repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
gillenbrown/betterplotlib
betterplotlib/_generate_interface.py
1
3681
# auto generates _interface.py import os this_dir = os.path.realpath(os.path.split(__file__)[0]) interface_loc = this_dir + os.sep + "_interface.py" axes_loc = this_dir + os.sep + "axes_bpl.py" figure_loc = this_dir + os.sep + "figure_bpl.py" interface = open(interface_loc, "w") # write a header interface.write("from matplotlib import docstring\n" + "from matplotlib.pyplot import _autogen_docstring\n" + "import matplotlib.pyplot as plt\n\n" "import betterplotlib as bpl\n\n") def get_functions(loc, definition): func_args = [] with open(loc, "r") as original: in_axes = False in_def = False for line in original: if in_axes == False and line.strip() == definition: in_axes = True continue if in_axes and line.strip().startswith("def "): in_def = True this_def = "" if in_def: if "def" in line: this_def += line.strip().replace("self, ", "") + "\n" else: this_def += line[4:] if not line.endswith("\n"): this_def += "\n" if in_def and ":" in line: in_def = False func_args.append(this_def) return func_args def strip_defaults(function_def): # gets rid of all the default parameters in a function argument so that it # can be turned from the definition into a function call # first get where the arguments start first_paren_idx = function_def.find("(") # get the function name and first parenthesis def_begin = function_def[4:first_paren_idx + 1] # then get the arguments. The -3 at the end takes care of the newline, # colon, and closing parenthesis. args = function_def[first_paren_idx + 1:-3] # then we can examine each one in turn, formatiing it properly args_list = [] for arg in args.split(","): # find ehere the equals sign indicating a default parameter is idx_equals = arg.find("=") # if there isn't one, there is no default, so we can just keep the # whole thing if idx_equals == -1: args_list.append(arg) # if there is a default paraemeter, get rid of it. else: args_list.append(arg[0:idx_equals]) # then put them back into a comma separated list args_joined = ",".join(args_list) # to have things line up properly in the file, we need to add some spaces args_joined = args_joined.replace("\n", "\n ") # then join everything together return def_begin + args_joined + ")" axes_definition = "class Axes_bpl(Axes):" # figure_definition = "class Figure_bpl(Figure):" axes_functions_args = get_functions(axes_loc, axes_definition) # figure_functions = get_functions(figure_loc, figure_definition) for func_args in axes_functions_args: func_name = func_args.split()[1].split("(")[0] func_args_no_defauts = strip_defaults(func_args) interface.write("@_autogen_docstring(bpl.Axes_bpl.{})\n".format(func_name) + \ func_args + \ " ax = plt.gca(projection='bpl')\n" + \ " return ax.{}\n\n".format(func_args_no_defauts)) # for func in figure_functions: # interface.write("@_autogen_docstring(bpl.Figure_bpl.{})\n".format(func) + \ # "def {}(*args, **kwargs):\n".format(func) + \ # " fig = plt.gcf()\n" + \ # " return fig.{}(*args, **kwargs)\n\n".format(func)) interface.close()
mit
adamgreenhall/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
83
17276
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(LogisticRegression(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
RJTK/dwglasso_cweeds
src/models/dwglasso.py
1
12057
''' Implements DWGLASSO and associated helper functions. We will load in the dT data from /data/interim/interim_data.hdf and then apply the dwglasso algorithm on a subsequence of this data. NOTE: This file is intended to be executed by make from the top level of the project directory hierarchy. We rely on os.getcwd() and it will not work if run directly as a script from this directory. ''' import time import sys import numba # JIT compilation import numpy as np import warnings from scipy.linalg import cho_factor, cho_solve, lu_factor, lu_solve, eigh import matplotlib as mpl; mpl.use('TkAgg') from matplotlib import pyplot as plt from scipy.optimize import differential_evolution from src.conf import MAX_P, ZZT_FILE_PREFIX, YZT_FILE_PREFIX,\ X_VALIDATE_FILE_PREFIX def build_YZ(X, p): ''' Builds the Y (output) and Z (input) matrices for the model from the X matrix consisting of temperatures series in it's rows. We need to also provide the lag length of the model, p. X: n x T matrix of data. Each row is a time series X = [x(0), x(1), ..., x(T - 1)] p: Model lag length Returns (Y, Z): Y: n x (T - p) matrix [x(p), x(p + 1), ..., x(T - 1)] Z: np x (T - p) matrix [z(p - 1), z(p), ..., z(T - 2)] where z(t) = [x(t).T x(t - 1).T, ..., x(t - p + 1).T].T stacks x's Then with a n x np coefficient matrix we obtain: Y_hat = B_hat * Z ''' n = X.shape[0] T = X.shape[1] if T == 0: return np.array([]), np.array([]) Y = X[:, p:] assert Y.shape[0] == n and Y.shape[1] == T - p, 'Issues with shape!' Z = np.zeros((n * p, T - p)) for tau in range(p): Z[tau * n: (tau + 1) * n, :] = X[:, tau: tau - p] return Y, Z def cross_validate(ZZT: np.array, YZT: np.array, X_test, p: int, mu: float=0.1, tol=1e-6, max_iter=100, warn_PSD=False, ret_B_err=False, t_limit_sec=3600): ''' Run through each possible combinations of parameters given by the lists lmbda, alpha, delta, and sigma and then fit the dwglasso model and cross validate it against the 1-step ahead prediction task on the data given in Z and Y. Y_hat = B_hat * Z. ''' t0 = time.time() def tlimit_func(*args, **kwargs): if time.time() - t0 >= t_limit_sec: return True return def f(x): l, a, d, s = x B_hat = dwglasso(ZZT=ZZT, YZT=YZT, p=p, lmbda=l, alpha=a, mu=mu, delta=d, sigma=s, tol=tol, warn_PSD=warn_PSD, ret_B_err=ret_B_err, silent=True) Y_hat = np.dot(B_hat, Z) err = (np.linalg.norm(Y - Y_hat, ord='fro')**2) / T G = np.abs(sum([B_hat[:, tau * n:(tau + 1) * n] for tau in range(p)]).T) G = G - np.diag(np.diag(G)) G = G > 0 # The Granger-causality graph print('err = {:15.2f}'.format(err), '(l = %9.4f, a = %6.5f, d = %6.5f, s = %9.4f) ' % tuple(x), 'Num edges: {:9d}'.format(np.sum(G)), end='\r') return err Y, Z = build_YZ(X_test, p) T = Y.shape[1] n = Y.shape[0] bounds = [(0, 2), (0, 1), (0, 1), (0, 100)] # l a d s res = differential_evolution(f, bounds, disp=True, polish=False, maxiter=100, popsize=25, callback=tlimit_func, tol=1e-4) print() # Newline print('Optimizer Success:', res.success) l, a, d, s = res.x print('Optimal parameters: lmbda = %0.5f, alpha = %0.5f, delta = %0.5f,' ' sigma = %0.5f' % (l, a, d, s)) B_hat = dwglasso(ZZT=ZZT, YZT=YZT, p=p, lmbda=l, alpha=a, mu=mu, delta=d, sigma=s, tol=tol, warn_PSD=warn_PSD, ret_B_err=ret_B_err) print() plt.imshow(B_hat) plt.colorbar() plt.title('Optimal B_hat') plt.show() return B_hat # This function is ridiculously complicated def dwglasso(ZZT: np.array, YZT: np.array, p: int=1, lmbda: float=0.0, alpha: float=0.05, mu: float=0.1, delta=0, sigma=0, tol=1e-6, max_iter=100, warn_PSD=True, ret_B_err=False, silent=False, assert_params=True): '''Minimizes over B: 1/(2T)||Y - BZ||_F^2 + lmbda[alpha||B||_F^2 + (1 - alpha)G_DW(B) via ADMM. G_DW is the depth wise group regularizer \sum_{ij}||Bt_ij||_2 where Bt_ij is the p-vector (B(1)_ij ... B(p)_ij) e.g. the filter coefficients from xj -> xi. if lmbda = 0 we have simple ordinary least squares, and if alpha = 1 then we have tikhonov regularization. mu is a tuning parameter for ADMM convergence and unless lmbda = 0 or alpha = 1, we need mu > 0. ''' if assert_params: assert alpha >= 0 and alpha <= 1, 'Required: alpha \in [0, 1]' assert lmbda >= 0, 'Required: lmbda >= 0' assert mu >= 0, 'Required: mu >= 0' # 0 only if lmbda = 0 or alpha = 1 assert sigma >= 0, 'Required: sigma >= 0' assert delta >= 0 and delta <= 1, 'Required: delta \in [0, 1]' # Proximity operators # @numba.jit(nopython=True, cache=True) def proxf_lu(V: np.array): ''' proximity operator ||Y - BX||_F^2 + lmbda*(1 - alpha)||B||_F^2, implemented using an LU factorized covariance matrix. This will work even if the covariance matrix is (due to numerical issues) not positive semi definite. ''' return (lu_solve(lu_piv, YZT.T + V.T / mu, overwrite_b=True, check_finite=False)).T def proxf_cho(V: np.array): ''' proximity operator of ||Y - BX||_F^2 + lmbda*(1 - alpha)||B||_F^2, implemented using a cholesky factorized covariance matrix. This requires the covariance matrix to be (numerically) positive semidefinite. ''' return (cho_solve(L_and_lower, YZT.T + V.T / mu, overwrite_b=True, check_finite=False)).T @numba.jit(nopython=True, cache=True) # Dramatic speed up is achieved def proxg(V: np.array): '''proximity operator of alpha*lmbda*sum_ij||B_ij||_2 See DWGLASSO paper for details ''' n = V.shape[0] p = V.shape[1] // n P = np.empty((n, n * p)) for i in range(n): for j in range(n): Vtij = V[i, j::n] Vtij_l2 = 0 for tau in range(p): # Calling np.norm not valid w/ numba Vtij_l2 += Vtij[tau]**2 if Vtij_l2 == 0: P[i, j::n] = 0 else: r = lmbda * (1 - alpha) * mu / Vtij_l2 P[i, j::n] = max(0, 1 - r) * Vtij return P def admm(): def rel_err(Bxk, Bzk): # F-norm difference between Bx and Bz per entry return (1 / (n * n * p)) * np.linalg.norm(Bxk - Bzk, 'f')**2 # Init with 0s Bz, Bu = np.zeros((n, n * p)), np.zeros((n, n * p)) Bx = proxf(Bz) k = 0 rel_err_k = rel_err(Bx, Bz) while rel_err_k > tol and k < max_iter: # ADMM iterations k += 1 if not silent: print('iter:', k, '(1/pn^2)||Bx - Bz||_F^2 =', rel_err_k, end='\r') sys.stdout.flush() Bx = proxf(Bz - Bu) Bz = proxg(Bx + Bu) Bu = Bu + Bx - Bz rel_err_k = rel_err(Bx, Bz) if not silent: print() # Print out a newline if k >= max_iter: # Should only ever reach k == max_iter if not silent: warnings.warn('Max iterations exceeded! rel_err = %e' % rel_err_k, RuntimeWarning) return Bz # ----------------REAL FUNCTION ENTRY POINT----------------------- n = ZZT.shape[0] // p # Regularize the covariance estimate ZZT = (1 - delta) * ZZT + delta * np.diag(np.diag(ZZT)) +\ sigma * np.eye(n * p) B_err = np.ones((n * p, n * p)) if warn_PSD and not silent: # Check if ZZT > 0 try: cho_factor(ZZT) except np.linalg.LinAlgError as e: lmbda_min = eigh(ZZT, eigvals_only=True, turbo=False, check_finite=False, eigvals=(0, 0)) warnings.warn('ZZT is indefinite! lmbda_min(ZZT) = %e, err: %s' % (lmbda_min, e.args)) if ret_B_err: return B_err if lmbda == 0: # OLS if not silent: print('OLS') try: L_and_lower = cho_factor(ZZT.T, overwrite_a=True) B = cho_solve(L_and_lower, YZT.T, overwrite_b=True, check_finite=False).T return B except np.linalg.LinAlgError as e: # ZZT is (probably) indefinite lu_piv = lu_factor(ZZT.T, overwrite_a=True) B = lu_solve(lu_piv, YZT.T, overwrite_b=True, check_finite=False).T return B else: # Regularized solution if alpha == 1: # Tikhonov regularization with lmbda if not silent: print('L2 Regularization') # R and subsequently YZT are overwritten in the lu solver R = (ZZT + lmbda * np.eye(n * p)) # Has nothing to do with Rx try: L_and_lower = cho_factor(R.T, overwrite_a=True) B = cho_solve(L_and_lower, YZT.T, overwrite_b=True, check_finite=False).T return B except np.linalg.LinAlgError as e: # ZZT is (probably) indefinite lu_piv = lu_factor(R.T, overwrite_a=True) B = lu_solve(lu_piv, YZT.T, overwrite_b=True, check_finite=False).T return B else: # DWGLASSO if not silent: print('DWGLASSO') assert mu > 0, 'Required: mu > 0 (unless lmbda = 0, or alpha = 1)' if alpha == 0: if not silent: warnings.warn('We need alpha > 0 to guarantee convergence,' ' to the optimal B matrix', RuntimeWarning) r = (1 + 2 * mu * lmbda * alpha) / mu R = (ZZT + r * np.eye(n * p)) # Has nothing to do with Rx try: L_and_lower = cho_factor(R.T, overwrite_a=True) proxf = proxf_cho return admm() except np.linalg.LinAlgError as e: # ZZT is (probably) indefinite lu_piv = lu_factor(R.T, overwrite_a=True) proxf = proxf_lu return admm() def main(): p = 2 assert p <= MAX_P and p >= 1, 'p must be in (1, MAX_P)!' ZZT = np.load(ZZT_FILE_PREFIX + str(p) + '_T' + '.npy') YZT = np.load(YZT_FILE_PREFIX + str(p) + '_T' + '.npy') XT = np.load(X_VALIDATE_FILE_PREFIX + '_T' + '.npy') Y_test, Z_test = build_YZ(XT, p) B_hat = dwglasso(ZZT, YZT, p, lmbda=370.0, alpha=0.2, tol=1e-11, mu=0.1, max_iter=150, sigma=2.5, delta=0.1, ret_B_err=False) print('Non 0 entries:', np.sum(np.abs(B_hat) > 0), '/', B_hat.size) plt.imshow(B_hat) plt.colorbar() plt.title('DWGLASSO Test Run on T') plt.show() # Verify, by rolling accross the station axis, that we have everything # correctly lined up. We expect the lowest error on the non-rolled # Z_test matrix. Then another dip after it's been rolled all the way back T = Y_test.shape[1] n = Y_test.shape[0] errs = [] for i in range(n + 10): print('roll:', i, end='\r') Y_hat = np.dot(B_hat, np.roll(Z_test, i, axis=0)) err_i = (np.linalg.norm(Y_hat - Y_test, ord='fro') ** 2) / T errs.append(err_i) plt.plot(range(n + 10), errs) plt.title('Verification of alignment') plt.xlabel('roll index') plt.ylabel('Error') plt.show() return if __name__ == '__main__': main()
mit
morganics/bayesianpy
tests/data_reader.py
1
1982
import logging import unittest.mock as mock import unittest import bayesianpy.network import pandas as pd import bayesianpy.utils.list import tests.iris import dask.dataframe as dd import bayesianpy.reader from timeit import default_timer as timer class TestDaskDataReader(unittest.TestCase): def test_pre_loading(self): npartitions = 10 all_ddf = dd.concat([dd.from_pandas(tests.iris.create_iris_dataset(), npartitions=npartitions) for i in range(0, 500)], interleave_partitions=True) #print(all_ddf) total_length = len(all_ddf) length_of_partition = len(all_ddf.get_partition(0).compute()) bayesianpy.jni.attach() dfr = bayesianpy.reader.PandasDataReaderCommand(all_ddf, preload=False) reader = dfr.executeReader() start = timer() for i in range(0, total_length): reader.getCallable('read')() end = timer() non_preloaded = end-start dfr = bayesianpy.reader.PandasDataReaderCommand(all_ddf, preload=True) reader = dfr.executeReader() start = timer() for i in range(0, total_length): reader.getCallable('read')() end = timer() preloaded = end-start print(non_preloaded) print(preloaded) self.assertTrue(preloaded < non_preloaded) #self.assertEqual(0, reader.getCallable("get_partition_index")()) self.assertEqual(1, reader.getCallable("get_loaded_partition_index")()) for i in range(0, total_length - (length_of_partition+10)): reader.getCallable('read')() self.assertEqual(npartitions, reader.getCallable("get_partition_index")()) self.assertEqual(npartitions, reader.getCallable("get_loaded_partition_index")()) # # current_partition = reader.getCallable('get_partition')() # print(current_partition) # row_value = reader.getCallable('getString')(0) # print(row_value)
apache-2.0
EconomicSL/housing-model
src/main/resources/calibration/code/SaleReprice.py
2
7180
# -*- coding: utf-8 -*- """ Defines several classes to study the reprice or price decrease behaviour of households trying to sell their houses. It uses Zoopla data @author: daniel, Adrian Carro """ import Datasets as ds import numpy as np from datetime import datetime import matplotlib.pyplot as plt import scipy.stats as stats import math class DiscountDistribution: """Class to collect and store the distribution of price discounts per month""" # Number of months on the market to consider as sample (bins in the x axis for building the pdf) x_size = 48 # 4 years # For every month in the sample, countNoChange stores the number of properties not experiencing a drop in price # between -90% and -0.2% countNoChange = np.zeros(x_size) # For every month in the sample, countTotal stores the number of properties in the data during that month countTotal = np.zeros(x_size) # For every month in the sample, changesByMonth stores a list of the logarithmic percent changes (in absolute value) # in price of every property experiencing a drop in price between -90% and -0.2% changesByMonth = [[] for i in range(x_size)] # Need to implement an __init__ method def __init__(self): pass # Record one listing with no change of price between start and end months def record_no_change(self, start, end): if end >= self.x_size: end = self.x_size - 1 for month in range(start, end + 1): self.countNoChange[month] += 1 self.countTotal[month] += 1 # Record one listing with a drop in price between -90% and -0.2% at month def record_change(self, start, month, percent): if -90 < percent < -0.2: self.record_no_change(start, month - 1) # Record the listing as no change before month if month < self.x_size: # Only record the change if month is within the sample self.countTotal[month] += 1 self.changesByMonth[month].append(math.log(math.fabs(percent))) else: self.record_no_change(start, month) # Probability that price will not change in a given month (given that the property is still on the market) def probability_no_change(self): return np.divide(self.countNoChange, self.countTotal) # Probability that there will be no change per month, integrated over all months def probability_no_change_all_time(self): return self.probability_no_change().sum() / self.x_size # Get a list of all changes, i.e., changesByMonth in a single list instead of a list of lists def list_all_changes(self): return [x for month in self.changesByMonth for x in month] class PropertyRecord: """Class to function as record of the most recent price, initial price and days on market for a given property""" current_price = 0 initial_market_price = 0 days_on_market = 0 last_change_date = 0 def __init__(self, initial_date, initial_price): self.current_price = initial_price self.initial_market_price = initial_price self.days_on_market = 0 self.last_change_date = datetime.strptime(initial_date, "%Y-%m-%d") def update_price(self, date_string, price): new_date = datetime.strptime(date_string, "%Y-%m-%d") previous_days_on_market = self.days_on_market new_days_on_market = self.days_on_market + (new_date - self.last_change_date).days reduction = (price - self.current_price) * 100.0 / self.current_price # Previous equation: Discounts were computed as price difference between current and previous price over # initial price # reduction = (price - self.current_price) * 100.0 / self.initial_market_price self.current_price = price self.days_on_market = new_days_on_market self.last_change_date = new_date return previous_days_on_market, new_days_on_market, reduction def plot_probability(mat): """Plot a matrix mat as a colour plot, used for plotting a pdf""" plt.figure(figsize=(10, 10)) im = plt.imshow(mat, origin='low', cmap=plt.get_cmap("jet")) plt.colorbar(im, orientation='horizontal') plt.show() def calculate_price_changes(filtered_zoopla_data): """Compute and return the discount distribution""" distribution = DiscountDistribution() dict_of_property_records = {} for index, row in filtered_zoopla_data.iterrows(): # If listing is already at price_map... if row["LISTING ID"] in dict_of_property_records: # ...recover its PriceCalc object as last_record last_record = dict_of_property_records[row["LISTING ID"]] # ...store the PriceCalc object previous current_price as old_price old_price = last_record.current_price # ...update the PriceCalc object with the most recent information (day and price) prev_days_on_market, new_days_on_market, reduction = last_record.update_price(row["DAY"], row["PRICE"]) # If price has not changed, then record the no change to the DiscountDistribution if old_price == row["PRICE"]: distribution.record_no_change(prev_days_on_market / 30, new_days_on_market / 30) # Otherwise, record the change to the DiscountDistribution else: distribution.record_change(prev_days_on_market / 30, new_days_on_market / 30, reduction) # Otherwise, add PriceCalc object of the listing to price_map else: dict_of_property_records[row["LISTING ID"]] = PropertyRecord(row["DAY"], row["PRICE"]) return distribution # Read and filter data from Zoopla data = ds.ZooplaMatchedDaily() chunk = data.read(200000) filtered_chunk = chunk[(chunk["MARKET"] == "SALE") & (chunk["PRICE"] > 0)][["LISTING ID", "DAY", "PRICE"]] # Compute probability distribution of price discounts dist = calculate_price_changes(filtered_chunk) # Plot probability of no change per month on market print "Average probability of no change per month" print dist.probability_no_change().sum() / dist.probability_no_change().size print "Probability of no change per month" print dist.probability_no_change() plt.figure() plt.plot(dist.probability_no_change()) plt.xlabel("Months on market") plt.ylabel("Probability of no price change") # Plot average price discount per month on market mean, sd = stats.norm.fit(dist.list_all_changes()) monthlyMeans = [stats.norm.fit(dist.changesByMonth[i])[0] for i in range(dist.x_size)] print "Best mean and standard deviation of percentage change per month given change" print mean, sd print "Monthly Means" print monthlyMeans plt.figure() plt.plot(monthlyMeans) plt.xlabel("Months on market") plt.ylabel("Percent discount") # Plot probability distribution of price discounts (independent of month on market) curve = [stats.norm.pdf(i * 0.05, mean, sd) for i in range(-35, 100)] plt.figure() plt.hist(dist.list_all_changes(), bins=50, density=True, label="Data") plt.plot([i * 0.05 for i in range(-35, 100)], curve, label="Normal fit") plt.xlabel("Percent discount") plt.ylabel("Probability") plt.legend() plt.show()
mit
kikimaroca/beamtools
beamtools/dev/test data/pulse_interp/spectrumplot.py
1
2720
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 8 17:47:28 2018 @author: cpkmanchee """ import numpy as np import matplotlib.pyplot as plt import beamtools as bt show_plt = True save_plt = False dpi=600 wlim = [1020,1040] tlim = [-10,20] file = '20180103-004-000ac001.txt' ac = bt.import_data_file(file, 'bt_ac') ac.intensity = ac.power ac.power = bt.normalize(ac.power) ac_fit,_ = bt.pulse.fit_ac([ac.delay,ac.power], bgform='linear') file = '20180103-004-000.csv' spec = bt.import_data_file(file, 'oo_spec') spec.intensity = bt.normalize(spec.intensity) flimit, _ = bt.pulse.spectrumFT([spec.wavelength,spec.intensity]) AiFT = bt.pulse.autocorr(np.abs(flimit.et)**2) pfit, _ = bt.pulse.fit_ac([flimit.time,AiFT]) fig = plt.figure(figsize=(4,3.25), facecolor='w') #ax2 = ax1.twinx() #ax2.scatter(spec.pump, spec.energy, s=0) #ax2.set_ylabel('Pulse energy (uJ)') #ax2.tick_params('y', colors='k') #ax1.text(20,65, '{:.0f}% slope \nefficiency'.format(slope*100)) #scale = np.around(spec.energy.values[-1]/spec.out.values[-1], decimals=2) #ax1.set_ylim([0,np.around(spec.intensity.max(),decimals=-1)]) #ax2.set_ylim(np.asarray(ax1.get_ylim())*scale) f2p = 'sech2' ax2 = fig.add_subplot(111) for fit in pfit: if fit.ftype.lower() in bt.alias_dict[f2p]: ax2.plot(flimit.time*1E12,bt.normalize(AiFT), '-', label='TL pulse', c='xkcd:ocean blue') label = 'TL - {} fit\n{:.2f} ps'.format(fit.ftype, bt.pulse.sigma_fwhm(fit.popt[0]*1E12,fit.ftype)) ax2.plot(flimit.time*1E12, bt.normalize(fit.subs(flimit.time)), '--', label=label, c='xkcd:deep purple') for fit in ac_fit: if fit.ftype.lower() in bt.alias_dict[f2p]: ax2.plot(ac.delay-fit.popt[2],bt.normalize(bt.rmbg([ac.delay,ac.power],fit=fit)), '-', label='Autocorrelation', c='xkcd:chartreuse') label = 'AC - {} fit\n{:.2f} ps'.format(fit.ftype, bt.pulse.sigma_fwhm(fit.popt[0],fit.ftype)) ax2.plot(ac.delay-fit.popt[2], bt.normalize(bt.rmbg([ac.delay,fit.subs(ac.delay)],fit=fit)), '--', label=label, c='xkcd:dark green') ax2.set_xlim(tlim) ax2.set_xlabel('Delay (ps)') ax2.set_ylabel('Intensity (arb.)') ax2.legend(loc=[0.55,0.1], fontsize='small') fig.tight_layout() ax1 = plt.axes([.66, .64, .25, .25], facecolor='y') ax1.plot(spec.wavelength, spec.intensity, '-', c='xkcd:ocean blue') #ax1.set_xlabel('Wavelength (nm)') # Make the y-axis label, ticks and tick labels match the line color. #ax1.set_ylabel('Intensity') ax1.set_xticks([1020,1030,1040]) ax1.tick_params('both', labelsize='x-small') ax1.set_xlim(wlim) if show_plt: plt.show() if save_plt: fig.savefig('spectrum.png', dpi=dpi, bbox_inches='tight')
mit
abhishekgahlot/scikit-learn
examples/plot_digits_pipe.py
250
1809
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target ############################################################################### # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') ############################################################################### # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) #Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
gwulfs/zipline
zipline/sources/data_frame_source.py
26
5253
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tools to generate data sources. """ import numpy as np import pandas as pd from zipline.gens.utils import hash_args from zipline.sources.data_source import DataSource class DataFrameSource(DataSource): """ Data source that yields from a pandas DataFrame. :Axis layout: * columns : sids * index : datetime :Note: Bars where the price is nan are filtered out. """ def __init__(self, data, **kwargs): assert isinstance(data.index, pd.tseries.index.DatetimeIndex) # Only accept integer SIDs as the items of the DataFrame assert isinstance(data.columns, pd.Int64Index) # TODO is ffilling correct/necessary? # Forward fill prices self.data = data.fillna(method='ffill') # Unpack config dictionary with default values. self.start = kwargs.get('start', self.data.index[0]) self.end = kwargs.get('end', self.data.index[-1]) self.sids = self.data.columns # Hash_value for downstream sorting. self.arg_string = hash_args(data, **kwargs) self._raw_data = None self.started_sids = set() @property def mapping(self): return { 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'volume': (int, 'volume'), } @property def instance_hash(self): return self.arg_string def raw_data_gen(self): for dt, series in self.data.iterrows(): for sid, price in series.iteritems(): # Skip SIDs that can not be forward filled if np.isnan(price) and \ sid not in self.started_sids: continue self.started_sids.add(sid) event = { 'dt': dt, 'sid': sid, 'price': price, # Just chose something large # if no volume available. 'volume': 1e9, } yield event @property def raw_data(self): if not self._raw_data: self._raw_data = self.raw_data_gen() return self._raw_data class DataPanelSource(DataSource): """ Data source that yields from a pandas Panel. :Axis layout: * items : sids * major_axis : datetime * minor_axis : price, volume, ... :Note: Bars where the price is nan are filtered out. """ def __init__(self, data, **kwargs): assert isinstance(data.major_axis, pd.tseries.index.DatetimeIndex) # Only accept integer SIDs as the items of the Panel assert isinstance(data.items, pd.Int64Index) # TODO is ffilling correct/necessary? # forward fill with volumes of 0 self.data = data.fillna(value={'volume': 0}) self.data = self.data.fillna(method='ffill') # Unpack config dictionary with default values. self.start = kwargs.get('start', self.data.major_axis[0]) self.end = kwargs.get('end', self.data.major_axis[-1]) self.sids = self.data.items # Hash_value for downstream sorting. self.arg_string = hash_args(data, **kwargs) self._raw_data = None self.started_sids = set() @property def mapping(self): mapping = { 'dt': (lambda x: x, 'dt'), 'sid': (lambda x: x, 'sid'), 'price': (float, 'price'), 'volume': (int, 'volume'), } # Add additional fields. for field_name in self.data.minor_axis: if field_name in ['price', 'volume', 'dt', 'sid']: continue mapping[field_name] = (lambda x: x, field_name) return mapping @property def instance_hash(self): return self.arg_string def raw_data_gen(self): for dt in self.data.major_axis: df = self.data.major_xs(dt) for sid, series in df.iteritems(): # Skip SIDs that can not be forward filled if np.isnan(series['price']) and \ sid not in self.started_sids: continue self.started_sids.add(sid) event = { 'dt': dt, 'sid': sid, } for field_name, value in series.iteritems(): event[field_name] = value yield event @property def raw_data(self): if not self._raw_data: self._raw_data = self.raw_data_gen() return self._raw_data
apache-2.0
crichardson17/starburst_atlas
Low_resolution_sims/Dusty_LowRes/Geneva_cont_Rot/Geneva_cont_Rot_5/fullgrid/Rest.py
30
9192
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith("1.grd"): gridfile1 = file for file in os.listdir('.'): if file.endswith("2.grd"): gridfile2 = file for file in os.listdir('.'): if file.endswith("3.grd"): gridfile3 = file # ------------------------ for file in os.listdir('.'): if file.endswith("1.txt"): Elines1 = file for file in os.listdir('.'): if file.endswith("2.txt"): Elines2 = file for file in os.listdir('.'): if file.endswith("3.txt"): Elines3 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid1 = []; grid2 = []; grid3 = []; with open(gridfile1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid1.append(row); grid1 = asarray(grid1) with open(gridfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid2.append(row); grid2 = asarray(grid2) with open(gridfile3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid3.append(row); grid3 = asarray(grid3) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines1 = []; dataEmissionlines2 = []; dataEmissionlines3 = []; with open(Elines1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines1.append(row); dataEmissionlines1 = asarray(dataEmissionlines1) with open(Elines2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers2 = csvReader.next() for row in csvReader: dataEmissionlines2.append(row); dataEmissionlines2 = asarray(dataEmissionlines2) with open(Elines3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers3 = csvReader.next() for row in csvReader: dataEmissionlines3.append(row); dataEmissionlines3 = asarray(dataEmissionlines3) print "import files complete" # --------------------------------------------------- #for concatenating grid #pull the phi and hdens values from each of the runs. exclude header lines grid1new = zeros((len(grid1[:,0])-1,2)) grid1new[:,0] = grid1[1:,6] grid1new[:,1] = grid1[1:,7] grid2new = zeros((len(grid2[:,0])-1,2)) x = array(17.00000) grid2new[:,0] = repeat(x,len(grid2[:,0])-1) grid2new[:,1] = grid2[1:,6] grid3new = zeros((len(grid3[:,0])-1,2)) grid3new[:,0] = grid3[1:,6] grid3new[:,1] = grid3[1:,7] grid = concatenate((grid1new,grid2new,grid3new)) hdens_values = grid[:,1] phi_values = grid[:,0] # --------------------------------------------------- #for concatenating Emission lines data Emissionlines = concatenate((dataEmissionlines1[:,1:],dataEmissionlines2[:,1:],dataEmissionlines3[:,1:])) #for lines headers = headers[1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(concatenated_data[0]),4)) # --------------------------------------------------- #constructing grid by scaling #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = concatenated_data[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 # --------------------------------------------------- #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(concatenated_data),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] # --------------------------------------------------- #change desired lines here! line = [3,4,15,22,37,53,54,55,57,62,77,88,89,90,92,93] #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Dusty Rest of the Lines", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('Dusty_Rest.pdf') plt.clf() print "figure saved"
gpl-2.0
webmasterraj/GaSiProMo
flask/lib/python2.7/site-packages/pandas/tseries/period.py
2
32600
# pylint: disable=E1101,E1103,W0232 import operator from datetime import datetime, date, timedelta import numpy as np from pandas.core.base import PandasObject import pandas.tseries.frequencies as frequencies from pandas.tseries.frequencies import get_freq_code as _gfc from pandas.tseries.index import DatetimeIndex, Int64Index, Index from pandas.tseries.base import DatetimeIndexOpsMixin from pandas.tseries.tools import parse_time_string import pandas.tseries.offsets as offsets from pandas._period import Period import pandas._period as period from pandas._period import ( get_period_field_arr, _validate_end_alias, _quarter_to_myear, ) import pandas.core.common as com from pandas.core.common import (isnull, _INT64_DTYPE, _maybe_box, _values_from_object, ABCSeries, is_integer, is_float) from pandas import compat from pandas.lib import Timestamp, Timedelta import pandas.lib as lib import pandas.tslib as tslib import pandas.algos as _algos from pandas.compat import zip, u def _field_accessor(name, alias, docstring=None): def f(self): base, mult = _gfc(self.freq) return get_period_field_arr(alias, self.values, base) f.__name__ = name f.__doc__ = docstring return property(f) def _get_ordinals(data, freq): f = lambda x: Period(x, freq=freq).ordinal if isinstance(data[0], Period): return period.extract_ordinals(data, freq) else: return lib.map_infer(data, f) def dt64arr_to_periodarr(data, freq, tz): if data.dtype != np.dtype('M8[ns]'): raise ValueError('Wrong dtype: %s' % data.dtype) base, mult = _gfc(freq) return period.dt64arr_to_periodarr(data.view('i8'), base, tz) # --- Period index sketch def _period_index_cmp(opname, nat_result=False): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if isinstance(other, Period): func = getattr(self.values, opname) if other.freq != self.freq: raise AssertionError("Frequencies must be equal") result = func(other.ordinal) elif isinstance(other, PeriodIndex): if other.freq != self.freq: raise AssertionError("Frequencies must be equal") result = getattr(self.values, opname)(other.values) mask = (com.mask_missing(self.values, tslib.iNaT) | com.mask_missing(other.values, tslib.iNaT)) if mask.any(): result[mask] = nat_result return result else: other = Period(other, freq=self.freq) func = getattr(self.values, opname) result = func(other.ordinal) if other.ordinal == tslib.iNaT: result.fill(nat_result) mask = self.values == tslib.iNaT if mask.any(): result[mask] = nat_result return result return wrapper class PeriodIndex(DatetimeIndexOpsMixin, Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters, months, etc. A value of 1 is the period containing the Gregorian proleptic datetime Jan 1, 0001 00:00:00. This ordinal representation is from the scikits.timeseries project. For instance, # construct period for day 1/1/1 and get the first second i = Period(year=1,month=1,day=1,freq='D').asfreq('S', 'S') i.ordinal ===> 1 Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1-dimensional), optional Optional period-like data to construct index with dtype : NumPy dtype (default: i8) copy : bool Make a copy of input ndarray freq : string or period object, optional One of pandas period strings or corresponding objects start : starting value, period-like, optional If data is None, used as the start point in generating regular period data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end value, period-like, optional If periods is none, generated index will extend to first conforming period on or just past end argument year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods Examples -------- >>> idx = PeriodIndex(year=year_arr, quarter=q_arr) >>> idx2 = PeriodIndex(start='2000', end='2010', freq='A') """ _box_scalars = True _typ = 'periodindex' _attributes = ['name','freq'] _datetimelike_ops = ['year','month','day','hour','minute','second', 'weekofyear','week','dayofweek','weekday','dayofyear','quarter', 'qyear', 'freq', 'days_in_month', 'daysinmonth'] _is_numeric_dtype = False freq = None __eq__ = _period_index_cmp('__eq__') __ne__ = _period_index_cmp('__ne__', nat_result=True) __lt__ = _period_index_cmp('__lt__') __gt__ = _period_index_cmp('__gt__') __le__ = _period_index_cmp('__le__') __ge__ = _period_index_cmp('__ge__') def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, **kwargs): freq = frequencies.get_standard_freq(freq) if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): raise ValueError('Periods must be a number, got %s' % str(periods)) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, kwargs) else: ordinal, freq = cls._from_arraylike(data, freq, tz) data = np.array(ordinal, dtype=np.int64, copy=False) return cls._simple_new(data, name=name, freq=freq) @classmethod def _generate_range(cls, start, end, periods, freq, fields): field_count = len(fields) if com._count_not_none(start, end) > 0: if field_count > 0: raise ValueError('Can either instantiate from fields ' 'or endpoints, but not both') subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError('Not enough parameters to construct ' 'Period range') return subarr, freq @classmethod def _from_arraylike(cls, data, freq, tz): if not isinstance(data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if np.isscalar(data) or isinstance(data, Period): raise ValueError('PeriodIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) try: data = com._ensure_int64(data) if freq is None: raise ValueError('freq not specified') data = np.array([Period(x, freq=freq).ordinal for x in data], dtype=np.int64) except (TypeError, ValueError): data = com._ensure_object(data) if freq is None and len(data) > 0: freq = getattr(data[0], 'freq', None) if freq is None: raise ValueError('freq not specified and cannot be ' 'inferred from first element') data = _get_ordinals(data, freq) else: if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: freq = data.freq data = data.values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data.values, base1, base2, 1) else: if freq is None and len(data) > 0: freq = getattr(data[0], 'freq', None) if freq is None: raise ValueError('freq not specified and cannot be ' 'inferred from first element') if data.dtype != np.int64: if np.issubdtype(data.dtype, np.datetime64): data = dt64arr_to_periodarr(data, freq, tz) else: try: data = com._ensure_int64(data) except (TypeError, ValueError): data = com._ensure_object(data) data = _get_ordinals(data, freq) return data, freq @classmethod def _simple_new(cls, values, name=None, freq=None, **kwargs): result = object.__new__(cls) result._data = values result.name = name result.freq = freq result._reset_identity() return result @property def _na_value(self): return self._box_func(tslib.iNaT) def __contains__(self, key): if not isinstance(key, Period) or key.freq != self.freq: if isinstance(key, compat.string_types): try: self.get_loc(key) return True except Exception: return False return False return key.ordinal in self._engine @property def _box_func(self): return lambda x: Period._from_ordinal(ordinal=x, freq=self.freq) def _to_embed(self, keep_tz=False): """ return an array repr of this object, potentially casting to object """ return self.asobject.values def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx.values, freq=self.freq) locs = self.values[mask].searchsorted(where_idx.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where_idx.values < self.values[first])] = -1 return result def _array_values(self): return self.asobject def astype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return Index(np.array(list(self), dtype), dtype) elif dtype == _INT64_DTYPE: return Index(self.values, dtype) raise ValueError('Cannot cast PeriodIndex to dtype %s' % dtype) def searchsorted(self, key, side='left'): if isinstance(key, Period): if key.freq != self.freq: raise ValueError("Different period frequency: %s" % key.freq) key = key.ordinal elif isinstance(key, compat.string_types): key = Period(key, freq=self.freq).ordinal return self.values.searchsorted(key, side=side) @property def is_all_dates(self): return True @property def is_full(self): """ Returns True if there are any missing periods from start to end """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError('Index is not monotonic') values = self.values return ((values[1:] - values[:-1]) < 2).all() @property def freqstr(self): return self.freq def asfreq(self, freq=None, how='E'): how = _validate_end_alias(how) freq = frequencies.get_standard_freq(freq) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) if mult2 != 1: raise ValueError('Only mult == 1 supported') end = how == 'E' new_data = period.period_asfreq_arr(self.values, base1, base2, end) return self._simple_new(new_data, self.name, freq=freq) def to_datetime(self, dayfirst=False): return self.to_timestamp() year = _field_accessor('year', 0, "The year of the period") month = _field_accessor('month', 3, "The month as January=1, December=12") day = _field_accessor('day', 4, "The days of the period") hour = _field_accessor('hour', 5, "The hour of the period") minute = _field_accessor('minute', 6, "The minute of the period") second = _field_accessor('second', 7, "The second of the period") weekofyear = _field_accessor('week', 8, "The week ordinal of the year") week = weekofyear dayofweek = _field_accessor('dayofweek', 10, "The day of the week with Monday=0, Sunday=6") weekday = dayofweek dayofyear = day_of_year = _field_accessor('dayofyear', 9, "The ordinal day of the year") quarter = _field_accessor('quarter', 2, "The quarter of the date") qyear = _field_accessor('qyear', 1) days_in_month = _field_accessor('days_in_month', 11, "The number of days in the month") daysinmonth = days_in_month def _get_object_array(self): freq = self.freq return np.array([ Period._from_ordinal(ordinal=x, freq=freq) for x in self.values], copy=False) def _mpl_repr(self): # how to represent ourselves to matplotlib return self._get_object_array() def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if (not hasattr(other, 'inferred_type') or other.inferred_type != 'int64'): try: other = PeriodIndex(other) except: return False return np.array_equal(self.asi8, other.asi8) def to_timestamp(self, freq=None, how='start'): """ Cast to DatetimeIndex Parameters ---------- freq : string or DateOffset, default 'D' for week or longer, 'S' otherwise Target frequency how : {'s', 'e', 'start', 'end'} Returns ------- DatetimeIndex """ how = _validate_end_alias(how) if freq is None: base, mult = _gfc(self.freq) freq = frequencies.get_to_timestamp_base(base) base, mult = _gfc(freq) new_data = self.asfreq(freq, how) new_data = period.periodarr_to_dt64arr(new_data.values, base) return DatetimeIndex(new_data, freq='infer', name=self.name) def _add_delta(self, other): if isinstance(other, (timedelta, np.timedelta64, offsets.Tick, Timedelta)): offset = frequencies.to_offset(self.freq) if isinstance(offset, offsets.Tick): nanos = tslib._delta_to_nanoseconds(other) offset_nanos = tslib._delta_to_nanoseconds(offset) if nanos % offset_nanos == 0: return self.shift(nanos // offset_nanos) elif isinstance(other, offsets.DateOffset): freqstr = frequencies.get_standard_freq(other) base = frequencies.get_base_alias(freqstr) if base == self.freq: return self.shift(other.n) raise ValueError("Input has different freq from PeriodIndex(freq={0})".format(self.freq)) def shift(self, n): """ Specialized shift which produces an PeriodIndex Parameters ---------- n : int Periods to shift by freq : freq string Returns ------- shifted : PeriodIndex """ mask = self.values == tslib.iNaT values = self.values + n values[mask] = tslib.iNaT return PeriodIndex(data=values, name=self.name, freq=self.freq) @property def inferred_type(self): # b/c data is represented as ints make sure we can't have ambiguous # indexing return 'period' def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ s = _values_from_object(series) try: return _maybe_box(self, super(PeriodIndex, self).get_value(s, key), series, key) except (KeyError, IndexError): try: asdt, parsed, reso = parse_time_string(key, self.freq) grp = frequencies._infer_period_group(reso) freqn = frequencies._period_group(self.freq) vals = self.values # if our data is higher resolution than requested key, slice if grp < freqn: iv = Period(asdt, freq=(grp, 1)) ord1 = iv.asfreq(self.freq, how='S').ordinal ord2 = iv.asfreq(self.freq, how='E').ordinal if ord2 < vals[0] or ord1 > vals[-1]: raise KeyError(key) pos = np.searchsorted(self.values, [ord1, ord2]) key = slice(pos[0], pos[1] + 1) return series[key] elif grp == freqn: key = Period(asdt, freq=self.freq).ordinal return _maybe_box(self, self._engine.get_value(s, key), series, key) else: raise KeyError(key) except TypeError: pass key = Period(key, self.freq).ordinal return _maybe_box(self, self._engine.get_value(s, key), series, key) def get_indexer(self, target, method=None, limit=None): if hasattr(target, 'freq') and target.freq != self.freq: raise ValueError('target and index have different freq: ' '(%s, %s)' % (target.freq, self.freq)) return Index.get_indexer(self, target, method, limit) def get_loc(self, key, method=None): """ Get integer location for requested label Returns ------- loc : int """ try: return self._engine.get_loc(key) except KeyError: if is_integer(key): raise try: asdt, parsed, reso = parse_time_string(key, self.freq) key = asdt except TypeError: pass key = Period(key, self.freq) try: return Index.get_loc(self, key.ordinal, method=method) except KeyError: raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : string / None Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller. """ if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, compat.string_types): try: _, parsed, reso = parse_time_string(label, self.freq) bounds = self._parsed_string_to_bounds(reso, parsed) return bounds[0 if side == 'left' else 1] except Exception: raise KeyError(label) elif is_integer(label) or is_float(label): self._invalid_indexer('slice',label) return label def _parsed_string_to_bounds(self, reso, parsed): if reso == 'year': t1 = Period(year=parsed.year, freq='A') elif reso == 'month': t1 = Period(year=parsed.year, month=parsed.month, freq='M') elif reso == 'quarter': q = (parsed.month - 1) // 3 + 1 t1 = Period(year=parsed.year, quarter=q, freq='Q-DEC') elif reso == 'day': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, freq='D') elif reso == 'hour': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, freq='H') elif reso == 'minute': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, freq='T') elif reso == 'second': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, second=parsed.second, freq='S') else: raise KeyError(key) return (t1.asfreq(self.freq, how='start'), t1.asfreq(self.freq, how='end')) def _get_string_slice(self, key): if not self.is_monotonic: raise ValueError('Partial indexing only valid for ' 'ordered time series') key, parsed, reso = parse_time_string(key, self.freq) grp = frequencies._infer_period_group(reso) freqn = frequencies._period_group(self.freq) if reso in ['day', 'hour', 'minute', 'second'] and not grp < freqn: raise KeyError(key) t1, t2 = self._parsed_string_to_bounds(reso, parsed) return slice(self.searchsorted(t1.ordinal, side='left'), self.searchsorted(t2.ordinal, side='right')) def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ self._assert_can_do_setop(other) result = Int64Index.join(self, other, how=how, level=level, return_indexers=return_indexers) if return_indexers: result, lidx, ridx = result return self._apply_meta(result), lidx, ridx return self._apply_meta(result) def _assert_can_do_setop(self, other): if not isinstance(other, PeriodIndex): raise ValueError('can only call with other PeriodIndex-ed objects') if self.freq != other.freq: raise ValueError('Only like-indexed PeriodIndexes compatible ' 'for join (for now)') def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None result = self._apply_meta(result) result.name = name return result def _apply_meta(self, rawarr): if not isinstance(rawarr, PeriodIndex): rawarr = PeriodIndex(rawarr, freq=self.freq) return rawarr def __getitem__(self, key): getitem = self._data.__getitem__ if np.isscalar(key): val = getitem(key) return Period(ordinal=val, freq=self.freq) else: if com.is_bool_indexer(key): key = np.asarray(key) result = getitem(key) if result.ndim > 1: # MPL kludge # values = np.asarray(list(values), dtype=object) # return values.reshape(result.shape) return PeriodIndex(result, name=self.name, freq=self.freq) return PeriodIndex(result, name=self.name, freq=self.freq) def _format_native_types(self, na_rep=u('NaT'), **kwargs): values = np.array(list(self), dtype=object) mask = isnull(self.values) values[mask] = na_rep imask = ~mask values[imask] = np.array([u('%s') % dt for dt in values[imask]]) return values.tolist() def __array_finalize__(self, obj): if not self.ndim: # pragma: no cover return self.item() self.freq = getattr(obj, 'freq', None) self.name = getattr(obj, 'name', None) self._reset_identity() def _format_footer(self): tagline = 'Length: %d, Freq: %s' return tagline % (len(self), self.freqstr) def take(self, indices, axis=None): """ Analogous to ndarray.take """ indices = com._ensure_platform_int(indices) taken = self.values.take(indices, axis=axis) return self._simple_new(taken, self.name, freq=self.freq) def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ name = self.name to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if isinstance(obj, Index) and obj.name != name: name = None break to_concat = self._ensure_compat_concat(to_concat) if isinstance(to_concat[0], PeriodIndex): if len(set([x.freq for x in to_concat])) > 1: # box to_concat = [x.asobject.values for x in to_concat] else: cat_values = np.concatenate([x.values for x in to_concat]) return PeriodIndex(cat_values, freq=self.freq, name=name) to_concat = [x.values if isinstance(x, Index) else x for x in to_concat] return Index(com._concat_compat(to_concat), name=name) def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): super(PeriodIndex, self).__setstate__(state) elif isinstance(state, tuple): # < 0.15 compat if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) try: # backcompat self.freq = own_state[1] except: pass else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(self, state) self._data = data else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def tz_convert(self, tz): """ Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns ------- normalized : DatetimeIndex Note ---- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") def tz_localize(self, tz, infer_dst=False): """ Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. infer_dst : boolean, default False Attempt to infer fall dst-transition hours based on order Returns ------- localized : DatetimeIndex Note ---- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") PeriodIndex._add_numeric_methods_disabled() PeriodIndex._add_logical_methods_disabled() PeriodIndex._add_datetimelike_methods() def _get_ordinal_range(start, end, periods, freq): if com._count_not_none(start, end, periods) < 2: raise ValueError('Must specify 2 of start, end, periods') if start is not None: start = Period(start, freq) if end is not None: end = Period(end, freq) is_start_per = isinstance(start, Period) is_end_per = isinstance(end, Period) if is_start_per and is_end_per and start.freq != end.freq: raise ValueError('Start and end must have same freq') if ((is_start_per and start.ordinal == tslib.iNaT) or (is_end_per and end.ordinal == tslib.iNaT)): raise ValueError('Start and end must not be NaT') if freq is None: if is_start_per: freq = start.freq elif is_end_per: freq = end.freq else: # pragma: no cover raise ValueError('Could not infer freq from start/end') if periods is not None: if start is None: data = np.arange(end.ordinal - periods + 1, end.ordinal + 1, dtype=np.int64) else: data = np.arange(start.ordinal, start.ordinal + periods, dtype=np.int64) else: data = np.arange(start.ordinal, end.ordinal + 1, dtype=np.int64) return data, freq def _range_from_fields(year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None, freq=None): if hour is None: hour = 0 if minute is None: minute = 0 if second is None: second = 0 if day is None: day = 1 ordinals = [] if quarter is not None: if freq is None: freq = 'Q' base = frequencies.FreqGroup.FR_QTR else: base, mult = _gfc(freq) if mult != 1: raise ValueError('Only mult == 1 supported') if base != frequencies.FreqGroup.FR_QTR: raise AssertionError("base must equal FR_QTR") year, quarter = _make_field_arrays(year, quarter) for y, q in zip(year, quarter): y, m = _quarter_to_myear(y, q, freq) val = period.period_ordinal(y, m, 1, 1, 1, 1, 0, 0, base) ordinals.append(val) else: base, mult = _gfc(freq) if mult != 1: raise ValueError('Only mult == 1 supported') arrays = _make_field_arrays(year, month, day, hour, minute, second) for y, mth, d, h, mn, s in zip(*arrays): ordinals.append(period.period_ordinal(y, mth, d, h, mn, s, 0, 0, base)) return np.array(ordinals, dtype=np.int64), freq def _make_field_arrays(*fields): length = None for x in fields: if isinstance(x, (list, np.ndarray, ABCSeries)): if length is not None and len(x) != length: raise ValueError('Mismatched Period array lengths') elif length is None: length = len(x) arrays = [np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) else np.repeat(x, length) for x in fields] return arrays def pnow(freq=None): return Period(datetime.now(), freq=freq) def period_range(start=None, end=None, periods=None, freq='D', name=None): """ Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters ---------- start : end : periods : int, default None Number of periods in the index freq : str/DateOffset, default 'D' Frequency alias name : str, default None Name for the resulting PeriodIndex Returns ------- prng : PeriodIndex """ return PeriodIndex(start=start, end=end, periods=periods, freq=freq, name=name)
gpl-2.0
riddhishb/ipython-notebooks
Adaboost/adaboost.py
1
2683
import numpy as np import matplotlib.pyplot as plt def weaklearner(thr,sign,dim,x): if(sign == 1): y = (x[:,dim] >= thr) else: y = (x[:,dim] < thr) y = y.astype(np.int64) y[np.where(y==0)] = -1 return y print "Generating Simulated Data" # Code to enter the values of these variables T = 10 N = 1000 dim = 2 x = np.random.randn(N, 2) # dim=2 s = (N, 1) # label = np.zeros(s) #linear separation example label = np.zeros(s) # nonlinear separation example # for index in range(0,N): #label[index] = x[index][0] < x[index][1] for index in range(0, N): label[index] = (x[index][0]**2 + x[index][1]**2) < 1 label = label * 1.0 pos1 = np.nonzero(label == 1) pos2 = np.where(label == 0)[0] label[pos2] = -1 # plots the data plt.figure() plt.plot(x[pos1, 0], x[pos1, 1], 'b*') plt.plot(x[pos2, 0], x[pos2, 1], 'r*') plt.axis([-3, 3, -3, 3]) plt.legend('class 1', 'class 2', loc=2) plt.title("Simulated (Original) data") # declare parameters weight = np.ones(N, dtype = np.float64) / (N) err = np.ones(T, dtype = np.float64) * np.inf alpha = np.zeros(T, dtype = np.float64) h = np.zeros([T,3], dtype = np.float64) thresholds = np.arange(-3.0, 3.0, 0.1) print "Training" for t in range(T): for thr in thresholds: for sign in [-1, 1]: for dim in [0, 1]: tmpe = np.sum(weight * (weaklearner(thr,sign,dim,x) != label[:,0]).astype(np.int64)) if( tmpe < err[t]): err[t] = tmpe h[t,0] = thr h[t,1] = sign h[t,2] = dim if(err[t] >= 0.5): print "error" break alpha[t] = 0.5 * np.log((1-err[t])/err[t]) # % we update D so that wrongly classified samples will have more weight weight = weight * np.exp(-alpha[t] * label[:,0] * weaklearner(h[t,0],h[t,1],h[t,2],x)) weight = weight / np.sum(weight) finalLabel = np.zeros_like(label); finalLabel = finalLabel.astype(np.float64) misshits = np.zeros(T) print "Testing" for t in range(T): finalLabel[:,0] = finalLabel[:,0] + alpha[t] * weaklearner(h[t,0],h[t,1],h[t,2],x) tfinalLabel = np.sign(finalLabel[:,0]) misshits[t] = np.sum((tfinalLabel != label[:,0]).astype(np.float64))/N pos1 = np.where(tfinalLabel == 1) pos2 = np.where(tfinalLabel == -1) print "Results" plt.figure() plt.plot(x[pos1, 0], x[pos1, 1], 'b*') plt.plot(x[pos2, 0], x[pos2, 1], 'r*') plt.axis([-3, 3, -3, 3]) plt.legend('class 1', 'class 2', loc=2) plt.title("Tested (Original) data") # % plot miss hits when more and more weak learners are used plt.figure() plt.plot(misshits) plt.ylabel('miss hists') plt.show()
gpl-3.0
adammenges/statsmodels
statsmodels/examples/try_polytrend.py
33
1477
from __future__ import print_function import numpy as np #import statsmodels.linear_model.regression as smreg from scipy import special import statsmodels.api as sm from statsmodels.datasets.macrodata import data dta = data.load() gdp = np.log(dta.data['realgdp']) from numpy import polynomial from scipy import special maxorder = 20 polybase = special.chebyt polybase = special.legendre t = np.linspace(-1,1,len(gdp)) exog = np.column_stack([polybase(i)(t) for i in range(maxorder)]) fitted = [sm.OLS(gdp, exog[:, :maxr]).fit().fittedvalues for maxr in range(2,maxorder)] print((np.corrcoef(exog[:,1:6], rowvar=0)*10000).astype(int)) import matplotlib.pyplot as plt plt.figure() plt.plot(gdp, 'o') for i in range(maxorder-2): plt.plot(fitted[i]) plt.figure() #plt.plot(gdp, 'o') for i in range(maxorder-4, maxorder-2): #plt.figure() plt.plot(gdp - fitted[i]) plt.title(str(i+2)) plt.figure() plt.plot(gdp, '.') plt.plot(fitted[-1], lw=2, color='r') plt.plot(fitted[0], lw=2, color='g') plt.title('GDP and Polynomial Trend') plt.figure() plt.plot(gdp - fitted[-1], lw=2, color='r') plt.plot(gdp - fitted[0], lw=2, color='g') plt.title('Residual GDP minus Polynomial Trend (green: linear, red: legendre(20))') #orthonormalize an exog using QR ex2 = t[:,None]**np.arange(6) #np.vander has columns reversed q2,r2 = np.linalg.qr(ex2, mode='full') np.max(np.abs(np.dot(q2.T, q2)-np.eye(6))) plt.figure() plt.plot(q2, lw=2) plt.show()
bsd-3-clause
CCI-Tools/cate-core
tests/ops/test_data_frame.py
1
13782
from unittest import TestCase import geopandas as gpd import numpy as np import pandas as pd import shapely.geometry import shapely.wkt from shapely.geometry import Point from cate.core.types import ValidationError from cate.core.types import GeoDataFrameProxy from cate.ops.data_frame import data_frame_min, data_frame_max, data_frame_query, data_frame_find_closest, \ great_circle_distance, data_frame_aggregate, data_frame_subset test_point = 'POINT (597842.4375881671 5519903.13366397)' test_poly_4326 = 'POLYGON ((-80 -40, -70 -40, ' \ '-70 -45, -80 -45, ' \ '-80 -40))' class TestDataFrameOps(TestCase): df = pd.DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': ['a', 'b', 'c', 'x', 'y', 'z'], 'C': [False, False, True, False, True, True], 'D': [0.4, 0.5, 0.3, 0.3, 0.1, 0.4]}) gdf = gpd.GeoDataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': ['a', 'b', 'c', 'x', 'y', 'z'], 'C': [False, False, True, False, True, True], 'D': [0.4, 0.5, 0.3, 0.3, 0.1, 0.4], 'geometry': gpd.GeoSeries([ shapely.wkt.loads('POINT(10 10)'), shapely.wkt.loads('POINT(10 20)'), shapely.wkt.loads('POINT(10 30)'), shapely.wkt.loads('POINT(20 30)'), shapely.wkt.loads('POINT(20 20)'), shapely.wkt.loads('POINT(20 10)'), ])}) gdf_32718 = gpd.GeoDataFrame({'A': [1]}, crs={'init': 'epsg:32718'}, geometry=[shapely.wkt.loads(test_point)]) test_region_4326 = shapely.wkt.loads(test_poly_4326) gdfp = GeoDataFrameProxy.from_features(gdf.__geo_interface__['features']) def test_data_frame_min(self): df2 = data_frame_min(TestDataFrameOps.df, 'D') self.assertIsInstance(df2, pd.DataFrame) self.assertEqual(len(df2), 1) self.assertEqual(list(df2.columns), ['A', 'B', 'C', 'D']) self.assertEqual(df2.iloc[0, 0], 5) self.assertEqual(df2.iloc[0, 1], 'y') self.assertEqual(df2.iloc[0, 2], True) self.assertEqual(df2.iloc[0, 3], 0.1) def test_data_frame_max(self): df2 = data_frame_max(TestDataFrameOps.df, 'D') self.assertIsInstance(df2, pd.DataFrame) self.assertEqual(len(df2), 1) self.assertEqual(list(df2.columns), ['A', 'B', 'C', 'D']) self.assertEqual(df2.iloc[0, 0], 2) self.assertEqual(df2.iloc[0, 1], 'b') self.assertEqual(df2.iloc[0, 2], False) self.assertEqual(df2.iloc[0, 3], 0.5) def test_data_frame_query(self): df2 = data_frame_query(TestDataFrameOps.df, "D >= 0.4 and B != 'b'") self.assertIsInstance(df2, pd.DataFrame) self.assertEqual(len(df2), 2) self.assertEqual(list(df2.columns), ['A', 'B', 'C', 'D']) self.assertEqual(df2.iloc[0, 0], 1) self.assertEqual(df2.iloc[0, 1], 'a') self.assertEqual(df2.iloc[0, 2], False) self.assertEqual(df2.iloc[0, 3], 0.4) self.assertEqual(df2.iloc[1, 0], 6) self.assertEqual(df2.iloc[1, 1], 'z') self.assertEqual(df2.iloc[1, 2], True) self.assertEqual(df2.iloc[1, 3], 0.4) def test_data_frame_query_with_geom(self): self._test_data_frame_query_with_geom(TestDataFrameOps.gdf) # Skipped due to new behaviour of from_features # self._test_data_frame_query_with_geom(TestDataFrameOps.gdfp) def _test_data_frame_query_with_geom(self, gdf): df2 = data_frame_query(gdf, "not C and @almost_equals('10,10')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 1) df2 = data_frame_query(gdf, "not C and @contains('10,10')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 1) df2 = data_frame_query(gdf, "not C and @crosses('10,10')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 0) df2 = data_frame_query(gdf, "not C and @disjoint('10,10')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 2) df2 = data_frame_query(gdf, "not C and @intersects('19, 9, 21, 31')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 1) df2 = data_frame_query(gdf, "not C and @touches('10, 10, 20, 30')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 3) df2 = data_frame_query(gdf, "@within('19, 9, 21, 31')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 3) self.assertEqual(list(df2.columns), ['A', 'B', 'C', 'D', 'geometry']) self.assertEqual(df2.iloc[0, 0], 4) self.assertEqual(df2.iloc[1, 0], 5) self.assertEqual(df2.iloc[2, 0], 6) self.assertEqual(df2.iloc[0, 1], 'x') self.assertEqual(df2.iloc[1, 1], 'y') self.assertEqual(df2.iloc[2, 1], 'z') self.assertEqual(df2.iloc[0, 2], False) self.assertEqual(df2.iloc[1, 2], True) self.assertEqual(df2.iloc[2, 2], True) self.assertEqual(df2.iloc[0, 3], 0.3) self.assertEqual(df2.iloc[1, 3], 0.1) self.assertEqual(df2.iloc[2, 3], 0.4) df2 = data_frame_query(gdf, "not C and @within('19, 9, 21, 31')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 1) self.assertEqual(list(df2.columns), ['A', 'B', 'C', 'D', 'geometry']) self.assertEqual(df2.iloc[0, 0], 4) self.assertEqual(df2.iloc[0, 1], 'x') self.assertEqual(df2.iloc[0, 2], False) self.assertEqual(df2.iloc[0, 3], 0.3) df2 = data_frame_query(gdf, "not C and geometry.within(@from_wkt('19, 9, 21, 31'))") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 1) self.assertEqual(list(df2.columns), ['A', 'B', 'C', 'D', 'geometry']) self.assertEqual(df2.iloc[0, 0], 4) self.assertEqual(df2.iloc[0, 1], 'x') self.assertEqual(df2.iloc[0, 2], False) self.assertEqual(df2.iloc[0, 3], 0.3) def test_data_frame_subset(self): df2 = data_frame_subset(TestDataFrameOps.gdf, region='POLYGON((-10 0, 25 0, 25 30, -10 0))') self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 3) self.assertIn('A', df2) self.assertIn('B', df2) self.assertIn('C', df2) self.assertIn('D', df2) self.assertIn('geometry', df2) df2 = data_frame_subset(TestDataFrameOps.gdf, var_names="A,C", region='POLYGON((-10 0, 25 0, 25 30, -10 0))') self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 3) self.assertIn('A', df2) self.assertNotIn('B', df2) self.assertIn('C', df2) self.assertNotIn('D', df2) self.assertIn('geometry', df2) df2 = data_frame_subset(TestDataFrameOps.gdf, var_names="A,C", region='POLYGON((30 30, 40 30, 40 40, 30 30))') self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 0) def test_data_frame_failures(self): df2 = data_frame_query(TestDataFrameOps.gdf_32718, "@within('" + test_poly_4326 + "')") self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 1) df2 = data_frame_subset(TestDataFrameOps.gdf_32718, var_names='A', region=TestDataFrameOps.test_region_4326) self.assertEqual(len(df2), 1) def test_data_frame_find_closest(self): df2 = data_frame_find_closest(TestDataFrameOps.gdf, 'POINT(20 30)', dist_col_name='dist') self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 1) self.assertIn('A', df2) self.assertIn('B', df2) self.assertIn('C', df2) self.assertIn('D', df2) self.assertIn('geometry', df2) self.assertIn('dist', df2) self.assertEqual(1, len(df2['dist'])) self.assertEqual(0.0, df2['dist'].iloc[0]) self.assertEqual(shapely.wkt.loads('POINT(20 30)'), df2['geometry'].iloc[0]) df2 = data_frame_find_closest(TestDataFrameOps.gdf, 'POINT(21 28)', max_results=3, dist_col_name='dist') self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 3) self.assertIn('A', df2) self.assertIn('B', df2) self.assertIn('C', df2) self.assertIn('D', df2) self.assertIn('geometry', df2) self.assertIn('dist', df2) np.testing.assert_approx_equal(2.1828435, df2['dist'].iloc[0]) np.testing.assert_approx_equal(8.0518568, df2['dist'].iloc[1]) np.testing.assert_approx_equal(9.8221713, df2['dist'].iloc[2]) self.assertEqual(shapely.wkt.loads('POINT(20 30)'), df2['geometry'].iloc[0]) self.assertEqual(shapely.wkt.loads('POINT(20 20)'), df2['geometry'].iloc[1]) self.assertEqual(shapely.wkt.loads('POINT(10 30)'), df2['geometry'].iloc[2]) df2 = data_frame_find_closest(TestDataFrameOps.gdf, 'POINT(21 28)', max_dist=9.0, max_results=3, dist_col_name='dist') self.assertIsInstance(df2, gpd.GeoDataFrame) self.assertEqual(len(df2), 2) self.assertIn('A', df2) self.assertIn('B', df2) self.assertIn('C', df2) self.assertIn('D', df2) self.assertIn('geometry', df2) self.assertIn('dist', df2) np.testing.assert_approx_equal(2.1828435, df2['dist'].iloc[0]) np.testing.assert_approx_equal(8.0518568, df2['dist'].iloc[1]) self.assertEqual(shapely.wkt.loads('POINT(20 30)'), df2['geometry'].iloc[0]) self.assertEqual(shapely.wkt.loads('POINT(20 20)'), df2['geometry'].iloc[1]) def test_data_frame_aggregate(self): # Generate mock data data = {'name': ['A', 'B', 'C'], 'lat': [45, 46, 47.5], 'lon': [-120, -121.2, -122.9]} df = pd.DataFrame(data) # needs to be a copy gdf_empty_geo = gpd.GeoDataFrame(df).copy() gdf = gpd.GeoDataFrame(df, geometry=[Point(xy) for xy in zip(df['lon'], df['lat'])]) var_names_not_agg = 'name, lat, lon' var_names_not_in = 'asdc, lat, lon' var_names_valid = ['lat', 'lon'] aggregations = ["count", "mean", "median", "sum", "std", "min", "max"] # Assert that a Validation exception is thrown if the df is None with self.assertRaises(ValidationError): data_frame_aggregate(df=None) # Assert that a Validation exception is thrown if the var_names contain non-existing fields in the df with self.assertRaises(ValidationError): data_frame_aggregate(df=df, var_names=var_names_not_in) # Assert that a Validation exception is thrown if the var_names contain non-aggregatable fields with self.assertRaises(ValidationError): data_frame_aggregate(df=df, var_names=var_names_not_agg) # Assert that a Validation exception is thrown if the GeoDataFrame does not have a geometry with self.assertRaises(ValidationError): data_frame_aggregate(df=gdf_empty_geo, var_names=None) with self.assertRaises(ValidationError): data_frame_aggregate(df=gdf_empty_geo, var_names='lat') # assert that a input and output types for df are the same rdf = data_frame_aggregate(df=gdf, var_names=var_names_valid) self.assertEqual(len(rdf), 1) # assert that columns are return if var_names = None for a DataFrame rdf = data_frame_aggregate(df=df, var_names=None) self.assertEqual(len(rdf.columns), len(aggregations) * len(var_names_valid)) # assert that columns are return if var_names = None for a GeoDataFrame rdf = data_frame_aggregate(df=gdf, var_names=None, aggregate_geometry=True) self.assertEqual(len(rdf.columns), len(aggregations) * len(var_names_valid) + 1) # assert that geometry union is created rdf = data_frame_aggregate(df=gdf, var_names=var_names_valid, aggregate_geometry=True) self.assertIsNotNone(rdf.geometry) class GreatCircleDistanceTest(TestCase): def test_great_circle_distance(self): dist = great_circle_distance(Point(20, 20), Point(20, 20)) self.assertIsNotNone(dist) np.testing.assert_approx_equal(0.0, dist) dist = great_circle_distance(Point(20, 0), Point(20, 30)) np.testing.assert_approx_equal(30.0, dist) dist = great_circle_distance(Point(-20, 0), Point(20, 0)) np.testing.assert_approx_equal(40.0, dist) dist = great_circle_distance(Point(-155, 0), Point(155, 0)) np.testing.assert_approx_equal(50.0, dist) dist = great_circle_distance(Point(0, 0), Point(0, 90)) np.testing.assert_approx_equal(90.0, dist) dist = great_circle_distance(Point(0, -90), Point(0, 90)) np.testing.assert_approx_equal(180.0, dist) dist = great_circle_distance(Point(0, 180), Point(0, 0)) np.testing.assert_approx_equal(180.0, dist) dist = great_circle_distance(Point(0, 0), Point(1, 1)) np.testing.assert_approx_equal(1.4141777, dist)
mit
DonBeo/scikit-learn
examples/datasets/plot_random_multilabel_dataset.py
93
3460
""" ============================================== Plot randomly generated multilabel dataset ============================================== This illustrates the `datasets.make_multilabel_classification` dataset generator. Each sample consists of counts of two features (up to 50 in total), which are differently distributed in each of two classes. Points are labeled as follows, where Y means the class is present: ===== ===== ===== ====== 1 2 3 Color ===== ===== ===== ====== Y N N Red N Y N Blue N N Y Yellow Y Y N Purple Y N Y Orange Y Y N Green Y Y Y Brown ===== ===== ===== ====== A star marks the expected sample for each class; its size reflects the probability of selecting that class label. The left and right examples highlight the ``n_labels`` parameter: more of the samples in the right plot have 2 or 3 labels. Note that this two-dimensional example is very degenerate: generally the number of features would be much greater than the "document length", while here we have much larger documents than vocabulary. Similarly, with ``n_classes > n_features``, it is much less likely that a feature distinguishes a particular class. """ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification as make_ml_clf print(__doc__) COLORS = np.array(['!', '#FF3333', # red '#0198E1', # blue '#BF5FFF', # purple '#FCD116', # yellow '#FF7216', # orange '#4DBD33', # green '#87421F' # brown ]) # Use same random seed for multiple calls to make_multilabel_classification to # ensure same distributions RANDOM_SEED = np.random.randint(2 ** 10) def plot_2d(ax, n_labels=1, n_classes=3, length=50): X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2, n_classes=n_classes, n_labels=n_labels, length=length, allow_unlabeled=False, return_indicator=True, return_distributions=True, random_state=RANDOM_SEED) ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4] ).sum(axis=1)), marker='.') ax.scatter(p_w_c[0] * length, p_w_c[1] * length, marker='*', linewidth=.5, edgecolor='black', s=20 + 1500 * p_c ** 2, color=COLORS.take([1, 2, 4])) ax.set_xlabel('Feature 0 count') return p_c, p_w_c _, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4)) plt.subplots_adjust(bottom=.15) p_c, p_w_c = plot_2d(ax1, n_labels=1) ax1.set_title('n_labels=1, length=50') ax1.set_ylabel('Feature 1 count') plot_2d(ax2, n_labels=3) ax2.set_title('n_labels=3, length=50') ax2.set_xlim(left=0, auto=True) ax2.set_ylim(bottom=0, auto=True) plt.show() print('The data was generated from (random_state=%d):' % RANDOM_SEED) print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t') for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T): print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))
bsd-3-clause
hugobowne/scikit-learn
examples/mixture/plot_gmm_selection.py
36
3271
""" ================================= Gaussian Mixture Model Selection ================================= This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify the right model. Unlike Bayesian procedures, such inferences are prior-free. In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is selected. """ print(__doc__) import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] lowest_bic = np.infty bic = [] n_components_range = range(1, 7) cv_types = ['spherical', 'tied', 'diag', 'full'] for cv_type in cv_types: for n_components in n_components_range: # Fit a mixture of Gaussians with EM gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type) gmm.fit(X) bic.append(gmm.bic(X)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] best_gmm = gmm bic = np.array(bic) color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue', 'darkorange']) clf = best_gmm bars = [] # Plot the BIC scores spl = plt.subplot(2, 1, 1) for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): xpos = np.array(n_components_range) + .2 * (i - 2) bars.append(plt.bar(xpos, bic[i * len(n_components_range): (i + 1) * len(n_components_range)], width=.2, color=color)) plt.xticks(n_components_range) plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) plt.title('BIC score per model') xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ .2 * np.floor(bic.argmin() / len(n_components_range)) plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) spl.set_xlabel('Number of components') spl.legend([b[0] for b in bars], cv_types) # Plot the winner splot = plt.subplot(2, 1, 2) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip(clf.means_, clf.covars_, color_iter)): v, w = linalg.eigh(covar) if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan2(w[0][1], w[0][0]) angle = 180 * angle / np.pi # convert to degrees v *= 4 ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title('Selected GMM: full model, 2 components') plt.subplots_adjust(hspace=.35, bottom=.02) plt.show()
bsd-3-clause
cytomine/Cytomine-python-datamining
cytomine-datamining/algorithms/sldc/examples/with_pyxit/add_and_run_job.py
1
7783
import tempfile from argparse import ArgumentParser import os import cv2 import numpy as np from cytomine import Cytomine from cytomine.models import AlgoAnnotationTerm from cytomine_sldc import CytomineSlide, CytomineTileBuilder from shapely.affinity import affine_transform, translate from sklearn.utils import check_random_state from sldc import DispatchingRule, ImageWindow, Loggable, Logger, Segmenter, StandardOutputLogger, WorkflowBuilder from cytomine_utilities import CytomineJob from pyxit_classifier import PyxitClassifierAdapter def _upload_annotation(cytomine, img_inst, polygon, label=None, proba=1.0): """Upload an annotation and its term (if provided)""" image_id = img_inst.id # Transform polygon to match cytomine (bottom-left) origin point polygon = affine_transform(polygon, [1, 0, 0, -1, 0, img_inst.height]) annotation = cytomine.add_annotation(polygon.wkt, image_id) if label is not None and annotation is not None: cytomine.add_annotation_term(annotation.id, label, label, proba, annotation_term_model=AlgoAnnotationTerm) class DemoSegmenter(Segmenter): def __init__(self, threshold): """A simple segmenter that performs a simple thresholding on the Green channel of the image""" self._threshold = threshold def segment(self, image): mask = np.array(image[:, :, 1] < self._threshold).astype(np.uint8) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7)) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) return mask * 255 class ValidAreaRule(DispatchingRule): def __init__(self, min_area): """A rule which matches polygons of which the area is greater than min_area""" super(ValidAreaRule, self).__init__() self._min_area = min_area def evaluate(self, image, polygon): return self._min_area < polygon.area class DemoJob(CytomineJob, Loggable): def __init__(self, cytomine, software_id, project_id, job_parameters, tile_overlap, tile_width, tile_height, n_jobs, threshold, min_area, model_path, rseed, working_path): """An example job implementing an sldc workflow. Parameters ---------- cytomine: Cytomine Cytomine client software_id: int Cytomine software id project_id: int Cytomine project id job_parameters: dict Job parameters tile_overlap: int Number of pixel of overlap between the tiles tile_width: int Maximum width of the tiles tile_height: int Maximum height of the tiles n_jobs: int Number of available jobs threshold: int Segmentation threshold in [0, 255] min_area: int Minimum area of the valid objects in pixel squared model_path: str Path to the pickled pyxit model rseed: int Random seed working_path: str Working path of the workflow (for temporary files) """ CytomineJob.__init__(self, cytomine, software_id, project_id, parameters=job_parameters) Loggable.__init__(self, logger=StandardOutputLogger(Logger.INFO)) self._cytomine = cytomine # create workflow component random_state = check_random_state(rseed) tile_builder = CytomineTileBuilder(cytomine, working_path=working_path) segmenter = DemoSegmenter(threshold) area_rule = ValidAreaRule(min_area) classifier = PyxitClassifierAdapter.build_from_pickle( model_path, tile_builder, self.logger, random_state=random_state, n_jobs=n_jobs, working_path=working_path ) builder = WorkflowBuilder() builder.set_n_jobs(n_jobs) builder.set_logger(self.logger) builder.set_overlap(tile_overlap) builder.set_tile_size(tile_width, tile_height) builder.set_tile_builder(tile_builder) builder.set_segmenter(segmenter) builder.add_classifier(area_rule, classifier, dispatching_label="valid") self._workflow = builder.get() def run(self, slide): """Run the workflow on the given image and upload the results to cytomine""" results = self._workflow.process(slide) # Upload results for polygon, dispatch, cls, proba in results: if cls is not None: # if image is a window, the polygon must be translated if isinstance(slide, ImageWindow): polygon = translate(polygon, slide.abs_offset_x, slide.abs_offset_y) # actually upload the annotation _upload_annotation( self._cytomine, slide.image_instance, polygon, label=cls, proba=proba ) return results def main(argv): parser = ArgumentParser(prog="Demo_SLDC_Workflow_With_Pyxit", description="Demo software for SLDC Workflow on Cytomine") parser.add_argument('--cytomine_host', dest="cytomine_host", default='demo.cytomine.be') parser.add_argument('--cytomine_public_key', dest="cytomine_public_key") parser.add_argument('--cytomine_private_key', dest="cytomine_private_key") parser.add_argument('--cytomine_base_path', dest="cytomine_base_path", default='/api/') default_working_path = os.path.join(tempfile.gettempdir(), "cytomine") parser.add_argument('--cytomine_working_path', dest="cytomine_working_path", default=default_working_path) parser.add_argument('--cytomine_id_software', dest="cytomine_id_software", type=int) parser.add_argument("--cytomine_id_project", dest="cytomine_id_project", type=int) parser.add_argument("--cytomine_id_image", dest="cytomine_id_image", type=int) parser.add_argument("--sldc_tile_overlap", dest="sldc_tile_overlap", type=int, default=10) parser.add_argument("--sldc_tile_width", dest="sldc_tile_width", type=int, default=768) parser.add_argument("--sldc_tile_height", dest="sldc_tile_height", type=int, default=768) parser.add_argument("--pyxit_model_path", dest="pyxit_model_path") parser.add_argument("--n_jobs", dest="n_jobs", type=int, default=1) parser.add_argument("--min_area", dest="min_area", type=int, default=500) parser.add_argument("--threshold", dest="threshold", type=int, default=215) parser.add_argument("--rseed", dest="rseed", type=int, default=0) default_workflow_wpath = os.path.join(tempfile.gettempdir(), "sldc") parser.add_argument("--working_path", dest="working_path", default=default_workflow_wpath) params, other = parser.parse_known_args(argv) # Initialize cytomine client cytomine = Cytomine( params.cytomine_host, params.cytomine_public_key, params.cytomine_private_key, working_path=params.cytomine_working_path, base_path=params.cytomine_base_path ) if not os.path.exists(params.working_path): os.makedirs(params.working_path) if not os.path.exists(params.cytomine_working_path): os.makedirs(params.cytomine_working_path) with DemoJob(cytomine, params.cytomine_id_software, params.cytomine_id_project, params.__dict__, params.sldc_tile_overlap, params.sldc_tile_width, params.sldc_tile_height, params.n_jobs, params.threshold, params.min_area, params.pyxit_model_path, params.rseed, params.working_path) as job: slide = CytomineSlide(cytomine, params.cytomine_id_image) job.run(slide) if __name__ == "__main__": import sys main(sys.argv[1:])
