch(str(m).upper(), pattern.upper()): continue f.write("%u: %s\n" % (self.msg_count[m], str(self.msgs[m]))) def write(self): '''write status to status.txt''' f = open('status.txt', mode='w') self.show(f) f.close() def say_text(text, priority='important'): '''text output - default function for say()''' mpstate.console.writeln(text) def say(text, priority='important'): '''text and/or speech output''' mpstate.functions.say(text, priority) def add_input(cmd, immediate=False): '''add some command input to be processed''' if immediate: process_stdin(cmd) else: mpstate.input_queue.put(cmd) class MAVFunctions(object): '''core functions available in modules''' def __init__(self): self.process_stdin = add_input self.param_set = param_set self.get_mav_param = get_mav_param self.say = say_text # input handler can be overridden by a module self.input_handler = None class MPState(object): '''holds state of mavproxy''' def __init__(self): self.console = textconsole.SimpleConsole() self.map = None self.map_functions = {} self.vehicle_type = None self.vehicle_name = None from MAVProxy.modules.lib.mp_settings import MPSettings, MPSetting self.settings = MPSettings( [ MPSetting('link', int, 1, 'Primary Link', tab='Link', range=(0,4), increment=1), MPSetting('streamrate', int, 4, 'Stream rate link1', range=(-1,500), increment=1), MPSetting('streamrate2', int, 4, 'Stream rate link2', range=(-1,500), increment=1), MPSetting('heartbeat', int, 1, 'Heartbeat rate', range=(0,100), increment=1), MPSetting('mavfwd', bool, True, 'Allow forwarded control'), MPSetting('mavfwd_rate', bool, False, 'Allow forwarded rate control'), MPSetting('shownoise', bool, True, 'Show non-MAVLink data'), MPSetting('baudrate', int, opts.baudrate, 'baudrate for new links', range=(0,10000000), increment=1), MPSetting('rtscts', bool, opts.rtscts, 'enable flow control'), MPSetting('select_timeout', float, 0.01, 'select timeout'), MPSetting('altreadout', int, 10, 'Altitude Readout', range=(0,100), increment=1, tab='Announcements'), MPSetting('distreadout', int, 200, 'Distance Readout', range=(0,10000), increment=1), MPSetting('moddebug', int, opts.moddebug, 'Module Debug Level', range=(0,3), increment=1, tab='Debug'), MPSetting('script_fatal', bool, False, 'fatal error on bad script', tab='Debug'), MPSetting('compdebug', int, 0, 'Computation Debug Mask', range=(0,3), tab='Debug'), MPSetting('flushlogs', bool, False, 'Flush logs on every packet'), MPSetting('requireexit', bool, False, 'Require exit command'), MPSetting('wpupdates', bool, True, 'Announce waypoint updates'), MPSetting('basealt', int, 0, 'Base Altitude', range=(0,30000), increment=1, tab='Altitude'), MPSetting('wpalt', int, 100, 'Default WP Altitude', range=(0,10000), increment=1), MPSetting('rallyalt', int, 90, 'Default Rally Altitude', range=(0,10000), increment=1), MPSetting('terrainalt', str, 'Auto', 'Use terrain altitudes', choice=['Auto','True','False']), MPSetting('rally_breakalt', int, 40, 'Default Rally Break Altitude', range=(0,10000), increment=1), MPSetting('rally_flags', int, 0, 'Default Rally Flags', range=(0,10000), increment=1), MPSetting('source_system', int, 255, 'MAVLink Source system', range=(0,255), increment=1, tab='MAVLink'), MPSetting('source_component', int, 0, 'MAVLink Source component', range=(0,255), increment=1), MPSetting('target_system', int, 0, 'MAVLink target system', range=(0,255), increment=1), MPSetting('target_component', int, 0, 'MAVLink target component', range=(0,255), increment=1), MPSetting('state_basedir', str, None, 'base directory for logs and aircraft directories'), MPSetting('allow_unsigned', bool, True, 'whether unsigned packets will be accepted'), MPSetting('dist_unit', str, 'm', 'distance unit', choice=['m', 'nm', 'miles'], tab='Units'), MPSetting('height_unit', str, 'm', 'height unit', choice=['m', 'feet']), MPSetting('speed_unit', str, 'm/s', 'height unit', choice=['m/s', 'knots', 'mph']), MPSetting('vehicle_name', str, '', 'Vehicle Name', tab='Vehicle'), ]) self.completions = { "script" : ["(FILENAME)"], "set" : ["(SETTING)"], "status" : ["(VARIABLE)"], "module" : ["list", "load (AVAILMODULES)", "<unload|reload> (LOADEDMODULES)"] } self.status = MPStatus() # master mavlink device self.mav_master = None # mavlink outputs self.mav_outputs = [] self.sysid_outputs = {} # SITL output self.sitl_output = None self.mav_param_by_sysid = {} self.mav_param_by_sysid[(self.settings.target_system,self.settings.target_component)] = mavparm.MAVParmDict() self.modules = [] self.public_modules = {} self.functions = MAVFunctions() self.select_extra = {} self.continue_mode = False self.aliases = {} import platform self.system = platform.system() self.multi_instance = {} self.instance_count = {} self.is_sitl = False self.start_time_s = time.time() self.attitude_time_s = 0 @property def mav_param(self): '''map mav_param onto the current target system parameters''' compid = self.settings.target_component if compid == 0: compid = 1 sysid = (self.settings.target_system, compid) if not sysid in self.mav_param_by_sysid: self.mav_param_by_sysid[sysid] = mavparm.MAVParmDict() return self.mav_param_by_sysid[sysid] def module(self, name): '''Find a public module (most modules are private)''' if name in self.public_modules: return self.public_modules[name] return None def master(self): '''return the currently chosen mavlink master object''' if len(self.mav_master) == 0: return None if self.settings.link > len(self.mav_master): self.settings.link = 1 # try to use one with no link error if not self.mav_master[self.settings.link-1].linkerror: return self.mav_master[self.settings.link-1] for m in self.mav_master: if not m.linkerror: return m return self.mav_master[self.settings.link-1] def get_mav_param(param, default=None): '''return a EEPROM parameter value''' return mpstate.mav_param.get(param, default) def param_set(name, value, retries=3): '''set a parameter''' name = name.upper() return mpstate.mav_param.mavset(mpstate.master(), name, value, retries=retries) def cmd_script(args): '''run a script''' if len(args) < 1: print("usage: script <filename>") return run_script(args[0]) def cmd_set(args): '''control mavproxy options''' mpstate.settings.command(args) def cmd_status(args): '''show status''' if len(args) == 0: mpstate.status.show(sys.stdout, pattern=None) else: for pattern in args: mpstate.status.show(sys.stdout, pattern=pattern) def cmd_setup(args): mpstate.status.setup_mode = True mpstate.rl.set_prompt("") def cmd_reset(args): print("Resetting master") mpstate.master().reset() def cmd_watch(args): '''watch a mavlink packet pattern''' if len(args) == 0: mpstate.status.watch = None return mpstate.status.watch = args print("Watching %s" % mpstate.status.watch) def generate_kwargs(args): kwargs = {} module_components = args.split(":{", 1) module_name = module_components[0] if (len(module_components) == 2 and module_components[1].endswith("}")): # assume json try: module_args = "{"+module_components[1] kwargs = json.loads(module_args) except ValueError as e: print('Invalid JSON argument: {0} ({1})'.format(module_args, repr(e))) return (module_name, kwargs) def load_module(modname, quiet=False, **kwargs): '''load a module''' modpaths = ['MAVProxy.modules.mavproxy_%s' % modname, modname] for (m,pm) in mpstate.modules: if m.name == modname and not modname in mpstate.multi_instance: if not quiet: print("module %s already loaded" % modname) # don't report an error return True ex = None for modpath in modpaths: try: m = import_package(modpath) reload(m) module = m.init(mpstate, **kwargs) if isinstance(module, mp_module.MPModule): mpstate.modules.append((module, m)) if not quiet: if kwargs: print("Loaded module %s with kwargs = %s" % (modname, kwargs)) else: print("Loaded module %s" % (modname,)) return True else: ex = "%s.init did not return a MPModule instance" % modname break except ImportError as msg: ex = msg if mpstate.settings.moddebug > 1: import traceback print(traceback.format_exc()) print("Failed to load module: %s. Use 'set moddebug 3' in the MAVProxy console to enable traceback" % ex) return False def unload_module(modname): '''unload a module''' for (m,pm) in mpstate.modules: if m.name == modname: if hasattr(m, 'unload'): m.unload() mpstate.modules.remove((m,pm)) print("Unloaded module %s" % modname) return True print("Unable to find module %s" % modname) return False def cmd_module(args): '''module commands''' usage = "usage: module <list|load|reload|unload>" if len(args) < 1: print(usage) return if args[0] == "list": for (m,pm) in mpstate.modules: print("%s: %s" % (m.name, m.description)) elif args[0] == "load": if len(args) < 2: print("usage: module load <name>") return (modname, kwargs) = generate_kwargs(args[1]) try: load_module(modname, **kwargs) except TypeError as ex: print(ex) print("%s module does not support keyword arguments"% modname) return elif args[0] == "reload": if len(args) < 2: print("usage: module reload <name>") return (modname, kwargs) = generate_kwargs(args[1]) pmodule = None for (m,pm) in mpstate.modules: if m.name == modname: pmodule = pm if pmodule is None: print("Module %s not loaded" % modname) return if unload_module(modname): import zipimport try: reload(pmodule) except ImportError: clear_zipimport_cache() reload(pmodule) try: if load_module(modname, quiet=True, **kwargs): print("Reloaded module %s" % modname) except TypeError: print("%s module does not support keyword arguments" % modname) elif args[0] == "unload": if len(args) < 2: print("usage: module unload <name>") return modname = os.path.basename(args[1]) unload_module(modname) else: print(usage) def cmd_alias(args): '''alias commands''' usage = "usage: alias <add|remove|list>" if len(args) < 1 or args[0] == "list": if len(args) >= 2: wildcard = args[1].upper() else: wildcard = '*' for a in sorted(mpstate.aliases.keys()): if fnmatch.fnmatch(a.upper(), wildcard): print("%-15s : %s" % (a, mpstate.aliases[a])) elif args[0] == "add": if len(args) < 3: print(usage) return a = args[1] mpstate.aliases[a] = ' '.join(args[2:]) elif args[0] == "remove": if len(args) != 2: print(usage) return a = args[1] if a in mpstate.aliases: mpstate.aliases.pop(a) else: print("no alias %s" % a) else: print(usage) return def clear_zipimport_cache(): """Clear out cached entries from _zip_directory_cache. See http://www.digi.com/wiki/developer/index.php/Error_messages""" import sys, zipimport syspath_backup = list(sys.path) zipimport._zip_directory_cache.clear() # load back items onto sys.path sys.path = syspath_backup # add this too: see https://mail.python.org/pipermail/python-list/2005-May/353229.html sys.path_importer_cache.clear() # http://stackoverflow.com/questions/211100/pythons-import-doesnt-work-as-expected # has info on why this is necessary. def import_package(name): """Given a package name like 'foo.bar.quux', imports the package and returns the desired module.""" import zipimport try: mod = __import__(name) except ImportError: clear_zipimport_cache() mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod command_map = { 'script' : (cmd_script, 'run a script of MAVProxy commands'), 'setup' : (cmd_setup, 'go into setup mode'), 'reset' : (cmd_reset, 'reopen the connection to the MAVLink master'), 'status' : (cmd_status, 'show status'), 'set' : (cmd_set, 'mavproxy settings'), 'watch' : (cmd_watch, 'watch a MAVLink pattern'), 'module' : (cmd_module, 'module commands'), 'alias' : (cmd_alias, 'command aliases') } def shlex_quotes(value): '''see http://stackoverflow.com/questions/6868382/python-shlex-split-ignore-single-quotes''' lex = shlex.shlex(value) lex.quotes = '"' lex.whitespace_split = True lex.commenters = '' return list(lex) def process_stdin(line): '''handle commands from user''' if line is None: sys.exit(0) # allow for modules to override input handling if mpstate.functions.input_handler is not None: mpstate.functions.input_handler(line) return line = line.strip() if mpstate.status.setup_mode: # in setup mode we send strings straight to the master if line == '.': mpstate.status.setup_mode = False mpstate.status.flightmode = "MAV" mpstate.rl.set_prompt("MAV> ") return if line != '+++': line += '\r' for c in line: time.sleep(0.01) mpstate.master().write(c) return if not line: return try: args = shlex_quotes(line) except Exception as e: print("Caught shlex exception: %s" % e.message); return cmd = args[0] while cmd in mpstate.aliases: line = mpstate.aliases[cmd] args = shlex.split(line) + args[1:] cmd = args[0] if cmd == 'help': k = command_map.keys() k.sort() for cmd in k: (fn, help) = command_map[cmd] print("%-15s : %s" % (cmd, help)) return if cmd == 'exit' and mpstate.settings.requireexit: mpstate.status.exit = True return if not cmd in command_map: for (m,pm) in mpstate.modules: if hasattr(m, 'unknown_command'): try: if m.unknown_command(args): return except Exception as e: print("ERROR in command: %s" % str(e)) print("Unknown command '%s'" % line) return (fn, help) = command_map[cmd] try: fn(args[1:]) except Exception as e: print("ERROR in command %s: %s" % (args[1:], str(e))) if mpstate.settings.moddebug > 1: traceback.print_exc() def process_master(m): '''process packets from the MAVLink master''' try: s = m.recv(16*1024) except Exception: time.sleep(0.1) return # prevent a dead serial port from causing the CPU to spin. The user hitting enter will # cause it to try and reconnect if len(s) == 0: time.sleep(0.1) return if (mpstate.settings.compdebug & 1) != 0: return if mpstate.logqueue_raw: mpstate.logqueue_raw.put(bytearray(s)) if mpstate.status.setup_mode: if mpstate.system == 'Windows': # strip nsh ansi codes s = s.replace("\033[K","") sys.stdout.write(str(s)) sys.stdout.flush() return global mavversion if m.first_byte and mavversion is None: m.auto_mavlink_version(s) msgs = m.mav.parse_buffer(s) if msgs: for msg in msgs: sysid = msg.get_srcSystem() if sysid in mpstate.sysid_outputs: # the message has been handled by a specialised handler for this system continue if getattr(m, '_timestamp', None) is None: m.post_message(msg) if msg.get_type() == "BAD_DATA": if opts.show_errors: mpstate.console.writeln("MAV error: %s" % msg) mpstate.status.mav_error += 1 def process_mavlink(slave): '''process packets from MAVLink slaves, forwarding to the master''' try: buf = slave.recv() except socket.error: return try: global mavversion if slave.first_byte and mavversion is None: slave.auto_mavlink_version(buf) msgs = slave.mav.parse_buffer(buf) except mavutil.mavlink.MAVError as e: mpstate.console.error("Bad MAVLink slave message from %s: %s" % (slave.address, e.message)) return if msgs is None: return if mpstate.settings.mavfwd and not mpstate.status.setup_mode: for m in msgs: mpstate.master().write(m.get_msgbuf()) if mpstate.status.watch: for msg_type in mpstate.status.watch: if fnmatch.fnmatch(m.get_type().upper(), msg_type.upper()): mpstate.console.writeln('> '+ str(m)) break mpstate.status.counters['Slave'] += 1 def mkdir_p(dir): '''like mkdir -p''' if not dir: return if dir.endswith("/"): mkdir_p(dir[:-1]) return if os.path.isdir(dir): return mkdir_p(os.path.dirname(dir)) os.mkdir(dir) def log_writer(): '''log writing thread''' while True: mpstate.logfile_raw.write(bytearray(mpstate.logqueue_raw.get())) timeout = time.time() + 10 while not mpstate.logqueue_raw.empty() and time.time() < timeout: mpstate.logfile_raw.write(mpstate.logqueue_raw.get()) while not mpstate.logqueue.empty() and time.time() < timeout: mpstate.logfile.write(mpstate.logqueue.get()) if mpstate.settings.flushlogs or time.time() >= timeout: mpstate.logfile.flush() mpstate.logfile_raw.flush() # If state_basedir is NOT set then paths for logs and aircraft # directories are relative to mavproxy's cwd def log_paths(): '''Returns tuple (logdir, telemetry_log_filepath, raw_telemetry_log_filepath)''' if opts.aircraft is not None: dirname = "" if opts.mission is not None: print(opts.mission) dirname += "%s/logs/%s/Mission%s" % (opts.aircraft, time.strftime("%Y-%m-%d"), opts.mission) else: dirname += "%s/logs/%s" % (opts.aircraft, time.strftime("%Y-%m-%d")) # dirname is currently relative. Possibly add state_basedir: if mpstate.settings.state_basedir is not None: dirname = os.path.join(mpstate.settings.state_basedir,dirname) mkdir_p(dirname) highest = None for i in range(1, 10000): fdir = os.path.join(dirname, 'flight%u' % i) if not os.path.exists(fdir): break highest = fdir if mpstate.continue_mode and highest is not None: fdir = highest elif os.path.exists(fdir): print("Flight logs full") sys.exit(1) logname = 'flight.tlog' logdir = fdir else: logname = os.path.basename(opts.logfile) dir_path = os.path.dirname(opts.logfile) if not os.path.isabs(dir_path) and mpstate.settings.state_basedir is not None: dir_path = os.path.join(mpstate.settings.state_basedir,dir_path) logdir = dir_path mkdir_p(logdir) return (logdir, os.path.join(logdir, logname), os.path.join(logdir, logname + '.raw')) def open_telemetry_logs(logpath_telem, logpath_telem_raw): '''open log files''' if opts.append_log or opts.continue_mode: mode = 'ab' else: mode = 'wb' try: mpstate.logfile = open(logpath_telem, mode=mode) mpstate.logfile_raw = open(logpath_telem_raw, mode=mode) print("Log Directory: %s" % mpstate.status.logdir) print("Telemetry log: %s" % logpath_telem) #make sure there's enough free disk space for the logfile (>200Mb) #statvfs doesn't work in Windows if platform.system() != 'Windows': stat = os.statvfs(logpath_telem) if stat.f_bfree*stat.f_bsize < 209715200: print("ERROR: Not enough free disk space for logfile") mpstate.status.exit = True return # use a separate thread for writing to the logfile to prevent # delays during disk writes (important as delays can be long if camera # app is running) t = threading.Thread(target=log_writer, name='log_writer') t.daemon = True t.start() except Exception as e: print("ERROR: opening log file for writing: %s" % e) mpstate.status.exit = True return def set_stream_rates(): '''set mavlink stream rates''' if (not msg_period.trigger() and mpstate.status.last_streamrate1 == mpstate.settings.streamrate and mpstate.status.last_streamrate2 == mpstate.settings.streamrate2): return mpstate.status.last_streamrate1 = mpstate.settings.streamrate mpstate.status.last_streamrate2 = mpstate.settings.streamrate2 for master in mpstate.mav_master: if master.linknum == 0: rate = mpstate.settings.streamrate else: rate = mpstate.settings.streamrate2 if rate != -1 and mpstate.settings.streamrate != -1: master.mav.request_data_stream_send(mpstate.settings.target_system, mpstate.settings.target_component, mavutil.mavlink.MAV_DATA_STREAM_ALL, rate, 1) def check_link_status(): '''check status of master links''' tnow = time.time() if mpstate.status.last_message != 0 and tnow > mpstate.status.last_message + 5: say("no link") mpstate.status.heartbeat_error = True for master in mpstate.mav_master: if not master.linkerror and (tnow > master.last_message + 5 or master.portdead): say("link %s down" % (mp_module.MPModule.link_label(master))) master.linkerror = True def send_heartbeat(master): if master.mavlink10(): master.mav.heartbeat_send(mavutil.mavlink.MAV_TYPE_GCS, mavutil.mavlink.MAV_AUTOPILOT_INVALID, 0, 0, 0) else: MAV_GROUND = 5 MAV_AUTOPILOT_NONE = 4 master.mav.heartbeat_send(MAV_GROUND, MAV_AUTOPILOT_NONE) def periodic_tasks(): '''run periodic checks''' if mpstate.status.setup_mode: return if (mpstate.settings.compdebug & 2) != 0: return if mpstate.settings.heartbeat != 0: heartbeat_period.frequency = mpstate.settings.heartbeat if heartbeat_period.trigger() and mpstate.settings.heartbeat != 0: mpstate.status.counters['MasterOut'] += 1 for master in mpstate.mav_master: send_heartbeat(master) if heartbeat_check_period.trigger(): check_link_status() set_stream_rates() # call optional module idle tasks. These are called at several hundred Hz for (m,pm) in mpstate.modules: if hasattr(m, 'idle_task'): try: m.idle_task() except Exception as msg: if mpstate.settings.moddebug == 1: print(msg) elif mpstate.settings.moddebug > 1: exc_type, exc_value, exc_traceback = sys.exc_info() traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) # also see if the module should be unloaded: if m.needs_unloading: unload_module(m.name) def main_loop(): '''main processing loop''' if not mpstate.status.setup_mode and not opts.nowait: for master in mpstate.mav_master: if master.linknum != 0: break print("Waiting for heartbeat from %s" % master.address) send_heartbeat(master) master.wait_heartbeat(timeout=0.1) set_stream_rates() while True: if mpstate is None or mpstate.status.exit: return while not mpstate.input_queue.empty(): line = mpstate.input_queue.get() mpstate.input_count += 1 cmds = line.split(';') if len(cmds) == 1 and cmds[0] == "": mpstate.empty_input_count += 1 for c in cmds: process_stdin(c) for master in mpstate.mav_master: if master.fd is None: if master.port.inWaiting() > 0: process_master(master) periodic_tasks() rin = [] for master in mpstate.mav_master: if master.fd is not None and not master.portdead: rin.append(master.fd) for m in mpstate.mav_outputs: rin.append(m.fd) for sysid in mpstate.sysid_outputs: m = mpstate.sysid_outputs[sysid] rin.append(m.fd) if rin == []: time.sleep(0.0001) continue for fd in mpstate.select_extra: rin.append(fd) try: (rin, win, xin) = select.select(rin, [], [], mpstate.settings.select_timeout) except select.error: continue if mpstate is None: return for fd in rin: if mpstate is None: return for master in mpstate.mav_master: if fd == master.fd: process_master(master) if mpstate is None: return continue for m in mpstate.mav_outputs: if fd == m.fd: process_mavlink(m) if mpstate is None: return continue for sysid in mpstate.sysid_outputs: m = mpstate.sysid_outputs[sysid] if fd == m.fd: process_mavlink(m) if mpstate is None: return continue # this allow modules to register their own file descriptors # for the main select loop if fd in mpstate.select_extra: try: # call the registered read function (fn, args) = mpstate.select_extra[fd] fn(args) except Exception as msg: if mpstate.settings.moddebug == 1: print(msg) # on an exception, remove it from the select list mpstate.select_extra.pop(fd) def input_loop(): '''wait for user input''' while mpstate.status.exit != True: try: if mpstate.status.exit != True: line = input(mpstate.rl.prompt) except EOFError: mpstate.status.exit = True sys.exit(1) mpstate.input_queue.put(line) def run_script(scriptfile): '''run a script file''' try: f = open(scriptfile, mode='r') except Exception: return mpstate.console.writeln("Running script %s" % scriptfile) sub = mp_substitute.MAVSubstitute() for line in f: line = line.strip() if line == "" or line.startswith('#'): continue try: line = sub.substitute(line, os.environ) except mp_substitute.MAVSubstituteError as ex: print("Bad variable: %s" % str(ex)) if mpstate.settings.script_fatal: sys.exit(1) continue if line.startswith('@'): line = line[1:] else: mpstate.console.writeln("-> %s" % line) process_stdin(line) f.close() def set_mav_version(mav10, mav20, autoProtocol, mavversionArg): '''Set the Mavlink version based on commandline options''' # if(mav10 == True or mav20 == True or autoProtocol == True): # print("Warning: Using deprecated --mav10, --mav20 or --auto-protocol options. Use --mavversion instead") #sanity check the options if (mav10 == True or mav20 == True) and autoProtocol == True: print("Error: Can't have [--mav10, --mav20] and --auto-protocol both True") sys.exit(1) if mav10 == True and mav20 == True: print("Error: Can't have --mav10 and --mav20 both True") sys.exit(1) if mavversionArg is not None and (mav10 == True or mav20 == True or autoProtocol == True): print("Error: Can't use --mavversion with legacy (--mav10, --mav20 or --auto-protocol) options") sys.exit(1) #and set the specific mavlink version (False = autodetect) global mavversion if mavversionArg == "1.0" or mav10 == True: os.environ['MAVLINK09'] = '1' mavversion = "1" else: os.environ['MAVLINK20'] = '1' mavversion = "2" if __name__ == '__main__': from optparse import OptionParser parser = OptionParser("mavproxy.py [options]") parser.add_option("--master", dest="master", action='append', metavar="DEVICE[,BAUD]", help="MAVLink master port and optional baud rate", default=[]) parser.add_option("", "--force-connected", dest="force_connected", help="Use master even if initial connection fails", action='store_true', default=False) parser.add_option("--out", dest="output", action='append', metavar="DEVICE[,BAUD]", help="MAVLink output port and optional baud rate", default=[]) parser.add_option("--baudrate", dest="baudrate", type='int', help="default serial baud rate", default=57600) parser.add_option("--sitl", dest="sitl", default=None, help="SITL output port") parser.add_option("--streamrate",dest="streamrate", default=4, type='int', help="MAVLink stream rate") parser.add_option("--source-system", dest='SOURCE_SYSTEM', type='int', default=255, help='MAVLink source system for this GCS') parser.add_option("--source-component", dest='SOURCE_COMPONENT', type='int', default=0, help='MAVLink source component for this GCS') parser.add_option("--target-system", dest='TARGET_SYSTEM', type='int', default=0, help='MAVLink target master system') parser.add_option("--target-component", dest='TARGET_COMPONENT', type='int', default=0, help='MAVLink target master component') parser.add_option("--logfile", dest="logfile", help="MAVLink master logfile", default='mav.tlog') parser.add_option("-a", "--append-log", dest="append_log", help="Append to log files", action='store_true', default=False) parser.add_option("--quadcopter", dest="quadcopter", help="use quadcopter controls", action='store_true', default=False) parser.add_option("--setup", dest="setup", help="start in setup mode", action='store_true', default=False) parser.add_option("--nodtr", dest="nodtr", help="disable DTR drop on close", action='store_true', default=False) parser.add_option("--show-errors", dest="show_errors", help="show MAVLink error packets", action='store_true', default=False) parser.add_option("--speech", dest="speech", help="use text to speech", action='store_true', default=False) parser.add_option("--aircraft", dest="aircraft", help="aircraft name", default=None) parser.add_option("--cmd", dest="cmd", help="initial commands", default=None, action='append') parser.add_option("--console", action='store_true', help="use GUI console") parser.add_option("--map", action='store_true', help="load map module") parser.add_option( '--load-module', action='append', default=[], help='Load the specified module. Can be used multiple times, or with a comma separated list') parser.add_option("--mav10", action='store_true', default=False, help="Use MAVLink protocol 1.0") parser.add_option("--mav20", action='store_true', default=False, help="Use MAVLink protocol 2.0") parser.add_option("--auto-protocol", action='store_true', default=False, help="Auto detect MAVLink protocol version") parser.add_option("--mavversion", type='choice', choices=['1.0', '2.0'] , help="Force MAVLink Version (1.0, 2.0). Otherwise autodetect version") parser.add_option("--nowait", action='store_true', default=False, help="don't wait for HEARTBEAT on startup") parser.add_option("-c", "--continue", dest='continue_mode', action='store_true', default=False, help="continue logs") parser.add_option("--dialect", default="ardupilotmega", help="MAVLink dialect") parser.add_option("--rtscts", action='store_true', help="enable hardware RTS/CTS flow control") parser.add_option("--moddebug", type=int, help="module debug level", default=0) parser.add_option("--mission", dest="mission", help="mission name", default=None) parser.add_option("--daemon", action='store_true', help="run in daemon mode, do not start interactive shell") parser.add_option("--non-interactive", action='store_true', help="do not start interactive shell") parser.add_option("--profile", action='store_true', help="run the Yappi python profiler") parser.add_option("--state-basedir", default=None, help="base directory for logs and aircraft directories") parser.add_option("--version", action='store_true', help="version information") parser.add_option("--default-modules", default="log,signing,wp,rally,fence,param,relay,tuneopt,arm,mode,calibration,rc,auxopt,misc,cmdlong,battery,terrain,output,adsb,layout", help='default module list') (opts, args) = parser.parse_args() if len(args) != 0: print("ERROR: mavproxy takes no position arguments; got (%s)" % str(args)) sys.exit(1) # warn people about ModemManager which interferes badly with APM and Pixhawk if os.path.exists("/usr/sbin/ModemManager"): print("WARNING: You should uninstall ModemManager as it conflicts with APM and Pixhawk") #set the Mavlink version, if required set_mav_version(opts.mav10, opts.mav20, opts.auto_protocol, opts.mavversion) from pymavlink import mavutil, mavparm mavutil.set_dialect(opts.dialect) #version information if opts.version: #pkg_resources doesn't work in the windows exe build, so read the version file try: import pkg_resources version = pkg_resources.require("mavproxy")[0].version except: start_script = os.path.join(os.environ['LOCALAPPDATA'], "MAVProxy", "version.txt") f = open(start_script, 'r') version = f.readline() print("MAVProxy is a modular ground station using the mavlink protocol") print("MAVProxy Version: " + version) sys.exit(1) # global mavproxy state mpstate = MPState() mpstate.status.exit = False mpstate.command_map = command_map mpstate.continue_mode = opts.continue_mode # queues for logging mpstate.logqueue = Queue.Queue() mpstate.logqueue_raw = Queue.Queue() if opts.speech: # start the speech-dispatcher early, so it doesn't inherit any ports from # modules/mavutil load_module('speech') serial_list = mavutil.auto_detect_serial(preferred_list=preferred_ports) if not opts.master: print('Auto-detected serial ports are:') for port in serial_list: print("%s" % port) # container for status information mpstate.settings.target_system = opts.TARGET_SYSTEM mpstate.settings.target_component = opts.TARGET_COMPONENT mpstate.mav_master = [] mpstate.rl = rline.rline("MAV> ", mpstate) def quit_handler(signum = None, frame = None): #print('Signal handler called with signal', signum) if mpstate.status.exit: print('Clean shutdown impossible, forcing an exit') sys.exit(0) else: mpstate.status.exit = True # Listen for kill signals to cleanly shutdown modules fatalsignals = [signal.SIGTERM] try: fatalsignals.append(signal.SIGHUP) fatalsignals.append(signal.SIGQUIT) except Exception: pass if opts.daemon or opts.non_interactive: # SIGINT breaks readline parsing - if we are interactive, just let things die fatalsignals.append(signal.SIGINT) for sig in fatalsignals: signal.signal(sig, quit_handler) load_module('link', quiet=True) mpstate.settings.source_system = opts.SOURCE_SYSTEM mpstate.settings.source_component = opts.SOURCE_COMPONENT # open master link for mdev in opts.master: if not mpstate.module('link').link_add(mdev, force_connected=opts.force_connected): sys.exit(1) if not opts.master and len(serial_list) == 1: print("Connecting to %s" % serial_list[0]) mpstate.module('link').link_add(serial_list[0].device) elif not opts.master and len(serial_list) > 1: print("Error: multiple possible serial ports; use --master to select a single port") sys.exit(1) elif not opts.master: wifi_device = '0.0.0.0:14550' mpstate.module('link').link_add(wifi_device) # open any mavlink output ports for port in opts.output: mpstate.mav_outputs.append(mavutil.mavlink_connection(port, baud=int(opts.baudrate), input=False)) if opts.sitl: mpstate.sitl_output = mavutil.mavudp(opts.sitl, input=False) mpstate.settings.streamrate = opts.streamrate mpstate.settings.streamrate2 = opts.streamrate if opts.state_basedir is not None: mpstate.settings.state_basedir = opts.state_basedir msg_period = mavutil.periodic_event(1.0/15) heartbeat_period = mavutil.periodic_event(1) heartbeat_check_period = mavutil.periodic_event(0.33) mpstate.input_queue = Queue.Queue() mpstate.input_count = 0 mpstate.empty_input_count = 0 if opts.setup: mpstate.rl.set_prompt("") # call this early so that logdir is setup based on --aircraft (mpstate.status.logdir, logpath_telem, logpath_telem_raw) = log_paths() for module in opts.load_module: modlist = module.split(',') for mod in modlist: process_stdin('module load %s' % (mod)) if not opts.setup: # some core functionality is in modules standard_modules = opts.default_modules.split(',') for m in standard_modules: load_module(m, quiet=True) if opts.console: process_stdin('module load console') if opts.map: process_stdin('module load map') start_scripts = [] if 'HOME' in os.environ and not opts.setup: start_script = os.path.join(os.environ['HOME'], ".mavinit.scr") start_scripts.append(start_script) if 'LOCALAPPDATA' in os.environ and not opts.setup: start_script = os.path.join(os.environ['LOCALAPPDATA'], "MAVProxy", "mavinit.scr") start_scripts.append(start_script) if (mpstate.settings.state_basedir is not None and opts.aircraft is not None): start_script = os.path.join(mpstate.settings.state_basedir, opts.aircraft, "mavinit.scr") start_scripts.append(start_script) for start_script in start_scripts: if os.path.exists(start_script): print("Running script (%s)" % (start_script)) run_script(start_script) if opts.aircraft is not None: start_script = os.path.join(opts.aircraft, "mavinit.scr") if os.path.exists(start_script): run_script(start_script) else: print("no script %s" % start_script) if opts.cmd is not None: for cstr in opts.cmd: cmds = cstr.split(';') for c in cmds: process_stdin(c) if opts.profile: import yappi # We do the import here so that we won't barf if run normally and yappi not available yappi.start() # log all packets from the master, for later replay open_telemetry_logs(logpath_telem, logpath_telem_raw) # run main loop as a thread mpstate.status.thread = threading.Thread(target=main_loop, name='main_loop') mpstate.status.thread.daemon = True mpstate.status.thread.start() # use main program for input. This ensures the terminal cleans # up on exit while (mpstate.status.exit != True): try: if opts.daemon or opts.non_interactive: time.sleep(0.1) else: input_loop() except KeyboardInterrupt: if mpstate.settings.requireexit: print("Interrupt caught. Use 'exit' to quit MAVProxy.") #Just lost the map and console, get them back: for (m,pm) in mpstate.modules: if m.name in ["map", "console"]: if hasattr(m, 'unload'): try: m.unload() except Exception: pass reload(m) m.init(mpstate) else: mpstate.status.exit = True sys.exit(1) if opts.profile: yappi.get_func_stats().print_all() yappi.get_thread_stats().print_all() #this loop executes after leaving the above loop and is for cleanup on exit for (m,pm) in mpstate.modules: if hasattr(m, 'unload'): print("Unloading module %s" % m.name) m.unload() sys.exit(1)
gpl-3.0
start-jsk/jsk_apc
demos/instance_occlsegm/instance_occlsegm_lib/_io.py
4
4202
import math import os import os.path as osp import warnings import cv2 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection from mpl_toolkits.mplot3d import Axes3D # NOQA import numpy as np import PIL.Image import skimage.io def load_off(filename): """Load OFF file. Parameters ---------- filename: str OFF filename. """ with open(filename, 'r') as f: assert 'OFF' in f.readline() verts, faces = [], [] n_verts, n_faces = None, None for line in f.readlines(): line = line.strip() if line.startswith('#') or not line: continue if n_verts is None and n_faces is None: n_verts, n_faces, _ = map(int, line.split(' ')) elif len(verts) < n_verts: verts.append([float(v) for v in line.split(' ')]) else: faces.append([int(v) for v in line.split(' ')[1:]]) verts = np.array(verts, dtype=np.float64) faces = np.array(faces, dtype=np.int64) return verts, faces def load_vtk(filename): points = None with open(filename) as f: state = None index = 0 for line in f: if line.startswith('POINTS '): _, n_points, dtype = line.split() n_points = int(n_points) points = np.empty((n_points, 3), dtype=dtype) state = 'POINTS' continue elif line.startswith('VERTICES '): warnings.warn('VERTICES is not currently supported.') _, _, n_vertices = line.split() n_vertices = int(n_vertices) # vertices = np.empty((n_vertices, 2), dtype=np.int64) state = 'VERTICES' continue if state == 'POINTS': x, y, z = line.split() xyz = np.array([x, y, z], dtype=np.float64) points[index] = xyz index += 1 elif state == 'VERTICES': # TODO(wkentaro): support this. pass return points def dump_off(filename, verts, faces): with open(filename, 'w') as f: f.write('OFF\n') n_vert = len(verts) n_face = len(faces) n_edge = 0 f.write('{} {} {}\n'.format(n_vert, n_face, n_edge)) for vert in verts: f.write(' '.join(map(str, vert)) + '\n') for face in faces: f.write(' '.join([str(len(face))] + map(str, face)) + '\n') def dump_obj(filename, verts, faces): """Dump mesh data to obj file.""" with open(filename, 'w') as f: # write vertices f.write('g\n# %d vertex\n' % len(verts)) for vert in verts: f.write('v %f %f %f\n' % tuple(vert)) # write faces f.write('# %d faces\n' % len(faces)) for face in faces: f.write('f %d %d %d\n' % tuple(face)) def _get_tile_shape(num): x_num = int(math.sqrt(num)) y_num = 0 while x_num * y_num < num: y_num += 1 return x_num, y_num def imgplot(img, title=None): if img.ndim == 2: if np.issubdtype(img.dtype, np.floating): cmap = 'jet' else: cmap = 'gray' plt.imshow(img, cmap=cmap) else: plt.imshow(img) if title is not None: plt.title(title) def show(): return plt.show() def imshow(img, window_name=None): if img.ndim == 3: img = img[:, :, ::-1] return cv2.imshow(window_name, img) def imread(*args, **kwargs): return skimage.io.imread(*args, **kwargs) def lbread(lbl_file): return np.asarray(PIL.Image.open(lbl_file)).astype(np.int32) def imsave(*args, **kwargs): if len(args) >= 1: fname = args[0] else: fname = kwargs['fname'] dirname = osp.dirname(fname) if dirname and not osp.exists(dirname): os.makedirs(dirname) return skimage.io.imsave(*args, **kwargs) def waitkey(time=0): return cv2.waitKey(time) def waitKey(time=0): warnings.warn('`waitKey` is deprecated. Please use `waitkey` instead.') return waitkey(time=time)
bsd-3-clause
spennihana/h2o-3
h2o-py/tests/testdir_algos/glm/pyunit_link_functions_gaussian_glm.py
8
1710
from __future__ import division from __future__ import print_function from past.utils import old_div import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils import pandas as pd import zipfile import statsmodels.api as sm from h2o.estimators.glm import H2OGeneralizedLinearEstimator def link_functions_gaussian(): print("Read in prostate data.") h2o_data = h2o.import_file(path=pyunit_utils.locate("smalldata/prostate/prostate_complete.csv.zip")) h2o_data.head() sm_data = pd.read_csv(zipfile.ZipFile(pyunit_utils.locate("smalldata/prostate/prostate_complete.csv.zip")). open("prostate_complete.csv")).as_matrix() sm_data_response = sm_data[:,9] sm_data_features = sm_data[:,1:9] print("Testing for family: GAUSSIAN") print("Set variables for h2o.") myY = "GLEASON" myX = ["ID","AGE","RACE","CAPSULE","DCAPS","PSA","VOL","DPROS"] print("Create models with canonical link: IDENTITY") h2o_model = H2OGeneralizedLinearEstimator(family="gaussian", link="identity",alpha=0.5, Lambda=0) h2o_model.train(x=myX, y=myY, training_frame=h2o_data) sm_model = sm.GLM(endog=sm_data_response, exog=sm_data_features, family=sm.families.Gaussian(sm.families.links.identity)).fit() print("Compare model deviances for link function identity") h2o_deviance = old_div(h2o_model.residual_deviance(), h2o_model.null_deviance()) sm_deviance = old_div(sm_model.deviance, sm_model.null_deviance) assert h2o_deviance - sm_deviance < 0.01, "expected h2o to have an equivalent or better deviance measures" if __name__ == "__main__": pyunit_utils.standalone_test(link_functions_gaussian) else: link_functions_gaussian()
apache-2.0
hsuantien/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
IvS-KULeuven/ComboCode
cc/ivs/sigproc/funclib.py
3
17319
""" Database with model functions. To be used with the L{cc.ivs.sigproc.fit.minimizer} function or with the L{evaluate} function in this module. >>> p = plt.figure() >>> x = np.linspace(-10,10,1000) >>> p = plt.plot(x,evaluate('gauss',x,[5,1.,2.,0.5]),label='gauss') >>> p = plt.plot(x,evaluate('voigt',x,[20.,1.,1.5,3.,0.5]),label='voigt') >>> p = plt.plot(x,evaluate('lorentz',x,[5,1.,2.,0.5]),label='lorentz') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) ]include figure]]ivs_sigproc_fit_funclib01.png] >>> p = plt.figure() >>> x = np.linspace(0,10,1000)[1:] >>> p = plt.plot(x,evaluate('power_law',x,[2.,3.,1.5,0,0.5]),label='power_law') >>> p = plt.plot(x,evaluate('power_law',x,[2.,3.,1.5,0,0.5])+evaluate('gauss',x,[1.,5.,0.5,0,0]),label='power_law + gauss') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) ]include figure]]ivs_sigproc_fit_funclib02.png] >>> p = plt.figure() >>> x = np.linspace(0,10,1000) >>> p = plt.plot(x,evaluate('sine',x,[1.,2.,0,0]),label='sine') >>> p = plt.plot(x,evaluate('sine_linfreqshift',x,[1.,0.5,0,0,.5]),label='sine_linfreqshift') >>> p = plt.plot(x,evaluate('sine_expfreqshift',x,[1.,0.5,0,0,1.2]),label='sine_expfreqshift') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) ]include figure]]ivs_sigproc_fit_funclib03.png] >>> p = plt.figure() >>> p = plt.plot(x,evaluate('sine',x,[1.,2.,0,0]),label='sine') >>> p = plt.plot(x,evaluate('sine_orbit',x,[1.,2.,0,0,0.1,10.,0.1]),label='sine_orbit') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) ]include figure]]ivs_sigproc_fit_funclib03a.png] >>> p = plt.figure() >>> x_single = np.linspace(0,10,1000) >>> x_double = np.vstack([x_single,x_single]) >>> p = plt.plot(x_single,evaluate('kepler_orbit',x_single,[2.5,0.,0.5,0,3,1.]),label='kepler_orbit (single)') >>> y_double = evaluate('kepler_orbit',x_double,[2.5,0.,0.5,0,3,2.,-4,2.],type='double') >>> p = plt.plot(x_double[0],y_double[0],label='kepler_orbit (double 1)') >>> p = plt.plot(x_double[1],y_double[1],label='kepler_orbit (double 2)') >>> p = plt.plot(x,evaluate('box_transit',x,[2.,0.4,0.1,0.3,0.5]),label='box_transit') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) ]include figure]]ivs_sigproc_fit_funclib04.png] >>> p = plt.figure() >>> x = np.linspace(-1,1,1000) >>> gammas = [-0.25,0.1,0.25,0.5,1,2,4] >>> y = np.array([evaluate('soft_parabola',x,[1.,0,1.,gamma]) for gamma in gammas]) divide by zero encountered in power >>> for iy,gamma in zip(y,gammas): p = plt.plot(x,iy,label="soft_parabola $\gamma$={:.2f}".format(gamma)) >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) ]include figure]]ivs_sigproc_fit_funclib05.png] >>> p = plt.figure() >>> x = np.logspace(-1,2,1000) >>> blbo = evaluate('blackbody',x,[10000.,1.],wave_units='micron',flux_units='W/m3') >>> raje = evaluate('rayleigh_jeans',x,[10000.,1.],wave_units='micron',flux_units='W/m3') >>> wien = evaluate('wien',x,[10000.,1.],wave_units='micron',flux_units='W/m3') >>> p = plt.subplot(221) >>> p = plt.title(r'$\lambda$ vs $F_\lambda$') >>> p = plt.loglog(x,blbo,label='Black Body') >>> p = plt.loglog(x,raje,label='Rayleigh-Jeans') >>> p = plt.loglog(x,wien,label='Wien') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) >>> blbo = evaluate('blackbody',x,[10000.,1.],wave_units='micron',flux_units='Jy') >>> raje = evaluate('rayleigh_jeans',x,[10000.,1.],wave_units='micron',flux_units='Jy') >>> wien = evaluate('wien',x,[10000.,1.],wave_units='micron',flux_units='Jy') >>> p = plt.subplot(223) >>> p = plt.title(r"$\lambda$ vs $F_\\nu$") >>> p = plt.loglog(x,blbo,label='Black Body') >>> p = plt.loglog(x,raje,label='Rayleigh-Jeans') >>> p = plt.loglog(x,wien,label='Wien') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) >>> x = np.logspace(0.47,3.47,1000) >>> blbo = evaluate('blackbody',x,[10000.,1.],wave_units='THz',flux_units='Jy') >>> raje = evaluate('rayleigh_jeans',x,[10000.,1.],wave_units='THz',flux_units='Jy') >>> wien = evaluate('wien',x,[10000.,1.],wave_units='THz',flux_units='Jy') >>> p = plt.subplot(224) >>> p = plt.title(r"$\\nu$ vs $F_\\nu$") >>> p = plt.loglog(x,blbo,label='Black Body') >>> p = plt.loglog(x,raje,label='Rayleigh-Jeans') >>> p = plt.loglog(x,wien,label='Wien') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) >>> blbo = evaluate('blackbody',x,[10000.,1.],wave_units='THz',flux_units='W/m3') >>> raje = evaluate('rayleigh_jeans',x,[10000.,1.],wave_units='THz',flux_units='W/m3') >>> wien = evaluate('wien',x,[10000.,1.],wave_units='THz',flux_units='W/m3') >>> p = plt.subplot(222) >>> p = plt.title(r"$\\nu$ vs $F_\lambda$") >>> p = plt.loglog(x,blbo,label='Black Body') >>> p = plt.loglog(x,raje,label='Rayleigh-Jeans') >>> p = plt.loglog(x,wien,label='Wien') >>> leg = plt.legend(loc='best') >>> leg.get_frame().set_alpha(0.5) ]include figure]]ivs_sigproc_fit_funclib06.png] """ import numpy as np from numpy import pi,cos,sin,sqrt,tan,arctan from scipy.special import erf,jn from cc.ivs.sigproc.fit import Model, Function #import ivs.timeseries.keplerorbit as kepler from cc.ivs.sed import model as sed_model import logging logger = logging.getLogger("SP.FUNCLIB") #{ Function Library def blackbody(wave_units='AA',flux_units='erg/s/cm2/AA',disc_integrated=True): """ Blackbody (T, scale). @param wave_units: wavelength units @type wave_units: string @param flux_units: flux units @type flux_units: string @param disc_integrated: sets units equal to SED models @type disc_integrated: bool """ pnames = ['T', 'scale'] function = lambda p, x: p[1]*sed_model.blackbody(x, p[0], wave_units=wave_units,\ flux_units=flux_units,\ disc_integrated=disc_integrated) function.