apache-2.0
Ledoux/ShareYourSystem
Pythonlogy/draft/Simulaters/Brianer/draft/01_ExampleDoc copy 2.py
2
2779
#ImportModules import ShareYourSystem as SYS import operator #Definition MyBrianer=SYS.BrianerClass( ).produce( "Neurongroupers", ['E','I'], SYS.NeurongrouperClass, #Here are defined the brian classic shared arguments for each pop { 'NeurongroupingKwargVariablesDict': { 'model': ''' dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt dge/dt = -ge/(5*ms) : volt dgi/dt = -gi/(10*ms) : volt ''', 'threshold':'v>-50*mV', 'reset':'v=-60*mV' }, 'produce': { 'LiargVariablesList': [ "SpikeMoniters", ['Spike'], SYS.MoniterClass ] } } ).__setitem__( 'Dis_<Neurongroupers>', #Here are defined the brian classic specific arguments for each pop [ { 'PopulatingUnitsInt':3200, 'ConnectingGraspClueVariablesList': map( lambda __PrefixStr: SYS.GraspDictClass( { 'HintVariable':'/NodePointDeriveNoder/<Neurongroupers>'+__PrefixStr+'Neurongrouper', 'SynapsingKwargVariablesDict': { 'pre':'ge+=1.62*mV', }, 'SynapsingProbabilityVariable':0.02 } ), ['E','I'] ) }, { 'PopulatingUnitsInt':800, 'ConnectingGraspClueVariablesList': map( lambda __PrefixStr: SYS.GraspDictClass( { 'HintVariable':'/NodePointDeriveNoder/<Neurongroupers>'+__PrefixStr+'Neurongrouper', 'SynapsingKwargVariablesDict': { 'pre':'gi-=9*mV' }, 'SynapsingProbabilityVariable':0.02 } ), ['E','I'] ) } ] ).network( **{ 'RecruitingConcludeConditionVariable':[ ( 'MroClassesList', operator.contains, SYS.NeurongrouperClass ) ] } ).brian() ''' #Definition the AttestedStr SYS._attest( [ 'MyBrianer is '+SYS._str( MyBrianer, **{ 'RepresentingBaseKeyStrsList':False, 'RepresentingAlineaIsBool':False } ), ] ) ''' ''' SYS._print( MyBrianer.BrianedNeuronGroupsList ) ''' ''' SYS._print( MyBrianer.BrianedSynapsesList ) ''' SYS._print( [ MyBrianer.BrianedSynapsesList[0].source, MyBrianer.BrianedSynapsesList[0].target, MyBrianer.BrianedSynapsesList[0].pre, MyBrianer.BrianedSynapsesList[1].source, MyBrianer.BrianedSynapsesList[1].target, MyBrianer.BrianedSynapsesList[1].pre ] ) ''' SYS._print( MyBrianer.BrianedSpikeMonitorsList ) SYS._print( MyBrianer.BrianedStateMonitorsList ) ''' #init import brian2 map( lambda __BrianedNeuronGroup: __BrianedNeuronGroup.__setattr__( 'v', -60*brian2.mV ), MyBrianer.BrianedNeuronGroupsList ) #run MyBrianer.run(1000) #plot M=MyBrianer['<Neurongroupers>ENeurongrouper']['<SpikeMoniters>SpikeMoniter'].SpikeMonitor from matplotlib import pyplot pyplot.plot(M.t/brian2.ms, M.i, '.') pyplot.show() #Print
mit
macks22/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
RebeccaRapp/Bercs-Bees
beez.py
1
4668
import numpy as np import math import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.gridspec as gridspec def cube(length): #Constructs a cube with side 'length' vertices = [[0,length,0],[0,0,0],[0,0,length],[0,length,length],[0,length,0],[length,length,0],[length,0,0],[length,0,length],[length,length,length],[0,length,length],[length,length,length],[length,length,0],[length,0,0],[0,0,0],[0,0,length],[length,0,length]] x = [] y = [] z = [] for i in vertices: x.append(i[0]) y.append(i[1]) z.append(i[2]) return x,y,z def edge(pos,length,velocity): if pos[0]>length: velocity[0] = -1*velocity[0] #velocity[0] = -np.random.random() pos[0] = length if pos[0]<0: velocity[0] = -1*velocity[0] #velocity[0] = np.random.random() pos[0] = 0. if pos[1]>length: velocity[1] = -1*velocity[1] #velocity[1] = -np.random.random() pos[1] = length if pos[1]<0: velocity[1] = -1*velocity[1] #velocity[1] = np.random.random() pos[1] = 0. if pos[2]>length: velocity[2] = -1*velocity[2] #velocity[2] = -np.random.random() pos[2] = length if pos[2]<0: velocity[2] = -1*velocity[2] #velocity[2] = np.random.random() pos[2] = 0. return velocity,pos def plotify(listofpoints): #Takes a list of ordered triplets and converts them into lists of x's, y's, and z's. ie - matches the matplotlib formatting. x = [] y = [] z = [] for point in listofpoints: x.append(point[0]) y.append(point[1]) z.append(point[2]) return x,y,z def mag(vec): #Calculates the magnitude of a vector. mag = 0. for element in vec: mag += float(element)**2 return math.sqrt(mag) def bee(duration,dt,length,velocity = 6.70558333): v = [np.random.random(),np.random.random(),np.random.random()] s = mag(v) scale = velocity/s v = np.dot(scale,v) t = 0. x = [2*np.random.random()] y = [2*np.random.random()] z = [2*np.random.random()] while t <= duration: accel = [0, 32*np.sin(t), 32*np.cos(t)] v = [v[i] + accel[i]*dt for i in range(len(v))] s = mag(v) scale = velocity/s v = np.dot(scale,v) nextx = x[-1]+v[0]*dt nexty = y[-1]+v[1]*dt nextz = z[-1]+v[2]*dt if nextx >= length or nextx <= 0. or nexty >= length or nexty <= 0. or nextz >= length or nextz <= 0.: v,pos = edge([nextx,nexty,nextz],length,v) nextx = pos[0] nexty = pos[1] nextz = pos[2] x.append(nextx) y.append(nexty) z.append(nextz) t+=dt return x,y,z length = 2. time = 4. dt = 0.005 #5 mS -> 50mS to have microphone consistency #dt = 0.001 cubex, cubey, cubez = cube(length) mikes = [[0-0.01,0-0.01,0-0.01],[0-0.01,0-0.01,length+0.01],[0-0.01,length+0.01,0-0.01],[length+0.01,0-0.01,0-0.01],[length+0.01,length+.01,0-0.01],[0-0.01,length+0.01,length+0.01],[length+0.01,0-0.01,length+0.01],[length+0.01,length+0.01,length+0.01],[length/2.,0-0.01,0-0.01],[0-0.01,length/2.,0-0.01],[0-0.01,0-0.01,length/2.],[length+0.01,length/2.,0-0.01],[length,0-0.01,length/2.],[length+0.01,length+0.01,length/2.],[length+0.01,length/2.,length+0.01],[length/2.,length+0.01,length+0.01],[0-0.01,length+0.01,length/2.],[0-0.01,length/2.,length+0.01],[length/2.,0.-0.01,length+0.01],[length/2.,length+0.01,0.-0.01]] mikex, mikey, mikez = plotify(mikes) def genpath(duration,dt,length,strfile): beex,beey,beez = bee(time,dt,length) params = open('params.txt','w') params.write(str(duration)+'\n') params.write(str(length)+'\n') params.write(str(dt)+'\n') params.close() flight = open(strfile,'w') for i in range(len(beex)): flight.write(str(beex[i])[:7]+'\t'+str(beey[i])[:7]+'\t'+str(beez[i])[:7]+'\n') flight.close() return beex,beey,beez beex,beey,beez = genpath(time,dt,length,'PathFiles/beepath.txt') fig = plt.figure(facecolor = 'white',figsize = (12,12)) ax = fig.add_subplot(111,projection = '3d') ax.set_aspect('equal') ax.plot(cubex,cubey,cubez,color = 'red') ax.scatter(beex,beey,beez,color = 'blue') ax.set_xlim(-0.02,length+0.02) ax.set_ylim(-0.02,length+0.02) ax.set_zlim(-0.02,length+0.02) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.scatter(mikex,mikey,mikez,color = 'green', s = 50) fig.savefig('Tracked/box.png') #plt.show()
gpl-3.0
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/userdemo/annotate_text_arrow.py
1
1701
""" =================== Annotate Text Arrow =================== """ import numpy as np import matplotlib.pyplot as plt # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end fig, ax = plt.subplots(figsize=(5, 5)) ax.set_aspect(1) x1 = -1 + np.random.randn(100) y1 = -1 + np.random.randn(100) x2 = 1. + np.random.randn(100) y2 = 1. + np.random.randn(100) ax.scatter(x1, y1, color="r") ax.scatter(x2, y2, color="g") bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.9) ax.text(-2, -2, "Sample A", ha="center", va="center", size=20, bbox=bbox_props) ax.text(2, 2, "Sample B", ha="center", va="center", size=20, bbox=bbox_props) bbox_props = dict(boxstyle="rarrow", fc=(0.8, 0.9, 0.9), ec="b", lw=2) t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45, size=15, bbox=bbox_props) bb = t.get_bbox_patch() bb.set_boxstyle("rarrow", pad=0.6) ax.set_xlim(-4, 4) ax.set_ylim(-4, 4) pltshow(plt)
mit
nickvandewiele/RMG-Py
rmgpy/cantherm/thermo.py
6
11890
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # # RMG - Reaction Mechanism Generator # # Copyright (c) 2002-2009 Prof. William H. Green ([email protected]) and the # RMG Team ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ################################################################################ """ This module contains the :class:`ThermoJob` class, used to compute and save the thermodynamics information for a single species. """ import os.path import math import numpy.linalg import logging import rmgpy.constants as constants from rmgpy.cantherm.output import prettify from rmgpy.statmech.translation import Translation, IdealGasTranslation from rmgpy.statmech.rotation import Rotation, LinearRotor, NonlinearRotor, KRotor, SphericalTopRotor from rmgpy.statmech.vibration import Vibration, HarmonicOscillator from rmgpy.statmech.torsion import Torsion, HinderedRotor from rmgpy.statmech.conformer import Conformer from rmgpy.thermo.thermodata import ThermoData from rmgpy.thermo.nasa import NASAPolynomial, NASA from rmgpy.thermo.wilhoit import Wilhoit ################################################################################ class ThermoJob: """ A representation of a CanTherm thermodynamics job. This job is used to compute and save the thermodynamics information for a single species. """ def __init__(self, species, thermoClass): self.species = species self.thermoClass = thermoClass def execute(self, outputFile=None, plot=False): """ Execute the thermodynamics job, saving the results to the given `outputFile` on disk. """ self.generateThermo() if outputFile is not None: self.save(outputFile) if plot: self.plot(os.path.dirname(outputFile)) def generateThermo(self): """ Generate the thermodynamic data for the species and fit it to the desired heat capacity model (as specified in the `thermoClass` attribute). """ if self.thermoClass.lower() not in ['wilhoit', 'nasa']: raise Exception('Unknown thermodynamic model "{0}".'.format(self.thermoClass)) species = self.species logging.info('Generating {0} thermo model for {1}...'.format(self.thermoClass, species)) Tlist = numpy.arange(10.0, 3001.0, 10.0, numpy.float64) Cplist = numpy.zeros_like(Tlist) H298 = 0.0 S298 = 0.0 conformer = self.species.conformer for i in range(Tlist.shape[0]): Cplist[i] += conformer.getHeatCapacity(Tlist[i]) H298 += conformer.getEnthalpy(298.) + conformer.E0.value_si S298 += conformer.getEntropy(298.) if not any([isinstance(mode, (LinearRotor, NonlinearRotor)) for mode in conformer.modes]): # Monatomic species linear = False Nfreq = 0 Nrotors = 0 Cp0 = 2.5 * constants.R CpInf = 2.5 * constants.R else: # Polyatomic species linear = True if isinstance(conformer.modes[1], LinearRotor) else False Nfreq = len(conformer.modes[2].frequencies.value) Nrotors = len(conformer.modes[3:]) Cp0 = (3.5 if linear else 4.0) * constants.R CpInf = Cp0 + (Nfreq + 0.5 * Nrotors) * constants.R wilhoit = Wilhoit() if Nfreq == 0 and Nrotors == 0: wilhoit.Cp0 = (Cplist[0],"J/(mol*K)") wilhoit.CpInf = (Cplist[0],"J/(mol*K)") wilhoit.B = (500.,"K") wilhoit.H0 = (0.0,"J/mol") wilhoit.S0 = (0.0,"J/(mol*K)") wilhoit.H0 = (H298 -wilhoit.getEnthalpy(298.15), "J/mol") wilhoit.S0 = (S298 - wilhoit.getEntropy(298.15),"J/(mol*K)") else: wilhoit.fitToData(Tlist, Cplist, Cp0, CpInf, H298, S298, B0=500.0) if self.thermoClass.lower() == 'nasa': species.thermo = wilhoit.toNASA(Tmin=10.0, Tmax=3000.0, Tint=500.0) else: species.thermo = wilhoit def save(self, outputFile): """ Save the results of the thermodynamics job to the file located at `path` on disk. """ species = self.species logging.info('Saving thermo for {0}...'.format(species.label)) f = open(outputFile, 'a') f.write('# Thermodynamics for {0}:\n'.format(species.label)) H298 = species.thermo.getEnthalpy(298) / 4184. S298 = species.thermo.getEntropy(298) / 4.184 f.write('# Enthalpy of formation (298 K) = {0:9.3f} kcal/mol\n'.format(H298)) f.write('# Entropy of formation (298 K) = {0:9.3f} cal/(mol*K)\n'.format(S298)) f.write('# =========== =========== =========== =========== ===========\n') f.write('# Temperature Heat cap. Enthalpy Entropy Free energy\n') f.write('# (K) (cal/mol*K) (kcal/mol) (cal/mol*K) (kcal/mol)\n') f.write('# =========== =========== =========== =========== ===========\n') for T in [300,400,500,600,800,1000,1500,2000,2400]: Cp = species.thermo.getHeatCapacity(T) / 4.184 H = species.thermo.getEnthalpy(T) / 4184. S = species.thermo.getEntropy(T) / 4.184 G = species.thermo.getFreeEnergy(T) / 4184. f.write('# {0:11g} {1:11.3f} {2:11.3f} {3:11.3f} {4:11.3f}\n'.format(T, Cp, H, S, G)) f.write('# =========== =========== =========== =========== ===========\n') string = 'thermo(label={0!r}, thermo={1!r})'.format(species.label, species.thermo) f.write('{0}\n\n'.format(prettify(string))) f.close() f = open(os.path.join(os.path.dirname(outputFile), 'chem.inp'), 'a') thermo = species.thermo if isinstance(thermo, NASA): poly_low = thermo.polynomials[0] poly_high = thermo.polynomials[1] # Determine the number of each type of element in the molecule elements = ['C','H','N','O']; elementCounts = [0,0,0,0] # Remove elements with zero count index = 2 while index < len(elementCounts): if elementCounts[index] == 0: del elements[index] del elementCounts[index] else: index += 1 # Line 1 string = '{0:<16} '.format(species.label) if len(elements) <= 4: # Use the original Chemkin syntax for the element counts for symbol, count in zip(elements, elementCounts): string += '{0!s:<2}{1:<3d}'.format(symbol, count) string += ' ' * (4 - len(elements)) else: string += ' ' * 4 string += 'G{0:<10.3f}{1:<10.3f}{2:<8.2f} 1'.format(poly_low.Tmin.value_si, poly_high.Tmax.value_si, poly_low.Tmax.value_si) if len(elements) > 4: string += '&\n' # Use the new-style Chemkin syntax for the element counts # This will only be recognized by Chemkin 4 or later for symbol, count in zip(elements, elementCounts): string += '{0!s:<2}{1:<3d}'.format(symbol, count) string += '\n' # Line 2 string += '{0:< 15.8E}{1:< 15.8E}{2:< 15.8E}{3:< 15.8E}{4:< 15.8E} 2\n'.format(poly_high.c0, poly_high.c1, poly_high.c2, poly_high.c3, poly_high.c4) # Line 3 string += '{0:< 15.8E}{1:< 15.8E}{2:< 15.8E}{3:< 15.8E}{4:< 15.8E} 3\n'.format(poly_high.c5, poly_high.c6, poly_low.c0, poly_low.c1, poly_low.c2) # Line 4 string += '{0:< 15.8E}{1:< 15.8E}{2:< 15.8E}{3:< 15.8E} 4\n'.format(poly_low.c3, poly_low.c4, poly_low.c5, poly_low.c6) f.write(string) f.close() def plot(self, outputDirectory): """ Plot the heat capacity, enthapy, entropy, and Gibbs free energy of the fitted thermodynamics model, along with the same values from the statistical mechanics model that the thermodynamics model was fitted to. The plot is saved to the file ``thermo.pdf`` in the output directory. The plot is not generated if ``matplotlib`` is not installed. """ # Skip this step if matplotlib is not installed try: import pylab except ImportError: return Tlist = numpy.arange(10.0, 2501.0, 10.0) Cplist = numpy.zeros_like(Tlist) Cplist1 = numpy.zeros_like(Tlist) Hlist = numpy.zeros_like(Tlist) Hlist1 = numpy.zeros_like(Tlist) Slist = numpy.zeros_like(Tlist) Slist1 = numpy.zeros_like(Tlist) Glist = numpy.zeros_like(Tlist) Glist1 = numpy.zeros_like(Tlist) conformer = self.species.conformer thermo = self.species.thermo for i in range(Tlist.shape[0]): Cplist[i] = conformer.getHeatCapacity(Tlist[i]) Slist[i] = conformer.getEntropy(Tlist[i]) Hlist[i] = (conformer.getEnthalpy(Tlist[i]) + conformer.E0.value_si) * 0.001 Glist[i] = Hlist[i] - Tlist[i] * Slist[i] * 0.001 Cplist1[i] = thermo.getHeatCapacity(Tlist[i]) Slist1[i] = thermo.getEntropy(Tlist[i]) Hlist1[i] = thermo.getEnthalpy(Tlist[i]) * 0.001 Glist1[i] = thermo.getFreeEnergy(Tlist[i]) * 0.001 fig = pylab.figure(figsize=(10,8)) pylab.subplot(2,2,1) pylab.plot(Tlist, Cplist / 4.184, '-r', Tlist, Cplist1 / 4.184, '-b') pylab.xlabel('Temperature (K)') pylab.ylabel('Heat capacity (cal/mol*K)') pylab.legend(['statmech', 'thermo'], loc=4) pylab.subplot(2,2,2) pylab.plot(Tlist, Slist / 4.184, '-r', Tlist, Slist1 / 4.184, '-b') pylab.xlabel('Temperature (K)') pylab.ylabel('Entropy (cal/mol*K)') pylab.subplot(2,2,3) pylab.plot(Tlist, Hlist / 4.184, '-r', Tlist, Hlist1 / 4.184, '-b') pylab.xlabel('Temperature (K)') pylab.ylabel('Enthalpy (kcal/mol)') pylab.subplot(2,2,4) pylab.plot(Tlist, Glist / 4.184, '-r', Tlist, Glist1 / 4.184, '-b') pylab.xlabel('Temperature (K)') pylab.ylabel('Gibbs free energy (kcal/mol)') fig.subplots_adjust(left=0.10, bottom=0.08, right=0.95, top=0.95, wspace=0.35, hspace=0.20) pylab.savefig(os.path.join(outputDirectory, 'thermo.pdf')) pylab.close()
mit
sanguinariojoe/aquagpusph
examples/3D/spheric_testcase2_dambreak_mpi/cMake/plot_t.py
14
5704
#****************************************************************************** # * # * ** * * * * * # * * * * * * * * * * # ***** * * * * ***** ** *** * * ** *** *** * # * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * # * * ** * ** * * *** *** *** ** *** * * * # * * * * # ** * * * # * #****************************************************************************** # * # This file is part of AQUAgpusph, a free CFD program based on SPH. * # Copyright (C) 2012 Jose Luis Cercos Pita <[email protected]> * # * # AQUAgpusph is free software: you can redistribute it and/or modify * # it under the terms of the GNU General Public License as published by * # the Free Software Foundation, either version 3 of the License, or * # (at your option) any later version. * # * # AQUAgpusph is distributed in the hope that it will be useful, * # but WITHOUT ANY WARRANTY; without even the implied warranty of * # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * # GNU General Public License for more details. * # * # You should have received a copy of the GNU General Public License * # along with AQUAgpusph. If not, see <http://www.gnu.org/licenses/>. * # * #****************************************************************************** import math import os from os import path import matplotlib.pyplot as plt import matplotlib.animation as animation def readFile(filepath): """ Read and extract data from a file :param filepath File ot read """ abspath = filepath if not path.isabs(filepath): abspath = path.join(path.dirname(path.abspath(__file__)), filepath) # Read the file by lines f = open(abspath, "r") lines = f.readlines() f.close() data = [] for l in lines[1:-1]: # Skip the last line, which may be unready l = l.strip() while l.find(' ') != -1: l = l.replace(' ', ' ') fields = l.split(' ') try: data.append(map(float, fields)) except: continue # Transpose the data return [list(d) for d in zip(*data)] fig = plt.figure() ax = fig.add_subplot(111) t = [0.0] e = [0.0] fove = ax.fill_between(t, 0, e, facecolor='red', linewidth=0.0) fave = ax.fill_between(t, 0, e, facecolor='blue', linestyle="-", linewidth=0.0) love, = ax.plot(t, e, color='#990000', linestyle="-", linewidth=2.0, label='Average overhead') lave, = ax.plot(t, e, color='#000099', linestyle="-", linewidth=2.0, label='Average elapsed') line, = ax.plot(t, e, color="black", linestyle="-", linewidth=1.0, alpha=0.5, label='Elapsed') def update(frame_index): plt.tight_layout() data = readFile('Performance.dat') t = data[0] e = data[1] e_ela = data[2] e_ove = data[5] # Clear nan values for i in range(len(e_ela)): if math.isnan(e_ela[i]): e_ela[i] = 0.0 if math.isnan(e_ove[i]): e_ove[i] = 0.0 e_ave = [e_ela[i] - e_ove[i] for i in range(len(e_ela))] # clear the fills for coll in (ax.collections): ax.collections.remove(coll) fove = ax.fill_between(t, 0, e_ela, facecolor='red', linestyle="-", linewidth=2.0) fave = ax.fill_between(t, 0, e_ave, facecolor='blue', linestyle="-", linewidth=2.0) love.set_data(t, e_ela) lave.set_data(t, e_ave) line.set_data(t, e) ax.set_xlim(0, t[-1]) ax.set_ylim(0, 1.5 * e_ela[-1]) # Set some options ax.grid() ax.set_xlim(0, 0.1) ax.set_ylim(-0.1, 0.1) ax.set_autoscale_on(False) ax.set_xlabel(r"$t \, [\mathrm{s}]$", fontsize=21) ax.set_ylabel(r"$t_{CPU} \, [\mathrm{s}]$", fontsize=21) ax.legend(handles=[lave, love, line], loc='upper right') ani = animation.FuncAnimation(fig, update, interval=5000) plt.show()
gpl-3.0
h2educ/scikit-learn
examples/model_selection/plot_precision_recall.py
249
6150
""" ================ Precision-Recall ================ Example of Precision-Recall metric to evaluate classifier output quality. In information retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are returned. A high area under the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high recall). A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when compared to the training labels. A system with high precision but low recall is just the opposite, returning very few results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high precision and high recall will return many results, with all results labeled correctly. Precision (:math:`P`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false positives (:math:`F_p`). :math:`P = \\frac{T_p}{T_p+F_p}` Recall (:math:`R`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false negatives (:math:`F_n`). :math:`R = \\frac{T_p}{T_p + F_n}` These quantities are also related to the (:math:`F_1`) score, which is defined as the harmonic mean of precision and recall. :math:`F1 = 2\\frac{P \\times R}{P+R}` It is important to note that the precision may not decrease with recall. The definition of precision (:math:`\\frac{T_p}{T_p + F_p}`) shows that lowering the threshold of a classifier may increase the denominator, by increasing the number of results returned. If the threshold was previously set too high, the new results may all be true positives, which will increase precision. If the previous threshold was about right or too low, further lowering the threshold will introduce false positives, decreasing precision. Recall is defined as :math:`\\frac{T_p}{T_p+F_n}`, where :math:`T_p+F_n` does not depend on the classifier threshold. This means that lowering the classifier threshold may increase recall, by increasing the number of true positive results. It is also possible that lowering the threshold may leave recall unchanged, while the precision fluctuates. The relationship between recall and precision can be observed in the stairstep area of the plot - at the edges of these steps a small change in the threshold considerably reduces precision, with only a minor gain in recall. See the corner at recall = .59, precision = .8 for an example of this phenomenon. Precision-recall curves are typically used in binary classification to study the output of a classifier. In order to extend Precision-recall curve and average precision to multi-class or multi-label classification, it is necessary to binarize the output. One curve can be drawn per label, but one can also draw a precision-recall curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). .. note:: See also :func:`sklearn.metrics.average_precision_score`, :func:`sklearn.metrics.recall_score`, :func:`sklearn.metrics.precision_score`, :func:`sklearn.metrics.f1_score` """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn import svm, datasets from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.cross_validation import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # Split into training and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=random_state) # Run classifier classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute Precision-Recall and plot curve precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:, i]) average_precision[i] = average_precision_score(y_test[:, i], y_score[:, i]) # Compute micro-average ROC curve and ROC area precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(), y_score.ravel()) average_precision["micro"] = average_precision_score(y_test, y_score, average="micro") # Plot Precision-Recall curve plt.clf() plt.plot(recall[0], precision[0], label='Precision-Recall curve') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('Precision-Recall example: AUC={0:0.2f}'.format(average_precision[0])) plt.legend(loc="lower left") plt.show() # Plot Precision-Recall curve for each class plt.clf() plt.plot(recall["micro"], precision["micro"], label='micro-average Precision-recall curve (area = {0:0.2f})' ''.format(average_precision["micro"])) for i in range(n_classes): plt.plot(recall[i], precision[i], label='Precision-recall curve of class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
LEX2016WoKaGru/pyClamster
scripts/calibration/fe3/FE3_calibration_proj_sun_img_real_coordinates_determination_pickling.py
1
2835
# -*- coding: utf-8 -*- """ Created on 14.08.16 Created for pyclamster Copyright (C) {2016} This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ # System modules import os,sys,gc import pickle import logging import pytz,datetime # External modules import matplotlib.pyplot as plt import numpy as np # Internal modules import pyclamster BASE_DIR = os.path.dirname(os.path.dirname(__file__)) logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) LAT=54.4947 LON=11.2408 session = pyclamster.CameraSession( images="/home/yann/Studium/LEX/LEX/cam/cam3/calibration/projection/FE3*.jpg", longitude=LON,latitude=LAT ) imgsunxs = [] imgsunys = [] realsunazis = [] realsuneles = [] for image in session: # loop over all images # get time imgtime = image._get_time_from_filename(fmt="FE3_Image_%Y%m%d_%H%M%S_UTCp1.jpg") imgtime = pytz.utc.localize(imgtime) imgtime = imgtime - datetime.timedelta(hours=1) image.time = imgtime # get sun position imgsunpos = image.getImageSunPosition() imgsunx = imgsunpos[1] imgsuny = image.data.shape[0] - imgsunpos[0] # invert y axis realsunazi = image.getRealSunAzimuth() realsunele = image.getRealSunElevation() # print logger.debug("Path: {}".format(image.path)) logger.debug("Time: {}".format(imgtime)) logger.debug("ImageSunPos: {}".format(imgsunpos)) logger.debug("RealSunAzi: {}".format(realsunazi)) logger.debug("RealSunEle: {}".format(realsunele)) #plt.imshow(image.data) #plt.scatter(x=imgsunpos[1],y=imgsunpos[0]) #plt.show() #sys.stdin.read(1) # pause # merge data imgsunxs.append(imgsunx) imgsunys.append(imgsuny) realsunazis.append(realsunazi) realsuneles.append(realsunele) del image;gc.collect() # delete and free memory # merge information and save to files sun_img=pyclamster.Coordinates3d(x=imgsunxs,y=imgsunys,azimuth_offset=0,azimuth_clockwise=False) pickle.dump(sun_img,open("data/FE3_projcalib_sun_img.pk","wb")) sun_real=pyclamster.Coordinates3d(azimuth=realsunazis,elevation=realsuneles,azimuth_clockwise=True,azimuth_offset=3/2*np.pi) pickle.dump(sun_real,open("data/FE3_projcalib_sun_real.pk","wb"))
gpl-3.0
yeatmanlab/pyAFQ
examples/plot_recobundles.py
2
6554
""" ========================================= Plotting tract profiles using RecoBundles ========================================= An example of tracking and segmenting two tracts with RecoBundles [Garyfallidis2017]_, and plotting their tract profiles for FA (calculated with DTI). See `plot_tract_profile` for explanations of each stage here. The main difference here is that segmentation uses the RecoBundles algorithm, instead of the AFQ waypoint ROI approach. """ import os.path as op import matplotlib.pyplot as plt import numpy as np import nibabel as nib import dipy.data as dpd from dipy.data import fetcher import dipy.tracking.utils as dtu import dipy.tracking.streamline as dts from dipy.io.streamline import save_tractogram, load_tractogram from dipy.stats.analysis import afq_profile, gaussian_weights from dipy.io.stateful_tractogram import StatefulTractogram from dipy.io.stateful_tractogram import Space from dipy.align import affine_registration import AFQ.data as afd import AFQ.tractography as aft import AFQ.registration as reg import AFQ.models.dti as dti import AFQ.segmentation as seg import AFQ.api as api # Target directory for this example's output files working_dir = "./recobundles" dpd.fetch_stanford_hardi() hardi_dir = op.join(fetcher.dipy_home, "stanford_hardi") hardi_fdata = op.join(hardi_dir, "HARDI150.nii.gz") hardi_fbval = op.join(hardi_dir, "HARDI150.bval") hardi_fbvec = op.join(hardi_dir, "HARDI150.bvec") img = nib.load(hardi_fdata) print("Calculating DTI...") if not op.exists(op.join(working_dir, 'dti_FA.nii.gz')): dti_params = dti.fit_dti(hardi_fdata, hardi_fbval, hardi_fbvec, out_dir=working_dir) else: dti_params = {'FA': op.join(working_dir, 'dti_FA.nii.gz'), 'params': op.join(working_dir, 'dti_params.nii.gz')} FA_img = nib.load(dti_params['FA']) FA_data = FA_img.get_fdata() print("Registering to template...") MNI_T2_img = afd.read_mni_template() if not op.exists(op.join(working_dir, 'mapping.nii.gz')): import dipy.core.gradients as dpg gtab = dpg.gradient_table(hardi_fbval, hardi_fbvec) b0 = np.mean(img.get_fdata()[..., gtab.b0s_mask], -1) # Prealign using affine registration _, prealign = affine_registration( b0, MNI_T2_img.get_fdata(), img.affine, MNI_T2_img.affine) # Then register using a non-linear registration using the affine for # prealignment warped_hardi, mapping = reg.syn_register_dwi(hardi_fdata, gtab, prealign=prealign) reg.write_mapping(mapping, op.join(working_dir, 'mapping.nii.gz')) else: mapping = reg.read_mapping(op.join(working_dir, 'mapping.nii.gz'), img, MNI_T2_img) bundle_names = ["CST", "UF", "CC_ForcepsMajor", "CC_ForcepsMinor", "OR", "VOF"] bundles = api.BundleDict(bundle_names, seg_algo="reco80") print("Tracking...") if not op.exists(op.join(working_dir, 'dti_streamlines_reco.trk')): seed_roi = np.zeros(img.shape[:-1]) for bundle in bundles: if bundle != 'whole_brain': sl_xform = dts.Streamlines( dtu.transform_tracking_output(bundles[bundle]['sl'], MNI_T2_img.affine)) delta = dts.values_from_volume(mapping.backward, sl_xform, np.eye(4)) sl_xform = [sum(d, s) for d, s in zip(delta, sl_xform)] sl_xform = dts.Streamlines( dtu.transform_tracking_output( sl_xform, np.linalg.inv(MNI_T2_img.affine))) sft = StatefulTractogram(sl_xform, img, Space.RASMM) save_tractogram(sft, op.join(working_dir, f'{bundle}_atlas.trk')) sl_xform = dts.Streamlines( dtu.transform_tracking_output( sl_xform, np.linalg.inv(img.affine))) for sl in sl_xform: sl_as_idx = sl.astype(int) seed_roi[sl_as_idx[:, 0], sl_as_idx[:, 1], sl_as_idx[:, 2]] = 1 nib.save(nib.Nifti1Image(seed_roi, img.affine), op.join(working_dir, 'seed_roi.nii.gz')) sft = aft.track(dti_params['params'], seed_mask=seed_roi, directions='det', stop_mask=FA_data, stop_threshold=0.1) print(len(sft.streamlines)) save_tractogram(sft, op.join(working_dir, 'dti_streamlines_reco.trk'), bbox_valid_check=False) else: sft = load_tractogram(op.join(working_dir, 'dti_streamlines_reco.trk'), img) print("Segmenting fiber groups...") segmentation = seg.Segmentation(seg_algo='reco80', rng=np.random.RandomState(2)) segmentation.segment(bundles, sft, fdata=hardi_fdata, fbval=hardi_fbval, fbvec=hardi_fbvec, mapping=mapping, reg_template=MNI_T2_img) fiber_groups = segmentation.fiber_groups for kk in fiber_groups: print(kk, len(fiber_groups[kk])) sft = StatefulTractogram(fiber_groups[kk].streamlines, img, Space.RASMM) save_tractogram(sft, op.join(working_dir, '%s_reco.trk' % kk), bbox_valid_check=False) print("Extracting tract profiles...") for bundle in bundles: if bundle != 'whole_brain': fig, ax = plt.subplots(1) sft = load_tractogram( op.join(working_dir, f'{bundle}_reco.trk'), img, to_space=Space.VOX, bbox_valid_check=False) weights = gaussian_weights(sft.streamlines) profile = afq_profile(FA_data, sft.streamlines, np.eye(4), weights=weights) ax.plot(profile) ax.set_title(bundle) plt.show() ########################################################################## # References: # ------------------------- # .. [Garyfallidis2017] Garyfallidis, Eleftherios, Marc-Alexandre Côté, # Francois Rheault, Jasmeen Sidhu, Janice Hau, Laurent # Petit, David Fortin, Stephen Cunanne, and Maxime # Descoteaux. 2017.“Recognition of White Matter Bundles # Using Local and Global Streamline-Based Registration and # Clustering.”NeuroImage 170: 283-295.
bsd-2-clause
policycompass/policycompass-services
apps/datasetmanager/dataset_data.py
2
11547
import json import pandas as p import numpy import voluptuous as v from collections import OrderedDict from django.core.exceptions import ValidationError from apps.referencepool.models import Individual, DataClass from rest_framework import exceptions from .time_resolutions import TimeResolutions import logging log = logging.getLogger(__name__) __author__ = 'fki' trl = TimeResolutions() class TransformationException(exceptions.APIException): status_code = 400 class DatasetData(object): """ Wraps the pandas DataFrame to hold the tabular data of a dataset. Offers several transformation methods. """ def __init__(self, data_frame: p.DataFrame, unit: int, resolution: str): self.unit = unit self.resolution = resolution self.df = data_frame self.time_transformed = False self.time_filtered = False self.unit_transformed = False def get_json(self) -> str: """ Get the data as JSON string """ result = { 'unit': self.unit, 'resolution': self.resolution, 'data_frame': self.df.to_json(date_format='iso') } return json.dumps(result) @staticmethod def from_json(data: str): """ Create a DatasetObject from a JSON string """ obj = json.loads(data) h = p.read_json(obj['data_frame']) h.sort_index(inplace=True) dataset_data = DatasetData(h, obj['unit'], obj['resolution']) return dataset_data def transform_time(self, time_resolution: str): """ Transforms the time series into another valid resolution """ if not trl.is_supported(time_resolution): raise TransformationException( "Time Resolution not supported. Options: " + str( trl.get_supported_names())) time_obj = trl.get(time_resolution) orig_time_obj = trl.get(self.resolution) if time_obj.level < orig_time_obj.level: raise TransformationException( "Upscaling of the time resolution is not supported.") if time_obj != orig_time_obj: self.df = self.df.resample(time_obj.offset, how='mean') self.resolution = time_obj.name self.time_transformed = True def filter_by_time(self, start_time: str, end_time: str): """ Filters the data by the given time interval. """ real_start_time = self.get_time_start() real_end_time = self.get_time_end() if end_time and end_time < real_start_time: raise TransformationException( "The given end time is less than the start time" ) if start_time and start_time > real_end_time: raise TransformationException( "The given start time is greater than the end time" ) if start_time and end_time: if start_time > end_time: raise TransformationException( "The start time cannot be greater than the end time." ) try: self.df = self.df.ix[start_time:end_time] self.time_filtered = True except p.datetools.DateParseError: raise TransformationException( "The time parameters are malformed. " "Please provide a valid date string" ) def filter_by_individuals(self, individuals: list): """ Filters the dataframe by a given list of individuals. Raises an exception when individual is not available. """ available_individuals = self.get_individuals() filter_inds = [] for individual in individuals: i = int(individual) if i not in available_individuals: raise TransformationException( "The selected individuals or not valid.") else: filter_inds.append(i) self.df = self.df[filter_inds] log.debug(self.df) pass def get_individuals(self) -> list: """ Returns all available individuals as a list of integers """ result = self.df.columns.values return [int(x) for x in result] def get_time_start(self) -> str: time_obj = trl.get(self.resolution) if len(self.df.index) == 1: return time_obj.output_expr(self.df.index[0]) else: return time_obj.output_expr(self.df.index[0]) def get_time_end(self) -> str: time_obj = trl.get(self.resolution) if len(self.df.index) == 1: return time_obj.output_expr(self.df.index[0]) else: return time_obj.output_expr(self.df.index[-1]) class DatasetDataTransformer(object): """ Wraps the transformer conveniently """ @staticmethod def from_api(data_dict: dict, time_start: str, time_end: str, time_resolution: str, class_id: int, unit_id: int) -> DatasetData: trf = DatasetDataFromAPITransformer(data_dict, time_resolution, time_start, time_end, class_id, unit_id) return trf.get_dataset_data() @staticmethod def to_api(dataset_data: DatasetData) -> dict: trf = DatasetDataToAPITransformer(dataset_data) return trf.get_api_data() class DatasetDataFromAPITransformer(object): """ Generates a DatasetData Object from the datastructure used within the API """ def __init__(self, data: dict, time_resolution: str, time_start: str, time_end: str, class_id: int, unit_id: int): self.data = data self.time_resolution = time_resolution self.time_start = time_start self.time_end = time_end self.class_id = class_id self.unit_id = unit_id self._dataset_data = None self._create_individuals() self._pre_validate() self.df = self._transform() self._dataset_data = DatasetData( self.df, self.unit_id, self.time_resolution ) def get_dataset_data(self) -> DatasetData: """ Returns the actual DatasetData object """ return self._dataset_data def _pre_validate(self): """ Performs a pre-validation if the data """ schema = self._get_validation_schema() if not isinstance(self.data, dict): raise ValidationError("Data field needs to be a dictionary.") try: schema(self.data) except v.Invalid as e: raise ValidationError(e) def _get_validation_schema(self) -> v.Schema: """ Defines the validation schema """ def validate_individual(value): if self.class_id != 7: if not isinstance(value, int): raise v.Invalid( "Individual of Element %d of data.table is not an integer." " Please use class 'custom' to provide strings.") schema = v.Schema({ v.Required('table', msg="Data dict needs a 'table' field."): v.All( [ { v.Required('row'): int, v.Required('individual'): validate_individual, v.Required('values'): v.All( dict ), } ], v.Length(min=1)) }) return schema def _create_individuals(self): table = self.data['table'] for row in table: individual = row['individual'] if isinstance(individual, str): # Does it exist already # Todo Make this better try: saved_ind = Individual.objects.get(title=individual, data_class=self.class_id) row['individual'] = saved_ind.id except Individual.DoesNotExist: ind = Individual( title=individual, data_class=DataClass.objects.get(id=7) ) ind.save() row['individual'] = ind.id def _transform(self) -> p.DataFrame: """ Returns the transformed data as pandas DataFrame, which is needed to init the DatasetData """ if not trl.is_supported(self.time_resolution): raise ValidationError( "The Specified time_resolution is not supported.") time_obj = trl.get(self.time_resolution) time_range = self._create_time_range() f = p.DataFrame(index=time_range) table = self.data['table'] for row in table: values = [] for time in time_range: try: values.append(row['values'][time_obj.output_expr(time)]) except KeyError: raise ValidationError( "Please provide a value for every date within the range and resolution.") f[row['individual']] = values return f def _create_time_range(self) -> p.DatetimeIndex: """ Creates a time index based on the metadata """ time_obj = trl.get(self.time_resolution) start = time_obj.input_expr(self.time_start) end = time_obj.input_expr(self.time_end) return p.date_range(start, end, freq=time_obj.offset) class DatasetDataToAPITransformer(object): """ Generates the API datastructure from a DatasetData object """ def __init__(self, dataset_data: DatasetData): self._dataset_data = dataset_data self._view_data = self._transform() def get_api_data(self) -> dict: """ Returns the actual dict for the view """ result = { 'table': self._view_data, 'individuals': self._dataset_data.get_individuals() } if self._dataset_data.time_transformed: result['time_transformation'] = { 'resolution': self._dataset_data.resolution, 'start': self._dataset_data.get_time_start(), 'end': self._dataset_data.get_time_end(), 'method': 'mean' } if self._dataset_data.time_filtered: result['time_filter'] = { 'start': self._dataset_data.get_time_start(), 'end': self._dataset_data.get_time_end(), } return result def _transform(self) -> dict: """ Transforms the DatasetData into a dict """ time_obj = trl.get(self._dataset_data.resolution) result = [] row = 1 for index, i in self._dataset_data.df.iteritems(): new_dict = OrderedDict() new_dict['row'] = row new_dict['individual'] = int(index) new_dict['values'] = OrderedDict() for index2, j in i.iteritems(): if numpy.isnan(j): new_dict['values'][time_obj.output_expr(index2)] = None else: new_dict['values'][time_obj.output_expr(index2)] = round(j, 2) result.append(new_dict) row += 1 return result
agpl-3.0
dialounke/pylayers
pylayers/gis/readvrml.py
1
21434
# -*- coding: utf-8 -*- """ .. currentmodule:: pylayers.antprop.readvrml .. autosummary:: """ import doctest import os import glob import os import doctest import glob import numpy as np import scipy as sp import matplotlib.pyplot as plt from pylayers.util import geomutil as geo from pylayers.util import pyutil as pyu from pylayers.util.project import * from descartes.patch import PolygonPatch import shapely.geometry as shg import shapely.ops as sho import networkx as nx from pylayers.gis.layout import Layout def savelay(dpt,dwall, _filename='struc.lay'): """ save walls in lay format .. TODO to implement The default filename is struc.str2 Parameters ---------- dpt : dwall: """ fd = open('struc.str2', 'w') s1 = str(len(dpt.keys()))+' '+str(len(dwall.keys()))+' 0\n' fd.write(s1) for ipt in dpt: p = dpt[ipt] s1 = str(p[0])+' '+str(p[1])+' 0 0 0 0\n' fd.write(s1) for iw in dwall: tail = dwall[iw]['tail']+1 head = dwall[iw]['head']+1 zmin = dwall[iw]['zmin'] zmax = dwall[iw]['zmax'] core = str(2) s1 = str(tail)+' '+str( head)+' 1 '+core+' '+'1 0 '+str(zmin)+' '+str(zmax)+'\n' fd.write(s1) fd.close() def stretch(s, alphat=0.1, alphah=0.1): """ strech a LineString by a given perc on both terminations Parameters ---------- s : LineString shapely alphat : stretching coeff tail alphah : stretching coeff head Returns ------- ss : streched segment Examples -------- >>> s1 = shg.LineString(((0,0),(1,0))) >>> ss1 = stretch(s1,0.1) >>> s2 = shg.LineString(((-0.1,0),(1.1,0))) >>> assert (ss1.equals(s2)) """ ls = s.length x, y = s.xy u = np.array((x[1]-x[0], y[1]-y[0])) un = u/ls pt = np.array((x[0], y[0])) ph = np.array((x[1], y[1])) # ppt = pt - un*ls*alpha # pph = ph + un*ls*alpha ppt = pt - un*alphat pph = ph + un*alphah ss = shg.LineString(((ppt[0], ppt[1]), (pph[0], pph[1]))) return(ss) def segsplit(s1, s2, tol=0.0001, alpha=0.1): """ split segment Parameters ---------- s1 : shapely LineString s2 : shapely LineString tol : tolerance for point equality test alpha : stretching factor Returns ------- ts : list of segment bks1 : boolean keep s1 bks2 : boolean keep s2 Examples -------- >>> s1 = shg.LineString(((0,0),(1,0))) >>> s2 = shg.LineString(((1,0),(2,0))) >>> s3 = shg.LineString(((1,-10),(1,10))) >>> s4 = shg.LineString(((0.5,-10),(0.5,10))) >>> ts1 = segsplit(s1,s2) >>> ts2 = segsplit(s1,s3) >>> ts3 = segsplit(s1,s4) """ ts1 = [] ts2 = [] bks1 = True bks2 = True beta = alpha/(2*alpha+1) if s1.intersects(s2): p1t, p1h = s1.boundary p2t, p2h = s2.boundary ls1 = s1.length ls2 = s2.length pi = s1.intersection(s2) if s1.touches(s2): # touching segments if not (pi.equals_exact(p1t, tol) or pi.equals_exact(p1h, tol)): s11 = shg.LineString(((p1t.xy[0][0], p1t.xy[ 1][0]), (pi.xy[0][0], pi.xy[1][0]))) s12 = shg.LineString(((pi.xy[0][0], pi.xy[ 1][0]), (p1h.xy[0][0], p1h.xy[1][0]))) if s11.length > 0 and s11.length >= alpha: ts1.append(s11) if s12.length > 0 and s12.length >= alpha: ts1.append(s12) bks1 = False if not (pi.equals_exact(p2t, tol) or pi.equals_exact(p2t, tol)): s21 = shg.LineString(((p2t.xy[0][0], p2t.xy[ 1][0]), (pi.xy[0][0], pi.xy[1][0]))) s22 = shg.LineString(((pi.xy[0][0], pi.xy[ 1][0]), (p2h.xy[0][0], p2h.xy[1][0]))) if s21.length > 0 and s21.length > alpha: ts2.append(s21) if s22.length > 0 and s22.length >= alpha: ts2.append(s22) bks2 = False else: # crossing segments s11 = shg.LineString(((p1t.xy[0][0], p1t.xy[ 1][0]), (pi.xy[0][0], pi.xy[1][0]))) s12 = shg.LineString(((pi.xy[0][0], pi.xy[ 1][0]), (p1h.xy[0][0], p1h.xy[1][0]))) s21 = shg.LineString(((p2t.xy[0][0], p2t.xy[ 1][0]), (pi.xy[0][0], pi.xy[1][0]))) s22 = shg.LineString(((pi.xy[0][0], pi.xy[ 1][0]), (p2h.xy[0][0], p2h.xy[1][0]))) ls11 = s11.length ls12 = s12.length ls21 = s21.length ls22 = s22.length if ls11 > ls12: ts1.append(s11) else: ts1.append(s12) if ls21 > ls22: ts2.append(s21) else: ts2.append(s22) # if s11.length>0 and s11.length>=alpha: # ts1.append(s11) # if s12.length>0 and s12.length>=alpha: # ts1.append(s12) # if s21.length>0 and s21.length>=alpha: # ts2.append(s21) # if s22.length>0 and s21.length>=alpha: # ts2.append(s22) bks1 = False bks2 = False return(ts1, ts2, bks1, bks2) def extract(vrmlstrg, dico): """ converts recursively a vrml string into a dictionnary Parameters ---------- vrmlstrg: dico : Returns ------ dico : dictonnary associated with vrml string strg """ val = vrmlstrg while len(val) != 0: key, val = inbracket(val) if val != '': dico[key] = val dico = extract(val, dico) return(dico) def inbracket(strg): """ extraction of bracket content Parameters ---------- strg : a string with a bracket Returns ------- lbra : left part of the string inbr : string inside the bracket Examples -------- >>> strg ='abcd{un texte}' >>> lbra,inbr = inbracket(strg) >>> assert(lbra=='abcd') >>> assert(inbr=='un texte') """ strg = strg.replace('\r', '') ssp = strg.split('{') lbra = ssp[0] rbra = '' inbr = '' for k in ssp[1:]: rbra = rbra+k+'{' rsp = rbra.split('}') for k in rsp[:-1]: inbr = inbr+k+'}' inbr = inbr.rstrip('}') return(lbra, inbr) def incrochet(strg): """ get content inside crochet Parameters ---------- strg : string Returns ------- lbra : left part of the string inbr : string inside the bracket Examples -------- >>> strg ='abcd[un texte]' >>> lbra,inbr = incrochet(strg) >>> assert(lbra=='abcd') >>> assert(inbr=='un texte') """ strg = strg.replace('\r', '') ssp = strg.split('[') lbra = ssp[0] rbra = '' inbr = '' for k in ssp[1:]: rbra = rbra+k+'[' rsp = rbra.split(']') for k in rsp[:-1]: inbr = inbr+k+']' inbr = inbr.rstrip(']') return(lbra, inbr) def geomLine(st): """ build a Line from string Parameters ---------- st : string Returns ------- tabindex : array of indexes tcoord : array of coordinates """ st1 = st.split('coordIndex') index = st1[1] index = index.replace('[', '') index = index.replace(']', '') index = index.replace(' ', '') tindex = index.split(',') tabindex = [] for st in tindex[:-1]: tabindex.append(int(st)) tabindex = np.array(tabindex).reshape(len(tabindex)/3, 3) a, b = inbracket(st1[0]) c = incrochet(b)[1] c = c.split(',') coord = [] for st in c[:-1]: pt = st.split(' ') for ic in pt: coord.append(float(ic)) tcoord = np.array(coord).reshape(len(coord)/3, 3) return(tabindex, tcoord) def geomFace(st): """ build a Face from string Parameters ---------- st : string Returns ------- tabindex tcoord : ndarray """ st1 = st.split('coordIndex') index = st1[1] index = index.replace('[', '') index = index.replace(']', '') index = index.replace(' ', '') tindex = index.split(',') tabindex = [] for st in tindex[:-1]: tabindex.append(int(st)) tabindex = np.array(tabindex) a, b = inbracket(st1[0]) c = incrochet(b)[1] c = c.split(',') coord = [] for st in c[:-1]: pt = st.split(' ') for ic in pt: coord.append(float(ic)) tcoord = np.array(coord).reshape(len(coord)/3, 3) return(tabindex, tcoord) def ParseDirectionalLight(st): """ """ d = {} s1 = st.split('intensity') t = s1[0] st1 = t.split(' ') d['on'] = bool(st1[1]) t = s1[1] s2 = t.split('ambientIntensity') d['intensity'] = float(s2[0]) t = s2[1] s2 = t.split('color') d['ambientIntensity'] = float(s2[0]) t = s2[1] s2 = t.split('direction') d['color'] = s2[0] d['direction'] = s2[1] return(d) def ParseMaterial(st): """ """ st = st.replace('material', '') st = st.replace('Material', '') st = st.replace('{', '') dst = st.split(',') d = {} for s in dst: # print s u = s.split(' ') # print u sp1 = st.split('diffuseColor') t = sp1[1] ts = t.split(',') print(ts) d['diffuseColor'] = ts[0] try: d['specularColor'] = ts[1].split('specularColor')[1] d['shininess'] = ts[2].split('shininess')[1] d['transparency'] = ts[3].split('transparency')[1] except: d['specularColor'] = ts[2].split('specularColor')[1] d['shininess'] = ts[3].split('shininess')[1] d['transparency'] = ts[4].split('transparency')[1] return(d) def show(dico): """ show dico """ for key in dico.keys(): if key != 'name': plt.plot(dico[key]['coord'][:, 0], dico[key]['coord'][:, 2]) else: print dico[key] plt.show() def parsevrml(filename): """ parse a vrml file Parameters ---------- filename : vrml filename Returns ------- dg : dictionnaries of group """ fd = open(filename, 'r') lignes = fd.readlines() fd.close() tobj = {} tnum = {} k = -1 for li in lignes: li = li.replace('\n', '') li = li.replace('\r,', '') # line finishing with a comma if li.find('DEF') != -1: # if line contains DEF keyword new dictionnary entry k = k+1 tmp = li.split( ' ') # split with space the index 1 is the dictionnary entry name obid = tmp[1] tobj[k] = li tnum[k] = obid # name of the entry else: try: tobj[k] = tobj[ k]+li # concatenation of the line in the current dictionnary entry k except: pass td = {} dg = {} # list of groups targetkey = ' geometry IndexedLineSet ' targetkey = ' geometry IndexedFaceSet ' for on in tnum.keys(): dico = {} ob = tnum[on] val = tobj[on] dico = extract(val, dico) if ob.find('LIGHT') != -1: td[ob] = ParseDirectionalLight(dico.values()[0]) if ob.find('APPEARANCE') != -1: td[ob] = ParseMaterial(dico.values()[0]) if val.find('Group') != -1: try: # tg.append(g) # save previous group dg[name] = g except: pass g = {} name = val.split('Group')[0].split(' ')[1] # name of the group if ob.find('ID_') != -1: st = dico[targetkey] i, c = geomFace(st) g[tnum[on]] = {'index': i, 'coord': c} dg[name] = g return(dg) def vrml2sha(tg): """ convert vrml object into shapely polygons Parameters ---------- tg : list of objects """ for l in tg: for k in l.keys(): if k != 'name': c = l[k]['coord'] i = l[k]['index'] tt = [] ltt = [] for u in i: if u == -1: # -1 closure indicator ltt.append(tt) tt = [] else: tt.append(u) P = geo.Polygon(c) def vrml2geom(tg, rac): """ convert vrml object into geomview files Parameters ---------- tg : list of objects rac : filename prefix """ for l in tg: # prepare geomview file fi1 = rac+l['name'] _fi1 = fi1+'.list' fina = pyu.getlong(_fi1, 'geom') fd = open(fina, 'w') fd.write('LIST') for k in l.keys(): if k != 'name': filename = fi1+'-'+str(k) fd.write('{<'+filename+'.off}\n') G = geo.Geomoff(filename) c = l[k]['coord'] i = l[k]['index'] tt = [] ltt = [] for u in i: if u == -1: ltt.append(tt) tt = [] else: tt.append(u) # build a geomview list of polygons G.polygons(c, ltt) fd.close() class VLayout(PyLayers): def load(self, filename): """ Parameters ---------- filename : str """ dg = parsevrml(filename) self.entity = {} for t in dg: # WALL, COLUMN, DOOR , STAIR , SPACE self.entity[t] = {} k = 0 for ID in dg[t]: c = dg[t][ID]['coord'] self.entity[t][k] = {} self.entity[t][k]['ID'] = ID self.entity[t][k]['coord'] = c l = dg[t][ID]['index'] dp = {} p = [] kk = 0 for il in l: if il == -1: dp[kk] = p p = [] kk = kk + 1 else: p.append(il) self.entity[t][k]['index'] = dp k = k + 1 # # Simplify Coord (Projection in 0xy plane) # for g in self.entity: for ID in self.entity[g]: x = self.entity[g][ID]['coord'][:, 0] y = -self.entity[g][ID]['coord'][:, 2] z = self.entity[g][ID]['coord'][:, 1] tp = np.vstack((x, y)) Np = np.shape(tp)[1] tp2 = {} already = False iop = 0 for ip in range(Np): p = tp[:, ip] for iold in tp2.keys(): pold = tp2[iold]['coord'] if np.shape(pold) == (2,): dist = np.dot(p-pold, p-pold) if dist < 1e-15: already = True tp2[iold]['nump'].append(ip) if not already: tp2[iop] = {} tp2[iop]['coord'] = p tp2[iop]['nump'] = [ip] iop = iop + 1 already = False self.entity[g][ID]['c2d'] = tp2 # # create a transcode between 3d index point and 2d index point # for g in self.entity: for ID in self.entity[g]: tr = {} dr2 = self.entity[g][ID]['c2d'] for k in dr2.keys(): for u in dr2[k]['nump']: tr[u] = k self.entity[g][ID]['tr'] = tr # # Create a new index for 2d points # for g in self.entity: for ID in self.entity[g]: di = self.entity[g][ID]['index'] di2 = {} for k in di.keys(): # for all polygons ti2 = [] # reserve a list= for 2d indexes lpoly = di[k] # get sequence of 3d points for ip in lpoly: ti2.append(self.entity[g][ID]['tr'][ip]) if len(np.unique(ti2)) == len(ti2): di2[k] = ti2 self.entity[g][ID]['index2'] = di2 # # Create Polygon2D # for g in self.entity: for ID in self.entity[g]: dp = {} for ip in self.entity[g][ID]['index2']: lp = self.entity[g][ID]['index2'][ip] tp = [] for ip in lp: tp.append(self.entity[g][ID]['c2d'][ip]['coord']) poly = geo.Polygon(tp) dp[ip] = poly self.entity[g][ID]['poly'] = dp # # # def show(self, num=100,fig=[],ax=[]): """ show entities Parameters ---------- num : int """ if fig==[]: f = plt.figure() else: f = fig if ax ==[]: a = f.add_subplot(111) else: a = ax if num > len(self.entity.keys()): group = self.entity.keys() else: group = [self.entity.keys()[num]] for g in group: for ID in self.entity[g]: for p in self.entity[g][ID]['poly']: colrand = hex(int((2**23)*sp.rand(1))+2**20).replace('0x', '#') f,a = self.entity[g][ID]['poly'][p].plot(color=colrand,alpha=0.3,fig=f,ax=a) plt.axis('scaled') return f,a def wallanalysis(self): """ walls analysis get height """ w = self.entity['WALL'] dwall = {} for k in w.keys(): dwall[k] = {} dwall[k]['ID'] = w[k]['ID'] # # height retrieval # z = np.sort(np.unique(w[k]['coord'][:, 1])) dwall[k]['zmin'] = min(z) dwall[k]['zmax'] = max(z) if len(z) == 2: dwall[k]['door'] = False else: dwall[k]['door'] = True dwall[k]['zdoor'] = z[1] # # Length,width retrieval # dp = w[k]['poly'] gxmin = 1e15 gymin = 1e15 gxmax = -1e15 gymax = -1e15 for ik in dp.keys(): pol = dp[ik] bounds = pol.bounds xmin = bounds[0] ymin = bounds[1] xmax = bounds[2] ymax = bounds[3] gxmin = min(gxmin, xmin) gymin = min(gymin, ymin) gxmax = max(gxmax, xmax) gymax = max(gymax, ymax) dx = gxmax-gxmin dy = gymax-gymin length = max(dx, dy) width = min(dx, dy) xmoy = (gxmin+gxmax)/2. ymoy = (gymin+gymax)/2. if (dx == width): seg = shg.LineString(((xmoy, gymin), (xmoy, gymax))) elif (dy == width): seg = shg.LineString(((gxmin, ymoy), (gxmax, ymoy))) # seg = stretch(seg,0.1) dwall[k]['bounds'] = bounds dwall[k]['thickness'] = width dwall[k]['length'] = length dwall[k]['seg'] = seg return(dwall) def show3entity(self, group, IDs): """ geomview vizualisation of entity Parameters ---------- group : IDs : """ te = self.entity[group] fi1 = 'entity' GL = geo.Geomlist(fi1) for k in IDs: ID = te.keys()[k] filename = fi1+'-'+str(k) GL.append('{<'+filename+'.off}\n') G = geo.Geomoff(filename) c = te[ID]['coord'] i = te[ID]['index'] tt = [] ltt = [] print i for u in i: ltt.append(i[u]) # build a geomview list of polygons print ltt G.polygons(c, ltt) GL.show3() if __name__ == "__main__": doctest.testmod() #_filename = 'B11C-E1.wrl' _filename = 'B2A-R0.wrl' #_filename = 'B11C-E1.wrl' filename = pyu.getlong(_filename,'struc/wrl') VL = VLayout() VL.load(filename) dwall = VL.wallanalysis() for iw in dwall: seg = dwall[iw]['seg'] thick = dwall[iw]['thickness'] bdoor = dwall[iw]['door'] x,y = seg.xy if bdoor: plt.plot(x,y,color='r',linewidth=thick*10,alpha=1) else: plt.plot(x,y,color='k',linewidth=thick*10,alpha=1) plt.axis('scaled') for k in dwall: seg = dwall[k]['seg'].xy pta = np.r_[seg[0][0],seg[1][0]] phe = np.r_[seg[0][1],seg[1][1]] print pta,phe
mit
zfrenchee/pandas
pandas/tests/io/json/test_json_table_schema.py
5
18731
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result = build_table_schema(self.df, version=False) expected = { 'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['idx'] } assert result == expected result = build_table_schema(self.df) assert "pandas_version" in result def test_series(self): s = pd.Series([1, 2, 3], name='foo') result = build_table_schema(s, version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'foo', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected result = build_table_schema(s) assert 'pandas_version' in result def test_series_unnamed(self): result = build_table_schema(pd.Series([1, 2, 3]), version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected def test_multiindex(self): df = self.df.copy() idx = pd.MultiIndex.from_product([('a', 'b'), (1, 2)]) df.index = idx result = build_table_schema(df, version=False) expected = { 'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['level_0', 'level_1'] } assert result == expected df.index.names = ['idx0', None] expected['fields'][0]['name'] = 'idx0' expected['primaryKey'] = ['idx0', 'level_1'] result = build_table_schema(df, version=False) assert result == expected class TestTableSchemaType(object): def test_as_json_table_type_int_data(self): int_data = [1, 2, 3] int_types = [np.int, np.int16, np.int32, np.int64] for t in int_types: assert as_json_table_type(np.array( int_data, dtype=t)) == 'integer' def test_as_json_table_type_float_data(self): float_data = [1., 2., 3.] float_types = [np.float, np.float16, np.float32, np.float64] for t in float_types: assert as_json_table_type(np.array( float_data, dtype=t)) == 'number' def test_as_json_table_type_bool_data(self): bool_data = [True, False] bool_types = [bool, np.bool] for t in bool_types: assert as_json_table_type(np.array( bool_data, dtype=t)) == 'boolean' def test_as_json_table_type_date_data(self): date_data = [pd.to_datetime(['2016']), pd.to_datetime(['2016'], utc=True), pd.Series(pd.to_datetime(['2016'])), pd.Series(pd.to_datetime(['2016'], utc=True)), pd.period_range('2016', freq='A', periods=3)] for arr in date_data: assert as_json_table_type(arr) == 'datetime' def test_as_json_table_type_string_data(self): strings = [pd.Series(['a', 'b']), pd.Index(['a', 'b'])] for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_data(self): assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' assert as_json_table_type(pd.Series(pd.Categorical([1]))) == 'any' assert as_json_table_type(pd.CategoricalIndex([1])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' # ------ # dtypes # ------ def test_as_json_table_type_int_dtypes(self): integers = [np.int, np.int16, np.int32, np.int64] for t in integers: assert as_json_table_type(t) == 'integer' def test_as_json_table_type_float_dtypes(self): floats = [np.float, np.float16, np.float32, np.float64] for t in floats: assert as_json_table_type(t) == 'number' def test_as_json_table_type_bool_dtypes(self): bools = [bool, np.bool] for t in bools: assert as_json_table_type(t) == 'boolean' def test_as_json_table_type_date_dtypes(self): # TODO: datedate.date? datetime.time? dates = [np.datetime64, np.dtype("<M8[ns]"), PeriodDtype(), DatetimeTZDtype('ns', 'US/Central')] for t in dates: assert as_json_table_type(t) == 'datetime' def test_as_json_table_type_timedelta_dtypes(self): durations = [np.timedelta64, np.dtype("<m8[ns]")] for t in durations: assert as_json_table_type(t) == 'duration' def test_as_json_table_type_string_dtypes(self): strings = [object] # TODO for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_dtypes(self): # TODO: I think before is_categorical_dtype(Categorical) # returned True, but now it's False. Figure out why or # if it matters assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(CategoricalDtype()) == 'any' class TestTableOrient(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), 'E': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'])), 'F': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'], ordered=True)), 'G': [1., 2., 3, 4.], 'H': pd.date_range('2016-01-01', freq='d', periods=4, tz='US/Central'), }, index=pd.Index(range(4), name='idx')) def test_build_series(self): s = pd.Series([1, 2], name='a') s.index.name = 'id' result = s.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [{'name': 'id', 'type': 'integer'}, {'name': 'a', 'type': 'integer'}] schema = { 'fields': fields, 'primaryKey': ['id'], } expected = OrderedDict([ ('schema', schema), ('data', [OrderedDict([('id', 0), ('a', 1)]), OrderedDict([('id', 1), ('a', 2)])])]) assert result == expected def test_to_json(self): df = self.df.copy() df.index.name = 'idx' result = df.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [ {'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'E', 'ordered': False, 'type': 'any'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'F', 'ordered': True, 'type': 'any'}, {'name': 'G', 'type': 'number'}, {'name': 'H', 'type': 'datetime', 'tz': 'US/Central'} ] schema = { 'fields': fields, 'primaryKey': ['idx'], } data = [ OrderedDict([('idx', 0), ('A', 1), ('B', 'a'), ('C', '2016-01-01T00:00:00.000Z'), ('D', 'P0DT1H0M0S'), ('E', 'a'), ('F', 'a'), ('G', 1.), ('H', '2016-01-01T06:00:00.000Z') ]), OrderedDict([('idx', 1), ('A', 2), ('B', 'b'), ('C', '2016-01-02T00:00:00.000Z'), ('D', 'P0DT1H1M0S'), ('E', 'b'), ('F', 'b'), ('G', 2.), ('H', '2016-01-02T06:00:00.000Z') ]), OrderedDict([('idx', 2), ('A', 3), ('B', 'c'), ('C', '2016-01-03T00:00:00.000Z'), ('D', 'P0DT1H2M0S'), ('E', 'c'), ('F', 'c'), ('G', 3.), ('H', '2016-01-03T06:00:00.000Z') ]), OrderedDict([('idx', 3), ('A', 4), ('B', 'c'), ('C', '2016-01-04T00:00:00.000Z'), ('D', 'P0DT1H3M0S'), ('E', 'c'), ('F', 'c'), ('G', 4.), ('H', '2016-01-04T06:00:00.000Z') ]), ] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_float_index(self): data = pd.Series(1, index=[1., 2.]) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', { 'fields': [{'name': 'index', 'type': 'number'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index'] }), ('data', [OrderedDict([('index', 1.0), ('values', 1)]), OrderedDict([('index', 2.0), ('values', 1)])])]) ) assert result == expected def test_to_json_period_index(self): idx = pd.period_range('2016', freq='Q-JAN', periods=2) data = pd.Series(1, idx) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') fields = [{'freq': 'Q-JAN', 'name': 'index', 'type': 'datetime'}, {'name': 'values', 'type': 'integer'}] schema = {'fields': fields, 'primaryKey': ['index']} data = [OrderedDict([('index', '2015-11-01T00:00:00.000Z'), ('values', 1)]), OrderedDict([('index', '2016-02-01T00:00:00.000Z'), ('values', 1)])] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_categorical_index(self): data = pd.Series(1, pd.CategoricalIndex(['a', 'b'])) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', {'fields': [{'name': 'index', 'type': 'any', 'constraints': {'enum': ['a', 'b']}, 'ordered': False}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']}), ('data', [ OrderedDict([('index', 'a'), ('values', 1)]), OrderedDict([('index', 'b'), ('values', 1)])])]) ) assert result == expected def test_date_format_raises(self): with pytest.raises(ValueError): self.df.to_json(orient='table', date_format='epoch') # others work self.df.to_json(orient='table', date_format='iso') self.df.to_json(orient='table') def test_make_field_int(self): data = [1, 2, 3] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'integer'} assert result == expected def test_make_field_float(self): data = [1., 2., 3.] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'number'} assert result == expected def test_make_field_datetime(self): data = [1., 2., 3.] kinds = [pd.Series(pd.to_datetime(data), name='values'), pd.to_datetime(data)] for kind in kinds: result = make_field(kind) expected = {"name": "values", "type": 'datetime'} assert result == expected kinds = [pd.Series(pd.to_datetime(data, utc=True), name='values'), pd.to_datetime(data, utc=True)] for kind in kinds: result = make_field(kind) expected = {"name": "values", "type": 'datetime', "tz": "UTC"} assert result == expected arr = pd.period_range('2016', freq='A-DEC', periods=4) result = make_field(arr) expected = {"name": "values", "type": 'datetime', "freq": "A-DEC"} assert result == expected def test_make_field_categorical(self): data = ['a', 'b', 'c'] ordereds = [True, False] for ordered in ordereds: arr = pd.Series(pd.Categorical(data, ordered=ordered), name='cats') result = make_field(arr) expected = {"name": "cats", "type": "any", "constraints": {"enum": data}, "ordered": ordered} assert result == expected arr = pd.CategoricalIndex(data, ordered=ordered, name='cats') result = make_field(arr) expected = {"name": "cats", "type": "any", "constraints": {"enum": data}, "ordered": ordered} assert result == expected def test_categorical(self): s = pd.Series(pd.Categorical(['a', 'b', 'a'])) s.index.name = 'idx' result = s.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') fields = [{'name': 'idx', 'type': 'integer'}, {'constraints': {'enum': ['a', 'b']}, 'name': 'values', 'ordered': False, 'type': 'any'}] expected = OrderedDict([ ('schema', {'fields': fields, 'primaryKey': ['idx']}), ('data', [OrderedDict([('idx', 0), ('values', 'a')]), OrderedDict([('idx', 1), ('values', 'b')]), OrderedDict([('idx', 2), ('values', 'a')])])]) assert result == expected def test_set_default_names_unset(self): data = pd.Series(1, pd.Index([1])) result = set_default_names(data) assert result.index.name == 'index' def test_set_default_names_set(self): data = pd.Series(1, pd.Index([1], name='myname')) result = set_default_names(data) assert result.index.name == 'myname' def test_set_default_names_mi_unset(self): data = pd.Series( 1, pd.MultiIndex.from_product([('a', 'b'), ('c', 'd')])) result = set_default_names(data) assert result.index.names == ['level_0', 'level_1'] def test_set_default_names_mi_set(self): data = pd.Series( 1, pd.MultiIndex.from_product([('a', 'b'), ('c', 'd')], names=['n1', 'n2'])) result = set_default_names(data) assert result.index.names == ['n1', 'n2'] def test_set_default_names_mi_partion(self): data = pd.Series( 1, pd.MultiIndex.from_product([('a', 'b'), ('c', 'd')], names=['n1', None])) result = set_default_names(data) assert result.index.names == ['n1', 'level_1'] def test_timestamp_in_columns(self): df = pd.DataFrame([[1, 2]], columns=[pd.Timestamp('2016'), pd.Timedelta(10, unit='s')]) result = df.to_json(orient="table") js = json.loads(result) assert js['schema']['fields'][1]['name'] == 1451606400000 assert js['schema']['fields'][2]['name'] == 10000 def test_overlapping_names(self): cases = [ pd.Series([1], index=pd.Index([1], name='a'), name='a'), pd.DataFrame({"A": [1]}, index=pd.Index([1], name="A")), pd.DataFrame({"A": [1]}, index=pd.MultiIndex.from_arrays([ ['a'], [1] ], names=["A", "a"])), ] for data in cases: with pytest.raises(ValueError) as excinfo: data.to_json(orient='table') assert 'Overlapping' in str(excinfo.value) def test_mi_falsey_name(self): # GH 16203 df = pd.DataFrame(np.random.randn(4, 4), index=pd.MultiIndex.from_product([('A', 'B'), ('a', 'b')])) result = [x['name'] for x in build_table_schema(df)['fields']] assert result == ['level_0', 'level_1', 0, 1, 2, 3]
bsd-3-clause
mortada/tensorflow
tensorflow/contrib/learn/python/learn/estimators/__init__.py
20
12315
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An estimator is a rule for calculating an estimate of a given quantity. # Estimators * **Estimators** are used to train and evaluate TensorFlow models. They support regression and classification problems. * **Classifiers** are functions that have discrete outcomes. * **Regressors** are functions that predict continuous values. ## Choosing the correct estimator * For **Regression** problems use one of the following: * `LinearRegressor`: Uses linear model. * `DNNRegressor`: Uses DNN. * `DNNLinearCombinedRegressor`: Uses Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `Estimator`: Use when you need a custom model. * For **Classification** problems use one of the following: * `LinearClassifier`: Multiclass classifier using Linear model. * `DNNClassifier`: Multiclass classifier using DNN. * `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `SVM`: Binary classifier using linear SVMs. * `LogisticRegressor`: Use when you need custom model for binary classification. * `Estimator`: Use when you need custom model for N class classification. ## Pre-canned Estimators Pre-canned estimators are machine learning estimators premade for general purpose problems. If you need more customization, you can always write your own custom estimator as described in the section below. Pre-canned estimators are tested and optimized for speed and quality. ### Define the feature columns Here are some possible types of feature columns used as inputs to a pre-canned estimator. Feature columns may vary based on the estimator used. So you can see which feature columns are fed to each estimator in the below section. ```python sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) ``` ### Create the pre-canned estimator DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty similar to each other in how you use them. You can easily plug in an optimizer and/or regularization to those estimators. #### DNNClassifier A classifier for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNClassifier( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNRegressor A regressor for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNLinearCombinedClassifier A classifier for TensorFlow Linear and DNN joined training models. * Wide and deep model * Multi class (2 by default) ```python my_linear_features = [crossed_feature_a_x_b] my_deep_features = [embedding_feature_a, embedding_feature_b] estimator = DNNLinearCombinedClassifier( # Common settings n_classes=n_classes, weight_column_name=weight_column_name, # Wide settings linear_feature_columns=my_linear_features, linear_optimizer=tf.train.FtrlOptimizer(...), # Deep settings dnn_feature_columns=my_deep_features, dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) ``` #### LinearClassifier Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearClassifier( feature_columns=my_features, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### LinearRegressor Train a linear regression model to predict a label value given observation of feature values. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearRegressor( feature_columns=my_features) ``` ### LogisticRegressor Logistic regression estimator for binary classification. ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` #### SVM - Support Vector Machine Support Vector Machine (SVM) model for binary classification. Currently only linear SVMs are supported. ```python my_features = [real_feature, sparse_feature_a] estimator = SVM( example_id_column='example_id', feature_columns=my_features, l2_regularization=10.0) ``` #### DynamicRnnEstimator An `Estimator` that uses a recurrent neural network with dynamic unrolling. ```python problem_type = ProblemType.CLASSIFICATION # or REGRESSION prediction_type = PredictionType.SINGLE_VALUE # or MULTIPLE_VALUE estimator = DynamicRnnEstimator(problem_type, prediction_type, my_feature_columns) ``` ### Use the estimator There are two main functions for using estimators, one of which is for training, and one of which is for evaluation. You can specify different data sources for each one in order to use different datasets for train and eval. ```python # Input builders def input_fn_train: # returns x, Y ... estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y ... estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ## Creating Custom Estimator To create a custom `Estimator`, provide a function to `Estimator`'s constructor that builds your model (`model_fn`, below): ```python estimator = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir=model_dir) # Where the model's data (e.g., checkpoints) # are saved. ``` Here is a skeleton of this function, with descriptions of its arguments and return values in the accompanying tables: ```python def model_fn(features, targets, mode, params): # Logic to do the following: # 1. Configure the model via TensorFlow operations # 2. Define the loss function for training/evaluation # 3. Define the training operation/optimizer # 4. Generate predictions return predictions, loss, train_op ``` You may use `mode` and check against `tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`. In the Further Reading section below, there is an end-to-end TensorFlow tutorial for building a custom estimator. ## Additional Estimators There is an additional estimators under `tensorflow.contrib.factorization.python.ops`: * Gaussian mixture model (GMM) clustering ## Further reading For further reading, there are several tutorials with relevant topics, including: * [Overview of linear models](../../../tutorials/linear/overview.md) * [Linear model tutorial](../../../tutorials/wide/index.md) * [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md) * [Custom estimator tutorial](../../../tutorials/estimators/index.md) * [Building input functions](../../../tutorials/input_fn/index.md) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.dynamic_rnn_estimator import DynamicRnnEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat from tensorflow.contrib.learn.python.learn.estimators.head import binary_svm_head from tensorflow.contrib.learn.python.learn.estimators.head import Head from tensorflow.contrib.learn.python.learn.estimators.head import multi_class_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_label_head from tensorflow.contrib.learn.python.learn.estimators.head import no_op_train_fn from tensorflow.contrib.learn.python.learn.estimators.head import poisson_regression_head from tensorflow.contrib.learn.python.learn.estimators.head import regression_head from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearEstimator from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.rnn_common import PredictionType from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
apache-2.0
jlegendary/SimpleCV
SimpleCV/examples/machine-learning/machine-learning_nuts-vs-bolts.py
12
2782