__name__ = 'blackbody' return Function(function=function, par_names=pnames) def rayleigh_jeans(wave_units='AA',flux_units='erg/s/cm2/AA',disc_integrated=True): """ Rayleigh-Jeans tail (T, scale). @param wave_units: wavelength units @type wave_units: string @param flux_units: flux units @type flux_units: string @param disc_integrated: sets units equal to SED models @type disc_integrated: bool """ pnames = ['T', 'scale'] function = lambda p, x: p[1]*sed_model.rayleigh_jeans(x, p[0], wave_units=wave_units,\ flux_units=flux_units,\ disc_integrated=disc_integrated) function.__name__ = 'rayleigh_jeans' return Function(function=function, par_names=pnames) def wien(wave_units='AA',flux_units='erg/s/cm2/AA',disc_integrated=True): """ Wien approximation (T, scale). @param wave_units: wavelength units @type wave_units: string @param flux_units: flux units @type flux_units: string @param disc_integrated: sets units equal to SED models @type disc_integrated: bool """ pnames = ['T', 'scale'] function = lambda p, x: p[1]*sed_model.wien(x, p[0], wave_units=wave_units,\ flux_units=flux_units,\ disc_integrated=disc_integrated) function.__name__ = 'wien' return Function(function=function, par_names=pnames) # def kepler_orbit(type='single'): # """ # Kepler orbits ((p,t0,e,omega,K,v0) or (p,t0,e,omega,K1,v01,K2,v02)) # # A single kepler orbit # parameters are: [p, t0, e, omega, k, v0] # # A double kepler orbit # parameters are: [p, t0, e, omega, k_1, v0_1, k_2, v0_2] # Warning: This function uses 2d input and output! # """ # if type == 'single': # pnames = ['p','t0','e','omega','k','v0'] # function = lambda p, x: kepler.radial_velocity(p, times=x, itermax=8) # function.__name__ = 'kepler_orbit_single' # # return Function(function=function, par_names=pnames) # # elif type == 'double': # pnames = ['p','t0','e','omega','k1','v01','k2','v02' ] # function = lambda p, x: [kepler.radial_velocity([p[0],p[1],p[2],p[3],p[4],p[5]], times=x[0], itermax=8), # kepler.radial_velocity([p[0],p[1],p[2],p[3],p[6],p[7]], times=x[1], itermax=8)] # def residuals(syn, data, weights=None, errors=None, **kwargs): # return np.hstack( [( data[0] - syn[0] ) * weights[0], ( data[1] - syn[1] ) * weights[1] ] ) # function.__name__ = 'kepler_orbit_double' # # return Function(function=function, par_names=pnames, resfunc=residuals) def box_transit(t0=0.): """ Box transit model (cont,freq,ingress,egress,depth) @param t0: reference time (defaults to 0) @type t0: float """ pnames = 'cont','freq','ingress','egress','depth' def function(p,x): cont,freq,ingress,egress,depth = p model = np.ones(len(x))*cont phase = np.fmod((x - t0) * freq, 1.0) phase = np.where(phase<0,phase+1,phase) transit_place = (ingress<=phase) & (phase<=egress) model = np.where(transit_place,model-depth,model) return model function.__name__ = 'box_transit' return Function(function=function, par_names=pnames) def polynomial(d=1): """ Polynomial (a1,a0). y(x) = ai*x**i + a(i-1)*x**(i-1) + ... + a1*x + a0 @param d: degree of the polynomial @type d: int """ pnames = ['a{:d}'.format(i) for i in range(d,0,-1)]+['a0'] function = lambda p, x: np.polyval(p,x) function.__name__ = 'polynomial' return Function(function=function, par_names=pnames) def soft_parabola(): """ Soft parabola (ta,vlsr,vinf,gamma). See Olofsson 1993ApJS...87...267O. T_A(x) = T_A(0) * [ 1 - ((x- v_lsr)/v_inf)**2 ] ** (gamma/2) """ pnames = ['ta','vlsr','vinf','gamma'] def function(p,x): term = (x-p[1]) / p[2] y = p[0] * (1- term**2)**(p[3]/2.) if p[3]<=0: y[np.abs(term)>=1] = 0 y[np.isnan(y)] = 0 return y function.__name__ = 'soft_parabola' return Function(function=function, par_names=pnames) def gauss(use_jacobian=True): """ Gaussian (a,mu,sigma,c) f(x) = a * exp( - (x - mu)**2 / (2 * sigma**2) ) + c """ pnames = ['a', 'mu', 'sigma', 'c'] function = lambda p, x: p[0] * np.exp( -(x-p[1])**2 / (2.0*p[2]**2)) + p[3] function.__name__ = 'gauss' if not use_jacobian: return Function(function=function, par_names=pnames) else: def jacobian(p, x): ex = np.exp( -(x-p[1])**2 / (2.0*p[2]**2) ) return np.array([-ex, -p[0] * (x-p[1]) * ex / p[2]**2, -p[0] * (x-p[1])**2 * ex / p[2]**3, [-1 for i in x] ]).T return Function(function=function, par_names=pnames, jacobian=jacobian) def sine(): """ Sine (ampl,freq,phase,const) f(x) = ampl * sin(2pi*freq*x + 2pi*phase) + const """ pnames = ['ampl', 'freq', 'phase', 'const'] function = lambda p, x: p[0] * sin(2*pi*(p[1]*x + p[2])) + p[3] function.__name__ = 'sine' return Function(function=function, par_names=pnames) def sine_linfreqshift(t0=0.): """ Sine with linear frequency shift (ampl,freq,phase,const,D). Similar to C{sine}, but with extra parameter 'D', which is the linear frequency shift parameter. @param t0: reference time (defaults to 0) @type t0: float """ pnames = ['ampl', 'freq', 'phase', 'const','D'] def function(p,x): freq = (p[1] + p[4]/2.*(x-t0))*(x-t0) return p[0] * sin(2*pi*(freq + p[2])) + p[3] function.__name__ = 'sine_linfreqshift' return Function(function=function, par_names=pnames) def sine_expfreqshift(t0=0.): """ Sine with exponential frequency shift (ampl,freq,phase,const,K). Similar to C{sine}, but with extra parameter 'K', which is the exponential frequency shift parameter. frequency(x) = freq / log(K) * (K**(x-t0)-1) f(x) = ampl * sin( 2*pi * (frequency + phase)) @param t0: reference time (defaults to 0) @type t0: float """ pnames = ['ampl', 'freq', 'phase', 'const','K'] def function(p,x): freq = p[1] / np.log(p[4]) * (p[4]**(x-t0)-1.) return p[0] * sin(2*pi*(freq + p[2])) + p[3] function.__name__ = 'sine_expfreqshift' return Function(function=function, par_names=pnames) def sine_orbit(t0=0.,nmax=10): """ Sine with a sinusoidal frequency shift (ampl,freq,phase,const,forb,asini,omega,(,ecc)) Similar to C{sine}, but with extra parameter 'asini' and 'forb', which are the orbital parameters. forb in cycles/day or something similar, asini in au. For eccentric orbits, add longitude of periastron 'omega' (radians) and 'ecc' (eccentricity). @param t0: reference time (defaults to 0) @type t0: float @param nmax: number of terms to include in series for eccentric orbit @type nmax: int """ pnames = ['ampl', 'freq', 'phase', 'const','forb','asini','omega'] def ane(n,e): return 2.*sqrt(1-e**2)/e/n*jn(n,n*e) def bne(n,e): return 1./n*(jn(n-1,n*e)-jn(n+1,n*e)) def function(p,x): ampl,freq,phase,const,forb,asini,omega = p[:7] ecc = None if len(p)==8: ecc = p[7] cc = 173.144632674 # speed of light in AU/d alpha = freq*asini/cc if ecc is None: frequency = freq*(x-t0) + alpha*(sin(2*pi*forb*x) - sin(2*pi*forb*t0)) else: ns = np.arange(1,nmax+1,1) ans,bns = np.array([[ane(n,ecc),bne(n,ecc)] for n in ns]).T ksins = sqrt(ans**2*cos(omega)**2+bns**2*sin(omega)**2) thns = arctan(bns/ans*tan(omega)) tau = -np.sum(bns*sin(omega)) frequency = freq*(x-t0) + \ alpha*(np.sum(np.array([ksins[i]*sin(2*pi*ns[i]*forb*(x-t0)+thns[i]) for i in range(nmax)]),axis=0)+tau) return ampl * sin(2*pi*(frequency + phase)) + const function.__name__ = 'sine_orbit' return Function(function=function, par_names=pnames) #def generic(func_name): ##func = model.FUNCTION(function=getattr(evaluate,func_name), par_names) #raise NotImplementedError def power_law(): """ Power law (A,B,C,f0,const) P(f) = A / (1+ B(f-f0))**C + const """ pnames = ['ampl','b','c','f0','const'] function = lambda p, x: p[0] / (1 + (p[1]*(x-p[3]))**p[2]) + p[4] function.__name__ = 'power_law' return Function(function=function, par_names=pnames) def lorentz(): """ Lorentz profile (ampl,mu,gamma,const) P(f) = A / ( (x-mu)**2 + gamma**2) + const """ pnames = ['ampl','mu','gamma','const'] function = lambda p,x: p[0] / ((x-p[1])**2 + p[2]**2) + p[3] function.__name__ = 'lorentz' return Function(function=function, par_names=pnames) def voigt(): """ Voigt profile (ampl,mu,sigma,gamma,const) z = (x + gamma*i) / (sigma*sqrt(2)) V = A * Real[cerf(z)] / (sigma*sqrt(2*pi)) """ pnames = ['ampl','mu','sigma','gamma','const'] def function(p,x): x = x-p[1] z = (x+1j*p[3])/(p[2]*sqrt(2)) return p[0]*_complex_error_function(z).real/(p[2]*sqrt(2*pi))+p[4] function.__name__ = 'voigt' return Function(function=function, par_names=pnames) #} #{ Combination functions def multi_sine(n=10): """ Multiple sines. @param n: number of sines @type n: int """ return Model(functions=[sine() for i in range(n)]) def multi_blackbody(n=3,**kwargs): """ Multiple black bodies. @param n: number of blackbodies @type n: int """ return Model(functions=[blackbody(**kwargs) for i in range(n)]) #} #{ Internal Helper functions def _complex_error_function(x): """ Complex error function """ cef_value = np.exp(-x**2)*(1-erf(-1j*x)) if sum(np.isnan(cef_value))>0: logging.warning("Complex Error function: NAN encountered, results are biased") noisnans = np.compress(1-np.isnan(cef_value),cef_value) try: last_value = noisnans[-1] except: last_value = 0 logging.warning("Complex Error function: all values are NAN, results are wrong") cef_value = np.where(np.isnan(cef_value),last_value,cef_value) return cef_value #} def evaluate(funcname, domain, parameters, **kwargs): """ Evaluate a function on specified interval with specified parameters. Extra keywords are passed to the funcname. Example: >>> x = np.linspace(-5,5,1000) >>> y = evaluate('gauss',x,[1.,0.,2.,0.]) @parameter funcname: name of the function @type funcname: str @parameter domain: domain to evaluate onto @type domain: array @parameter parameters: parameter of the function @type parameters: array """ function = globals()[funcname](**kwargs) function.setup_parameters(parameters) return function.evaluate(domain) if __name__=="__main__": import doctest from matplotlib import pyplot as plt doctest.testmod() plt.show()
gpl-3.0
JaviMerino/workload-automation
wlauto/instrumentation/energy_probe/__init__.py
4
6833
# Copyright 2013-2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pylint: disable=W0613,E1101,access-member-before-definition,attribute-defined-outside-init import os import subprocess import signal import struct import csv try: import pandas except ImportError: pandas = None from wlauto import Instrument, Parameter, Executable from wlauto.exceptions import InstrumentError, ConfigError from wlauto.utils.types import list_of_numbers class EnergyProbe(Instrument): name = 'energy_probe' description = """Collects power traces using the ARM energy probe. This instrument requires ``caiman`` utility to be installed in the workload automation host and be in the PATH. Caiman is part of DS-5 and should be in ``/path/to/DS-5/bin/`` . Energy probe can simultaneously collect energy from up to 3 power rails. To connect the energy probe on a rail, connect the white wire to the pin that is closer to the Voltage source and the black wire to the pin that is closer to the load (the SoC or the device you are probing). Between the pins there should be a shunt resistor of known resistance in the range of 5 to 20 mOhm. The resistance of the shunt resistors is a mandatory parameter ``resistor_values``. .. note:: This instrument can process results a lot faster if python pandas is installed. """ parameters = [ Parameter('resistor_values', kind=list_of_numbers, default=[], description="""The value of shunt resistors. This is a mandatory parameter."""), Parameter('labels', kind=list, default=[], description="""Meaningful labels for each of the monitored rails."""), Parameter('device_entry', kind=str, default='/dev/ttyACM0', description="""Path to /dev entry for the energy probe (it should be /dev/ttyACMx)"""), ] MAX_CHANNELS = 3 def __init__(self, device, **kwargs): super(EnergyProbe, self).__init__(device, **kwargs) self.attributes_per_sample = 3 self.bytes_per_sample = self.attributes_per_sample * 4 self.attributes = ['power', 'voltage', 'current'] for i, val in enumerate(self.resistor_values): self.resistor_values[i] = int(1000 * float(val)) def validate(self): if subprocess.call('which caiman', stdout=subprocess.PIPE, shell=True): raise InstrumentError('caiman not in PATH. Cannot enable energy probe') if not self.resistor_values: raise ConfigError('At least one resistor value must be specified') if len(self.resistor_values) > self.MAX_CHANNELS: raise ConfigError('{} Channels where specified when Energy Probe supports up to {}' .format(len(self.resistor_values), self.MAX_CHANNELS)) if pandas is None: self.logger.warning("pandas package will significantly speed up this instrument") self.logger.warning("to install it try: pip install pandas") def setup(self, context): if not self.labels: self.labels = ["PORT_{}".format(channel) for channel, _ in enumerate(self.resistor_values)] self.output_directory = os.path.join(context.output_directory, 'energy_probe') rstring = "" for i, rval in enumerate(self.resistor_values): rstring += '-r {}:{} '.format(i, rval) self.command = 'caiman -d {} -l {} {}'.format(self.device_entry, rstring, self.output_directory) os.makedirs(self.output_directory) def start(self, context): self.logger.debug(self.command) self.caiman = subprocess.Popen(self.command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, preexec_fn=os.setpgrp, shell=True) def stop(self, context): os.killpg(self.caiman.pid, signal.SIGTERM) def update_result(self, context): # pylint: disable=too-many-locals num_of_channels = len(self.resistor_values) processed_data = [[] for _ in xrange(num_of_channels)] filenames = [os.path.join(self.output_directory, '{}.csv'.format(label)) for label in self.labels] struct_format = '{}I'.format(num_of_channels * self.attributes_per_sample) not_a_full_row_seen = False with open(os.path.join(self.output_directory, "0000000000"), "rb") as bfile: while True: data = bfile.read(num_of_channels * self.bytes_per_sample) if data == '': break try: unpacked_data = struct.unpack(struct_format, data) except struct.error: if not_a_full_row_seen: self.logger.warn('possibly missaligned caiman raw data, row contained {} bytes'.format(len(data))) continue else: not_a_full_row_seen = True for i in xrange(num_of_channels): index = i * self.attributes_per_sample processed_data[i].append({attr: val for attr, val in zip(self.attributes, unpacked_data[index:index + self.attributes_per_sample])}) for i, path in enumerate(filenames): with open(path, 'w') as f: if pandas is not None: self._pandas_produce_csv(processed_data[i], f) else: self._slow_produce_csv(processed_data[i], f) # pylint: disable=R0201 def _pandas_produce_csv(self, data, f): dframe = pandas.DataFrame(data) dframe = dframe / 1000.0 dframe.to_csv(f) def _slow_produce_csv(self, data, f): new_data = [] for entry in data: new_data.append({key: val / 1000.0 for key, val in entry.items()}) writer = csv.DictWriter(f, self.attributes) writer.writeheader() writer.writerows(new_data)
apache-2.0
astrofrog/numpy
doc/example.py
8
3484
"""This is the docstring for the example.py module. Modules names should have short, all-lowercase names. The module name may have underscores if this improves readability. Every module should have a docstring at the very top of the file. The module's docstring may extend over multiple lines. If your docstring does extend over multiple lines, the closing three quotation marks must be on a line by itself, preferably preceeded by a blank line. """ import os # standard library imports first # Do NOT import using *, e.g. from numpy import * # # Import the module using # # import numpy # # instead or import individual functions as needed, e.g # # from numpy import array, zeros # # If you prefer the use of abbreviated module names, we suggest the # convention used by NumPy itself:: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # These abbreviated names are not to be used in docstrings; users must # be able to paste and execute docstrings after importing only the # numpy module itself, unabbreviated. from my_module import my_func, other_func def foo(var1, var2, long_var_name='hi') : r"""A one-line summary that does not use variable names or the function name. Several sentences providing an extended description. Refer to variables using back-ticks, e.g. `var`. Parameters ---------- var1 : array_like Array_like means all those objects -- lists, nested lists, etc. -- that can be converted to an array. We can also refer to variables like `var1`. var2 : int The type above can either refer to an actual Python type (e.g. ``int``), or describe the type of the variable in more detail, e.g. ``(N,) ndarray`` or ``array_like``. Long_variable_name : {'hi', 'ho'}, optional Choices in brackets, default first when optional. Returns ------- describe : type Explanation output : type Explanation tuple : type Explanation items : type even more explaining Other Parameters ---------------- only_seldom_used_keywords : type Explanation common_parameters_listed_above : type Explanation Raises ------ BadException Because you shouldn't have done that. See Also -------- otherfunc : relationship (optional) newfunc : Relationship (optional), which could be fairly long, in which case the line wraps here. thirdfunc, fourthfunc, fifthfunc Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a greek symbol like :math:`omega` inline. References ---------- Cite the relevant literature, e.g. [1]_. You may also cite these references in the notes section above. .. [1] O. McNoleg, "The integration of GIS, remote sensing, expert systems and adaptive co-kriging for environmental habitat modelling of the Highland Haggis using object-oriented, fuzzy-logic and neural-network techniques," Computers & Geosciences, vol. 22, pp. 585-588, 1996. Examples -------- These are written in doctest format, and should illustrate how to use the function. >>> a=[1,2,3] >>> print [x + 3 for x in a] [4, 5, 6] >>> print "a\n\nb" a b """ pass
bsd-3-clause
YinongLong/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
102
2319
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() lw = 2 plt.plot(coef[:, feature_to_plot], color='seagreen', linewidth=lw, label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], color='cornflowerblue', linewidth=lw, label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], color='gold', linewidth=lw, label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
Convertro/Hydro
src/hydro/types.py
1
1848
from hydro.exceptions import HydroException from datetime import datetime from pandas import DataFrame __author__ = 'moshebasanchig' class HydroType(object): """ Hydro Type is an abstract class for types that need to be parsed and injected into the queries as filters """ def __init__(self, value, **kwargs): self._value = self.parse(value, **kwargs) if self._value is None: raise HydroException("Value is not set") def to_string(self): return str(self._value) def parse(self, value, kwargs): raise HydroException("Not implemented") def __sub__(self, other): interval = self.value - other.value return interval @property def value(self): return self._value class HydroStr(HydroType): def parse(self, value, **kwargs): return str(value) class HydroDatetime(HydroType): format = "%Y-%m-%d %H:%M:%S" def parse(self, value, **kwargs): if 'format' in kwargs: self.format = kwargs['format'] dt = value.split(' ') if len(dt) == 1: dt.append('00:00:00') return datetime.strptime(' '.join(dt), self.format) def to_string(self): return datetime.strftime(self._value, self.format) class HydroList(HydroType): def parse(self, value, **kwargs): if isinstance(value, list): return value else: raise HydroException("Expected a list") def to_string(self): return ', '.join("'{0}'".format(val) for val in self._value) class HydroDataframe(HydroType): def parse(self, value, **kwargs): if isinstance(value, DataFrame): return value else: raise HydroException("Expected a Data Frame") def to_string(self): return ', '.join(self._value.columns)
mit
djgagne/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
227
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <[email protected]> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
anurag313/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
wolfiex/VisACC
revamp/gmmcluster.py
1
1524
import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab from mpl_toolkits.mplot3d import Axes3D from sklearn import mixture import pandas as pd def q(x, y): g1 = mlab.bivariate_normal(x, y, 1.0, 1.0, -1, -1, -0.8) g2 = mlab.bivariate_normal(x, y, 1.5, 0.8, 1, 2, 0.6) return 0.6*g1+28.4*g2/(0.6+28.4) def plot_q(): fig = plt.figure() ax = fig.gca(projection='3d') X = np.arange(-5, 5, 0.1) Y = np.arange(-5, 5, 0.1) X, Y = np.meshgrid(X, Y) Z = q(X, Y) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('coolwarm'), linewidth=0, antialiased=True) fig.colorbar(surf, shrink=0.5, aspect=5) plt.savefig('3dgauss.png') plt.clf() def sample(): df = pf.read_csv('global.csv') var = 'O3' samples = np.array(df[['%s_x'%var , '%s_y'&var]]) plt.scatter(samples[:, 0], samples[:, 1], alpha=0.5, s=1) '''Plot target''' dx = 0.01 x = np.arange(np.min(samples), np.max(samples), dx) y = np.arange(np.min(samples), np.max(samples), dx) X, Y = np.meshgrid(x, y) Z = q(X, Y) CS = plt.contour(X, Y, Z, 10, alpha=0.5) plt.clabel(CS, inline=1, fontsize=10) plt.savefig("samples.png") return samples def fit_samples(samples): gmix = mixture.GMM(n_components=2, covariance_type='full') gmix.fit(samples) print gmix.means_ colors = ['r' if i==0 else 'g' for i in gmix.predict(samples)] ax = plt.gca() ax.scatter(samples[:,0], samples[:,1], c=colors, alpha=0.8) plt.savefig("class.png") if __name__ == '__main__': plot_q() s = sample() fit_samples(s)
mit
OxfordSKA/bda
pybda/corrupting_gains.py
1
7934
# -*- coding: utf-8 -*- """Module to evaluate corrupting gains for BDA simulations.""" from __future__ import (print_function, absolute_import) import numpy import time import os def allan_deviation(data, dt, tau): """ Evaluate the Allan deviation of a time series. References: https://en.wikipedia.org/wiki/Allan_variance Args: data (array_like): Array of time series data. dt (float): Sample spacing of the time series data. tau (float): Interval at which to calculate the allan deviation. Returns: sm: Allan deviation sme: error on the allan deviation n: number of pairs in the Allan computation """ data = numpy.asarray(data) num_points = data.shape[0] m = int(tau / dt) # Number of samples in length tau data = data[:num_points - (num_points % m)] # Resize to a multiple of m # Reshape into blocks of length m and take the average of each block. data = data.reshape((-1, m)) data_mean = numpy.mean(data, axis=1) data_diff = numpy.diff(data_mean) n = data_diff.shape[0] a_dev = numpy.sqrt((0.5 / n) * (numpy.sum(data_diff**2))) a_dev_err = a_dev / numpy.sqrt(n) return a_dev, a_dev_err, n def smooth(x, window_len=11, window='hanning'): x = numpy.asarray(x) if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < window_len: raise ValueError("Input vector needs to be bigger than window size.") if window_len < 3: return x if window not in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError("Window is on of 'flat', 'hanning', 'hamming', " "'bartlett', 'blackman'") s = numpy.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]] if window == 'flat': # moving average w = numpy.ones(window_len, 'd') else: w = eval('numpy.' + window + '(window_len)') y = numpy.convolve(w / w.sum(), s, mode='valid') return y[:x.shape[0]] def fractional_brownian_motion(n, hurst): """Generate Fractional brownian motion noise. http://www.maths.uq.edu.au/~kroese/ps/MCSpatial.pdf Args: n (int): Length of the time series. hurst (float): Hurst parameter. Returns: Time series array. """ a = 2.0 * hurst r = numpy.empty(n + 1) * numpy.NaN r[0] = 1.0 k = numpy.arange(1, n + 1) r[1:] = 0.5 * ((k + 1)**a - 2.0 * k**a + (k - 1)**a) r = numpy.append(r, r[-2:0:-1]) # first row of circulant matrix l = numpy.real(numpy.fft.fft(r)) / (2 * n) w = numpy.fft.fft(numpy.sqrt(l) * (numpy.random.randn(2 * n) + 1.0j * numpy.random.randn(2 * n))) w = n**(-hurst) * numpy.cumsum(numpy.real(w[:n+1])) # Rescale return w[:n] def eval_complex_gains(n, dt, hurst_amp, adev_amp, std_t_mid_amp, hurst_phase, adev_phase, std_t_mid_phase, smoothing_length=0, tau=1.0): amp = fractional_brownian_motion(n, hurst_amp) if smoothing_length > 0: amp = smooth(amp, smoothing_length) amp *= adev_amp / allan_deviation(amp, dt, tau)[0] amp += 1.0 - amp[n / 2] + (numpy.random.randn() * std_t_mid_amp) phase = fractional_brownian_motion(n, hurst_phase) if smoothing_length > 0: phase = smooth(phase, smoothing_length) phase *= adev_phase / allan_deviation(phase, dt, tau)[0] phase += -phase[n / 2] + (numpy.random.randn() * std_t_mid_phase) gain = amp * numpy.exp(1.0j * numpy.radians(phase)) return gain def allan_dev_spectrum(data, dt): data = numpy.asarray(data) tau_values = numpy.arange(2, data.shape[0] / 3, 5) * dt adev = numpy.empty_like(tau_values) adev_err = numpy.empty_like(tau_values) for i, tau in enumerate(tau_values): adev[i] = allan_deviation(data, dt, tau)[0] adev_err[i] = allan_deviation(data, dt, tau)[0] return adev, tau_values, adev_err def test_unblocked(): import matplotlib.pyplot as pyplot tau = 1.0 num_steps = 6 num_antennas = 50 hurst_amp = 0.55 adev_amp = numpy.linspace(1.e-5, 1.e-3, num_steps) std_t_mid_amp = 0.05 hurst_phase = 0.55 adev_phase = numpy.linspace(0.01, 0.2, num_steps) std_t_mid_phase = 5.0 num_times = 5000 dump_time = 0.1 over_sample = 10 smoothing_length = over_sample * 3 n = num_times * over_sample dt = dump_time / float(over_sample) times = numpy.arange(n) * dt print('No. samples = %i' % n) print('No. steps = %i' % num_steps) gains = numpy.empty((num_steps, num_antennas, n), dtype='c16') t0 = time.time() for i in range(num_steps): print('%i %e' % (i, adev_amp[i])) for a in range(num_antennas): gains[i, a, :] = eval_complex_gains(n, dt, hurst_amp, adev_amp[i], std_t_mid_amp, hurst_phase, adev_phase[i], std_t_mid_phase, smoothing_length, tau) print('Time taken to generate gains = %.3f s' % (time.time() - t0)) fig = pyplot.figure(figsize=(7, 7)) fig.subplots_adjust(left=0.15, bottom=0.1, right=0.95, top=0.95, hspace=0.2, wspace=0.0) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) colors = ['r', 'g', 'b', 'm', 'y', 'k'] print('plotting ...') y_max = 0.0 for i in range(num_steps): for a in range(num_antennas): if i == num_steps - 1: ax1.plot(times, numpy.abs(gains[i, a, :]), '-', color=colors[i]) s, t, _ = allan_dev_spectrum(numpy.abs(gains[i, a, :]), dt) ax2.semilogy(t, s, color=colors[i]) ax2.set_xlim(0, tau * 3.0) y_max = max(y_max, s[numpy.argmax(t > tau * 3.0)]) ax2.set_ylim(0, y_max * 1.05) y_max = numpy.max(gains[num_steps-1, :, :]) print(numpy.abs(y_max)) ax1.grid() ax1.set_xlabel('Observation length [seconds]', fontsize='small') ax1.set_ylabel('Gain amplitude', fontsize='small') ax2.grid() ax2.set_ylabel('Allan deviation', fontsize='small') ax2.set_xlabel('Sample period, tau [seconds]', fontsize='small') if os.path.isfile('gain_amp.png'): os.remove('gain_amp.png') pyplot.savefig('gain_amp.png') # ========================================================================= fig = pyplot.figure(figsize=(7, 7)) fig.subplots_adjust(left=0.15, bottom=0.1, right=0.95, top=0.95, hspace=0.2, wspace=0.0) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) colors = ['r', 'g', 'b', 'm', 'y', 'k'] print('plotting ...') y_max = 0.0 for i in range(num_steps): for a in range(num_antennas): if i == num_steps - 1: ax1.plot(times, numpy.degrees(numpy.angle(gains[i, a, :])), '-', color=colors[i]) s, t, _ = allan_dev_spectrum( numpy.degrees(numpy.angle(gains[i, a, :])), dt) ax2.semilogy(t, s, color=colors[i]) ax2.set_xlim(0, tau * 3.0) y_max = max(y_max, s[numpy.argmax(t > tau * 3.0)]) ax2.set_ylim(0, y_max * 1.05) y_max = numpy.max(gains[num_steps-1, :, :]) print(numpy.abs(y_max)) ax1.grid() ax1.set_xlabel('Observation length [seconds]', fontsize='small') ax1.set_ylabel('Gain phase', fontsize='small') ax2.grid() ax2.set_ylabel('Allan deviation', fontsize='small') ax2.set_xlabel('Sample period, tau [seconds]', fontsize='small') if os.path.isfile('gain_phase.png'): os.remove('gain_phase.png') pyplot.savefig('gain_phase.png') if __name__ == '__main__': test_unblocked()
bsd-3-clause
lcharleux/abapy
doc/example_code/materials/Hollomon.py
1
1324
from abapy.materials import Hollomon import matplotlib.pyplot as plt E = 1. # Young's modulus sy = 0.001 # Yield stress n = 0.15 # Hardening exponent nu = 0.3 eps_max = .1 # maximum strain to be computed N = 30 # Number of points to be computed (30 is a low value useful for graphical reasons, in real simulations, 100 is a better value). mat1 = Hollomon(labels = 'my_material', E=E, nu=nu, sy=sy, n=n) table1 = mat1.get_table(0, N=N, eps_max=eps_max) eps1 = table1[:,0] sigma1 = table1[:,1] sigma_max1 = max(sigma1) mat2 = Hollomon(labels = 'my_material', E=E, nu=nu, sy=sy, n=n, kind = 2) table2 = mat2.get_table(0, N=N, eps_max=eps_max) eps2 = table2[:,0] sigma2 = table2[:,1] sigma_max2 = max(sigma2) plt.figure() plt.clf() plt.title('Hollomon tensile behavior: $n = {0:.2f}$, $\sigma_y / E = {1:.2e}$'.format(n, sy/E)) plt.xlabel('Strain $\epsilon$') plt.ylabel('Stress $\sigma$') plt.plot(eps1, sigma1, 'or-', label = 'Plasticity kind=1') plt.plot(eps2, sigma2, 'vg-', label = 'Plasticity kind=2') plt.plot([0., sy / E], [0., sy], 'b-', label = 'Elasticity') plt.xticks([0., sy/E, eps_max], ['$0$', '$\epsilon_y$', '$\epsilon_{max}$'], fontsize = 16.) plt.yticks([0., sy, sigma_max1], ['$0$', '$\sigma_y$', '$\sigma_{max}$'], fontsize = 16.) plt.grid() plt.legend(loc = "lower right") plt.show()
gpl-2.0
AIML/scikit-learn
sklearn/neural_network/tests/test_rbm.py
142
6276