''' This Example uses scikits-learn to do a binary classfication of images of nuts vs. bolts. Only the area, height, and width are used to classify the actual images but data is extracted from the images using blobs. This is a very crude example and could easily be built upon, but is just meant to give an introductory example for using machine learning The data set should auto download, if not you can get it from: https://github.com/downloads/sightmachine/SimpleCV/nuts_bolts.zip ''' print __doc__ from SimpleCV import * from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression import numpy as np #Download the dataset machine_learning_data_set = 'https://github.com/downloads/sightmachine/SimpleCV/nuts_bolts.zip' data_path = download_and_extract(machine_learning_data_set) print 'Test Images Downloaded at:', data_path display = Display((800,600)) #Display to show the images target_names = ['bolt', 'nut'] print 'Loading Bolts for Training' bolts = ImageSet(data_path + '/data/supervised/bolts') #Load Bolts for training bolt_blobs = [b.findBlobs()[0] for b in bolts] #exact the blobs for our features tmp_data = [] #array to store data features tmp_target = [] #array to store targets for b in bolt_blobs: #Format Data for SVM tmp_data.append([b.area(), b.height(), b.width()]) tmp_target.append(0) print 'Loading Nuts for Training' nuts = ImageSet(data_path + '/data/supervised/nuts') nut_blobs = [n.invert().findBlobs()[0] for n in nuts] for n in nut_blobs: tmp_data.append([n.area(), n.height(), n.width()]) tmp_target.append(1) dataset = np.array(tmp_data) targets = np.array(tmp_target) print 'Training Machine Learning' clf = LinearSVC() clf = clf.fit(dataset, targets) clf2 = LogisticRegression().fit(dataset, targets) print 'Running prediction on bolts now' untrained_bolts = ImageSet(data_path + '/data/unsupervised/bolts') unbolt_blobs = [b.findBlobs()[0] for b in untrained_bolts] for b in unbolt_blobs: ary = [b.area(), b.height(), b.width()] name = target_names[clf.predict(ary)[0]] probability = clf2.predict_proba(ary)[0] img = b.image img.drawText(name) img.save(display) print "Predicted:",name,", Guess:",probability[0], target_names[0],",", probability[1], target_names[1] print 'Running prediction on nuts now' untrained_nuts = ImageSet(data_path + '/data/unsupervised/nuts') unnut_blobs = [n.invert().findBlobs()[0] for n in untrained_nuts] for n in unnut_blobs: ary = [n.area(), n.height(), n.width()] name = target_names[clf.predict(ary)[0]] probability = clf2.predict_proba(ary)[0] img = n.image img.drawText(name) img.save(display) print "Predicted:",name,", Guess:",probability[0], target_names[0],",", probability[1], target_names[1]
bsd-3-clause
jstoxrocky/statsmodels
statsmodels/sandbox/tsa/garch.py
25
52178
'''general non-linear MLE for time series analysis idea for general version ------------------------ subclass defines geterrors(parameters) besides loglike,... and covariance matrix of parameter estimates (e.g. from hessian or outerproduct of jacobian) update: I don't really need geterrors directly, but get_h the conditional variance process new version Garch0 looks ok, time to clean up and test no constraints yet in some cases: "Warning: Maximum number of function evaluations has been exceeded." Notes ----- idea: cache intermediate design matrix for geterrors so it doesn't need to be build at each function call superclass or result class calculates result statistic based on errors, loglike, jacobian and cov/hessian -> aic, bic, ... -> test statistics, tvalue, fvalue, ... -> new to add: distribution (mean, cov) of non-linear transformation -> parameter restrictions or transformation with corrected covparams (?) -> sse, rss, rsquared ??? are they defined from this in general -> robust parameter cov ??? -> additional residual based tests, NW, ... likelihood ratio, lagrange multiplier tests ??? how much can be reused from linear model result classes where `errorsest = y - X*beta` ? for tsa: what's the division of labor between model, result instance and process examples: * arma: ls and mle look good * arimax: add exog, especially mean, trend, prefilter, e.g. (1-L) * arma_t: arma with t distributed errors (just a change in loglike) * garch: need loglike and (recursive) errorest * regime switching model without unobserved state, e.g. threshold roadmap for garch: * simple case * starting values: garch11 explicit formulas * arma-garch, assumed separable, blockdiagonal Hessian * empirical example: DJI, S&P500, MSFT, ??? * other standard garch: egarch, pgarch, * non-normal distributions * other methods: forecast, news impact curves (impulse response) * analytical gradient, Hessian for basic garch * cleaner simulation of garch * result statistics, AIC, ... * parameter constraints * try penalization for higher lags * other garch: regime-switching for pgarch (power garch) need transformation of etax given the parameters, but then misofilter should work general class aparch (see garch glossary) References ---------- see notes_references.txt Created on Feb 6, 2010 @author: "josef pktd" ''' from __future__ import print_function from statsmodels.compat.python import zip import numpy as np from numpy.testing import assert_almost_equal from scipy import optimize, signal import matplotlib.pyplot as plt import numdifftools as ndt from statsmodels.base.model import Model, LikelihoodModelResults from statsmodels.sandbox import tsa def sumofsq(x, axis=0): """Helper function to calculate sum of squares along first axis""" return np.sum(x**2, axis=0) def normloglike(x, mu=0, sigma2=1, returnlls=False, axis=0): x = np.asarray(x) x = np.atleast_1d(x) if axis is None: x = x.ravel() #T,K = x.shape if x.ndim > 1: nobs = x.shape[axis] else: nobs = len(x) x = x - mu # assume can be broadcasted if returnlls: #Compute the individual log likelihoods if needed lls = -0.5*(np.log(2*np.pi) + np.log(sigma2) + x**2/sigma2) # Use these to comput the LL LL = np.sum(lls,axis) return LL, lls else: #Compute the log likelihood #print(np.sum(np.log(sigma2),axis)) LL = -0.5 * (np.sum(np.log(sigma2),axis) + np.sum((x**2)/sigma2, axis) + nobs*np.log(2*np.pi)) return LL # copied from model.py class LikelihoodModel(Model): """ Likelihood model is a subclass of Model. """ def __init__(self, endog, exog=None): super(LikelihoodModel, self).__init__(endog, exog) self.initialize() def initialize(self): """ Initialize (possibly re-initialize) a Model instance. For instance, the design matrix of a linear model may change and some things must be recomputed. """ pass #TODO: if the intent is to re-initialize the model with new data then # this method needs to take inputs... def loglike(self, params): """ Log-likelihood of model. """ raise NotImplementedError def score(self, params): """ Score vector of model. The gradient of logL with respect to each parameter. """ raise NotImplementedError def information(self, params): """ Fisher information matrix of model Returns -Hessian of loglike evaluated at params. """ raise NotImplementedError def hessian(self, params): """ The Hessian matrix of the model """ raise NotImplementedError def fit(self, start_params=None, method='newton', maxiter=35, tol=1e-08): """ Fit method for likelihood based models Parameters ---------- start_params : array-like, optional An optional method : str Method can be 'newton', 'bfgs', 'powell', 'cg', or 'ncg'. The default is newton. See scipy.optimze for more information. """ methods = ['newton', 'bfgs', 'powell', 'cg', 'ncg', 'fmin'] if start_params is None: start_params = [0]*self.exog.shape[1] # will fail for shape (K,) if not method in methods: raise ValueError("Unknown fit method %s" % method) f = lambda params: -self.loglike(params) score = lambda params: -self.score(params) # hess = lambda params: -self.hessian(params) hess = None #TODO: can we have a unified framework so that we can just do func = method # and write one call for each solver? if method.lower() == 'newton': iteration = 0 start = np.array(start_params) history = [np.inf, start] while (iteration < maxiter and np.all(np.abs(history[-1] - \ history[-2])>tol)): H = self.hessian(history[-1]) newparams = history[-1] - np.dot(np.linalg.inv(H), self.score(history[-1])) history.append(newparams) iteration += 1 mlefit = LikelihoodModelResults(self, newparams) mlefit.iteration = iteration elif method == 'bfgs': score=None xopt, fopt, gopt, Hopt, func_calls, grad_calls, warnflag = \ optimize.fmin_bfgs(f, start_params, score, full_output=1, maxiter=maxiter, gtol=tol) converge = not warnflag mlefit = LikelihoodModelResults(self, xopt) optres = 'xopt, fopt, gopt, Hopt, func_calls, grad_calls, warnflag' self.optimresults = dict(zip(optres.split(', '),[ xopt, fopt, gopt, Hopt, func_calls, grad_calls, warnflag])) elif method == 'ncg': xopt, fopt, fcalls, gcalls, hcalls, warnflag = \ optimize.fmin_ncg(f, start_params, score, fhess=hess, full_output=1, maxiter=maxiter, avextol=tol) mlefit = LikelihoodModelResults(self, xopt) converge = not warnflag elif method == 'fmin': #fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None) xopt, fopt, niter, funcalls, warnflag = \ optimize.fmin(f, start_params, full_output=1, maxiter=maxiter, xtol=tol) mlefit = LikelihoodModelResults(self, xopt) converge = not warnflag self._results = mlefit return mlefit #TODO: I take it this is only a stub and should be included in another # model class? class TSMLEModel(LikelihoodModel): """ univariate time series model for estimation with maximum likelihood Note: This is not working yet """ def __init__(self, endog, exog=None): #need to override p,q (nar,nma) correctly super(TSMLEModel, self).__init__(endog, exog) #set default arma(1,1) self.nar = 1 self.nma = 1 #self.initialize() def geterrors(self, params): raise NotImplementedError def loglike(self, params): """ Loglikelihood for timeseries model Notes ----- needs to be overwritten by subclass """ raise NotImplementedError def score(self, params): """ Score vector for Arma model """ #return None #print(params jac = ndt.Jacobian(self.loglike, stepMax=1e-4) return jac(params)[-1] def hessian(self, params): """ Hessian of arma model. Currently uses numdifftools """ #return None Hfun = ndt.Jacobian(self.score, stepMax=1e-4) return Hfun(params)[-1] def fit(self, start_params=None, maxiter=5000, method='fmin', tol=1e-08): '''estimate model by minimizing negative loglikelihood does this need to be overwritten ? ''' if start_params is None and hasattr(self, '_start_params'): start_params = self._start_params #start_params = np.concatenate((0.05*np.ones(self.nar + self.nma), [1])) mlefit = super(TSMLEModel, self).fit(start_params=start_params, maxiter=maxiter, method=method, tol=tol) return mlefit class Garch0(TSMLEModel): '''Garch model, still experimentation stage: simplified structure, plain garch, no constraints still looking for the design of the base class serious bug: ar estimate looks ok, ma estimate awful -> check parameterization of lagpolys and constant looks ok after adding missing constant but still difference to garch11 function corrected initial condition -> only small differences left between the 3 versions ar estimate is close to true/DGP model note constant has different parameterization but design looks better ''' def __init__(self, endog, exog=None): #need to override p,q (nar,nma) correctly super(Garch0, self).__init__(endog, exog) #set default arma(1,1) self.nar = 1 self.nma = 1 #self.initialize() # put this in fit (?) or in initialize instead self._etax = endog**2 self._icetax = np.atleast_1d(self._etax.mean()) def initialize(self): pass def geth(self, params): ''' Parameters ---------- params : tuple, (ar, ma) try to keep the params conversion in loglike copied from generate_gjrgarch needs to be extracted to separate function ''' #mu, ar, ma = params ar, ma, mu = params #etax = self.endog #this would be enough for basic garch version etax = self._etax + mu icetax = self._icetax #read ic-eta-x, initial condition #TODO: where does my go with lfilter ????????????? # shouldn't matter except for interpretation nobs = etax.shape[0] #check arguments of lfilter zi = signal.lfiltic(ma,ar, icetax) #h = signal.lfilter(ar, ma, etax, zi=zi) #np.atleast_1d(etax[:,1].mean())) #just guessing: b/c ValueError: BUG: filter coefficient a[0] == 0 not supported yet h = signal.lfilter(ma, ar, etax, zi=zi)[0] return h def loglike(self, params): """ Loglikelihood for timeseries model Notes ----- needs to be overwritten by subclass make more generic with using function _convertparams which could also include parameter transformation _convertparams_in, _convertparams_out allow for different distributions t, ged,... """ p, q = self.nar, self.nma ar = np.concatenate(([1], params[:p])) # check where constant goes #ma = np.zeros((q+1,3)) #ma[0,0] = params[-1] #lag coefficients for ma innovation ma = np.concatenate(([0], params[p:p+q])) mu = params[-1] params = (ar, ma, mu) #(ar, ma) h = self.geth(params) #temporary safe for debugging: self.params_converted = params self.h = h #for testing sigma2 = np.maximum(h, 1e-6) axis = 0 nobs = len(h) #this doesn't help for exploding paths #errorsest[np.isnan(errorsest)] = 100 axis=0 #no choice of axis # same as with y = self.endog, ht = sigma2 # np.log(stats.norm.pdf(y,scale=np.sqrt(ht))).sum() llike = -0.5 * (np.sum(np.log(sigma2),axis) + np.sum(((self.endog)**2)/sigma2, axis) + nobs*np.log(2*np.pi)) return llike class GarchX(TSMLEModel): '''Garch model, still experimentation stage: another version, this time with exog and miso_filter still looking for the design of the base class not done yet, just a design idea * use misofilter as in garch (gjr) * but take etax = exog this can include constant, asymetric effect (gjr) and other explanatory variables (e.g. high-low spread) todo: renames eta -> varprocess etax -> varprocessx icetax -> varprocessic (is actually ic of eta/sigma^2) ''' def __init__(self, endog, exog=None): #need to override p,q (nar,nma) correctly super(Garch0, self).__init__(endog, exog) #set default arma(1,1) self.nar = 1 self.nma = 1 #self.initialize() # put this in fit (?) or in initialize instead #nobs defined in super - verify #self.nobs = nobs = endog.shape[0] #add nexog to super #self.nexog = nexog = exog.shape[1] self._etax = np.column_stack(np.ones((nobs,1)), endog**2, exog) self._icetax = np.atleast_1d(self._etax.mean()) def initialize(self): pass def convert_mod2params(ar, ma, mu): pass def geth(self, params): ''' Parameters ---------- params : tuple, (ar, ma) try to keep the params conversion in loglike copied from generate_gjrgarch needs to be extracted to separate function ''' #mu, ar, ma = params ar, ma, mu = params #etax = self.endog #this would be enough for basic garch version etax = self._etax + mu icetax = self._icetax #read ic-eta-x, initial condition #TODO: where does my go with lfilter ????????????? # shouldn't matter except for interpretation nobs = self.nobs ## #check arguments of lfilter ## zi = signal.lfiltic(ma,ar, icetax) ## #h = signal.lfilter(ar, ma, etax, zi=zi) #np.atleast_1d(etax[:,1].mean())) ## #just guessing: b/c ValueError: BUG: filter coefficient a[0] == 0 not supported yet ## h = signal.lfilter(ma, ar, etax, zi=zi)[0] ## h = miso_lfilter(ar, ma, etax, useic=self._icetax)[0] #print('h.shape', h.shape hneg = h<0 if hneg.any(): #h[hneg] = 1e-6 h = np.abs(h) #todo: raise warning, maybe not during optimization calls return h def loglike(self, params): """ Loglikelihood for timeseries model Notes ----- needs to be overwritten by subclass make more generic with using function _convertparams which could also include parameter transformation _convertparams_in, _convertparams_out allow for different distributions t, ged,... """ p, q = self.nar, self.nma ar = np.concatenate(([1], params[:p])) # check where constant goes #ma = np.zeros((q+1,3)) #ma[0,0] = params[-1] #lag coefficients for ma innovation ma = np.concatenate(([0], params[p:p+q])) mu = params[-1] params = (ar, ma, mu) #(ar, ma) h = self.geth(params) #temporary safe for debugging: self.params_converted = params self.h = h #for testing sigma2 = np.maximum(h, 1e-6) axis = 0 nobs = len(h) #this doesn't help for exploding paths #errorsest[np.isnan(errorsest)] = 100 axis=0 #no choice of axis # same as with y = self.endog, ht = sigma2 # np.log(stats.norm.pdf(y,scale=np.sqrt(ht))).sum() llike = -0.5 * (np.sum(np.log(sigma2),axis) + np.sum(((self.endog)**2)/sigma2, axis) + nobs*np.log(2*np.pi)) return llike class Garch(TSMLEModel): '''Garch model gjrgarch (t-garch) still experimentation stage, try with ''' def __init__(self, endog, exog=None): #need to override p,q (nar,nma) correctly super(Garch, self).__init__(endog, exog) #set default arma(1,1) self.nar = 1 self.nma = 1 #self.initialize() def initialize(self): pass def geterrors(self, params): ''' Parameters ---------- params : tuple, (mu, ar, ma) try to keep the params conversion in loglike copied from generate_gjrgarch needs to be extracted to separate function ''' #mu, ar, ma = params ar, ma = params eta = self.endog nobs = eta.shape[0] etax = np.empty((nobs,3)) etax[:,0] = 1 etax[:,1:] = (eta**2)[:,None] etax[eta>0,2] = 0 #print('etax.shape', etax.shape h = miso_lfilter(ar, ma, etax, useic=np.atleast_1d(etax[:,1].mean()))[0] #print('h.shape', h.shape hneg = h<0 if hneg.any(): #h[hneg] = 1e-6 h = np.abs(h) #print('Warning negative variance found' #check timing, starting time for h and eta, do they match #err = np.sqrt(h[:len(eta)])*eta #np.random.standard_t(8, size=len(h)) # let it break if there is a len/shape mismatch err = np.sqrt(h)*eta return err, h, etax def loglike(self, params): """ Loglikelihood for timeseries model Notes ----- needs to be overwritten by subclass """ p, q = self.nar, self.nma ar = np.concatenate(([1], params[:p])) #ar = np.concatenate(([1], -np.abs(params[:p]))) #??? #better safe than fast and sorry # ma = np.zeros((q+1,3)) ma[0,0] = params[-1] #lag coefficients for ma innovation ma[:,1] = np.concatenate(([0], params[p:p+q])) #delta lag coefficients for negative ma innovation ma[:,2] = np.concatenate(([0], params[p+q:p+2*q])) mu = params[-1] params = (ar, ma) #(mu, ar, ma) errorsest, h, etax = self.geterrors(params) #temporary safe for debugging self.params_converted = params self.errorsest, self.h, self.etax = errorsest, h, etax #h = h[:-1] #correct this in geterrors #print('shapes errorsest, h, etax', errorsest.shape, h.shape, etax.shape sigma2 = np.maximum(h, 1e-6) axis = 0 nobs = len(errorsest) #this doesn't help for exploding paths #errorsest[np.isnan(errorsest)] = 100 axis=0 #not used # muy = errorsest.mean() # # llike is verified, see below # # same as with y = errorsest, ht = sigma2 # # np.log(stats.norm.pdf(y,scale=np.sqrt(ht))).sum() # llike = -0.5 * (np.sum(np.log(sigma2),axis) # + np.sum(((errorsest)**2)/sigma2, axis) # + nobs*np.log(2*np.pi)) # return llike muy = errorsest.mean() # llike is verified, see below # same as with y = errorsest, ht = sigma2 # np.log(stats.norm.pdf(y,scale=np.sqrt(ht))).sum() llike = -0.5 * (np.sum(np.log(sigma2),axis) + np.sum(((self.endog)**2)/sigma2, axis) + nobs*np.log(2*np.pi)) return llike def gjrconvertparams(self, params, nar, nma): """ flat to matrix Notes ----- needs to be overwritten by subclass """ p, q = nar, nma ar = np.concatenate(([1], params[:p])) #ar = np.concatenate(([1], -np.abs(params[:p]))) #??? #better safe than fast and sorry # ma = np.zeros((q+1,3)) ma[0,0] = params[-1] #lag coefficients for ma innovation ma[:,1] = np.concatenate(([0], params[p:p+q])) #delta lag coefficients for negative ma innovation ma[:,2] = np.concatenate(([0], params[p+q:p+2*q])) mu = params[-1] params2 = (ar, ma) #(mu, ar, ma) return paramsclass #TODO: this should be generalized to ARMA? #can possibly also leverage TSME above # also note that this is NOT yet general # it was written for my homework, assumes constant is zero # and that process is AR(1) # examples at the end of run as main below class AR(LikelihoodModel): """ Notes ----- This is not general, only written for the AR(1) case. Fit methods that use super and broyden do not yet work. """ def __init__(self, endog, exog=None, nlags=1): if exog is None: # extend to handle ADL(p,q) model? or subclass? exog = endog[:-nlags] endog = endog[nlags:] super(AR, self).__init__(endog, exog) self.nobs += nlags # add lags back to nobs for real T #TODO: need to fix underscore in Model class. #Done? def initialize(self): pass def loglike(self, params): """ The unconditional loglikelihood of an AR(p) process Notes ----- Contains constant term. """ nobs = self.nobs y = self.endog ylag = self.exog penalty = self.penalty if isinstance(params,tuple): # broyden (all optimize.nonlin return a tuple until rewrite commit) params = np.asarray(params) usepenalty=False if not np.all(np.abs(params)<1) and penalty: oldparams = params params = np.array([.9999]) # make it the edge usepenalty=True diffsumsq = sumofsq(y-np.dot(ylag,params)) # concentrating the likelihood means that sigma2 is given by sigma2 = 1/nobs*(diffsumsq-ylag[0]**2*(1-params**2)) loglike = -nobs/2 * np.log(2*np.pi) - nobs/2*np.log(sigma2) + \ .5 * np.log(1-params**2) - .5*diffsumsq/sigma2 -\ ylag[0]**2 * (1-params**2)/(2*sigma2) if usepenalty: # subtract a quadratic penalty since we min the negative of loglike loglike -= 1000 *(oldparams-.9999)**2 return loglike def score(self, params): """ Notes ----- Need to generalize for AR(p) and for a constant. Not correct yet. Returns numerical gradient. Depends on package numdifftools. """ y = self.endog ylag = self.exog nobs = self.nobs diffsumsq = sumofsq(y-np.dot(ylag,params)) dsdr = 1/nobs * -2 *np.sum(ylag*(y-np.dot(ylag,params))[:,None])+\ 2*params*ylag[0]**2 sigma2 = 1/nobs*(diffsumsq-ylag[0]**2*(1-params**2)) gradient = -nobs/(2*sigma2)*dsdr + params/(1-params**2) + \ 1/sigma2*np.sum(ylag*(y-np.dot(ylag, params))[:,None])+\ .5*sigma2**-2*diffsumsq*dsdr+\ ylag[0]**2*params/sigma2 +\ ylag[0]**2*(1-params**2)/(2*sigma2**2)*dsdr if self.penalty: pass j = Jacobian(self.loglike) return j(params) # return gradient def information(self, params): """ Not Implemented Yet """ return def hessian(self, params): """ Returns numerical hessian for now. Depends on numdifftools. """ h = Hessian(self.loglike) return h(params) def fit(self, start_params=None, method='bfgs', maxiter=35, tol=1e-08, penalty=False): """ Fit the unconditional maximum likelihood of an AR(p) process. Parameters ---------- start_params : array-like, optional A first guess on the parameters. Defaults is a vector of zeros. method : str, optional Unconstrained solvers: Default is 'bfgs', 'newton' (newton-raphson), 'ncg' (Note that previous 3 are not recommended at the moment.) and 'powell' Constrained solvers: 'bfgs-b', 'tnc' See notes. maxiter : int, optional The maximum number of function evaluations. Default is 35. tol = float The convergence tolerance. Default is 1e-08. penalty : bool Whether or not to use a penalty function. Default is False, though this is ignored at the moment and the penalty is always used if appropriate. See notes. Notes ----- The unconstrained solvers use a quadratic penalty (regardless if penalty kwd is True or False) in order to ensure that the solution stays within (-1,1). The constrained solvers default to using a bound of (-.999,.999). """ self.penalty = penalty method = method.lower() #TODO: allow user-specified penalty function # if penalty and method not in ['bfgs_b','tnc','cobyla','slsqp']: # minfunc = lambda params : -self.loglike(params) - \ # self.penfunc(params) # else: minfunc = lambda params: -self.loglike(params) if method in ['newton', 'bfgs', 'ncg']: super(AR, self).fit(start_params=start_params, method=method, maxiter=maxiter, tol=tol) else: bounds = [(-.999,.999)] # assume stationarity if start_params == None: start_params = np.array([0]) #TODO: assumes AR(1) if method == 'bfgs-b': retval = optimize.fmin_l_bfgs_b(minfunc, start_params, approx_grad=True, bounds=bounds) self.params, self.llf = retval[0:2] if method == 'tnc': retval = optimize.fmin_tnc(minfunc, start_params, approx_grad=True, bounds = bounds) self.params = retval[0] if method == 'powell': retval = optimize.fmin_powell(minfunc,start_params) self.params = retval[None] #TODO: write regression tests for Pauli's branch so that # new line_search and optimize.nonlin can get put in. #http://projects.scipy.org/scipy/ticket/791 # if method == 'broyden': # retval = optimize.broyden2(minfunc, [.5], verbose=True) # self.results = retval class Arma(LikelihoodModel): """ univariate Autoregressive Moving Average model Note: This is not working yet, or does it this can subclass TSMLEModel """ def __init__(self, endog, exog=None): #need to override p,q (nar,nma) correctly super(Arma, self).__init__(endog, exog) #set default arma(1,1) self.nar = 1 self.nma = 1 #self.initialize() def initialize(self): pass def geterrors(self, params): #copied from sandbox.tsa.arima.ARIMA p, q = self.nar, self.nma rhoy = np.concatenate(([1], params[:p])) rhoe = np.concatenate(([1], params[p:p+q])) errorsest = signal.lfilter(rhoy, rhoe, self.endog) return errorsest def loglike(self, params): """ Loglikelihood for arma model Notes ----- The ancillary parameter is assumed to be the last element of the params vector """ # #copied from sandbox.tsa.arima.ARIMA # p = self.nar # rhoy = np.concatenate(([1], params[:p])) # rhoe = np.concatenate(([1], params[p:-1])) # errorsest = signal.lfilter(rhoy, rhoe, self.endog) errorsest = self.geterrors(params) sigma2 = np.maximum(params[-1]**2, 1e-6) axis = 0 nobs = len(errorsest) #this doesn't help for exploding paths #errorsest[np.isnan(errorsest)] = 100 # llike = -0.5 * (np.sum(np.log(sigma2),axis) # + np.sum((errorsest**2)/sigma2, axis) # + nobs*np.log(2*np.pi)) llike = -0.5 * (nobs*np.log(sigma2) + np.sum((errorsest**2)/sigma2, axis) + nobs*np.log(2*np.pi)) return llike def score(self, params): """ Score vector for Arma model """ #return None #print(params jac = ndt.Jacobian(self.loglike, stepMax=1e-4) return jac(params)[-1] def hessian(self, params): """ Hessian of arma model. Currently uses numdifftools """ #return None Hfun = ndt.Jacobian(self.score, stepMax=1e-4) return Hfun(params)[-1] def fit(self, start_params=None, maxiter=5000, method='fmin', tol=1e-08): if start_params is None: start_params = np.concatenate((0.05*np.ones(self.nar + self.nma), [1])) mlefit = super(Arma, self).fit(start_params=start_params, maxiter=maxiter, method=method, tol=tol) return mlefit def generate_kindofgarch(nobs, ar, ma, mu=1.): '''simulate garch like process but not squared errors in arma used for initial trial but produces nice graph ''' #garm1, gmam1 = [0.4], [0.2] #pqmax = 1 # res = np.zeros(nobs+pqmax) # rvs = np.random.randn(nobs+pqmax,2) # for t in range(pqmax,nobs+pqmax): # res[i] = #ar = [1.0, -0.99] #ma = [1.0, 0.5] #this has the wrong distribution, should be eps**2 #TODO: use new version tsa.arima.??? instead, has distr option #arest = tsa.arima.ARIMA() #arest = tsa.arima.ARIMA #try class method, ARIMA needs data in constructor from statsmodels.tsa.arima_process import arma_generate_sample h = arma_generate_sample(ar,ma,nobs,0.1) #h = np.abs(h) h = (mu+h)**2 h = np.exp(h) err = np.sqrt(h)*np.random.randn(nobs) return err, h def generate_garch(nobs, ar, ma, mu=1., scale=0.1): '''simulate standard garch scale : float scale/standard deviation of innovation process in GARCH process ''' eta = scale*np.random.randn(nobs) # copied from armageneratesample h = signal.lfilter(ma, ar, eta**2) # #h = (mu+h)**2 #h = np.abs(h) #h = np.exp(h) #err = np.sqrt(h)*np.random.randn(nobs) err = np.sqrt(h)*eta #np.random.standard_t(8, size=nobs) return err, h def generate_gjrgarch(nobs, ar, ma, mu=1., scale=0.1, varinnovation=None): '''simulate gjr garch process Parameters ---------- ar : array_like, 1d autoregressive term for variance ma : array_like, 2d moving average term for variance, with coefficients for negative shocks in second column mu : float constant in variance law of motion scale : float scale/standard deviation of innovation process in GARCH process Returns ------- err : array 1d, (nobs+?,) simulated gjr-garch process, h : array 1d, (nobs+?,) simulated variance etax : array 1d, (nobs+?,) data matrix for constant and ma terms in variance equation Notes ----- References ---------- ''' if varinnovation is None: # rename ? eta = scale*np.random.randn(nobs) else: eta = varinnovation # copied from armageneratesample etax = np.empty((nobs,3)) etax[:,0] = mu etax[:,1:] = (eta**2)[:,None] etax[eta>0,2] = 0 h = miso_lfilter(ar, ma, etax)[0] # #h = (mu+h)**2 #h = np.abs(h) #h = np.exp(h) #err = np.sqrt(h)*np.random.randn(nobs) #print('h.shape', h.shape) err = np.sqrt(h[:len(eta)])*eta #np.random.standard_t(8, size=len(h)) return err, h, etax def loglike_GARCH11(params, y): # Computes the likelihood vector of a GARCH11 # assumes y is centered w = params[0] # constant (1); alpha = params[1] # coefficient of lagged squared error beta = params[2] # coefficient of lagged variance y2 = y**2; nobs = y2.shape[0] ht = np.zeros(nobs); ht[0] = y2.mean() #sum(y2)/T; for i in range(1,nobs): ht[i] = w + alpha*y2[i-1] + beta * ht[i-1] sqrtht = np.sqrt(ht) x = y/sqrtht llvalues = -0.5*np.log(2*np.pi) - np.log(sqrtht) - 0.5*(x**2); return llvalues.sum(), llvalues, ht from statsmodels.tsa.filters.filtertools import miso_lfilter #copied to statsmodels.tsa.filters.filtertools def miso_lfilter_old(ar, ma, x, useic=False): #[0.1,0.1]): ''' use nd convolution to merge inputs, then use lfilter to produce output arguments for column variables return currently 1d Parameters ---------- ar : array_like, 1d, float autoregressive lag polynomial including lag zero, ar(L)y_t ma : array_like, same ndim as x, currently 2d moving average lag polynomial ma(L)x_t x : array_like, 2d input data series, time in rows, variables in columns Returns ------- y : array, 1d filtered output series inp : array, 1d combined input series Notes ----- currently for 2d inputs only, no choice of axis Use of signal.lfilter requires that ar lag polynomial contains floating point numbers does not cut off invalid starting and final values miso_lfilter find array y such that:: ar(L)y_t = ma(L)x_t with shapes y (nobs,), x (nobs,nvars), ar (narlags,), ma (narlags,nvars) ''' ma = np.asarray(ma) ar = np.asarray(ar) #inp = signal.convolve(x, ma, mode='valid') #inp = signal.convolve(x, ma)[:, (x.shape[1]+1)//2] #Note: convolve mixes up the variable left-right flip #I only want the flip in time direction #this might also be a mistake or problem in other code where I #switched from correlate to convolve # correct convolve version, for use with fftconvolve in other cases inp2 = signal.convolve(x, ma[:,::-1])[:, (x.shape[1]+1)//2] inp = signal.correlate(x, ma[::-1,:])[:, (x.shape[1]+1)//2] assert_almost_equal(inp2, inp) nobs = x.shape[0] # cut of extra values at end #todo initialize also x for correlate if useic: return signal.lfilter([1], ar, inp, #zi=signal.lfilter_ic(np.array([1.,0.]),ar, ic))[0][:nobs], inp[:nobs] zi=signal.lfiltic(np.array([1.,0.]),ar, useic))[0][:nobs], inp[:nobs] else: return signal.lfilter([1], ar, inp)[:nobs], inp[:nobs] #return signal.lfilter([1], ar, inp), inp def test_misofilter(): x = np.arange(20).reshape(10,2) y, inp = miso_lfilter([1., -1],[[1,1],[0,0]], x) assert_almost_equal(y[:-1], x.sum(1).cumsum(), decimal=15) inp2 = signal.convolve(np.arange(20),np.ones(2))[1::2] assert_almost_equal(inp[:-1], inp2, decimal=15) inp2 = signal.convolve(np.arange(20),np.ones(4))[1::2] y, inp = miso_lfilter([1., -1],[[1,1],[1,1]], x) assert_almost_equal(y, inp2.cumsum(), decimal=15) assert_almost_equal(inp, inp2, decimal=15) y, inp = miso_lfilter([1., 0],[[1,1],[1,1]], x) assert_almost_equal(y, inp2, decimal=15) assert_almost_equal(inp, inp2, decimal=15) x3 = np.column_stack((np.ones((x.shape[0],1)),x)) y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[0.0,0.0,0]]),x3) y3 = (x3*np.array([-2,3,1])).sum(1) assert_almost_equal(y[:-1], y3, decimal=15) assert_almost_equal(y, inp, decimal=15) y4 = y3.copy() y4[1:] += x3[:-1,1] y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[0.0,1.0,0]]),x3) assert_almost_equal(y[:-1], y4, decimal=15) assert_almost_equal(y, inp, decimal=15) y4 = y3.copy() y4[1:] += x3[:-1,0] y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[1.0,0.0,0]]),x3) assert_almost_equal(y[:-1], y4, decimal=15) assert_almost_equal(y, inp, decimal=15) y, inp = miso_lfilter([1., -1],np.array([[-2.0,3,1],[1.0,0.0,0]]),x3) assert_almost_equal(y[:-1], y4.cumsum(), decimal=15) y4 = y3.copy() y4[1:] += x3[:-1,2] y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[0.0,0.0,1.0]]),x3) assert_almost_equal(y[:-1], y4, decimal=15) assert_almost_equal(y, inp, decimal=15) y, inp = miso_lfilter([1., -1],np.array([[-2.0,3,1],[0.0,0.0,1.0]]),x3) assert_almost_equal(y[:-1], y4.cumsum(), decimal=15) y, inp = miso_lfilter([1., 0],[[1,0],[1,0],[1,0]], x) yt = np.convolve(x[:,0], [1,1,1]) assert_almost_equal(y, yt, decimal=15) assert_almost_equal(inp, yt, decimal=15) y, inp = miso_lfilter([1., 0],[[0,1],[0,1],[0,1]], x) yt = np.convolve(x[:,1], [1,1,1]) assert_almost_equal(y, yt, decimal=15) assert_almost_equal(inp, yt, decimal=15) y, inp = miso_lfilter([1., 0],[[0,1],[0,1],[1,1]], x) yt = np.convolve(x[:,1], [1,1,1]) yt[2:] += x[:,0] assert_almost_equal(y, yt, decimal=15) assert_almost_equal(inp, yt, decimal=15) def test_gjrgarch(): # test impulse response of gjr simulator varinno = np.zeros(100) varinno[0] = 1. errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, 0], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) ht = np.array([ 1., 0.1, 0.05, 0.01, 0., 0. ]) assert_almost_equal(hgjr5[:6], ht, decimal=15) errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, -1.0], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) assert_almost_equal(hgjr5[:6], ht.cumsum(), decimal=15) errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, 1.0], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) ht1 = [0] for h in ht: ht1.append(h-ht1[-1]) assert_almost_equal(hgjr5[:6], ht1[1:], decimal=15) # negative shock varinno = np.zeros(100) varinno[0] = -1. errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, 0], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) ht = np.array([ 1. , 0.9 , 0.75, 0.61, 0. , 0. ]) assert_almost_equal(hgjr5[:6], ht, decimal=15) errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, -1.0], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) assert_almost_equal(hgjr5[:6], ht.cumsum(), decimal=15) errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, 1.0], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) ht1 = [0] for h in ht: ht1.append(h-ht1[-1]) assert_almost_equal(hgjr5[:6], ht1[1:], decimal=15) ''' >>> print(signal.correlate(x3, np.array([[-2.0,3,1],[0.0,0.0,0]])[::-1,:],mode='full')[:-1, (x3.shape[1]+1)//2] [ -1. 7. 15. 23. 31. 39. 47. 55. 63. 71.] >>> (x3*np.array([-2,3,1])).sum(1) array([ -1., 7., 15., 23., 31., 39., 47., 55., 63., 71.]) ''' def garchplot(err, h, title='Garch simulation'): plt.figure() plt.subplot(311) plt.plot(err) plt.title(title) plt.ylabel('y') plt.subplot(312) plt.plot(err**2) plt.ylabel('$y^2$') plt.subplot(313) plt.plot(h) plt.ylabel('conditional variance') if __name__ == '__main__': #test_misofilter() #test_gjrgarch() examples = ['garch'] if 'arma' in examples: arest = tsa.arima.ARIMA() print("\nExample 1") ar = [1.0, -0.8] ma = [1.0, 0.5] y1 = arest.generate_sample(ar,ma,1000,0.1) y1 -= y1.mean() #no mean correction/constant in estimation so far arma1 = Arma(y1) arma1.nar = 1 arma1.nma = 1 arma1res = arma1.fit(method='fmin') print(arma1res.params) #Warning need new instance otherwise results carry over arma2 = Arma(y1) res2 = arma2.fit(method='bfgs') print(res2.params) print(res2.model.hessian(res2.params)) print(ndt.Hessian(arma1.loglike, stepMax=1e-2)(res2.params)) resls = arest.fit(y1,1,1) print(resls[0]) print(resls[1]) print('\nparameter estimate') print('parameter of DGP ar(1), ma(1), sigma_error') print([-0.8, 0.5, 0.1]) print('mle with fmin') print(arma1res.params) print('mle with bfgs') print(res2.params) print('cond. least squares uses optim.leastsq ?') errls = arest.error_estimate print(resls[0], np.sqrt(np.dot(errls,errls)/errls.shape[0])) err = arma1.geterrors(res2.params) print('cond least squares parameter cov') #print(np.dot(err,err)/err.shape[0] * resls[1]) #errls = arest.error_estimate print(np.dot(errls,errls)/errls.shape[0] * resls[1]) # print('fmin hessian') # print(arma1res.model.optimresults['Hopt'][:2,:2]) print('bfgs hessian') print(res2.model.optimresults['Hopt'][:2,:2]) print('numdifftools inverse hessian') print(-np.linalg.inv(ndt.Hessian(arma1.loglike, stepMax=1e-2)(res2.params))[:2,:2]) arma3 = Arma(y1**2) res3 = arma3.fit(method='bfgs') print(res3.params) nobs = 1000 if 'garch' in examples: err,h = generate_kindofgarch(nobs, [1.0, -0.95], [1.0, 0.1], mu=0.5) import matplotlib.pyplot as plt plt.figure() plt.subplot(211) plt.plot(err) plt.subplot(212) plt.plot(h) #plt.show() seed = 3842774 #91234 #8837708 seed = np.random.randint(9999999) print('seed', seed) np.random.seed(seed) ar1 = -0.9 err,h = generate_garch(nobs, [1.0, ar1], [1.0, 0.50], mu=0.0,scale=0.1) # plt.figure() # plt.subplot(211) # plt.plot(err) # plt.subplot(212) # plt.plot(h) # plt.figure() # plt.subplot(211) # plt.plot(err[-400:]) # plt.subplot(212) # plt.plot(h[-400:]) #plt.show() garchplot(err, h) garchplot(err[-400:], h[-400:]) np.random.seed(seed) errgjr,hgjr, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.5,0]], mu=0.0,scale=0.1) garchplot(errgjr[:nobs], hgjr[:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') garchplot(errgjr[-400:nobs], hgjr[-400:nobs], 'GJR-GARCH(1,1) Simulation - symmetric') np.random.seed(seed) errgjr2,hgjr2, etax = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr2[:nobs], hgjr2[:nobs], 'GJR-GARCH(1,1) Simulation') garchplot(errgjr2[-400:nobs], hgjr2[-400:nobs], 'GJR-GARCH(1,1) Simulation') np.random.seed(seed) errgjr3,hgjr3, etax3 = generate_gjrgarch(nobs, [1.0, ar1], [[1,0],[0.1,0.9],[0.1,0.9],[0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr3[:nobs], hgjr3[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr3[-400:nobs], hgjr3[-400:nobs], 'GJR-GARCH(1,3) Simulation') np.random.seed(seed) errgjr4,hgjr4, etax4 = generate_gjrgarch(nobs, [1.0, ar1], [[1., 1,0],[0, 0.1,0.9],[0, 0.1,0.9],[0, 0.1,0.9]], mu=0.0,scale=0.1) garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation') garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') varinno = np.zeros(100) varinno[0] = 1. errgjr5,hgjr5, etax5 = generate_gjrgarch(100, [1.0, -0.], [[1., 1,0],[0, 0.1,0.8],[0, 0.05,0.7],[0, 0.01,0.6]], mu=0.0,scale=0.1, varinnovation=varinno) garchplot(errgjr5[:20], hgjr5[:20], 'GJR-GARCH(1,3) Simulation') #garchplot(errgjr4[-400:nobs], hgjr4[-400:nobs], 'GJR-GARCH(1,3) Simulation') #plt.show() seed = np.random.randint(9999999) # 9188410 print('seed', seed) x = np.arange(20).reshape(10,2) x3 = np.column_stack((np.ones((x.shape[0],1)),x)) y, inp = miso_lfilter([1., 0],np.array([[-2.0,3,1],[0.0,0.0,0]]),x3) nobs = 1000 warmup = 1000 np.random.seed(seed) ar = [1.0, -0.7]#7, -0.16, -0.1] #ma = [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]] ma = [[1., 0, 0],[0, 0.4,0.0]] #,[0, 0.9,0.0]] # errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, [1.0, -0.99], # [[1., 1, 0],[0, 0.6,0.1],[0, 0.1,0.1],[0, 0.1,0.1]], # mu=0.2, scale=0.25) errgjr4,hgjr4, etax4 = generate_gjrgarch(warmup+nobs, ar, ma, mu=0.4, scale=1.01) errgjr4,hgjr4, etax4 = errgjr4[warmup:], hgjr4[warmup:], etax4[warmup:] garchplot(errgjr4[:nobs], hgjr4[:nobs], 'GJR-GARCH(1,3) Simulation') ggmod = Garch(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod.nar = 1 ggmod.nma = 1 ggmod._start_params = np.array([-0.6, 0.1, 0.2, 0.0]) ggres = ggmod.fit(start_params=np.array([-0.6, 0.1, 0.2, 0.0]), maxiter=1000) print('ggres.params', ggres.params) garchplot(ggmod.errorsest, ggmod.h) #plt.show() print('Garch11') print(optimize.fmin(lambda params: -loglike_GARCH11(params, errgjr4-errgjr4.mean())[0], [0.93, 0.9, 0.2])) ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, maxiter=2000) print('ggres0.params', ggres0.params) ggmod0 = Garch0(errgjr4-errgjr4.mean())#hgjr4[:nobs])#-hgjr4.mean()) #errgjr4) ggmod0.nar = 1 ggmod.nma = 1 start_params = np.array([-0.6, 0.2, 0.1]) ggmod0._start_params = start_params #np.array([-0.6, 0.1, 0.2, 0.0]) ggres0 = ggmod0.fit(start_params=start_params, method='bfgs', maxiter=2000) print('ggres0.params', ggres0.params) if 'rpy' in examples: from rpy import r f = r.formula('~garch(1, 1)') #fit = r.garchFit(f, data = errgjr4) x = r.garchSim( n = 500) print('R acf', tsa.acf(np.power(x,2))[:15]) arma3 = Arma(np.power(x,2)) arma3res = arma3.fit(start_params=[-0.2,0.1,0.5],maxiter=5000) print(arma3res.params) arma3b = Arma(np.power(x,2)) arma3bres = arma3b.fit(start_params=[-0.2,0.1,0.5],maxiter=5000, method='bfgs') print(arma3bres.params) llf = loglike_GARCH11([0.93, 0.9, 0.2], errgjr4) print(llf[0]) erro,ho, etaxo = generate_gjrgarch(20, ar, ma, mu=0.04, scale=0.01, varinnovation = np.ones(20)) ''' this looks relatively good >>> Arma.initialize = lambda x: x >>> arma3 = Arma(errgjr4**2) >>> arma3res = arma3.fit() Warning: Maximum number of function evaluations has been exceeded. >>> arma3res.params array([-0.775, -0.583, -0.001]) >>> arma2.nar 1 >>> arma2.nma 1 unit root ? >>> arma3 = Arma(hgjr4) >>> arma3res = arma3.fit() Optimization terminated successfully. Current function value: -3641.529780 Iterations: 250 Function evaluations: 458 >>> arma3res.params array([ -1.000e+00, -3.096e-04, 6.343e-03]) or maybe not great >>> arma3res = arma3.fit(start_params=[-0.8,0.1,0.5],maxiter=5000) Warning: Maximum number of function evaluations has been exceeded. >>> arma3res.params array([-0.086, 0.186, -0.001]) >>> arma3res = arma3.fit(start_params=[-0.8,0.1,0.5],maxiter=5000,method='bfgs') Divide-by-zero encountered: rhok assumed large Optimization terminated successfully. Current function value: -5988.332952 Iterations: 16 Function evaluations: 245 Gradient evaluations: 49 >>> arma3res.params array([ -9.995e-01, -9.715e-01, 6.501e-04]) ''' ''' current problems persistence in errgjr looks too low, small tsa.acf(errgjr4**2)[:15] as a consequence the ML estimate has also very little persistence, estimated ar term is much too small -> need to compare with R or matlab help.search("garch") : ccgarch, garchSim(fGarch), garch(tseries) HestonNandiGarchFit(fOptions) > library('fGarch') > spec = garchSpec() > x = garchSim(model = spec@model, n = 500) > acf(x**2) # has low correlation but fit has high parameters: > fit = garchFit(~garch(1, 1), data = x) with rpy: from rpy import r r.library('fGarch') f = r.formula('~garch(1, 1)') fit = r.garchFit(f, data = errgjr4) Final Estimate: LLH: -3198.2 norm LLH: -3.1982 mu omega alpha1 beta1 1.870485e-04 9.437557e-05 3.457349e-02 1.000000e-08 second run with ar = [1.0, -0.8] ma = [[1., 0, 0],[0, 1.0,0.0]] Final Estimate: LLH: -3979.555 norm LLH: -3.979555 mu omega alpha1 beta1 1.465050e-05 1.641482e-05 1.092600e-01 9.654438e-02 mine: >>> ggres.params array([ -2.000e-06, 3.283e-03, 3.769e-01, -1.000e-06]) another rain, same ar, ma Final Estimate: LLH: -3956.197 norm LLH: -3.956197 mu omega alpha1 beta1 7.487278e-05 1.171238e-06 1.511080e-03 9.440843e-01 every step needs to be compared and tested something looks wrong with likelihood function, either a silly mistake or still some conceptional problems * found the silly mistake, I was normalizing the errors before plugging into espression for likelihood function * now gjr garch estimation works and produces results that are very close to the explicit garch11 estimation initial conditions for miso_filter need to be cleaned up lots of clean up to to after the bug hunting ''' y = np.random.randn(20) params = [0.93, 0.9, 0.2] lls, llt, ht = loglike_GARCH11(params, y) sigma2 = ht axis=0 nobs = len(ht) llike = -0.5 * (np.sum(np.log(sigma2),axis) + np.sum((y**2)/sigma2, axis) + nobs*np.log(2*np.pi)) print(lls, llike) #print(np.log(stats.norm.pdf(y,scale=np.sqrt(ht))).sum()) ''' >>> optimize.fmin(lambda params: -loglike_GARCH11(params, errgjr4)[0], [0.93, 0.9, 0.2]) Optimization terminated successfully. Current function value: 7312.393886 Iterations: 95 Function evaluations: 175 array([ 3.691, 0.072, 0.932]) >>> ar [1.0, -0.93000000000000005] >>> ma [[1.0, 0, 0], [0, 0.90000000000000002, 0.0]] ''' np.random.seed(1) tseries = np.zeros(200) # set first observation for i in range(1,200): # get 99 more observations based on the given process error = np.random.randn() tseries[i] = .9 * tseries[i-1] + .01 * error tseries = tseries[100:] armodel = AR(tseries) #armodel.fit(method='bfgs-b') #armodel.fit(method='tnc') #powell should be the most robust, see Hamilton 5.7 armodel.fit(method='powell', penalty=True) # The below don't work yet #armodel.fit(method='newton', penalty=True) #armodel.fit(method='broyden', penalty=True) print("Unconditional MLE for AR(1) y_t = .9*y_t-1 +.01 * err") print(armodel.params)
bsd-3-clause
jlegendary/scikit-learn
sklearn/datasets/tests/test_base.py
205
5878
import os import shutil import tempfile import warnings import nose import numpy from pickle import loads from pickle import dumps from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.datasets.base import Bunch from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x)
bsd-3-clause
charanpald/sandbox
sandbox/ranking/TreeRankR.py
1
6834
import gc import numpy import logging import rpy2.robjects as robjects import sklearn.cross_val as cross_val from sandbox.util.Util import Util from sandbox.util.Parameter import Parameter from sandbox.util.Evaluator import Evaluator from exp.metabolomics.AbstractTreeRankR import AbstractTreeRankR class TreeRankR(AbstractTreeRankR): """ A wrapper for the TreeRank code written in R. """ def __init__(self): super(TreeRankR, self).__init__() def learnModelDataFrame(self, formula, XY): """ Learn a tree using a DataFrame XY and formula. """ if not self.printDebug: self.baseLib.sink("/dev/null") self.tree = self.treeRankLib.TreeRank(formula, XY, bestresponse=self.bestResponse, LeafRank=self.leafRank, nfcv=self.nfcv, varsplit=self.varSplit, growing=self.growing) if not self.printDebug: self.baseLib.sink() def evaluateCvOuter(self, X, Y, folds, leafRank, innerFolds=3): """ Run model selection and output some ROC curves. In this case Y is a 1D array. """ Parameter.checkClass(X, numpy.ndarray) Parameter.checkClass(Y, numpy.ndarray) Parameter.checkInt(folds, 2, float('inf')) if Y.ndim != 1: raise ValueError("Expecting Y to be 1D") indexList = cross_val.StratifiedKFold(Y, folds) maxDepths = numpy.flipud(numpy.arange(1, 12, 1)) if leafRank == self.getTreeRankLib().LRforest: varSplits = numpy.arange(0.6, 1.01, 0.2) else: varSplits = numpy.array([1]) #According to Nicolas nfcv>1 doesn't help nfcvs = [1] #This is tied in with depth mincrit = 0.00 #If minsplit is too low sometimes get a node with no positive labels minSplits = numpy.array([50]) self.setLeafRank(leafRank) bestParams = [] bestTrainAUCs = numpy.zeros(folds) bestTrainROCs = [] bestTestAUCs = numpy.zeros(folds) bestTestROCs = [] bestMetaDicts = [] i = 0 for trainInds, testInds in indexList: trainX, trainY = X[trainInds, :], Y[trainInds] testX, testY = X[testInds, :], Y[testInds] meanParamAUCs = [] paramList = [] logging.debug("Distribution of labels in train: " + str(numpy.bincount(trainY))) logging.debug("Distribution of labels in test: " + str(numpy.bincount(testY))) for varSplit in varSplits: for nfcv in nfcvs: for minSplit in minSplits: self.setMaxDepth(maxDepths[0]) self.setVarSplit(varSplit) self.setNfcv(nfcv) self.setMinSplit(minSplit) logging.debug(self) idx = cross_val.StratifiedKFold(trainY, innerFolds) j = 0 metrics = numpy.zeros((len(idx), maxDepths.shape[0])) for idxtr, idxts in idx: Util.printIteration(j, 1, innerFolds) innerTrainX, innerTestX = trainX[idxtr, :], trainX[idxts, :] innerTrainY, innerTestY = trainY[idxtr], trainY[idxts] self.learnModel(innerTrainX, innerTrainY) for k in range(maxDepths.shape[0]): maxDepth = maxDepths[k] robjects.globalenv["maxDepth"] = maxDepth robjects.globalenv["tree"] = self.tree nodeList = robjects.r('tree$nodes[tree$depth>=maxDepth]') self.tree = self.treeRankLib.subTreeRank(self.tree, nodeList) predY = self.predict(innerTestX) gc.collect() metrics[j, k] = Evaluator.auc(predY, innerTestY) j += 1 meanAUC = numpy.mean(metrics, 0) varAUC = numpy.var(metrics, 0) logging.warn(self.baseLib.warnings()) logging.debug("Mean AUCs and variances at each depth " + str((meanAUC, varAUC))) for k in range(maxDepths.shape[0]): maxDepth = maxDepths[k] meanParamAUCs.append(meanAUC[k]) paramList.append((maxDepth, varSplit, nfcv, minSplit)) #Try to get some memory back gc.collect() robjects.r('gc(verbose=TRUE)') robjects.r('memory.profile()') #print(self.hp.heap()) #Now choose best params bestInd = numpy.argmax(numpy.array(meanParamAUCs)) self.setMaxDepth(paramList[bestInd][0]) self.setVarSplit(paramList[bestInd][1]) self.setNfcv(paramList[bestInd][2]) self.setMinSplit(paramList[bestInd][3]) self.learnModel(trainX, trainY) predTrainY = self.predict(trainX) predTestY = self.predict(testX) bestTrainAUCs[i] = Evaluator.auc(predTrainY, trainY) bestTestAUCs[i] = Evaluator.auc(predTestY, testY) #Store the parameters and ROC curves bestParams.append(paramList[bestInd]) bestTrainROCs.append(Evaluator.roc(trainY, predTrainY)) bestTestROCs.append(Evaluator.roc(testY, predTestY)) metaDict = {} metaDict["size"] = self.getTreeSize() metaDict["depth"] = self.getTreeDepth() bestMetaDicts.append(metaDict) i += 1 allMetrics = [bestTrainAUCs, bestTrainROCs, bestTestAUCs, bestTestROCs] return (bestParams, allMetrics, bestMetaDicts) def getTreeSize(self): return len(self.tree[2]) def getTreeDepth(self): return numpy.max(numpy.array(self.tree[14])) def __str__(self): #Just write out the parameters outStr = "TreeRank:" if self.leafRank == self.treeRankLib.LRCart: outStr += " LeafRank=CART" elif self.leafRank == self.treeRankLib.LRsvm: outStr += " LeafRank=SVM" elif self.leafRank == self.treeRankLib.LRforest: outStr += " LeafRank=Random Forests" outStr += " maxDepth=" + str(self.maxDepth) outStr += " varSplit=" + str(self.varSplit) outStr += " nfcv=" + str(self.nfcv) outStr += " minSplit=" + str(self.minSplit) return outStr def getModel(self): return self.tree
gpl-3.0
person142/scipy
doc/source/tutorial/examples/normdiscr_plot1.py
36
1547
import numpy as np import matplotlib.pyplot as plt from scipy import stats npoints = 20 # number of integer support points of the distribution minus 1 npointsh = npoints // 2 npointsf = float(npoints) nbound = 4 # bounds for the truncated normal normbound = (1 + 1/npointsf) * nbound # actual bounds of truncated normal grid = np.arange(-npointsh, npointsh+2, 1) # integer grid gridlimitsnorm = (grid-0.5) / npointsh * nbound # bin limits for the truncnorm gridlimits = grid - 0.5 grid = grid[:-1] probs = np.diff(stats.truncnorm.cdf(gridlimitsnorm, -normbound, normbound)) gridint = grid normdiscrete = stats.rv_discrete( values=(gridint, np.round(probs, decimals=7)), name='normdiscrete') n_sample = 500 np.random.seed(87655678) # fix the seed for replicability rvs = normdiscrete.rvs(size=n_sample) f, l = np.histogram(rvs, bins=gridlimits) sfreq = np.vstack([gridint, f, probs*n_sample]).T fs = sfreq[:,1] / float(n_sample) ft = sfreq[:,2] / float(n_sample) nd_std = np.sqrt(normdiscrete.stats(moments='v')) ind = gridint # the x locations for the groups width = 0.35 # the width of the bars plt.subplot(111) rects1 = plt.bar(ind, ft, width, color='b') rects2 = plt.bar(ind+width, fs, width, color='r') normline = plt.plot(ind+width/2.0, stats.norm.pdf(ind, scale=nd_std), color='b') plt.ylabel('Frequency') plt.title('Frequency and Probability of normdiscrete') plt.xticks(ind+width, ind) plt.legend((rects1[0], rects2[0]), ('true', 'sample')) plt.show()
bsd-3-clause
KaranToor/MA450
google-cloud-sdk/lib/googlecloudsdk/third_party/appengine/api/appinfo.py
2
95880
# Copyright 2007 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AppInfo tools. This library allows you to work with AppInfo records in memory, as well as store and load from configuration files. """ # WARNING: This file is externally viewable by our users. All comments from # this file will be stripped. The docstrings will NOT. Do not put sensitive # information in docstrings. If you must communicate internal information in # this source file, please place them in comments only. # Parts of the code in this file are duplicated in # //java/com/google/apphosting/admin/legacy/... # This is part of an ongoing effort to replace the deployment API. # Until we can delete this code, please check to see if your changes need # to be reflected in the java code. For questions, talk to clouser@ or import logging import os import re import string import sys import wsgiref.util # pylint: disable=g-import-not-at-top if os.environ.get('APPENGINE_RUNTIME') == 'python27': from google.appengine.api import validation from google.appengine.api import yaml_builder from google.appengine.api import yaml_listener from google.appengine.api import yaml_object else: # This case covers both Python 2.5 and unittests, which are 2.5 only. from googlecloudsdk.third_party.appengine.api import validation from googlecloudsdk.third_party.appengine.api import yaml_builder from googlecloudsdk.third_party.appengine.api import yaml_listener from googlecloudsdk.third_party.appengine.api import yaml_object from googlecloudsdk.third_party.appengine.api import appinfo_errors from googlecloudsdk.third_party.appengine.api import backendinfo # pylint: enable=g-import-not-at-top # Regular expression for matching URL, file, URL root regular expressions. # `url_root` is identical to url except it additionally imposes not ending with # *. # TODO(user): `url_root` should generally allow a URL but not a regex or # glob. _URL_REGEX = r'(?!\^)/.*|\..*|(\(.).*(?!\$).' _FILES_REGEX = r'.+' _URL_ROOT_REGEX = r'/.*' # Regular expression for matching cache expiration deltas. _DELTA_REGEX = r'([0-9]+)([DdHhMm]|[sS]?)' _EXPIRATION_REGEX = r'\s*(%s)(\s+%s)*\s*' % (_DELTA_REGEX, _DELTA_REGEX) _START_PATH = '/_ah/start' _NON_WHITE_SPACE_REGEX = r'^\S+$' # Regular expression for matching service names. # TODO(arb): this may need altering so as to not leak unreleased service names # TODO(user): Re-add sms to list of services. _ALLOWED_SERVICES = ['mail', 'mail_bounce', 'xmpp_message', 'xmpp_subscribe', 'xmpp_presence', 'xmpp_error', 'channel_presence', 'rest', 'warmup'] _SERVICE_RE_STRING = '(' + '|'.join(_ALLOWED_SERVICES) + ')' # Regular expression for matching page names. _PAGE_NAME_REGEX = r'^.+$' # Constants for interpreting expiration deltas. _EXPIRATION_CONVERSIONS = { 'd': 60 * 60 * 24, 'h': 60 * 60, 'm': 60, 's': 1, } # Constant values from `apphosting/base/constants.h` # TODO(user): Maybe a python constants file. APP_ID_MAX_LEN = 100 MODULE_ID_MAX_LEN = 63 # See b/5485871 for why this is 100 and not 63. # NOTE(user): See b/5485871 for why this is different from the # `apphosting/base/constants.h` value. MODULE_VERSION_ID_MAX_LEN = 63 MAX_URL_MAPS = 100 # The character separating the partition from the domain. PARTITION_SEPARATOR = '~' # The character separating the domain from the display-app-id. DOMAIN_SEPARATOR = ':' # The character separating major and minor versions. VERSION_SEPARATOR = '.' # The character separating module from module version. MODULE_SEPARATOR = ':' # The name of the default module DEFAULT_MODULE = 'default' # Regular expression for ID types. Defined in apphosting/base/id_util.cc. PARTITION_RE_STRING_WITHOUT_SEPARATOR = (r'[a-z\d\-]{1,%d}' % APP_ID_MAX_LEN) PARTITION_RE_STRING = (r'%s\%s' % (PARTITION_RE_STRING_WITHOUT_SEPARATOR, PARTITION_SEPARATOR)) DOMAIN_RE_STRING_WITHOUT_SEPARATOR = (r'(?!\-)[a-z\d\-\.]{1,%d}' % APP_ID_MAX_LEN) DOMAIN_RE_STRING = (r'%s%s' % (DOMAIN_RE_STRING_WITHOUT_SEPARATOR, DOMAIN_SEPARATOR)) DISPLAY_APP_ID_RE_STRING = r'(?!-)[a-z\d\-]{0,%d}[a-z\d]' % (APP_ID_MAX_LEN - 1) APPLICATION_RE_STRING = (r'(?:%s)?(?:%s)?%s' % (PARTITION_RE_STRING, DOMAIN_RE_STRING, DISPLAY_APP_ID_RE_STRING)) # NOTE(user,user): These regexes have been copied to multiple other # locations in google.apphosting so we don't have to pull this file into # python_lib for other modules to work in production. # Other known locations as of 2016-08-15: # - java/com/google/apphosting/admin/legacy/LegacyAppInfo.java # - apphosting/client/app_config_old.cc # - apphosting/api/app_config/app_config_server2.cc MODULE_ID_RE_STRING = r'^(?!-)[a-z\d\-]{0,%d}[a-z\d]$' % (MODULE_ID_MAX_LEN - 1) MODULE_VERSION_ID_RE_STRING = (r'^(?!-)[a-z\d\-]{0,%d}[a-z\d]$' % (MODULE_VERSION_ID_MAX_LEN - 1)) _IDLE_INSTANCES_REGEX = r'^([\d]+|automatic)$' # Note that this regex will not allow zero-prefixed numbers, e.g. 0001. _INSTANCES_REGEX = r'^[1-9][\d]*$' _INSTANCE_CLASS_REGEX = r'^([fF](1|2|4|4_1G)|[bB](1|2|4|8|4_1G))$' _CONCURRENT_REQUESTS_REGEX = r'^([1-9]\d*)$' # This enforces that we will only accept a single decimal point of accuracy at # the granularity of seconds and no decimal point with a granularity of # milliseconds. _PENDING_LATENCY_REGEX = r'^(\d+((\.\d{1,3})?s|ms)|automatic)$' _IDLE_TIMEOUT_REGEX = r'^[\d]+(s|m)$' GCE_RESOURCE_NAME_REGEX = r'^[a-z]([a-z\d-]{0,61}[a-z\d])?$' ALTERNATE_HOSTNAME_SEPARATOR = '-dot-' # Note(user): This must match api/app_config.py BUILTIN_NAME_PREFIX = 'ah-builtin' RUNTIME_RE_STRING = r'[a-z][a-z0-9\-]{0,29}' API_VERSION_RE_STRING = r'[\w.]{1,32}' ENV_RE_STRING = r'[\w.]{1,32}' SOURCE_LANGUAGE_RE_STRING = r'[\w.\-]{1,32}' HANDLER_STATIC_FILES = 'static_files' HANDLER_STATIC_DIR = 'static_dir' HANDLER_SCRIPT = 'script' HANDLER_API_ENDPOINT = 'api_endpoint' LOGIN_OPTIONAL = 'optional' LOGIN_REQUIRED = 'required' LOGIN_ADMIN = 'admin' AUTH_FAIL_ACTION_REDIRECT = 'redirect' AUTH_FAIL_ACTION_UNAUTHORIZED = 'unauthorized' DATASTORE_ID_POLICY_LEGACY = 'legacy' DATASTORE_ID_POLICY_DEFAULT = 'default' SECURE_HTTP = 'never' SECURE_HTTPS = 'always' SECURE_HTTP_OR_HTTPS = 'optional' # Used for missing values; see http://b/issue?id=2073962. SECURE_DEFAULT = 'default' REQUIRE_MATCHING_FILE = 'require_matching_file' DEFAULT_SKIP_FILES = (r'^(.*/)?(' r'(#.*#)|' r'(.*~)|' r'(.*\.py[co])|' r'(.*/RCS/.*)|' r'(\..*)|' r')$') # Expression meaning to skip no files, which is the default for AppInclude. SKIP_NO_FILES = r'(?!)' DEFAULT_NOBUILD_FILES = (r'^$') # Attributes for `URLMap` LOGIN = 'login' AUTH_FAIL_ACTION = 'auth_fail_action' SECURE = 'secure' URL = 'url' POSITION = 'position' POSITION_HEAD = 'head' POSITION_TAIL = 'tail' STATIC_FILES = 'static_files' UPLOAD = 'upload' STATIC_DIR = 'static_dir' MIME_TYPE = 'mime_type' SCRIPT = 'script' EXPIRATION = 'expiration' API_ENDPOINT = 'api_endpoint' HTTP_HEADERS = 'http_headers' APPLICATION_READABLE = 'application_readable' REDIRECT_HTTP_RESPONSE_CODE = 'redirect_http_response_code' # Attributes for `AppInfoExternal` APPLICATION = 'application' PROJECT = 'project' # An alias for 'application' MODULE = 'module' SERVICE = 'service' AUTOMATIC_SCALING = 'automatic_scaling' MANUAL_SCALING = 'manual_scaling' BASIC_SCALING = 'basic_scaling' VM = 'vm' VM_SETTINGS = 'vm_settings' BETA_SETTINGS = 'beta_settings' VM_HEALTH_CHECK = 'vm_health_check' HEALTH_CHECK = 'health_check' RESOURCES = 'resources' NETWORK = 'network' VERSION = 'version' MAJOR_VERSION = 'major_version' MINOR_VERSION = 'minor_version' RUNTIME = 'runtime' API_VERSION = 'api_version' ENDPOINTS_API_SERVICE = 'endpoints_api_service' ENV = 'env' ENTRYPOINT = 'entrypoint' RUNTIME_CONFIG = 'runtime_config' SOURCE_LANGUAGE = 'source_language' BUILTINS = 'builtins' INCLUDES = 'includes' HANDLERS = 'handlers' LIBRARIES = 'libraries' DEFAULT_EXPIRATION = 'default_expiration' SKIP_FILES = 'skip_files' NOBUILD_FILES = 'nobuild_files' SERVICES = 'inbound_services' DERIVED_FILE_TYPE = 'derived_file_type' JAVA_PRECOMPILED = 'java_precompiled' PYTHON_PRECOMPILED = 'python_precompiled' ADMIN_CONSOLE = 'admin_console' ERROR_HANDLERS = 'error_handlers' BACKENDS = 'backends' THREADSAFE = 'threadsafe' DATASTORE_AUTO_ID_POLICY = 'auto_id_policy' API_CONFIG = 'api_config' CODE_LOCK = 'code_lock' ENV_VARIABLES = 'env_variables' SOURCE_REPO_RE_STRING = r'^[a-z][a-z0-9\-\+\.]*:[^#]*$' SOURCE_REVISION_RE_STRING = r'^[0-9a-fA-F]+$' # Maximum size of all source references (in bytes) for a deployment. SOURCE_REFERENCES_MAX_SIZE = 2048 INSTANCE_CLASS = 'instance_class' # Attributes for Standard App Engine (only) AutomaticScaling. MINIMUM_PENDING_LATENCY = 'min_pending_latency' MAXIMUM_PENDING_LATENCY = 'max_pending_latency' MINIMUM_IDLE_INSTANCES = 'min_idle_instances' MAXIMUM_IDLE_INSTANCES = 'max_idle_instances' MAXIMUM_CONCURRENT_REQUEST = 'max_concurrent_requests' # Attributes for Managed VMs (only) AutomaticScaling. These are very # different than Standard App Engine because scaling settings are # mapped to Cloud Autoscaler (as opposed to the clone scheduler). See # AutoscalingConfig in MIN_NUM_INSTANCES = 'min_num_instances' MAX_NUM_INSTANCES = 'max_num_instances' COOL_DOWN_PERIOD_SEC = 'cool_down_period_sec' CPU_UTILIZATION = 'cpu_utilization' CPU_UTILIZATION_UTILIZATION = 'target_utilization' CPU_UTILIZATION_AGGREGATION_WINDOW_LENGTH_SEC = 'aggregation_window_length_sec' # Managed VMs Richer Autoscaling. These (MVMs only) scaling settings # are supported for both vm:true and env:2|flex, but are not yet # publicly documented. TARGET_NETWORK_SENT_BYTES_PER_SEC = 'target_network_sent_bytes_per_sec' TARGET_NETWORK_SENT_PACKETS_PER_SEC = 'target_network_sent_packets_per_sec' TARGET_NETWORK_RECEIVED_BYTES_PER_SEC = 'target_network_received_bytes_per_sec' TARGET_NETWORK_RECEIVED_PACKETS_PER_SEC = ( 'target_network_received_packets_per_sec') TARGET_DISK_WRITE_BYTES_PER_SEC = 'target_disk_write_bytes_per_sec' TARGET_DISK_WRITE_OPS_PER_SEC = 'target_disk_write_ops_per_sec' TARGET_DISK_READ_BYTES_PER_SEC = 'target_disk_read_bytes_per_sec' TARGET_DISK_READ_OPS_PER_SEC = 'target_disk_read_ops_per_sec' TARGET_REQUEST_COUNT_PER_SEC = 'target_request_count_per_sec' TARGET_CONCURRENT_REQUESTS = 'target_concurrent_requests' # Attributes for ManualScaling INSTANCES = 'instances' # Attributes for BasicScaling MAX_INSTANCES = 'max_instances' IDLE_TIMEOUT = 'idle_timeout' # Attributes for AdminConsole PAGES = 'pages' NAME = 'name' # Attributes for EndpointsApiService ENDPOINTS_NAME = 'name' CONFIG_ID = 'config_id' # Attributes for ErrorHandlers ERROR_CODE = 'error_code' FILE = 'file' _ERROR_CODE_REGEX = r'(default|over_quota|dos_api_denial|timeout)' # Attributes for BuiltinHandler ON = 'on' ON_ALIASES = ['yes', 'y', 'True', 't', '1', 'true'] OFF = 'off' OFF_ALIASES = ['no', 'n', 'False', 'f', '0', 'false'] # Attributes for `VmHealthCheck`. Please refer to message `VmHealthCheck` in # `request_path` and `port` are not configurable yet. ENABLE_HEALTH_CHECK = 'enable_health_check' CHECK_INTERVAL_SEC = 'check_interval_sec' TIMEOUT_SEC = 'timeout_sec' UNHEALTHY_THRESHOLD = 'unhealthy_threshold' HEALTHY_THRESHOLD = 'healthy_threshold' RESTART_THRESHOLD = 'restart_threshold' HOST = 'host' # Attributes for Resources. CPU = 'cpu' MEMORY_GB = 'memory_gb' DISK_SIZE_GB = 'disk_size_gb' # Attributes for Resources:Volumes. VOLUMES = 'volumes' VOLUME_NAME = 'name' VOLUME_TYPE = 'volume_type' SIZE_GB = 'size_gb' # Attributes for Network. FORWARDED_PORTS = 'forwarded_ports' INSTANCE_TAG = 'instance_tag' NETWORK_NAME = 'name' SUBNETWORK_NAME = 'subnetwork_name' class _VersionedLibrary(object): """A versioned library supported by App Engine.""" def __init__(self, name, url, description, supported_versions, latest_version, default_version=None, deprecated_versions=None, experimental_versions=None): """Initializer for `_VersionedLibrary`. Args: name: The name of the library; for example, `django`. url: The URL for the library's project page; for example, `http://www.djangoproject.com/`. description: A short description of the library; for example, `A framework...`. supported_versions: A list of supported version names, ordered by release date; for example, `["v1", "v2", "v3"]`. latest_version: The version of the library that will be used when you specify `latest.` The rule of thumb is that this value should be the newest version that is neither deprecated nor experimental; however this value might be an experimental version if all of the supported versions are either deprecated or experimental. default_version: The version of the library that is enabled by default in the Python 2.7 runtime, or `None` if the library is not available by default; for example, `v1`. deprecated_versions: A list of the versions of the library that have been deprecated; for example, `["v1", "v2"]`. experimental_versions: A list of the versions of the library that are currently experimental; for example, `["v1"]`. """ self.name = name self.url = url self.description = description self.supported_versions = supported_versions self.latest_version = latest_version self.default_version = default_version self.deprecated_versions = deprecated_versions or [] self.experimental_versions = experimental_versions or [] @property def non_deprecated_versions(self): """Retrieves the versions of the library that are not deprecated. Returns: A list of the versions of the library that are not deprecated. """ return [version for version in self.supported_versions if version not in self.deprecated_versions] _SUPPORTED_LIBRARIES = [ _VersionedLibrary( 'clearsilver', 'http://www.clearsilver.net/', 'A fast, powerful, and language-neutral HTML template system.', ['0.10.5'], latest_version='0.10.5', ), _VersionedLibrary( 'django', 'http://www.djangoproject.com/', 'A full-featured web application framework for Python.', ['1.2', '1.3', '1.4', '1.5', '1.9'], latest_version='1.4', ), _VersionedLibrary( 'enum', 'https://pypi.python.org/pypi/enum34', 'A backport of the enum module introduced in python 3.4', ['0.9.23'], latest_version='0.9.23', ), _VersionedLibrary( 'endpoints', 'https://developers.google.com/appengine/docs/python/endpoints/', 'Libraries for building APIs in an App Engine application.', ['1.0'], latest_version='1.0', ), _VersionedLibrary( 'grpcio', 'http://http://www.grpc.io/', 'A high performance general RPC framework', ['1.0.0'], latest_version='1.0.0', default_version='1.0.0', ), _VersionedLibrary( 'jinja2', 'http://jinja.pocoo.org/docs/', 'A modern and designer friendly templating language for Python.', ['2.6'], latest_version='2.6', ), _VersionedLibrary( 'lxml', 'http://lxml.de/', 'A Pythonic binding for the C libraries libxml2 and libxslt.', ['2.3', '2.3.5'], latest_version='2.3', experimental_versions=['2.3.5'], ), _VersionedLibrary( 'markupsafe', 'http://pypi.python.org/pypi/MarkupSafe', 'A XML/HTML/XHTML markup safe string for Python.', ['0.15', '0.23'], latest_version='0.15', ), _VersionedLibrary( 'matplotlib', 'http://matplotlib.org/', 'A 2D plotting library which produces publication-quality figures.', ['1.2.0'], latest_version='1.2.0', ), _VersionedLibrary( 'MySQLdb', 'http://mysql-python.sourceforge.net/', 'A Python DB API v2.0 compatible interface to MySQL.', ['1.2.4b4', '1.2.4', '1.2.5'], latest_version='1.2.5', experimental_versions=['1.2.4b4', '1.2.4', '1.2.5'] ), _VersionedLibrary( 'numpy', 'http://numpy.scipy.org/', 'A general-purpose library for array-processing.', ['1.6.1'], latest_version='1.6.1', ), _VersionedLibrary( 'PIL', 'http://www.pythonware.com/library/pil/handbook/', 'A library for creating and transforming images.', ['1.1.7'], latest_version='1.1.7', ), _VersionedLibrary( 'protorpc', 'https://code.google.com/p/google-protorpc/', 'A framework for implementing HTTP-based remote procedure call (RPC) ' 'services.', ['1.0'], latest_version='1.0', default_version='1.0', ), _VersionedLibrary( 'pytz', 'https://pypi.python.org/pypi/pytz?', 'A library for cross-platform timezone calculations', ['2016.4'], latest_version='2016.4', default_version='2016.4', ), _VersionedLibrary( 'crcmod', 'http://crcmod.sourceforge.net/', 'A library for generating Cyclic Redundancy Checks (CRC).', ['1.7'], latest_version='1.7', ), _VersionedLibrary( 'PyAMF', 'http://pyamf.appspot.com/index.html', 'A library that provides (AMF) Action Message Format functionality.', ['0.6.1', '0.7.2'], latest_version='0.6.1', experimental_versions=['0.7.2'], ), _VersionedLibrary( 'pycrypto', 'https://www.dlitz.net/software/pycrypto/', 'A library of cryptography functions such as random number generation.', ['2.3', '2.6', '2.6.1'], latest_version='2.6', ), _VersionedLibrary( 'setuptools', 'http://pypi.python.org/pypi/setuptools', 'A library that provides package and module discovery capabilities.', ['0.6c11'], latest_version='0.6c11', ), _VersionedLibrary( 'six', 'https://pypi.python.org/pypi/six', 'Abstract differences between py2.x and py3', ['1.9.0'], latest_version='1.9.0', ), _VersionedLibrary( 'ssl', 'http://docs.python.org/dev/library/ssl.html', 'The SSL socket wrapper built-in module.', ['2.7', '2.7.11'], latest_version='2.7', ), _VersionedLibrary( 'webapp2', 'http://webapp-improved.appspot.com/', 'A lightweight Python web framework.', ['2.3', '2.5.1', '2.5.2'], latest_version='2.5.2', default_version='2.3', deprecated_versions=['2.3'] ), _VersionedLibrary( 'webob', 'http://www.webob.org/', 'A library that provides wrappers around the WSGI request environment.', ['1.1.1', '1.2.3'], latest_version='1.2.3', default_version='1.1.1', ), _VersionedLibrary( 'werkzeug', 'http://www.werkzeug.pocoo.org/', 'A WSGI utility library.', ['0.11.10'], latest_version='0.11.10', default_version='0.11.10', ), _VersionedLibrary( 'yaml', 'http://www.yaml.org/', 'A library for YAML serialization and deserialization.', ['3.10'], latest_version='3.10', default_version='3.10' ), ] _NAME_TO_SUPPORTED_LIBRARY = dict((library.name, library) for library in _SUPPORTED_LIBRARIES) # A mapping from third-party name/version to a list of that library's # dependencies. REQUIRED_LIBRARIES = { ('jinja2', '2.6'): [('markupsafe', '0.15'), ('setuptools', '0.6c11')], ('jinja2', 'latest'): [('markupsafe', 'latest'), ('setuptools', 'latest')], ('matplotlib', '1.2.0'): [('numpy', '1.6.1')], ('matplotlib', 'latest'): [('numpy', 'latest')], } _USE_VERSION_FORMAT = ('use one of: "%s"') # See RFC 2616 section 2.2. _HTTP_SEPARATOR_CHARS = frozenset('()<>@,;:\\"/[]?={} \t') _HTTP_TOKEN_CHARS = frozenset(string.printable[:-5]) - _HTTP_SEPARATOR_CHARS _HTTP_TOKEN_RE = re.compile('[%s]+$' % re.escape(''.join(_HTTP_TOKEN_CHARS))) # Source: http://www.cs.tut.fi/~jkorpela/http.html _HTTP_REQUEST_HEADERS = frozenset([ 'accept', 'accept-charset', 'accept-encoding', 'accept-language', 'authorization', 'expect', 'from', 'host', 'if-match', 'if-modified-since', 'if-none-match', 'if-range', 'if-unmodified-since', 'max-forwards', 'proxy-authorization', 'range', 'referer', 'te', 'user-agent', ]) # The minimum cookie length (i.e. number of bytes) that HTTP clients should # support, per RFCs 2109 and 2965. _MAX_COOKIE_LENGTH = 4096 # trailing NULL character, which is why this is not 2048. _MAX_URL_LENGTH = 2047 # We allow certain headers to be larger than the normal limit of 8192 bytes. _MAX_HEADER_SIZE_FOR_EXEMPTED_HEADERS = 10240 _CANNED_RUNTIMES = ('contrib-dart', 'dart', 'go', 'php', 'php55', 'python', 'python27', 'python-compat', 'java', 'java7', 'vm', 'custom', 'nodejs', 'ruby') _all_runtimes = _CANNED_RUNTIMES def GetAllRuntimes(): """Returns the list of all valid runtimes. This list can include third-party runtimes as well as canned runtimes. Returns: Tuple of strings. """ return _all_runtimes class HandlerBase(validation.Validated): """Base class for URLMap and ApiConfigHandler.""" ATTRIBUTES = { # Common fields. URL: validation.Optional(_URL_REGEX), LOGIN: validation.Options(LOGIN_OPTIONAL, LOGIN_REQUIRED, LOGIN_ADMIN, default=LOGIN_OPTIONAL), AUTH_FAIL_ACTION: validation.Options(AUTH_FAIL_ACTION_REDIRECT, AUTH_FAIL_ACTION_UNAUTHORIZED, default=AUTH_FAIL_ACTION_REDIRECT), SECURE: validation.Options(SECURE_HTTP, SECURE_HTTPS, SECURE_HTTP_OR_HTTPS, SECURE_DEFAULT, default=SECURE_DEFAULT), # Python/CGI fields. HANDLER_SCRIPT: validation.Optional(_FILES_REGEX) } class HttpHeadersDict(validation.ValidatedDict): """A dict that limits keys and values to what `http_headers` allows. `http_headers` is an static handler key; it applies to handlers with `static_dir` or `static_files` keys. The following code is an example of how `http_headers` is used:: handlers: - url: /static static_dir: static http_headers: X-Foo-Header: foo value X-Bar-Header: bar value """ DISALLOWED_HEADERS = frozenset([ # TODO(user): I don't think there's any reason to disallow users # from setting Content-Encoding, but other parts of the system prevent # this; therefore, we disallow it here. See the following discussion: 'content-encoding', 'content-length', 'date', 'server' ]) MAX_HEADER_LENGTH = 500 MAX_HEADER_VALUE_LENGTHS = { 'content-security-policy': _MAX_HEADER_SIZE_FOR_EXEMPTED_HEADERS, 'x-content-security-policy': _MAX_HEADER_SIZE_FOR_EXEMPTED_HEADERS, 'x-webkit-csp': _MAX_HEADER_SIZE_FOR_EXEMPTED_HEADERS, 'content-security-policy-report-only': _MAX_HEADER_SIZE_FOR_EXEMPTED_HEADERS, 'set-cookie': _MAX_COOKIE_LENGTH, 'set-cookie2': _MAX_COOKIE_LENGTH, 'location': _MAX_URL_LENGTH} MAX_LEN = 500 class KeyValidator(validation.Validator): """Ensures that keys in `HttpHeadersDict` are valid. `HttpHeadersDict` contains a list of headers. An instance is used as `HttpHeadersDict`'s `KEY_VALIDATOR`. """ def Validate(self, name, unused_key=None): """Returns an argument, or raises an exception if the argument is invalid. HTTP header names are defined by `RFC 2616, section 4.2`_. Args: name: HTTP header field value. unused_key: Unused. Returns: name argument, unchanged. Raises: appinfo_errors.InvalidHttpHeaderName: An argument cannot be used as an HTTP header name. .. _RFC 2616, section 4.2: https://www.ietf.org/rfc/rfc2616.txt """ original_name = name # Make sure only ASCII data is used. if isinstance(name, unicode): try: name = name.encode('ascii') except UnicodeEncodeError: raise appinfo_errors.InvalidHttpHeaderName( 'HTTP header values must not contain non-ASCII data') # HTTP headers are case-insensitive. name = name.lower() if not _HTTP_TOKEN_RE.match(name): raise appinfo_errors.InvalidHttpHeaderName( 'An HTTP header must be a non-empty RFC 2616 token.') # Request headers shouldn't be used in responses. if name in _HTTP_REQUEST_HEADERS: raise appinfo_errors.InvalidHttpHeaderName( '%r can only be used in HTTP requests, not responses.' % original_name) # Make sure that none of the reserved prefixes is used. if name.startswith('x-appengine'): raise appinfo_errors.InvalidHttpHeaderName( 'HTTP header names that begin with X-Appengine are reserved.') if wsgiref.util.is_hop_by_hop(name): raise appinfo_errors.InvalidHttpHeaderName( 'Only use end-to-end headers may be used. See RFC 2616 section' ' 13.5.1.') if name in HttpHeadersDict.DISALLOWED_HEADERS: raise appinfo_errors.InvalidHttpHeaderName( '%s is a disallowed header.' % name) return original_name class ValueValidator(validation.Validator): """Ensures that values in `HttpHeadersDict` are valid. An instance is used as `HttpHeadersDict`'s `VALUE_VALIDATOR`. """ def Validate(self, value, key=None): """Returns a value, or raises an exception if the value is invalid. According to `RFC 2616 section 4.2`_ header field values must consist "of either *TEXT or combinations of token, separators, and quoted-string":: TEXT = <any OCTET except CTLs, but including LWS> Args: value: HTTP header field value. key: HTTP header field name. Returns: A value argument. Raises: appinfo_errors.InvalidHttpHeaderValue: An argument cannot be used as an HTTP header value. .. _RFC 2616, section 4.2: https://www.ietf.org/rfc/rfc2616.txt """ # Make sure only ASCII data is used. if isinstance(value, unicode): try: value = value.encode('ascii') except UnicodeEncodeError: raise appinfo_errors.InvalidHttpHeaderValue( 'HTTP header values must not contain non-ASCII data') # HTTP headers are case-insensitive. key = key.lower() # TODO(user): This is the same check that appserver performs, but it # could be stronger. e.g. `"foo` should not be considered valid, because # HTTP does not allow unclosed double quote marks in header values, per # RFC 2616 section 4.2. printable = set(string.printable[:-5]) if not all(char in printable for char in value): raise appinfo_errors.InvalidHttpHeaderValue( 'HTTP header field values must consist of printable characters.') HttpHeadersDict.ValueValidator.AssertHeaderNotTooLong(key, value) return value @staticmethod def AssertHeaderNotTooLong(name, value): header_length = len('%s: %s\r\n' % (name, value)) # The `>=` operator here is a little counter-intuitive. The reason for it # is that I'm trying to follow the # `HTTPProto::IsValidHeader` implementation. if header_length >= HttpHeadersDict.MAX_HEADER_LENGTH: # If execution reaches this point, it generally means the header is too # long, but there are a few exceptions, which are listed in the next # dict. try: max_len = HttpHeadersDict.MAX_HEADER_VALUE_LENGTHS[name] except KeyError: raise appinfo_errors.InvalidHttpHeaderValue( 'HTTP header (name + value) is too long.') # We are dealing with one of the exceptional headers with larger maximum # value lengths. if len(value) > max_len: insert = name, len(value), max_len raise appinfo_errors.InvalidHttpHeaderValue( '%r header value has length %d, which exceed the maximum allowed,' ' %d.' % insert) KEY_VALIDATOR = KeyValidator() VALUE_VALIDATOR = ValueValidator() def Get(self, header_name): """Gets a header value. Args: header_name: HTTP header name to look for. Returns: A header value that corresponds to `header_name`. If more than one such value is in `self`, one of the values is selected arbitrarily and returned. The selection is not deterministic. """ for name in self: if name.lower() == header_name.lower(): return self[name] # TODO(user): Perhaps, this functionality should be part of # `validation.ValidatedDict`. def __setitem__(self, key, value): is_addition = self.Get(key) is None if is_addition and len(self) >= self.MAX_LEN: raise appinfo_errors.TooManyHttpHeaders( 'Tried to add another header when the current set of HTTP headers' ' already has the maximum allowed number of headers, %d.' % HttpHeadersDict.MAX_LEN) super(HttpHeadersDict, self).__setitem__(key, value) class URLMap(HandlerBase): """Maps from URLs to handlers. This class acts similar to a union type. Its purpose is to describe a mapping between a set of URLs and their handlers. The handler type of a given instance is determined by which `handler-id` attribute is used. Every mapping can have one and only one handler type. Attempting to use more than one `handler-id` attribute will cause an `UnknownHandlerType` to be raised during validation. Failure to provide any `handler-id` attributes will cause `MissingHandlerType` to be raised during validation. The regular expression used by the `url` field will be used to match against the entire URL path and query string of the request; therefore, partial maps will not be matched. Specifying a `url`, such as `/admin`, is the same as matching against the regular expression `^/admin$`. Don't start your matching `url` with `^` or end them with `$`. These regular expressions won't be accepted and will raise `ValueError`. Attributes: login: Specifies whether a user should be logged in to access a URL. The default value of this argument is `optional`. secure: Sets the restriction on the protocol that can be used to serve this URL or handler. This value can be set to `HTTP`, `HTTPS` or `either`. url: Specifies a regular expression that is used to fully match against the request URLs path. See the "Special cases" section of this document to learn more. static_files: Specifies the handler ID attribute that maps `url` to the appropriate file. You can specify regular expression backreferences to the string matched to `url`. upload: Specifies the regular expression that is used by the application configuration program to determine which files are uploaded as blobs. Because it is difficult to determine this information using just the `url` and `static_files` arguments, this attribute must be included. This attribute is required when you define a `static_files` mapping. A matching file name must fully match against the `upload` regular expression, similar to how `url` is matched against the request path. Do not begin the `upload` argument with the `^` character or end it with the `$` character. static_dir: Specifies the handler ID that maps the provided `url` to a sub-directory within the application directory. See "Special cases." mime_type: When used with `static_files` and `static_dir`, this argument specifies that the MIME type of the files that are served from those directories must be overridden with this value. script: Specifies the handler ID that maps URLs to a script handler within the application directory that will run using CGI. position: Used in `AppInclude` objects to specify whether a handler should be inserted at the beginning of the primary handler list or at the end. If `tail` is specified, the handler is inserted at the end; otherwise, the handler is inserted at the beginning. This behavior implies that `head` is the effective default. expiration: When used with static files and directories, this argument specifies the time delta to use for cache expiration. This argument should use the following format: `4d 5h 30m 15s`, where each letter signifies days, hours, minutes, and seconds, respectively. The `s` for "seconds" can be omitted. Only one amount must be specified, though combining multiple amounts is optional. The following list contains examples of values that are acceptable: `10`, `1d 6h`, `1h 30m`, `7d 7d 7d`, `5m 30`. api_endpoint: Specifies the handler ID that identifies an endpoint as an API endpoint. Calls that terminate here will be handled by the API serving framework. Special cases: When defining a `static_dir` handler, do not use a regular expression in the `url` attribute. Both the `url` and `static_dir` attributes are automatically mapped to these equivalents:: <url>/(.*) <static_dir>/\1 For example, this declaration...:: url: /images static_dir: images_folder ...is equivalent to this `static_files` declaration:: url: /images/(.*) static_files: images_folder/\1 upload: images_folder/(.*) """ ATTRIBUTES = { # Static file fields. # File mappings are allowed to have regex back references. HANDLER_STATIC_FILES: validation.Optional(_FILES_REGEX), UPLOAD: validation.Optional(_FILES_REGEX), APPLICATION_READABLE: validation.Optional(bool), # Static directory fields. HANDLER_STATIC_DIR: validation.Optional(_FILES_REGEX), # Used in both static mappings. MIME_TYPE: validation.Optional(str), EXPIRATION: validation.Optional(_EXPIRATION_REGEX), REQUIRE_MATCHING_FILE: validation.Optional(bool), HTTP_HEADERS: validation.Optional(HttpHeadersDict), # Python/CGI fields. POSITION: validation.Optional(validation.Options(POSITION_HEAD, POSITION_TAIL)), HANDLER_API_ENDPOINT: validation.Optional(validation.Options( (ON, ON_ALIASES), (OFF, OFF_ALIASES))), REDIRECT_HTTP_RESPONSE_CODE: validation.Optional(validation.Options( '301', '302', '303', '307')), } ATTRIBUTES.update(HandlerBase.ATTRIBUTES) COMMON_FIELDS = set([ URL, LOGIN, AUTH_FAIL_ACTION, SECURE, REDIRECT_HTTP_RESPONSE_CODE]) # The keys of this map are attributes which can be used to identify each # mapping type in addition to the handler identifying attribute itself. ALLOWED_FIELDS = { HANDLER_STATIC_FILES: (MIME_TYPE, UPLOAD, EXPIRATION, REQUIRE_MATCHING_FILE, HTTP_HEADERS, APPLICATION_READABLE), HANDLER_STATIC_DIR: (MIME_TYPE, EXPIRATION, REQUIRE_MATCHING_FILE, HTTP_HEADERS, APPLICATION_READABLE), HANDLER_SCRIPT: (POSITION), HANDLER_API_ENDPOINT: (POSITION, SCRIPT), } def GetHandler(self): """Gets the handler for a mapping. Returns: The value of the handler, as determined by the handler ID attribute. """ return getattr(self, self.GetHandlerType()) def GetHandlerType(self): """Gets the handler type of a mapping. Returns: The handler type as determined by which handler ID attribute is set. Raises: UnknownHandlerType: If none of the handler ID attributes are set. UnexpectedHandlerAttribute: If an unexpected attribute is set for the discovered handler type. HandlerTypeMissingAttribute: If the handler is missing a required attribute for its handler type. MissingHandlerAttribute: If a URL handler is missing an attribute. """ # Special case for the `api_endpoint` handler as it may have a `script` # attribute as well. if getattr(self, HANDLER_API_ENDPOINT) is not None: # Matched id attribute, break out of loop. mapping_type = HANDLER_API_ENDPOINT else: for id_field in URLMap.ALLOWED_FIELDS.iterkeys(): # Attributes always exist as defined by ATTRIBUTES. if getattr(self, id_field) is not None: # Matched id attribute, break out of loop. mapping_type = id_field break else: # If no mapping type is found raise exception. raise appinfo_errors.UnknownHandlerType( 'Unknown url handler type.\n%s' % str(self)) allowed_fields = URLMap.ALLOWED_FIELDS[mapping_type] # Make sure that none of the set attributes on this handler # are not allowed for the discovered handler type. for attribute in self.ATTRIBUTES.iterkeys(): if (getattr(self, attribute) is not None and not (attribute in allowed_fields or attribute in URLMap.COMMON_FIELDS or attribute == mapping_type)): raise appinfo_errors.UnexpectedHandlerAttribute( 'Unexpected attribute "%s" for mapping type %s.' % (attribute, mapping_type)) # Also check that static file map has 'upload'. # NOTE: Add REQUIRED_FIELDS along with ALLOWED_FIELDS if any more # exceptional cases arise. if mapping_type == HANDLER_STATIC_FILES and not self.upload: raise appinfo_errors.MissingHandlerAttribute( 'Missing "%s" attribute for URL "%s".' % (UPLOAD, self.url)) return mapping_type def CheckInitialized(self): """Adds additional checking to make sure a handler has correct fields. In addition to normal `ValidatedCheck`, this method calls `GetHandlerType`, which validates whether all of the handler fields are configured properly. Raises: UnknownHandlerType: If none of the handler ID attributes are set. UnexpectedHandlerAttribute: If an unexpected attribute is set for the discovered handler type. HandlerTypeMissingAttribute: If the handler is missing a required attribute for its handler type. ContentTypeSpecifiedMultipleTimes: If `mime_type` is inconsistent with `http_headers`. """ super(URLMap, self).CheckInitialized() if self.GetHandlerType() in (STATIC_DIR, STATIC_FILES): # re how headers that affect caching interact per RFC 2616: # # Section 13.1.3 says that when there is "apparent conflict between # [Cache-Control] header values, the most restrictive interpretation is # applied". # # Section 14.21 says that Cache-Control: max-age overrides Expires # headers. # # Section 14.32 says that Pragma: no-cache has no meaning in responses; # therefore, we do not need to be concerned about that header here. self.AssertUniqueContentType() def AssertUniqueContentType(self): """Makes sure that `self.http_headers` is consistent with `self.mime_type`. This method assumes that `self` is a static handler, either `self.static_dir` or `self.static_files`. You cannot specify `None`. Raises: appinfo_errors.ContentTypeSpecifiedMultipleTimes: If `self.http_headers` contains a `Content-Type` header, and `self.mime_type` is set. For example, the following configuration would be rejected:: handlers: - url: /static static_dir: static mime_type: text/html http_headers: content-type: text/html As this example shows, a configuration will be rejected when `http_headers` and `mime_type` specify a content type, even when they specify the same content type. """ used_both_fields = self.mime_type and self.http_headers if not used_both_fields: return content_type = self.http_headers.Get('Content-Type') if content_type is not None: raise appinfo_errors.ContentTypeSpecifiedMultipleTimes( 'http_header specified a Content-Type header of %r in a handler that' ' also specified a mime_type of %r.' % (content_type, self.mime_type)) def FixSecureDefaults(self): """Forces omitted `secure` handler fields to be set to 'secure: optional'. The effect is that `handler.secure` is never equal to the nominal default. """ # See http://b/issue?id=2073962. if self.secure == SECURE_DEFAULT: self.secure = SECURE_HTTP_OR_HTTPS def WarnReservedURLs(self): """Generates a warning for reserved URLs. See the `version element documentation`_ to learn which URLs are reserved. .. _`version element documentation`: https://cloud.google.com/appengine/docs/python/config/appref#syntax """ if self.url == '/form': logging.warning( 'The URL path "/form" is reserved and will not be matched.') def ErrorOnPositionForAppInfo(self): """Raises an error if position is specified outside of AppInclude objects. Raises: PositionUsedInAppYamlHandler: If the `position` attribute is specified for an `app.yaml` file instead of an `include.yaml` file. """ if self.position: raise appinfo_errors.PositionUsedInAppYamlHandler( 'The position attribute was specified for this handler, but this is ' 'an app.yaml file. Position attribute is only valid for ' 'include.yaml files.') class AdminConsolePage(validation.Validated): """Class representing the admin console page in an `AdminConsole` object.""" ATTRIBUTES = { URL: _URL_REGEX, NAME: _PAGE_NAME_REGEX, } class AdminConsole(validation.Validated): """Class representing an admin console directives in application info.""" ATTRIBUTES = { PAGES: validation.Optional(validation.Repeated(AdminConsolePage)), } @classmethod def Merge(cls, adminconsole_one, adminconsole_two): """Returns the result of merging two `AdminConsole` objects.""" # Right now this method only needs to worry about the pages attribute of # `AdminConsole`. However, since this object is valid as part of an # `AppInclude` object, any objects added to `AdminConsole` in the future # must also be merged. Rather than burying the merge logic in the process # of merging two `AppInclude` objects, it is centralized here. If you modify # the `AdminConsole` object to support other objects, you must also modify # this method to support merging those additional objects. if not adminconsole_one or not adminconsole_two: return adminconsole_one or adminconsole_two if adminconsole_one.pages: if adminconsole_two.pages: adminconsole_one.pages.extend(adminconsole_two.pages) else: adminconsole_one.pages = adminconsole_two.pages return adminconsole_one class ErrorHandlers(validation.Validated): """Class representing error handler directives in application info.""" ATTRIBUTES = { ERROR_CODE: validation.Optional(_ERROR_CODE_REGEX), FILE: _FILES_REGEX, MIME_TYPE: validation.Optional(str), } class BuiltinHandler(validation.Validated): """Class representing built-in handler directives in application info. This class permits arbitrary keys, but their values must be described by the `validation.Options` object that is returned by `ATTRIBUTES`. """ # `Validated` is a somewhat complicated class. It actually maintains two # dictionaries: the `ATTRIBUTES` dictionary and an internal `__dict__` object # that maintains key value pairs. # # The normal flow is that a key must exist in `ATTRIBUTES` in order to be able # to be inserted into `__dict__`. So that's why we force the # `ATTRIBUTES.__contains__` method to always return `True`; we want to accept # any attribute. Once the method returns `True`, then its value will be # fetched, which returns `ATTRIBUTES[key]`; that's why we override # `ATTRIBUTES.__getitem__` to return the validator for a `BuiltinHandler` # object. # # This is where it gets tricky. Once the validator object is returned, then # `__dict__[key]` is set to the validated object for that key. However, when # `CheckInitialized()` is called, it uses iteritems from `ATTRIBUTES` in order # to generate a list of keys to validate. This expects the `BuiltinHandler` # instance to contain every item in `ATTRIBUTES`, which contains every # built-in name seen so far by any `BuiltinHandler`. To work around this, # `__getattr__` always returns `None` for public attribute names. Note that # `__getattr__` is only called if `__dict__` does not contain the key. Thus, # the single built-in value set is validated. # # What's important to know is that in this implementation, only the keys in # `ATTRIBUTES` matter, and only the values in `__dict__` matter. The values in # `ATTRIBUTES` and the keys in `__dict__` are both ignored. The key in # `__dict__` is only used for the `__getattr__` function, but to find out what # keys are available, only `ATTRIBUTES` is ever read. class DynamicAttributes(dict): """Provides a dictionary object that will always claim to have a key. This dictionary returns a fixed value for any `get` operation. The fixed value that you pass in as a constructor parameter should be a `validation.Validated` object. """ def __init__(self, return_value, **parameters): self.__return_value = return_value dict.__init__(self, parameters) def __contains__(self, _): return True def __getitem__(self, _): return self.__return_value ATTRIBUTES = DynamicAttributes( validation.Optional(validation.Options((ON, ON_ALIASES), (OFF, OFF_ALIASES)))) def __init__(self, **attributes): """Ensures all BuiltinHandler objects at least use the `default` attribute. Args: **attributes: The attributes that you want to use. """ self.builtin_name = '' super(BuiltinHandler, self).__init__(**attributes) def __setattr__(self, key, value): """Allows `ATTRIBUTES.iteritems()` to return set of items that have values. Whenever `validate` calls `iteritems()`, it is always called on `ATTRIBUTES`, not on `__dict__`, so this override is important to ensure that functions such as `ToYAML()` return the correct set of keys. Args: key: The key for the `iteritem` that you want to set. value: The value for the `iteritem` that you want to set. Raises: MultipleBuiltinsSpecified: If more than one built-in is defined in a list element. """ if key == 'builtin_name': object.__setattr__(self, key, value) elif not self.builtin_name: self.ATTRIBUTES[key] = '' self.builtin_name = key super(BuiltinHandler, self).__setattr__(key, value) else: # Only the name of a built-in handler is currently allowed as an attribute # so the object can only be set once. If later attributes are desired of # a different form, this clause should be used to catch whenever more than # one object does not match a predefined attribute name. raise appinfo_errors.MultipleBuiltinsSpecified( 'More than one builtin defined in list element. Each new builtin ' 'should be prefixed by "-".') def __getattr__(self, key): if key.startswith('_'): # `__getattr__` is only called for attributes that don't exist in the # instance dictionary. raise AttributeError return None def ToDict(self): """Converts a `BuiltinHander` object to a dictionary. Returns: A dictionary in `{builtin_handler_name: on/off}` form """ return {self.builtin_name: getattr(self, self.builtin_name)} @classmethod def IsDefined(cls, builtins_list, builtin_name): """Finds if a builtin is defined in a given list of builtin handler objects. Args: builtins_list: A list of `BuiltinHandler` objects, typically `yaml.builtins`. builtin_name: The name of the built-in that you want to determine whether it is defined. Returns: `True` if `builtin_name` is defined by a member of `builtins_list`; all other results return `False`. """ for b in builtins_list: if b.builtin_name == builtin_name: return True return False @classmethod def ListToTuples(cls, builtins_list): """Converts a list of `BuiltinHandler` objects. Args: builtins_list: A list of `BuildinHandler` objects to convert to tuples. Returns: A list of `(name, status)` that is derived from the `BuiltinHandler` objects. """ return [(b.builtin_name, getattr(b, b.builtin_name)) for b in builtins_list] @classmethod def Validate(cls, builtins_list, runtime=None): """Verifies that all `BuiltinHandler` objects are valid and not repeated. Args: builtins_list: A list of `BuiltinHandler` objects to validate. runtime: If you specify this argument, warnings are generated for built-ins that have been deprecated in the given runtime. Raises: InvalidBuiltinFormat: If the name of a `BuiltinHandler` object cannot be determined. DuplicateBuiltinsSpecified: If a `BuiltinHandler` name is used more than once in the list. """ seen = set() for b in builtins_list: if not b.builtin_name: raise appinfo_errors.InvalidBuiltinFormat( 'Name of builtin for list object %s could not be determined.' % b) if b.builtin_name in seen: raise appinfo_errors.DuplicateBuiltinsSpecified( 'Builtin %s was specified more than once in one yaml file.' % b.builtin_name) # This checking must be done here rather than in `apphosting/ext/builtins` # because `apphosting/ext/builtins` cannot differentiate between between # built-ins specified in `app.yaml` versus ones added in a built-in # include. There is a hole here where warnings are not generated for # deprecated built-ins that appear in user-created include files. if b.builtin_name == 'datastore_admin' and runtime == 'python': logging.warning( 'The datastore_admin builtin is deprecated. You can find ' 'information on how to enable it through the Administrative ' 'Console here: ' 'http://developers.google.com/appengine/docs/adminconsole/' 'datastoreadmin.html') elif b.builtin_name == 'mapreduce' and runtime == 'python': logging.warning( 'The mapreduce builtin is deprecated. You can find more ' 'information on how to configure and use it here: ' 'http://developers.google.com/appengine/docs/python/dataprocessing/' 'overview.html') seen.add(b.builtin_name) class ApiConfigHandler(HandlerBase): """Class representing `api_config` handler directives in application info.""" ATTRIBUTES = HandlerBase.ATTRIBUTES ATTRIBUTES.update({ # Make `URL` and `SCRIPT` required for `api_config` stanza URL: validation.Regex(_URL_REGEX), HANDLER_SCRIPT: validation.Regex(_FILES_REGEX) }) class Library(validation.Validated): """Class representing the configuration of a single library.""" ATTRIBUTES = {'name': validation.Type(str), 'version': validation.Type(str)} def CheckInitialized(self): """Determines if the library configuration is not valid. Raises: appinfo_errors.InvalidLibraryName: If the specified library is not supported. appinfo_errors.InvalidLibraryVersion: If the specified library version is not supported. """ super(Library, self).CheckInitialized() if self.name not in _NAME_TO_SUPPORTED_LIBRARY: raise appinfo_errors.InvalidLibraryName( 'the library "%s" is not supported' % self.name) supported_library = _NAME_TO_SUPPORTED_LIBRARY[self.name] if self.version == 'latest': self.version = supported_library.latest_version elif self.version not in supported_library.supported_versions: raise appinfo_errors.InvalidLibraryVersion( ('%s version "%s" is not supported, ' + _USE_VERSION_FORMAT) % ( self.name, self.version, '", "'.join(supported_library.non_deprecated_versions))) elif self.version in supported_library.deprecated_versions: use_vers = '", "'.join(supported_library.non_deprecated_versions) logging.warning( '%s version "%s" is deprecated, ' + _USE_VERSION_FORMAT, self.name, self.version, use_vers) class CpuUtilization(validation.Validated): """Class representing the configuration of VM CPU utilization.""" ATTRIBUTES = { CPU_UTILIZATION_UTILIZATION: validation.Optional( validation.Range(1e-6, 1.0, float)), CPU_UTILIZATION_AGGREGATION_WINDOW_LENGTH_SEC: validation.Optional( validation.Range(1, sys.maxint)), } class EndpointsApiService(validation.Validated): """Class representing EndpointsApiService in AppInfoExternal.""" ATTRIBUTES = { ENDPOINTS_NAME: validation.Regex(_NON_WHITE_SPACE_REGEX), CONFIG_ID: validation.Regex(_NON_WHITE_SPACE_REGEX), } class AutomaticScaling(validation.Validated): """Class representing automatic scaling settings in AppInfoExternal.""" ATTRIBUTES = { MINIMUM_IDLE_INSTANCES: validation.Optional(_IDLE_INSTANCES_REGEX), MAXIMUM_IDLE_INSTANCES: validation.Optional(_IDLE_INSTANCES_REGEX), MINIMUM_PENDING_LATENCY: validation.Optional(_PENDING_LATENCY_REGEX), MAXIMUM_PENDING_LATENCY: validation.Optional(_PENDING_LATENCY_REGEX), MAXIMUM_CONCURRENT_REQUEST: validation.Optional( _CONCURRENT_REQUESTS_REGEX), # Attributes for VM-based AutomaticScaling. MIN_NUM_INSTANCES: validation.Optional(validation.Range(1, sys.maxint)), MAX_NUM_INSTANCES: validation.Optional(validation.Range(1, sys.maxint)), COOL_DOWN_PERIOD_SEC: validation.Optional( validation.Range(60, sys.maxint, int)), CPU_UTILIZATION: validation.Optional(CpuUtilization), TARGET_NETWORK_SENT_BYTES_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_NETWORK_SENT_PACKETS_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_NETWORK_RECEIVED_BYTES_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_NETWORK_RECEIVED_PACKETS_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_DISK_WRITE_BYTES_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_DISK_WRITE_OPS_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_DISK_READ_BYTES_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_DISK_READ_OPS_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_REQUEST_COUNT_PER_SEC: validation.Optional(validation.Range(1, sys.maxint)), TARGET_CONCURRENT_REQUESTS: validation.Optional(validation.Range(1, sys.maxint)), } class ManualScaling(validation.Validated): """Class representing manual scaling settings in AppInfoExternal.""" ATTRIBUTES = { INSTANCES: validation.Regex(_INSTANCES_REGEX), } class BasicScaling(validation.Validated): """Class representing basic scaling settings in AppInfoExternal.""" ATTRIBUTES = { MAX_INSTANCES: validation.Regex(_INSTANCES_REGEX), IDLE_TIMEOUT: validation.Optional(_IDLE_TIMEOUT_REGEX), } class RuntimeConfig(validation.ValidatedDict): """Class for "vanilla" runtime configuration. Fields used vary by runtime, so validation is delegated to the per-runtime build processes. These are intended to be used during Dockerfile generation, not after VM boot. """ KEY_VALIDATOR = validation.Regex('[a-zA-Z_][a-zA-Z0-9_]*') VALUE_VALIDATOR = str class VmSettings(validation.ValidatedDict): """Class for VM settings. The settings are not further validated here. The settings are validated on the server side. """ KEY_VALIDATOR = validation.Regex('[a-zA-Z_][a-zA-Z0-9_]*') VALUE_VALIDATOR = str @classmethod def Merge(cls, vm_settings_one, vm_settings_two): """Merges two `VmSettings` instances. If a variable is specified by both instances, the value from `vm_settings_one` is used. Args: vm_settings_one: The first `VmSettings` instance, or `None`. vm_settings_two: The second `VmSettings` instance, or `None`. Returns: The merged `VmSettings` instance, or `None` if both input instances are `None` or empty. """ # Note that `VmSettings.copy()` results in a dict. result_vm_settings = (vm_settings_two or {}).copy() # TODO(user): Apply merge logic when feature is fully defined. # For now, we will merge the two dict and `vm_settings_one` will win # if key collides. result_vm_settings.update(vm_settings_one or {}) return VmSettings(**result_vm_settings) if result_vm_settings else None class BetaSettings(VmSettings): """Class for Beta (internal or unreleased) settings. This class is meant to replace `VmSettings` eventually. Note: All new beta settings must be registered in `shared_constants.py`. These settings are not validated further here. The settings are validated on the server side. """ @classmethod def Merge(cls, beta_settings_one, beta_settings_two): """Merges two `BetaSettings` instances. Args: beta_settings_one: The first `BetaSettings` instance, or `None`. beta_settings_two: The second `BetaSettings` instance, or `None`. Returns: The merged `BetaSettings` instance, or `None` if both input instances are `None` or empty. """ merged = VmSettings.Merge(beta_settings_one, beta_settings_two) return BetaSettings(**merged.ToDict()) if merged else None class EnvironmentVariables(validation.ValidatedDict): """Class representing a mapping of environment variable key/value pairs.""" KEY_VALIDATOR = validation.Regex('[a-zA-Z_][a-zA-Z0-9_]*') VALUE_VALIDATOR = str @classmethod def Merge(cls, env_variables_one, env_variables_two): """Merges two `EnvironmentVariables` instances. If a variable is specified by both instances, the value from `env_variables_two` is used. Args: env_variables_one: The first `EnvironmentVariables` instance or `None`. env_variables_two: The second `EnvironmentVariables` instance or `None`. Returns: The merged `EnvironmentVariables` instance, or `None` if both input instances are `None` or empty. """ # Note that `EnvironmentVariables.copy()` results in a dict. result_env_variables = (env_variables_one or {}).copy() result_env_variables.update(env_variables_two or {}) return (EnvironmentVariables(**result_env_variables) if result_env_variables else None) def ValidateSourceReference(ref): """Determines if a source reference is valid. Args: ref: A source reference in the following format: `[repository_uri#]revision`. Raises: ValidationError: If the reference is malformed. """ repo_revision = ref.split('#', 1) revision_id = repo_revision[-1] if not re.match(SOURCE_REVISION_RE_STRING, revision_id): raise validation.ValidationError('Bad revision identifier: %s' % revision_id) if len(repo_revision) == 2: uri = repo_revision[0] if not re.match(SOURCE_REPO_RE_STRING, uri): raise validation.ValidationError('Bad repository URI: %s' % uri) def ValidateCombinedSourceReferencesString(source_refs): """Determines if `source_refs` contains a valid list of source references. Args: source_refs: A multi-line string containing one source reference per line. Raises: ValidationError: If the reference is malformed. """ if len(source_refs) > SOURCE_REFERENCES_MAX_SIZE: raise validation.ValidationError( 'Total source reference(s) size exceeds the limit: %d > %d' % ( len(source_refs), SOURCE_REFERENCES_MAX_SIZE)) for ref in source_refs.splitlines(): ValidateSourceReference(ref.strip()) class HealthCheck(validation.Validated): """Class representing the health check configuration.""" ATTRIBUTES = { ENABLE_HEALTH_CHECK: validation.Optional(validation.TYPE_BOOL), CHECK_INTERVAL_SEC: validation.Optional(validation.Range(0, sys.maxint)), TIMEOUT_SEC: validation.Optional(validation.Range(0, sys.maxint)), UNHEALTHY_THRESHOLD: validation.Optional(validation.Range(0, sys.maxint)), HEALTHY_THRESHOLD: validation.Optional(validation.Range(0, sys.maxint)), RESTART_THRESHOLD: validation.Optional(validation.Range(0, sys.maxint)), HOST: validation.Optional(validation.TYPE_STR)} class VmHealthCheck(HealthCheck): """Class representing the configuration of the VM health check. Note: This class is deprecated and will be removed in a future release. Use `HealthCheck` instead. """ pass class Volume(validation.Validated): """Class representing the configuration of a volume.""" ATTRIBUTES = { VOLUME_NAME: validation.TYPE_STR, SIZE_GB: validation.TYPE_FLOAT, VOLUME_TYPE: validation.TYPE_STR, } class Resources(validation.Validated): """Class representing the configuration of VM resources.""" ATTRIBUTES = { CPU: validation.Optional(validation.TYPE_FLOAT), MEMORY_GB: validation.Optional(validation.TYPE_FLOAT), DISK_SIZE_GB: validation.Optional(validation.TYPE_INT), VOLUMES: validation.Optional(validation.Repeated(Volume)) } class Network(validation.Validated): """Class representing the VM network configuration.""" ATTRIBUTES = { # A list of port mappings in the form 'port' or 'external:internal'. FORWARDED_PORTS: validation.Optional(validation.Repeated(validation.Regex( '[0-9]+(:[0-9]+)?(/(udp|tcp))?'))), INSTANCE_TAG: validation.Optional(validation.Regex( GCE_RESOURCE_NAME_REGEX)), NETWORK_NAME: validation.Optional(validation.Regex( GCE_RESOURCE_NAME_REGEX)), SUBNETWORK_NAME: validation.Optional(validation.Regex( GCE_RESOURCE_NAME_REGEX)), } class AppInclude(validation.Validated): """Class representing the contents of an included `app.yaml` file. This class is used for both `builtins` and `includes` directives. """ # TODO(user): It probably makes sense to have a scheme where we do a # deep-copy of fields from `AppInfoExternal` when setting the `ATTRIBUTES` # here. Right now it's just copypasta. ATTRIBUTES = { BUILTINS: validation.Optional(validation.Repeated(BuiltinHandler)), INCLUDES: validation.Optional(validation.Type(list)), HANDLERS: validation.Optional(validation.Repeated(URLMap), default=[]), ADMIN_CONSOLE: validation.Optional(AdminConsole), MANUAL_SCALING: validation.Optional(ManualScaling), VM: validation.Optional(bool), VM_SETTINGS: validation.Optional(VmSettings), BETA_SETTINGS: validation.Optional(BetaSettings), ENV_VARIABLES: validation.Optional(EnvironmentVariables), SKIP_FILES: validation.RegexStr(default=SKIP_NO_FILES), # TODO(user): add `LIBRARIES` here when we have a good story for # handling contradictory library requests. } @classmethod def MergeManualScaling(cls, appinclude_one, appinclude_two): """Takes the greater of `<manual_scaling.instances>` from the arguments. `appinclude_one` is mutated to be the merged result in this process. Also, this function must be updated if `ManualScaling` gets additional fields. Args: appinclude_one: The first object to merge. The object must have a `manual_scaling` field that contains a `ManualScaling()`. appinclude_two: The second object to merge. The object must have a `manual_scaling` field that contains a `ManualScaling()`. Returns: An object that is the result of merging `appinclude_one.manual_scaling.instances` and `appinclude_two.manual_scaling.instances`; this is returned as a revised `appinclude_one` object after the mutations are complete. """ def _Instances(appinclude): """Determines the number of `manual_scaling.instances` sets. Args: appinclude: The include for which you want to determine the number of `manual_scaling.instances` sets. Returns: The number of instances as an integer, or `None`. """ if appinclude.manual_scaling: if appinclude.manual_scaling.instances: return int(appinclude.manual_scaling.instances) return None # We only want to mutate a param if at least one of the given # arguments has manual_scaling.instances set. instances = max(_Instances(appinclude_one), _Instances(appinclude_two)) if instances is not None: appinclude_one.manual_scaling = ManualScaling(instances=str(instances)) return appinclude_one @classmethod def _CommonMergeOps(cls, one, two): """This function performs common merge operations. Args: one: The first object that you want to merge. two: The second object that you want to merge. Returns: An updated `one` object containing all merged data. """ # Merge `ManualScaling`. AppInclude.MergeManualScaling(one, two) # Merge `AdminConsole` objects. one.admin_console = AdminConsole.Merge(one.admin_console, two.admin_console) # Preserve the specific value of `one.vm` (`None` or `False`) when neither # are `True`. one.vm = two.vm or one.vm # Merge `VmSettings` objects. one.vm_settings = VmSettings.Merge(one.vm_settings, two.vm_settings) # Merge `BetaSettings` objects. if hasattr(one, 'beta_settings'): one.beta_settings = BetaSettings.Merge(one.beta_settings, two.beta_settings) # Merge `EnvironmentVariables` objects. The values in `two.env_variables` # override the ones in `one.env_variables` in case of conflict. one.env_variables = EnvironmentVariables.Merge(one.env_variables, two.env_variables) one.skip_files = cls.MergeSkipFiles(one.skip_files, two.skip_files) return one @classmethod def MergeAppYamlAppInclude(cls, appyaml, appinclude): """Merges an `app.yaml` file with referenced builtins/includes. Args: appyaml: The `app.yaml` file that you want to update with `appinclude`. appinclude: The includes that you want to merge into `appyaml`. Returns: An updated `app.yaml` file that includes the directives you specified in `appinclude`. """ # All merge operations should occur in this function or in functions # referenced from this one. That makes it much easier to understand what # goes wrong when included files are not merged correctly. if not appinclude: return appyaml # Merge handlers while paying attention to `position` attribute. if appinclude.handlers: tail = appyaml.handlers or [] appyaml.handlers = [] for h in appinclude.handlers: if not h.position or h.position == 'head': appyaml.handlers.append(h) else: tail.append(h) # Get rid of the `position` attribute since we no longer need it, and is # technically invalid to include in the resulting merged `app.yaml` file # that will be sent when deploying the application. h.position = None appyaml.handlers.extend(tail) appyaml = cls._CommonMergeOps(appyaml, appinclude) appyaml.NormalizeVmSettings() return appyaml @classmethod def MergeAppIncludes(cls, appinclude_one, appinclude_two): """Merges the non-referential state of the provided `AppInclude`. That is, `builtins` and `includes` directives are not preserved, but any static objects are copied into an aggregate `AppInclude` object that preserves the directives of both provided `AppInclude` objects. `appinclude_one` is updated to be the merged result in this process. Args: appinclude_one: First `AppInclude` to merge. appinclude_two: Second `AppInclude` to merge. Returns: `AppInclude` object that is the result of merging the static directives of `appinclude_one` and `appinclude_two`. An updated version of `appinclude_one` is returned. """ # If one or both `appinclude` objects were `None`, return the object that # was not `None` or return `None`. if not appinclude_one or not appinclude_two: return appinclude_one or appinclude_two # Now, both `appincludes` are non-`None`. # Merge handlers. if appinclude_one.handlers: if appinclude_two.handlers: appinclude_one.handlers.extend(appinclude_two.handlers) else: appinclude_one.handlers = appinclude_two.handlers return cls._CommonMergeOps(appinclude_one, appinclude_two) @staticmethod def MergeSkipFiles(skip_files_one, skip_files_two): """Merges two `skip_files` directives. Args: skip_files_one: The first `skip_files` element that you want to merge. skip_files_two: The second `skip_files` element that you want to merge. Returns: A list of regular expressions that are merged. """ if skip_files_one == SKIP_NO_FILES: return skip_files_two if skip_files_two == SKIP_NO_FILES: return skip_files_one return validation.RegexStr().Validate( [skip_files_one, skip_files_two], SKIP_FILES) # We exploit the handling of RegexStr where regex properties can be # specified as a list of regexes that are then joined with |. class AppInfoExternal(validation.Validated): """Class representing users application info. This class is passed to a `yaml_object` builder to provide the validation for the application information file format parser. Attributes: application: Unique identifier for application. version: Application's major version. runtime: Runtime used by application. api_version: Which version of APIs to use. source_language: Optional specification of the source language. For example, you could specify `php-quercus` if this is a Java app that was generated from PHP source using Quercus. handlers: List of URL handlers. default_expiration: Default time delta to use for cache expiration for all static files, unless they have their own specific `expiration` set. See the documentation for the `URLMap.expiration` field for more information. skip_files: A regular expression object. Files that match this regular expression will not be uploaded by `appcfg.py`. For example:: skip_files: | .svn.*| #.*# nobuild_files: A regular expression object. Files that match this regular expression will not be built into the app. This directive is valid for Go only. api_config: URL root and script or servlet path for enhanced API serving. """ ATTRIBUTES = { # Regular expressions for these attributes are defined in # //apphosting/base/id_util.cc. APPLICATION: validation.Optional(APPLICATION_RE_STRING), # An alias for `APPLICATION`. PROJECT: validation.Optional(APPLICATION_RE_STRING), MODULE: validation.Optional(MODULE_ID_RE_STRING), # `service` will replace `module` soon SERVICE: validation.Optional(MODULE_ID_RE_STRING), VERSION: validation.Optional(MODULE_VERSION_ID_RE_STRING), RUNTIME: validation.Optional(RUNTIME_RE_STRING), # A new `api_version` requires a release of the `dev_appserver`, so it # is ok to hardcode the version names here. API_VERSION: validation.Optional(API_VERSION_RE_STRING), # The App Engine environment to run this version in. (VM vs. non-VM, etc.) ENV: validation.Optional(ENV_RE_STRING), ENDPOINTS_API_SERVICE: validation.Optional(EndpointsApiService), # The SDK will use this for generated Dockerfiles ENTRYPOINT: validation.Optional(validation.Type(str)), RUNTIME_CONFIG: validation.Optional(RuntimeConfig), INSTANCE_CLASS: validation.Optional(_INSTANCE_CLASS_REGEX), SOURCE_LANGUAGE: validation.Optional( validation.Regex(SOURCE_LANGUAGE_RE_STRING)), AUTOMATIC_SCALING: validation.Optional(AutomaticScaling), MANUAL_SCALING: validation.Optional(ManualScaling), BASIC_SCALING: validation.Optional(BasicScaling), VM: validation.Optional(bool), VM_SETTINGS: validation.Optional(VmSettings), # Deprecated BETA_SETTINGS: validation.Optional(BetaSettings), VM_HEALTH_CHECK: validation.Optional(VmHealthCheck), # Deprecated HEALTH_CHECK: validation.Optional(HealthCheck), RESOURCES: validation.Optional(Resources), NETWORK: validation.Optional(Network), BUILTINS: validation.Optional(validation.Repeated(BuiltinHandler)), INCLUDES: validation.Optional(validation.Type(list)), HANDLERS: validation.Optional(validation.Repeated(URLMap), default=[]), LIBRARIES: validation.Optional(validation.Repeated(Library)), # TODO(arb): change to a regex when `validation.Repeated` supports it SERVICES: validation.Optional(validation.Repeated( validation.Regex(_SERVICE_RE_STRING))), DEFAULT_EXPIRATION: validation.Optional(_EXPIRATION_REGEX), SKIP_FILES: validation.RegexStr(default=DEFAULT_SKIP_FILES), NOBUILD_FILES: validation.RegexStr(default=DEFAULT_NOBUILD_FILES), DERIVED_FILE_TYPE: validation.Optional(validation.Repeated( validation.Options(JAVA_PRECOMPILED, PYTHON_PRECOMPILED))), ADMIN_CONSOLE: validation.Optional(AdminConsole), ERROR_HANDLERS: validation.Optional(validation.Repeated(ErrorHandlers)), BACKENDS: validation.Optional(validation.Repeated( backendinfo.BackendEntry)), THREADSAFE: validation.Optional(bool), DATASTORE_AUTO_ID_POLICY: validation.Optional( validation.Options(DATASTORE_ID_POLICY_LEGACY, DATASTORE_ID_POLICY_DEFAULT)), API_CONFIG: validation.Optional(ApiConfigHandler), CODE_LOCK: validation.Optional(bool), ENV_VARIABLES: validation.Optional(EnvironmentVariables), } def CheckInitialized(self): """Performs non-regular expression-based validation. The following are verified: - At least one URL mapping is provided in the URL mappers. - The number of URL mappers doesn't exceed `MAX_URL_MAPS`. - The major version does not contain the string `-dot-`. - If `api_endpoints` are defined, an `api_config` stanza must be defined. - If the `runtime` is `python27` and `threadsafe` is set, then no CGI handlers can be used. - The version name doesn't start with `BUILTIN_NAME_PREFIX`. - If `redirect_http_response_code` exists, it is in the list of valid 300s. - Module and service aren't both set. Services were formerly known as modules. Raises: DuplicateLibrary: If `library_name` is specified more than once. MissingURLMapping: If no `URLMap` object is present in the object. TooManyURLMappings: If there are too many `URLMap` entries. MissingApiConfig: If `api_endpoints` exists without an `api_config`. MissingThreadsafe: If `threadsafe` is not set but the runtime requires it. ThreadsafeWithCgiHandler: If the `runtime` is `python27`, `threadsafe` is set and CGI handlers are specified. TooManyScalingSettingsError: If more than one scaling settings block is present. RuntimeDoesNotSupportLibraries: If the libraries clause is used for a runtime that does not support it, such as `python25`. ModuleAndServiceDefined: If both `module` and `service` keywords are used. Services were formerly known as modules. """ super(AppInfoExternal, self).CheckInitialized() if self.runtime is None and not self.IsVm(): raise appinfo_errors.MissingRuntimeError( 'You must specify a "runtime" field for non-vm applications.') elif self.runtime is None: # Default optional to custom (we don't do that in attributes just so # we know that it's been defaulted) self.runtime = 'custom' if (not self.handlers and not self.builtins and not self.includes and not self.IsVm()): raise appinfo_errors.MissingURLMapping( 'No URLMap entries found in application configuration') if self.handlers and len(self.handlers) > MAX_URL_MAPS: raise appinfo_errors.TooManyURLMappings( 'Found more than %d URLMap entries in application configuration' % MAX_URL_MAPS) if self.service and self.module: raise appinfo_errors.ModuleAndServiceDefined( 'Cannot define both "module" and "service" in configuration') vm_runtime_python27 = ( self.runtime == 'vm' and (hasattr(self, 'vm_settings') and self.vm_settings and self.vm_settings.get('vm_runtime') == 'python27') or (hasattr(self, 'beta_settings') and self.beta_settings and self.beta_settings.get('vm_runtime') == 'python27')) if (self.threadsafe is None and (self.runtime == 'python27' or vm_runtime_python27)): raise appinfo_errors.MissingThreadsafe( 'threadsafe must be present and set to a true or false YAML value') if self.auto_id_policy == DATASTORE_ID_POLICY_LEGACY: datastore_auto_ids_url = ('http://developers.google.com/' 'appengine/docs/python/datastore/' 'entities#Kinds_and_Identifiers') appcfg_auto_ids_url = ('http://developers.google.com/appengine/docs/' 'python/config/appconfig#auto_id_policy') logging.warning( "You have set the datastore auto_id_policy to 'legacy'. It is " "recommended that you select 'default' instead.\n" "Legacy auto ids are deprecated. You can continue to allocate\n" "legacy ids manually using the allocate_ids() API functions.\n" "For more information see:\n" + datastore_auto_ids_url + '\n' + appcfg_auto_ids_url + '\n') if (hasattr(self, 'beta_settings') and self.beta_settings and self.beta_settings.get('source_reference')): ValidateCombinedSourceReferencesString( self.beta_settings.get('source_reference')) if self.libraries: if not (vm_runtime_python27 or self.runtime == 'python27'): raise appinfo_errors.RuntimeDoesNotSupportLibraries( 'libraries entries are only supported by the "python27" runtime') library_names = [library.name for library in self.libraries] for library_name in library_names: if library_names.count(library_name) > 1: raise appinfo_errors.DuplicateLibrary( 'Duplicate library entry for %s' % library_name) if self.version and self.version.find(ALTERNATE_HOSTNAME_SEPARATOR) != -1: raise validation.ValidationError( 'Version "%s" cannot contain the string "%s"' % ( self.version, ALTERNATE_HOSTNAME_SEPARATOR)) if self.version and self.version.startswith(BUILTIN_NAME_PREFIX): raise validation.ValidationError( ('Version "%s" cannot start with "%s" because it is a ' 'reserved version name prefix.') % (self.version, BUILTIN_NAME_PREFIX)) if self.handlers: api_endpoints = [handler.url for handler in self.handlers if handler.GetHandlerType() == HANDLER_API_ENDPOINT] if api_endpoints and not self.api_config: raise appinfo_errors.MissingApiConfig( 'An api_endpoint handler was specified, but the required ' 'api_config stanza was not configured.') if self.threadsafe and self.runtime == 'python27': # VMEngines can handle python25 handlers, so we don't include # vm_runtime_python27 in the if statement above. for handler in self.handlers: if (handler.script and (handler.script.endswith('.py') or '/' in handler.script)): raise appinfo_errors.ThreadsafeWithCgiHandler( 'threadsafe cannot be enabled with CGI handler: %s' % handler.script) if sum([bool(self.automatic_scaling), bool(self.manual_scaling), bool(self.basic_scaling)]) > 1: raise appinfo_errors.TooManyScalingSettingsError( "There may be only one of 'automatic_scaling', 'manual_scaling', " "or 'basic_scaling'.") def GetAllLibraries(self): """Returns a list of all `Library` instances active for this configuration. Returns: The list of active `Library` instances for this configuration. This includes directly-specified libraries as well as any required dependencies. """ if not self.libraries: return [] library_names = set(library.name for library in self.libraries) required_libraries = [] for library in self.libraries: for required_name, required_version in REQUIRED_LIBRARIES.get( (library.name, library.version), []): if required_name not in library_names: required_libraries.append(Library(name=required_name, version=required_version)) return [Library(**library.ToDict()) for library in self.libraries + required_libraries] def GetNormalizedLibraries(self): """Returns a list of normalized `Library` instances for this configuration. Returns: The list of active `Library` instances for this configuration. This includes directly-specified libraries, their required dependencies, and any libraries enabled by default. Any libraries with `latest` as their version will be replaced with the latest available version. """ libraries = self.GetAllLibraries() enabled_libraries = set(library.name for library in libraries) for library in _SUPPORTED_LIBRARIES: if library.default_version and library.name not in enabled_libraries: libraries.append(Library(name=library.name, version=library.default_version)) return libraries def ApplyBackendSettings(self, backend_name): """Applies settings from the indicated backend to the `AppInfoExternal`. Backend entries can contain directives that modify other parts of the `app.yaml` file, such as the `start` directive, which adds a handler for the start request. This method performs those modifications. Args: backend_name: The name of a backend that is defined in the `backends` directive. Raises: BackendNotFound: If the indicated backend was not listed in the `backends` directive. DuplicateBackend: If the backend is found more than once in the `backends` directive. """ if backend_name is None: return if self.backends is None: raise appinfo_errors.BackendNotFound self.version = backend_name match = None for backend in self.backends: if backend.name != backend_name: continue if match: raise appinfo_errors.DuplicateBackend else: match = backend if match is None: raise appinfo_errors.BackendNotFound if match.start is None: return start_handler = URLMap(url=_START_PATH, script=match.start) self.handlers.insert(0, start_handler) def GetEffectiveRuntime(self): """Returns the app's runtime, resolving VMs to the underlying `vm_runtime`. Returns: The effective runtime: The value of `beta/vm_settings.vm_runtime` if `runtime` is `vm`, or `runtime` otherwise. """ if (self.runtime == 'vm' and hasattr(self, 'vm_settings') and self.vm_settings is not None): return self.vm_settings.get('vm_runtime') if (self.runtime == 'vm' and hasattr(self, 'beta_settings') and self.beta_settings is not None): return self.beta_settings.get('vm_runtime') return self.runtime def SetEffectiveRuntime(self, runtime): """Sets the runtime while respecting vm runtimes rules for runtime settings. Args: runtime: The runtime to use. """ if self.IsVm(): if not self.vm_settings: self.vm_settings = VmSettings() # Patch up vm runtime setting. Copy `runtime` to `vm_runtime` and set # runtime to the string `vm`. self.vm_settings['vm_runtime'] = runtime self.runtime = 'vm' else: self.runtime = runtime def NormalizeVmSettings(self): """Normalizes VM settings.""" # NOTE(user): In the input files, `vm` is not a type of runtime, but # rather is specified as `vm: true|false`. In the code, `vm` is represented # as a value of `AppInfoExternal.runtime`. # NOTE(user): This hack is only being applied after the parsing of # `AppInfoExternal`. If the `vm` attribute can ever be specified in the # `AppInclude`, then this processing will need to be done there too. if self.IsVm(): if not self.vm_settings: self.vm_settings = VmSettings() if 'vm_runtime' not in self.vm_settings: self.SetEffectiveRuntime(self.runtime) # Copy fields that are automatically added by the SDK or this class # to `beta_settings`. if hasattr(self, 'beta_settings') and self.beta_settings: # Only copy if `beta_settings` already exists, because we have logic in # `appversion.py` to discard all of `vm_settings` if anything is in # `beta_settings`. So we won't create an empty one just to add these # fields. for field in ['vm_runtime', 'has_docker_image', 'image', 'module_yaml_path']: if field not in self.beta_settings and field in self.vm_settings: self.beta_settings[field] = self.vm_settings[field] # TODO(user): `env` replaces `vm`. Remove `vm` when field is removed. def IsVm(self): return (self.vm or self.env in ['2', 'flex', 'flexible']) def ValidateHandlers(handlers, is_include_file=False): """Validates a list of handler (`URLMap`) objects. Args: handlers: A list of a handler (`URLMap`) objects. is_include_file: If this argument is set to `True`, the handlers that are added as part of the `includes` directive are validated. """ if not handlers: return for handler in handlers: handler.FixSecureDefaults() handler.WarnReservedURLs() if not is_include_file: handler.ErrorOnPositionForAppInfo() def LoadSingleAppInfo(app_info): """Loads a single `AppInfo` object where one and only one is expected. This method validates that the the values in the `AppInfo` match the validators that are defined in this file, in particular, `AppInfoExternal.ATTRIBUTES`. Args: app_info: A file-like object or string. If the argument is a string, the argument is parsed as a configuration file. If the argument is a file-like object, the data is read, then parsed. Returns: An instance of `AppInfoExternal` as loaded from a YAML file. Raises: ValueError: If a specified service is not valid. EmptyConfigurationFile: If there are no documents in YAML file. MultipleConfigurationFile: If more than one document exists in the YAML file. DuplicateBackend: If a backend is found more than once in the `backends` directive. yaml_errors.EventError: If the `app.yaml` file fails validation. appinfo_errors.MultipleProjectNames: If the `app.yaml` file has both an `application` directive and a `project` directive. """ builder = yaml_object.ObjectBuilder(AppInfoExternal) handler = yaml_builder.BuilderHandler(builder) listener = yaml_listener.EventListener(handler) listener.Parse(app_info) app_infos = handler.GetResults() if len(app_infos) < 1: raise appinfo_errors.EmptyConfigurationFile() if len(app_infos) > 1: raise appinfo_errors.MultipleConfigurationFile() appyaml = app_infos[0] ValidateHandlers(appyaml.handlers) if appyaml.builtins: BuiltinHandler.Validate(appyaml.builtins, appyaml.runtime) # Allow `project: name` as an alias for `application: name`. If found, we # change the `project` field to `None`. (Deleting it would make a distinction # between loaded and constructed `AppInfoExternal` objects, since the latter # would still have the project field.) if appyaml.application and appyaml.project: raise appinfo_errors.MultipleProjectNames( 'Specify one of "application: name" or "project: name"') elif appyaml.project: appyaml.application = appyaml.project appyaml.project = None appyaml.NormalizeVmSettings() return appyaml class AppInfoSummary(validation.Validated): """This class contains only basic summary information about an app. This class is used to pass back information about the newly created app to users after a new version has been created. """ # NOTE(user): Before you consider adding anything to this YAML definition, # you must solve the issue that old SDK versions will try to parse this new # value with the old definition and fail. Basically we are stuck with this # definition for the time being. The parsing of the value is done in ATTRIBUTES = { APPLICATION: APPLICATION_RE_STRING, MAJOR_VERSION: MODULE_VERSION_ID_RE_STRING, MINOR_VERSION: validation.TYPE_LONG } def LoadAppInclude(app_include): """Loads a single `AppInclude` object where one and only one is expected. Args: app_include: A file-like object or string. The argument is set to a string, the argument is parsed as a configuration file. If the argument is set to a file-like object, the data is read and parsed. Returns: An instance of `AppInclude` as loaded from a YAML file. Raises: EmptyConfigurationFile: If there are no documents in the YAML file. MultipleConfigurationFile: If there is more than one document in the YAML file. """ builder = yaml_object.ObjectBuilder(AppInclude) handler = yaml_builder.BuilderHandler(builder) listener = yaml_listener.EventListener(handler) listener.Parse(app_include) includes = handler.GetResults() if len(includes) < 1: raise appinfo_errors.EmptyConfigurationFile() if len(includes) > 1: raise appinfo_errors.MultipleConfigurationFile() includeyaml = includes[0] if includeyaml.handlers: for handler in includeyaml.handlers: handler.FixSecureDefaults() handler.WarnReservedURLs() if includeyaml.builtins: BuiltinHandler.Validate(includeyaml.builtins) return includeyaml def ParseExpiration(expiration): """Parses an expiration delta string. Args: expiration: String that matches `_DELTA_REGEX`. Returns: Time delta in seconds. """ delta = 0 for match in re.finditer(_DELTA_REGEX, expiration): amount = int(match.group(1)) units = _EXPIRATION_CONVERSIONS.get(match.group(2).lower(), 1) delta += amount * units return delta ##################################################################### # These regexps must be the same as those in apphosting/client/app_config.cc # and java/com/google/appengine/tools/admin/AppVersionUpload.java # java/com/google/apphosting/admin/legacy/LegacyAppInfo.java, # apphosting/client/app_config_old.cc, # apphosting/api/app_config/app_config_server2.cc # Valid characters for a file name. _file_path_positive_re = re.compile(r'^.{1,256}$') # Forbid `.`, `..`, and leading `-`, `_ah/` or `/` _file_path_negative_1_re = re.compile(r'\.\.|^\./|\.$|/\./|^-|^_ah/|^/') # Forbid `//` and trailing `/` _file_path_negative_2_re = re.compile(r'//|/$') # Forbid any use of space other than in the middle of a directory or file # name. _file_path_negative_3_re = re.compile(r'^ | $|/ | /') # (erinjerison) Lint seems to think I'm specifying the word "character" as an # argument. This isn't the case; it's part of a list to enable the list to # build properly. Disabling it for now. # pylint: disable=g-doc-args def ValidFilename(filename): """Determines if a file name is valid. Args: filename: The file name to validate. The file name must be a valid file name: - It must only contain letters, numbers, and the following special characters: `@`, `_`, `+`, `/` `$`, `.`, `-`, or '~'. - It must be less than 256 characters. - It must not contain `/./`, `/../`, or `//`. - It must not end in `/`. - All spaces must be in the middle of a directory or file name. Returns: An error string if the file name is invalid. `''` is returned if the file name is valid. """ if _file_path_positive_re.match(filename) is None: return 'Invalid character in filename: %s' % filename if _file_path_negative_1_re.search(filename) is not None: return ('Filename cannot contain "." or ".." ' 'or start with "-" or "_ah/": %s' % filename) if _file_path_negative_2_re.search(filename) is not None: return 'Filename cannot have trailing / or contain //: %s' % filename if _file_path_negative_3_re.search(filename) is not None: return 'Any spaces must be in the middle of a filename: %s' % filename return ''
apache-2.0
nickgentoo/scikit-learn-graph
scripts/CMS_cross_validation_trees.py
1
5994
import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..', '','')) import numpy as np #from skgraph import datasets from sklearn import svm #from skgraph.ioskgraph import * from math import sqrt import sys from sklearn.metrics import roc_auc_score from sklearn.svm import LinearSVC from sklearn import linear_model from skgraph.utils.countminsketch import CountMinSketch from skgraph.datasets.load_tree_datasets import dispatch import networkx import matplotlib.pyplot as plt import multiprocessing from skgraph.feature_extraction.graph.ODDSTVectorizer import ODDSTVectorizer from skgraph.feature_extraction.graph.NSPDK.NSPDKVectorizer import NSPDKVectorizer from skgraph.feature_extraction.graph.WLVectorizer import WLVectorizer #"sys.path.append('..\\..\\Multiple Kernel Learning\\Framework')" if len(sys.argv)<4: sys.exit("python cross_validation_from_matrix_norm.py dataset kernel C outfile m d [class_weight:auto]") kernel=sys.argv[2] c=float(sys.argv[3]) m=int(sys.argv[5]) d=int(sys.argv[6]) auto_weight=False if len(sys.argv)==7: if sys.argv[6]=="auto": auto_weight=True ##TODO read from libsvm format max_radius=3 normalization=False def generateCMS(featuresCMS,ex,i): exCMS = CountMinSketch(m, d) # W=csr_matrix(ex) rows, cols = ex.nonzero() # dot=0.0 for row, col in zip(rows, cols): # ((row,col), ex[row,col]) value = ex[row, col] # print col, ex[row,col] # dot+=WCMS[col]*ex[row,col] exCMS.add(col, value) # print dot # TODO aggiungere bias featuresCMS[i]=exCMS.asarray() g_it=dispatch(sys.argv[1]) # graph=g_it.graphs[0] # node_positions = networkx.spring_layout(graph) # networkx.draw_networkx_nodes(graph, node_positions, with_labels = True) # networkx.draw_networkx_edges(graph, node_positions, style='dashed') # plt.show() if kernel == "WL": print "Lambda ignored" print "Using WL fast subtree kernel" Vectorizer = WLVectorizer(r=max_radius, normalization=normalization) elif kernel == "ODDST": print "Using ST kernel" Vectorizer = ODDSTVectorizer(r=max_radius, l=la, normalization=normalization) elif kernel == "NSPDK": print "Using NSPDK kernel, lambda parameter interpreted as d" Vectorizer = NSPDKVectorizer(r=max_radius, d=int(la), normalization=normalization) else: print "Unrecognized kernel" features = Vectorizer.transform(g_it.graphs) target_array=np.array(g_it.target) #features, target_array = #print km print "original shape", features.shape print "features loaded, hashing..." featuresCMS=[0]*features.shape[0] for i in xrange(features.shape[0]): generateCMS(featuresCMS,features[i][0],i) #pool = multiprocessing.Pool(processes=4) #pool.map(generateCMS, features[i][0],i) # pool.close() # pool.join() # exCMS=CountMinSketch(m,d) # # ex=features[i][0] # #W=csr_matrix(ex) # # rows,cols = ex.nonzero() # #dot=0.0 # for row,col in zip(rows,cols): # #((row,col), ex[row,col]) # value=ex[row,col] # #print col, ex[row,col] # #dot+=WCMS[col]*ex[row,col] # exCMS.add(col,value) # #print dot # #TODO aggiungere bias # featuresCMS.append(exCMS.asarray()) print "hashing done" features=np.matrix(featuresCMS) print features.shape print features[i].shape from sklearn import cross_validation for rs in range(42,53): f=open(str(sys.argv[3]+".seed"+str(rs)+".c"+str(c)),'w') kf = cross_validation.StratifiedKFold(target_array, n_folds=10, shuffle=True,random_state=rs) #print kf #remove column zero because #first entry of each line is the index #gram=km[:,1:].todense() f.write("Total examples "+str(features.shape[0])+"\n") f.write("CV\t test_AUROC\n") sc=[] for train_index, test_index in kf: #print("TRAIN:", train_index, "TEST:", test_index) #generated train and test lists, incuding indices of the examples in training/test #for the specific fold. Indices starts from 0 now if auto_weight==False: clf = svm.LinearSVC(C=c,dual=True) #, class_weight='auto' else: print "Class weights automatically assigned from training data" clf = svm.LinearSVC(C=c,dual=True, class_weight='auto') #clf = svm.SVC(C=c,probability=True, class_weight='auto',kernel='linear') #,probability=True, #clf = linear_model.LogisticRegression(C=c, dual=True, class_weight='auto')#, solver='liblinear' #generate train features and test features X_train, X_test, y_train, y_test = features[train_index], features[test_index], target_array[train_index], target_array[test_index] #COMPUTE INNERKFOLD kf = cross_validation.StratifiedKFold(y_train, n_folds=10, shuffle=True,random_state=rs) inner_scores= cross_validation.cross_val_score( clf, X_train, y_train, cv=kf, scoring='roc_auc') #print "inner scores", inner_scores print "Inner AUROC: %0.4f (+/- %0.4f)" % (inner_scores.mean(), inner_scores.std() / 2) f.write(str(inner_scores.mean())+"\t") clf.fit(X_train, y_train) # predict on test examples #LibLinear does not support multiclass y_test_predicted=clf.decision_function(X_test) #y_test_predicted=clf.predict_proba(X_test) # #print y_test_predicted # sc.append(roc_auc_score(y_test, y_test_predicted[:,1])) # f.write(str(roc_auc_score(y_test, y_test_predicted[:,1]))+"\n") #LibLinear does not support multiclass #print y_test_predicted sc.append(roc_auc_score(y_test, y_test_predicted)) f.write(str(roc_auc_score(y_test, y_test_predicted))+"\n") f.close() scores=np.array(sc) print "AUROC: %0.4f (+/- %0.4f)" % (scores.mean(), scores.std() / 2)
gpl-3.0
dkushner/zipline
tests/modelling/test_frameload.py
11
6900
""" Tests for zipline.data.ffc.frame.DataFrameFFCLoader """ from unittest import TestCase from mock import patch from numpy import arange from numpy.testing import assert_array_equal from pandas import ( DataFrame, DatetimeIndex, Int64Index, ) from zipline.lib.adjustment import ( Float64Add, Float64Multiply, Float64Overwrite, ) from zipline.data.equities import USEquityPricing from zipline.data.ffc.frame import ( ADD, DataFrameFFCLoader, MULTIPLY, OVERWRITE, ) from zipline.utils.tradingcalendar import trading_day class DataFrameFFCLoaderTestCase(TestCase): def setUp(self): self.nsids = 5 self.ndates = 20 self.sids = Int64Index(range(self.nsids)) self.dates = DatetimeIndex( start='2014-01-02', freq=trading_day, periods=self.ndates, ) self.mask = DataFrame( True, index=self.dates, columns=self.sids, dtype=bool, ) def tearDown(self): pass def test_bad_input(self): data = arange(100).reshape(self.ndates, self.nsids) baseline = DataFrame(data, index=self.dates, columns=self.sids) loader = DataFrameFFCLoader( USEquityPricing.close, baseline, ) with self.assertRaises(ValueError): # Wrong column. loader.load_adjusted_array([USEquityPricing.open], self.mask) with self.assertRaises(ValueError): # Too many columns. loader.load_adjusted_array( [USEquityPricing.open, USEquityPricing.close], self.mask ) def test_baseline(self): data = arange(100).reshape(self.ndates, self.nsids) baseline = DataFrame(data, index=self.dates, columns=self.sids) loader = DataFrameFFCLoader( USEquityPricing.close, baseline, ) dates_slice = slice(None, 10, None) sids_slice = slice(1, 3, None) [adj_array] = loader.load_adjusted_array( [USEquityPricing.close], self.mask.iloc[dates_slice, sids_slice] ) for idx, window in enumerate(adj_array.traverse(window_length=3)): expected = baseline.values[dates_slice, sids_slice][idx:idx + 3] assert_array_equal(window, expected) def test_adjustments(self): data = arange(100).reshape(self.ndates, self.nsids) baseline = DataFrame(data, index=self.dates, columns=self.sids) # Use the dates from index 10 on and sids 1-3. dates_slice = slice(10, None, None) sids_slice = slice(1, 4, None) # Adjustments that should actually affect the output. relevant_adjustments = [ { 'sid': 1, 'start_date': None, 'end_date': self.dates[15], 'apply_date': self.dates[16], 'value': 0.5, 'kind': MULTIPLY, }, { 'sid': 2, 'start_date': self.dates[5], 'end_date': self.dates[15], 'apply_date': self.dates[16], 'value': 1.0, 'kind': ADD, }, { 'sid': 2, 'start_date': self.dates[15], 'end_date': self.dates[16], 'apply_date': self.dates[17], 'value': 1.0, 'kind': ADD, }, { 'sid': 3, 'start_date': self.dates[16], 'end_date': self.dates[17], 'apply_date': self.dates[18], 'value': 99.0, 'kind': OVERWRITE, }, ] # These adjustments shouldn't affect the output. irrelevant_adjustments = [ { # Sid Not Requested 'sid': 0, 'start_date': self.dates[16], 'end_date': self.dates[17], 'apply_date': self.dates[18], 'value': -9999.0, 'kind': OVERWRITE, }, { # Sid Unknown 'sid': 9999, 'start_date': self.dates[16], 'end_date': self.dates[17], 'apply_date': self.dates[18], 'value': -9999.0, 'kind': OVERWRITE, }, { # Date Not Requested 'sid': 2, 'start_date': self.dates[1], 'end_date': self.dates[2], 'apply_date': self.dates[3], 'value': -9999.0, 'kind': OVERWRITE, }, { # Date Before Known Data 'sid': 2, 'start_date': self.dates[0] - (2 * trading_day), 'end_date': self.dates[0] - trading_day, 'apply_date': self.dates[0] - trading_day, 'value': -9999.0, 'kind': OVERWRITE, }, { # Date After Known Data 'sid': 2, 'start_date': self.dates[-1] + trading_day, 'end_date': self.dates[-1] + (2 * trading_day), 'apply_date': self.dates[-1] + (3 * trading_day), 'value': -9999.0, 'kind': OVERWRITE, }, ] adjustments = DataFrame(relevant_adjustments + irrelevant_adjustments) loader = DataFrameFFCLoader( USEquityPricing.close, baseline, adjustments=adjustments, ) expected_baseline = baseline.iloc[dates_slice, sids_slice] formatted_adjustments = loader.format_adjustments( self.dates[dates_slice], self.sids[sids_slice], ) expected_formatted_adjustments = { 6: [ Float64Multiply(first_row=0, last_row=5, col=0, value=0.5), Float64Add(first_row=0, last_row=5, col=1, value=1.0), ], 7: [ Float64Add(first_row=5, last_row=6, col=1, value=1.0), ], 8: [ Float64Overwrite(first_row=6, last_row=7, col=2, value=99.0) ], } self.assertEqual(formatted_adjustments, expected_formatted_adjustments) mask = self.mask.iloc[dates_slice, sids_slice] with patch('zipline.data.ffc.frame.adjusted_array') as m: loader.load_adjusted_array( columns=[USEquityPricing.close], mask=mask, ) self.assertEqual(m.call_count, 1) args, kwargs = m.call_args assert_array_equal(kwargs['data'], expected_baseline.values) assert_array_equal(kwargs['mask'], mask.values) self.assertEqual(kwargs['adjustments'], expected_formatted_adjustments)
apache-2.0
Mistobaan/tensorflow
tensorflow/python/estimator/inputs/queues/feeding_functions.py
10
18972
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for enqueuing data from arrays and pandas `DataFrame`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import random import types as tp import numpy as np import six from tensorflow.python.estimator.inputs.queues import feeding_queue_runner as fqr from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _fill_array(arr, seq, fillvalue=0): """ Recursively fills padded arr with elements from seq. If length of seq is less than arr padded length, fillvalue used. Args: arr: Padded tensor of shape [batch_size, ..., max_padded_dim_len]. seq: Non-padded list of data sampels of shape [batch_size, ..., padded_dim(None)] fillvalue: Default fillvalue to use. """ if arr.ndim == 1: try: len_ = len(seq) except TypeError: len_ = 0 arr[:len_] = seq arr[len_:] = fillvalue else: for subarr, subseq in six.moves.zip_longest(arr, seq, fillvalue=()): _fill_array(subarr, subseq, fillvalue) def _pad_if_needed(batch_key_item, fillvalue=0): """ Returns padded batch. Args: batch_key_item: List of data samples of any type with shape [batch_size, ..., padded_dim(None)]. fillvalue: Default fillvalue to use. Returns: Padded with zeros tensor of same type and shape [batch_size, ..., max_padded_dim_len]. Raises: ValueError if data samples have different shapes (except last padded dim). """ shapes = [seq.shape[:-1] if len(seq.shape) > 0 else -1 for seq in batch_key_item] if not all(shapes[0] == x for x in shapes): raise ValueError("Array shapes must match.") last_length = [seq.shape[-1] if len(seq.shape) > 0 else 0 for seq in batch_key_item] if all([x == last_length[0] for x in last_length]): return batch_key_item batch_size = len(batch_key_item) max_sequence_length = max(last_length) result_batch = np.zeros( shape=[batch_size] + list(shapes[0]) + [max_sequence_length], dtype=batch_key_item[0].dtype) _fill_array(result_batch, batch_key_item, fillvalue) return result_batch def _get_integer_indices_for_next_batch( batch_indices_start, batch_size, epoch_end, array_length, current_epoch, total_epochs): """Returns the integer indices for next batch. If total epochs is not None and current epoch is the final epoch, the end index of the next batch should not exceed the `epoch_end` (i.e., the final batch might not have size `batch_size` to avoid overshooting the last epoch). Args: batch_indices_start: Integer, the index to start next batch. batch_size: Integer, size of batches to return. epoch_end: Integer, the end index of the epoch. The epoch could start from a random position, so `epoch_end` provides the end index for that. array_length: Integer, the length of the array. current_epoch: Integer, the epoch number has been emitted. total_epochs: Integer or `None`, the total number of epochs to emit. If `None` will run forever. Returns: A tuple of a list with integer indices for next batch and `current_epoch` value after the next batch. Raises: OutOfRangeError if `current_epoch` is not less than `total_epochs`. """ if total_epochs is not None and current_epoch >= total_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % current_epoch) batch_indices_end = batch_indices_start + batch_size batch_indices = [j % array_length for j in range(batch_indices_start, batch_indices_end)] epoch_end_indices = [i for i, x in enumerate(batch_indices) if x == epoch_end] current_epoch += len(epoch_end_indices) if total_epochs is None or current_epoch < total_epochs: return (batch_indices, current_epoch) # Now we might have emitted more data for expected epochs. Need to trim. final_epoch_end_inclusive = epoch_end_indices[ -(current_epoch - total_epochs + 1)] batch_indices = batch_indices[:final_epoch_end_inclusive + 1] return (batch_indices, total_epochs) class _ArrayFeedFn(object): """Creates feed dictionaries from numpy arrays.""" def __init__(self, placeholders, array, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != 2: raise ValueError("_array_feed_fn expects 2 placeholders; got {}.".format( len(placeholders))) self._placeholders = placeholders self._array = array self._max = len(array) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max return { self._placeholders[0]: integer_indexes, self._placeholders[1]: self._array[integer_indexes] } class _OrderedDictNumpyFeedFn(object): """Creates feed dictionaries from `OrderedDict`s of numpy arrays.""" def __init__(self, placeholders, ordered_dict_of_arrays, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(ordered_dict_of_arrays) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(ordered_dict_of_arrays), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._ordered_dict_of_arrays = ordered_dict_of_arrays self._max = len(next(iter(ordered_dict_of_arrays.values()))) for _, v in ordered_dict_of_arrays.items(): if len(v) != self._max: raise ValueError("Array lengths must match.") self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max feed_dict = {self._index_placeholder: integer_indexes} cols = [ column[integer_indexes] for column in self._ordered_dict_of_arrays.values() ] feed_dict.update(dict(zip(self._col_placeholders, cols))) return feed_dict class _PandasFeedFn(object): """Creates feed dictionaries from pandas `DataFrames`.""" def __init__(self, placeholders, dataframe, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(dataframe.columns) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(dataframe.columns), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._dataframe = dataframe self._max = len(dataframe) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max result = self._dataframe.iloc[integer_indexes] cols = [result[col].values for col in result.columns] feed_dict = dict(zip(self._col_placeholders, cols)) feed_dict[self._index_placeholder] = result.index.values return feed_dict class _GeneratorFeedFn(object): """Creates feed dictionaries from `Generator` of `dicts` of numpy arrays.""" def __init__(self, placeholders, generator, batch_size, random_start=False, seed=None, num_epochs=None, pad_value=None): first_sample = next(generator()) if len(placeholders) != len(first_sample): raise ValueError("Expected {} placeholders; got {}.".format( len(first_sample), len(placeholders))) self._keys = sorted(list(first_sample.keys())) self._col_placeholders = placeholders self._generator_function = generator self._iterator = generator() self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 self._pad_value = pad_value random.seed(seed) def __call__(self): if self._num_epochs and self._epoch >= self._num_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % self._epoch) list_dict = {} list_dict_size = 0 while list_dict_size < self._batch_size: try: data_row = next(self._iterator) except StopIteration: self._epoch += 1 self._iterator = self._generator_function() data_row = next(self._iterator) for index, key in enumerate(self._keys): if key not in data_row.keys(): raise KeyError("key mismatch between dicts emitted by GenFun " "Expected {} keys; got {}".format( self._keys, data_row.keys())) list_dict.setdefault(self._col_placeholders[index], list()).append(data_row[key]) list_dict_size += 1 if self._pad_value is not None: feed_dict = {key: np.asarray(_pad_if_needed(item, self._pad_value)) for key, item in list(list_dict.items())} else: feed_dict = {key: np.asarray(item) for key, item in list(list_dict.items())} return feed_dict def _enqueue_data(data, capacity, shuffle=False, min_after_dequeue=None, num_threads=1, seed=None, name="enqueue_input", enqueue_size=1, num_epochs=None, pad_value=None): """Creates a queue filled from a numpy array or pandas `DataFrame`. Returns a queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. In the case of a pandas `DataFrame`, the first enqueued `Tensor` corresponds to the index of the `DataFrame`. For (`OrderedDict` of) numpy arrays, the first enqueued `Tensor` contains the row number. Args: data: a numpy `ndarray`, `OrderedDict` of numpy arrays, or a generator yielding `dict`s of numpy arrays or pandas `DataFrame` that will be read into the queue. capacity: the capacity of the queue. shuffle: whether or not to shuffle the rows of the array. min_after_dequeue: minimum number of elements that can remain in the queue after a dequeue operation. Only used when `shuffle` is true. If not set, defaults to `capacity` / 4. num_threads: number of threads used for reading and enqueueing. seed: used to seed shuffling and reader starting points. name: a scope name identifying the data. enqueue_size: the number of rows to enqueue per step. num_epochs: limit enqueuing to a specified number of epochs, if provided. pad_value: default value for dynamic padding of data samples, if provided. Returns: A queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. Raises: TypeError: `data` is not a Pandas `DataFrame`, an `OrderedDict` of numpy arrays, a numpy `ndarray`, or a generator producing these. NotImplementedError: padding and shuffling data at the same time. NotImplementedError: padding usage with non generator data type. """ with ops.name_scope(name): if isinstance(data, np.ndarray): types = [dtypes.int64, dtypes.as_dtype(data.dtype)] queue_shapes = [(), data.shape[1:]] get_feed_fn = _ArrayFeedFn elif isinstance(data, collections.OrderedDict): types = [dtypes.int64] + [ dtypes.as_dtype(col.dtype) for col in data.values() ] queue_shapes = [()] + [col.shape[1:] for col in data.values()] get_feed_fn = _OrderedDictNumpyFeedFn elif isinstance(data, tp.FunctionType): x_first_el = six.next(data()) x_first_keys = sorted(x_first_el.keys()) x_first_values = [x_first_el[key] for key in x_first_keys] types = [dtypes.as_dtype(col.dtype) for col in x_first_values] queue_shapes = [col.shape for col in x_first_values] get_feed_fn = _GeneratorFeedFn elif HAS_PANDAS and isinstance(data, pd.DataFrame): types = [ dtypes.as_dtype(dt) for dt in [data.index.dtype] + list(data.dtypes) ] queue_shapes = [() for _ in types] get_feed_fn = _PandasFeedFn else: raise TypeError( "data must be either a numpy array or pandas DataFrame if pandas is " "installed; got {}".format(type(data).__name__)) pad_data = pad_value is not None if pad_data and get_feed_fn is not _GeneratorFeedFn: raise NotImplementedError( "padding is only available with generator usage") if shuffle and pad_data: raise NotImplementedError( "padding and shuffling data at the same time is not implemented") # TODO(jamieas): TensorBoard warnings for all warnings below once available. if num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with num_epochs and num_threads > 1. " "num_epochs is applied per thread, so this will produce more " "epochs than you probably intend. " "If you want to limit epochs, use one thread.") if shuffle and num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with shuffle=True, num_threads > 1, and " "num_epochs. This will create multiple threads, all reading the " "array/dataframe in order adding to the same shuffling queue; the " "results will likely not be sufficiently shuffled.") if not shuffle and num_threads > 1: logging.warning( "enqueue_data was called with shuffle=False and num_threads > 1. " "This will create multiple threads, all reading the " "array/dataframe in order. If you want examples read in order, use" " one thread; if you want multiple threads, enable shuffling.") if shuffle: min_after_dequeue = int(capacity / 4 if min_after_dequeue is None else min_after_dequeue) queue = data_flow_ops.RandomShuffleQueue( capacity, min_after_dequeue, dtypes=types, shapes=queue_shapes, seed=seed) elif pad_data: min_after_dequeue = 0 # just for the summary text queue_shapes = list(map( lambda x: tuple(list(x[:-1]) + [None]) if len(x) > 0 else x, queue_shapes)) queue = data_flow_ops.PaddingFIFOQueue( capacity, dtypes=types, shapes=queue_shapes) else: min_after_dequeue = 0 # just for the summary text queue = data_flow_ops.FIFOQueue( capacity, dtypes=types, shapes=queue_shapes) enqueue_ops = [] feed_fns = [] for i in range(num_threads): # Note the placeholders have no shapes, so they will accept any # enqueue_size. enqueue_many below will break them up. placeholders = [array_ops.placeholder(t) for t in types] enqueue_ops.append(queue.enqueue_many(placeholders)) seed_i = None if seed is None else (i + 1) * seed if not pad_data: feed_fns.append( get_feed_fn( placeholders, data, enqueue_size, random_start=shuffle, seed=seed_i, num_epochs=num_epochs)) else: feed_fns.append( get_feed_fn( placeholders, data, enqueue_size, random_start=shuffle, seed=seed_i, num_epochs=num_epochs, pad_value=pad_value)) runner = fqr._FeedingQueueRunner( # pylint: disable=protected-access queue=queue, enqueue_ops=enqueue_ops, feed_fns=feed_fns) queue_runner.add_queue_runner(runner) full = (math_ops.cast( math_ops.maximum(0, queue.size() - min_after_dequeue), dtypes.float32) * (1. / (capacity - min_after_dequeue))) # Note that name contains a '/' at the end so we intentionally do not place # a '/' after %s below. summary_name = ("queue/%sfraction_over_%d_of_%d_full" % (queue.name, min_after_dequeue, capacity - min_after_dequeue)) summary.scalar(summary_name, full) return queue