import sys import re import numpy as np from scipy.sparse import csc_matrix, csr_matrix, lil_matrix from sklearn.utils.testing import (assert_almost_equal, assert_array_equal, assert_true) from sklearn.datasets import load_digits from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.neural_network import BernoulliRBM from sklearn.utils.validation import assert_all_finite np.seterr(all='warn') Xdigits = load_digits().data Xdigits -= Xdigits.min() Xdigits /= Xdigits.max() def test_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, n_iter=7, random_state=9) rbm.fit(X) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) # in-place tricks shouldn't have modified X assert_array_equal(X, Xdigits) def test_partial_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=20, random_state=9) n_samples = X.shape[0] n_batches = int(np.ceil(float(n_samples) / rbm.batch_size)) batch_slices = np.array_split(X, n_batches) for i in range(7): for batch in batch_slices: rbm.partial_fit(batch) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) assert_array_equal(X, Xdigits) def test_transform(): X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=16, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) Xt1 = rbm1.transform(X) Xt2 = rbm1._mean_hiddens(X) assert_array_equal(Xt1, Xt2) def test_small_sparse(): # BernoulliRBM should work on small sparse matrices. X = csr_matrix(Xdigits[:4]) BernoulliRBM().fit(X) # no exception def test_small_sparse_partial_fit(): for sparse in [csc_matrix, csr_matrix]: X_sparse = sparse(Xdigits[:100]) X = Xdigits[:100].copy() rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm1.partial_fit(X_sparse) rbm2.partial_fit(X) assert_almost_equal(rbm1.score_samples(X).mean(), rbm2.score_samples(X).mean(), decimal=0) def test_sample_hiddens(): rng = np.random.RandomState(0) X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=2, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) h = rbm1._mean_hiddens(X[0]) hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0) assert_almost_equal(h, hs, decimal=1) def test_fit_gibbs(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] # from the same input rng = np.random.RandomState(42) X = np.array([[0.], [1.]]) rbm1 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) # you need that much iters rbm1.fit(X) assert_almost_equal(rbm1.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm1.gibbs(X), X) return rbm1 def test_fit_gibbs_sparse(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from # the same input even when the input is sparse, and test against non-sparse rbm1 = test_fit_gibbs() rng = np.random.RandomState(42) from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm2 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) rbm2.fit(X) assert_almost_equal(rbm2.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm2.gibbs(X), X.toarray()) assert_almost_equal(rbm1.components_, rbm2.components_) def test_gibbs_smoke(): # Check if we don't get NaNs sampling the full digits dataset. # Also check that sampling again will yield different results. X = Xdigits rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=42) rbm1.fit(X) X_sampled = rbm1.gibbs(X) assert_all_finite(X_sampled) X_sampled2 = rbm1.gibbs(X) assert_true(np.all((X_sampled != X_sampled2).max(axis=1))) def test_score_samples(): # Test score_samples (pseudo-likelihood) method. # Assert that pseudo-likelihood is computed without clipping. # See Fabian's blog, http://bit.ly/1iYefRk rng = np.random.RandomState(42) X = np.vstack([np.zeros(1000), np.ones(1000)]) rbm1 = BernoulliRBM(n_components=10, batch_size=2, n_iter=10, random_state=rng) rbm1.fit(X) assert_true((rbm1.score_samples(X) < -300).all()) # Sparse vs. dense should not affect the output. Also test sparse input # validation. rbm1.random_state = 42 d_score = rbm1.score_samples(X) rbm1.random_state = 42 s_score = rbm1.score_samples(lil_matrix(X)) assert_almost_equal(d_score, s_score) # Test numerical stability (#2785): would previously generate infinities # and crash with an exception. with np.errstate(under='ignore'): rbm1.score_samples(np.arange(1000) * 100) def test_rbm_verbose(): rbm = BernoulliRBM(n_iter=2, verbose=10) old_stdout = sys.stdout sys.stdout = StringIO() try: rbm.fit(Xdigits) finally: sys.stdout = old_stdout def test_sparse_and_verbose(): # Make sure RBM works with sparse input when verbose=True old_stdout = sys.stdout sys.stdout = StringIO() from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1, random_state=42, verbose=True) try: rbm.fit(X) s = sys.stdout.getvalue() # make sure output is sound assert_true(re.match(r"\[BernoulliRBM\] Iteration 1," r" pseudo-likelihood = -?(\d)+(\.\d+)?," r" time = (\d|\.)+s", s)) finally: sys.stdout = old_stdout
bsd-3-clause
nesterione/problem-solving-and-algorithms
problems/Calculus/mfd_other_way_sm.py
1
1195
import numpy as np lam = 401 c = 385 ro = 8900 alpha = lam/(c*ro) dx = 0.01 dt = 0.5 stick_length = 1 # time in seconds time_span = 10 Tinit = 300 Tright = 350 Tleft = 320 # u p+1 m u1 = dx*dx + 2*dt*alpha # u p m u2 = -(dx*dx) # u p+1 m-1 u3 = -alpha*dt # u p+1 m+1 u4 = -alpha*dt dim = int(stick_length / dx) + 1 - 2 # 2 крайние точки не учитывем, переносим их вручную A = np.diag(np.ones(dim)) B = np.zeros([dim]) # Fill begin values for vector B import matplotlib.pyplot as plt x_axis_step = np.arange(0, stick_length+dx/2.0, dx) time_cnt = int(time_span/dt) T0 = np.zeros([dim]) T0[0:dim]=Tinit #for tt in range(0,time_cnt): for tt in range(0,time_cnt): for i in range(len(B)): B[i]=-T0[i]*u2 B[0] = Tleft B[dim-1] = Tright A[0,0] = 1 A[dim-1,dim-1] = 1 for node in range(1, dim-1): A[node, node-1] = u3 A[node, node+1] = u4 A[node, node] = u1 #B[node] = u2* #B[node]-= (c+k+p) #print(B) #print("******",A,"******") X = np.linalg.solve(A, B) print(X) plt.plot(x_axis_step, X) T0 = X plt.show()
apache-2.0
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Coupled_Contact/Steady_State_Single_Foundation_Sysytem_Under_Compression/CoupledHardContact_NonLinHardSoftShear/n_1/Plot_Results.py
15
3553
#!/usr/bin/env python #!/usr/bin/python import h5py from matplotlib import pylab import matplotlib.pylab as plt import sys from matplotlib.font_manager import FontProperties import math import numpy as np #!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 30}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=28 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=28 # Plot the figure. Add labels and titles. plt.figure() ax = plt.subplot(111) ax.grid() ax.set_xlabel("Time [s] ") ax.set_ylabel(r"Stress [Pa] ") # Pore Pressure # ######################################################################### thefile = "Soil_Foundation_System_Surface_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] upU_p = finput["/Model/Nodes/Generalized_Displacements"][3,:] upU_u = finput["/Model/Nodes/Generalized_Displacements"][2,:] upU_U = finput["/Model/Nodes/Generalized_Displacements"][6,:] u_u = finput["/Model/Nodes/Generalized_Displacements"][79,:] sigma_zz_ = finput["/Model/Elements/Gauss_Outputs"][14,:] # pore_pressure ax.plot(times,upU_p,'b',linewidth=2,label=r'Pore Pressure $p$'); ax.hold(True); # Total Stress # ######################################################################### # Read the time and displacement times = finput["time"][:]; T = times[len(times)-1] sigma_zz = 400/T*times # kinetic energy ax.plot(times,sigma_zz,'k',linewidth=2,label=r'Total Stress $\sigma$'); ax.hold(True); # Effective Stress # ######################################################################### # Read the time and displacement times = finput["time"][:]; sigma_zz_ = sigma_zz - upU_p # kinetic energy ax.plot(times,sigma_zz_,'r',linewidth=2,label=r'''Effective Stress $\sigma^{\prime}$'''); ax.hold(True); max_yticks = 5 yloc = plt.MaxNLocator(max_yticks) ax.yaxis.set_major_locator(yloc) max_xticks = 5 yloc = plt.MaxNLocator(max_xticks) ax.xaxis.set_major_locator(yloc) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.35), ncol=2, fancybox=True, shadow=True, prop={'size': 24}) pylab.savefig("Coupled_Soft_Contact_Steady_State_SF_Ststem_Under_Compression_Porosity_Effective_Stress_Principle.pdf", bbox_inches='tight') # plt.show() # ################################### Drainage Condition Verification ############################# ax.hold(False); fig = plt.figure(); ax = plt.subplot(111) ax.plot(times,upU_u*1e8,'k',linewidth=3,label=r'$upU\_u$'); ax.hold(True); ax.plot(times,upU_U*1e8,'b',linewidth=10,label=r'$upU\_U$'); ax.hold(True); ax.plot(times,u_u*1e8,'r',linewidth=3,label=r'$u\_u$'); ax.hold(True); ax.grid() ax.set_xlabel("Time [s] ") ax.set_ylabel(r"Displacement $\times 1e^{-8}$ [m] ") ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.25), ncol=4, fancybox=True, shadow=True, prop={'size': 24}) max_yticks = 5 yloc = plt.MaxNLocator(max_yticks) ax.yaxis.set_major_locator(yloc) max_xticks = 5 yloc = plt.MaxNLocator(max_xticks) ax.xaxis.set_major_locator(yloc) pylab.savefig("Coupled_Soft_Contact_Steady_State_SF_Ststem_Under_Compression_Porosity_Undrained_Conditions.pdf", bbox_inches='tight') # plt.show()
cc0-1.0
dereknewman/cancer_detection
combine_annotations_to_csv.py
1
5177
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 9 14:35:08 2017 @author: derek """ import os import pandas as pd import numpy as np import glob import ntpath import SimpleITK import helpers BASE_DIR = "/media/derek/disk1/kaggle_ndsb2017/" BASE_DIR_SSD = "/media/derek/disk1/kaggle_ndsb2017/" LUNA16_EXTRACTED_IMAGE_DIR = BASE_DIR_SSD + "luna16_extracted_images/" TARGET_VOXEL_MM = 0.682 LUNA_SUBSET_START_INDEX = 0 LUNA16_RAW_SRC_DIR = BASE_DIR + "luna_raw/" def find_mhd_file(patient_id): """find the directory path containing the '.mhd' file associated with a specific patient_id. file must be in the form of patient_id.mhd (i.e. 1.2.34.5678.mhd) Args: patient_id: (string) patient's id Returns: src_path: (string) path to the directory containing the patient_id file """ for subject_no in range(LUNA_SUBSET_START_INDEX, 10): src_dir = LUNA16_RAW_SRC_DIR + "subset" + str(subject_no) + "/" for src_path in glob.glob(src_dir + "*.mhd"): if patient_id in src_path: return src_path return None def normalize(image): """ Normalize image -> clip data between -1000 and 400. Scale values to -0.5 to 0.5 """ MIN_BOUND = -1000.0 MAX_BOUND = 400.0 image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image > 1] = 1. image[image < 0] = 0. image -= 0.5 return image def fetch_image(src_path_file,TARGET_VOXEL_MM=1): """Load the '.mhd' file, extract the 3D numpy array, rescale the data, and normalize. Args: src_path_file: (string) the complete path (dir + filename) to the .mhd file to load TARGET_VOXEL_MM: the size of each voxel (mm) after rescaling of the data Returns: img_array: (np array) 3D array of image data. After rescaling and normalizing """ patient_id = ntpath.basename(src_path_file).replace(".mhd", "") #extract patient id from filename print("Patient: ", patient_id) itk_img = SimpleITK.ReadImage(src_path_file) img_array = SimpleITK.GetArrayFromImage(itk_img) #Extract actual array data #origin = np.array(itk_img.GetOrigin()) # x,y,z Origin in world coordinates (mm) #direction = np.array(itk_img.GetDirection()) # x,y,z Origin in world coordinates (mm) spacing = np.array(itk_img.GetSpacing()) # spacing of voxels in world coor. (mm) #rescale = spacing / TARGET_VOXEL_MM img_array = helpers.rescale_patient_images(img_array, spacing, TARGET_VOXEL_MM) img_array = normalize(img_array) return img_array ######################################################################## ########## CREATE FULL DATAFRAME OF ALL PATIENTS AND NODULES ########## ######################################################################## src_dir = LUNA16_EXTRACTED_IMAGE_DIR + "_labels/" # Verify that the directory exists if not os.path.isdir(src_dir): print(src_dir + " directory does not exist") full_dataframe = pd.DataFrame(columns=["patient_id", "coord_x", "coord_y", "coord_z", "malscore"]) for file_ in os.listdir(src_dir): # Verify that the file is a '.csv' file if not file_[-4:] == '.csv': continue df = pd.read_csv(src_dir + file_) patient_id = file_.split("_annos_")[0] #extrect the paitent id from filename patient_column = np.repeat(patient_id,df.shape[0]) df_short = df[["coord_x", "coord_y", "coord_z", "malscore"]] #extract jus x,y,z and malscore df_short = df_short.assign(patient_id = patient_column) #add patient_id full_dataframe = full_dataframe.append(df_short, ignore_index=True) #append to full #full_dataframe.round({"coord_x": 4, "coord_y": 4, "coord_z":4}) full_dataframe = full_dataframe.drop_duplicates() #drop duplicate rows full_dataframe.to_csv(BASE_DIR + "patID_x_y_z_mal.csv", index=False) ######################################################################### ######################################################################## ########## EXTRAS ########## ######################################################################## patients = full_dataframe.patient_id.unique() for patient in patients[0:1]: patient_path = find_mhd_file(patient) #locate the path to the '.mhd' file image_array = fetch_image(patient_path, TARGET_VOXEL_MM) image_shape = image_array.shape print(patient) patient_df = full_dataframe.loc[full_dataframe['patient_id'] == patient] #create a dateframe assoicated to a single patient for index, row in patient_df.iterrows(): x = int(row["coord_x"]*image_shape[0]) y = int(row["coord_y"]*image_shape[1]) z = int(row["coord_z"]*image_shape[2]) print(x,y,z) import matplotlib.pylab as plt import matplotlib.patches as patches fig1,ax1 = plt.imshow(image_array[z,:,:],cmap="gray") rect = patches.Rectangle((x-32,y-32),x+32,y+32,linewidth=1,edgecolor='r',facecolor='none') fig1.add_patch(rect) plt.imshow(image_array[184,:,:],cmap="gray") im = image_array[44,:,:] image_ = np.stack([im, im, im],axis=2) image_[x-32:x+32,y-32:y+32,0] = 30 plt.imshow(image_, cmap = "gray")
mit
tdsmith/pinscreen
pinscreen.py
1
18394