apache-2.0
PatrickOReilly/scikit-learn
benchmarks/bench_rcv1_logreg_convergence.py
149
7173
# Authors: Tom Dupre la Tour <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np import gc import time from sklearn.externals.joblib import Memory from sklearn.linear_model import (LogisticRegression, SGDClassifier) from sklearn.datasets import fetch_rcv1 from sklearn.linear_model.sag import get_auto_step_size from sklearn.linear_model.sag_fast import get_max_squared_sum try: import lightning.classification as lightning_clf except ImportError: lightning_clf = None m = Memory(cachedir='.', verbose=0) # compute logistic loss def get_loss(w, intercept, myX, myy, C): n_samples = myX.shape[0] w = w.ravel() p = np.mean(np.log(1. + np.exp(-myy * (myX.dot(w) + intercept)))) print("%f + %f" % (p, w.dot(w) / 2. / C / n_samples)) p += w.dot(w) / 2. / C / n_samples return p # We use joblib to cache individual fits. Note that we do not pass the dataset # as argument as the hashing would be too slow, so we assume that the dataset # never changes. @m.cache() def bench_one(name, clf_type, clf_params, n_iter): clf = clf_type(**clf_params) try: clf.set_params(max_iter=n_iter, random_state=42) except: clf.set_params(n_iter=n_iter, random_state=42) st = time.time() clf.fit(X, y) end = time.time() try: C = 1.0 / clf.alpha / n_samples except: C = clf.C try: intercept = clf.intercept_ except: intercept = 0. train_loss = get_loss(clf.coef_, intercept, X, y, C) train_score = clf.score(X, y) test_score = clf.score(X_test, y_test) duration = end - st return train_loss, train_score, test_score, duration def bench(clfs): for (name, clf, iter_range, train_losses, train_scores, test_scores, durations) in clfs: print("training %s" % name) clf_type = type(clf) clf_params = clf.get_params() for n_iter in iter_range: gc.collect() train_loss, train_score, test_score, duration = bench_one( name, clf_type, clf_params, n_iter) train_losses.append(train_loss) train_scores.append(train_score) test_scores.append(test_score) durations.append(duration) print("classifier: %s" % name) print("train_loss: %.8f" % train_loss) print("train_score: %.8f" % train_score) print("test_score: %.8f" % test_score) print("time for fit: %.8f seconds" % duration) print("") print("") return clfs def plot_train_losses(clfs): plt.figure() for (name, _, _, train_losses, _, _, durations) in clfs: plt.plot(durations, train_losses, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train loss") def plot_train_scores(clfs): plt.figure() for (name, _, _, _, train_scores, _, durations) in clfs: plt.plot(durations, train_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train score") plt.ylim((0.92, 0.96)) def plot_test_scores(clfs): plt.figure() for (name, _, _, _, _, test_scores, durations) in clfs: plt.plot(durations, test_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("test score") plt.ylim((0.92, 0.96)) def plot_dloss(clfs): plt.figure() pobj_final = [] for (name, _, _, train_losses, _, _, durations) in clfs: pobj_final.append(train_losses[-1]) indices = np.argsort(pobj_final) pobj_best = pobj_final[indices[0]] for (name, _, _, train_losses, _, _, durations) in clfs: log_pobj = np.log(abs(np.array(train_losses) - pobj_best)) / np.log(10) plt.plot(durations, log_pobj, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("log(best - train_loss)") rcv1 = fetch_rcv1() X = rcv1.data n_samples, n_features = X.shape # consider the binary classification problem 'CCAT' vs the rest ccat_idx = rcv1.target_names.tolist().index('CCAT') y = rcv1.target.tocsc()[:, ccat_idx].toarray().ravel().astype(np.float64) y[y == 0] = -1 # parameters C = 1. fit_intercept = True tol = 1.0e-14 # max_iter range sgd_iter_range = list(range(1, 121, 10)) newton_iter_range = list(range(1, 25, 3)) lbfgs_iter_range = list(range(1, 242, 12)) liblinear_iter_range = list(range(1, 37, 3)) liblinear_dual_iter_range = list(range(1, 85, 6)) sag_iter_range = list(range(1, 37, 3)) clfs = [ ("LR-liblinear", LogisticRegression(C=C, tol=tol, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_iter_range, [], [], [], []), ("LR-liblinear-dual", LogisticRegression(C=C, tol=tol, dual=True, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_dual_iter_range, [], [], [], []), ("LR-SAG", LogisticRegression(C=C, tol=tol, solver="sag", fit_intercept=fit_intercept), sag_iter_range, [], [], [], []), ("LR-newton-cg", LogisticRegression(C=C, tol=tol, solver="newton-cg", fit_intercept=fit_intercept), newton_iter_range, [], [], [], []), ("LR-lbfgs", LogisticRegression(C=C, tol=tol, solver="lbfgs", fit_intercept=fit_intercept), lbfgs_iter_range, [], [], [], []), ("SGD", SGDClassifier(alpha=1.0 / C / n_samples, penalty='l2', loss='log', fit_intercept=fit_intercept, verbose=0), sgd_iter_range, [], [], [], [])] if lightning_clf is not None and not fit_intercept: alpha = 1. / C / n_samples # compute the same step_size than in LR-sag max_squared_sum = get_max_squared_sum(X) step_size = get_auto_step_size(max_squared_sum, alpha, "log", fit_intercept) clfs.append( ("Lightning-SVRG", lightning_clf.SVRGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) clfs.append( ("Lightning-SAG", lightning_clf.SAGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) # We keep only 200 features, to have a dense dataset, # and compare to lightning SAG, which seems incorrect in the sparse case. X_csc = X.tocsc() nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1] X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]] X = X.toarray() print("dataset: %.3f MB" % (X.nbytes / 1e6)) # Split training and testing. Switch train and test subset compared to # LYRL2004 split, to have a larger training dataset. n = 23149 X_test = X[:n, :] y_test = y[:n] X = X[n:, :] y = y[n:] clfs = bench(clfs) plot_train_scores(clfs) plot_test_scores(clfs) plot_train_losses(clfs) plot_dloss(clfs) plt.show()
bsd-3-clause
vitan/blaze
blaze/tests/test_mysql_into.py
1
5591
from __future__ import absolute_import, division, print_function import pytest pymysql = pytest.importorskip('pymysql') import subprocess ps = subprocess.Popen("ps aux | grep '[m]ysql'",shell=True, stdout=subprocess.PIPE) output = ps.stdout.read() num_processes = len(output.splitlines()) pytestmark = pytest.mark.skipif(num_processes < 3, reason="No MySQL Installation") from blaze import SQL from blaze import CSV from blaze.api.into import into import sqlalchemy import os import csv as csv_module import pandas as pd import datetime as dt import numpy as np import getpass username = getpass.getuser() url = 'mysql+pymysql://{0}@localhost:3306/test'.format(username) file_name = 'test.csv' file_name_floats = 'test_floats.csv' def create_csv(data, file_name): with open(file_name, 'w') as f: csv_writer = csv_module.writer(f) for row in data: csv_writer.writerow(row) def setup_function(function): data = [(1, 2), (10, 20), (100, 200)] data_floats = [(1.02, 2.02), (102.02, 202.02), (1002.02, 2002.02)] create_csv(data,file_name) create_csv(data_floats,file_name_floats) def teardown_function(function): os.remove(file_name) os.remove(file_name_floats) engine = sqlalchemy.create_engine(url) metadata = sqlalchemy.MetaData() metadata.reflect(engine) for t in metadata.tables: if 'testtable' in t: # pass metadata.tables[t].drop(engine) def test_csv_postgres_load(): tbl = 'testtable' engine = sqlalchemy.create_engine(url) if engine.has_table(tbl): metadata = sqlalchemy.MetaData() metadata.reflect(engine) t = metadata.tables[tbl] t.drop(engine) csv = CSV(file_name) sql = SQL(url,tbl, schema=csv.schema) engine = sql.engine conn = engine.raw_connection() cursor = conn.cursor() full_path = os.path.abspath(file_name) load = '''LOAD DATA INFILE '{0}' INTO TABLE {1} FIELDS TERMINATED BY ',' lines terminated by '\n' '''.format(full_path, tbl) cursor.execute(load) conn.commit() def test_simple_into(): tbl = 'testtable_into_2' csv = CSV(file_name, columns=['a', 'b']) sql = SQL(url,tbl, schema= csv.schema) into(sql,csv, if_exists="replace") assert list(sql[:, 'a']) == [1, 10, 100] assert list(sql[:, 'b']) == [2, 20, 200] def test_append(): tbl = 'testtable_into_append' csv = CSV(file_name, columns=['a', 'b']) sql = SQL(url,tbl, schema= csv.schema) into(sql,csv, if_exists="replace") assert list(sql[:, 'a']) == [1, 10, 100] assert list(sql[:, 'b']) == [2, 20, 200] into(sql,csv, if_exists="append") assert list(sql[:, 'a']) == [1, 10, 100, 1, 10, 100] assert list(sql[:, 'b']) == [2, 20, 200, 2, 20, 200] def test_simple_float_into(): tbl = 'testtable_into_float' csv = CSV(file_name_floats, columns=['a', 'b']) sql = SQL(url,tbl, schema= csv.schema) into(sql,csv, if_exists="replace") assert list(sql[:, 'a']) == [1.02, 102.02, 1002.02] assert list(sql[:, 'b']) == [2.02, 202.02, 2002.02] def test_tryexcept_into(): tbl = 'testtable_into_2' csv = CSV(file_name, columns=['a', 'b']) sql = SQL(url,tbl, schema= csv.schema) into(sql,csv, if_exists="replace", QUOTE="alpha", FORMAT="csv") # uses multi-byte character and # fails over to using sql.extend() assert list(sql[:, 'a']) == [1, 10, 100] assert list(sql[:, 'b']) == [2, 20, 200] @pytest.mark.xfail(raises=KeyError) def test_failing_argument(): tbl = 'testtable_into_2' csv = CSV(file_name, columns=['a', 'b']) sql = SQL(url,tbl, schema= csv.schema) into(sql,csv, if_exists="replace", skipinitialspace="alpha") # failing call def test_no_header_no_columns(): tbl = 'testtable_into_2' csv = CSV(file_name) sql = SQL(url,tbl, schema= '{x: int, y: int}') into(sql,csv, if_exists="replace") assert list(sql[:, 'x']) == [1, 10, 100] assert list(sql[:, 'y']) == [2, 20, 200] def test_complex_into(): # data from: http://dummydata.me/generate this_dir = os.path.dirname(__file__) file_name = os.path.join(this_dir, 'dummydata.csv') tbl = 'testtable_into_complex' csv = CSV(file_name, schema='{Name: string, RegistrationDate: date, ZipCode: int64, Consts: float64}') sql = SQL(url,tbl, schema=csv.schema) into(sql,csv, if_exists="replace") df = pd.read_csv(file_name, parse_dates=['RegistrationDate']) assert sql[0] == csv[0] #implement count method print(len(list(sql[:]))) # assert sql[] == csv[-1] for col in sql.columns: #need to convert to python datetime if col == "RegistrationDate": py_dates = list(df['RegistrationDate'].astype(object).values) py_dates = [dt.date(d.year, d.month, d.day) for d in py_dates] assert list(sql[:,col]) == list(csv[:,col]) == py_dates #handle floating point precision -- perhaps it's better to call out to assert_array_almost_equal elif col == 'Consts': ## WARNING!!! Floats are truncated with MySQL and the assertion fails sql_array = np.array(list(sql[:,col])) csv_array = list(csv[:,col]) df_array = df[col].values np.testing.assert_almost_equal(sql_array,csv_array, decimal=5) np.testing.assert_almost_equal(sql_array,df_array, decimal=5) else: assert list(sql[:,col]) == list(csv[:,col]) == list(df[col].values) #
bsd-3-clause
nliolios24/textrank
share/doc/networkx-1.9.1/examples/graph/napoleon_russian_campaign.py
44
3216
#!/usr/bin/env python """ Minard's data from Napoleon's 1812-1813 Russian Campaign. http://www.math.yorku.ca/SCS/Gallery/minard/minard.txt """ __author__ = """Aric Hagberg ([email protected])""" # Copyright (C) 2006 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import string import networkx as nx def minard_graph(): data1="""\ 24.0,54.9,340000,A,1 24.5,55.0,340000,A,1 25.5,54.5,340000,A,1 26.0,54.7,320000,A,1 27.0,54.8,300000,A,1 28.0,54.9,280000,A,1 28.5,55.0,240000,A,1 29.0,55.1,210000,A,1 30.0,55.2,180000,A,1 30.3,55.3,175000,A,1 32.0,54.8,145000,A,1 33.2,54.9,140000,A,1 34.4,55.5,127100,A,1 35.5,55.4,100000,A,1 36.0,55.5,100000,A,1 37.6,55.8,100000,A,1 37.7,55.7,100000,R,1 37.5,55.7,98000,R,1 37.0,55.0,97000,R,1 36.8,55.0,96000,R,1 35.4,55.3,87000,R,1 34.3,55.2,55000,R,1 33.3,54.8,37000,R,1 32.0,54.6,24000,R,1 30.4,54.4,20000,R,1 29.2,54.3,20000,R,1 28.5,54.2,20000,R,1 28.3,54.3,20000,R,1 27.5,54.5,20000,R,1 26.8,54.3,12000,R,1 26.4,54.4,14000,R,1 25.0,54.4,8000,R,1 24.4,54.4,4000,R,1 24.2,54.4,4000,R,1 24.1,54.4,4000,R,1""" data2="""\ 24.0,55.1,60000,A,2 24.5,55.2,60000,A,2 25.5,54.7,60000,A,2 26.6,55.7,40000,A,2 27.4,55.6,33000,A,2 28.7,55.5,33000,R,2 29.2,54.2,30000,R,2 28.5,54.1,30000,R,2 28.3,54.2,28000,R,2""" data3="""\ 24.0,55.2,22000,A,3 24.5,55.3,22000,A,3 24.6,55.8,6000,A,3 24.6,55.8,6000,R,3 24.2,54.4,6000,R,3 24.1,54.4,6000,R,3""" cities="""\ 24.0,55.0,Kowno 25.3,54.7,Wilna 26.4,54.4,Smorgoni 26.8,54.3,Moiodexno 27.7,55.2,Gloubokoe 27.6,53.9,Minsk 28.5,54.3,Studienska 28.7,55.5,Polotzk 29.2,54.4,Bobr 30.2,55.3,Witebsk 30.4,54.5,Orscha 30.4,53.9,Mohilow 32.0,54.8,Smolensk 33.2,54.9,Dorogobouge 34.3,55.2,Wixma 34.4,55.5,Chjat 36.0,55.5,Mojaisk 37.6,55.8,Moscou 36.6,55.3,Tarantino 36.5,55.0,Malo-Jarosewii""" c={} for line in cities.split('\n'): x,y,name=line.split(',') c[name]=(float(x),float(y)) g=[] for data in [data1,data2,data3]: G=nx.Graph() i=0 G.pos={} # location G.pop={} # size last=None for line in data.split('\n'): x,y,p,r,n=line.split(',') G.pos[i]=(float(x),float(y)) G.pop[i]=int(p) if last is None: last=i else: G.add_edge(i,last,{r:int(n)}) last=i i=i+1 g.append(G) return g,c if __name__ == "__main__": (g,city)=minard_graph() try: import matplotlib.pyplot as plt plt.figure(1,figsize=(11,5)) plt.clf() colors=['b','g','r'] for G in g: c=colors.pop(0) node_size=[int(G.pop[n]/300.0) for n in G] nx.draw_networkx_edges(G,G.pos,edge_color=c,width=4,alpha=0.5) nx.draw_networkx_nodes(G,G.pos,node_size=node_size,node_color=c,alpha=0.5) nx.draw_networkx_nodes(G,G.pos,node_size=5,node_color='k') for c in city: x,y=city[c] plt.text(x,y+0.1,c) plt.savefig("napoleon_russian_campaign.png") except ImportError: pass
mit
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Stress_Based_Contact_Verification/SoftContact_NonLinHardShear/Shear_Zone_Length/SZ_h_1/Normal_Stress_Plot.py
72
2800
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; import matplotlib; import math; from matplotlib.ticker import MaxNLocator plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Normal_Stress.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(normal_strain*100,normal_stress/1000,'-r',label='Analytical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Interface Type #") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") plt.hold(True) ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Normal_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain*100,normal_stress/1000,'-k',label='Numerical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Normal Strain [%]") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") ############################################################# # # # axes = plt.gca() # # # axes.set_xlim([-7,7]) # # # axes.set_ylim([-1,1]) # outfigname = "Interface_Test_Normal_Stress.pdf"; # plt.axis([0, 5.5, 90, 101]) # legend = plt.legend() # legend.get_frame().set_linewidth(0.0) # legend.get_frame().set_facecolor('none') plt.legend() plt.savefig('Normal_Stress.pdf', bbox_inches='tight') # plt.show()
cc0-1.0
maxalbert/blaze
blaze/compute/tests/test_csv_compute.py
13
4310
from blaze.compute.csv import pre_compute, CSV from blaze import compute, discover, dshape, into, resource, join, concat from blaze.utils import example, filetext, filetexts from blaze.expr import symbol from pandas import DataFrame, Series import pandas.util.testing as tm from datashape.predicates import iscollection import numpy as np import pandas as pd from toolz import first from collections import Iterator from odo import odo from odo.chunks import chunks def test_pre_compute_on_small_csv_gives_dataframe(): csv = CSV(example('iris.csv')) s = symbol('s', discover(csv)) assert isinstance(pre_compute(s.species, csv), (Series, DataFrame)) def test_pre_compute_on_large_csv_gives_chunked_reader(): csv = CSV(example('iris.csv')) s = symbol('s', discover(csv)) assert isinstance(pre_compute(s.species, csv, comfortable_memory=10), (chunks(pd.DataFrame), pd.io.parsers.TextFileReader)) def test_pre_compute_with_head_on_large_csv_yields_iterator(): csv = CSV(example('iris.csv')) s = symbol('s', discover(csv)) assert isinstance(pre_compute(s.species.head(), csv, comfortable_memory=10), Iterator) def test_compute_chunks_on_single_csv(): csv = CSV(example('iris.csv')) s = symbol('s', discover(csv)) expr = s.sepal_length.max() assert compute(expr, {s: csv}, comfortable_memory=10, chunksize=50) == 7.9 def test_pre_compute_with_projection_projects_on_data_frames(): csv = CSV(example('iris.csv')) s = symbol('s', discover(csv)) result = pre_compute(s[['sepal_length', 'sepal_width']].distinct(), csv, comfortable_memory=10) assert set(first(result).columns) == \ set(['sepal_length', 'sepal_width']) def test_pre_compute_calls_lean_projection(): csv = CSV(example('iris.csv')) s = symbol('s', discover(csv)) result = pre_compute(s.sort('sepal_length').species, csv, comfortable_memory=10) assert set(first(result).columns) == \ set(['sepal_length', 'species']) def test_unused_datetime_columns(): ds = dshape('2 * {val: string, when: datetime}') with filetext("val,when\na,2000-01-01\nb,2000-02-02") as fn: csv = CSV(fn, has_header=True) s = symbol('s', discover(csv)) assert into(list, compute(s.val, csv)) == ['a', 'b'] def test_multiple_csv_files(): d = {'mult1.csv': 'name,val\nAlice,1\nBob,2', 'mult2.csv': 'name,val\nAlice,3\nCharlie,4'} data = [('Alice', 1), ('Bob', 2), ('Alice', 3), ('Charlie', 4)] with filetexts(d) as fns: r = resource('mult*.csv') s = symbol('s', discover(r)) for e in [s, s.name, s.name.nunique(), s.name.count_values(), s.val.mean()]: a = compute(e, {s: r}) b = compute(e, {s: data}) if iscollection(e.dshape): a, b = into(set, a), into(set, b) assert a == b def test_csv_join(): d = {'a.csv': 'a,b,c\n0,1,2\n3,4,5', 'b.csv': 'c,d,e\n2,3,4\n5,6,7'} with filetexts(d): resource_a = resource('a.csv') resource_b = resource('b.csv') a = symbol('a', discover(resource_a)) b = symbol('b', discover(resource_b)) tm.assert_frame_equal( odo( compute(join(a, b, 'c'), {a: resource_a, b: resource_b}), pd.DataFrame, ), # windows needs explicit int64 construction b/c default is int32 pd.DataFrame(np.array([[2, 0, 1, 3, 4], [5, 3, 4, 6, 7]], dtype='int64'), columns=list('cabde')) ) def test_concat(): d = {'a.csv': 'a,b\n1,2\n3,4', 'b.csv': 'a,b\n5,6\n7,8'} with filetexts(d): a_rsc = resource('a.csv') b_rsc = resource('b.csv') a = symbol('a', discover(a_rsc)) b = symbol('b', discover(b_rsc)) tm.assert_frame_equal( odo( compute(concat(a, b), {a: a_rsc, b: b_rsc}), pd.DataFrame, ), # windows needs explicit int64 construction b/c default is int32 pd.DataFrame(np.arange(1, 9, dtype='int64').reshape(4, 2), columns=list('ab')), )
bsd-3-clause
cython-testbed/pandas
pandas/tests/io/parser/skiprows.py
20
8200
# -*- coding: utf-8 -*- """ Tests that skipped rows are properly handled during parsing for all of the parsers defined in parsers.py """ from datetime import datetime import numpy as np import pandas.util.testing as tm from pandas import DataFrame from pandas.errors import EmptyDataError from pandas.compat import StringIO, range, lrange class SkipRowsTests(object): def test_skiprows_bug(self): # see gh-505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # see gh-4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # see gh-9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_skiprow_with_newline(self): # see gh-12775 and gh-10911 data = """id,text,num_lines 1,"line 11 line 12",2 2,"line 21 line 22",2 3,"line 31",1""" expected = [[2, 'line 21\nline 22', 2], [3, 'line 31', 1]] expected = DataFrame(expected, columns=[ 'id', 'text', 'num_lines']) df = self.read_csv(StringIO(data), skiprows=[1]) tm.assert_frame_equal(df, expected) data = ('a,b,c\n~a\n b~,~e\n d~,' '~f\n f~\n1,2,~12\n 13\n 14~') expected = [['a\n b', 'e\n d', 'f\n f']] expected = DataFrame(expected, columns=[ 'a', 'b', 'c']) df = self.read_csv(StringIO(data), quotechar="~", skiprows=[2]) tm.assert_frame_equal(df, expected) data = ('Text,url\n~example\n ' 'sentence\n one~,url1\n~' 'example\n sentence\n two~,url2\n~' 'example\n sentence\n three~,url3') expected = [['example\n sentence\n two', 'url2']] expected = DataFrame(expected, columns=[ 'Text', 'url']) df = self.read_csv(StringIO(data), quotechar="~", skiprows=[1, 3]) tm.assert_frame_equal(df, expected) def test_skiprow_with_quote(self): # see gh-12775 and gh-10911 data = """id,text,num_lines 1,"line '11' line 12",2 2,"line '21' line 22",2 3,"line '31' line 32",1""" expected = [[2, "line '21' line 22", 2], [3, "line '31' line 32", 1]] expected = DataFrame(expected, columns=[ 'id', 'text', 'num_lines']) df = self.read_csv(StringIO(data), skiprows=[1]) tm.assert_frame_equal(df, expected) def test_skiprow_with_newline_and_quote(self): # see gh-12775 and gh-10911 data = """id,text,num_lines 1,"line \n'11' line 12",2 2,"line \n'21' line 22",2 3,"line \n'31' line 32",1""" expected = [[2, "line \n'21' line 22", 2], [3, "line \n'31' line 32", 1]] expected = DataFrame(expected, columns=[ 'id', 'text', 'num_lines']) df = self.read_csv(StringIO(data), skiprows=[1]) tm.assert_frame_equal(df, expected) data = """id,text,num_lines 1,"line '11\n' line 12",2 2,"line '21\n' line 22",2 3,"line '31\n' line 32",1""" expected = [[2, "line '21\n' line 22", 2], [3, "line '31\n' line 32", 1]] expected = DataFrame(expected, columns=[ 'id', 'text', 'num_lines']) df = self.read_csv(StringIO(data), skiprows=[1]) tm.assert_frame_equal(df, expected) data = """id,text,num_lines 1,"line '11\n' \r\tline 12",2 2,"line '21\n' \r\tline 22",2 3,"line '31\n' \r\tline 32",1""" expected = [[2, "line '21\n' \r\tline 22", 2], [3, "line '31\n' \r\tline 32", 1]] expected = DataFrame(expected, columns=[ 'id', 'text', 'num_lines']) df = self.read_csv(StringIO(data), skiprows=[1]) tm.assert_frame_equal(df, expected) def test_skiprows_lineterminator(self): # see gh-9079 data = '\n'.join(['SMOSMANIA ThetaProbe-ML2X ', '2007/01/01 01:00 0.2140 U M ', '2007/01/01 02:00 0.2141 M O ', '2007/01/01 04:00 0.2142 D M ']) expected = DataFrame([['2007/01/01', '01:00', 0.2140, 'U', 'M'], ['2007/01/01', '02:00', 0.2141, 'M', 'O'], ['2007/01/01', '04:00', 0.2142, 'D', 'M']], columns=['date', 'time', 'var', 'flag', 'oflag']) # test with default line terminators "LF" and "CRLF" df = self.read_csv(StringIO(data), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r\n')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) # "CR" is not respected with the Python parser yet if self.engine == 'c': df = self.read_csv(StringIO(data.replace('\n', '\r')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) def test_skiprows_infield_quote(self): # see gh-14459 data = 'a"\nb"\na\n1' expected = DataFrame({'a': [1]}) df = self.read_csv(StringIO(data), skiprows=2) tm.assert_frame_equal(df, expected) def test_skiprows_callable(self): data = 'a\n1\n2\n3\n4\n5' skiprows = lambda x: x % 2 == 0 expected = DataFrame({'1': [3, 5]}) df = self.read_csv(StringIO(data), skiprows=skiprows) tm.assert_frame_equal(df, expected) expected = DataFrame({'foo': [3, 5]}) df = self.read_csv(StringIO(data), skiprows=skiprows, header=0, names=['foo']) tm.assert_frame_equal(df, expected) skiprows = lambda x: True msg = "No columns to parse from file" with tm.assert_raises_regex(EmptyDataError, msg): self.read_csv(StringIO(data), skiprows=skiprows) # This is a bad callable and should raise. msg = "by zero" skiprows = lambda x: 1 / 0 with tm.assert_raises_regex(ZeroDivisionError, msg): self.read_csv(StringIO(data), skiprows=skiprows)
bsd-3-clause
chanceraine/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_qt4agg.py
70
4985
""" Render to qt from agg """ from __future__ import division import os, sys import matplotlib from matplotlib.figure import Figure from backend_agg import FigureCanvasAgg from backend_qt4 import QtCore, QtGui, FigureManagerQT, FigureCanvasQT,\ show, draw_if_interactive, backend_version, \ NavigationToolbar2QT DEBUG = False def new_figure_manager( num, *args, **kwargs ): """ Create a new figure manager instance """ if DEBUG: print 'backend_qtagg.new_figure_manager' FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) canvas = FigureCanvasQTAgg( thisFig ) return FigureManagerQT( canvas, num ) class NavigationToolbar2QTAgg(NavigationToolbar2QT): def _get_canvas(self, fig): return FigureCanvasQTAgg(fig) class FigureManagerQTAgg(FigureManagerQT): def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': print "Classic toolbar is not supported" elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2QTAgg(canvas, parent) else: toolbar = None return toolbar class FigureCanvasQTAgg( FigureCanvasQT, FigureCanvasAgg ): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def __init__( self, figure ): if DEBUG: print 'FigureCanvasQtAgg: ', figure FigureCanvasQT.__init__( self, figure ) FigureCanvasAgg.__init__( self, figure ) self.drawRect = False self.rect = [] self.replot = True self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent) def resizeEvent( self, e ): FigureCanvasQT.resizeEvent( self, e ) def drawRectangle( self, rect ): self.rect = rect self.drawRect = True self.repaint( ) def paintEvent( self, e ): """ Draw to the Agg backend and then copy the image to the qt.drawable. In Qt, all drawing should be done inside of here when a widget is shown onscreen. """ #FigureCanvasQT.paintEvent( self, e ) if DEBUG: print 'FigureCanvasQtAgg.paintEvent: ', self, \ self.get_width_height() # only replot data when needed if type(self.replot) is bool: # might be a bbox for blitting if self.replot: FigureCanvasAgg.draw(self) # matplotlib is in rgba byte order. QImage wants to put the bytes # into argb format and is in a 4 byte unsigned int. Little endian # system is LSB first and expects the bytes in reverse order # (bgra). if QtCore.QSysInfo.ByteOrder == QtCore.QSysInfo.LittleEndian: stringBuffer = self.renderer._renderer.tostring_bgra() else: stringBuffer = self.renderer._renderer.tostring_argb() qImage = QtGui.QImage(stringBuffer, self.renderer.width, self.renderer.height, QtGui.QImage.Format_ARGB32) p = QtGui.QPainter(self) p.drawPixmap(QtCore.QPoint(0, 0), QtGui.QPixmap.fromImage(qImage)) # draw the zoom rectangle to the QPainter if self.drawRect: p.setPen( QtGui.QPen( QtCore.Qt.black, 1, QtCore.Qt.DotLine ) ) p.drawRect( self.rect[0], self.rect[1], self.rect[2], self.rect[3] ) p.end() # we are blitting here else: bbox = self.replot l, b, r, t = bbox.extents w = int(r) - int(l) h = int(t) - int(b) t = int(b) + h reg = self.copy_from_bbox(bbox) stringBuffer = reg.to_string_argb() qImage = QtGui.QImage(stringBuffer, w, h, QtGui.QImage.Format_ARGB32) pixmap = QtGui.QPixmap.fromImage(qImage) p = QtGui.QPainter( self ) p.drawPixmap(QtCore.QPoint(l, self.renderer.height-t), pixmap) p.end() self.replot = False self.drawRect = False def draw( self ): """ Draw the figure when xwindows is ready for the update """ if DEBUG: print "FigureCanvasQtAgg.draw", self self.replot = True FigureCanvasAgg.draw(self) self.update() # Added following line to improve realtime pan/zoom on windows: QtGui.qApp.processEvents() def blit(self, bbox=None): """ Blit the region in bbox """ self.replot = bbox l, b, w, h = bbox.bounds t = b + h self.update(l, self.renderer.height-t, w, h) def print_figure(self, *args, **kwargs): FigureCanvasAgg.print_figure(self, *args, **kwargs) self.draw()
agpl-3.0
QuLogic/burnman
examples/example_premite_isothermal.py
1
3877
# BurnMan - a lower mantle toolkit # Copyright (C) 2012, 2013, Heister, T., Unterborn, C., Rose, I. and Cottaar, S. # Released under GPL v2 or later. """ This example is under construction. requires: teaches: """ import os, sys, numpy as np, matplotlib.pyplot as plt #hack to allow scripts to be placed in subdirectories next to burnman: if not os.path.exists('burnman') and os.path.exists('../burnman'): sys.path.insert(1,os.path.abspath('..')) import burnman import pymc seismic_model = burnman.seismic.PREM() # pick from .prem() .slow() .fast() (see code/seismic.py) number_of_points = 20 #set on how many depth slices the computations should be done depths = np.linspace(750.e3,2890.e3, number_of_points) seis_p, seis_rho, seis_vp, seis_vs, seis_vphi = seismic_model.evaluate_all_at(depths) print "preparations done" def calc_velocities(ref_rho, K_0, K_prime, G_0, G_prime): rock = burnman.Mineral() rock.params['V_0'] = 10.e-6 rock.params['molar_mass'] = ref_rho*rock.params['V_0'] rock.params['K_0'] = K_0 rock.params['Kprime_0'] = K_prime rock.params['G_0'] = G_0 rock.params['Gprime_0'] = G_prime temperature = np.empty_like(seis_p) mat_rho, mat_vp, mat_vs, mat_vphi, mat_K, mat_G = burnman.velocities_from_rock(rock,seis_p, temperature) return mat_rho, mat_vphi, mat_vs def error(ref_rho, K_0, K_prime, G_0, G_prime): rho, vphi, vs = calc_velocities(ref_rho, K_0, K_prime, G_0, G_prime) vphi_chi = burnman.chi_factor(vphi, seis_vphi) vs_chi = burnman.chi_factor(vs, seis_vs) rho_chi = burnman.chi_factor(rho, seis_rho) return rho_chi+vphi_chi+vs_chi if __name__ == "__main__": # Priors on unknown parameters: ref_rho = pymc.Uniform('ref_rho', lower=3300., upper=4500.) K_0 = pymc.Uniform('K_0', lower=200.e9, upper=300.e9) K_prime = pymc.Uniform('Kprime_0', lower=3., upper=6.) G_0 = pymc.Uniform('G_0', lower=50.e9, upper=250.e9) G_prime = pymc.Uniform('Gprime_0', lower=0., upper=3.) minerr = 1e100 @pymc.deterministic def theta(p1=ref_rho,p2=K_0,p3=K_prime,p4=G_0,p5=G_prime): global minerr if (p1<0 or p2<0 or p3<0 or p4<0 or p5 < 0): return 1e30 try: e = error(p1,p2,p3,p4,p5) if (e<minerr): minerr=e print "best fit", e, "values:", p1,p2/1.e9,p3,p4/1.e9,p5 return e except ValueError: return 1e20 sig = 1e-4 misfit = pymc.Normal('d',mu=theta,tau=1.0/(sig*sig),value=0,observed=True,trace=True) model = dict(ref_rho=ref_rho, K_0=K_0, K_prime=K_prime, G_0=G_0, G_prime=G_prime, misfit=misfit) things = ['ref_rho', 'K_0', 'K_prime', 'G_0', 'G_prime'] S = pymc.MAP(model) S.fit( method = 'fmin') rho, vphi, vs = calc_velocities(S.ref_rho.value, S.K_0.value, S.K_prime.value, S.G_0.value, S.G_prime.value) plt.subplot(2,2,1) plt.plot(seis_p/1.e9,vs/1000.,color='r',linestyle='-',marker='^',markerfacecolor='r',markersize=4) plt.plot(seis_p/1.e9,seis_vs/1000.,color='k',linestyle='-',marker='v',markerfacecolor='k',markersize=4) plt.ylim([4, 8]) plt.title("Vs (km/s)") plt.subplot(2,2,2) plt.plot(seis_p/1.e9,vphi/1000.,color='r',linestyle='-',marker='^',markerfacecolor='r',markersize=4) plt.plot(seis_p/1.e9,seis_vphi/1000.,color='k',linestyle='-',marker='v',markerfacecolor='k',markersize=4) plt.ylim([7, 12]) plt.title("Vphi (km/s)") # plot density plt.subplot(2,2,3) plt.plot(seis_p/1.e9,rho/1000.,color='r',linestyle='-',marker='^',markerfacecolor='r',markersize=4,label='model 1') plt.plot(seis_p/1.e9,seis_rho/1000.,color='k',linestyle='-',marker='v',markerfacecolor='k',markersize=4,label='ref') plt.title("density (kg/m^3)") plt.legend(loc='upper left') plt.ylim([3, 7 ]) plt.show() print "done"
gpl-2.0
leesavide/pythonista-docs
Documentation/matplotlib/mpl_examples/pylab_examples/plotfile_demo.py
13
1113
from pylab import plotfile, show, gca import matplotlib.cbook as cbook fname = cbook.get_sample_data('msft.csv', asfileobj=False) fname2 = cbook.get_sample_data('data_x_x2_x3.csv', asfileobj=False) # test 1; use ints plotfile(fname, (0,5,6)) # test 2; use names plotfile(fname, ('date', 'volume', 'adj_close')) # test 3; use semilogy for volume plotfile(fname, ('date', 'volume', 'adj_close'), plotfuncs={'volume': 'semilogy'}) # test 4; use semilogy for volume plotfile(fname, (0,5,6), plotfuncs={5:'semilogy'}) #test 5; single subplot plotfile(fname, ('date', 'open', 'high', 'low', 'close'), subplots=False) # test 6; labeling, if no names in csv-file plotfile(fname2, cols=(0,1,2), delimiter=' ', names=['$x$', '$f(x)=x^2$', '$f(x)=x^3$']) # test 7; more than one file per figure--illustrated here with a single file plotfile(fname2, cols=(0, 1), delimiter=' ') plotfile(fname2, cols=(0, 2), newfig=False, delimiter=' ') # use current figure gca().set_xlabel(r'$x$') gca().set_ylabel(r'$f(x) = x^2, x^3$') # test 8; use bar for volume plotfile(fname, (0,5,6), plotfuncs={5:'bar'}) show()
apache-2.0
Vimos/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
87
3903
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.externals.joblib import Memory from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1)) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
igabr/Metis_Projects_Chicago_2017
03-Project-McNulty/helper_functions.py
1
3521
import pandas as pd import numpy as np import matplotlib.pyplot as plt import pickle import seaborn as sns import warnings import re from datetime import datetime warnings.filterwarnings("ignore") def difference_in_days(date1, date2): """ The assumption here is that Date 2 > Date 1. can always use abs(d2-d1).days to remove weird answers. """ d1 = datetime.strptime(date1, '%m-%d-%Y') d2 = datetime.strptime(date2, '%m-%d-%Y') return (d2-d1).days #can use other methods to get differene in months, years etc. def clean_df_cols(col_list): """ input df.column """ regex = r"[\!\"\'\,\(\)\[\]\*\.\\]" subset='' clean_col_names = [] for i in col_list: clean_name = re.sub(regex, subset, i).strip() clean_col_names.append(clean_name) return clean_col_names def unique_pairs(df): '''Get diagonal and lower triangular pairs of correlation matrix''' drop_cols = set() cols = df.columns for i in range(0, df.shape[1]): for j in range(0, i+1): drop_cols.add((cols[i], cols[j])) return drop_cols def extract_top_correlations(df, n=5): """ Extract the columns which are highly correlated. Default value is top 5 columns. Play with this if you have a threshold in mind. """ corr_matrix = df.corr().abs().unstack() unique_cols = unique_pairs(df) corr_matrix = corr_matrix.drop(labels=unique_cols).sort_values(ascending=False) return corr_matrix[0:n] def skew(mean, median): if mean > median: print("Right skew") if mean < median: print("Left Skew") diff = mean - median print("Diff between mean and median is : {}".format(diff)) def lookup_description(col_name): return data_dict[col_name] def percentage_missing(df): """ Calculates missing data for each column in a dataframe. This function is informative. Inputs: - df: Pandas dataframe Returns: - None """ for c in df.columns: missing_perc = (sum(pd.isnull(df[c]))/len(df))*100 if missing_perc > 0: print("%.1f%% missing from: Column %s" %(missing_perc, c)) def pickle_object(obj, name): """ Short helper function to pickle any object in python WARNING: NOT FOR USE WITH BEAUTIFULSOUP OBJECTS - see bs4 documentation. Inputs: - obj: Python object to be pickled - name: resulting name of pickle file. NOTE: No need to add .pkl in the name Returns: - None. Function writes straight to disk. """ with open(name+".pkl", 'wb') as f: pickle.dump(obj, f, protocol=4) def unpickle_object(pkl): """ Short helper fucntion to unpickle any object in python Inputs: - pickle object from disk. Returns: - unpickled file now available in python namespace """ return pickle.load(open(pkl, 'rb')) data_dict = unpickle_object("data_dict.pkl") def plot_corr_matrix(data): ''' Heatmap of correlation matrix Inputs: dataframe Returns: Heatmap (Green + corr. Red - corr.) ''' sns.set(font_scale=1.4)#for label size ax = plt.axes() sns.heatmap(data.corr(), square=True, cmap='RdYlGn') ax.set_title('Correlation Matrix') #functions below relate to logisitic regression coef interpretation def convert_to_prob(coef): numerator = np.exp(coef) denom = 1 + np.exp(coef) return numerator/denom def convert_to_odds(coef): return np.exp(coef) def compare_odds(odd1, odd2): return odd1/odd2
mit
sambitgaan/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/widgets.py
69
40833
""" GUI Neutral widgets All of these widgets require you to predefine an Axes instance and pass that as the first arg. matplotlib doesn't try to be too smart in layout -- you have to figure out how wide and tall you want your Axes to be to accommodate your widget. """ import numpy as np from mlab import dist from patches import Circle, Rectangle from lines import Line2D from transforms import blended_transform_factory class LockDraw: """ some widgets, like the cursor, draw onto the canvas, and this is not desirable under all circumstaces, like when the toolbar is in zoom-to-rect mode and drawing a rectangle. The module level "lock" allows someone to grab the lock and prevent other widgets from drawing. Use matplotlib.widgets.lock(someobj) to pr """ def __init__(self): self._owner = None def __call__(self, o): 'reserve the lock for o' if not self.available(o): raise ValueError('already locked') self._owner = o def release(self, o): 'release the lock' if not self.available(o): raise ValueError('you do not own this lock') self._owner = None def available(self, o): 'drawing is available to o' return not self.locked() or self.isowner(o) def isowner(self, o): 'o owns the lock' return self._owner is o def locked(self): 'the lock is held' return self._owner is not None class Widget: """ OK, I couldn't resist; abstract base class for mpl GUI neutral widgets """ drawon = True eventson = True class Button(Widget): """ A GUI neutral button The following attributes are accesible ax - the Axes the button renders into label - a text.Text instance color - the color of the button when not hovering hovercolor - the color of the button when hovering Call "on_clicked" to connect to the button """ def __init__(self, ax, label, image=None, color='0.85', hovercolor='0.95'): """ ax is the Axes instance the button will be placed into label is a string which is the button text image if not None, is an image to place in the button -- can be any legal arg to imshow (numpy array, matplotlib Image instance, or PIL image) color is the color of the button when not activated hovercolor is the color of the button when the mouse is over it """ if image is not None: ax.imshow(image) self.label = ax.text(0.5, 0.5, label, verticalalignment='center', horizontalalignment='center', transform=ax.transAxes) self.cnt = 0 self.observers = {} self.ax = ax ax.figure.canvas.mpl_connect('button_press_event', self._click) ax.figure.canvas.mpl_connect('motion_notify_event', self._motion) ax.set_navigate(False) ax.set_axis_bgcolor(color) ax.set_xticks([]) ax.set_yticks([]) self.color = color self.hovercolor = hovercolor self._lastcolor = color def _click(self, event): if event.inaxes != self.ax: return if not self.eventson: return for cid, func in self.observers.items(): func(event) def _motion(self, event): if event.inaxes==self.ax: c = self.hovercolor else: c = self.color if c != self._lastcolor: self.ax.set_axis_bgcolor(c) self._lastcolor = c if self.drawon: self.ax.figure.canvas.draw() def on_clicked(self, func): """ When the button is clicked, call this func with event A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass class Slider(Widget): """ A slider representing a floating point range The following attributes are defined ax : the slider axes.Axes instance val : the current slider value vline : a Line2D instance representing the initial value poly : A patch.Polygon instance which is the slider valfmt : the format string for formatting the slider text label : a text.Text instance, the slider label closedmin : whether the slider is closed on the minimum closedmax : whether the slider is closed on the maximum slidermin : another slider - if not None, this slider must be > slidermin slidermax : another slider - if not None, this slider must be < slidermax dragging : allow for mouse dragging on slider Call on_changed to connect to the slider event """ def __init__(self, ax, label, valmin, valmax, valinit=0.5, valfmt='%1.2f', closedmin=True, closedmax=True, slidermin=None, slidermax=None, dragging=True, **kwargs): """ Create a slider from valmin to valmax in axes ax; valinit - the slider initial position label - the slider label valfmt - used to format the slider value closedmin and closedmax - indicate whether the slider interval is closed slidermin and slidermax - be used to contrain the value of this slider to the values of other sliders. additional kwargs are passed on to self.poly which is the matplotlib.patches.Rectangle which draws the slider. See the matplotlib.patches.Rectangle documentation for legal property names (eg facecolor, edgecolor, alpha, ...) """ self.ax = ax self.valmin = valmin self.valmax = valmax self.val = valinit self.valinit = valinit self.poly = ax.axvspan(valmin,valinit,0,1, **kwargs) self.vline = ax.axvline(valinit,0,1, color='r', lw=1) self.valfmt=valfmt ax.set_yticks([]) ax.set_xlim((valmin, valmax)) ax.set_xticks([]) ax.set_navigate(False) ax.figure.canvas.mpl_connect('button_press_event', self._update) if dragging: ax.figure.canvas.mpl_connect('motion_notify_event', self._update) self.label = ax.text(-0.02, 0.5, label, transform=ax.transAxes, verticalalignment='center', horizontalalignment='right') self.valtext = ax.text(1.02, 0.5, valfmt%valinit, transform=ax.transAxes, verticalalignment='center', horizontalalignment='left') self.cnt = 0 self.observers = {} self.closedmin = closedmin self.closedmax = closedmax self.slidermin = slidermin self.slidermax = slidermax def _update(self, event): 'update the slider position' if event.button !=1: return if event.inaxes != self.ax: return val = event.xdata if not self.closedmin and val<=self.valmin: return if not self.closedmax and val>=self.valmax: return if self.slidermin is not None: if val<=self.slidermin.val: return if self.slidermax is not None: if val>=self.slidermax.val: return self.set_val(val) def set_val(self, val): xy = self.poly.xy xy[-1] = val, 0 xy[-2] = val, 1 self.poly.xy = xy self.valtext.set_text(self.valfmt%val) if self.drawon: self.ax.figure.canvas.draw() self.val = val if not self.eventson: return for cid, func in self.observers.items(): func(val) def on_changed(self, func): """ When the slider valud is changed, call this func with the new slider position A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass def reset(self): "reset the slider to the initial value if needed" if (self.val != self.valinit): self.set_val(self.valinit) class CheckButtons(Widget): """ A GUI neutral radio button The following attributes are exposed ax - the Axes instance the buttons are in labels - a list of text.Text instances lines - a list of (line1, line2) tuples for the x's in the check boxes. These lines exist for each box, but have set_visible(False) when box is not checked rectangles - a list of patch.Rectangle instances Connect to the CheckButtons with the on_clicked method """ def __init__(self, ax, labels, actives): """ Add check buttons to axes.Axes instance ax labels is a len(buttons) list of labels as strings actives is a len(buttons) list of booleans indicating whether the button is active """ ax.set_xticks([]) ax.set_yticks([]) ax.set_navigate(False) if len(labels)>1: dy = 1./(len(labels)+1) ys = np.linspace(1-dy, dy, len(labels)) else: dy = 0.25 ys = [0.5] cnt = 0 axcolor = ax.get_axis_bgcolor() self.labels = [] self.lines = [] self.rectangles = [] lineparams = {'color':'k', 'linewidth':1.25, 'transform':ax.transAxes, 'solid_capstyle':'butt'} for y, label in zip(ys, labels): t = ax.text(0.25, y, label, transform=ax.transAxes, horizontalalignment='left', verticalalignment='center') w, h = dy/2., dy/2. x, y = 0.05, y-h/2. p = Rectangle(xy=(x,y), width=w, height=h, facecolor=axcolor, transform=ax.transAxes) l1 = Line2D([x, x+w], [y+h, y], **lineparams) l2 = Line2D([x, x+w], [y, y+h], **lineparams) l1.set_visible(actives[cnt]) l2.set_visible(actives[cnt]) self.labels.append(t) self.rectangles.append(p) self.lines.append((l1,l2)) ax.add_patch(p) ax.add_line(l1) ax.add_line(l2) cnt += 1 ax.figure.canvas.mpl_connect('button_press_event', self._clicked) self.ax = ax self.cnt = 0 self.observers = {} def _clicked(self, event): if event.button !=1 : return if event.inaxes != self.ax: return for p,t,lines in zip(self.rectangles, self.labels, self.lines): if (t.get_window_extent().contains(event.x, event.y) or p.get_window_extent().contains(event.x, event.y) ): l1, l2 = lines l1.set_visible(not l1.get_visible()) l2.set_visible(not l2.get_visible()) thist = t break else: return if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(thist.get_text()) def on_clicked(self, func): """ When the button is clicked, call this func with button label A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass class RadioButtons(Widget): """ A GUI neutral radio button The following attributes are exposed ax - the Axes instance the buttons are in activecolor - the color of the button when clicked labels - a list of text.Text instances circles - a list of patch.Circle instances Connect to the RadioButtons with the on_clicked method """ def __init__(self, ax, labels, active=0, activecolor='blue'): """ Add radio buttons to axes.Axes instance ax labels is a len(buttons) list of labels as strings active is the index into labels for the button that is active activecolor is the color of the button when clicked """ self.activecolor = activecolor ax.set_xticks([]) ax.set_yticks([]) ax.set_navigate(False) dy = 1./(len(labels)+1) ys = np.linspace(1-dy, dy, len(labels)) cnt = 0 axcolor = ax.get_axis_bgcolor() self.labels = [] self.circles = [] for y, label in zip(ys, labels): t = ax.text(0.25, y, label, transform=ax.transAxes, horizontalalignment='left', verticalalignment='center') if cnt==active: facecolor = activecolor else: facecolor = axcolor p = Circle(xy=(0.15, y), radius=0.05, facecolor=facecolor, transform=ax.transAxes) self.labels.append(t) self.circles.append(p) ax.add_patch(p) cnt += 1 ax.figure.canvas.mpl_connect('button_press_event', self._clicked) self.ax = ax self.cnt = 0 self.observers = {} def _clicked(self, event): if event.button !=1 : return if event.inaxes != self.ax: return xy = self.ax.transAxes.inverted().transform_point((event.x, event.y)) pclicked = np.array([xy[0], xy[1]]) def inside(p): pcirc = np.array([p.center[0], p.center[1]]) return dist(pclicked, pcirc) < p.radius for p,t in zip(self.circles, self.labels): if t.get_window_extent().contains(event.x, event.y) or inside(p): inp = p thist = t break else: return for p in self.circles: if p==inp: color = self.activecolor else: color = self.ax.get_axis_bgcolor() p.set_facecolor(color) if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(thist.get_text()) def on_clicked(self, func): """ When the button is clicked, call this func with button label A connection id is returned which can be used to disconnect """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): 'remove the observer with connection id cid' try: del self.observers[cid] except KeyError: pass class SubplotTool(Widget): """ A tool to adjust to subplot params of fig """ def __init__(self, targetfig, toolfig): """ targetfig is the figure to adjust toolfig is the figure to embed the the subplot tool into. If None, a default pylab figure will be created. If you are using this from the GUI """ self.targetfig = targetfig toolfig.subplots_adjust(left=0.2, right=0.9) class toolbarfmt: def __init__(self, slider): self.slider = slider def __call__(self, x, y): fmt = '%s=%s'%(self.slider.label.get_text(), self.slider.valfmt) return fmt%x self.axleft = toolfig.add_subplot(711) self.axleft.set_title('Click on slider to adjust subplot param') self.axleft.set_navigate(False) self.sliderleft = Slider(self.axleft, 'left', 0, 1, targetfig.subplotpars.left, closedmax=False) self.sliderleft.on_changed(self.funcleft) self.axbottom = toolfig.add_subplot(712) self.axbottom.set_navigate(False) self.sliderbottom = Slider(self.axbottom, 'bottom', 0, 1, targetfig.subplotpars.bottom, closedmax=False) self.sliderbottom.on_changed(self.funcbottom) self.axright = toolfig.add_subplot(713) self.axright.set_navigate(False) self.sliderright = Slider(self.axright, 'right', 0, 1, targetfig.subplotpars.right, closedmin=False) self.sliderright.on_changed(self.funcright) self.axtop = toolfig.add_subplot(714) self.axtop.set_navigate(False) self.slidertop = Slider(self.axtop, 'top', 0, 1, targetfig.subplotpars.top, closedmin=False) self.slidertop.on_changed(self.functop) self.axwspace = toolfig.add_subplot(715) self.axwspace.set_navigate(False) self.sliderwspace = Slider(self.axwspace, 'wspace', 0, 1, targetfig.subplotpars.wspace, closedmax=False) self.sliderwspace.on_changed(self.funcwspace) self.axhspace = toolfig.add_subplot(716) self.axhspace.set_navigate(False) self.sliderhspace = Slider(self.axhspace, 'hspace', 0, 1, targetfig.subplotpars.hspace, closedmax=False) self.sliderhspace.on_changed(self.funchspace) # constraints self.sliderleft.slidermax = self.sliderright self.sliderright.slidermin = self.sliderleft self.sliderbottom.slidermax = self.slidertop self.slidertop.slidermin = self.sliderbottom bax = toolfig.add_axes([0.8, 0.05, 0.15, 0.075]) self.buttonreset = Button(bax, 'Reset') sliders = (self.sliderleft, self.sliderbottom, self.sliderright, self.slidertop, self.sliderwspace, self.sliderhspace, ) def func(event): thisdrawon = self.drawon self.drawon = False # store the drawon state of each slider bs = [] for slider in sliders: bs.append(slider.drawon) slider.drawon = False # reset the slider to the initial position for slider in sliders: slider.reset() # reset drawon for slider, b in zip(sliders, bs): slider.drawon = b # draw the canvas self.drawon = thisdrawon if self.drawon: toolfig.canvas.draw() self.targetfig.canvas.draw() # during reset there can be a temporary invalid state # depending on the order of the reset so we turn off # validation for the resetting validate = toolfig.subplotpars.validate toolfig.subplotpars.validate = False self.buttonreset.on_clicked(func) toolfig.subplotpars.validate = validate def funcleft(self, val): self.targetfig.subplots_adjust(left=val) if self.drawon: self.targetfig.canvas.draw() def funcright(self, val): self.targetfig.subplots_adjust(right=val) if self.drawon: self.targetfig.canvas.draw() def funcbottom(self, val): self.targetfig.subplots_adjust(bottom=val) if self.drawon: self.targetfig.canvas.draw() def functop(self, val): self.targetfig.subplots_adjust(top=val) if self.drawon: self.targetfig.canvas.draw() def funcwspace(self, val): self.targetfig.subplots_adjust(wspace=val) if self.drawon: self.targetfig.canvas.draw() def funchspace(self, val): self.targetfig.subplots_adjust(hspace=val) if self.drawon: self.targetfig.canvas.draw() class Cursor: """ A horizontal and vertical line span the axes that and move with the pointer. You can turn off the hline or vline spectively with the attributes horizOn =True|False: controls visibility of the horizontal line vertOn =True|False: controls visibility of the horizontal line And the visibility of the cursor itself with visible attribute """ def __init__(self, ax, useblit=False, **lineprops): """ Add a cursor to ax. If useblit=True, use the backend dependent blitting features for faster updates (GTKAgg only now). lineprops is a dictionary of line properties. See examples/widgets/cursor.py. """ self.ax = ax self.canvas = ax.figure.canvas self.canvas.mpl_connect('motion_notify_event', self.onmove) self.canvas.mpl_connect('draw_event', self.clear) self.visible = True self.horizOn = True self.vertOn = True self.useblit = useblit self.lineh = ax.axhline(ax.get_ybound()[0], visible=False, **lineprops) self.linev = ax.axvline(ax.get_xbound()[0], visible=False, **lineprops) self.background = None self.needclear = False def clear(self, event): 'clear the cursor' if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.linev.set_visible(False) self.lineh.set_visible(False) def onmove(self, event): 'on mouse motion draw the cursor if visible' if event.inaxes != self.ax: self.linev.set_visible(False) self.lineh.set_visible(False) if self.needclear: self.canvas.draw() self.needclear = False return self.needclear = True if not self.visible: return self.linev.set_xdata((event.xdata, event.xdata)) self.lineh.set_ydata((event.ydata, event.ydata)) self.linev.set_visible(self.visible and self.vertOn) self.lineh.set_visible(self.visible and self.horizOn) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) self.ax.draw_artist(self.linev) self.ax.draw_artist(self.lineh) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False class MultiCursor: """ Provide a vertical line cursor shared between multiple axes from matplotlib.widgets import MultiCursor from pylab import figure, show, nx t = nx.arange(0.0, 2.0, 0.01) s1 = nx.sin(2*nx.pi*t) s2 = nx.sin(4*nx.pi*t) fig = figure() ax1 = fig.add_subplot(211) ax1.plot(t, s1) ax2 = fig.add_subplot(212, sharex=ax1) ax2.plot(t, s2) multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1) show() """ def __init__(self, canvas, axes, useblit=True, **lineprops): self.canvas = canvas self.axes = axes xmin, xmax = axes[-1].get_xlim() xmid = 0.5*(xmin+xmax) self.lines = [ax.axvline(xmid, visible=False, **lineprops) for ax in axes] self.visible = True self.useblit = useblit self.background = None self.needclear = False self.canvas.mpl_connect('motion_notify_event', self.onmove) self.canvas.mpl_connect('draw_event', self.clear) def clear(self, event): 'clear the cursor' if self.useblit: self.background = self.canvas.copy_from_bbox(self.canvas.figure.bbox) for line in self.lines: line.set_visible(False) def onmove(self, event): if event.inaxes is None: return if not self.canvas.widgetlock.available(self): return self.needclear = True if not self.visible: return for line in self.lines: line.set_xdata((event.xdata, event.xdata)) line.set_visible(self.visible) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) for ax, line in zip(self.axes, self.lines): ax.draw_artist(line) self.canvas.blit(self.canvas.figure.bbox) else: self.canvas.draw_idle() class SpanSelector: """ Select a min/max range of the x or y axes for a matplotlib Axes Example usage: ax = subplot(111) ax.plot(x,y) def onselect(vmin, vmax): print vmin, vmax span = SpanSelector(ax, onselect, 'horizontal') onmove_callback is an optional callback that will be called on mouse move with the span range """ def __init__(self, ax, onselect, direction, minspan=None, useblit=False, rectprops=None, onmove_callback=None): """ Create a span selector in ax. When a selection is made, clear the span and call onselect with onselect(vmin, vmax) and clear the span. direction must be 'horizontal' or 'vertical' If minspan is not None, ignore events smaller than minspan The span rect is drawn with rectprops; default rectprops = dict(facecolor='red', alpha=0.5) set the visible attribute to False if you want to turn off the functionality of the span selector """ if rectprops is None: rectprops = dict(facecolor='red', alpha=0.5) assert direction in ['horizontal', 'vertical'], 'Must choose horizontal or vertical for direction' self.direction = direction self.ax = None self.canvas = None self.visible = True self.cids=[] self.rect = None self.background = None self.pressv = None self.rectprops = rectprops self.onselect = onselect self.onmove_callback = onmove_callback self.useblit = useblit self.minspan = minspan # Needed when dragging out of axes self.buttonDown = False self.prev = (0, 0) self.new_axes(ax) def new_axes(self,ax): self.ax = ax if self.canvas is not ax.figure.canvas: for cid in self.cids: self.canvas.mpl_disconnect(cid) self.canvas = ax.figure.canvas self.cids.append(self.canvas.mpl_connect('motion_notify_event', self.onmove)) self.cids.append(self.canvas.mpl_connect('button_press_event', self.press)) self.cids.append(self.canvas.mpl_connect('button_release_event', self.release)) self.cids.append(self.canvas.mpl_connect('draw_event', self.update_background)) if self.direction == 'horizontal': trans = blended_transform_factory(self.ax.transData, self.ax.transAxes) w,h = 0,1 else: trans = blended_transform_factory(self.ax.transAxes, self.ax.transData) w,h = 1,0 self.rect = Rectangle( (0,0), w, h, transform=trans, visible=False, **self.rectprops ) if not self.useblit: self.ax.add_patch(self.rect) def update_background(self, event): 'force an update of the background' if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) def ignore(self, event): 'return True if event should be ignored' return event.inaxes!=self.ax or not self.visible or event.button !=1 def press(self, event): 'on button press event' if self.ignore(event): return self.buttonDown = True self.rect.set_visible(self.visible) if self.direction == 'horizontal': self.pressv = event.xdata else: self.pressv = event.ydata return False def release(self, event): 'on button release event' if self.pressv is None or (self.ignore(event) and not self.buttonDown): return self.buttonDown = False self.rect.set_visible(False) self.canvas.draw() vmin = self.pressv if self.direction == 'horizontal': vmax = event.xdata or self.prev[0] else: vmax = event.ydata or self.prev[1] if vmin>vmax: vmin, vmax = vmax, vmin span = vmax - vmin if self.minspan is not None and span<self.minspan: return self.onselect(vmin, vmax) self.pressv = None return False def update(self): 'draw using newfangled blit or oldfangled draw depending on useblit' if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) self.ax.draw_artist(self.rect) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False def onmove(self, event): 'on motion notify event' if self.pressv is None or self.ignore(event): return x, y = event.xdata, event.ydata self.prev = x, y if self.direction == 'horizontal': v = x else: v = y minv, maxv = v, self.pressv if minv>maxv: minv, maxv = maxv, minv if self.direction == 'horizontal': self.rect.set_x(minv) self.rect.set_width(maxv-minv) else: self.rect.set_y(minv) self.rect.set_height(maxv-minv) if self.onmove_callback is not None: vmin = self.pressv if self.direction == 'horizontal': vmax = event.xdata or self.prev[0] else: vmax = event.ydata or self.prev[1] if vmin>vmax: vmin, vmax = vmax, vmin self.onmove_callback(vmin, vmax) self.update() return False # For backwards compatibility only! class HorizontalSpanSelector(SpanSelector): def __init__(self, ax, onselect, **kwargs): import warnings warnings.warn('Use SpanSelector instead!', DeprecationWarning) SpanSelector.__init__(self, ax, onselect, 'horizontal', **kwargs) class RectangleSelector: """ Select a min/max range of the x axes for a matplotlib Axes Example usage:: from matplotlib.widgets import RectangleSelector from pylab import * def onselect(eclick, erelease): 'eclick and erelease are matplotlib events at press and release' print ' startposition : (%f, %f)' % (eclick.xdata, eclick.ydata) print ' endposition : (%f, %f)' % (erelease.xdata, erelease.ydata) print ' used button : ', eclick.button def toggle_selector(event): print ' Key pressed.' if event.key in ['Q', 'q'] and toggle_selector.RS.active: print ' RectangleSelector deactivated.' toggle_selector.RS.set_active(False) if event.key in ['A', 'a'] and not toggle_selector.RS.active: print ' RectangleSelector activated.' toggle_selector.RS.set_active(True) x = arange(100)/(99.0) y = sin(x) fig = figure ax = subplot(111) ax.plot(x,y) toggle_selector.RS = RectangleSelector(ax, onselect, drawtype='line') connect('key_press_event', toggle_selector) show() """ def __init__(self, ax, onselect, drawtype='box', minspanx=None, minspany=None, useblit=False, lineprops=None, rectprops=None, spancoords='data'): """ Create a selector in ax. When a selection is made, clear the span and call onselect with onselect(pos_1, pos_2) and clear the drawn box/line. There pos_i are arrays of length 2 containing the x- and y-coordinate. If minspanx is not None then events smaller than minspanx in x direction are ignored(it's the same for y). The rect is drawn with rectprops; default rectprops = dict(facecolor='red', edgecolor = 'black', alpha=0.5, fill=False) The line is drawn with lineprops; default lineprops = dict(color='black', linestyle='-', linewidth = 2, alpha=0.5) Use type if you want the mouse to draw a line, a box or nothing between click and actual position ny setting drawtype = 'line', drawtype='box' or drawtype = 'none'. spancoords is one of 'data' or 'pixels'. If 'data', minspanx and minspanx will be interpreted in the same coordinates as the x and ya axis, if 'pixels', they are in pixels """ self.ax = ax self.visible = True self.canvas = ax.figure.canvas self.canvas.mpl_connect('motion_notify_event', self.onmove) self.canvas.mpl_connect('button_press_event', self.press) self.canvas.mpl_connect('button_release_event', self.release) self.canvas.mpl_connect('draw_event', self.update_background) self.active = True # for activation / deactivation self.to_draw = None self.background = None if drawtype == 'none': drawtype = 'line' # draw a line but make it self.visible = False # invisible if drawtype == 'box': if rectprops is None: rectprops = dict(facecolor='white', edgecolor = 'black', alpha=0.5, fill=False) self.rectprops = rectprops self.to_draw = Rectangle((0,0), 0, 1,visible=False,**self.rectprops) self.ax.add_patch(self.to_draw) if drawtype == 'line': if lineprops is None: lineprops = dict(color='black', linestyle='-', linewidth = 2, alpha=0.5) self.lineprops = lineprops self.to_draw = Line2D([0,0],[0,0],visible=False,**self.lineprops) self.ax.add_line(self.to_draw) self.onselect = onselect self.useblit = useblit self.minspanx = minspanx self.minspany = minspany assert(spancoords in ('data', 'pixels')) self.spancoords = spancoords self.drawtype = drawtype # will save the data (position at mouseclick) self.eventpress = None # will save the data (pos. at mouserelease) self.eventrelease = None def update_background(self, event): 'force an update of the background' if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) def ignore(self, event): 'return True if event should be ignored' # If RectangleSelector is not active : if not self.active: return True # If canvas was locked if not self.canvas.widgetlock.available(self): return True # If no button was pressed yet ignore the event if it was out # of the axes if self.eventpress == None: return event.inaxes!= self.ax # If a button was pressed, check if the release-button is the # same. return (event.inaxes!=self.ax or event.button != self.eventpress.button) def press(self, event): 'on button press event' # Is the correct button pressed within the correct axes? if self.ignore(event): return # make the drawed box/line visible get the click-coordinates, # button, ... self.to_draw.set_visible(self.visible) self.eventpress = event return False def release(self, event): 'on button release event' if self.eventpress is None or self.ignore(event): return # make the box/line invisible again self.to_draw.set_visible(False) self.canvas.draw() # release coordinates, button, ... self.eventrelease = event if self.spancoords=='data': xmin, ymin = self.eventpress.xdata, self.eventpress.ydata xmax, ymax = self.eventrelease.xdata, self.eventrelease.ydata # calculate dimensions of box or line get values in the right # order elif self.spancoords=='pixels': xmin, ymin = self.eventpress.x, self.eventpress.y xmax, ymax = self.eventrelease.x, self.eventrelease.y else: raise ValueError('spancoords must be "data" or "pixels"') if xmin>xmax: xmin, xmax = xmax, xmin if ymin>ymax: ymin, ymax = ymax, ymin spanx = xmax - xmin spany = ymax - ymin xproblems = self.minspanx is not None and spanx<self.minspanx yproblems = self.minspany is not None and spany<self.minspany if (self.drawtype=='box') and (xproblems or yproblems): """Box to small""" # check if drawed distance (if it exists) is return # not to small in neither x nor y-direction if (self.drawtype=='line') and (xproblems and yproblems): """Line to small""" # check if drawed distance (if it exists) is return # not to small in neither x nor y-direction self.onselect(self.eventpress, self.eventrelease) # call desired function self.eventpress = None # reset the variables to their self.eventrelease = None # inital values return False def update(self): 'draw using newfangled blit or oldfangled draw depending on useblit' if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) self.ax.draw_artist(self.to_draw) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False def onmove(self, event): 'on motion notify event if box/line is wanted' if self.eventpress is None or self.ignore(event): return x,y = event.xdata, event.ydata # actual position (with # (button still pressed) if self.drawtype == 'box': minx, maxx = self.eventpress.xdata, x # click-x and actual mouse-x miny, maxy = self.eventpress.ydata, y # click-y and actual mouse-y if minx>maxx: minx, maxx = maxx, minx # get them in the right order if miny>maxy: miny, maxy = maxy, miny self.to_draw.set_x(minx) # set lower left of box self.to_draw.set_y(miny) self.to_draw.set_width(maxx-minx) # set width and height of box self.to_draw.set_height(maxy-miny) self.update() return False if self.drawtype == 'line': self.to_draw.set_data([self.eventpress.xdata, x], [self.eventpress.ydata, y]) self.update() return False def set_active(self, active): """ Use this to activate / deactivate the RectangleSelector from your program with an boolean variable 'active'. """ self.active = active def get_active(self): """ to get status of active mode (boolean variable)""" return self.active class Lasso(Widget): def __init__(self, ax, xy, callback=None, useblit=True): self.axes = ax self.figure = ax.figure self.canvas = self.figure.canvas self.useblit = useblit if useblit: self.background = self.canvas.copy_from_bbox(self.axes.bbox) x, y = xy self.verts = [(x,y)] self.line = Line2D([x], [y], linestyle='-', color='black', lw=2) self.axes.add_line(self.line) self.callback = callback self.cids = [] self.cids.append(self.canvas.mpl_connect('button_release_event', self.onrelease)) self.cids.append(self.canvas.mpl_connect('motion_notify_event', self.onmove)) def onrelease(self, event): if self.verts is not None: self.verts.append((event.xdata, event.ydata)) if len(self.verts)>2: self.callback(self.verts) self.axes.lines.remove(self.line) self.verts = None for cid in self.cids: self.canvas.mpl_disconnect(cid) def onmove(self, event): if self.verts is None: return if event.inaxes != self.axes: return if event.button!=1: return self.verts.append((event.xdata, event.ydata)) self.line.set_data(zip(*self.verts)) if self.useblit: self.canvas.restore_region(self.background) self.axes.draw_artist(self.line) self.canvas.blit(self.axes.bbox) else: self.canvas.draw_idle()
agpl-3.0
LiaoPan/scikit-learn
examples/linear_model/plot_logistic_path.py
349
1195
#!/usr/bin/env python """ ================================= Path with L1- Logistic Regression ================================= Computes path on IRIS dataset. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets from sklearn.svm import l1_min_c iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X -= np.mean(X, 0) ############################################################################### # Demo path functions cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3) print("Computing regularization path ...") start = datetime.now() clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) print("This took ", datetime.now() - start) coefs_ = np.array(coefs_) plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title('Logistic Regression Path') plt.axis('tight') plt.show()
bsd-3-clause
Nyker510/scikit-learn
sklearn/ensemble/voting_classifier.py
31
7929
""" Soft Voting/Majority Rule classifier. This module contains a Soft Voting/Majority Rule classifier for classification estimators. """ # Authors: Sebastian Raschka <[email protected]>, # Gilles Louppe <[email protected]> # # Licence: BSD 3 clause import numpy as np from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import TransformerMixin from ..base import clone from ..preprocessing import LabelEncoder from ..externals import six class VotingClassifier(BaseEstimator, ClassifierMixin, TransformerMixin): """Soft Voting/Majority Rule classifier for unfitted estimators. Read more in the :ref:`User Guide <voting_classifier>`. Parameters ---------- estimators : list of (string, estimator) tuples Invoking the `fit` method on the `VotingClassifier` will fit clones of those original estimators that will be stored in the class attribute `self.estimators_`. voting : str, {'hard', 'soft'} (default='hard') If 'hard', uses predicted class labels for majority rule voting. Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probalities, which is recommended for an ensemble of well-calibrated classifiers. weights : array-like, shape = [n_classifiers], optional (default=`None`) Sequence of weights (`float` or `int`) to weight the occurances of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`. Attributes ---------- classes_ : array-like, shape = [n_predictions] Examples -------- >>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.ensemble import RandomForestClassifier >>> clf1 = LogisticRegression(random_state=1) >>> clf2 = RandomForestClassifier(random_state=1) >>> clf3 = GaussianNB() >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> eclf1 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') >>> eclf1 = eclf1.fit(X, y) >>> print(eclf1.predict(X)) [1 1 1 2 2 2] >>> eclf2 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft') >>> eclf2 = eclf2.fit(X, y) >>> print(eclf2.predict(X)) [1 1 1 2 2 2] >>> eclf3 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft', weights=[2,1,1]) >>> eclf3 = eclf3.fit(X, y) >>> print(eclf3.predict(X)) [1 1 1 2 2 2] >>> """ def __init__(self, estimators, voting='hard', weights=None): self.estimators = estimators self.named_estimators = dict(estimators) self.voting = voting self.weights = weights def fit(self, X, y): """ Fit the estimators. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1: raise NotImplementedError('Multilabel and multi-output' ' classification is not supported.') if self.voting not in ('soft', 'hard'): raise ValueError("Voting must be 'soft' or 'hard'; got (voting=%r)" % self.voting) if self.weights and len(self.weights) != len(self.estimators): raise ValueError('Number of classifiers and weights must be equal' '; got %d weights, %d estimators' % (len(self.weights), len(self.estimators))) self.le_ = LabelEncoder() self.le_.fit(y) self.classes_ = self.le_.classes_ self.estimators_ = [] for name, clf in self.estimators: fitted_clf = clone(clf).fit(X, self.le_.transform(y)) self.estimators_.append(fitted_clf) return self def predict(self, X): """ Predict class labels for X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- maj : array-like, shape = [n_samples] Predicted class labels. """ if self.voting == 'soft': maj = np.argmax(self.predict_proba(X), axis=1) else: # 'hard' voting predictions = self._predict(X) maj = np.apply_along_axis(lambda x: np.argmax(np.bincount(x, weights=self.weights)), axis=1, arr=predictions) maj = self.le_.inverse_transform(maj) return maj def _collect_probas(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict_proba(X) for clf in self.estimators_]) def _predict_proba(self, X): """Predict class probabilities for X in 'soft' voting """ avg = np.average(self._collect_probas(X), axis=0, weights=self.weights) return avg @property def predict_proba(self): """Compute probabilities of possible outcomes for samples in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- avg : array-like, shape = [n_samples, n_classes] Weighted average probability for each class per sample. """ if self.voting == 'hard': raise AttributeError("predict_proba is not available when" " voting=%r" % self.voting) return self._predict_proba def transform(self, X): """Return class labels or probabilities for X for each estimator. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- If `voting='soft'`: array-like = [n_classifiers, n_samples, n_classes] Class probabilties calculated by each classifier. If `voting='hard'`: array-like = [n_classifiers, n_samples] Class labels predicted by each classifier. """ if self.voting == 'soft': return self._collect_probas(X) else: return self._predict(X) def get_params(self, deep=True): """Return estimator parameter names for GridSearch support""" if not deep: return super(VotingClassifier, self).get_params(deep=False) else: out = self.named_estimators.copy() for name, step in six.iteritems(self.named_estimators): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _predict(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict(X) for clf in self.estimators_]).T
bsd-3-clause
wkfwkf/statsmodels
statsmodels/examples/ex_kernel_regression_sigtest.py
34
3177