#!/usr/bin/env python import argparse from copy import deepcopy import os import sys import scipy as sp import matplotlib as mpl if __name__ == "__main__": mpl.use('Agg') # we need to do this right away import numpy as np from numpy import pi, floor, copysign, sqrt, mean import matplotlib.pyplot as plt from scipy import optimize, stats from scipy.signal import sawtooth sign = lambda x: copysign(1, x) class Dot: "Simple class to hold an (x,y) pair." def __init__(self, xpos, ypos, perim): self.xpos = xpos self.ypos = ypos self.perim = perim def __repr__(self): return 'Dot(xpos=%f, ypos=%f, perim=%f)' % (self.xpos, self.ypos, self.perim) class SineFit: "Stores parameters for an arbitrary sine function." def __init__(self, amplitude, period, phase, offset, r2=None, sin=np.sin): self.amplitude = amplitude self.period = period self.phase = phase self.offset = offset self.r2 = r2 self.sin = sin self.normalize() def normalize(self): # negative amplitude = pi phase change if self.amplitude < 0: self.amplitude *= -1 self.phase += pi # restrict phase to -pi ... pi if not (-pi < self.phase and self.phase <= pi): self.phase -= floor((self.phase+pi)/(2*pi))*(2*pi) def eval(self, t): "SineFit.eval(self,t): Evaluate the sine function represented by self at a point or list of points t." singleton = not getattr(t, '__iter__', False) if singleton: t = [t] ret = [self.amplitude * self.sin(2*pi/self.period * ti + self.phase) + self.offset for ti in t] return ret[0] if singleton else ret def __repr__(self): return ('SineFit(amplitude=%f, period=%f, phase=%f, offset=%f, r2=%r)' % (self.amplitude, self.period, self.phase, self.offset, self.r2)) def parse_mtrack2(fileobj): """frames = parse_mtrack2(fileobj) Reads in output from ImageJ plugin MTrack2. Converts it into a list of lists of Dot objects: frames[0] = [Dot0, Dot1,...]. Reorganizes the dots so that 0, 1, 2, ... sqrt(n) is the top row from L to R, thence onwards.""" headers = fileobj.readline()[:-1].split('\t') n = (len(headers)-1)/3 if abs(sqrt(n) - int(sqrt(n))) > 0.01: raise "Number of dots does not describe a square." # x_col[1] is the index in line for X1 x_col, y_col = [1 + i*3 for i in xrange(n)], [2 + i*3 for i in xrange(n)] assignments = None fileobj.readline() # discard the line "Tracks 1 to n" frames = [] for line in fileobj.readlines(): line = line[:-1].split('\t') if not assignments: # MTrack2 does not guarantee that the dots will be enumerated in any particular order, # so we have to figure out which dot in the file is our dot 1. We do this by sorting # the dots in the file by both x and y. For an n x n matrix, if a dot has one of the # n lowest x values, it must be in the first column; if it's not in the first n but # is in the first 2n, it must be in the second column, and so on. x, y = ([(i, float(line[col])) for i, col in enumerate(x_col)], [(i, float(line[col])) for i, col in enumerate(y_col)]) x = sorted(x, cmp=lambda a, b: cmp(a[1], b[1])) y = sorted(y, cmp=lambda a, b: cmp(a[1], b[1])) xi, yi = [None]*n, [None]*n for sort_i, (file_i, _value) in enumerate(x): xi[file_i] = sort_i for sort_i, (file_i, _value) in enumerate(y): yi[file_i] = sort_i assignments = [None] * n for i in xrange(n): row = int(floor(yi[i] / int(sqrt(n)))) col = int(floor(xi[i] / int(sqrt(n)))) assignments[i] = row*int(sqrt(n)) + col frame = [None]*n for i in xrange(n): frame[assignments[i]] = Dot(float(line[x_col[i]]), float(line[y_col[i]]), 1) frames.append(frame) print [i for i in enumerate(assignments)] return frames def sinefit(frames, dt, sin=np.sin): """fit_parameters = sinefit(frames) Takes the output of parse_csv and runs a sine-fitting function against it. For frames with n dots, returns an n-element list of tuples of SineFit objects (x,y). e.g., fit_parameters[0] = (SineFit(for dot0 in x), SineFit(for dot0 in y)) """ # p = [amplitude, period, phase offset, y offset] fitfunc = lambda p, x: p[0] * sin(2*pi/p[1]*x + p[2]) + p[3] errfunc = lambda p, x, y: fitfunc(p, x) - y p0 = [1., 1., 0., 0.] t = np.arange(len(frames)) * dt fit_parameters = [] for idot in xrange(len(frames[0])): print 'Sine fitting: dot %d' % idot dx, dy = zip(*[(frame[idot].xpos, frame[idot].ypos) for frame in frames]) p0[0] = (max(dx)-min(dx))/2.0 p0[3] = np.mean(dx) # FIXME: "success" here is not a valid success measure px, success = optimize.leastsq(errfunc, p0, args=(t, dx)) if not success: raise "Problem with optimize for dot %d in x" % idot xfit = SineFit(*px, sin=sin) xfit.r2 = stats.mstats.pearsonr(dx, xfit.eval(t))[0] ** 2 p0[0] = (max(dy)-min(dy))/2.0 p0[3] = np.mean(dy) py, success = optimize.leastsq(errfunc, p0, args=(t, dy)) if not success: raise "Problem with optimize for dot %d in y" % idot yfit = SineFit(*py, sin=sin) yfit.r2 = stats.mstats.pearsonr(dy, yfit.eval(t))[0] ** 2 fit_parameters.append((xfit, yfit)) return fit_parameters def process_coordinates(fit_parameters): """(center_x, center_y, resting_x, resting_y, extended_x, extended_y) = process_coordinates(fit_parameters) finds the resting and extended position for each dot, using the sine fit parameters.""" # start by finding a coordinate system based on the center of the device. # assume the outer dots make a perfect square and (0,0) is upper left. X, Y = 0, 1 center_x = ((fit_parameters[-1][0].offset - fit_parameters[-1][0].amplitude) - (fit_parameters[0][0].offset + fit_parameters[0][0].amplitude)) / 2 + fit_parameters[0][0].offset center_y = ((fit_parameters[-1][1].offset - fit_parameters[-1][1].amplitude) - (fit_parameters[0][1].offset + fit_parameters[0][1].amplitude)) + fit_parameters[0][1].offset # resting positions fall when y is minimized resting_y = [dot[Y].offset + dot[Y].amplitude for dot in fit_parameters] resting_x = [xfit.eval(yfit.period/(2*pi) * (pi/2 - yfit.phase)) for (xfit, yfit) in fit_parameters] # extended positions fall where y is maximized extended_y = [dot[Y].offset - dot[Y].amplitude for dot in fit_parameters] extended_x = [xfit.eval(yfit.period/(2*pi) * (3*pi/2 - yfit.phase)) for (xfit, yfit) in fit_parameters] return (center_x, center_y, resting_x, resting_y, extended_x, extended_y) def process_coordinates_from_data(fit_parameters, frames, dt): """(center_x, center_y, resting_x, resting_y, extended_x, extended_y) finds the resting and extended position for each dot, using the data.""" X, Y = 0, 1 center_x = ((fit_parameters[-1][0].offset - fit_parameters[-1][0].amplitude) - (fit_parameters[0][0].offset + fit_parameters[0][0].amplitude)) / 2 + fit_parameters[0][0].offset center_y = ((fit_parameters[-1][1].offset - fit_parameters[-1][1].amplitude) - (fit_parameters[0][1].offset + fit_parameters[0][1].amplitude)) + fit_parameters[0][1].offset # resting y positions fall when y is maximized, at t = period (pi/2 - phase) / (2 pi) # (this is because of our choice of coordinate system, where extension is up, towards 0) N = len(frames) y_max_t = [np.arange(start=yfit.period * (pi/2-yfit.phase) / (2*pi), stop=N*dt, step=yfit.period) for _, yfit in fit_parameters] y_max_t = [a[a > 0] for a in y_max_t] # extended y positions fall when y is minimized, at t = period (3 pi / 2 - phase) / (2 pi) y_min_t = [np.arange(start=yfit.period * (3*pi/2-yfit.phase) / (2*pi), stop=N*dt, step=yfit.period) for _, yfit in fit_parameters] y_min_t = [a[a > 0] for a in y_min_t] y_max_i = [np.rint(yt / dt).astype(int) for yt in y_max_t] y_min_i = [np.rint(yt / dt).astype(int) for yt in y_min_t] resting_x, resting_y = [], [] extended_x, extended_y = [], [] n_dots = len(frames[0]) for dot in range(n_dots): extended_x.append(mean([frames[i][dot].xpos for i in y_min_i[dot]])) extended_y.append(mean([frames[i][dot].ypos for i in y_min_i[dot]])) resting_x.append(mean([frames[i][dot].xpos for i in y_max_i[dot]])) resting_y.append(mean([frames[i][dot].ypos for i in y_max_i[dot]])) return (center_x, center_y, resting_x, resting_y, extended_x, extended_y) def find_center_by_frame(frames): return [(np.mean([dot.xpos for dot in frame]), np.mean([dot.ypos for dot in frame])) for frame in frames] def recenter(frames): """frames, [[residuals_x, residuals_y]] = recenter(frames) If the center of the device moved while your movie was running, that would be bad. But if you were providing a symmetric stretch, we can correct for it. This function makes sure that all frames have the same center point. It works on the assumption that (mean(x), mean(y)) is always the true center of the device. It computes an x offset and y offset value for each frame and then adds the same offset to all points within a frame to recenter it.""" frames = deepcopy(frames) center_by_frame = find_center_by_frame(frames) center_x, center_y = center_by_frame[0] centers_x, centers_y = zip(*center_by_frame) # show displacement of center from center_x, _y centers_x = [frame_pos - center_x for frame_pos in centers_x] centers_y = [frame_pos - center_y for frame_pos in centers_y] # add dx, dy to each dot in each frame for i, frame in enumerate(frames): for dot in frame: dot.xpos -= centers_x[i] dot.ypos -= centers_y[i] return frames, [centers_x, centers_y] def calculate_peak_strain(fit_parameters, resting_x, resting_y, extended_x, extended_y): # calculate strain at peak extension n_dots = len(fit_parameters) strain_x = [] strain_y = [] # now, compute the discrete derivative in each axis n = int(sqrt(n_dots)) for di in xrange(n_dots): # in x if di % n == 0: # left edge strain_x.append((extended_x[di+1]-extended_x[di] - (resting_x[di+1]-resting_x[di])) / (resting_x[di+1]-resting_x[di])) elif di % n == (n-1): # right edge strain_x.append((extended_x[di]-extended_x[di-1] - (resting_x[di]-resting_x[di-1])) / (resting_x[di]-resting_x[di-1])) else: # in the center strain_x.append((extended_x[di+1]-extended_x[di-1] - (resting_x[di+1]-resting_x[di-1])) / (resting_x[di+1]-resting_x[di-1])) # in y if di < n: # top row strain_y.append((extended_y[di+n]-extended_y[di] - (resting_y[di+n]-resting_y[di])) / (resting_y[di+n]-resting_y[di])) elif di >= n_dots-n: # bottom row strain_y.append((extended_y[di]-extended_y[di-n] - (resting_y[di]-resting_y[di-n])) / (resting_y[di]-resting_y[di-n])) else: # in the center strain_y.append((extended_y[di+n]-extended_y[di-n] - (resting_y[di+n]-resting_y[di-n])) / (resting_y[di+n]-resting_y[di-n])) return (strain_x, strain_y) def write_plots(frames, fit_parameters, jitter, directory, peak_strain, dt, min_strain=-0.1, max_strain=0.3): # draw residual plots for each sine fit in x and y t = np.arange(len(frames)) * dt fit = lambda t, sf: sf.eval(t) # TODO show phase for each regression # plot the sine fits first for idot in xrange(len(frames[0])): actual_x = [frame[idot].xpos for frame in frames] actual_y = [frame[idot].ypos for frame in frames] fit_x, fit_y = fit_parameters[idot] plt.clf() plt.plot(t, actual_x, 'b.', t, fit(t, fit_x), 'b-') plt.plot(t, actual_y, 'r.', t, fit(t, fit_y), 'r-') plt.title('Dot %d' % idot) plt.xlabel('Time (s)') plt.ylabel('Displacement (px)') # plt.legend(['in X', 'fit in X', 'in Y', 'fit in Y']) axes = plt.gca() axes.text(0.95, 0.5, (r'x: $%.2f sin(\frac{2 \pi}{%.2f} t + %.2f) + %.2f$; $R^2=%.4f$' '\n' r'y: $%.2f sin(\frac{2 \pi}{%.2f} t + %.2f) + %.2f$; $R^2=%.4f$' % (fit_x.amplitude, fit_x.period, fit_x.phase, fit_x.offset, fit_x.r2, fit_y.amplitude, fit_y.period, fit_y.phase, fit_y.offset, fit_y.r2)), verticalalignment='center', horizontalalignment='right', transform=axes.transAxes) plt.savefig('%s/dot_%04d_fit.png' % (directory, idot)) # plot the resting and extended coordinates (center_x, center_y, resting_x, resting_y, extended_x, extended_y) = process_coordinates(fit_parameters) plt.clf() plt.axis([min(extended_x+resting_x)-50, max(extended_x+resting_x)+50, max(extended_y+resting_y)+50, min(extended_y+resting_y)-50]) plt.quiver(resting_x, resting_y, [ext-rest for (ext, rest) in zip(extended_x, resting_x)], [ext-rest for (ext, rest) in zip(extended_y, resting_y)], units='xy', angles='xy', scale=1.0) plt.savefig('%s/coordinates.png' % directory) # plot coordinate system jitter plt.clf() plt.plot(t, jitter[0], t, jitter[1]) plt.legend(['x', 'y']) plt.savefig('%s/center_displacement.png' % directory) plt.clf() center_by_frame = find_center_by_frame(frames) plt.plot(t, zip(*center_by_frame)[0], t, zip(*center_by_frame)[1]) plt.savefig('%s/center_position_post.png' % directory) n = int(sqrt(len(fit_parameters))) min_strain = min_strain or min(peak_strain[0] + peak_strain[1]) max_strain = max_strain or max(peak_strain[0] + peak_strain[1]) matrix = lambda axis: np.array(peak_strain[axis]).reshape(n, n) for (axis, label) in [(0, 'x'), (1, 'y')]: plt.clf() plt.pcolor(matrix(axis), edgecolor='k', vmin=min_strain, vmax=max_strain) for i in range(n): for j in range(n): plt.text(i+0.5, j+0.5, "%.4f" % matrix(axis)[j, i], horizontalalignment='center', verticalalignment='center') ax = plt.gca() ax.set_ylim(ax.get_ylim()[::-1]) plt.colorbar(ticks=[-.05, 0, .05, .1, .15, .2, .25]) plt.savefig('%s/peakstrain_%s.png' % (directory, label)) f = open('%s/index.html' % directory, 'w') print >> f, "<!DOCTYPE html>\n<html><head><title>Regression results</title></head><body>" print >> f, '<h1>Dot positions</h1><img src="coordinates.png" />' print >> f, ('<h1>Center displacement (pre-correction)</h1>' '<img src="center_displacement.png" />') print >> f, ('<h1>Center position (post-correction)</h1>' '<img src="center_position_post.png" />') print >> f, ('<h1>Peak strain: x</h1>' '<img src="peakstrain_x.png" />' '<p>Mean peak x strain: %f Standard deviation: %f</p>' % (np.mean(peak_strain[0]), np.std(peak_strain[0]))) print >> f, ('<h1>Peak strain: y</h1>' '<img src="peakstrain_y.png" />' '<p>Mean peak y strain: %f Standard deviation: %f</p>' % (np.mean(peak_strain[1]), np.std(peak_strain[1]))) for idot in xrange(len(frames[0])): print >> f, '<h1>Dot %d</h1><img src="dot_%04d_fit.png" />' % (idot, idot) print >> f, '</body></html>' f.close() def main(): sin_functions = { 'sine': np.sin, 'sawtooth': lambda x: sawtooth(x-3*pi/2, width=0.5), } parser = argparse.ArgumentParser() parser.add_argument('infile') parser.add_argument('outpath') parser.add_argument('--overwrite', '-O', action='store_true', help="Don't complain if outpath already exists") parser.add_argument('--fit-function', '-f', help='Choose a function to fit the waveforms', choices=sin_functions.keys(), default='sine') parser.add_argument( '--strains-from', '-s', choices=['fit', 'data'], default='fit', help=("Choose whether strains will be computed from the peaks of the " "fit function (fit; default) or from the average of the observed " "strains at the extended position determined from the fits (data).")) parser.add_argument('--fps', type=float, default=30.) args = parser.parse_args() try: os.makedirs(args.outpath) # do this first so we aren't surprised later except OSError: if not args.overwrite: print >> sys.stderr, "Output path exists. Use --overwrite to run anyway." sys.exit(1) f = open(args.infile, 'rU') frames = parse_mtrack2(f) f.close() centered_frames, jitter = recenter(frames) fit_parameters = sinefit(frames, dt=1./args.fps, sin=sin_functions[args.fit_function]) if args.strains_from == 'fit': (_center_x, _center_y, resting_x, resting_y, extended_x, extended_y) = \ process_coordinates(fit_parameters) elif args.strains_from == 'data': (_center_x, _center_y, resting_x, resting_y, extended_x, extended_y) = \ process_coordinates_from_data(fit_parameters, frames, 1./args.fps) else: raise ValueError peak_strain = calculate_peak_strain(fit_parameters, resting_x, resting_y, extended_x, extended_y) write_plots(frames, fit_parameters, jitter, args.outpath, peak_strain, dt=1./args.fps, min_strain=-0.05, max_strain=0.25) if __name__ == '__main__': main()
mit
LiaoPan/scikit-learn
sklearn/datasets/tests/test_mldata.py
384
5221
"""Test functionality of mldata fetching utilities.""" import os import shutil import tempfile import scipy as sp from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import mock_mldata_urlopen from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import with_setup from sklearn.utils.testing import assert_array_equal tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urlopen_ref = datasets.mldata.urlopen try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "data"]: assert_in(n, dset) assert_not_in("target", dset) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urlopen_ref = datasets.mldata.urlopen try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ( { 'label': y, 'data': x, 'z': z, }, ['z', 'data', 'label'], ), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z']), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y']), }) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) finally: datasets.mldata.urlopen = _urlopen_ref