# -*- coding: utf-8 -*- """Kernel Regression and Significance Test Warning: SLOW, 11 minutes on my computer Created on Thu Jan 03 20:20:47 2013 Author: Josef Perktold results - this version ---------------------- >>> exec(open('ex_kernel_regression_censored1.py').read()) bw [ 0.3987821 0.50933458] [0.39878209999999997, 0.50933457999999998] sig_test - default Not Significant pvalue 0.11 test statistic 0.000434305313291 bootstrap critical values [ 0.00043875 0.00046808 0.0005064 0.00054151] sig_test - pivot=True, nboot=200, nested_res=50 pvalue 0.01 test statistic 6.17877171579 bootstrap critical values [ 5.5658345 5.74761076 5.87386858 6.46012041] times: 8.34599995613 20.6909999847 666.373999834 """ from __future__ import print_function import time import numpy as np import statsmodels.nonparametric.api as nparam import statsmodels.nonparametric.kernel_regression as smkr if __name__ == '__main__': t0 = time.time() #example from test file nobs = 200 np.random.seed(1234) C1 = np.random.normal(size=(nobs, )) C2 = np.random.normal(2, 1, size=(nobs, )) noise = np.random.normal(size=(nobs, )) Y = 0.3 +1.2 * C1 - 0.9 * C2 + noise #self.write2file('RegData.csv', (Y, C1, C2)) #CODE TO PRODUCE BANDWIDTH ESTIMATION IN R #library(np) #data <- read.csv('RegData.csv', header=FALSE) #bw <- npregbw(formula=data$V1 ~ data$V2 + data$V3, # bwmethod='cv.aic', regtype='lc') model = nparam.KernelReg(endog=[Y], exog=[C1, C2], reg_type='lc', var_type='cc', bw='aic') mean, marg = model.fit() #R_bw = [0.4017893, 0.4943397] # Bandwidth obtained in R bw_expected = [0.3987821, 0.50933458] #npt.assert_allclose(model.bw, bw_expected, rtol=1e-3) print('bw') print(model.bw) print(bw_expected) print('\nsig_test - default') print(model.sig_test([1], nboot=100)) t1 = time.time() res0 = smkr.TestRegCoefC(model, [1]) print('pvalue') print((res0.t_dist >= res0.test_stat).mean()) print('test statistic', res0.test_stat) print('bootstrap critical values') probs = np.array([0.9, 0.95, 0.975, 0.99]) bsort0 = np.sort(res0.t_dist) nrep0 = len(bsort0) print(bsort0[(probs * nrep0).astype(int)]) t2 = time.time() print('\nsig_test - pivot=True, nboot=200, nested_res=50') res1 = smkr.TestRegCoefC(model, [1], pivot=True, nboot=200, nested_res=50) print('pvalue') print((res1.t_dist >= res1.test_stat).mean()) print('test statistic', res1.test_stat) print('bootstrap critical values') probs = np.array([0.9, 0.95, 0.975, 0.99]) bsort1 = np.sort(res1.t_dist) nrep1 = len(bsort1) print(bsort1[(probs * nrep1).astype(int)]) t3 = time.time() print('times:', t1-t0, t2-t1, t3-t2) # import matplotlib.pyplot as plt # fig = plt.figure() # ax = fig.add_subplot(1,1,1) # ax.plot(x, y, 'o', alpha=0.5) # ax.plot(x, y_cens, 'o', alpha=0.5) # ax.plot(x, y_true, lw=2, label='DGP mean') # ax.plot(x, sm_mean, lw=2, label='model 0 mean') # ax.plot(x, mean2, lw=2, label='model 2 mean') # ax.legend() # # plt.show()
bsd-3-clause
SKA-ScienceDataProcessor/algorithm-reference-library
deprecated_code/workflows/mpi/imaging-pipelines_arlexecute.py
1
14745
# coding: utf-8 # # Pipeline processing using arlexecute workflows. # # This notebook demonstrates the continuum imaging and ICAL pipelines. These are based on ARL functions wrapped up as SDP workflows using the arlexecute class. # In[1]: #get_ipython().magic('matplotlib inline') import os import sys sys.path.append(os.path.join('..', '..')) from data_models.parameters import arl_path results_dir = arl_path('./results/dask') #results_dir = './workflows/mpi/results/dask' #from matplotlib import pylab #pylab.rcParams['figure.figsize'] = (12.0, 12.0) #pylab.rcParams['image.cmap'] = 'rainbow' import numpy from astropy.coordinates import SkyCoord from astropy import units as u from astropy.wcs.utils import pixel_to_skycoord #from matplotlib import pyplot as plt from data_models.polarisation import PolarisationFrame from wrappers.serial.calibration.calibration import solve_gaintable from wrappers.serial.calibration.operations import apply_gaintable from wrappers.serial.calibration.calibration_control import create_calibration_controls from wrappers.serial.visibility.base import create_blockvisibility from wrappers.serial.visibility.coalesce import convert_blockvisibility_to_visibility, convert_visibility_to_blockvisibility from wrappers.serial.skycomponent.operations import create_skycomponent from wrappers.serial.image.deconvolution import deconvolve_cube #from wrappers.serial.image.operations import show_image, export_image_to_fits, qa_image from wrappers.serial.image.operations import export_image_to_fits, qa_image from wrappers.serial.visibility.iterators import vis_timeslice_iter from wrappers.serial.simulation.testing_support import create_low_test_image_from_gleam from processing_components.simulation.configurations import create_named_configuration from wrappers.serial.imaging.base import predict_2d, create_image_from_visibility, advise_wide_field from workflows.arlexecute.imaging.imaging_arlexecute import invert_list_arlexecute_workflow, predict_list_arlexecute_workflow, deconvolve_list_arlexecute_workflow from workflows.arlexecute.simulation.simulation_arlexecute import simulate_list_arlexecute_workflow, corrupt_list_arlexecute_workflow from workflows.arlexecute.pipelines.pipeline_arlexecute import continuum_imaging_list_arlexecute_workflow, ical_list_arlexecute_workflow from wrappers.arlexecute.execution_support.arlexecute import arlexecute from wrappers.arlexecute.execution_support.dask_init import findNodes, get_dask_Client import time import pprint pp = pprint.PrettyPrinter() import logging import argparse def init_logging(): log = logging.getLogger() print('Results dir: %s' % results_dir) logging.basicConfig(filename='%s/imaging-pipeline.log' % results_dir, filemode='a', format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s', datefmt='%H:%M:%S', level=logging.INFO) parser = argparse.ArgumentParser(description='Imaging pipelines in Dask.') parser.add_argument('--nfreqwin', type=int, nargs='?', default=7, help='The number of frequency windows') parser.add_argument('--schedulerfile', type=str, nargs='?', default='./scheduler.json', help='The scheduler file if starting with dask-mpi') args = parser.parse_args() # We will use dask # In[2]: threads_per_worker=16 memory=384 nworkers=1 filename=args.schedulerfile client = get_dask_Client(threads_per_worker=threads_per_worker, processes = threads_per_worker == 1, memory_limit=memory * 1024 * 1024 * 1024, n_workers=nworkers, with_file=True, scheduler_file=filename) arlexecute.set_client(client) nodes = findNodes(arlexecute.client) print("Defined %d workers on %d nodes" % (nworkers, len(nodes))) print("Workers are: %s" % str(nodes)) #arlexecute.set_client(use_dask=True) init_logging() log = logging.getLogger() logging.info("Starting imaging-pipeline") # Initialise logging on the workers. This appears to only work using # the process scheduler. arlexecute.run(init_logging) # In[3]: #pylab.rcParams['figure.figsize'] = (12.0, 12.0) #pylab.rcParams['image.cmap'] = 'Greys' # We create a graph to make the visibility. The parameter rmax determines the distance of the furthest antenna/stations used. All over parameters are determined from this number. # In[4]: #nfreqwin=7 nfreqwin=args.nfreqwin #ntimes=5 rmax=300.0 #frequency=numpy.linspace(1.0e8,1.2e8,nfreqwin) ntimes=11 frequency=numpy.linspace(0.9e8,1.1e8,nfreqwin) channel_bandwidth=numpy.array(nfreqwin*[frequency[1]-frequency[0]]) times = numpy.linspace(-numpy.pi/3.0, numpy.pi/3.0, ntimes) #phasecentre=SkyCoord(ra=+0.0 * u.deg, dec=-40.0 * u.deg, frame='icrs', equinox='J2000') phasecentre=SkyCoord(ra=+30.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') bvis_list=simulate_list_arlexecute_workflow('LOWBD2', frequency=frequency, channel_bandwidth=channel_bandwidth, times=times, phasecentre=phasecentre, order='frequency', rmax=rmax) print('%d elements in vis_list' % len(bvis_list)) log.info('About to make visibility') vis_list = [arlexecute.execute(convert_blockvisibility_to_visibility)(bv) for bv in bvis_list] vis_list = arlexecute.compute(vis_list, sync=True) # In[5]: wprojection_planes=1 advice_low=advise_wide_field(vis_list[0], guard_band_image=8.0, delA=0.02, wprojection_planes=wprojection_planes) advice_high=advise_wide_field(vis_list[-1], guard_band_image=8.0, delA=0.02, wprojection_planes=wprojection_planes) vis_slices = advice_low['vis_slices'] npixel=advice_high['npixels2'] cellsize=min(advice_low['cellsize'], advice_high['cellsize']) # Now make a graph to fill with a model drawn from GLEAM # In[6]: gleam_model = [arlexecute.execute(create_low_test_image_from_gleam)(npixel=npixel, frequency=[frequency[f]], channel_bandwidth=[channel_bandwidth[f]], cellsize=cellsize, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI"), flux_limit=1.0, applybeam=True) for f, freq in enumerate(frequency)] log.info('About to make GLEAM model') gleam_model = arlexecute.compute(gleam_model, sync=True) future_gleam_model = arlexecute.scatter(gleam_model) # In[7]: log.info('About to run predict to get predicted visibility') start=time.time() future_vis_graph = arlexecute.scatter(vis_list) predicted_vislist = predict_list_arlexecute_workflow(future_vis_graph, gleam_model, context='wstack', vis_slices=vis_slices) predicted_vislist = arlexecute.compute(predicted_vislist, sync=True) end=time.time() corrupted_vislist = corrupt_list_arlexecute_workflow(predicted_vislist, phase_error=1.0) log.info('About to run corrupt to get corrupted visibility') corrupted_vislist = arlexecute.compute(corrupted_vislist, sync=True) future_predicted_vislist=arlexecute.scatter(predicted_vislist) # Get the LSM. This is currently blank. # In[8]: print('predict finished in %f seconds'%(end-start),flush=True) model_list = [arlexecute.execute(create_image_from_visibility)(vis_list[f], npixel=npixel, frequency=[frequency[f]], channel_bandwidth=[channel_bandwidth[f]], cellsize=cellsize, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI")) for f, freq in enumerate(frequency)] # In[9]: start=time.time() dirty_list = invert_list_arlexecute_workflow(future_predicted_vislist, model_list, context='wstack', vis_slices=vis_slices, dopsf=False) psf_list = invert_list_arlexecute_workflow(future_predicted_vislist, model_list, context='wstack', vis_slices=vis_slices, dopsf=True) # Create and execute graphs to make the dirty image and PSF # In[10]: log.info('About to run invert to get dirty image') dirty_list = arlexecute.compute(dirty_list, sync=True) psf_list = arlexecute.compute(psf_list, sync=True) end=time.time() print('invert finished in %f seconds'%(end-start),flush=True) dirty = dirty_list[0][0] #show_image(dirty, cm='Greys', vmax=1.0, vmin=-0.1) #plt.show() print(qa_image(dirty)) export_image_to_fits(dirty, '%s/imaging-dirty.fits' %(results_dir)) log.info('About to run invert to get PSF') psf = psf_list[0][0] #show_image(psf, cm='Greys', vmax=0.1, vmin=-0.01) #plt.show() print(qa_image(psf)) export_image_to_fits(psf, '%s/imaging-psf.fits' %(results_dir)) # Now deconvolve using msclean # In[11]: log.info('About to run deconvolve') start=time.time() deconvolve_list, _ = deconvolve_list_arlexecute_workflow(dirty_list, psf_list, model_imagelist=model_list, deconvolve_facets=8, deconvolve_overlap=16, deconvolve_taper='tukey', scales=[0, 3, 10], algorithm='msclean', niter=1000, fractional_threshold=0.1, threshold=0.1, gain=0.1, psf_support=64) deconvolved = arlexecute.compute(deconvolve_list, sync=True) #show_image(deconvolved[0], cm='Greys', vmax=0.1, vmin=-0.01) #plt.show() end=time.time() print('deconvolve finished in %f sec'%(end-start)) # In[12]: start=time.time() continuum_imaging_list = continuum_imaging_list_arlexecute_workflow(future_predicted_vislist, model_imagelist=model_list, context='wstack', vis_slices=vis_slices, scales=[0, 3, 10], algorithm='mmclean', nmoment=3, niter=1000, fractional_threshold=0.1, threshold=0.1, nmajor=5, gain=0.25, deconvolve_facets = 8, deconvolve_overlap=16, deconvolve_taper='tukey', psf_support=64) # In[13]: log.info('About to run continuum imaging') result=arlexecute.compute(continuum_imaging_list, sync=True) end=time.time() print('continuum imaging finished in %f sec.'%(end-start),flush=True) deconvolved = result[0][0] residual = result[1][0] restored = result[2][0] #f=show_image(deconvolved, title='Clean image - no selfcal', cm='Greys', # vmax=0.1, vmin=-0.01) print(qa_image(deconvolved, context='Clean image - no selfcal')) #plt.show() #f=show_image(restored, title='Restored clean image - no selfcal', #cm='Greys', vmax=1.0, vmin=-0.1) print(qa_image(restored, context='Restored clean image - no selfcal')) #plt.show() export_image_to_fits(restored, '%s/imaging-dask_continuum_imaging_restored.fits' %(results_dir)) #f=show_image(residual[0], title='Residual clean image - no selfcal', cm='Greys', # vmax=0.1, vmin=-0.01) print(qa_image(residual[0], context='Residual clean image - no selfcal')) #plt.show() export_image_to_fits(residual[0], '%s/imaging-dask_continuum_imaging_residual.fits' %(results_dir)) # In[14]: controls = create_calibration_controls() controls['T']['first_selfcal'] = 1 controls['G']['first_selfcal'] = 3 controls['B']['first_selfcal'] = 4 controls['T']['timeslice'] = 'auto' controls['G']['timeslice'] = 'auto' controls['B']['timeslice'] = 1e5 pp.pprint(controls) # In[15]: start=time.time() ical_list = ical_list_arlexecute_workflow(corrupted_vislist, model_imagelist=model_list, context='wstack', calibration_context = 'TG', controls=controls, scales=[0, 3, 10], algorithm='mmclean', nmoment=3, niter=1000, fractional_threshold=0.1, threshold=0.1, nmajor=5, gain=0.25, deconvolve_facets = 8, deconvolve_overlap=16, deconvolve_taper='tukey', vis_slices=ntimes, timeslice='auto', global_solution=False, psf_support=64, do_selfcal=True) # In[16]: log.info('About to run ical') ical_list = arlexecute.compute(ical_list, sync=True) end=time.time() print('ical finished in %f sec.'%(end-start),flush=True) deconvolved = ical_list[0][0] residual = ical_list[1][0] restored = ical_list[2][0] #f=show_image(deconvolved, title='Clean image', cm='Greys', vmax=1.0, vmin=-0.1) print(qa_image(deconvolved, context='Clean image')) #plt.show() #f=show_image(restored, title='Restored clean image', cm='Greys', vmax=1.0, # vmin=-0.1) print(qa_image(restored, context='Restored clean image')) #plt.show() export_image_to_fits(restored, '%s/imaging-dask_ical_restored.fits' %(results_dir)) #f=show_image(residual[0], title='Residual clean image', cm='Greys', # vmax=0.1, vmin=-0.01) print(qa_image(residual[0], context='Residual clean image')) #plt.show() export_image_to_fits(residual[0], '%s/imaging-dask_ical_residual.fits' %(results_dir)) # In[ ]:
apache-2.0
holdenk/spark
python/pyspark/sql/dataframe.py
4
99864
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import random import warnings from functools import reduce from html import escape as html_escape from pyspark import copy_func, since, _NoValue from pyspark.rdd import RDD, _load_from_socket, _local_iterator_from_socket from pyspark.serializers import BatchedSerializer, PickleSerializer, \ UTF8Deserializer from pyspark.storagelevel import StorageLevel from pyspark.traceback_utils import SCCallSiteSync from pyspark.sql.types import _parse_datatype_json_string from pyspark.sql.column import Column, _to_seq, _to_list, _to_java_column from pyspark.sql.readwriter import DataFrameWriter, DataFrameWriterV2 from pyspark.sql.streaming import DataStreamWriter from pyspark.sql.types import StructType, StructField, StringType, IntegerType from pyspark.sql.pandas.conversion import PandasConversionMixin from pyspark.sql.pandas.map_ops import PandasMapOpsMixin __all__ = ["DataFrame", "DataFrameNaFunctions", "DataFrameStatFunctions"] class DataFrame(PandasMapOpsMixin, PandasConversionMixin): """A distributed collection of data grouped into named columns. A :class:`DataFrame` is equivalent to a relational table in Spark SQL, and can be created using various functions in :class:`SparkSession`:: people = spark.read.parquet("...") Once created, it can be manipulated using the various domain-specific-language (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. To select a column from the :class:`DataFrame`, use the apply method:: ageCol = people.age A more concrete example:: # To create DataFrame using SparkSession people = spark.read.parquet("...") department = spark.read.parquet("...") people.filter(people.age > 30).join(department, people.deptId == department.id) \\ .groupBy(department.name, "gender").agg({"salary": "avg", "age": "max"}) .. versionadded:: 1.3.0 """ def __init__(self, jdf, sql_ctx): self._jdf = jdf self.sql_ctx = sql_ctx self._sc = sql_ctx and sql_ctx._sc self.is_cached = False self._schema = None # initialized lazily self._lazy_rdd = None # Check whether _repr_html is supported or not, we use it to avoid calling _jdf twice # by __repr__ and _repr_html_ while eager evaluation opened. self._support_repr_html = False @property @since(1.3) def rdd(self): """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. """ if self._lazy_rdd is None: jrdd = self._jdf.javaToPython() self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) return self._lazy_rdd @property @since("1.3.1") def na(self): """Returns a :class:`DataFrameNaFunctions` for handling missing values. """ return DataFrameNaFunctions(self) @property @since(1.4) def stat(self): """Returns a :class:`DataFrameStatFunctions` for statistic functions. """ return DataFrameStatFunctions(self) def toJSON(self, use_unicode=True): """Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. .. versionadded:: 1.3.0 Examples -------- >>> df.toJSON().first() '{"age":2,"name":"Alice"}' """ rdd = self._jdf.toJSON() return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode)) def registerTempTable(self, name): """Registers this DataFrame as a temporary table using the given name. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 1.3.0 .. deprecated:: 2.0.0 Use :meth:`DataFrame.createOrReplaceTempView` instead. Examples -------- >>> df.registerTempTable("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ warnings.warn( "Deprecated in 2.0, use createOrReplaceTempView instead.", FutureWarning ) self._jdf.createOrReplaceTempView(name) def createTempView(self, name): """Creates a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.0.0 Examples -------- >>> df.createTempView("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropTempView("people") """ self._jdf.createTempView(name) def createOrReplaceTempView(self, name): """Creates or replaces a local temporary view with this :class:`DataFrame`. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. .. versionadded:: 2.0.0 Examples -------- >>> df.createOrReplaceTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceTempView("people") >>> df3 = spark.sql("select * from people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ self._jdf.createOrReplaceTempView(name) def createGlobalTempView(self, name): """Creates a global temporary view with this :class:`DataFrame`. The lifetime of this temporary view is tied to this Spark application. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. .. versionadded:: 2.1.0 Examples -------- >>> df.createGlobalTempView("people") >>> df2 = spark.sql("select * from global_temp.people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createGlobalTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropGlobalTempView("people") """ self._jdf.createGlobalTempView(name) def createOrReplaceGlobalTempView(self, name): """Creates or replaces a global temporary view using the given name. The lifetime of this temporary view is tied to this Spark application. .. versionadded:: 2.2.0 Examples -------- >>> df.createOrReplaceGlobalTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceGlobalTempView("people") >>> df3 = spark.sql("select * from global_temp.people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropGlobalTempView("people") """ self._jdf.createOrReplaceGlobalTempView(name) @property def write(self): """ Interface for saving the content of the non-streaming :class:`DataFrame` out into external storage. .. versionadded:: 1.4.0 Returns ------- :class:`DataFrameWriter` """ return DataFrameWriter(self) @property def writeStream(self): """ Interface for saving the content of the streaming :class:`DataFrame` out into external storage. .. versionadded:: 2.0.0 Notes ----- This API is evolving. Returns ------- :class:`DataStreamWriter` """ return DataStreamWriter(self) @property def schema(self): """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. .. versionadded:: 1.3.0 Examples -------- >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) """ if self._schema is None: try: self._schema = _parse_datatype_json_string(self._jdf.schema().json()) except AttributeError as e: raise Exception( "Unable to parse datatype from schema. %s" % e) return self._schema def printSchema(self): """Prints out the schema in the tree format. .. versionadded:: 1.3.0 Examples -------- >>> df.printSchema() root |-- age: integer (nullable = true) |-- name: string (nullable = true) <BLANKLINE> """ print(self._jdf.schema().treeString()) def explain(self, extended=None, mode=None): """Prints the (logical and physical) plans to the console for debugging purpose. .. versionadded:: 1.3.0 parameters ---------- extended : bool, optional default ``False``. If ``False``, prints only the physical plan. When this is a string without specifying the ``mode``, it works as the mode is specified. mode : str, optional specifies the expected output format of plans. * ``simple``: Print only a physical plan. * ``extended``: Print both logical and physical plans. * ``codegen``: Print a physical plan and generated codes if they are available. * ``cost``: Print a logical plan and statistics if they are available. * ``formatted``: Split explain output into two sections: a physical plan outline \ and node details. .. versionchanged:: 3.0.0 Added optional argument `mode` to specify the expected output format of plans. Examples -------- >>> df.explain() == Physical Plan == *(1) Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ... >>> df.explain(mode="formatted") == Physical Plan == * Scan ExistingRDD (1) (1) Scan ExistingRDD [codegen id : 1] Output [2]: [age#0, name#1] ... >>> df.explain("cost") == Optimized Logical Plan == ...Statistics... ... """ if extended is not None and mode is not None: raise Exception("extended and mode should not be set together.") # For the no argument case: df.explain() is_no_argument = extended is None and mode is None # For the cases below: # explain(True) # explain(extended=False) is_extended_case = isinstance(extended, bool) and mode is None # For the case when extended is mode: # df.explain("formatted") is_extended_as_mode = isinstance(extended, str) and mode is None # For the mode specified: # df.explain(mode="formatted") is_mode_case = extended is None and isinstance(mode, str) if not (is_no_argument or is_extended_case or is_extended_as_mode or is_mode_case): argtypes = [ str(type(arg)) for arg in [extended, mode] if arg is not None] raise TypeError( "extended (optional) and mode (optional) should be a string " "and bool; however, got [%s]." % ", ".join(argtypes)) # Sets an explain mode depending on a given argument if is_no_argument: explain_mode = "simple" elif is_extended_case: explain_mode = "extended" if extended else "simple" elif is_mode_case: explain_mode = mode elif is_extended_as_mode: explain_mode = extended print(self._sc._jvm.PythonSQLUtils.explainString(self._jdf.queryExecution(), explain_mode)) def exceptAll(self, other): """Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame` while preserving duplicates. This is equivalent to `EXCEPT ALL` in SQL. As standard in SQL, this function resolves columns by position (not by name). .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame( ... [("a", 1), ("a", 1), ("a", 1), ("a", 2), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.exceptAll(df2).show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | a| 2| | c| 4| +---+---+ """ return DataFrame(self._jdf.exceptAll(other._jdf), self.sql_ctx) @since(1.3) def isLocal(self): """Returns ``True`` if the :func:`collect` and :func:`take` methods can be run locally (without any Spark executors). """ return self._jdf.isLocal() @property def isStreaming(self): """Returns ``True`` if this :class:`Dataset` contains one or more sources that continuously return data as it arrives. A :class:`Dataset` that reads data from a streaming source must be executed as a :class:`StreamingQuery` using the :func:`start` method in :class:`DataStreamWriter`. Methods that return a single answer, (e.g., :func:`count` or :func:`collect`) will throw an :class:`AnalysisException` when there is a streaming source present. .. versionadded:: 2.0.0 Notes ----- This API is evolving. """ return self._jdf.isStreaming() def show(self, n=20, truncate=True, vertical=False): """Prints the first ``n`` rows to the console. .. versionadded:: 1.3.0 Parameters ---------- n : int, optional Number of rows to show. truncate : bool, optional If set to ``True``, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to length ``truncate`` and align cells right. vertical : bool, optional If set to ``True``, print output rows vertically (one line per column value). Examples -------- >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.show(truncate=3) +---+----+ |age|name| +---+----+ | 2| Ali| | 5| Bob| +---+----+ >>> df.show(vertical=True) -RECORD 0----- age | 2 name | Alice -RECORD 1----- age | 5 name | Bob """ if isinstance(truncate, bool) and truncate: print(self._jdf.showString(n, 20, vertical)) else: print(self._jdf.showString(n, int(truncate), vertical)) def __repr__(self): if not self._support_repr_html and self.sql_ctx._conf.isReplEagerEvalEnabled(): vertical = False return self._jdf.showString( self.sql_ctx._conf.replEagerEvalMaxNumRows(), self.sql_ctx._conf.replEagerEvalTruncate(), vertical) else: return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) def _repr_html_(self): """Returns a :class:`DataFrame` with html code when you enabled eager evaluation by 'spark.sql.repl.eagerEval.enabled', this only called by REPL you are using support eager evaluation with HTML. """ if not self._support_repr_html: self._support_repr_html = True if self.sql_ctx._conf.isReplEagerEvalEnabled(): max_num_rows = max(self.sql_ctx._conf.replEagerEvalMaxNumRows(), 0) sock_info = self._jdf.getRowsToPython( max_num_rows, self.sql_ctx._conf.replEagerEvalTruncate()) rows = list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) head = rows[0] row_data = rows[1:] has_more_data = len(row_data) > max_num_rows row_data = row_data[:max_num_rows] html = "<table border='1'>\n" # generate table head html += "<tr><th>%s</th></tr>\n" % "</th><th>".join(map(lambda x: html_escape(x), head)) # generate table rows for row in row_data: html += "<tr><td>%s</td></tr>\n" % "</td><td>".join( map(lambda x: html_escape(x), row)) html += "</table>\n" if has_more_data: html += "only showing top %d %s\n" % ( max_num_rows, "row" if max_num_rows == 1 else "rows") return html else: return None def checkpoint(self, eager=True): """Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. It will be saved to files inside the checkpoint directory set with :meth:`SparkContext.setCheckpointDir`. .. versionadded:: 2.1.0 Parameters ---------- eager : bool, optional Whether to checkpoint this :class:`DataFrame` immediately Notes ----- This API is experimental. """ jdf = self._jdf.checkpoint(eager) return DataFrame(jdf, self.sql_ctx) def localCheckpoint(self, eager=True): """Returns a locally checkpointed version of this Dataset. Checkpointing can be used to truncate the logical plan of this :class:`DataFrame`, which is especially useful in iterative algorithms where the plan may grow exponentially. Local checkpoints are stored in the executors using the caching subsystem and therefore they are not reliable. .. versionadded:: 2.3.0 Parameters ---------- eager : bool, optional Whether to checkpoint this :class:`DataFrame` immediately Notes ----- This API is experimental. """ jdf = self._jdf.localCheckpoint(eager) return DataFrame(jdf, self.sql_ctx) def withWatermark(self, eventTime, delayThreshold): """Defines an event time watermark for this :class:`DataFrame`. A watermark tracks a point in time before which we assume no more late data is going to arrive. Spark will use this watermark for several purposes: - To know when a given time window aggregation can be finalized and thus can be emitted when using output modes that do not allow updates. - To minimize the amount of state that we need to keep for on-going aggregations. The current watermark is computed by looking at the `MAX(eventTime)` seen across all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost of coordinating this value across partitions, the actual watermark used is only guaranteed to be at least `delayThreshold` behind the actual event time. In some cases we may still process records that arrive more than `delayThreshold` late. .. versionadded:: 2.1.0 Parameters ---------- eventTime : str or :class:`Column` the name of the column that contains the event time of the row. delayThreshold : str the minimum delay to wait to data to arrive late, relative to the latest record that has been processed in the form of an interval (e.g. "1 minute" or "5 hours"). Notes ----- This API is evolving. >>> from pyspark.sql.functions import timestamp_seconds >>> sdf.select( ... 'name', ... timestamp_seconds(sdf.time).alias('time')).withWatermark('time', '10 minutes') DataFrame[name: string, time: timestamp] """ if not eventTime or type(eventTime) is not str: raise TypeError("eventTime should be provided as a string") if not delayThreshold or type(delayThreshold) is not str: raise TypeError("delayThreshold should be provided as a string interval") jdf = self._jdf.withWatermark(eventTime, delayThreshold) return DataFrame(jdf, self.sql_ctx) def hint(self, name, *parameters): """Specifies some hint on the current :class:`DataFrame`. .. versionadded:: 2.2.0 Parameters ---------- name : str A name of the hint. parameters : str, list, float or int Optional parameters. Returns ------- :class:`DataFrame` Examples -------- >>> df.join(df2.hint("broadcast"), "name").show() +----+---+------+ |name|age|height| +----+---+------+ | Bob| 5| 85| +----+---+------+ """ if len(parameters) == 1 and isinstance(parameters[0], list): parameters = parameters[0] if not isinstance(name, str): raise TypeError("name should be provided as str, got {0}".format(type(name))) allowed_types = (str, list, float, int) for p in parameters: if not isinstance(p, allowed_types): raise TypeError( "all parameters should be in {0}, got {1} of type {2}".format( allowed_types, p, type(p))) jdf = self._jdf.hint(name, self._jseq(parameters)) return DataFrame(jdf, self.sql_ctx) def count(self): """Returns the number of rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 Examples -------- >>> df.count() 2 """ return int(self._jdf.count()) def collect(self): """Returns all the records as a list of :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.collectToPython() return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) def toLocalIterator(self, prefetchPartitions=False): """ Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this :class:`DataFrame`. With prefetch it may consume up to the memory of the 2 largest partitions. .. versionadded:: 2.0.0 Parameters ---------- prefetchPartitions : bool, optional If Spark should pre-fetch the next partition before it is needed. Examples -------- >>> list(df.toLocalIterator()) [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc) as css: sock_info = self._jdf.toPythonIterator(prefetchPartitions) return _local_iterator_from_socket(sock_info, BatchedSerializer(PickleSerializer())) def limit(self, num): """Limits the result count to the number specified. .. versionadded:: 1.3.0 Examples -------- >>> df.limit(1).collect() [Row(age=2, name='Alice')] >>> df.limit(0).collect() [] """ jdf = self._jdf.limit(num) return DataFrame(jdf, self.sql_ctx) def take(self, num): """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.take(2) [Row(age=2, name='Alice'), Row(age=5, name='Bob')] """ return self.limit(num).collect() def tail(self, num): """ Returns the last ``num`` rows as a :class:`list` of :class:`Row`. Running tail requires moving data into the application's driver process, and doing so with a very large ``num`` can crash the driver process with OutOfMemoryError. .. versionadded:: 3.0.0 Examples -------- >>> df.tail(1) [Row(age=5, name='Bob')] """ with SCCallSiteSync(self._sc): sock_info = self._jdf.tailToPython(num) return list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer()))) def foreach(self, f): """Applies the ``f`` function to all :class:`Row` of this :class:`DataFrame`. This is a shorthand for ``df.rdd.foreach()``. .. versionadded:: 1.3.0 Examples -------- >>> def f(person): ... print(person.name) >>> df.foreach(f) """ self.rdd.foreach(f) def foreachPartition(self, f): """Applies the ``f`` function to each partition of this :class:`DataFrame`. This a shorthand for ``df.rdd.foreachPartition()``. .. versionadded:: 1.3.0 Examples -------- >>> def f(people): ... for person in people: ... print(person.name) >>> df.foreachPartition(f) """ self.rdd.foreachPartition(f) def cache(self): """Persists the :class:`DataFrame` with the default storage level (`MEMORY_AND_DISK`). .. versionadded:: 1.3.0 Notes ----- The default storage level has changed to `MEMORY_AND_DISK` to match Scala in 2.0. """ self.is_cached = True self._jdf.cache() return self def persist(self, storageLevel=StorageLevel.MEMORY_AND_DISK_DESER): """Sets the storage level to persist the contents of the :class:`DataFrame` across operations after the first time it is computed. This can only be used to assign a new storage level if the :class:`DataFrame` does not have a storage level set yet. If no storage level is specified defaults to (`MEMORY_AND_DISK_DESER`) .. versionadded:: 1.3.0 Notes ----- The default storage level has changed to `MEMORY_AND_DISK_DESER` to match Scala in 3.0. """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdf.persist(javaStorageLevel) return self @property def storageLevel(self): """Get the :class:`DataFrame`'s current storage level. .. versionadded:: 2.1.0 Examples -------- >>> df.storageLevel StorageLevel(False, False, False, False, 1) >>> df.cache().storageLevel StorageLevel(True, True, False, True, 1) >>> df2.persist(StorageLevel.DISK_ONLY_2).storageLevel StorageLevel(True, False, False, False, 2) """ java_storage_level = self._jdf.storageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level def unpersist(self, blocking=False): """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. versionadded:: 1.3.0 Notes ----- `blocking` default has changed to ``False`` to match Scala in 2.0. """ self.is_cached = False self._jdf.unpersist(blocking) return self def coalesce(self, numPartitions): """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. If a larger number of partitions is requested, it will stay at the current number of partitions. However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can call repartition(). This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is). .. versionadded:: 1.4.0 Parameters ---------- numPartitions : int specify the target number of partitions Examples -------- >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx) def repartition(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting :class:`DataFrame` is hash partitioned. .. versionadded:: 1.3.0 Parameters ---------- numPartitions : int can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. cols : str or :class:`Column` partitioning columns. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. Examples -------- >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| | 2|Alice| | 5| Bob| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) else: return DataFrame( self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (str, Column)): cols = (numPartitions, ) + cols return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int or Column") def repartitionByRange(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting :class:`DataFrame` is range partitioned. At least one partition-by expression must be specified. When no explicit sort order is specified, "ascending nulls first" is assumed. .. versionadded:: 2.4.0 Parameters ---------- numPartitions : int can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. cols : str or :class:`Column` partitioning columns. Notes ----- Due to performance reasons this method uses sampling to estimate the ranges. Hence, the output may not be consistent, since sampling can return different values. The sample size can be controlled by the config `spark.sql.execution.rangeExchange.sampleSizePerPartition`. Examples -------- >>> df.repartitionByRange(2, "age").rdd.getNumPartitions() 2 >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.repartitionByRange(1, "age").rdd.getNumPartitions() 1 >>> data = df.repartitionByRange("age") >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return ValueError("At least one partition-by expression must be specified.") else: return DataFrame( self._jdf.repartitionByRange(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (str, Column)): cols = (numPartitions,) + cols return DataFrame(self._jdf.repartitionByRange(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int, string or Column") def distinct(self): """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. .. versionadded:: 1.3.0 Examples -------- >>> df.distinct().count() 2 """ return DataFrame(self._jdf.distinct(), self.sql_ctx) def sample(self, withReplacement=None, fraction=None, seed=None): """Returns a sampled subset of this :class:`DataFrame`. .. versionadded:: 1.3.0 Parameters ---------- withReplacement : bool, optional Sample with replacement or not (default ``False``). fraction : float, optional Fraction of rows to generate, range [0.0, 1.0]. seed : int, optional Seed for sampling (default a random seed). Notes ----- This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. `fraction` is required and, `withReplacement` and `seed` are optional. Examples -------- >>> df = spark.range(10) >>> df.sample(0.5, 3).count() 7 >>> df.sample(fraction=0.5, seed=3).count() 7 >>> df.sample(withReplacement=True, fraction=0.5, seed=3).count() 1 >>> df.sample(1.0).count() 10 >>> df.sample(fraction=1.0).count() 10 >>> df.sample(False, fraction=1.0).count() 10 """ # For the cases below: # sample(True, 0.5 [, seed]) # sample(True, fraction=0.5 [, seed]) # sample(withReplacement=False, fraction=0.5 [, seed]) is_withReplacement_set = \ type(withReplacement) == bool and isinstance(fraction, float) # For the case below: # sample(faction=0.5 [, seed]) is_withReplacement_omitted_kwargs = \ withReplacement is None and isinstance(fraction, float) # For the case below: # sample(0.5 [, seed]) is_withReplacement_omitted_args = isinstance(withReplacement, float) if not (is_withReplacement_set or is_withReplacement_omitted_kwargs or is_withReplacement_omitted_args): argtypes = [ str(type(arg)) for arg in [withReplacement, fraction, seed] if arg is not None] raise TypeError( "withReplacement (optional), fraction (required) and seed (optional)" " should be a bool, float and number; however, " "got [%s]." % ", ".join(argtypes)) if is_withReplacement_omitted_args: if fraction is not None: seed = fraction fraction = withReplacement withReplacement = None seed = int(seed) if seed is not None else None args = [arg for arg in [withReplacement, fraction, seed] if arg is not None] jdf = self._jdf.sample(*args) return DataFrame(jdf, self.sql_ctx) def sampleBy(self, col, fractions, seed=None): """ Returns a stratified sample without replacement based on the fraction given on each stratum. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`Column` or str column that defines strata .. versionchanged:: 3.0 Added sampling by a column of :class:`Column` fractions : dict sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. seed : int, optional random seed Returns ------- a new :class:`DataFrame` that represents the stratified sample Examples -------- >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 3| | 1| 6| +---+-----+ >>> dataset.sampleBy(col("key"), fractions={2: 1.0}, seed=0).count() 33 """ if isinstance(col, str): col = Column(col) elif not isinstance(col, Column): raise ValueError("col must be a string or a column, but got %r" % type(col)) if not isinstance(fractions, dict): raise ValueError("fractions must be a dict but got %r" % type(fractions)) for k, v in fractions.items(): if not isinstance(k, (float, int, str)): raise ValueError("key must be float, int, or string, but got %r" % type(k)) fractions[k] = float(v) col = col._jc seed = seed if seed is not None else random.randint(0, sys.maxsize) return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx) def randomSplit(self, weights, seed=None): """Randomly splits this :class:`DataFrame` with the provided weights. .. versionadded:: 1.4.0 Parameters ---------- weights : list list of doubles as weights with which to split the :class:`DataFrame`. Weights will be normalized if they don't sum up to 1.0. seed : int, optional The seed for sampling. Examples -------- >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 2 >>> splits[1].count() 2 """ for w in weights: if w < 0.0: raise ValueError("Weights must be positive. Found weight value: %s" % w) seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), int(seed)) return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array] @property def dtypes(self): """Returns all column names and their data types as a list. .. versionadded:: 1.3.0 Examples -------- >>> df.dtypes [('age', 'int'), ('name', 'string')] """ return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields] @property def columns(self): """Returns all column names as a list. .. versionadded:: 1.3.0 Examples -------- >>> df.columns ['age', 'name'] """ return [f.name for f in self.schema.fields] def colRegex(self, colName): """ Selects column based on the column name specified as a regex and returns it as :class:`Column`. .. versionadded:: 2.3.0 Parameters ---------- colName : str string, column name specified as a regex. Examples -------- >>> df = spark.createDataFrame([("a", 1), ("b", 2), ("c", 3)], ["Col1", "Col2"]) >>> df.select(df.colRegex("`(Col1)?+.+`")).show() +----+ |Col2| +----+ | 1| | 2| | 3| +----+ """ if not isinstance(colName, str): raise ValueError("colName should be provided as string") jc = self._jdf.colRegex(colName) return Column(jc) def alias(self, alias): """Returns a new :class:`DataFrame` with an alias set. .. versionadded:: 1.3.0 Parameters ---------- alias : str an alias name to be set for the :class:`DataFrame`. Examples -------- >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age") \ .sort(desc("df_as1.name")).collect() [Row(name='Bob', name='Bob', age=5), Row(name='Alice', name='Alice', age=2)] """ assert isinstance(alias, str), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx) def crossJoin(self, other): """Returns the cartesian product with another :class:`DataFrame`. .. versionadded:: 2.1.0 Parameters ---------- other : :class:`DataFrame` Right side of the cartesian product. Examples -------- >>> df.select("age", "name").collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df2.select("name", "height").collect() [Row(name='Tom', height=80), Row(name='Bob', height=85)] >>> df.crossJoin(df2.select("height")).select("age", "name", "height").collect() [Row(age=2, name='Alice', height=80), Row(age=2, name='Alice', height=85), Row(age=5, name='Bob', height=80), Row(age=5, name='Bob', height=85)] """ jdf = self._jdf.crossJoin(other._jdf) return DataFrame(jdf, self.sql_ctx) def join(self, other, on=None, how=None): """Joins with another :class:`DataFrame`, using the given join expression. .. versionadded:: 1.3.0 Parameters ---------- other : :class:`DataFrame` Right side of the join on : str, list or :class:`Column`, optional a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. how : str, optional default ``inner``. Must be one of: ``inner``, ``cross``, ``outer``, ``full``, ``fullouter``, ``full_outer``, ``left``, ``leftouter``, ``left_outer``, ``right``, ``rightouter``, ``right_outer``, ``semi``, ``leftsemi``, ``left_semi``, ``anti``, ``leftanti`` and ``left_anti``. Examples -------- The following performs a full outer join between ``df1`` and ``df2``. >>> from pyspark.sql.functions import desc >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height) \ .sort(desc("name")).collect() [Row(name='Bob', height=85), Row(name='Alice', height=None), Row(name=None, height=80)] >>> df.join(df2, 'name', 'outer').select('name', 'height').sort(desc("name")).collect() [Row(name='Tom', height=80), Row(name='Bob', height=85), Row(name='Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name='Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name='Bob', age=5)] """ if on is not None and not isinstance(on, list): on = [on] if on is not None: if isinstance(on[0], str): on = self._jseq(on) else: assert isinstance(on[0], Column), "on should be Column or list of Column" on = reduce(lambda x, y: x.__and__(y), on) on = on._jc if on is None and how is None: jdf = self._jdf.join(other._jdf) else: if how is None: how = "inner" if on is None: on = self._jseq([]) assert isinstance(how, str), "how should be a string" jdf = self._jdf.join(other._jdf, on, how) return DataFrame(jdf, self.sql_ctx) def sortWithinPartitions(self, *cols, **kwargs): """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). .. versionadded:: 1.6.0 Parameters ---------- cols : str, list or :class:`Column`, optional list of :class:`Column` or column names to sort by. Other Parameters ---------------- ascending : bool or list, optional boolean or list of boolean (default ``True``). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. Examples -------- >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) def sort(self, *cols, **kwargs): """Returns a new :class:`DataFrame` sorted by the specified column(s). .. versionadded:: 1.3.0 Parameters ---------- cols : str, list, or :class:`Column`, optional list of :class:`Column` or column names to sort by. Other Parameters ---------------- ascending : bool or list, optional boolean or list of boolean (default ``True``). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. Examples -------- >>> df.sort(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.sort("age", ascending=False).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(df.age.desc()).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> from pyspark.sql.functions import * >>> df.sort(asc("age")).collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df.orderBy(desc("age"), "name").collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() [Row(age=5, name='Bob'), Row(age=2, name='Alice')] """ jdf = self._jdf.sort(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) orderBy = sort def _jseq(self, cols, converter=None): """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sql_ctx._sc, cols, converter) def _jmap(self, jm): """Return a JVM Scala Map from a dict""" return _to_scala_map(self.sql_ctx._sc, jm) def _jcols(self, *cols): """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column) def _sort_cols(self, cols, kwargs): """ Return a JVM Seq of Columns that describes the sort order """ if not cols: raise ValueError("should sort by at least one column") if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(c) for c in cols] ascending = kwargs.get('ascending', True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) return self._jseq(jcols) def describe(self, *cols): """Computes basic statistics for numeric and string columns. .. versionadded:: 1.3.1 This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Use summary for expanded statistics and control over which statistics to compute. Examples -------- >>> df.describe(['age']).show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ See Also -------- DataFrame.summary """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def summary(self, *statistics): """Computes specified statistics for numeric and string columns. Available statistics are: - count - mean - stddev - min - max - arbitrary approximate percentiles specified as a percentage (e.g., 75%) If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. .. versionadded:: 2.3.0 Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. Examples -------- >>> df.summary().show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | 25%| 2| null| | 50%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+------------------+-----+ >>> df.summary("count", "min", "25%", "75%", "max").show() +-------+---+-----+ |summary|age| name| +-------+---+-----+ | count| 2| 2| | min| 2|Alice| | 25%| 2| null| | 75%| 5| null| | max| 5| Bob| +-------+---+-----+ To do a summary for specific columns first select them: >>> df.select("age", "name").summary("count").show() +-------+---+----+ |summary|age|name| +-------+---+----+ | count| 2| 2| +-------+---+----+ See Also -------- DataFrame.display """ if len(statistics) == 1 and isinstance(statistics[0], list): statistics = statistics[0] jdf = self._jdf.summary(self._jseq(statistics)) return DataFrame(jdf, self.sql_ctx) def head(self, n=None): """Returns the first ``n`` rows. .. versionadded:: 1.3.0 Notes ----- This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- n : int, optional default 1. Number of rows to return. Returns ------- If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. Examples -------- >>> df.head() Row(age=2, name='Alice') >>> df.head(1) [Row(age=2, name='Alice')] """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n) def first(self): """Returns the first row as a :class:`Row`. .. versionadded:: 1.3.0 Examples -------- >>> df.first() Row(age=2, name='Alice') """ return self.head() def __getitem__(self, item): """Returns the column as a :class:`Column`. .. versionadded:: 1.3.0 Examples -------- >>> df.select(df['age']).collect() [Row(age=2), Row(age=5)] >>> df[ ["name", "age"]].collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df[ df.age > 3 ].collect() [Row(age=5, name='Bob')] >>> df[df[0] > 3].collect() [Row(age=5, name='Bob')] """ if isinstance(item, str): jc = self._jdf.apply(item) return Column(jc) elif isinstance(item, Column): return self.filter(item) elif isinstance(item, (list, tuple)): return self.select(*item) elif isinstance(item, int): jc = self._jdf.apply(self.columns[item]) return Column(jc) else: raise TypeError("unexpected item type: %s" % type(item)) def __getattr__(self, name): """Returns the :class:`Column` denoted by ``name``. .. versionadded:: 1.3.0 Examples -------- >>> df.select(df.age).collect() [Row(age=2), Row(age=5)] """ if name not in self.columns: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) jc = self._jdf.apply(name) return Column(jc) def select(self, *cols): """Projects a set of expressions and returns a new :class:`DataFrame`. .. versionadded:: 1.3.0 Parameters ---------- cols : str, :class:`Column`, or list column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current :class:`DataFrame`. Examples -------- >>> df.select('*').collect() [Row(age=2, name='Alice'), Row(age=5, name='Bob')] >>> df.select('name', 'age').collect() [Row(name='Alice', age=2), Row(name='Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name='Alice', age=12), Row(name='Bob', age=15)] """ jdf = self._jdf.select(self._jcols(*cols)) return DataFrame(jdf, self.sql_ctx) def selectExpr(self, *expr): """Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. .. versionadded:: 1.3.0 Examples -------- >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] """ if len(expr) == 1 and isinstance(expr[0], list): expr = expr[0] jdf = self._jdf.selectExpr(self._jseq(expr)) return DataFrame(jdf, self.sql_ctx) def filter(self, condition): """Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. .. versionadded:: 1.3.0 Parameters ---------- condition : :class:`Column` or str a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. Examples -------- >>> df.filter(df.age > 3).collect() [Row(age=5, name='Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name='Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name='Bob')] >>> df.where("age = 2").collect() [Row(age=2, name='Alice')] """ if isinstance(condition, str): jdf = self._jdf.filter(condition) elif isinstance(condition, Column): jdf = self._jdf.filter(condition._jc) else: raise TypeError("condition should be string or Column") return DataFrame(jdf, self.sql_ctx) def groupBy(self, *cols): """Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. .. versionadded:: 1.3.0 Parameters ---------- cols : list, str or :class:`Column` columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). Examples -------- >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)] """ jgd = self._jdf.groupBy(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def rollup(self, *cols): """ Create a multi-dimensional rollup for the current :class:`DataFrame` using the specified columns, so we can run aggregation on them. .. versionadded:: 1.4.0 Examples -------- >>> df.rollup("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.rollup(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def cube(self, *cols): """ Create a multi-dimensional cube for the current :class:`DataFrame` using the specified columns, so we can run aggregations on them. .. versionadded:: 1.4.0 Examples -------- >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| | null| 2| 1| | null| 5| 1| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.cube(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self) def agg(self, *exprs): """ Aggregate on the entire :class:`DataFrame` without groups (shorthand for ``df.groupBy().agg()``). .. versionadded:: 1.3.0 Examples -------- >>> df.agg({"age": "max"}).collect() [Row(max(age)=5)] >>> from pyspark.sql import functions as F >>> df.agg(F.min(df.age)).collect() [Row(min(age)=2)] """ return self.groupBy().agg(*exprs) @since(2.0) def union(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return DataFrame(self._jdf.union(other._jdf), self.sql_ctx) @since(1.3) def unionAll(self, other): """ Return a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. Also as standard in SQL, this function resolves columns by position (not by name). """ return self.union(other) def unionByName(self, other, allowMissingColumns=False): """ Returns a new :class:`DataFrame` containing union of rows in this and another :class:`DataFrame`. This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by :func:`distinct`. .. versionadded:: 2.3.0 Examples -------- The difference between this function and :func:`union` is that this function resolves columns by name (not by position): >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col0"]) >>> df1.unionByName(df2).show() +----+----+----+ |col0|col1|col2| +----+----+----+ | 1| 2| 3| | 6| 4| 5| +----+----+----+ When the parameter `allowMissingColumns` is ``True``, the set of column names in this and other :class:`DataFrame` can differ; missing columns will be filled with null. Further, the missing columns of this :class:`DataFrame` will be added at the end in the schema of the union result: >>> df1 = spark.createDataFrame([[1, 2, 3]], ["col0", "col1", "col2"]) >>> df2 = spark.createDataFrame([[4, 5, 6]], ["col1", "col2", "col3"]) >>> df1.unionByName(df2, allowMissingColumns=True).show() +----+----+----+----+ |col0|col1|col2|col3| +----+----+----+----+ | 1| 2| 3|null| |null| 4| 5| 6| +----+----+----+----+ .. versionchanged:: 3.1.0 Added optional argument `allowMissingColumns` to specify whether to allow missing columns. """ return DataFrame(self._jdf.unionByName(other._jdf, allowMissingColumns), self.sql_ctx) @since(1.3) def intersect(self, other): """ Return a new :class:`DataFrame` containing rows only in both this :class:`DataFrame` and another :class:`DataFrame`. This is equivalent to `INTERSECT` in SQL. """ return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) def intersectAll(self, other): """ Return a new :class:`DataFrame` containing rows in both this :class:`DataFrame` and another :class:`DataFrame` while preserving duplicates. This is equivalent to `INTERSECT ALL` in SQL. As standard in SQL, this function resolves columns by position (not by name). .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3), ("c", 4)], ["C1", "C2"]) >>> df2 = spark.createDataFrame([("a", 1), ("a", 1), ("b", 3)], ["C1", "C2"]) >>> df1.intersectAll(df2).sort("C1", "C2").show() +---+---+ | C1| C2| +---+---+ | a| 1| | a| 1| | b| 3| +---+---+ """ return DataFrame(self._jdf.intersectAll(other._jdf), self.sql_ctx) @since(1.3) def subtract(self, other): """ Return a new :class:`DataFrame` containing rows in this :class:`DataFrame` but not in another :class:`DataFrame`. This is equivalent to `EXCEPT DISTINCT` in SQL. """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) def dropDuplicates(self, subset=None): """Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. For a static batch :class:`DataFrame`, it just drops duplicate rows. For a streaming :class:`DataFrame`, it will keep all data across triggers as intermediate state to drop duplicates rows. You can use :func:`withWatermark` to limit how late the duplicate data can be and system will accordingly limit the state. In addition, too late data older than watermark will be dropped to avoid any possibility of duplicates. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. .. versionadded:: 1.4.0 Examples -------- >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| |Alice| 10| 80| +-----+---+------+ >>> df.dropDuplicates(['name', 'height']).show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| +-----+---+------+ """ if subset is None: jdf = self._jdf.dropDuplicates() else: jdf = self._jdf.dropDuplicates(self._jseq(subset)) return DataFrame(jdf, self.sql_ctx) def dropna(self, how='any', thresh=None, subset=None): """Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. .. versionadded:: 1.3.1 Parameters ---------- how : str, optional 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. thresh: int, optional default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. subset : str, tuple or list, optional optional list of column names to consider. Examples -------- >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+ """ if how is not None and how not in ['any', 'all']: raise ValueError("how ('" + how + "') should be 'any' or 'all'") if subset is None: subset = self.columns elif isinstance(subset, str): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") if thresh is None: thresh = len(subset) if how == 'any' else 1 return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx) def fillna(self, value, subset=None): """Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. .. versionadded:: 1.3.1 Parameters ---------- value : int, float, string, bool or dict Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, float, boolean, or string. subset : str, tuple or list, optional optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. Examples -------- >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df5.na.fill(False).show() +----+-------+-----+ | age| name| spy| +----+-------+-----+ | 10| Alice|false| | 5| Bob|false| |null|Mallory| true| +----+-------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+ """ if not isinstance(value, (float, int, str, bool, dict)): raise ValueError("value should be a float, int, string, bool or dict") # Note that bool validates isinstance(int), but we don't want to # convert bools to floats if not isinstance(value, bool) and isinstance(value, int): value = float(value) if isinstance(value, dict): return DataFrame(self._jdf.na().fill(value), self.sql_ctx) elif subset is None: return DataFrame(self._jdf.na().fill(value), self.sql_ctx) else: if isinstance(subset, str): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx) def replace(self, to_replace, value=_NoValue, subset=None): """Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. Values to_replace and value must have the same type and can only be numerics, booleans, or strings. Value can have None. When replacing, the new value will be cast to the type of the existing column. For numeric replacements all values to be replaced should have unique floating point representation. In case of conflicts (for example with `{42: -1, 42.0: 1}`) and arbitrary replacement will be used. .. versionadded:: 1.4.0 Parameters ---------- to_replace : bool, int, float, string, list or dict Value to be replaced. If the value is a dict, then `value` is ignored or can be omitted, and `to_replace` must be a mapping between a value and a replacement. value : bool, int, float, string or None, optional The replacement value must be a bool, int, float, string or None. If `value` is a list, `value` should be of the same length and type as `to_replace`. If `value` is a scalar and `to_replace` is a sequence, then `value` is used as a replacement for each item in `to_replace`. subset : list, optional optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. Examples -------- >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace('Alice', None).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace({'Alice': None}).show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80|null| | 5| null| Bob| |null| null| Tom| |null| null|null| +----+------+----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+ """ if value is _NoValue: if isinstance(to_replace, dict): value = None else: raise TypeError("value argument is required when to_replace is not a dictionary.") # Helper functions def all_of(types): """Given a type or tuple of types and a sequence of xs check if each x is instance of type(s) >>> all_of(bool)([True, False]) True >>> all_of(str)(["a", 1]) False """ def all_of_(xs): return all(isinstance(x, types) for x in xs) return all_of_ all_of_bool = all_of(bool) all_of_str = all_of(str) all_of_numeric = all_of((float, int)) # Validate input types valid_types = (bool, float, int, str, list, tuple) if not isinstance(to_replace, valid_types + (dict, )): raise ValueError( "to_replace should be a bool, float, int, string, list, tuple, or dict. " "Got {0}".format(type(to_replace))) if not isinstance(value, valid_types) and value is not None \ and not isinstance(to_replace, dict): raise ValueError("If to_replace is not a dict, value should be " "a bool, float, int, string, list, tuple or None. " "Got {0}".format(type(value))) if isinstance(to_replace, (list, tuple)) and isinstance(value, (list, tuple)): if len(to_replace) != len(value): raise ValueError("to_replace and value lists should be of the same length. " "Got {0} and {1}".format(len(to_replace), len(value))) if not (subset is None or isinstance(subset, (list, tuple, str))): raise ValueError("subset should be a list or tuple of column names, " "column name or None. Got {0}".format(type(subset))) # Reshape input arguments if necessary if isinstance(to_replace, (float, int, str)): to_replace = [to_replace] if isinstance(to_replace, dict): rep_dict = to_replace if value is not None: warnings.warn("to_replace is a dict and value is not None. value will be ignored.") else: if isinstance(value, (float, int, str)) or value is None: value = [value for _ in range(len(to_replace))] rep_dict = dict(zip(to_replace, value)) if isinstance(subset, str): subset = [subset] # Verify we were not passed in mixed type generics. if not any(all_of_type(rep_dict.keys()) and all_of_type(x for x in rep_dict.values() if x is not None) for all_of_type in [all_of_bool, all_of_str, all_of_numeric]): raise ValueError("Mixed type replacements are not supported") if subset is None: return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) else: return DataFrame( self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx) def approxQuantile(self, col, probabilities, relativeError): """ Calculates the approximate quantiles of numerical columns of a :class:`DataFrame`. The result of this algorithm has the following deterministic bound: If the :class:`DataFrame` has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the :class:`DataFrame` so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[https://doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. Note that null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. .. versionadded:: 2.0.0 Parameters ---------- col: str, tuple or list Can be a single column name, or a list of names for multiple columns. .. versionchanged:: 2.2 Added support for multiple columns. probabilities : list or tuple a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. relativeError : float The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. Returns ------- list the approximate quantiles at the given probabilities. If the input `col` is a string, the output is a list of floats. If the input `col` is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. """ if not isinstance(col, (str, list, tuple)): raise ValueError("col should be a string, list or tuple, but got %r" % type(col)) isStr = isinstance(col, str) if isinstance(col, tuple): col = list(col) elif isStr: col = [col] for c in col: if not isinstance(c, str): raise ValueError("columns should be strings, but got %r" % type(c)) col = _to_list(self._sc, col) if not isinstance(probabilities, (list, tuple)): raise ValueError("probabilities should be a list or tuple") if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int)) or p < 0 or p > 1: raise ValueError("probabilities should be numerical (float, int) in [0,1].") probabilities = _to_list(self._sc, probabilities) if not isinstance(relativeError, (float, int)) or relativeError < 0: raise ValueError("relativeError should be numerical (float, int) >= 0.") relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) jaq_list = [list(j) for j in jaq] return jaq_list[0] if isStr else jaq_list def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a :class:`DataFrame` as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column method : str, optional The correlation method. Currently only supports "pearson" """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") if not method: method = "pearson" if not method == "pearson": raise ValueError("Currently only the calculation of the Pearson Correlation " + "coefficient is supported.") return self._jdf.stat().corr(col1, col2, method) def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column col2 : str The name of the second column """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") return self._jdf.stat().cov(col1, col2) def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. .. versionadded:: 1.4.0 Parameters ---------- col1 : str The name of the first column. Distinct items will make the first item of each row. col2 : str The name of the second column. Distinct items will make the column names of the :class:`DataFrame`. """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx) def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "https://doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. versionadded:: 1.4.0 Parameters ---------- cols : list or tuple Names of the columns to calculate frequent items for as a list or tuple of strings. support : float, optional The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4. Notes ----- This function is meant for exploratory data analysis, as we make no guarantee about the backward compatibility of the schema of the resulting :class:`DataFrame`. """ if isinstance(cols, tuple): cols = list(cols) if not isinstance(cols, list): raise ValueError("cols must be a list or tuple of column names as strings.") if not support: support = 0.01 return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx) def withColumn(self, colName, col): """ Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. The column expression must be an expression over this :class:`DataFrame`; attempting to add a column from some other :class:`DataFrame` will raise an error. .. versionadded:: 1.3.0 Parameters ---------- colName : str string, name of the new column. col : :class:`Column` a :class:`Column` expression for the new column. Notes ----- This method introduces a projection internally. Therefore, calling it multiple times, for instance, via loops in order to add multiple columns can generate big plans which can cause performance issues and even `StackOverflowException`. To avoid this, use :func:`select` with the multiple columns at once. Examples -------- >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name='Alice', age2=4), Row(age=5, name='Bob', age2=7)] """ assert isinstance(col, Column), "col should be Column" return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx) def withColumnRenamed(self, existing, new): """Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. .. versionadded:: 1.3.0 Parameters ---------- existing : str string, name of the existing column to rename. new : str string, new name of the column. Examples -------- >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name='Alice'), Row(age2=5, name='Bob')] """ return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx) def drop(self, *cols): """Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). .. versionadded:: 1.4.0 Parameters ---------- cols: str or :class:`Column` a name of the column, or the :class:`Column` to drop Examples -------- >>> df.drop('age').collect() [Row(name='Alice'), Row(name='Bob')] >>> df.drop(df.age).collect() [Row(name='Alice'), Row(name='Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name='Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name='Bob', height=85)] >>> df.join(df2, 'name', 'inner').drop('age', 'height').collect() [Row(name='Bob')] """ if len(cols) == 1: col = cols[0] if isinstance(col, str): jdf = self._jdf.drop(col) elif isinstance(col, Column): jdf = self._jdf.drop(col._jc) else: raise TypeError("col should be a string or a Column") else: for col in cols: if not isinstance(col, str): raise TypeError("each col in the param list should be a string") jdf = self._jdf.drop(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def toDF(self, *cols): """Returns a new :class:`DataFrame` that with new specified column names Parameters ---------- cols : str new column names Examples -------- >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2='Alice'), Row(f1=5, f2='Bob')] """ jdf = self._jdf.toDF(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) def transform(self, func): """Returns a new :class:`DataFrame`. Concise syntax for chaining custom transformations. .. versionadded:: 3.0.0 Parameters ---------- func : function a function that takes and returns a :class:`DataFrame`. Examples -------- >>> from pyspark.sql.functions import col >>> df = spark.createDataFrame([(1, 1.0), (2, 2.0)], ["int", "float"]) >>> def cast_all_to_int(input_df): ... return input_df.select([col(col_name).cast("int") for col_name in input_df.columns]) >>> def sort_columns_asc(input_df): ... return input_df.select(*sorted(input_df.columns)) >>> df.transform(cast_all_to_int).transform(sort_columns_asc).show() +-----+---+ |float|int| +-----+---+ | 1| 1| | 2| 2| +-----+---+ """ result = func(self) assert isinstance(result, DataFrame), "Func returned an instance of type [%s], " \ "should have been DataFrame." % type(result) return result def sameSemantics(self, other): """ Returns `True` when the logical query plans inside both :class:`DataFrame`\\s are equal and therefore return same results. .. versionadded:: 3.1.0 Notes ----- The equality comparison here is simplified by tolerating the cosmetic differences such as attribute names. This API can compare both :class:`DataFrame`\\s very fast but can still return `False` on the :class:`DataFrame` that return the same results, for instance, from different plans. Such false negative semantic can be useful when caching as an example. This API is a developer API. Examples -------- >>> df1 = spark.range(10) >>> df2 = spark.range(10) >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id * 2)) True >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col1", df2.id + 2)) False >>> df1.withColumn("col1", df1.id * 2).sameSemantics(df2.withColumn("col0", df2.id * 2)) True """ if not isinstance(other, DataFrame): raise ValueError("other parameter should be of DataFrame; however, got %s" % type(other)) return self._jdf.sameSemantics(other._jdf) def semanticHash(self): """ Returns a hash code of the logical query plan against this :class:`DataFrame`. .. versionadded:: 3.1.0 Notes ----- Unlike the standard hash code, the hash is calculated against the query plan simplified by tolerating the cosmetic differences such as attribute names. This API is a developer API. Examples -------- >>> spark.range(10).selectExpr("id as col0").semanticHash() # doctest: +SKIP 1855039936 >>> spark.range(10).selectExpr("id as col1").semanticHash() # doctest: +SKIP 1855039936 """ return self._jdf.semanticHash() def inputFiles(self): """ Returns a best-effort snapshot of the files that compose this :class:`DataFrame`. This method simply asks each constituent BaseRelation for its respective files and takes the union of all results. Depending on the source relations, this may not find all input files. Duplicates are removed. .. versionadded:: 3.1.0 Examples -------- >>> df = spark.read.load("examples/src/main/resources/people.json", format="json") >>> len(df.inputFiles()) 1 """ return list(self._jdf.inputFiles()) where = copy_func( filter, sinceversion=1.3, doc=":func:`where` is an alias for :func:`filter`.") # Two aliases below were added for pandas compatibility many years ago. # There are too many differences compared to pandas and we cannot just # make it "compatible" by adding aliases. Therefore, we stop adding such # aliases as of Spark 3.0. Two methods below remain just # for legacy users currently. groupby = copy_func( groupBy, sinceversion=1.4, doc=":func:`groupby` is an alias for :func:`groupBy`.") drop_duplicates = copy_func( dropDuplicates, sinceversion=1.4, doc=":func:`drop_duplicates` is an alias for :func:`dropDuplicates`.") def writeTo(self, table): """ Create a write configuration builder for v2 sources. This builder is used to configure and execute write operations. For example, to append or create or replace existing tables. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").append() # doctest: +SKIP >>> df.writeTo( # doctest: +SKIP ... "catalog.db.table" ... ).partitionedBy("col").createOrReplace() """ return DataFrameWriterV2(self, table) def _to_scala_map(sc, jm): """ Convert a dict into a JVM Map. """ return sc._jvm.PythonUtils.toScalaMap(jm) class DataFrameNaFunctions(object): """Functionality for working with missing data in :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def drop(self, how='any', thresh=None, subset=None): return self.df.dropna(how=how, thresh=thresh, subset=subset) drop.__doc__ = DataFrame.dropna.__doc__ def fill(self, value, subset=None): return self.df.fillna(value=value, subset=subset) fill.__doc__ = DataFrame.fillna.__doc__ def replace(self, to_replace, value=_NoValue, subset=None): return self.df.replace(to_replace, value, subset) replace.__doc__ = DataFrame.replace.__doc__ class DataFrameStatFunctions(object): """Functionality for statistic functions with :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def approxQuantile(self, col, probabilities, relativeError): return self.df.approxQuantile(col, probabilities, relativeError) approxQuantile.__doc__ = DataFrame.approxQuantile.__doc__ def corr(self, col1, col2, method=None): return self.df.corr(col1, col2, method) corr.__doc__ = DataFrame.corr.__doc__ def cov(self, col1, col2): return self.df.cov(col1, col2) cov.__doc__ = DataFrame.cov.__doc__ def crosstab(self, col1, col2): return self.df.crosstab(col1, col2) crosstab.__doc__ = DataFrame.crosstab.__doc__ def freqItems(self, cols, support=None): return self.df.freqItems(cols, support) freqItems.__doc__ = DataFrame.freqItems.__doc__ def sampleBy(self, col, fractions, seed=None): return self.df.sampleBy(col, fractions, seed) sampleBy.__doc__ = DataFrame.sampleBy.__doc__ def _test(): import doctest from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext, SparkSession import pyspark.sql.dataframe globs = pyspark.sql.dataframe.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['spark'] = SparkSession(sc) globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')])\ .toDF(StructType([StructField('age', IntegerType()), StructField('name', StringType())])) globs['df2'] = sc.parallelize([Row(height=80, name='Tom'), Row(height=85, name='Bob')]).toDF() globs['df3'] = sc.parallelize([Row(age=2, name='Alice'), Row(age=5, name='Bob')]).toDF() globs['df4'] = sc.parallelize([Row(age=10, height=80, name='Alice'), Row(age=5, height=None, name='Bob'), Row(age=None, height=None, name='Tom'), Row(age=None, height=None, name=None)]).toDF() globs['df5'] = sc.parallelize([Row(age=10, name='Alice', spy=False), Row(age=5, name='Bob', spy=None), Row(age=None, name='Mallory', spy=True)]).toDF() globs['sdf'] = sc.parallelize([Row(name='Tom', time=1479441846), Row(name='Bob', time=1479442946)]).toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.dataframe, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
mraspaud/dask
dask/tests/test_core.py
4
6355
from collections import namedtuple import pytest import pickle from dask.utils_test import GetFunctionTestMixin, inc, add from dask import core from dask.core import (istask, get_dependencies, get_deps, flatten, subs, preorder_traversal, literal, quote, has_tasks) def contains(a, b): """ >>> contains({'x': 1, 'y': 2}, {'x': 1}) True >>> contains({'x': 1, 'y': 2}, {'z': 3}) False """ return all(a.get(k) == v for k, v in b.items()) def test_istask(): assert istask((inc, 1)) assert not istask(1) assert not istask((1, 2)) f = namedtuple('f', ['x', 'y']) assert not istask(f(sum, 2)) def test_has_tasks(): dsk = {'a': [1, 2, 3], 'b': 'a', 'c': [1, (inc, 1)], 'd': [(sum, 'a')], 'e': ['a', 'b'], 'f': [['a', 'b'], 2, 3]} assert not has_tasks(dsk, dsk['a']) assert has_tasks(dsk, dsk['b']) assert has_tasks(dsk, dsk['c']) assert has_tasks(dsk, dsk['d']) assert has_tasks(dsk, dsk['e']) assert has_tasks(dsk, dsk['f']) def test_preorder_traversal(): t = (add, 1, 2) assert list(preorder_traversal(t)) == [add, 1, 2] t = (add, (add, 1, 2), (add, 3, 4)) assert list(preorder_traversal(t)) == [add, add, 1, 2, add, 3, 4] t = (add, (sum, [1, 2]), 3) assert list(preorder_traversal(t)) == [add, sum, list, 1, 2, 3] class TestGet(GetFunctionTestMixin): get = staticmethod(core.get) class TestRecursiveGet(GetFunctionTestMixin): get = staticmethod(lambda d, k: core.get(d, k, recursive=True)) def test_get_stack_limit(self): # will blow stack in recursive mode pass def test_GetFunctionTestMixin_class(): class TestCustomGetFail(GetFunctionTestMixin): get = staticmethod(lambda x, y: 1) custom_testget = TestCustomGetFail() pytest.raises(AssertionError, custom_testget.test_get) class TestCustomGetPass(GetFunctionTestMixin): get = staticmethod(core.get) custom_testget = TestCustomGetPass() custom_testget.test_get() def test_get_dependencies_nested(): dsk = {'x': 1, 'y': 2, 'z': (add, (inc, [['x']]), 'y')} assert get_dependencies(dsk, 'z') == set(['x', 'y']) assert sorted(get_dependencies(dsk, 'z', as_list=True)) == ['x', 'y'] def test_get_dependencies_empty(): dsk = {'x': (inc,)} assert get_dependencies(dsk, 'x') == set() assert get_dependencies(dsk, 'x', as_list=True) == [] def test_get_dependencies_list(): dsk = {'x': 1, 'y': 2, 'z': ['x', [(inc, 'y')]]} assert get_dependencies(dsk, 'z') == set(['x', 'y']) assert sorted(get_dependencies(dsk, 'z', as_list=True)) == ['x', 'y'] def test_get_dependencies_task(): dsk = {'x': 1, 'y': 2, 'z': ['x', [(inc, 'y')]]} assert get_dependencies(dsk, task=(inc, 'x')) == set(['x']) assert get_dependencies(dsk, task=(inc, 'x'), as_list=True) == ['x'] def test_get_dependencies_nothing(): with pytest.raises(ValueError): get_dependencies({}) def test_get_dependencies_many(): dsk = {'a': [1, 2, 3], 'b': 'a', 'c': [1, (inc, 1)], 'd': [(sum, 'c')], 'e': ['a', 'b', 'zzz'], 'f': [['a', 'b'], 2, 3]} tasks = [dsk[k] for k in ('d', 'f')] s = get_dependencies(dsk, task=tasks) assert s == {'a', 'b', 'c'} s = get_dependencies(dsk, task=tasks, as_list=True) assert sorted(s) == ['a', 'b', 'c'] s = get_dependencies(dsk, task=[]) assert s == set() s = get_dependencies(dsk, task=[], as_list=True) assert s == [] def test_get_deps(): """ >>> dsk = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')} >>> dependencies, dependents = get_deps(dsk) >>> dependencies {'a': set([]), 'c': set(['b']), 'b': set(['a'])} >>> dependents {'a': set(['b']), 'c': set([]), 'b': set(['c'])} """ dsk = {'a': [1, 2, 3], 'b': 'a', 'c': [1, (inc, 1)], 'd': [(sum, 'c')], 'e': ['b', 'zzz', 'b'], 'f': [['a', 'b'], 2, 3]} dependencies, dependents = get_deps(dsk) assert dependencies == {'a': set(), 'b': {'a'}, 'c': set(), 'd': {'c'}, 'e': {'b'}, 'f': {'a', 'b'}, } assert dependents == {'a': {'b', 'f'}, 'b': {'e', 'f'}, 'c': {'d'}, 'd': set(), 'e': set(), 'f': set(), } def test_flatten(): assert list(flatten(())) == [] assert list(flatten('foo')) == ['foo'] def test_subs(): assert subs((sum, [1, 'x']), 'x', 2) == (sum, [1, 2]) assert subs((sum, [1, ['x']]), 'x', 2) == (sum, [1, [2]]) class MutateOnEq(object): hit_eq = 0 def __eq__(self, other): self.hit_eq += 1 return False def test_subs_no_key_data_eq(): # Numpy throws a deprecation warning on bool(array == scalar), which # pollutes the terminal. This test checks that `subs` never tries to # compare keys (scalars) with values (which could be arrays)`subs` never # tries to compare keys (scalars) with values (which could be arrays). a = MutateOnEq() subs(a, 'x', 1) assert a.hit_eq == 0 subs((add, a, 'x'), 'x', 1) assert a.hit_eq == 0 def test_subs_with_unfriendly_eq(): try: import numpy as np except: return else: task = (np.sum, np.array([1, 2])) assert (subs(task, (4, 5), 1) == task) is True class MyException(Exception): pass class F(): def __eq__(self, other): raise MyException() task = F() assert subs(task, 1, 2) is task def test_subs_with_surprisingly_friendly_eq(): try: import pandas as pd except: return else: df = pd.DataFrame() assert subs(df, 'x', 1) is df def test_quote(): literals = [[1, 2, 3], (add, 1, 2), [1, [2, 3]], (add, 1, (add, 2, 3))] for l in literals: assert core.get({'x': quote(l)}, 'x') == l def test_literal_serializable(): l = literal((add, 1, 2)) assert pickle.loads(pickle.dumps(l)).data == (add, 1, 2)
bsd-3-clause
jeicher/cobrapy
cobra/core/Metabolite.py
2
8717
from warnings import warn import re from six import iteritems from .Species import Species # Numbers are not required because of the |(?=[A-Z])? block. See the # discussion in https://github.com/opencobra/cobrapy/issues/128 for # more details. element_re = re.compile("([A-Z][a-z]?)([0-9.]+[0-9.]?|(?=[A-Z])?)") class Metabolite(Species): """Metabolite is a class for holding information regarding a metabolite in a cobra.Reaction object. """ def __init__(self, id=None, formula=None, name="", charge=None, compartment=None): """ id: str formula: str Chemical formula (i.e. H2O) name: str A human readable name. compartment: str or None Compartment of metabolite. """ Species.__init__(self, id, name) self.formula = formula # because in a Model a metabolite may participate in multiple Reactions self.compartment = compartment self.charge = charge self._constraint_sense = 'E' self._bound = 0. @property def elements(self): tmp_formula = self.formula if tmp_formula is None: return {} # necessary for some old pickles which use the deprecated # Formula class tmp_formula = str(self.formula) # commonly occuring characters in incorrectly constructed formulas if "*" in tmp_formula: warn("invalid character '*' found in formula '%s'" % self.formula) tmp_formula = tmp_formula.replace("*", "") if "(" in tmp_formula or ")" in tmp_formula: warn("invalid formula (has parenthesis) in '%s'" % self.formula) return None composition = {} parsed = element_re.findall(tmp_formula) for (element, count) in parsed: if count == '': count = 1 else: try: count = float(count) int_count = int(count) if count == int_count: count = int_count else: warn("%s is not an integer (in formula %s)" % (count, self.formula)) except ValueError: warn("failed to parse %s (in formula %s)" % (count, self.formula)) return None if element in composition: composition[element] += count else: composition[element] = count return composition @elements.setter def elements(self, elements_dict): def stringify(element, number): return element if number == 1 else element + str(number) self.formula = ''.join(stringify(e, n) for e, n in sorted(iteritems(elements_dict))) @property def formula_weight(self): """Calculate the formula weight""" try: return sum([count * elements_and_molecular_weights[element] for element, count in self.elements.items()]) except KeyError as e: warn("The element %s does not appear in the peridic table" % e) @property def y(self): """The shadow price for the metabolite in the most recent solution Shadow prices are computed from the dual values of the bounds in the solution. """ try: return self._model.solution.y_dict[self.id] except Exception as e: if self._model is None: raise Exception("not part of a model") if not hasattr(self._model, "solution") or \ self._model.solution is None or \ self._model.solution.status == "NA": raise Exception("model has not been solved") if self._model.solution.status != "optimal": raise Exception("model solution was not optimal") raise e # Not sure what the exact problem was def remove_from_model(self, method='subtractive', **kwargs): """Removes the association from self.model method: 'subtractive' or 'destructive'. If 'subtractive' then the metabolite is removed from all associated reactions. If 'destructive' then all associated reactions are removed from the Model. """ # why is model being taken in as a parameter? This plays # back to the question of allowing a Metabolite to be associated # with multiple Models if "model" in kwargs: warn("model argument deprecated") self._model.metabolites.remove(self) self._model = None if method.lower() == 'subtractive': for the_reaction in list(self._reaction): the_coefficient = the_reaction._metabolites[self] the_reaction.subtract_metabolites({self: the_coefficient}) elif method.lower() == 'destructive': for x in self._reaction: x.remove_from_model() else: raise Exception(method + " is not 'subtractive' or 'destructive'") def summary(self, **kwargs): """Print a summary of the reactions which produce and consume this metabolite. This method requires the model for which this metabolite is a part to be solved. threshold: float a value below which to ignore reaction fluxes fva: float (0->1), or None Whether or not to include flux variability analysis in the output. If given, fva should be a float between 0 and 1, representing the fraction of the optimum objective to be searched. floatfmt: string format method for floats, passed to tabulate. Default is '.3g'. """ try: from ..flux_analysis.summary import metabolite_summary return metabolite_summary(self, **kwargs) except ImportError: warn('Summary methods require pandas/tabulate') elements_and_molecular_weights = { 'H': 1.007940, 'He': 4.002602, 'Li': 6.941000, 'Be': 9.012182, 'B': 10.811000, 'C': 12.010700, 'N': 14.006700, 'O': 15.999400, 'F': 18.998403, 'Ne': 20.179700, 'Na': 22.989770, 'Mg': 24.305000, 'Al': 26.981538, 'Si': 28.085500, 'P': 30.973761, 'S': 32.065000, 'Cl': 35.453000, 'Ar': 39.948000, 'K': 39.098300, 'Ca': 40.078000, 'Sc': 44.955910, 'Ti': 47.867000, 'V': 50.941500, 'Cr': 51.996100, 'Mn': 54.938049, 'Fe': 55.845000, 'Co': 58.933200, 'Ni': 58.693400, 'Cu': 63.546000, 'Zn': 65.409000, 'Ga': 69.723000, 'Ge': 72.640000, 'As': 74.921600, 'Se': 78.960000, 'Br': 79.904000, 'Kr': 83.798000, 'Rb': 85.467800, 'Sr': 87.620000, 'Y': 88.905850, 'Zr': 91.224000, 'Nb': 92.906380, 'Mo': 95.940000, 'Tc': 98.000000, 'Ru': 101.070000, 'Rh': 102.905500, 'Pd': 106.420000, 'Ag': 107.868200, 'Cd': 112.411000, 'In': 114.818000, 'Sn': 118.710000, 'Sb': 121.760000, 'Te': 127.600000, 'I': 126.904470, 'Xe': 131.293000, 'Cs': 132.905450, 'Ba': 137.327000, 'La': 138.905500, 'Ce': 140.116000, 'Pr': 140.907650, 'Nd': 144.240000, 'Pm': 145.000000, 'Sm': 150.360000, 'Eu': 151.964000, 'Gd': 157.250000, 'Tb': 158.925340, 'Dy': 162.500000, 'Ho': 164.930320, 'Er': 167.259000, 'Tm': 168.934210, 'Yb': 173.040000, 'Lu': 174.967000, 'Hf': 178.490000, 'Ta': 180.947900, 'W': 183.840000, 'Re': 186.207000, 'Os': 190.230000, 'Ir': 192.217000, 'Pt': 195.078000, 'Au': 196.966550, 'Hg': 200.590000, 'Tl': 204.383300, 'Pb': 207.200000, 'Bi': 208.980380, 'Po': 209.000000, 'At': 210.000000, 'Rn': 222.000000, 'Fr': 223.000000, 'Ra': 226.000000, 'Ac': 227.000000, 'Th': 232.038100, 'Pa': 231.035880, 'U': 238.028910, 'Np': 237.000000, 'Pu': 244.000000, 'Am': 243.000000, 'Cm': 247.000000, 'Bk': 247.000000, 'Cf': 251.000000, 'Es': 252.000000, 'Fm': 257.000000, 'Md': 258.000000, 'No': 259.000000, 'Lr': 262.000000, 'Rf': 261.000000, 'Db': 262.000000, 'Sg': 266.000000, 'Bh': 264.000000, 'Hs': 277.000000, 'Mt': 268.000000, 'Ds': 281.000000, 'Rg': 272.000000, 'Cn': 285.000000, 'Uuq': 289.000000, 'Uuh': 292.000000 }
lgpl-2.1
kwohlfahrt/pywt
demo/plot_wavelets.py
8
2656
#!/usr/bin/env python # -*- coding: utf-8 -*- # Plot scaling and wavelet functions for db, sym, coif, bior and rbio families import itertools import matplotlib.pyplot as plt import pywt plot_data = [('db', (4, 3)), ('sym', (4, 3)), ('coif', (3, 2))] for family, (rows, cols) in plot_data: fig = plt.figure() fig.subplots_adjust(hspace=0.2, wspace=0.2, bottom=.02, left=.06, right=.97, top=.94) colors = itertools.cycle('bgrcmyk') wnames = pywt.wavelist(family) i = iter(wnames) for col in range(cols): for row in range(rows): try: wavelet = pywt.Wavelet(next(i)) except StopIteration: break phi, psi, x = wavelet.wavefun(level=5) color = next(colors) ax = fig.add_subplot(rows, 2 * cols, 1 + 2 * (col + row * cols)) ax.set_title(wavelet.name + " phi") ax.plot(x, phi, color) ax.set_xlim(min(x), max(x)) ax = fig.add_subplot(rows, 2*cols, 1 + 2*(col + row*cols) + 1) ax.set_title(wavelet.name + " psi") ax.plot(x, psi, color) ax.set_xlim(min(x), max(x)) for family, (rows, cols) in [('bior', (4, 3)), ('rbio', (4, 3))]: fig = plt.figure() fig.subplots_adjust(hspace=0.5, wspace=0.2, bottom=.02, left=.06, right=.97, top=.94) colors = itertools.cycle('bgrcmyk') wnames = pywt.wavelist(family) i = iter(wnames) for col in range(cols): for row in range(rows): try: wavelet = pywt.Wavelet(next(i)) except StopIteration: break phi, psi, phi_r, psi_r, x = wavelet.wavefun(level=5) row *= 2 color = next(colors) ax = fig.add_subplot(2*rows, 2*cols, 1 + 2*(col + row*cols)) ax.set_title(wavelet.name + " phi") ax.plot(x, phi, color) ax.set_xlim(min(x), max(x)) ax = fig.add_subplot(2*rows, 2*cols, 2*(1 + col + row*cols)) ax.set_title(wavelet.name + " psi") ax.plot(x, psi, color) ax.set_xlim(min(x), max(x)) row += 1 ax = fig.add_subplot(2*rows, 2*cols, 1 + 2*(col + row*cols)) ax.set_title(wavelet.name + " phi_r") ax.plot(x, phi_r, color) ax.set_xlim(min(x), max(x)) ax = fig.add_subplot(2*rows, 2*cols, 1 + 2*(col + row*cols) + 1) ax.set_title(wavelet.name + " psi_r") ax.plot(x, psi_r, color) ax.set_xlim(min(x), max(x)) plt.show()
mit
sjtudesigner/NeuralSight
model/activation_model.py
1
1315
from theano import function from scipy.misc import imread, imresize import numpy as np import matplotlib.pyplot as plt import os from keras import backend as K image_path = "./static/upload/" def compute_activation(model, layer_id, image, out_path, size=(224, 224)): if os.path.exists(out_path): return len(os.listdir(out_path)) layer = model.layers[layer_id] f = function([model.input, K.learning_phase()], layer.output, on_unused_input='ignore') # hopefully this is a colored image im = imread(image_path + image, mode='RGB') / 255. print "im:", im.shape imsize = model.input_shape[2:4] if model.input_shape[2] and model.input_shape[3] else size im = imresize(im, imsize) if len(im.shape) == 3: im = im.transpose(2, 0, 1)[np.newaxis, :] else: im = im[np.newaxis, np.newaxis, :] result = f(im, 0.)[0] os.mkdir(out_path) if len(result.shape) == 3: for k in range(result.shape[0]): plt.imsave(out_path + str(k + 1) + ".png", result[k]) return result.shape[0] elif len(result.shape) == 1: # histogram fig = plt.figure(figsize=(20, 10)) plt.xlim([0, result.shape[0]]) plt.bar(np.arange(result.shape[0]), result, width=1) fig.savefig(out_path + "1.png") return 1
mit
AlexanderFabisch/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
168
2088
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold'] lw = 2 plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw, label="ground truth") plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]): model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
facemelters/data-science
fbVideoStats.py
1
4544
import pandas as pd import numpy as np import requests import json import gspread import datetime from time import sleep from oauth2client.client import SignedJwtAssertionCredentials #Facebook Login and Parameter Setting via Command Line json_fb_key = json.load(open('./Credentials/fb_api_key.json')) apikey = json_fb_key['credentials']['apikey'].encode('ascii','ignore') pageID = str(raw_input('Page ID? ')) num_posts = int(raw_input('How many pages of posts would you like to retrieve? ')) #Google Spreadsheets Login json_key = json.load(open('./Credentials/'+ pageID + ' Update Client Secret.json')) scope = ['https://spreadsheets.google.com/feeds'] credentials = SignedJwtAssertionCredentials(json_key['client_email'], json_key['private_key'], scope) gc = gspread.authorize(credentials) sheet_key = json.load(open('./Credentials/Facebook Sheet ID.json')) sheet_key = sheet_key[pageID] ws1 = gc.open_by_key(sheet_key).worksheet('Video') def get_video_feed(pageID,num_posts): pages = num_posts // 25 holder = [] counter = 0 endpoint = 'https://graph.facebook.com/v2.7/'+pageID+'/videos?fields=description,id,length,live_status,permalink_url,published,title,updated_time&access_token='+apikey while counter <= pages: response = requests.get(endpoint) fb_data = response.json() for item in range(len(fb_data['data'])): holder.append(fb_data['data'][item]) try: endpoint = fb_data['paging']['next'] counter += 1 except KeyError: break df = pd.DataFrame.from_dict(data=holder,orient='columns') return df def get_video_insights(): df = get_video_feed(pageID,num_posts) df_stats = [] stories = 'total_video_stories_by_action_type' attributes = ['total_video_impressions_unique','total_video_views_unique','total_video_30s_views_unique','total_video_complete_views_unique'] print df['id'] for item in df['id']: endpoint = 'https://graph.facebook.com/v2.7/'+item+'/video_insights?access_token='+apikey response = requests.get(endpoint) data = response.json() #Loop through JSON returned tmp_dict = {} for item in range(len(data['data'])): #We only want a few features (defined above) for attribute in attributes: if data['data'][item]['name'] == attribute: tmp_dict[attribute] = data['data'][item]['values'][0]['value'] elif data['data'][item]['name'] == stories: tmp_dict['Shares'] = data['data'][item]['values'][0]['value']['share'] tmp_dict['Likes'] = data['data'][item]['values'][0]['value']['like'] tmp_dict['Comments'] = data['data'][item]['values'][0]['value']['comment'] df_stats.append(tmp_dict) df_stats = pd.DataFrame.from_dict(data=df_stats,orient='columns') df = df.join(df_stats) return df def numberToLetters(q): q = q - 1 result = '' while q >= 0: remain = q % 26 result = chr(remain+65) + result; q = q//26 - 1 return result def main(): df = get_video_insights() df.updated_time = df.updated_time.apply(lambda x: x.split('T')[0]) # Let's send the column names of dataframe to Google columns = df.columns.values.tolist() #Login to Google Spreadsheets (Doing this inside func b/c of timeout) gc = gspread.authorize(credentials) ws1 = gc.open_by_key(sheet_key).worksheet('Video') # selection of the range that will be updated cell_list = ws1.range('A1:'+numberToLetters(len(columns))+'1') # modifying the values in the range for cell in cell_list: val = columns[cell.col-1] if type(val) is str: val = val.decode('utf-8') cell.value = val # update in batch ws1.update_cells(cell_list) #Now let's send the dataframe via the apikey # number of lines and columns num_lines, num_columns = df.shape # selection of the range that will be updated cell_list = ws1.range('A2:'+numberToLetters(num_columns)+str(num_lines+1)) # modifying the values in the range for cell in cell_list: val = df.iloc[cell.row-2,cell.col-1] if type(val) is str: val = val.decode('utf-8') cell.value = val # update in batch ws1.update_cells(cell_list) if __name__ == '__main__': main() #Take POST_ID of any video post #/v2.7/{POST_ID}/?fields=object_id gives us the object_id #v2.7/{OBJECT_ID}/video_insights
gpl-2.0
Akshay0724/scikit-learn
sklearn/ensemble/forest.py
11
67127
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount, parallel_helper from ..utils.multiclass import check_classification_targets from ..utils.validation import check_is_fitted __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest .. versionadded:: 0.18 Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False, random_state=random_state) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ check_is_fitted(self, 'estimators_') all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('balanced', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight != 'balanced_subsample' or not self.bootstrap): if self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_split=1e-7, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ X = check_array(X, accept_sparse=['csc']) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
Christoph/tag-connect
brushing/create_inliers.py
1
1329
import pandas as pd import numpy as np import codecs, json data = [] for i in range(0, 1000): element = {} temp = [] p1 = [10, 20] p2 = [50, 60] p3 = [80, 70] temp.append({"t": 0, "out": i}) temp.append({"t": 1, "out": i}) temp.append({"t": 2, "out": i}) element["data"] = temp if i < 200: x = p1[0] + np.random.randint(-7, 10) y = p1[1] + np.random.randint(-10, 7) elif i >= 200 and i < 400: x = p2[0] - 10 + np.random.randint(-8, 2) y = p2[1] + np.random.randint(-20, 12) elif i >= 400 and i < 600: x = p2[0] + np.random.randint(-8, 8) y = p2[1] + np.random.randint(-20, 12) elif i >= 600 and i < 800: x = p2[0] + 10 + np.random.randint(-2, 10) y = p2[1] + np.random.randint(-20, 12) elif i >= 800: x = p3[0] + np.random.randint(-5, 5) y = p3[1] + np.random.randint(-15, 15) if x >= 40 and x < 50 and y < 60 and y > 50: x += int(2 * np.abs(x - 50)) elif x > 50 and x <= 60 and y < 60 and y > 50: x -= int(2 * np.abs(x - 50)) element["params"] = { "x": x, "y": y } data.append(element) data file_path = "inlier.json" json.dump(data, codecs.open(file_path, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
mit
roofit-dev/parallel-roofit-scripts
rootbench_analysis/RooFitMP_analysis.py
1
15483
import glob import json from collections import defaultdict import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import egp.plot from IPython.display import display default_columns = ('bm_name', 'NumCPU', 'manual_time') columns = {'BM_RooFit_BinnedMultiProcGradient': ('bm_name', 'bins', 'NumCPU', 'manual_time'), 'BM_RooFit_1DUnbinnedGaussianMultiProcessGradMinimizer': default_columns, 'BM_RooFit_NDUnbinnedGaussianMultiProcessGradMinimizer': ('bm_name', 'NumCPU', 'dims', 'manual_time'), 'BM_RooFit_MP_GradMinimizer_workspace_file': default_columns, 'BM_RooFit_MP_GradMinimizer_workspace_file_noOptConst': default_columns, 'BM_RooFit_MP_GradMinimizer_workspace_file_NumCPUInConfigFile': ('bm_name', 'manual_time'), 'BM_RooFit_RooMinimizer_workspace_file': ('bm_name', 'manual_time'), 'BM_RooFit_RooMinimizer_workspace_file_noOptConst': ('bm_name', 'manual_time'), 'BM_RooFit_RooMinimizer_workspace_file_NumCPUInConfigFile': ('bm_name', 'manual_time') } # Functions for getting Google Benchmark results from json files def load_result(it=-1, **kwargs): json_files = sorted(glob.glob('/Users/pbos/projects/apcocsm/roofit-dev/rootbench/cmake-build-debug/root/roofit/roofit/RoofitMultiproc_*.json')) return load_result_file(json_files[it], **kwargs) def sort_raw_benchmarks_by_named_type(raw_dict): benchmarks = defaultdict(list) benchmark_number = 0 for bm in raw_dict['benchmarks']: name = bm['name'].split('/')[0] # order of benchmarks is important for merging with less structured sources (stdout) later on # but only for real benchmarks, not the mean/median/stddev entries in the json file if bm['name'].split('_')[-1] not in ('mean', 'median', 'stddev'): bm['benchmark_number'] = benchmark_number benchmark_number += 1 benchmarks[name].append(bm) return benchmarks def add_ideal_timings(df, group_ideal_by=None, time_col='real_time', return_ideal=False, ideal_stat='min'): if group_ideal_by is not None: min_single_core = df[df['NumCPU'] == 1].groupby(group_ideal_by)[time_col].agg(ideal_stat) df_ideal = min_single_core.to_frame(time_col) df_ideal.reset_index(level=0, inplace=True) else: min_single_core = df[df['NumCPU'] == 1][time_col].agg(ideal_stat) df_ideal = pd.DataFrame({time_col: [min_single_core]}) numCPU = np.unique(df['NumCPU']) numCPU.sort() df_numCPU = pd.Series(numCPU, name='NumCPU').to_frame() # necessary for doing a cross merge (cartesian product): df_numCPU['key'] = 1 df_ideal['key'] = 1 df_ideal = df_ideal.merge(df_numCPU, on='key', how='outer').drop('key', axis=1) df_ideal[time_col] /= df_ideal['NumCPU'] df_ideal['real or ideal'] = "ideal" df = pd.concat([df, df_ideal], sort=False) if return_ideal: return df_ideal else: return df def df_from_raw_named_bmlist(bmlist, name, add_ideal, group_ideal_by=None): df = pd.DataFrame(bmlist) df_names = pd.DataFrame(df.name.str.slice(start=len("BM_RooFit_")).str.split('/').values.tolist(), columns=columns[name]) for c in columns[name][1:-1]: df_names[c] = pd.to_numeric(df_names[c]) df = df.join(df_names) # Drop mean, median and std results, only keep normal timings (we do stats ourselves): df = df[df['manual_time'] == 'manual_time'] df = df.drop(['name', 'manual_time', 'cpu_time', 'iterations', 'time_unit'], axis=1) # for single core runs, add NumCPU column: if 'NumCPU' not in df.columns: df['NumCPU'] = 1 if add_ideal: print("Not plotting ideal, since this was only a single core run") add_ideal = False df["real or ideal"] = "real" if add_ideal: df = add_ideal_timings(df, group_ideal_by) df = df.astype(dtype={'benchmark_number': 'Int64'}) return df def hue_from_name(name): if name == 'BM_RooFit_BinnedMultiProcGradient': hue = 'bins' elif name == 'BM_RooFit_NDUnbinnedGaussianMultiProcessGradMinimizer': hue = 'dims' else: hue = None return hue def plot_result_dfs(dfs, show_dfs=False, figscale=6, match_y_axes=False): fig, ax = egp.plot.subplots(len(dfs), wrap=3, figsize=(len(dfs) * 1.1 * figscale, figscale), squeeze=False) ax = ax.flatten() for ix, (name, df) in enumerate(dfs.items()): if show_dfs: display(df) ax[ix].set_title(name) sns.lineplot(data=df, x='NumCPU', y='real_time', hue=hue_from_name(name), style="real or ideal", markers=True, err_style="bars", legend='full', ax=ax[ix]) if match_y_axes: ymin, ymax = ax[0].get_ylim() for axi in ax: ymin = min(ymin, axi.get_ylim()[0]) ymax = max(ymax, axi.get_ylim()[1]) for axi in ax: axi.set_ylim((ymin, ymax)) def load_result_file(fn, show_dfs=False, figscale=6, plot_ideal=True, match_y_axes=False, plot_results=True): dfs = {} with open(fn) as fh: raw = json.load(fh) print(raw['context']) benchmarks = sort_raw_benchmarks_by_named_type(raw) for ix, (name, bmlist) in enumerate(benchmarks.items()): dfs[name] = df_from_raw_named_bmlist(bmlist, name, plot_ideal, hue_from_name(name)) if plot_results: plot_result_dfs(dfs, show_dfs=show_dfs, figscale=figscale, match_y_axes=match_y_axes) return dfs # Functions for extracting more finegrained info from stdout prints def extract_split_timing_info(fn): """ Group lines by benchmark iteration, starting from migrad until after the forks have been terminated. """ with open(fn, 'r') as fh: lines = fh.read().splitlines() bm_iterations = [] start_indices = [] end_indices = [] for ix, line in enumerate(lines): if 'start migrad' in line: if lines[ix - 1] == 'start migrad': # sometimes 'start migrad' appears twice start_indices.pop() start_indices.append(ix) elif line[:11] == 'terminate: ': end_indices.append(ix) if len(start_indices) != len(end_indices): raise Exception("Number of start and end indices unequal!") for ix in range(len(start_indices)): bm_iterations.append(lines[start_indices[ix] + 1:end_indices[ix] + 1]) return bm_iterations def group_timing_lines(bm_iteration_lines): """ Group lines (from one benchmark iteration) by gradient call, specifying: - Update time - Gradient work time - For all partial derivatives a sublist of all lines Finally, the terminate time for the entire bm_iteration is also returned (last line in the list). """ gradient_calls = [] start_indices = [] end_indices = [] for ix, line in enumerate(bm_iteration_lines[:-1]): # -1: leave out terminate line if line[:9] == 'worker_id': if bm_iteration_lines[ix - 1][:9] != 'worker_id': # only use the first of these start_indices.append(ix) elif line[:12] == 'update_state': end_indices.append(ix) for ix in range(len(start_indices)): gradient_calls.append({ 'gradient_total': bm_iteration_lines[end_indices[ix]], 'partial_derivatives': bm_iteration_lines[start_indices[ix]:end_indices[ix]] }) try: terminate_line = bm_iteration_lines[-1] except IndexError: terminate_line = None return gradient_calls, terminate_line def build_df_split_timing_run(timing_grouped_lines_list, terminate_line): data = {'time [s]': [], 'timing_type': [], 'worker_id': [], 'task': []} for gradient_call_timings in timing_grouped_lines_list: words = gradient_call_timings['gradient_total'].split() data['time [s]'].append(float(words[1][:-2])) data['timing_type'].append('update state') data['worker_id'].append(None) data['task'].append(None) data['time [s]'].append(float(words[4][:-1])) data['timing_type'].append('gradient work') data['worker_id'].append(None) data['task'].append(None) for partial_derivative_line in gradient_call_timings['partial_derivatives']: words = partial_derivative_line.split() data['worker_id'].append(words[1][:-1]) data['task'].append(words[3][:-1]) data['time [s]'].append(float(words[7][:-1])) data['timing_type'].append('partial derivative') words = terminate_line.split() data['time [s]'].append(float(words[1][:-1])) data['timing_type'].append('terminate') data['worker_id'].append(None) data['task'].append(None) return pd.DataFrame(data) def build_dflist_split_timing_info(fn): bm_iterations = extract_split_timing_info(fn) dflist = [] for bm in bm_iterations: grouped_lines, terminate_line = group_timing_lines(bm) if terminate_line is not None: dflist.append(build_df_split_timing_run(grouped_lines, terminate_line)) return dflist def build_comb_df_split_timing_info(fn): dflist = build_dflist_split_timing_info(fn) ix = 0 for df in dflist: df_pardiff = df[df["timing_type"] == "partial derivative"] N_tasks = len(df_pardiff["task"].unique()) N_gradients = len(df_pardiff) // N_tasks gradient_indices = np.hstack(i * np.ones(N_tasks, dtype='int') for i in range(N_gradients)) df["gradient number"] = pd.Series(dtype='Int64') df.loc[df["timing_type"] == "partial derivative", "gradient number"] = gradient_indices df["benchmark_number"] = ix ix += 1 return pd.concat(dflist) def combine_split_total_timings(df_total_timings, df_split_timings, calculate_rest=True, exclude_from_rest=[], add_ideal=[]): df_meta = df_total_timings.drop(['real_time', 'real or ideal'], axis=1).dropna().set_index('benchmark_number', drop=True) df_all_timings = df_total_timings.rename(columns={'real_time': 'time [s]'}) df_all_timings['time [s]'] /= 1000 # convert to seconds df_all_timings['timing_type'] = 'total' df_split_sum = {} for name, df in df_split_timings.items(): df_split_sum[name] = df.groupby('benchmark_number').sum().join(df_meta, on='benchmark_number').reset_index() df_split_sum[name]['real or ideal'] = 'real' if name in add_ideal: df_split_sum[name] = add_ideal_timings(df_split_sum[name], time_col='time [s]') df_split_sum[name]['timing_type'] = name # note: sort sorts the *columns* if they are not aligned, nothing happens with the column data itself df_all_timings = pd.concat([df_all_timings, ] + list(df_split_sum.values()), sort=True) if calculate_rest: rest_time = df_all_timings[(df_all_timings['timing_type'] == 'total') & (df_all_timings['real or ideal'] == 'real')].set_index('benchmark_number')['time [s]'] for name, df in df_split_sum.items(): if name not in exclude_from_rest: rest_time = rest_time - df.set_index('benchmark_number')['time [s]'] df_rest_time = rest_time.to_frame().join(df_meta, on='benchmark_number').reset_index() df_rest_time['timing_type'] = 'rest' df_rest_time['real or ideal'] = 'real' # note: sort sorts the *columns* if they are not aligned, nothing happens with the column data itself df_all_timings = df_all_timings.append(df_rest_time, sort=True) return df_all_timings def combine_detailed_with_gbench_timings_by_name(df_gbench, df_detailed, timing_types={}, **kwargs): detailed_selection = {} if len(timing_types) == 0: raise Exception("Please give some timing_types, otherwise this function is pointless.") for name, timing_type in timing_types.items(): detailed_selection[name] = df_detailed[df_detailed['timing_type'] == timing_type].drop('timing_type', axis=1) return combine_split_total_timings(df_gbench, detailed_selection, **kwargs) # Functions for plotting detailed partial derivatives timing statistics def plot_partial_derivative_per_worker(data, figsize=(16, 10)): N_tasks = len(data['task'].unique()) colors = plt.cm.get_cmap('prism', N_tasks) fig, ax = plt.subplots(2, 4, sharey=True, figsize=figsize) ax = ax.flatten() for ix_n, n in enumerate(data['NumCPU'].unique()): data_n = data[data['NumCPU'] == n] for w in data_n['worker_id'].unique(): data_n_w = data_n[data_n['worker_id'] == w] prev_time = 0 for task in data_n_w['task'].unique(): time = data_n_w[data_n_w['task'] == task]['time [s]'] if any(time): ax[ix_n].bar(w, time, bottom=prev_time, color=colors(int(task)), linewidth=0.3, edgecolor=(0.2, 0.2, 0.2) ) prev_time += float(time) def plot_partial_derivative_per_benchmark(data, figsize=(20, 10)): N_tasks = len(data['task'].unique()) colors = plt.cm.get_cmap('prism', N_tasks) fig, ax = plt.subplots(2, 5, sharey=True, figsize=figsize) ax = ax.flatten() for ix_b, b in enumerate(data['benchmark_number'].unique()): data_b = data[data['benchmark_number'] == b] for w in data_b['worker_id'].unique(): data_b_w = data_b[data_b['worker_id'] == w] prev_time = 0 for task in data_b_w['task'].unique(): time = data_b_w[data_b_w['task'] == task]['time [s]'] if any(time): ax[ix_b].bar(w, time, bottom=prev_time, color=colors(int(task)), linewidth=0.3, edgecolor=(0.2, 0.2, 0.2) ) prev_time += float(time) def plot_partial_derivative_per_gradient(data, figsize=(20, 1.61 * 20), wrap=8): N_tasks = len(data['task'].unique()) colors = plt.cm.get_cmap('jet', N_tasks) fig, ax = egp.plot.subplots(len(data['gradient number'].unique()), wrap=wrap, sharey=True, figsize=figsize) try: ax = ax.flatten() except AttributeError: ax = [ax] for b in data['benchmark_number'].unique(): data_b = data[data['benchmark_number'] == b] for ix_g, g in enumerate(data_b['gradient number'].unique()): data_b_g = data_b[data_b['gradient number'] == g] for w in data_b_g['worker_id'].unique(): data_b_g_w = data_b_g[data_b_g['worker_id'] == w] prev_time = 0 for task in data_b_g_w['task'].unique(): time = data_b_g_w[data_b_g_w['task'] == task]['time [s]'] if any(time): ax[ix_g].bar(w, time, bottom=prev_time, color=colors(int(task)), linewidth=0.3, edgecolor=(0.2, 0.2, 0.2) ) prev_time += float(time)
apache-2.0
reuk/waveguide
bin/siltanen2013/analysis.py
2
1872
#!/usr/local/bin/python import argparse import numpy as np import pysndfile import matplotlib import matplotlib.pyplot as plt import itertools import os.path SPEED_OF_SOUND = 340 def modal_analysis(fnames, max_frequency, room_dim=None): plt.figure() for fname in fnames: sndfile = pysndfile.PySndfile(fname, 'r') if sndfile.channels() != 1: raise RuntimeError('please only load mono files') n = sndfile.frames() sr = sndfile.samplerate() samples = sndfile.read_frames() fft = np.abs(np.fft.rfft(samples)) freqs = np.fft.rfftfreq(n, d=1. / sr) mask = freqs < max_frequency fft = 20 * np.log10(fft[mask]) freqs = freqs[mask] plt.plot(freqs, fft, label=os.path.basename(fname)) if room_dim is not None: ranges = [[(x / i) ** 2 for x in range(10)] for i in room_dim] all_frequencies = [(SPEED_OF_SOUND / 2) * np.sqrt(a + b + c) for a, b, c in itertools.product(*ranges)] filtered_frequencies = [i for i in all_frequencies if i < max_frequency] for f in filtered_frequencies: plt.axvline(f) plt.legend() plt.show() def main(): parser = argparse.ArgumentParser( description='do modal analysis on some set of files') parser.add_argument( 'fnames', type=str, nargs='+', help='a list of files to analyse') parser.add_argument( '--room_dim', type=float, nargs=3, help='the dimensions of the room w/h/l') parser.add_argument( '--max_frequency', type=float, nargs=1, default=150, help='analyse up to this frequency') args = parser.parse_args() modal_analysis(args.fnames, args.max_frequency, args.room_dim) if __name__ == '__main__': main()
gpl-2.0
JackKelly/neuralnilm_prototype
scripts/e177.py
2
6394
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from neuralnilm.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for BLSTM e110 * Back to Uniform(5) for BLSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single BLSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd BLSTM layer e142 diff AND power e144 diff and power and max power is 5900 e145 Uniform(25) for first layer e146 gradient clip and use peepholes e147 * try again with new code e148 * learning rate 0.1 e150 * Same as e149 but without peepholes and using BLSTM not BBLSTM e151 * Max pooling 171 lower learning rate 172 even lower learning rate 173 slightly higher learning rate! 175 same as 174 but with skip prob = 0, and LSTM not BLSTM, and only 4000 epochs 176 new cost function 177 another new cost func (this one avoids NaNs) skip prob 0.7 10x higher learning rate """ # def scaled_cost(x, t): # raw_cost = (x - t) ** 2 # energy_per_seq = t.sum(axis=1) # energy_per_batch = energy_per_seq.sum(axis=1) # energy_per_batch = energy_per_batch.reshape((-1, 1)) # normaliser = energy_per_seq / energy_per_batch # cost = raw_cost.mean(axis=1) * (1 - normaliser) # return cost.mean() from theano.ifelse import ifelse import theano.tensor as T THRESHOLD = 0 def scaled_cost(x, t): sq_error = (x - t) ** 2 above_thresh_sq_error = sq_error[(t > THRESHOLD).nonzero()] below_thresh_sq_error = sq_error[(t <= THRESHOLD).nonzero()] above_thresh_mean = above_thresh_sq_error.mean() below_thresh_mean = below_thresh_sq_error.mean() above_thresh_mean = ifelse(T.isnan(above_thresh_mean), 0.0, above_thresh_mean) below_thresh_mean = ifelse(T.isnan(below_thresh_mean), 0.0, below_thresh_mean) return (above_thresh_mean + below_thresh_mean) / 2.0 def exp_a(name): # LR of 0.1 didn't NaN but didn't learn well. source = RealApplianceSource( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=None,#[200, 100, 200, 2500, 2400], on_power_thresholds=[5, 5, 5, 5, 5], max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1500, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, n_seq_per_batch=25, include_diff=True ) net = Net( experiment_name=name, source=source, save_plot_interval=250, loss_function=scaled_cost, updates=partial(nesterov_momentum, learning_rate=.0001, clip_range=(-1, 1)), layers_config=[ { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(25), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': LSTMLayer, 'num_units': 50, 'W_in_to_cell': Uniform(1), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Uniform(25) } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: raise print("EXCEPTION:", exception) import ipdb; ipdb.set_trace() if __name__ == "__main__": main()
mit
fabianp/scikit-learn
examples/ensemble/plot_ensemble_oob.py
259
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <[email protected]> # Gilles Louppe <[email protected]> # Andreas Mueller <[email protected]> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
wkfwkf/statsmodels
statsmodels/graphics/tests/test_correlation.py
31
1112
import numpy as np from numpy.testing import dec from statsmodels.graphics.correlation import plot_corr, plot_corr_grid from statsmodels.datasets import randhie try: import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False @dec.skipif(not have_matplotlib) def test_plot_corr(): hie_data = randhie.load_pandas() corr_matrix = np.corrcoef(hie_data.data.values.T) fig = plot_corr(corr_matrix, xnames=hie_data.names) plt.close(fig) fig = plot_corr(corr_matrix, xnames=[], ynames=hie_data.names) plt.close(fig) fig = plot_corr(corr_matrix, normcolor=True, title='', cmap='jet') plt.close(fig) @dec.skipif(not have_matplotlib) def test_plot_corr_grid(): hie_data = randhie.load_pandas() corr_matrix = np.corrcoef(hie_data.data.values.T) fig = plot_corr_grid([corr_matrix] * 2, xnames=hie_data.names) plt.close(fig) fig = plot_corr_grid([corr_matrix] * 5, xnames=[], ynames=hie_data.names) plt.close(fig) fig = plot_corr_grid([corr_matrix] * 3, normcolor=True, titles='', cmap='jet') plt.close(fig)
bsd-3-clause
JavierGarciaD/AlgoRepo
EChanBook2/example_2_6.py
1
2855
import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as dates from functions import * """ This is an implementation of the example 2.6 from Ernest Chan's book ALGORITHMIC TRADING - Winning Strategies and Their Rationale """ if __name__ == "__main__": #import data from CSV file root_path = '/Users/Javi/Documents/MarketData/' # the paths # MAC: '/Users/Javi/Documents/MarketData/' # WIN: 'C:/Users/javgar119/Documents/Python/Data' filename_x = 'EWC_EWA_daily.csv' #filename_y = 'ECOPETROL_ADR.csv' full_path_x = root_path + filename_x #full_path_y = root_path + filename_y data = pd.read_csv(full_path_x, index_col='Date') #create a series with the data range asked #start_date = '2009-10-02' #end_date = '2011-12-30' #data = subset_dataframe(data, start_date, end_date) y = data['EWC'] x = data['EWA'] y_ticket = 'EWC' x_ticket = 'EWA' # z = data['IGE'] k = polyfit(x,y,1) xx = linspace(min(x),max(x),1000) yy = polyval(k,xx) lookback = 100 modelo2 = pd.ols(y=y, x=x, window_type='rolling', window=lookback) data = data[lookback-1:] betas = modelo2.beta #calculate the number of units for the strategy numunits = subtract(data[x_ticket], multiply(betas['x'], data[y_ticket])) model = sm.OLS(y, x) results = model.fit() #print(results.params) # cointegration test resultsCOIN = cointegration_test(x,y) print('****** COINTEGRATION TEST RESULTS FOR {} & [] *****'.format(x_ticket, y_ticket)) print('cointegration t-stat: {}'.format(round(resultsCOIN[0],4))) print('p-value: {}'.format(round(round(resultsCOIN[1],4)))) print('usedlag: {}'.format(round(round(resultsCOIN[2],4)))) print('nobs: {}'.format(round(resultsCOIN[3],4))) print('critical values: {}'.format(resultsCOIN[4])) #************************************************* # plotting the chart #************************************************* #plot of numunits fig = plt.figure() ax = fig.add_subplot(311) ax.plot(data) ax.set_title(x_ticket + ' & ' + y_ticket) ax.set_xlabel('Data points') ax.set_ylabel('Price') #ax.text(1000, -12, 'Seems like mean reverting') #plot of datapoints ax = fig.add_subplot(312) ax.plot(numunits) ax.set_title(x_ticket + ' - (HedgeRatio * ' + y_ticket + ')') ax.set_xlabel(x_ticket) ax.set_ylabel(y_ticket) #plot of datapoints ax = fig.add_subplot(313) ax.plot(x,y,'o') ax.plot(xx,yy,'r') ax.set_title(x_ticket + ' vs. ' + y_ticket) ax.set_xlabel(x_ticket) ax.set_ylabel(y_ticket) plt.show()
apache-2.0
MrCodeYu/spark
python/pyspark/sql/dataframe.py
3
58143
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import warnings import random if sys.version >= '3': basestring = unicode = str long = int from functools import reduce else: from itertools import imap as map from pyspark import copy_func, since from pyspark.rdd import RDD, _load_from_socket, ignore_unicode_prefix from pyspark.serializers import BatchedSerializer, PickleSerializer, UTF8Deserializer from pyspark.storagelevel import StorageLevel from pyspark.traceback_utils import SCCallSiteSync from pyspark.sql.types import _parse_datatype_json_string from pyspark.sql.column import Column, _to_seq, _to_list, _to_java_column from pyspark.sql.readwriter import DataFrameWriter from pyspark.sql.streaming import DataStreamWriter from pyspark.sql.types import * __all__ = ["DataFrame", "DataFrameNaFunctions", "DataFrameStatFunctions"] class DataFrame(object): """A distributed collection of data grouped into named columns. A :class:`DataFrame` is equivalent to a relational table in Spark SQL, and can be created using various functions in :class:`SQLContext`:: people = sqlContext.read.parquet("...") Once created, it can be manipulated using the various domain-specific-language (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. To select a column from the data frame, use the apply method:: ageCol = people.age A more concrete example:: # To create DataFrame using SQLContext people = sqlContext.read.parquet("...") department = sqlContext.read.parquet("...") people.filter(people.age > 30).join(department, people.deptId == department.id) \\ .groupBy(department.name, "gender").agg({"salary": "avg", "age": "max"}) .. versionadded:: 1.3 """ def __init__(self, jdf, sql_ctx): self._jdf = jdf self.sql_ctx = sql_ctx self._sc = sql_ctx and sql_ctx._sc self.is_cached = False self._schema = None # initialized lazily self._lazy_rdd = None @property @since(1.3) def rdd(self): """Returns the content as an :class:`pyspark.RDD` of :class:`Row`. """ if self._lazy_rdd is None: jrdd = self._jdf.javaToPython() self._lazy_rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) return self._lazy_rdd @property @since("1.3.1") def na(self): """Returns a :class:`DataFrameNaFunctions` for handling missing values. """ return DataFrameNaFunctions(self) @property @since(1.4) def stat(self): """Returns a :class:`DataFrameStatFunctions` for statistic functions. """ return DataFrameStatFunctions(self) @ignore_unicode_prefix @since(1.3) def toJSON(self, use_unicode=True): """Converts a :class:`DataFrame` into a :class:`RDD` of string. Each row is turned into a JSON document as one element in the returned RDD. >>> df.toJSON().first() u'{"age":2,"name":"Alice"}' """ rdd = self._jdf.toJSON() return RDD(rdd.toJavaRDD(), self._sc, UTF8Deserializer(use_unicode)) @since(1.3) def registerTempTable(self, name): """Registers this RDD as a temporary table using the given name. The lifetime of this temporary table is tied to the :class:`SQLContext` that was used to create this :class:`DataFrame`. >>> df.registerTempTable("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") .. note:: Deprecated in 2.0, use createOrReplaceTempView instead. """ self._jdf.createOrReplaceTempView(name) @since(2.0) def createTempView(self, name): """Creates a temporary view with this DataFrame. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. throws :class:`TempTableAlreadyExistsException`, if the view name already exists in the catalog. >>> df.createTempView("people") >>> df2 = spark.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True >>> df.createTempView("people") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AnalysisException: u"Temporary table 'people' already exists;" >>> spark.catalog.dropTempView("people") """ self._jdf.createTempView(name) @since(2.0) def createOrReplaceTempView(self, name): """Creates or replaces a temporary view with this DataFrame. The lifetime of this temporary table is tied to the :class:`SparkSession` that was used to create this :class:`DataFrame`. >>> df.createOrReplaceTempView("people") >>> df2 = df.filter(df.age > 3) >>> df2.createOrReplaceTempView("people") >>> df3 = spark.sql("select * from people") >>> sorted(df3.collect()) == sorted(df2.collect()) True >>> spark.catalog.dropTempView("people") """ self._jdf.createOrReplaceTempView(name) @property @since(1.4) def write(self): """ Interface for saving the content of the non-streaming :class:`DataFrame` out into external storage. :return: :class:`DataFrameWriter` """ return DataFrameWriter(self) @property @since(2.0) def writeStream(self): """ Interface for saving the content of the streaming :class:`DataFrame` out into external storage. .. note:: Experimental. :return: :class:`DataStreamWriter` """ return DataStreamWriter(self) @property @since(1.3) def schema(self): """Returns the schema of this :class:`DataFrame` as a :class:`pyspark.sql.types.StructType`. >>> df.schema StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) """ if self._schema is None: try: self._schema = _parse_datatype_json_string(self._jdf.schema().json()) except AttributeError as e: raise Exception( "Unable to parse datatype from schema. %s" % e) return self._schema @since(1.3) def printSchema(self): """Prints out the schema in the tree format. >>> df.printSchema() root |-- age: integer (nullable = true) |-- name: string (nullable = true) <BLANKLINE> """ print(self._jdf.schema().treeString()) @since(1.3) def explain(self, extended=False): """Prints the (logical and physical) plans to the console for debugging purpose. :param extended: boolean, default ``False``. If ``False``, prints only the physical plan. >>> df.explain() == Physical Plan == Scan ExistingRDD[age#0,name#1] >>> df.explain(True) == Parsed Logical Plan == ... == Analyzed Logical Plan == ... == Optimized Logical Plan == ... == Physical Plan == ... """ if extended: print(self._jdf.queryExecution().toString()) else: print(self._jdf.queryExecution().simpleString()) @since(1.3) def isLocal(self): """Returns ``True`` if the :func:`collect` and :func:`take` methods can be run locally (without any Spark executors). """ return self._jdf.isLocal() @property @since(2.0) def isStreaming(self): """Returns true if this :class:`Dataset` contains one or more sources that continuously return data as it arrives. A :class:`Dataset` that reads data from a streaming source must be executed as a :class:`StreamingQuery` using the :func:`start` method in :class:`DataStreamWriter`. Methods that return a single answer, (e.g., :func:`count` or :func:`collect`) will throw an :class:`AnalysisException` when there is a streaming source present. .. note:: Experimental """ return self._jdf.isStreaming() @since(1.3) def show(self, n=20, truncate=True): """Prints the first ``n`` rows to the console. :param n: Number of rows to show. :param truncate: Whether truncate long strings and align cells right. >>> df DataFrame[age: int, name: string] >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ print(self._jdf.showString(n, truncate)) def __repr__(self): return "DataFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) @since(1.3) def count(self): """Returns the number of rows in this :class:`DataFrame`. >>> df.count() 2 """ return int(self._jdf.count()) @ignore_unicode_prefix @since(1.3) def collect(self): """Returns all the records as a list of :class:`Row`. >>> df.collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: port = self._jdf.collectToPython() return list(_load_from_socket(port, BatchedSerializer(PickleSerializer()))) @ignore_unicode_prefix @since(2.0) def toLocalIterator(self): """ Returns an iterator that contains all of the rows in this :class:`DataFrame`. The iterator will consume as much memory as the largest partition in this DataFrame. >>> list(df.toLocalIterator()) [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: port = self._jdf.toPythonIterator() return _load_from_socket(port, BatchedSerializer(PickleSerializer())) @ignore_unicode_prefix @since(1.3) def limit(self, num): """Limits the result count to the number specified. >>> df.limit(1).collect() [Row(age=2, name=u'Alice')] >>> df.limit(0).collect() [] """ jdf = self._jdf.limit(num) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def take(self, num): """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. >>> df.take(2) [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ return self.limit(num).collect() @since(1.3) def foreach(self, f): """Applies the ``f`` function to all :class:`Row` of this :class:`DataFrame`. This is a shorthand for ``df.rdd.foreach()``. >>> def f(person): ... print(person.name) >>> df.foreach(f) """ self.rdd.foreach(f) @since(1.3) def foreachPartition(self, f): """Applies the ``f`` function to each partition of this :class:`DataFrame`. This a shorthand for ``df.rdd.foreachPartition()``. >>> def f(people): ... for person in people: ... print(person.name) >>> df.foreachPartition(f) """ self.rdd.foreachPartition(f) @since(1.3) def cache(self): """ Persists with the default storage level (C{MEMORY_ONLY}). """ self.is_cached = True self._jdf.cache() return self @since(1.3) def persist(self, storageLevel=StorageLevel.MEMORY_ONLY): """Sets the storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}). """ self.is_cached = True javaStorageLevel = self._sc._getJavaStorageLevel(storageLevel) self._jdf.persist(javaStorageLevel) return self @since(1.3) def unpersist(self, blocking=False): """Marks the :class:`DataFrame` as non-persistent, and remove all blocks for it from memory and disk. .. note:: `blocking` default has changed to False to match Scala in 2.0. """ self.is_cached = False self._jdf.unpersist(blocking) return self @since(1.4) def coalesce(self, numPartitions): """ Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions. Similar to coalesce defined on an :class:`RDD`, this operation results in a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. >>> df.coalesce(1).rdd.getNumPartitions() 1 """ return DataFrame(self._jdf.coalesce(numPartitions), self.sql_ctx) @since(1.3) def repartition(self, numPartitions, *cols): """ Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The resulting DataFrame is hash partitioned. ``numPartitions`` can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. .. versionchanged:: 1.6 Added optional arguments to specify the partitioning columns. Also made numPartitions optional if partitioning columns are specified. >>> df.repartition(10).rdd.getNumPartitions() 10 >>> data = df.union(df).repartition("age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data = data.repartition(7, "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ >>> data.rdd.getNumPartitions() 7 >>> data = data.repartition("name", "age") >>> data.show() +---+-----+ |age| name| +---+-----+ | 5| Bob| | 5| Bob| | 2|Alice| | 2|Alice| +---+-----+ """ if isinstance(numPartitions, int): if len(cols) == 0: return DataFrame(self._jdf.repartition(numPartitions), self.sql_ctx) else: return DataFrame( self._jdf.repartition(numPartitions, self._jcols(*cols)), self.sql_ctx) elif isinstance(numPartitions, (basestring, Column)): cols = (numPartitions, ) + cols return DataFrame(self._jdf.repartition(self._jcols(*cols)), self.sql_ctx) else: raise TypeError("numPartitions should be an int or Column") @since(1.3) def distinct(self): """Returns a new :class:`DataFrame` containing the distinct rows in this :class:`DataFrame`. >>> df.distinct().count() 2 """ return DataFrame(self._jdf.distinct(), self.sql_ctx) @since(1.3) def sample(self, withReplacement, fraction, seed=None): """Returns a sampled subset of this :class:`DataFrame`. >>> df.sample(False, 0.5, 42).count() 2 """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd = self._jdf.sample(withReplacement, fraction, long(seed)) return DataFrame(rdd, self.sql_ctx) @since(1.5) def sampleBy(self, col, fractions, seed=None): """ Returns a stratified sample without replacement based on the fraction given on each stratum. :param col: column that defines strata :param fractions: sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero. :param seed: random seed :return: a new DataFrame that represents the stratified sample >>> from pyspark.sql.functions import col >>> dataset = sqlContext.range(0, 100).select((col("id") % 3).alias("key")) >>> sampled = dataset.sampleBy("key", fractions={0: 0.1, 1: 0.2}, seed=0) >>> sampled.groupBy("key").count().orderBy("key").show() +---+-----+ |key|count| +---+-----+ | 0| 5| | 1| 9| +---+-----+ """ if not isinstance(col, str): raise ValueError("col must be a string, but got %r" % type(col)) if not isinstance(fractions, dict): raise ValueError("fractions must be a dict but got %r" % type(fractions)) for k, v in fractions.items(): if not isinstance(k, (float, int, long, basestring)): raise ValueError("key must be float, int, long, or string, but got %r" % type(k)) fractions[k] = float(v) seed = seed if seed is not None else random.randint(0, sys.maxsize) return DataFrame(self._jdf.stat().sampleBy(col, self._jmap(fractions), seed), self.sql_ctx) @since(1.4) def randomSplit(self, weights, seed=None): """Randomly splits this :class:`DataFrame` with the provided weights. :param weights: list of doubles as weights with which to split the DataFrame. Weights will be normalized if they don't sum up to 1.0. :param seed: The seed for sampling. >>> splits = df4.randomSplit([1.0, 2.0], 24) >>> splits[0].count() 1 >>> splits[1].count() 3 """ for w in weights: if w < 0.0: raise ValueError("Weights must be positive. Found weight value: %s" % w) seed = seed if seed is not None else random.randint(0, sys.maxsize) rdd_array = self._jdf.randomSplit(_to_list(self.sql_ctx._sc, weights), long(seed)) return [DataFrame(rdd, self.sql_ctx) for rdd in rdd_array] @property @since(1.3) def dtypes(self): """Returns all column names and their data types as a list. >>> df.dtypes [('age', 'int'), ('name', 'string')] """ return [(str(f.name), f.dataType.simpleString()) for f in self.schema.fields] @property @since(1.3) def columns(self): """Returns all column names as a list. >>> df.columns ['age', 'name'] """ return [f.name for f in self.schema.fields] @ignore_unicode_prefix @since(1.3) def alias(self, alias): """Returns a new :class:`DataFrame` with an alias set. >>> from pyspark.sql.functions import * >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") >>> joined_df = df_as1.join(df_as2, col("df_as1.name") == col("df_as2.name"), 'inner') >>> joined_df.select("df_as1.name", "df_as2.name", "df_as2.age").collect() [Row(name=u'Bob', name=u'Bob', age=5), Row(name=u'Alice', name=u'Alice', age=2)] """ assert isinstance(alias, basestring), "alias should be a string" return DataFrame(getattr(self._jdf, "as")(alias), self.sql_ctx) @ignore_unicode_prefix @since(1.3) def join(self, other, on=None, how=None): """Joins with another :class:`DataFrame`, using the given join expression. :param other: Right side of the join :param on: a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If `on` is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. :param how: str, default 'inner'. One of `inner`, `outer`, `left_outer`, `right_outer`, `leftsemi`. The following performs a full outer join between ``df1`` and ``df2``. >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> df.join(df2, 'name', 'outer').select('name', 'height').collect() [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] >>> cond = [df.name == df3.name, df.age == df3.age] >>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.join(df2, 'name').select(df.name, df2.height).collect() [Row(name=u'Bob', height=85)] >>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect() [Row(name=u'Bob', age=5)] """ if on is not None and not isinstance(on, list): on = [on] if on is None or len(on) == 0: jdf = self._jdf.join(other._jdf) elif isinstance(on[0], basestring): if how is None: jdf = self._jdf.join(other._jdf, self._jseq(on), "inner") else: assert isinstance(how, basestring), "how should be basestring" jdf = self._jdf.join(other._jdf, self._jseq(on), how) else: assert isinstance(on[0], Column), "on should be Column or list of Column" if len(on) > 1: on = reduce(lambda x, y: x.__and__(y), on) else: on = on[0] if how is None: jdf = self._jdf.join(other._jdf, on._jc, "inner") else: assert isinstance(how, basestring), "how should be basestring" jdf = self._jdf.join(other._jdf, on._jc, how) return DataFrame(jdf, self.sql_ctx) @since(1.6) def sortWithinPartitions(self, *cols, **kwargs): """Returns a new :class:`DataFrame` with each partition sorted by the specified column(s). :param cols: list of :class:`Column` or column names to sort by. :param ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. >>> df.sortWithinPartitions("age", ascending=False).show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ """ jdf = self._jdf.sortWithinPartitions(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def sort(self, *cols, **kwargs): """Returns a new :class:`DataFrame` sorted by the specified column(s). :param cols: list of :class:`Column` or column names to sort by. :param ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the `cols`. >>> df.sort(df.age.desc()).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> df.sort("age", ascending=False).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> df.orderBy(df.age.desc()).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> from pyspark.sql.functions import * >>> df.sort(asc("age")).collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df.orderBy(desc("age"), "name").collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] >>> df.orderBy(["age", "name"], ascending=[0, 1]).collect() [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] """ jdf = self._jdf.sort(self._sort_cols(cols, kwargs)) return DataFrame(jdf, self.sql_ctx) orderBy = sort def _jseq(self, cols, converter=None): """Return a JVM Seq of Columns from a list of Column or names""" return _to_seq(self.sql_ctx._sc, cols, converter) def _jmap(self, jm): """Return a JVM Scala Map from a dict""" return _to_scala_map(self.sql_ctx._sc, jm) def _jcols(self, *cols): """Return a JVM Seq of Columns from a list of Column or column names If `cols` has only one list in it, cols[0] will be used as the list. """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] return self._jseq(cols, _to_java_column) def _sort_cols(self, cols, kwargs): """ Return a JVM Seq of Columns that describes the sort order """ if not cols: raise ValueError("should sort by at least one column") if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jcols = [_to_java_column(c) for c in cols] ascending = kwargs.get('ascending', True) if isinstance(ascending, (bool, int)): if not ascending: jcols = [jc.desc() for jc in jcols] elif isinstance(ascending, list): jcols = [jc if asc else jc.desc() for asc, jc in zip(ascending, jcols)] else: raise TypeError("ascending can only be boolean or list, but got %s" % type(ascending)) return self._jseq(jcols) @since("1.3.1") def describe(self, *cols): """Computes statistics for numeric columns. This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical columns. .. note:: This function is meant for exploratory data analysis, as we make no \ guarantee about the backward compatibility of the schema of the resulting DataFrame. >>> df.describe().show() +-------+------------------+ |summary| age| +-------+------------------+ | count| 2| | mean| 3.5| | stddev|2.1213203435596424| | min| 2| | max| 5| +-------+------------------+ >>> df.describe(['age', 'name']).show() +-------+------------------+-----+ |summary| age| name| +-------+------------------+-----+ | count| 2| 2| | mean| 3.5| null| | stddev|2.1213203435596424| null| | min| 2|Alice| | max| 5| Bob| +-------+------------------+-----+ """ if len(cols) == 1 and isinstance(cols[0], list): cols = cols[0] jdf = self._jdf.describe(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def head(self, n=None): """Returns the first ``n`` rows. Note that this method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. :param n: int, default 1. Number of rows to return. :return: If n is greater than 1, return a list of :class:`Row`. If n is 1, return a single Row. >>> df.head() Row(age=2, name=u'Alice') >>> df.head(1) [Row(age=2, name=u'Alice')] """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n) @ignore_unicode_prefix @since(1.3) def first(self): """Returns the first row as a :class:`Row`. >>> df.first() Row(age=2, name=u'Alice') """ return self.head() @ignore_unicode_prefix @since(1.3) def __getitem__(self, item): """Returns the column as a :class:`Column`. >>> df.select(df['age']).collect() [Row(age=2), Row(age=5)] >>> df[ ["name", "age"]].collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df[ df.age > 3 ].collect() [Row(age=5, name=u'Bob')] >>> df[df[0] > 3].collect() [Row(age=5, name=u'Bob')] """ if isinstance(item, basestring): jc = self._jdf.apply(item) return Column(jc) elif isinstance(item, Column): return self.filter(item) elif isinstance(item, (list, tuple)): return self.select(*item) elif isinstance(item, int): jc = self._jdf.apply(self.columns[item]) return Column(jc) else: raise TypeError("unexpected item type: %s" % type(item)) @since(1.3) def __getattr__(self, name): """Returns the :class:`Column` denoted by ``name``. >>> df.select(df.age).collect() [Row(age=2), Row(age=5)] """ if name not in self.columns: raise AttributeError( "'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) jc = self._jdf.apply(name) return Column(jc) @ignore_unicode_prefix @since(1.3) def select(self, *cols): """Projects a set of expressions and returns a new :class:`DataFrame`. :param cols: list of column names (string) or expressions (:class:`Column`). If one of the column names is '*', that column is expanded to include all columns in the current DataFrame. >>> df.select('*').collect() [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] >>> df.select('name', 'age').collect() [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] >>> df.select(df.name, (df.age + 10).alias('age')).collect() [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)] """ jdf = self._jdf.select(self._jcols(*cols)) return DataFrame(jdf, self.sql_ctx) @since(1.3) def selectExpr(self, *expr): """Projects a set of SQL expressions and returns a new :class:`DataFrame`. This is a variant of :func:`select` that accepts SQL expressions. >>> df.selectExpr("age * 2", "abs(age)").collect() [Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)] """ if len(expr) == 1 and isinstance(expr[0], list): expr = expr[0] jdf = self._jdf.selectExpr(self._jseq(expr)) return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def filter(self, condition): """Filters rows using the given condition. :func:`where` is an alias for :func:`filter`. :param condition: a :class:`Column` of :class:`types.BooleanType` or a string of SQL expression. >>> df.filter(df.age > 3).collect() [Row(age=5, name=u'Bob')] >>> df.where(df.age == 2).collect() [Row(age=2, name=u'Alice')] >>> df.filter("age > 3").collect() [Row(age=5, name=u'Bob')] >>> df.where("age = 2").collect() [Row(age=2, name=u'Alice')] """ if isinstance(condition, basestring): jdf = self._jdf.filter(condition) elif isinstance(condition, Column): jdf = self._jdf.filter(condition._jc) else: raise TypeError("condition should be string or Column") return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix @since(1.3) def groupBy(self, *cols): """Groups the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedData` for all the available aggregate functions. :func:`groupby` is an alias for :func:`groupBy`. :param cols: list of columns to group by. Each element should be a column name (string) or an expression (:class:`Column`). >>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name=u'Alice', avg(age)=2.0), Row(name=u'Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name=u'Alice', age=2, count=1), Row(name=u'Bob', age=5, count=1)] """ jgd = self._jdf.groupBy(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self.sql_ctx) @since(1.4) def rollup(self, *cols): """ Create a multi-dimensional rollup for the current :class:`DataFrame` using the specified columns, so we can run aggregation on them. >>> df.rollup("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.rollup(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self.sql_ctx) @since(1.4) def cube(self, *cols): """ Create a multi-dimensional cube for the current :class:`DataFrame` using the specified columns, so we can run aggregation on them. >>> df.cube("name", df.age).count().orderBy("name", "age").show() +-----+----+-----+ | name| age|count| +-----+----+-----+ | null|null| 2| | null| 2| 1| | null| 5| 1| |Alice|null| 1| |Alice| 2| 1| | Bob|null| 1| | Bob| 5| 1| +-----+----+-----+ """ jgd = self._jdf.cube(self._jcols(*cols)) from pyspark.sql.group import GroupedData return GroupedData(jgd, self.sql_ctx) @since(1.3) def agg(self, *exprs): """ Aggregate on the entire :class:`DataFrame` without groups (shorthand for ``df.groupBy.agg()``). >>> df.agg({"age": "max"}).collect() [Row(max(age)=5)] >>> from pyspark.sql import functions as F >>> df.agg(F.min(df.age)).collect() [Row(min(age)=2)] """ return self.groupBy().agg(*exprs) @since(2.0) def union(self, other): """ Return a new :class:`DataFrame` containing union of rows in this frame and another frame. This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by a distinct. """ return DataFrame(self._jdf.union(other._jdf), self.sql_ctx) @since(1.3) def unionAll(self, other): """ Return a new :class:`DataFrame` containing union of rows in this frame and another frame. .. note:: Deprecated in 2.0, use union instead. """ return self.union(other) @since(1.3) def intersect(self, other): """ Return a new :class:`DataFrame` containing rows only in both this frame and another frame. This is equivalent to `INTERSECT` in SQL. """ return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) @since(1.3) def subtract(self, other): """ Return a new :class:`DataFrame` containing rows in this frame but not in another frame. This is equivalent to `EXCEPT` in SQL. """ return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) @since(1.4) def dropDuplicates(self, subset=None): """Return a new :class:`DataFrame` with duplicate rows removed, optionally only considering certain columns. :func:`drop_duplicates` is an alias for :func:`dropDuplicates`. >>> from pyspark.sql import Row >>> df = sc.parallelize([ \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=5, height=80), \\ ... Row(name='Alice', age=10, height=80)]).toDF() >>> df.dropDuplicates().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| | 10| 80|Alice| +---+------+-----+ >>> df.dropDuplicates(['name', 'height']).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 5| 80|Alice| +---+------+-----+ """ if subset is None: jdf = self._jdf.dropDuplicates() else: jdf = self._jdf.dropDuplicates(self._jseq(subset)) return DataFrame(jdf, self.sql_ctx) @since("1.3.1") def dropna(self, how='any', thresh=None, subset=None): """Returns a new :class:`DataFrame` omitting rows with null values. :func:`DataFrame.dropna` and :func:`DataFrameNaFunctions.drop` are aliases of each other. :param how: 'any' or 'all'. If 'any', drop a row if it contains any nulls. If 'all', drop a row only if all its values are null. :param thresh: int, default None If specified, drop rows that have less than `thresh` non-null values. This overwrites the `how` parameter. :param subset: optional list of column names to consider. >>> df4.na.drop().show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| +---+------+-----+ """ if how is not None and how not in ['any', 'all']: raise ValueError("how ('" + how + "') should be 'any' or 'all'") if subset is None: subset = self.columns elif isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") if thresh is None: thresh = len(subset) if how == 'any' else 1 return DataFrame(self._jdf.na().drop(thresh, self._jseq(subset)), self.sql_ctx) @since("1.3.1") def fillna(self, value, subset=None): """Replace null values, alias for ``na.fill()``. :func:`DataFrame.fillna` and :func:`DataFrameNaFunctions.fill` are aliases of each other. :param value: int, long, float, string, or dict. Value to replace null values with. If the value is a dict, then `subset` is ignored and `value` must be a mapping from column name (string) to replacement value. The replacement value must be an int, long, float, or string. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.fill(50).show() +---+------+-----+ |age|height| name| +---+------+-----+ | 10| 80|Alice| | 5| 50| Bob| | 50| 50| Tom| | 50| 50| null| +---+------+-----+ >>> df4.na.fill({'age': 50, 'name': 'unknown'}).show() +---+------+-------+ |age|height| name| +---+------+-------+ | 10| 80| Alice| | 5| null| Bob| | 50| null| Tom| | 50| null|unknown| +---+------+-------+ """ if not isinstance(value, (float, int, long, basestring, dict)): raise ValueError("value should be a float, int, long, string, or dict") if isinstance(value, (int, long)): value = float(value) if isinstance(value, dict): return DataFrame(self._jdf.na().fill(value), self.sql_ctx) elif subset is None: return DataFrame(self._jdf.na().fill(value), self.sql_ctx) else: if isinstance(subset, basestring): subset = [subset] elif not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") return DataFrame(self._jdf.na().fill(value, self._jseq(subset)), self.sql_ctx) @since(1.4) def replace(self, to_replace, value, subset=None): """Returns a new :class:`DataFrame` replacing a value with another value. :func:`DataFrame.replace` and :func:`DataFrameNaFunctions.replace` are aliases of each other. :param to_replace: int, long, float, string, or list. Value to be replaced. If the value is a dict, then `value` is ignored and `to_replace` must be a mapping from column name (string) to replacement value. The value to be replaced must be an int, long, float, or string. :param value: int, long, float, string, or list. Value to use to replace holes. The replacement value must be an int, long, float, or string. If `value` is a list or tuple, `value` should be of the same length with `to_replace`. :param subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. >>> df4.na.replace(10, 20).show() +----+------+-----+ | age|height| name| +----+------+-----+ | 20| 80|Alice| | 5| null| Bob| |null| null| Tom| |null| null| null| +----+------+-----+ >>> df4.na.replace(['Alice', 'Bob'], ['A', 'B'], 'name').show() +----+------+----+ | age|height|name| +----+------+----+ | 10| 80| A| | 5| null| B| |null| null| Tom| |null| null|null| +----+------+----+ """ if not isinstance(to_replace, (float, int, long, basestring, list, tuple, dict)): raise ValueError( "to_replace should be a float, int, long, string, list, tuple, or dict") if not isinstance(value, (float, int, long, basestring, list, tuple)): raise ValueError("value should be a float, int, long, string, list, or tuple") rep_dict = dict() if isinstance(to_replace, (float, int, long, basestring)): to_replace = [to_replace] if isinstance(to_replace, tuple): to_replace = list(to_replace) if isinstance(value, tuple): value = list(value) if isinstance(to_replace, list) and isinstance(value, list): if len(to_replace) != len(value): raise ValueError("to_replace and value lists should be of the same length") rep_dict = dict(zip(to_replace, value)) elif isinstance(to_replace, list) and isinstance(value, (float, int, long, basestring)): rep_dict = dict([(tr, value) for tr in to_replace]) elif isinstance(to_replace, dict): rep_dict = to_replace if subset is None: return DataFrame(self._jdf.na().replace('*', rep_dict), self.sql_ctx) elif isinstance(subset, basestring): subset = [subset] if not isinstance(subset, (list, tuple)): raise ValueError("subset should be a list or tuple of column names") return DataFrame( self._jdf.na().replace(self._jseq(subset), self._jmap(rep_dict)), self.sql_ctx) @since(2.0) def approxQuantile(self, col, probabilities, relativeError): """ Calculates the approximate quantiles of a numerical column of a DataFrame. The result of this algorithm has the following deterministic bound: If the DataFrame has N elements and if we request the quantile at probability `p` up to error `err`, then the algorithm will return a sample `x` from the DataFrame so that the *exact* rank of `x` is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[http://dx.doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. :param col: the name of the numerical column :param probabilities: a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. :param relativeError: The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. :return: the approximate quantiles at the given probabilities """ if not isinstance(col, str): raise ValueError("col should be a string.") if not isinstance(probabilities, (list, tuple)): raise ValueError("probabilities should be a list or tuple") if isinstance(probabilities, tuple): probabilities = list(probabilities) for p in probabilities: if not isinstance(p, (float, int, long)) or p < 0 or p > 1: raise ValueError("probabilities should be numerical (float, int, long) in [0,1].") probabilities = _to_list(self._sc, probabilities) if not isinstance(relativeError, (float, int, long)) or relativeError < 0: raise ValueError("relativeError should be numerical (float, int, long) >= 0.") relativeError = float(relativeError) jaq = self._jdf.stat().approxQuantile(col, probabilities, relativeError) return list(jaq) @since(1.4) def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a DataFrame as a double value. Currently only supports the Pearson Correlation Coefficient. :func:`DataFrame.corr` and :func:`DataFrameStatFunctions.corr` are aliases of each other. :param col1: The name of the first column :param col2: The name of the second column :param method: The correlation method. Currently only supports "pearson" """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") if not method: method = "pearson" if not method == "pearson": raise ValueError("Currently only the calculation of the Pearson Correlation " + "coefficient is supported.") return self._jdf.stat().corr(col1, col2, method) @since(1.4) def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. :func:`DataFrame.cov` and :func:`DataFrameStatFunctions.cov` are aliases. :param col1: The name of the first column :param col2: The name of the second column """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") return self._jdf.stat().cov(col1, col2) @since(1.4) def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of `col1` and the column names will be the distinct values of `col2`. The name of the first column will be `$col1_$col2`. Pairs that have no occurrences will have zero as their counts. :func:`DataFrame.crosstab` and :func:`DataFrameStatFunctions.crosstab` are aliases. :param col1: The name of the first column. Distinct items will make the first item of each row. :param col2: The name of the second column. Distinct items will make the column names of the DataFrame. """ if not isinstance(col1, str): raise ValueError("col1 should be a string.") if not isinstance(col2, str): raise ValueError("col2 should be a string.") return DataFrame(self._jdf.stat().crosstab(col1, col2), self.sql_ctx) @since(1.4) def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in "http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou". :func:`DataFrame.freqItems` and :func:`DataFrameStatFunctions.freqItems` are aliases. .. note:: This function is meant for exploratory data analysis, as we make no \ guarantee about the backward compatibility of the schema of the resulting DataFrame. :param cols: Names of the columns to calculate frequent items for as a list or tuple of strings. :param support: The frequency with which to consider an item 'frequent'. Default is 1%. The support must be greater than 1e-4. """ if isinstance(cols, tuple): cols = list(cols) if not isinstance(cols, list): raise ValueError("cols must be a list or tuple of column names as strings.") if not support: support = 0.01 return DataFrame(self._jdf.stat().freqItems(_to_seq(self._sc, cols), support), self.sql_ctx) @ignore_unicode_prefix @since(1.3) def withColumn(self, colName, col): """ Returns a new :class:`DataFrame` by adding a column or replacing the existing column that has the same name. :param colName: string, name of the new column. :param col: a :class:`Column` expression for the new column. >>> df.withColumn('age2', df.age + 2).collect() [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)] """ assert isinstance(col, Column), "col should be Column" return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx) @ignore_unicode_prefix @since(1.3) def withColumnRenamed(self, existing, new): """Returns a new :class:`DataFrame` by renaming an existing column. This is a no-op if schema doesn't contain the given column name. :param existing: string, name of the existing column to rename. :param col: string, new name of the column. >>> df.withColumnRenamed('age', 'age2').collect() [Row(age2=2, name=u'Alice'), Row(age2=5, name=u'Bob')] """ return DataFrame(self._jdf.withColumnRenamed(existing, new), self.sql_ctx) @since(1.4) @ignore_unicode_prefix def drop(self, col): """Returns a new :class:`DataFrame` that drops the specified column. This is a no-op if schema doesn't contain the given column name(s). :param col: a string name of the column to drop, or a :class:`Column` to drop. >>> df.drop('age').collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.drop(df.age).collect() [Row(name=u'Alice'), Row(name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df.name).collect() [Row(age=5, height=85, name=u'Bob')] >>> df.join(df2, df.name == df2.name, 'inner').drop(df2.name).collect() [Row(age=5, name=u'Bob', height=85)] """ if isinstance(col, basestring): jdf = self._jdf.drop(col) elif isinstance(col, Column): jdf = self._jdf.drop(col._jc) else: raise TypeError("col should be a string or a Column") return DataFrame(jdf, self.sql_ctx) @ignore_unicode_prefix def toDF(self, *cols): """Returns a new class:`DataFrame` that with new specified column names :param cols: list of new column names (string) >>> df.toDF('f1', 'f2').collect() [Row(f1=2, f2=u'Alice'), Row(f1=5, f2=u'Bob')] """ jdf = self._jdf.toDF(self._jseq(cols)) return DataFrame(jdf, self.sql_ctx) @since(1.3) def toPandas(self): """Returns the contents of this :class:`DataFrame` as Pandas ``pandas.DataFrame``. Note that this method should only be used if the resulting Pandas's DataFrame is expected to be small, as all the data is loaded into the driver's memory. This is only available if Pandas is installed and available. >>> df.toPandas() # doctest: +SKIP age name 0 2 Alice 1 5 Bob """ import pandas as pd return pd.DataFrame.from_records(self.collect(), columns=self.columns) ########################################################################################## # Pandas compatibility ########################################################################################## groupby = copy_func( groupBy, sinceversion=1.4, doc=":func:`groupby` is an alias for :func:`groupBy`.") drop_duplicates = copy_func( dropDuplicates, sinceversion=1.4, doc=":func:`drop_duplicates` is an alias for :func:`dropDuplicates`.") where = copy_func( filter, sinceversion=1.3, doc=":func:`where` is an alias for :func:`filter`.") def _to_scala_map(sc, jm): """ Convert a dict into a JVM Map. """ return sc._jvm.PythonUtils.toScalaMap(jm) class DataFrameNaFunctions(object): """Functionality for working with missing data in :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def drop(self, how='any', thresh=None, subset=None): return self.df.dropna(how=how, thresh=thresh, subset=subset) drop.__doc__ = DataFrame.dropna.__doc__ def fill(self, value, subset=None): return self.df.fillna(value=value, subset=subset) fill.__doc__ = DataFrame.fillna.__doc__ def replace(self, to_replace, value, subset=None): return self.df.replace(to_replace, value, subset) replace.__doc__ = DataFrame.replace.__doc__ class DataFrameStatFunctions(object): """Functionality for statistic functions with :class:`DataFrame`. .. versionadded:: 1.4 """ def __init__(self, df): self.df = df def approxQuantile(self, col, probabilities, relativeError): return self.df.approxQuantile(col, probabilities, relativeError) approxQuantile.__doc__ = DataFrame.approxQuantile.__doc__ def corr(self, col1, col2, method=None): return self.df.corr(col1, col2, method) corr.__doc__ = DataFrame.corr.__doc__ def cov(self, col1, col2): return self.df.cov(col1, col2) cov.__doc__ = DataFrame.cov.__doc__ def crosstab(self, col1, col2): return self.df.crosstab(col1, col2) crosstab.__doc__ = DataFrame.crosstab.__doc__ def freqItems(self, cols, support=None): return self.df.freqItems(cols, support) freqItems.__doc__ = DataFrame.freqItems.__doc__ def sampleBy(self, col, fractions, seed=None): return self.df.sampleBy(col, fractions, seed) sampleBy.__doc__ = DataFrame.sampleBy.__doc__ def _test(): import doctest from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext, SparkSession import pyspark.sql.dataframe globs = pyspark.sql.dataframe.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['spark'] = SparkSession(sc) globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')])\ .toDF(StructType([StructField('age', IntegerType()), StructField('name', StringType())])) globs['df2'] = sc.parallelize([Row(name='Tom', height=80), Row(name='Bob', height=85)]).toDF() globs['df3'] = sc.parallelize([Row(name='Alice', age=2), Row(name='Bob', age=5)]).toDF() globs['df4'] = sc.parallelize([Row(name='Alice', age=10, height=80), Row(name='Bob', age=5, height=None), Row(name='Tom', age=None, height=None), Row(name=None, age=None, height=None)]).toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.dataframe, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