bsd-3-clause
LumenResearch/heatmappy
heatmappy/heatmap.py
1
7675
from abc import ABCMeta, abstractmethod from functools import partial import io import os import random from matplotlib.colors import LinearSegmentedColormap import numpy from PIL import Image try: from PySide import QtCore, QtGui except ImportError: pass _asset_file = partial(os.path.join, os.path.dirname(__file__), 'assets') def _img_to_opacity(img, opacity): img = img.copy() alpha = img.split()[3] alpha = alpha.point(lambda p: int(p * opacity)) img.putalpha(alpha) return img class Heatmapper: def __init__(self, point_diameter=50, point_strength=0.2, opacity=0.65, colours='default', grey_heatmapper='PIL'): """ :param opacity: opacity (between 0 and 1) of the generated heatmap overlay :param colours: Either 'default', 'reveal', OR the path to horizontal image which will be converted to a scale OR a matplotlib LinearSegmentedColorMap instance. :param grey_heatmapper: Required to draw points on an image as a greyscale heatmap. If not using the default, this must be an object which fulfils the GreyHeatmapper interface. """ self.opacity = opacity self._colours = None self.colours = colours if grey_heatmapper == 'PIL': self.grey_heatmapper = PILGreyHeatmapper(point_diameter, point_strength) elif grey_heatmapper == 'PySide': self.grey_heatmapper = PySideGreyHeatmapper(point_diameter, point_strength) else: self.grey_heatmapper = grey_heatmapper @property def colours(self): return self._colours @colours.setter def colours(self, colours): self._colours = colours if isinstance(colours, LinearSegmentedColormap): self._cmap = colours else: files = { 'default': _asset_file('default.png'), 'reveal': _asset_file('reveal.png'), } scale_path = files.get(colours) or colours self._cmap = self._cmap_from_image_path(scale_path) @property def point_diameter(self): return self.grey_heatmapper.point_diameter @point_diameter.setter def point_diameter(self, point_diameter): self.grey_heatmapper.point_diameter = point_diameter @property def point_strength(self): return self.grey_heatmapper.point_strength @point_strength.setter def point_strength(self, point_strength): self.grey_heatmapper.point_strength = point_strength def heatmap(self, width, height, points, base_path=None, base_img=None): """ :param points: sequence of tuples of (x, y), eg [(9, 20), (7, 3), (19, 12)] :return: If base_path of base_img provided, a heat map from the given points is overlayed on the image. Otherwise, the heat map alone is returned with a transparent background. """ heatmap = self.grey_heatmapper.heatmap(width, height, points) heatmap = self._colourised(heatmap) heatmap = _img_to_opacity(heatmap, self.opacity) if base_path: background = Image.open(base_path) return Image.alpha_composite(background.convert('RGBA'), heatmap) elif base_img is not None: return Image.alpha_composite(base_img.convert('RGBA'), heatmap) else: return heatmap def heatmap_on_img_path(self, points, base_path): width, height = Image.open(base_path).size return self.heatmap(width, height, points, base_path=base_path) def heatmap_on_img(self, points, img): width, height = img.size return self.heatmap(width, height, points, base_img=img) def _colourised(self, img): """ maps values in greyscale image to colours """ arr = numpy.array(img) rgba_img = self._cmap(arr, bytes=True) return Image.fromarray(rgba_img) @staticmethod def _cmap_from_image_path(img_path): img = Image.open(img_path) img = img.resize((256, img.height)) colours = (img.getpixel((x, 0)) for x in range(256)) colours = [(r/255, g/255, b/255, a/255) for (r, g, b, a) in colours] return LinearSegmentedColormap.from_list('from_image', colours) class GreyHeatMapper(metaclass=ABCMeta): @abstractmethod def __init__(self, point_diameter, point_strength): self.point_diameter = point_diameter self.point_strength = point_strength @abstractmethod def heatmap(self, width, height, points): """ :param points: sequence of tuples of (x, y), eg [(9, 20), (7, 3), (19, 12)] :return: a white image of size width x height with black areas painted at the given points """ pass class PySideGreyHeatmapper(GreyHeatMapper): def __init__(self, point_diameter, point_strength): super().__init__(point_diameter, point_strength) self.point_strength = int(point_strength * 255) def heatmap(self, width, height, points): base_image = QtGui.QImage(width, height, QtGui.QImage.Format_ARGB32) base_image.fill(QtGui.QColor(255, 255, 255, 255)) self._paint_points(base_image, points) return self._qimage_to_pil_image(base_image).convert('L') def _paint_points(self, img, points): painter = QtGui.QPainter(img) painter.setRenderHint(QtGui.QPainter.Antialiasing) pen = QtGui.QPen(QtGui.QColor(0, 0, 0, 0)) pen.setWidth(0) painter.setPen(pen) for point in points: self._paint_point(painter, *point) painter.end() def _paint_point(self, painter, x, y): grad = QtGui.QRadialGradient(x, y, self.point_diameter/2) grad.setColorAt(0, QtGui.QColor(0, 0, 0, max(self.point_strength, 0))) grad.setColorAt(1, QtGui.QColor(0, 0, 0, 0)) brush = QtGui.QBrush(grad) painter.setBrush(brush) painter.drawEllipse( x - self.point_diameter/2, y - self.point_diameter/2, self.point_diameter, self.point_diameter ) @staticmethod def _qimage_to_pil_image(qimg): buffer = QtCore.QBuffer() buffer.open(QtCore.QIODevice.ReadWrite) qimg.save(buffer, "PNG") bytes_io = io.BytesIO() bytes_io.write(buffer.data().data()) buffer.close() bytes_io.seek(0) return Image.open(bytes_io) class PILGreyHeatmapper(GreyHeatMapper): def __init__(self, point_diameter, point_strength): super().__init__(point_diameter, point_strength) def heatmap(self, width, height, points): heat = Image.new('L', (width, height), color=255) dot = (Image.open(_asset_file('450pxdot.png')).copy() .resize((self.point_diameter, self.point_diameter), resample=Image.ANTIALIAS)) dot = _img_to_opacity(dot, self.point_strength) for x, y in points: x, y = int(x - self.point_diameter/2), int(y - self.point_diameter/2) heat.paste(dot, (x, y), dot) return heat if __name__ == '__main__': randpoint = lambda max_x, max_y: (random.randint(0, max_x), random.randint(0, max_y)) example_img = Image.open(_asset_file('cat.jpg')) example_points = (randpoint(*example_img.size) for _ in range(500)) heatmapper = Heatmapper(colours='default') heatmapper.colours = 'reveal' heatmapper.heatmap_on_img(example_points, example_img).save('out.png')
mit
sherlockcoin/Electrum-NavCoin
plugins/plot/qt.py
11
3548
from PyQt4.QtGui import * from electrum.plugins import BasePlugin, hook from electrum.i18n import _ import datetime from electrum.util import format_satoshis from electrum.bitcoin import COIN try: import matplotlib.pyplot as plt import matplotlib.dates as md from matplotlib.patches import Ellipse from matplotlib.offsetbox import AnchoredOffsetbox, TextArea, DrawingArea, HPacker flag_matlib=True except: flag_matlib=False class Plugin(BasePlugin): def is_available(self): if flag_matlib: return True else: return False @hook def export_history_dialog(self, window, hbox): wallet = window.wallet history = wallet.get_history() if len(history) > 0: b = QPushButton(_("Preview plot")) hbox.addWidget(b) b.clicked.connect(lambda: self.do_plot(wallet, history)) else: b = QPushButton(_("No history to plot")) hbox.addWidget(b) def do_plot(self, wallet, history): balance_Val=[] fee_val=[] value_val=[] datenums=[] unknown_trans = 0 pending_trans = 0 counter_trans = 0 balance = 0 for item in history: tx_hash, confirmations, value, timestamp, balance = item if confirmations: if timestamp is not None: try: datenums.append(md.date2num(datetime.datetime.fromtimestamp(timestamp))) balance_Val.append(1000.*balance/COIN) except [RuntimeError, TypeError, NameError] as reason: unknown_trans += 1 pass else: unknown_trans += 1 else: pending_trans += 1 value_val.append(1000.*value/COIN) if tx_hash: label = wallet.get_label(tx_hash) label = label.encode('utf-8') else: label = "" f, axarr = plt.subplots(2, sharex=True) plt.subplots_adjust(bottom=0.2) plt.xticks( rotation=25 ) ax=plt.gca() x=19 test11="Unknown transactions = "+str(unknown_trans)+" Pending transactions = "+str(pending_trans)+" ." box1 = TextArea(" Test : Number of pending transactions", textprops=dict(color="k")) box1.set_text(test11) box = HPacker(children=[box1], align="center", pad=0.1, sep=15) anchored_box = AnchoredOffsetbox(loc=3, child=box, pad=0.5, frameon=True, bbox_to_anchor=(0.5, 1.02), bbox_transform=ax.transAxes, borderpad=0.5, ) ax.add_artist(anchored_box) plt.ylabel('mBTC') plt.xlabel('Dates') xfmt = md.DateFormatter('%Y-%m-%d') ax.xaxis.set_major_formatter(xfmt) axarr[0].plot(datenums,balance_Val,marker='o',linestyle='-',color='blue',label='Balance') axarr[0].legend(loc='upper left') axarr[0].set_title('History Transactions') xfmt = md.DateFormatter('%Y-%m-%d') ax.xaxis.set_major_formatter(xfmt) axarr[1].plot(datenums,value_val,marker='o',linestyle='-',color='green',label='Value') axarr[1].legend(loc='upper left') # plt.annotate('unknown transaction = %d \n pending transactions = %d' %(unknown_trans,pending_trans),xy=(0.7,0.05),xycoords='axes fraction',size=12) plt.show()
mit
h2educ/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
andrewstuart/data-science-from-scratch
code/clustering.py
60
6438
from __future__ import division from linear_algebra import squared_distance, vector_mean, distance import math, random import matplotlib.image as mpimg import matplotlib.pyplot as plt class KMeans: """performs k-means clustering""" def __init__(self, k): self.k = k # number of clusters self.means = None # means of clusters def classify(self, input): """return the index of the cluster closest to the input""" return min(range(self.k), key=lambda i: squared_distance(input, self.means[i])) def train(self, inputs): self.means = random.sample(inputs, self.k) assignments = None while True: # Find new assignments new_assignments = map(self.classify, inputs) # If no assignments have changed, we're done. if assignments == new_assignments: return # Otherwise keep the new assignments, assignments = new_assignments for i in range(self.k): i_points = [p for p, a in zip(inputs, assignments) if a == i] # avoid divide-by-zero if i_points is empty if i_points: self.means[i] = vector_mean(i_points) def squared_clustering_errors(inputs, k): """finds the total squared error from k-means clustering the inputs""" clusterer = KMeans(k) clusterer.train(inputs) means = clusterer.means assignments = map(clusterer.classify, inputs) return sum(squared_distance(input,means[cluster]) for input, cluster in zip(inputs, assignments)) def plot_squared_clustering_errors(plt): ks = range(1, len(inputs) + 1) errors = [squared_clustering_errors(inputs, k) for k in ks] plt.plot(ks, errors) plt.xticks(ks) plt.xlabel("k") plt.ylabel("total squared error") plt.show() # # using clustering to recolor an image # def recolor_image(input_file, k=5): img = mpimg.imread(path_to_png_file) pixels = [pixel for row in img for pixel in row] clusterer = KMeans(k) clusterer.train(pixels) # this might take a while def recolor(pixel): cluster = clusterer.classify(pixel) # index of the closest cluster return clusterer.means[cluster] # mean of the closest cluster new_img = [[recolor(pixel) for pixel in row] for row in img] plt.imshow(new_img) plt.axis('off') plt.show() # # hierarchical clustering # def is_leaf(cluster): """a cluster is a leaf if it has length 1""" return len(cluster) == 1 def get_children(cluster): """returns the two children of this cluster if it's a merged cluster; raises an exception if this is a leaf cluster""" if is_leaf(cluster): raise TypeError("a leaf cluster has no children") else: return cluster[1] def get_values(cluster): """returns the value in this cluster (if it's a leaf cluster) or all the values in the leaf clusters below it (if it's not)""" if is_leaf(cluster): return cluster # is already a 1-tuple containing value else: return [value for child in get_children(cluster) for value in get_values(child)] def cluster_distance(cluster1, cluster2, distance_agg=min): """finds the aggregate distance between elements of cluster1 and elements of cluster2""" return distance_agg([distance(input1, input2) for input1 in get_values(cluster1) for input2 in get_values(cluster2)]) def get_merge_order(cluster): if is_leaf(cluster): return float('inf') else: return cluster[0] # merge_order is first element of 2-tuple def bottom_up_cluster(inputs, distance_agg=min): # start with every input a leaf cluster / 1-tuple clusters = [(input,) for input in inputs] # as long as we have more than one cluster left... while len(clusters) > 1: # find the two closest clusters c1, c2 = min([(cluster1, cluster2) for i, cluster1 in enumerate(clusters) for cluster2 in clusters[:i]], key=lambda (x, y): cluster_distance(x, y, distance_agg)) # remove them from the list of clusters clusters = [c for c in clusters if c != c1 and c != c2] # merge them, using merge_order = # of clusters left merged_cluster = (len(clusters), [c1, c2]) # and add their merge clusters.append(merged_cluster) # when there's only one cluster left, return it return clusters[0] def generate_clusters(base_cluster, num_clusters): # start with a list with just the base cluster clusters = [base_cluster] # as long as we don't have enough clusters yet... while len(clusters) < num_clusters: # choose the last-merged of our clusters next_cluster = min(clusters, key=get_merge_order) # remove it from the list clusters = [c for c in clusters if c != next_cluster] # and add its children to the list (i.e., unmerge it) clusters.extend(get_children(next_cluster)) # once we have enough clusters... return clusters if __name__ == "__main__": inputs = [[-14,-5],[13,13],[20,23],[-19,-11],[-9,-16],[21,27],[-49,15],[26,13],[-46,5],[-34,-1],[11,15],[-49,0],[-22,-16],[19,28],[-12,-8],[-13,-19],[-41,8],[-11,-6],[-25,-9],[-18,-3]] random.seed(0) # so you get the same results as me clusterer = KMeans(3) clusterer.train(inputs) print "3-means:" print clusterer.means print random.seed(0) clusterer = KMeans(2) clusterer.train(inputs) print "2-means:" print clusterer.means print print "errors as a function of k" for k in range(1, len(inputs) + 1): print k, squared_clustering_errors(inputs, k) print print "bottom up hierarchical clustering" base_cluster = bottom_up_cluster(inputs) print base_cluster print print "three clusters, min:" for cluster in generate_clusters(base_cluster, 3): print get_values(cluster) print print "three clusters, max:" base_cluster = bottom_up_cluster(inputs, max) for cluster in generate_clusters(base_cluster, 3): print get_values(cluster)
unlicense