apache-2.0
rohanp/scikit-learn
sklearn/feature_selection/rfe.py
5
15669
# Authors: Alexandre Gramfort <[email protected]> # Vincent Michel <[email protected]> # Gilles Louppe <[email protected]> # # License: BSD 3 clause """Recursive feature elimination for feature ranking""" import numpy as np from ..utils import check_X_y, safe_sqr from ..utils.metaestimators import if_delegate_has_method from ..base import BaseEstimator from ..base import MetaEstimatorMixin from ..base import clone from ..base import is_classifier from ..model_selection import check_cv from ..model_selection._validation import _safe_split, _score from ..metrics.scorer import check_scoring from .base import SelectorMixin class RFE(BaseEstimator, MetaEstimatorMixin, SelectorMixin): """Feature ranking with recursive feature elimination. Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and weights are assigned to each one of them. Then, features whose absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. n_features_to_select : int or None (default=None) The number of features to select. If `None`, half of the features are selected. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that ``ranking_[i]`` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. estimator_ : object The external estimator fit on the reduced dataset. Examples -------- The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFE >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFE(estimator, 5, step=1) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0): self.estimator = estimator self.n_features_to_select = n_features_to_select self.step = step self.verbose = verbose @property def _estimator_type(self): return self.estimator._estimator_type def fit(self, X, y): """Fit the RFE model and then the underlying estimator on the selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values. """ return self._fit(X, y) def _fit(self, X, y, step_score=None): X, y = check_X_y(X, y, "csc") # Initialization n_features = X.shape[1] if self.n_features_to_select is None: n_features_to_select = n_features // 2 else: n_features_to_select = self.n_features_to_select if 0.0 < self.step < 1.0: step = int(max(1, self.step * n_features)) else: step = int(self.step) if step <= 0: raise ValueError("Step must be >0") support_ = np.ones(n_features, dtype=np.bool) ranking_ = np.ones(n_features, dtype=np.int) if step_score: self.scores_ = [] # Elimination while np.sum(support_) > n_features_to_select: # Remaining features features = np.arange(n_features)[support_] # Rank the remaining features estimator = clone(self.estimator) if self.verbose > 0: print("Fitting estimator with %d features." % np.sum(support_)) estimator.fit(X[:, features], y) # Get coefs if hasattr(estimator, 'coef_'): coefs = estimator.coef_ elif hasattr(estimator, 'feature_importances_'): coefs = estimator.feature_importances_ else: raise RuntimeError('The classifier does not expose ' '"coef_" or "feature_importances_" ' 'attributes') # Get ranks if coefs.ndim > 1: ranks = np.argsort(safe_sqr(coefs).sum(axis=0)) else: ranks = np.argsort(safe_sqr(coefs)) # for sparse case ranks is matrix ranks = np.ravel(ranks) # Eliminate the worse features threshold = min(step, np.sum(support_) - n_features_to_select) # Compute step score on the previous selection iteration # because 'estimator' must use features # that have not been eliminated yet if step_score: self.scores_.append(step_score(estimator, features)) support_[features[ranks][:threshold]] = False ranking_[np.logical_not(support_)] += 1 # Set final attributes features = np.arange(n_features)[support_] self.estimator_ = clone(self.estimator) self.estimator_.fit(X[:, features], y) # Compute step score when only n_features_to_select features left if step_score: self.scores_.append(step_score(self.estimator_, features)) self.n_features_ = support_.sum() self.support_ = support_ self.ranking_ = ranking_ return self @if_delegate_has_method(delegate='estimator') def predict(self, X): """Reduce X to the selected features and then predict using the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- y : array of shape [n_samples] The predicted target values. """ return self.estimator_.predict(self.transform(X)) @if_delegate_has_method(delegate='estimator') def score(self, X, y): """Reduce X to the selected features and then return the score of the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The target values. """ return self.estimator_.score(self.transform(X), y) def _get_support_mask(self): return self.support_ @if_delegate_has_method(delegate='estimator') def decision_function(self, X): return self.estimator_.decision_function(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): return self.estimator_.predict_proba(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): return self.estimator_.predict_log_proba(self.transform(X)) class RFECV(RFE, MetaEstimatorMixin): """Feature ranking with recursive feature elimination and cross-validated selection of the best number of features. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features with cross-validation. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that `ranking_[i]` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. grid_scores_ : array of shape [n_subsets_of_features] The cross-validation scores such that ``grid_scores_[i]`` corresponds to the CV score of the i-th subset of features. estimator_ : object The external estimator fit on the reduced dataset. Notes ----- The size of ``grid_scores_`` is equal to ceil((n_features - 1) / step) + 1, where step is the number of features removed at each iteration. Examples -------- The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFECV >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFECV(estimator, step=1, cv=5) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, step=1, cv=None, scoring=None, verbose=0): self.estimator = estimator self.step = step self.cv = cv self.scoring = scoring self.verbose = verbose def fit(self, X, y): """Fit the RFE model and automatically tune the number of selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where `n_samples` is the number of samples and `n_features` is the total number of features. y : array-like, shape = [n_samples] Target values (integers for classification, real numbers for regression). """ X, y = check_X_y(X, y, "csr") # Initialization cv = check_cv(self.cv, y, is_classifier(self.estimator)) scorer = check_scoring(self.estimator, scoring=self.scoring) n_features = X.shape[1] n_features_to_select = 1 # Determine the number of subsets of features scores = [] # Cross-validation for n, (train, test) in enumerate(cv.split(X, y)): X_train, y_train = _safe_split(self.estimator, X, y, train) X_test, y_test = _safe_split(self.estimator, X, y, test, train) rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step, verbose=self.verbose - 1) rfe._fit(X_train, y_train, lambda estimator, features: _score(estimator, X_test[:, features], y_test, scorer)) scores.append(np.array(rfe.scores_[::-1]).reshape(1, -1)) scores = np.sum(np.concatenate(scores, 0), 0) # The index in 'scores' when 'n_features' features are selected n_feature_index = np.ceil((n_features - n_features_to_select) / float(self.step)) n_features_to_select = max(n_features_to_select, n_features - ((n_feature_index - np.argmax(scores)) * self.step)) # Re-execute an elimination with best_k over the whole set rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step) rfe.fit(X, y) # Set final attributes self.support_ = rfe.support_ self.n_features_ = rfe.n_features_ self.ranking_ = rfe.ranking_ self.estimator_ = clone(self.estimator) self.estimator_.fit(self.transform(X), y) # Fixing a normalization error, n is equal to get_n_splits(X, y) - 1 # here, the scores are normalized by get_n_splits(X, y) self.grid_scores_ = scores / cv.get_n_splits(X, y) return self
bsd-3-clause
trankmichael/scikit-learn
examples/plot_kernel_ridge_regression.py
230
6222
""" ============================================= Comparison of kernel ridge regression and SVR ============================================= Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR at prediction-time. This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both complexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However, prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors. The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set. Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters epsilon and C of the SVR. """ # Authors: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause from __future__ import division import time import numpy as np from sklearn.svm import SVR from sklearn.grid_search import GridSearchCV from sklearn.learning_curve import learning_curve from sklearn.kernel_ridge import KernelRidge import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # Fit regression model train_size = 100 svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}) kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) t0 = time.time() svr.fit(X[:train_size], y[:train_size]) svr_fit = time.time() - t0 print("SVR complexity and bandwidth selected and model fitted in %.3f s" % svr_fit) t0 = time.time() kr.fit(X[:train_size], y[:train_size]) kr_fit = time.time() - t0 print("KRR complexity and bandwidth selected and model fitted in %.3f s" % kr_fit) sv_ratio = svr.best_estimator_.support_.shape[0] / train_size print("Support vector ratio: %.3f" % sv_ratio) t0 = time.time() y_svr = svr.predict(X_plot) svr_predict = time.time() - t0 print("SVR prediction for %d inputs in %.3f s" % (X_plot.shape[0], svr_predict)) t0 = time.time() y_kr = kr.predict(X_plot) kr_predict = time.time() - t0 print("KRR prediction for %d inputs in %.3f s" % (X_plot.shape[0], kr_predict)) ############################################################################# # look at the results sv_ind = svr.best_estimator_.support_ plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors') plt.scatter(X[:100], y[:100], c='k', label='data') plt.hold('on') plt.plot(X_plot, y_svr, c='r', label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict)) plt.plot(X_plot, y_kr, c='g', label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict)) plt.xlabel('data') plt.ylabel('target') plt.title('SVR versus Kernel Ridge') plt.legend() # Visualize training and prediction time plt.figure() # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) sizes = np.logspace(1, 4, 7) for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1, gamma=10), "SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items(): train_time = [] test_time = [] for train_test_size in sizes: t0 = time.time() estimator.fit(X[:train_test_size], y[:train_test_size]) train_time.append(time.time() - t0) t0 = time.time() estimator.predict(X_plot[:1000]) test_time.append(time.time() - t0) plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g", label="%s (train)" % name) plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g", label="%s (test)" % name) plt.xscale("log") plt.yscale("log") plt.xlabel("Train size") plt.ylabel("Time (seconds)") plt.title('Execution Time') plt.legend(loc="best") # Visualize learning curves plt.figure() svr = SVR(kernel='rbf', C=1e1, gamma=0.1) kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1) train_sizes, train_scores_svr, test_scores_svr = \ learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) train_sizes_abs, train_scores_kr, test_scores_kr = \ learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) plt.plot(train_sizes, test_scores_svr.mean(1), 'o-', color="r", label="SVR") plt.plot(train_sizes, test_scores_kr.mean(1), 'o-', color="g", label="KRR") plt.xlabel("Train size") plt.ylabel("Mean Squared Error") plt.title('Learning curves') plt.legend(loc="best") plt.show()
bsd-3-clause
MrSnede/BalancingWheelRobot
mplwidget.py
1
4357
#!/usr/bin/env python3 # http://stackoverflow.com/questions/12459811/how-to-embed-matplotib-in-pyqt-for-dummies # Python Qt4 bindings for GUI objects from PyQt4 import QtGui # import the Qt4Agg FigureCanvas object, that binds Figure to # Qt4Agg backend. It also inherits from QWidget from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas #from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar # Matplotlib Figure object from collections import deque from matplotlib.figure import Figure import matplotlib.animation as animation #import matplotlib.pyplot as plt class PlotValueBuffer: def __init__(self, maxLen): # todo: maxlen wird mehrfach gesetzt self.ax = deque([0.0]*maxLen) # todo: besserer Name fuer ax + ay self.ay = deque([0.0]*maxLen) self.maxLen = maxLen def addToBuf(self, buf, val): if len(buf) < self.maxLen: buf.append(val) else: buf.pop() buf.appendleft(val) print(buf) def add(self, datastring): """wird aus BotControllGUI aufgreufen, sobald ein neues Messwertdopel von der seriellen Konsole gelesen wurde""" datastring = datastring.decode('utf-8').rstrip("\r\n") data = [float(val) for val in datastring.split()] assert(len(data) == 2) self.addToBuf(self.ax, data[0]) self.addToBuf(self.ay, data[1]) def update(self, frameNum, a0, a1): a0.set_data(range(self.maxLen), self.ax) a1.set_data(range(self.maxLen), self.ay) return a0 # Uebergabewerte und Rueckgabe sind Vorgabe von Matplotlib class MplCanvas(FigureCanvas): """Class to represent the FigureCanvas widget""" def __init__(self): # setup Matplotlib Figure and Axis self.fig = Figure(facecolor='snow', edgecolor='white') self.fig.patch.set_alpha(0.0) self.fig.set_tight_layout(True) self.ax = self.fig.add_subplot(111) self.ax.grid(b=True, which='major', color='b', linewidth=1.5) self.ax.grid(b=True, which='minor', color='r', linewidth=0.5) self.ax.set_axisbelow(True) self.ax.set_ylim([-60, 60]) self.ax.set_xlim([0, 1000]) # todo: maxlen wird mehrfach gesetzt self.ax.axhline(y=0, linewidth=1.5, color='k') self.ax.set_ylabel('Neigung °', fontsize=14, fontweight='bold', color='b') self.line_Plot1, = self.ax.plot([], [], label='Neigung °', linewidth=1.0, linestyle="-") self.line_Plot2, = self.ax.plot([], [], label='PID Antwort', linewidth=1.0, linestyle="-") #self.anim = animation.FuncAnimation(self.fig, PlotValueBuffer.update, #fargs=(self.line_Plot1, self.line_Plot2), #interval=100) # Values < 30 will rise a Tkinter Error # initialization of the canvas FigureCanvas.__init__(self, self.fig) # we define the widget as expandable FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) # notify the system of updated policy FigureCanvas.updateGeometry(self) # this is the Navigation widget # it takes the Canvas widget and a parent #self.toolbar = NavigationToolbar(self.FigureCanvas, self) class MplWidget(QtGui.QWidget): """Widget defined in Qt Designer""" def __init__(self, parent=None): # initialization of Qt MainWindow widget QtGui.QWidget.__init__(self, parent) # create a Buffer # todo: maxlen wird mehrfach gesetzt self.valueBuffer = PlotValueBuffer(maxLen=1000) # set the canvas to the Matplotlib widget self.canvas = MplCanvas() # create a vertical box layout self.vbl = QtGui.QVBoxLayout() # add mpl widget to the vertical box self.vbl.addWidget(self.canvas) # set the layout to the vertical box self.setLayout(self.vbl)
gpl-2.0
ahadmushir/whatsCooking
finalModel.py
1
4080
import pandas as pd import numpy as np import nltk import re from nltk.stem import WordNetLemmatizer from sklearn.svm import LinearSVC from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn import grid_search from sklearn.linear_model import LogisticRegression from sklearn import cross_validation from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import SGDClassifier """ Soft Voting/Majority Rule classifier This module contains a Soft Voting/Majority Rule classifier for classification clfs. """ from sklearn.base import BaseEstimator from sklearn.base import ClassifierMixin from sklearn.base import TransformerMixin from sklearn.preprocessing import LabelEncoder from sklearn.externals import six from sklearn.base import clone from sklearn.pipeline import _name_estimators import numpy as np #Reading training file traindf = pd.read_json("../input/train.json") # traindf['ingredients_clean_string'] = [' , '.join(z).strip() for z in traindf['ingredients']] #### #using lematizer from NLTK library traindf['ingredients_string'] = [' '.join([WordNetLemmatizer().lemmatize(re.sub('[^A-Za-z]', ' ', line)) for line in lists]).strip() for lists in traindf['ingredients']] #Reading Test testdf = pd.read_json("../input/test.json") # testdf['ingredients_clean_string'] = [' , '.join(z).strip() for z in testdf['ingredients']] #### #using lematizer from NLTK library testdf['ingredients_string'] = [' '.join([WordNetLemmatizer().lemmatize(re.sub('[^A-Za-z]', ' ', line)) for line in lists]).strip() for lists in testdf['ingredients']] #### #Making TF-IDF vector corpustr = traindf['ingredients_string'] vectorizertr = TfidfVectorizer(stop_words='english', ngram_range = ( 1, 1),analyzer="word", max_df = .6 , binary=False , token_pattern=r'\w+' , sublinear_tf=False, norm = 'l2') #vectorizertr = HashingVectorizer(stop_words='english', # ngram_range = ( 1 , 2 ),analyzer="word", token_pattern=r'\w+' , n_features = 7000) tfidftr = vectorizertr.fit_transform(corpustr).todense() corpusts = testdf['ingredients_string'] vectorizerts = TfidfVectorizer(stop_words='english', ngram_range = ( 1, 1),analyzer="word", max_df = .6 , binary=False , token_pattern=r'\w+' , sublinear_tf=False, norm = 'l2') #vectorizerts = HashingVectorizer(stop_words='english', # ngram_range = ( 1 , 2 ),analyzer="word", token_pattern=r'\w+' , n_features = 7000) tfidfts = vectorizertr.transform(corpusts) predictors_tr = tfidftr targets_tr = traindf['cuisine'] predictors_ts = tfidfts ################################ # Initialize classifiers ################################ np.random.seed(1) print("Ensemble: LR - linear SVC") clf1 = LogisticRegression(random_state=1, C=7) clf2 = LinearSVC(random_state=1, C=0.4, penalty="l2", dual=False) nb = BernoulliNB() rfc = RandomForestClassifier(random_state=1, criterion = 'gini', n_estimators=500) sgd = SGDClassifier(random_state=1, alpha=0.00001, penalty='l2', n_iter=50) eclf = EnsembleClassifier(clfs=[clf1, clf2,nb, rfc, sgd], weights=[2, 2, 1, 1,2]) np.random.seed(1) for clf, label in zip([eclf], ['Ensemble']): scores = cross_validation.cross_val_score(clf, predictors_tr,targets_tr, cv=2, scoring='accuracy') print("Accuracy: %0.4f (+/- %0.5f) [%s]" % (scores.mean(), scores.std(), label)) eclf2 = eclf.fit(predictors_tr,targets_tr) predictions = eclf2.predict(predictors_ts) testdf['cuisine'] = predictions #testdf = testdf.sort('id' , ascending=True) testdf = testdf.sort_values(by='id' , ascending=True) ##show the detail # testdf[['id' , 'ingredients_clean_string' , 'cuisine' ]].to_csv("info_vote2.csv") #for submit, no index testdf[['id' , 'cuisine' ]].to_csv("just_python_cooking-vote1.csv", index=False)
apache-2.0
chenyyx/scikit-learn-doc-zh
examples/en/applications/plot_species_distribution_modeling.py
35
7372
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.org/basemap>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
gpl-3.0
UltronAI/Deep-Learning
Pattern-Recognition/hw2-Feature-Selection/skfeature/function/wrapper/svm_forward.py
1
1726
import numpy as np from sklearn.svm import SVC from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score def svm_forward(X, y, n_selected_features): """ This function implements the forward feature selection algorithm based on SVM Input ----- X: {numpy array}, shape (n_samples, n_features) input data y: {numpy array}, shape (n_samples,) input class labels n_selected_features: {int} number of selected features Output ------ F: {numpy array}, shape (n_features, ) index of selected features """ n_samples, n_features = X.shape # using 10 fold cross validation cv = KFold(n_samples, n_folds=10, shuffle=True) # choose SVM as the classifier clf = SVC() # selected feature set, initialized to be empty F = [] count = 0 while count < n_selected_features: max_acc = 0 for i in range(n_features): if i not in F: F.append(i) X_tmp = X[:, F] acc = 0 for train, test in cv: clf.fit(X_tmp[train], y[train]) y_predict = clf.predict(X_tmp[test]) acc_tmp = accuracy_score(y[test], y_predict) acc += acc_tmp acc = float(acc)/10 F.pop() # record the feature which results in the largest accuracy if acc > max_acc: max_acc = acc idx = i # add the feature which results in the largest accuracy F.append(idx) count += 1 return np.array(F)
mit
BigDataforYou/movie_recommendation_workshop_1
big_data_4_you_demo_1/venv/lib/python2.7/site-packages/pandas/core/reshape.py
1
40542
# pylint: disable=E1101,E1103 # pylint: disable=W0703,W0622,W0613,W0201 from pandas.compat import range, zip from pandas import compat import itertools import numpy as np from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.sparse import SparseDataFrame, SparseSeries from pandas.sparse.array import SparseArray from pandas._sparse import IntIndex from pandas.core.categorical import Categorical from pandas.core.common import notnull, _ensure_platform_int, _maybe_promote from pandas.core.groupby import get_group_index, _compress_group_index import pandas.core.common as com import pandas.types.concat as _concat import pandas.core.algorithms as algos import pandas.algos as _algos from pandas.core.index import MultiIndex, _get_na_value class _Unstacker(object): """ Helper class to unstack data / pivot with multi-level index Parameters ---------- level : int or str, default last level Level to "unstack". Accepts a name for the level. Examples -------- >>> import pandas as pd >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: float64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 2 b 3 4 Returns ------- unstacked : DataFrame """ def __init__(self, values, index, level=-1, value_columns=None, fill_value=None): self.is_categorical = None if values.ndim == 1: if isinstance(values, Categorical): self.is_categorical = values values = np.array(values) values = values[:, np.newaxis] self.values = values self.value_columns = value_columns self.fill_value = fill_value if value_columns is None and values.shape[1] != 1: # pragma: no cover raise ValueError('must pass column labels for multi-column data') self.index = index if isinstance(self.index, MultiIndex): if index._reference_duplicate_name(level): msg = ("Ambiguous reference to {0}. The index " "names are not unique.".format(level)) raise ValueError(msg) self.level = self.index._get_level_number(level) # when index includes `nan`, need to lift levels/strides by 1 self.lift = 1 if -1 in self.index.labels[self.level] else 0 self.new_index_levels = list(index.levels) self.new_index_names = list(index.names) self.removed_name = self.new_index_names.pop(self.level) self.removed_level = self.new_index_levels.pop(self.level) self._make_sorted_values_labels() self._make_selectors() def _make_sorted_values_labels(self): v = self.level labs = list(self.index.labels) levs = list(self.index.levels) to_sort = labs[:v] + labs[v + 1:] + [labs[v]] sizes = [len(x) for x in levs[:v] + levs[v + 1:] + [levs[v]]] comp_index, obs_ids = get_compressed_ids(to_sort, sizes) ngroups = len(obs_ids) indexer = _algos.groupsort_indexer(comp_index, ngroups)[0] indexer = _ensure_platform_int(indexer) self.sorted_values = algos.take_nd(self.values, indexer, axis=0) self.sorted_labels = [l.take(indexer) for l in to_sort] def _make_selectors(self): new_levels = self.new_index_levels # make the mask remaining_labels = self.sorted_labels[:-1] level_sizes = [len(x) for x in new_levels] comp_index, obs_ids = get_compressed_ids(remaining_labels, level_sizes) ngroups = len(obs_ids) comp_index = _ensure_platform_int(comp_index) stride = self.index.levshape[self.level] + self.lift self.full_shape = ngroups, stride selector = self.sorted_labels[-1] + stride * comp_index + self.lift mask = np.zeros(np.prod(self.full_shape), dtype=bool) mask.put(selector, True) if mask.sum() < len(self.index): raise ValueError('Index contains duplicate entries, ' 'cannot reshape') self.group_index = comp_index self.mask = mask self.unique_groups = obs_ids self.compressor = comp_index.searchsorted(np.arange(ngroups)) def get_result(self): # TODO: find a better way than this masking business values, value_mask = self.get_new_values() columns = self.get_new_columns() index = self.get_new_index() # filter out missing levels if values.shape[1] > 0: col_inds, obs_ids = _compress_group_index(self.sorted_labels[-1]) # rare case, level values not observed if len(obs_ids) < self.full_shape[1]: inds = (value_mask.sum(0) > 0).nonzero()[0] values = algos.take_nd(values, inds, axis=1) columns = columns[inds] # may need to coerce categoricals here if self.is_categorical is not None: values = [Categorical.from_array( values[:, i], categories=self.is_categorical.categories, ordered=True) for i in range(values.shape[-1])] return DataFrame(values, index=index, columns=columns) def get_new_values(self): values = self.values # place the values length, width = self.full_shape stride = values.shape[1] result_width = width * stride result_shape = (length, result_width) # if our mask is all True, then we can use our existing dtype if self.mask.all(): dtype = values.dtype new_values = np.empty(result_shape, dtype=dtype) else: dtype, fill_value = _maybe_promote(values.dtype, self.fill_value) new_values = np.empty(result_shape, dtype=dtype) new_values.fill(fill_value) new_mask = np.zeros(result_shape, dtype=bool) # is there a simpler / faster way of doing this? for i in range(values.shape[1]): chunk = new_values[:, i * width:(i + 1) * width] mask_chunk = new_mask[:, i * width:(i + 1) * width] chunk.flat[self.mask] = self.sorted_values[:, i] mask_chunk.flat[self.mask] = True return new_values, new_mask def get_new_columns(self): if self.value_columns is None: if self.lift == 0: return self.removed_level lev = self.removed_level return lev.insert(0, _get_na_value(lev.dtype.type)) stride = len(self.removed_level) + self.lift width = len(self.value_columns) propagator = np.repeat(np.arange(width), stride) if isinstance(self.value_columns, MultiIndex): new_levels = self.value_columns.levels + (self.removed_level,) new_names = self.value_columns.names + (self.removed_name,) new_labels = [lab.take(propagator) for lab in self.value_columns.labels] else: new_levels = [self.value_columns, self.removed_level] new_names = [self.value_columns.name, self.removed_name] new_labels = [propagator] new_labels.append(np.tile(np.arange(stride) - self.lift, width)) return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) def get_new_index(self): result_labels = [lab.take(self.compressor) for lab in self.sorted_labels[:-1]] # construct the new index if len(self.new_index_levels) == 1: lev, lab = self.new_index_levels[0], result_labels[0] if (lab == -1).any(): lev = lev.insert(len(lev), _get_na_value(lev.dtype.type)) return lev.take(lab) return MultiIndex(levels=self.new_index_levels, labels=result_labels, names=self.new_index_names, verify_integrity=False) def _unstack_multiple(data, clocs): from pandas.core.groupby import decons_obs_group_ids if len(clocs) == 0: return data # NOTE: This doesn't deal with hierarchical columns yet index = data.index clocs = [index._get_level_number(i) for i in clocs] rlocs = [i for i in range(index.nlevels) if i not in clocs] clevels = [index.levels[i] for i in clocs] clabels = [index.labels[i] for i in clocs] cnames = [index.names[i] for i in clocs] rlevels = [index.levels[i] for i in rlocs] rlabels = [index.labels[i] for i in rlocs] rnames = [index.names[i] for i in rlocs] shape = [len(x) for x in clevels] group_index = get_group_index(clabels, shape, sort=False, xnull=False) comp_ids, obs_ids = _compress_group_index(group_index, sort=False) recons_labels = decons_obs_group_ids(comp_ids, obs_ids, shape, clabels, xnull=False) dummy_index = MultiIndex(levels=rlevels + [obs_ids], labels=rlabels + [comp_ids], names=rnames + ['__placeholder__'], verify_integrity=False) if isinstance(data, Series): dummy = Series(data.values, index=dummy_index) unstacked = dummy.unstack('__placeholder__') new_levels = clevels new_names = cnames new_labels = recons_labels else: if isinstance(data.columns, MultiIndex): result = data for i in range(len(clocs)): val = clocs[i] result = result.unstack(val) clocs = [v if i > v else v - 1 for v in clocs] return result dummy = DataFrame(data.values, index=dummy_index, columns=data.columns) unstacked = dummy.unstack('__placeholder__') if isinstance(unstacked, Series): unstcols = unstacked.index else: unstcols = unstacked.columns new_levels = [unstcols.levels[0]] + clevels new_names = [data.columns.name] + cnames new_labels = [unstcols.labels[0]] for rec in recons_labels: new_labels.append(rec.take(unstcols.labels[-1])) new_columns = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) if isinstance(unstacked, Series): unstacked.index = new_columns else: unstacked.columns = new_columns return unstacked def pivot(self, index=None, columns=None, values=None): """ See DataFrame.pivot """ if values is None: cols = [columns] if index is None else [index, columns] append = index is None indexed = self.set_index(cols, append=append) return indexed.unstack(columns) else: if index is None: index = self.index else: index = self[index] indexed = Series(self[values].values, index=MultiIndex.from_arrays([index, self[columns]])) return indexed.unstack(columns) def pivot_simple(index, columns, values): """ Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values. Parameters ---------- index : ndarray Labels to use to make new frame's index columns : ndarray Labels to use to make new frame's columns values : ndarray Values to use for populating new frame's values Notes ----- Obviously, all 3 of the input arguments must have the same length Returns ------- DataFrame """ if (len(index) != len(columns)) or (len(columns) != len(values)): raise AssertionError('Length of index, columns, and values must be the' ' same') if len(index) == 0: return DataFrame(index=[]) hindex = MultiIndex.from_arrays([index, columns]) series = Series(values.ravel(), index=hindex) series = series.sortlevel(0) return series.unstack() def _slow_pivot(index, columns, values): """ Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values. Parameters ---------- index : string or object Column name to use to make new frame's index columns : string or object Column name to use to make new frame's columns values : string or object Column name to use for populating new frame's values Could benefit from some Cython here. """ tree = {} for i, (idx, col) in enumerate(zip(index, columns)): if col not in tree: tree[col] = {} branch = tree[col] branch[idx] = values[i] return DataFrame(tree) def unstack(obj, level, fill_value=None): if isinstance(level, (tuple, list)): return _unstack_multiple(obj, level) if isinstance(obj, DataFrame): if isinstance(obj.index, MultiIndex): return _unstack_frame(obj, level, fill_value=fill_value) else: return obj.T.stack(dropna=False) else: unstacker = _Unstacker(obj.values, obj.index, level=level, fill_value=fill_value) return unstacker.get_result() def _unstack_frame(obj, level, fill_value=None): from pandas.core.internals import BlockManager, make_block if obj._is_mixed_type: unstacker = _Unstacker(np.empty(obj.shape, dtype=bool), # dummy obj.index, level=level, value_columns=obj.columns) new_columns = unstacker.get_new_columns() new_index = unstacker.get_new_index() new_axes = [new_columns, new_index] new_blocks = [] mask_blocks = [] for blk in obj._data.blocks: blk_items = obj._data.items[blk.mgr_locs.indexer] bunstacker = _Unstacker(blk.values.T, obj.index, level=level, value_columns=blk_items, fill_value=fill_value) new_items = bunstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = bunstacker.get_new_values() mblk = make_block(mask.T, placement=new_placement) mask_blocks.append(mblk) newb = make_block(new_values.T, placement=new_placement) new_blocks.append(newb) result = DataFrame(BlockManager(new_blocks, new_axes)) mask_frame = DataFrame(BlockManager(mask_blocks, new_axes)) return result.ix[:, mask_frame.sum(0) > 0] else: unstacker = _Unstacker(obj.values, obj.index, level=level, value_columns=obj.columns, fill_value=fill_value) return unstacker.get_result() def get_compressed_ids(labels, sizes): from pandas.core.groupby import get_group_index ids = get_group_index(labels, sizes, sort=True, xnull=False) return _compress_group_index(ids, sort=True) def stack(frame, level=-1, dropna=True): """ Convert DataFrame to Series with multi-level Index. Columns become the second level of the resulting hierarchical index Returns ------- stacked : Series """ def factorize(index): if index.is_unique: return index, np.arange(len(index)) cat = Categorical(index, ordered=True) return cat.categories, cat.codes N, K = frame.shape if isinstance(frame.columns, MultiIndex): if frame.columns._reference_duplicate_name(level): msg = ("Ambiguous reference to {0}. The column " "names are not unique.".format(level)) raise ValueError(msg) # Will also convert negative level numbers and check if out of bounds. level_num = frame.columns._get_level_number(level) if isinstance(frame.columns, MultiIndex): return _stack_multi_columns(frame, level_num=level_num, dropna=dropna) elif isinstance(frame.index, MultiIndex): new_levels = list(frame.index.levels) new_labels = [lab.repeat(K) for lab in frame.index.labels] clev, clab = factorize(frame.columns) new_levels.append(clev) new_labels.append(np.tile(clab, N).ravel()) new_names = list(frame.index.names) new_names.append(frame.columns.name) new_index = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) else: levels, (ilab, clab) = zip(*map(factorize, (frame.index, frame.columns))) labels = ilab.repeat(K), np.tile(clab, N).ravel() new_index = MultiIndex(levels=levels, labels=labels, names=[frame.index.name, frame.columns.name], verify_integrity=False) new_values = frame.values.ravel() if dropna: mask = notnull(new_values) new_values = new_values[mask] new_index = new_index[mask] return Series(new_values, index=new_index) def stack_multiple(frame, level, dropna=True): # If all passed levels match up to column names, no # ambiguity about what to do if all(lev in frame.columns.names for lev in level): result = frame for lev in level: result = stack(result, lev, dropna=dropna) # Otherwise, level numbers may change as each successive level is stacked elif all(isinstance(lev, int) for lev in level): # As each stack is done, the level numbers decrease, so we need # to account for that when level is a sequence of ints result = frame # _get_level_number() checks level numbers are in range and converts # negative numbers to positive level = [frame.columns._get_level_number(lev) for lev in level] # Can't iterate directly through level as we might need to change # values as we go for index in range(len(level)): lev = level[index] result = stack(result, lev, dropna=dropna) # Decrement all level numbers greater than current, as these # have now shifted down by one updated_level = [] for other in level: if other > lev: updated_level.append(other - 1) else: updated_level.append(other) level = updated_level else: raise ValueError("level should contain all level names or all level " "numbers, not a mixture of the two.") return result def _stack_multi_columns(frame, level_num=-1, dropna=True): def _convert_level_number(level_num, columns): """ Logic for converting the level number to something we can safely pass to swaplevel: We generally want to convert the level number into a level name, except when columns do not have names, in which case we must leave as a level number """ if level_num in columns.names: return columns.names[level_num] else: if columns.names[level_num] is None: return level_num else: return columns.names[level_num] this = frame.copy() # this makes life much simpler if level_num != frame.columns.nlevels - 1: # roll levels to put selected level at end roll_columns = this.columns for i in range(level_num, frame.columns.nlevels - 1): # Need to check if the ints conflict with level names lev1 = _convert_level_number(i, roll_columns) lev2 = _convert_level_number(i + 1, roll_columns) roll_columns = roll_columns.swaplevel(lev1, lev2) this.columns = roll_columns if not this.columns.is_lexsorted(): # Workaround the edge case where 0 is one of the column names, # which interferes with trying to sort based on the first # level level_to_sort = _convert_level_number(0, this.columns) this = this.sortlevel(level_to_sort, axis=1) # tuple list excluding level for grouping columns if len(frame.columns.levels) > 2: tuples = list(zip(*[lev.take(lab) for lev, lab in zip(this.columns.levels[:-1], this.columns.labels[:-1])])) unique_groups = [key for key, _ in itertools.groupby(tuples)] new_names = this.columns.names[:-1] new_columns = MultiIndex.from_tuples(unique_groups, names=new_names) else: new_columns = unique_groups = this.columns.levels[0] # time to ravel the values new_data = {} level_vals = this.columns.levels[-1] level_labels = sorted(set(this.columns.labels[-1])) level_vals_used = level_vals[level_labels] levsize = len(level_labels) drop_cols = [] for key in unique_groups: loc = this.columns.get_loc(key) slice_len = loc.stop - loc.start # can make more efficient? if slice_len == 0: drop_cols.append(key) continue elif slice_len != levsize: chunk = this.ix[:, this.columns[loc]] chunk.columns = level_vals.take(chunk.columns.labels[-1]) value_slice = chunk.reindex(columns=level_vals_used).values else: if frame._is_mixed_type: value_slice = this.ix[:, this.columns[loc]].values else: value_slice = this.values[:, loc] new_data[key] = value_slice.ravel() if len(drop_cols) > 0: new_columns = new_columns.difference(drop_cols) N = len(this) if isinstance(this.index, MultiIndex): new_levels = list(this.index.levels) new_names = list(this.index.names) new_labels = [lab.repeat(levsize) for lab in this.index.labels] else: new_levels = [this.index] new_labels = [np.arange(N).repeat(levsize)] new_names = [this.index.name] # something better? new_levels.append(frame.columns.levels[level_num]) new_labels.append(np.tile(level_labels, N)) new_names.append(frame.columns.names[level_num]) new_index = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) result = DataFrame(new_data, index=new_index, columns=new_columns) # more efficient way to go about this? can do the whole masking biz but # will only save a small amount of time... if dropna: result = result.dropna(axis=0, how='all') return result def melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None): """ "Unpivots" a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or string, optional If columns are a MultiIndex then use this level to melt. See also -------- pivot_table DataFrame.pivot Examples -------- >>> import pandas as pd >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> pd.melt(df, id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ # TODO: what about the existing index? if id_vars is not None: if not isinstance(id_vars, (tuple, list, np.ndarray)): id_vars = [id_vars] else: id_vars = list(id_vars) else: id_vars = [] if value_vars is not None: if not isinstance(value_vars, (tuple, list, np.ndarray)): value_vars = [value_vars] frame = frame.ix[:, id_vars + value_vars] else: frame = frame.copy() if col_level is not None: # allow list or other? # frame is a copy frame.columns = frame.columns.get_level_values(col_level) if var_name is None: if isinstance(frame.columns, MultiIndex): if len(frame.columns.names) == len(set(frame.columns.names)): var_name = frame.columns.names else: var_name = ['variable_%s' % i for i in range(len(frame.columns.names))] else: var_name = [frame.columns.name if frame.columns.name is not None else 'variable'] if isinstance(var_name, compat.string_types): var_name = [var_name] N, K = frame.shape K -= len(id_vars) mdata = {} for col in id_vars: mdata[col] = np.tile(frame.pop(col).values, K) mcolumns = id_vars + var_name + [value_name] mdata[value_name] = frame.values.ravel('F') for i, col in enumerate(var_name): # asanyarray will keep the columns as an Index mdata[col] = np.asanyarray(frame.columns.get_level_values(i)).repeat(N) return DataFrame(mdata, columns=mcolumns) def lreshape(data, groups, dropna=True, label=None): """ Reshape long-format data to wide. Generalized inverse of DataFrame.pivot Parameters ---------- data : DataFrame groups : dict {new_name : list_of_columns} dropna : boolean, default True Examples -------- >>> import pandas as pd >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526], ... 'team': ['Red Sox', 'Yankees'], ... 'year1': [2007, 2008], 'year2': [2008, 2008]}) >>> data hr1 hr2 team year1 year2 0 514 545 Red Sox 2007 2008 1 573 526 Yankees 2007 2008 >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']}) team hr year 0 Red Sox 514 2007 1 Yankees 573 2007 2 Red Sox 545 2008 3 Yankees 526 2008 Returns ------- reshaped : DataFrame """ if isinstance(groups, dict): keys = list(groups.keys()) values = list(groups.values()) else: keys, values = zip(*groups) all_cols = list(set.union(*[set(x) for x in values])) id_cols = list(data.columns.difference(all_cols)) K = len(values[0]) for seq in values: if len(seq) != K: raise ValueError('All column lists must be same length') mdata = {} pivot_cols = [] for target, names in zip(keys, values): to_concat = [data[col].values for col in names] mdata[target] = _concat._concat_compat(to_concat) pivot_cols.append(target) for col in id_cols: mdata[col] = np.tile(data[col].values, K) if dropna: mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool) for c in pivot_cols: mask &= notnull(mdata[c]) if not mask.all(): mdata = dict((k, v[mask]) for k, v in compat.iteritems(mdata)) return DataFrame(mdata, columns=id_cols + pivot_cols) def wide_to_long(df, stubnames, i, j): """ Wide panel to long format. Less flexible but more user-friendly than melt. Parameters ---------- df : DataFrame The wide-format DataFrame stubnames : list A list of stub names. The wide format variables are assumed to start with the stub names. i : str The name of the id variable. j : str The name of the subobservation variable. stubend : str Regex to match for the end of the stubs. Returns ------- DataFrame A DataFrame that contains each stub name as a variable as well as variables for i and j. Examples -------- >>> import pandas as pd >>> import numpy as np >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> wide_to_long(df, ["A", "B"], i="id", j="year") X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 Notes ----- All extra variables are treated as extra id variables. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typicaly case. """ def get_var_names(df, regex): return df.filter(regex=regex).columns.tolist() def melt_stub(df, stub, i, j): varnames = get_var_names(df, "^" + stub) newdf = melt(df, id_vars=i, value_vars=varnames, value_name=stub, var_name=j) newdf_j = newdf[j].str.replace(stub, "") try: newdf_j = newdf_j.astype(int) except ValueError: pass newdf[j] = newdf_j return newdf id_vars = get_var_names(df, "^(?!%s)" % "|".join(stubnames)) if i not in id_vars: id_vars += [i] newdf = melt_stub(df, stubnames[0], id_vars, j) for stub in stubnames[1:]: new = melt_stub(df, stub, id_vars, j) newdf = newdf.merge(new, how="outer", on=id_vars + [j], copy=False) return newdf.set_index([i, j]) def get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False): """ Convert categorical variable into dummy/indicator variables Parameters ---------- data : array-like, Series, or DataFrame prefix : string, list of strings, or dict of strings, default None String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternativly, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : string, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix.` dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted. sparse : bool, default False Whether the dummy columns should be sparse or not. Returns SparseDataFrame if `data` is a Series or if all columns are included. Otherwise returns a DataFrame with some SparseBlocks. .. versionadded:: 0.16.1 drop_first : bool, default False Whether to get k-1 dummies out of n categorical levels by removing the first level. .. versionadded:: 0.18.0 Returns ------- dummies : DataFrame or SparseDataFrame Examples -------- >>> import pandas as pd >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 See Also -------- Series.str.get_dummies """ from pandas.tools.merge import concat from itertools import cycle if isinstance(data, DataFrame): # determine columns being encoded if columns is None: columns_to_encode = data.select_dtypes( include=['object', 'category']).columns else: columns_to_encode = columns # validate prefixes and separator to avoid silently dropping cols def check_len(item, name): length_msg = ("Length of '{0}' ({1}) did not match the length of " "the columns being encoded ({2}).") if com.is_list_like(item): if not len(item) == len(columns_to_encode): raise ValueError(length_msg.format(name, len(item), len(columns_to_encode))) check_len(prefix, 'prefix') check_len(prefix_sep, 'prefix_sep') if isinstance(prefix, compat.string_types): prefix = cycle([prefix]) if isinstance(prefix, dict): prefix = [prefix[col] for col in columns_to_encode] if prefix is None: prefix = columns_to_encode # validate separators if isinstance(prefix_sep, compat.string_types): prefix_sep = cycle([prefix_sep]) elif isinstance(prefix_sep, dict): prefix_sep = [prefix_sep[col] for col in columns_to_encode] if set(columns_to_encode) == set(data.columns): with_dummies = [] else: with_dummies = [data.drop(columns_to_encode, axis=1)] for (col, pre, sep) in zip(columns_to_encode, prefix, prefix_sep): dummy = _get_dummies_1d(data[col], prefix=pre, prefix_sep=sep, dummy_na=dummy_na, sparse=sparse, drop_first=drop_first) with_dummies.append(dummy) result = concat(with_dummies, axis=1) else: result = _get_dummies_1d(data, prefix, prefix_sep, dummy_na, sparse=sparse, drop_first=drop_first) return result def _get_dummies_1d(data, prefix, prefix_sep='_', dummy_na=False, sparse=False, drop_first=False): # Series avoids inconsistent NaN handling cat = Categorical.from_array(Series(data), ordered=True) levels = cat.categories def get_empty_Frame(data, sparse): if isinstance(data, Series): index = data.index else: index = np.arange(len(data)) if not sparse: return DataFrame(index=index) else: return SparseDataFrame(index=index) # if all NaN if not dummy_na and len(levels) == 0: return get_empty_Frame(data, sparse) codes = cat.codes.copy() if dummy_na: codes[codes == -1] = len(cat.categories) levels = np.append(cat.categories, np.nan) # if dummy_na, we just fake a nan level. drop_first will drop it again if drop_first and len(levels) == 1: return get_empty_Frame(data, sparse) number_of_cols = len(levels) if prefix is not None: dummy_cols = ['%s%s%s' % (prefix, prefix_sep, v) for v in levels] else: dummy_cols = levels if isinstance(data, Series): index = data.index else: index = None if sparse: sparse_series = {} N = len(data) sp_indices = [[] for _ in range(len(dummy_cols))] for ndx, code in enumerate(codes): if code == -1: # Blank entries if not dummy_na and code == -1, #GH4446 continue sp_indices[code].append(ndx) if drop_first: # remove first categorical level to avoid perfect collinearity # GH12042 sp_indices = sp_indices[1:] dummy_cols = dummy_cols[1:] for col, ixs in zip(dummy_cols, sp_indices): sarr = SparseArray(np.ones(len(ixs)), sparse_index=IntIndex(N, ixs), fill_value=0) sparse_series[col] = SparseSeries(data=sarr, index=index) return SparseDataFrame(sparse_series, index=index, columns=dummy_cols) else: dummy_mat = np.eye(number_of_cols).take(codes, axis=0) if not dummy_na: # reset NaN GH4446 dummy_mat[codes == -1] = 0 if drop_first: # remove first GH12042 dummy_mat = dummy_mat[:, 1:] dummy_cols = dummy_cols[1:] return DataFrame(dummy_mat, index=index, columns=dummy_cols) def make_axis_dummies(frame, axis='minor', transform=None): """ Construct 1-0 dummy variables corresponding to designated axis labels Parameters ---------- frame : DataFrame axis : {'major', 'minor'}, default 'minor' transform : function, default None Function to apply to axis labels first. For example, to get "day of week" dummies in a time series regression you might call:: make_axis_dummies(panel, axis='major', transform=lambda d: d.weekday()) Returns ------- dummies : DataFrame Column names taken from chosen axis """ numbers = {'major': 0, 'minor': 1} num = numbers.get(axis, axis) items = frame.index.levels[num] labels = frame.index.labels[num] if transform is not None: mapped_items = items.map(transform) cat = Categorical.from_array(mapped_items.take(labels), ordered=True) labels = cat.codes items = cat.categories values = np.eye(len(items), dtype=float) values = values.take(labels, axis=0) return DataFrame(values, columns=items, index=frame.index)
mit
mohanprasath/Course-Work
data_analysis/uh_data_analysis_with_python/hy-data-analysis-with-python-spring-2020/part06-e07_binding_sites/src/binding_sites.py
1
2468
#!/usr/bin/env python3 import pandas as pd import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import accuracy_score from sklearn.metrics import pairwise_distances import scipy from matplotlib import pyplot as plt import seaborn as sns sns.set(color_codes=True) import scipy.spatial as sp import scipy.cluster.hierarchy as hc def toint(x): if type('x') == 'list': print(x) r = input("You") reference = {'A':0, 'C':1, 'G':2, 'T':3} return reference[x] def find_permutation(n_clusters, real_labels, labels): permutation = [] for i in range(n_clusters): idx = labels == i # Choose the most common label among data points in the cluster new_label = scipy.stats.mode(real_labels[idx])[0][0] permutation.append(new_label) return permutation def get_features_and_labels(filename): df = pd.read_csv(filename, sep='\t') # print(df.head()) labels = df.loc[:, 'y':] features = df.loc[:, 'X'].apply(lambda x: [toint(a) for a in x]) return (np.array(features.tolist()), labels) def plot(distances, method='average', affinity='euclidean'): mylinkage = hc.linkage(sp.distance.squareform(distances), method=method) g=sns.clustermap(distances, row_linkage=mylinkage, col_linkage=mylinkage ) g.fig.suptitle(f"Hierarchical clustering using {method} linkage and {affinity} affinity") plt.show() def cluster_euclidean(filename): X, y = get_features_and_labels(filename) model = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='average') y_predicted = model.fit_predict(X, y) permutation = find_permutation(2, y, y_predicted) new_labels = [permutation[label] for label in model.labels_] return accuracy_score(y, new_labels) def cluster_hamming(filename): X, y = get_features_and_labels(filename) model = AgglomerativeClustering(n_clusters=2, affinity='precomputed', linkage='average') distance = pairwise_distances(X, metric='hamming') y_predicted = model.fit_predict(distance, y) permutation = find_permutation(2, y, y_predicted) new_labels = [permutation[label] for label in model.labels_] return accuracy_score(y, new_labels) def main(): print("Accuracy score with Euclidean affinity is", cluster_euclidean("src/data.seq")) print("Accuracy score with Hamming affinity is", cluster_hamming("src/data.seq")) if __name__ == "__main__": main()
gpl-3.0
marcoantoniooliveira/labweb
oscar/lib/python2.7/site-packages/IPython/qt/console/qtconsoleapp.py
2
13295
""" A minimal application using the Qt console-style IPython frontend. This is not a complete console app, as subprocess will not be able to receive input, there is no real readline support, among other limitations. Authors: * Evan Patterson * Min RK * Erik Tollerud * Fernando Perez * Bussonnier Matthias * Thomas Kluyver * Paul Ivanov """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # stdlib imports import os import signal import sys # If run on Windows, install an exception hook which pops up a # message box. Pythonw.exe hides the console, so without this # the application silently fails to load. # # We always install this handler, because the expectation is for # qtconsole to bring up a GUI even if called from the console. # The old handler is called, so the exception is printed as well. # If desired, check for pythonw with an additional condition # (sys.executable.lower().find('pythonw.exe') >= 0). if os.name == 'nt': old_excepthook = sys.excepthook def gui_excepthook(exctype, value, tb): try: import ctypes, traceback MB_ICONERROR = 0x00000010L title = u'Error starting IPython QtConsole' msg = u''.join(traceback.format_exception(exctype, value, tb)) ctypes.windll.user32.MessageBoxW(0, msg, title, MB_ICONERROR) finally: # Also call the old exception hook to let it do # its thing too. old_excepthook(exctype, value, tb) sys.excepthook = gui_excepthook # System library imports from IPython.external.qt import QtCore, QtGui # Local imports from IPython.config.application import catch_config_error from IPython.core.application import BaseIPythonApplication from IPython.qt.console.ipython_widget import IPythonWidget from IPython.qt.console.rich_ipython_widget import RichIPythonWidget from IPython.qt.console import styles from IPython.qt.console.mainwindow import MainWindow from IPython.qt.client import QtKernelClient from IPython.qt.manager import QtKernelManager from IPython.utils.traitlets import ( Dict, Unicode, CBool, Any ) from IPython.consoleapp import ( IPythonConsoleApp, app_aliases, app_flags, flags, aliases ) #----------------------------------------------------------------------------- # Network Constants #----------------------------------------------------------------------------- from IPython.utils.localinterfaces import LOCALHOST, LOCAL_IPS #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- _examples = """ ipython qtconsole # start the qtconsole ipython qtconsole --matplotlib=inline # start with matplotlib inline plotting mode """ #----------------------------------------------------------------------------- # Aliases and Flags #----------------------------------------------------------------------------- # start with copy of flags flags = dict(flags) qt_flags = { 'plain' : ({'IPythonQtConsoleApp' : {'plain' : True}}, "Disable rich text support."), } # and app_flags from the Console Mixin qt_flags.update(app_flags) # add frontend flags to the full set flags.update(qt_flags) # start with copy of front&backend aliases list aliases = dict(aliases) qt_aliases = dict( style = 'IPythonWidget.syntax_style', stylesheet = 'IPythonQtConsoleApp.stylesheet', colors = 'ZMQInteractiveShell.colors', editor = 'IPythonWidget.editor', paging = 'ConsoleWidget.paging', ) # and app_aliases from the Console Mixin qt_aliases.update(app_aliases) qt_aliases.update({'gui-completion':'ConsoleWidget.gui_completion'}) # add frontend aliases to the full set aliases.update(qt_aliases) # get flags&aliases into sets, and remove a couple that # shouldn't be scrubbed from backend flags: qt_aliases = set(qt_aliases.keys()) qt_aliases.remove('colors') qt_flags = set(qt_flags.keys()) #----------------------------------------------------------------------------- # Classes #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # IPythonQtConsole #----------------------------------------------------------------------------- class IPythonQtConsoleApp(BaseIPythonApplication, IPythonConsoleApp): name = 'ipython-qtconsole' description = """ The IPython QtConsole. This launches a Console-style application using Qt. It is not a full console, in that launched terminal subprocesses will not be able to accept input. The QtConsole supports various extra features beyond the Terminal IPython shell, such as inline plotting with matplotlib, via: ipython qtconsole --matplotlib=inline as well as saving your session as HTML, and printing the output. """ examples = _examples classes = [IPythonWidget] + IPythonConsoleApp.classes flags = Dict(flags) aliases = Dict(aliases) frontend_flags = Any(qt_flags) frontend_aliases = Any(qt_aliases) kernel_client_class = QtKernelClient kernel_manager_class = QtKernelManager stylesheet = Unicode('', config=True, help="path to a custom CSS stylesheet") hide_menubar = CBool(False, config=True, help="Start the console window with the menu bar hidden.") maximize = CBool(False, config=True, help="Start the console window maximized.") plain = CBool(False, config=True, help="Use a plaintext widget instead of rich text (plain can't print/save).") def _plain_changed(self, name, old, new): kind = 'plain' if new else 'rich' self.config.ConsoleWidget.kind = kind if new: self.widget_factory = IPythonWidget else: self.widget_factory = RichIPythonWidget # the factory for creating a widget widget_factory = Any(RichIPythonWidget) def parse_command_line(self, argv=None): super(IPythonQtConsoleApp, self).parse_command_line(argv) self.build_kernel_argv(argv) def new_frontend_master(self): """ Create and return new frontend attached to new kernel, launched on localhost. """ kernel_manager = self.kernel_manager_class( connection_file=self._new_connection_file(), parent=self, autorestart=True, ) # start the kernel kwargs = dict() kwargs['extra_arguments'] = self.kernel_argv kernel_manager.start_kernel(**kwargs) kernel_manager.client_factory = self.kernel_client_class kernel_client = kernel_manager.client() kernel_client.start_channels(shell=True, iopub=True) widget = self.widget_factory(config=self.config, local_kernel=True) self.init_colors(widget) widget.kernel_manager = kernel_manager widget.kernel_client = kernel_client widget._existing = False widget._may_close = True widget._confirm_exit = self.confirm_exit return widget def new_frontend_slave(self, current_widget): """Create and return a new frontend attached to an existing kernel. Parameters ---------- current_widget : IPythonWidget The IPythonWidget whose kernel this frontend is to share """ kernel_client = self.kernel_client_class( connection_file=current_widget.kernel_client.connection_file, config = self.config, ) kernel_client.load_connection_file() kernel_client.start_channels() widget = self.widget_factory(config=self.config, local_kernel=False) self.init_colors(widget) widget._existing = True widget._may_close = False widget._confirm_exit = False widget.kernel_client = kernel_client widget.kernel_manager = current_widget.kernel_manager return widget def init_qt_app(self): # separate from qt_elements, because it must run first self.app = QtGui.QApplication([]) def init_qt_elements(self): # Create the widget. base_path = os.path.abspath(os.path.dirname(__file__)) icon_path = os.path.join(base_path, 'resources', 'icon', 'IPythonConsole.svg') self.app.icon = QtGui.QIcon(icon_path) QtGui.QApplication.setWindowIcon(self.app.icon) ip = self.ip local_kernel = (not self.existing) or ip in LOCAL_IPS self.widget = self.widget_factory(config=self.config, local_kernel=local_kernel) self.init_colors(self.widget) self.widget._existing = self.existing self.widget._may_close = not self.existing self.widget._confirm_exit = self.confirm_exit self.widget.kernel_manager = self.kernel_manager self.widget.kernel_client = self.kernel_client self.window = MainWindow(self.app, confirm_exit=self.confirm_exit, new_frontend_factory=self.new_frontend_master, slave_frontend_factory=self.new_frontend_slave, ) self.window.log = self.log self.window.add_tab_with_frontend(self.widget) self.window.init_menu_bar() # Ignore on OSX, where there is always a menu bar if sys.platform != 'darwin' and self.hide_menubar: self.window.menuBar().setVisible(False) self.window.setWindowTitle('IPython') def init_colors(self, widget): """Configure the coloring of the widget""" # Note: This will be dramatically simplified when colors # are removed from the backend. # parse the colors arg down to current known labels try: colors = self.config.ZMQInteractiveShell.colors except AttributeError: colors = None try: style = self.config.IPythonWidget.syntax_style except AttributeError: style = None try: sheet = self.config.IPythonWidget.style_sheet except AttributeError: sheet = None # find the value for colors: if colors: colors=colors.lower() if colors in ('lightbg', 'light'): colors='lightbg' elif colors in ('dark', 'linux'): colors='linux' else: colors='nocolor' elif style: if style=='bw': colors='nocolor' elif styles.dark_style(style): colors='linux' else: colors='lightbg' else: colors=None # Configure the style if style: widget.style_sheet = styles.sheet_from_template(style, colors) widget.syntax_style = style widget._syntax_style_changed() widget._style_sheet_changed() elif colors: # use a default dark/light/bw style widget.set_default_style(colors=colors) if self.stylesheet: # we got an explicit stylesheet if os.path.isfile(self.stylesheet): with open(self.stylesheet) as f: sheet = f.read() else: raise IOError("Stylesheet %r not found." % self.stylesheet) if sheet: widget.style_sheet = sheet widget._style_sheet_changed() def init_signal(self): """allow clean shutdown on sigint""" signal.signal(signal.SIGINT, lambda sig, frame: self.exit(-2)) # need a timer, so that QApplication doesn't block until a real # Qt event fires (can require mouse movement) # timer trick from http://stackoverflow.com/q/4938723/938949 timer = QtCore.QTimer() # Let the interpreter run each 200 ms: timer.timeout.connect(lambda: None) timer.start(200) # hold onto ref, so the timer doesn't get cleaned up self._sigint_timer = timer @catch_config_error def initialize(self, argv=None): self.init_qt_app() super(IPythonQtConsoleApp, self).initialize(argv) IPythonConsoleApp.initialize(self,argv) self.init_qt_elements() self.init_signal() def start(self): # draw the window if self.maximize: self.window.showMaximized() else: self.window.show() self.window.raise_() # Start the application main loop. self.app.exec_() #----------------------------------------------------------------------------- # Main entry point #----------------------------------------------------------------------------- def main(): app = IPythonQtConsoleApp() app.initialize() app.start() if __name__ == '__main__': main()
bsd-3-clause
drwalshaw/sc-python
analyse.py
1
1492
import sys import numpy import matplotlib.pyplot def detect_problems (filename): """some of our temperature files haave problems, check for these this function reads a file and reports on odd looking maxima and minimia that add to zero the function does not return any data """ data=numpy.loadtxt(fname=filename, delimiter=',') if numpy.max (data, axis=0)[0] ==0 and numpy.max (data, axis=0)[20] ==20: print ('suspicious looking maxima') elif numpy.sum(numpy.min(data, axis=0)) ==0: print ('minimum adds to zero') else: print ('data looks ok') def analyse (filename, outfile=None): data=numpy.loadtxt(fname=filename,delimiter=',') """ this function analyses a dataset and outputs plots for maax min and ave """ fig=matplotlib.pyplot.figure (figsize=(10.0,3.0)) subplot1=fig.add_subplot (1,3,1) subplot2=fig.add_subplot (1,3,2) subplot3=fig.add_subplot (1,3,3) subplot1.set_ylabel('average') subplot1.plot(numpy.mean(data, axis=0)) subplot2.set_ylabel('minimum') subplot2.plot(numpy.min(data, axis=0)) subplot3.set_ylabel('maximum') subplot3.plot(numpy.max(data, axis=0)) fig.tight_layout() if outfile is None: matplotlib.pyplot.show else: matplotlib.pyplot.savefig(outfile) print("running",sys.argv[0]) print (sys.argv[1]) analyse (sys.argv[1], outfile=sys.argv[2]) detect_problems (sys.argv[1])
mit
AndiH/QuantifiedSelf
Typingstats/keyHeatmap_visulization.py
1
1169
import numpy as np #numerical stuff import pylab as pl #for poly line fit import sys, datetime #for converting to human readable date # import matplotlib.pyplot as plt import prettyplotlib as ppl # makes nicer colors and generally better to look at graphs from prettyplotlib import plt # This is "import matplotlib.pyplot as plt" from the prettyplotlib library from prettyplotlib import mpl # This is "import matplotlib as mpl" from the prettyplotlib library # change font to Open Sans (has some kerning issues, though) # mpl.rcParams.update({'font.family':'Open Sans'}) # get name of file to process inputFileName = sys.argv[1] # keyPresses_Heatmap.csv # load csv file with EPOCHTIME;NOFPROCESSES data = np.loadtxt(inputFileName, delimiter=";") # data[:,1] = [x - notActuallyChromeTabs for x in data[:,1]] # print data[:,0], data[:,1] fig = plt.figure(figsize=(14,8)) ax = fig.add_subplot(111) # ppl.bar(ax, data[:,0], data[:,1]) ax.bar(data[:,0], data[:,1]) # ax.axis('tight') plt.show() # xy = [(x_int[i],y_int[i]) for i in range(0,len(x_int))] # xy_sorted = np.array(sorted(xy, key=lambda yz: yz[1], reverse=True)) # ax.bar(xy_sorted[:,0], xy_sorted[:,1])
gpl-2.0
janchorowski/blocks-extras
tests/scripts/test_plot.py
4
2447
import tempfile import blocks_extras.scripts.plot as plot from collections import OrderedDict from tests import silence_printing, skip_if_not_available from numpy import nan, isfinite from blocks.log import TrainingLog from blocks.main_loop import MainLoop from blocks.serialization import dump try: from pandas import DataFrame PANDAS_AVAILABLE = True except: PANDAS_AVAILABLE = False def some_experiments(): """Create some 2 dummy experiments.""" experiments = OrderedDict() experiments['exp0'] = DataFrame() experiments['exp0']['col0'] = (0, 1, 2) experiments['exp0']['col1'] = (3, 4, 5) experiments['exp1'] = DataFrame() experiments['exp1']['col0'] = (6, 7, 8, 9) experiments['exp1']['col1'] = (9, 9, 9, 9) return experiments def test_load_log(): log = TrainingLog() log[0]['channel0'] = 0 # test simple TrainingLog pickles with tempfile.NamedTemporaryFile() as f: dump(log, f) f.flush() log2 = plot.load_log(f.name) assert log2[0]['channel0'] == 0 # test MainLoop pickles main_loop = MainLoop(model=None, data_stream=None, algorithm=None, log=log) with tempfile.NamedTemporaryFile() as f: dump(main_loop, f) f.flush() log2 = plot.load_log(f.name) assert log2[0]['channel0'] == 0 @silence_printing def test_print_column_summary(): skip_if_not_available(modules=['pandas']) experiments = some_experiments() plot.print_column_summary(experiments) def test_match_column_specs(): skip_if_not_available(modules=['pandas']) experiments = some_experiments() specs = ['0:col0', '*1'] df = plot.match_column_specs(experiments, specs) assert isinstance(df, DataFrame) assert list(df.columns) == ['0:col0', '0:col1', '1:col1'] assert list(df.index) == [0, 1, 2, 3] def test_interpolate(): skip_if_not_available(modules=['pandas']) """ Ensure tha DataFrame.interpolate(method='nearest') has the desired properties. It is used by blocks-plot and should: * interpolate missing/NaN datapoints between valid ones * not replace any NaN before/after the first/last finite datapoint """ y = [nan, nan, 2., 3., nan, 5, nan, nan] df = DataFrame(y) df_ = df.interpolate(method='nearest')[0] assert all(isfinite(df_[2:6])) assert all(~isfinite(df_[0:2])) assert all(~isfinite(df_[6:8]))
mit
catherinezucker/radfil
radfil/plot.py
1
10924
import numpy as np import numbers import matplotlib.colors as colors import matplotlib.pyplot as plt from astropy.wcs import WCS from . import styles def plotCuts(radobj, ax): if hasattr(radobj, 'dictionary_cuts'): dictionary_cuts = radobj.dictionary_cuts.copy() else: raise ValueError('Please run build_profile before plotting.') # plot the peaks if dictionary_cuts['plot_peaks'] is not None: toPlot = np.asarray(dictionary_cuts['plot_peaks']) ax.plot(toPlot[:, 0].astype(int), toPlot[:, 1].astype(int), 'b.', markersize = 12., alpha=0.75, zorder = 999, markeredgecolor='white',markeredgewidth=0.5) # plot the cuts if dictionary_cuts['plot_cuts'] is not None: toPlot = dictionary_cuts['plot_cuts'] [ax.plot(np.asarray(cut)[:, 0], np.asarray(cut)[:, 1], 'r-', linewidth = 1.)\ for cut in toPlot] return ax class RadFilPlotter(object): ''' A class to plot the results in radfil objects. ''' def __init__(self, radobj): self.radobj = radobj def plotCuts(self, ax, savefig = False): ## prepare vmin, vmax = np.nanmin(self.radobj.image[self.radobj.mask]), np.nanpercentile(self.radobj.image[self.radobj.mask], 98.) xmin, xmax = np.where(self.radobj.mask)[1].min(), np.where(self.radobj.mask)[1].max() ymin, ymax = np.where(self.radobj.mask)[0].min(), np.where(self.radobj.mask)[0].max() if self.radobj.cutting: ## plotting ax.imshow(self.radobj.image, origin='lower', cmap='gray', interpolation='none', norm = colors.Normalize(vmin = vmin, vmax = vmax)) ax.contourf(self.radobj.mask, levels = [0., .5], colors = 'w') ax.plot(self.radobj.xspline, self.radobj.yspline, 'r', label='fit', lw=3, alpha=1.0) ax.set_xlim(max(0., xmin-.1*(xmax-xmin)), min(self.radobj.mask.shape[1]-.5, xmax+.1*(xmax-xmin))) ax.set_ylim(max(0., ymin-.1*(ymax-ymin)), min(self.radobj.mask.shape[0]-.5, ymax+.1*(ymax-ymin))) else: ## plotting ax.imshow(self.radobj.image, origin='lower', cmap='gray', interpolation='none', norm = colors.Normalize(vmin = vmin, vmax = vmax)) ax.contourf(self.radobj.mask, levels = [0., .5], colors = 'w') ax.plot(line.xy[0], line.xy[1], 'r', label='fit', lw=2, alpha=0.5) ax.set_xlim(max(0., xmin-.1*(xmax-xmin)), min(self.radobj.mask.shape[1]-.5, xmax+.1*(xmax-xmin))) ax.set_ylim(max(0., ymin-.1*(ymax-ymin)), min(self.radobj.mask.shape[0]-.5, ymax+.1*(ymax-ymin))) plotCuts(self.radobj, ax) def plotFits(self, ax, plotFeature): if isinstance(plotFeature, str): if plotFeature.lower() == 'model': if self.radobj.bgdist is not None: xplot = self.radobj.xall yplot = self.radobj.yall - self.radobj.bgfit(xplot) xlim=np.max(self.radobj.bgdist*1.5) else: xplot=self.radobj.xall yplot=self.radobj.yall xlim=np.max(np.absolute(self.radobj.fitdist))*1.5 ## Plot model #Adjust axis limit based on percentiles of data #axis.set_xlim(np.min(self.radobj.xall), np.max(self.radobj.xall)) #xlim=np.max(np.absolute([np.nanpercentile(self.radobj.xall[np.isfinite(self.radobj.yall)],1),np.nanpercentile(self.radobj.xall[np.isfinite(self.radobj.yall)],99)])) if not self.radobj.fold: ax.set_xlim(-xlim,+xlim) else: ax.set_xlim(0., +xlim) ax.set_ylim(np.nanpercentile(yplot,0)-np.abs(0.5*np.nanpercentile(yplot,0)),np.nanpercentile(yplot,99.9)+np.abs(0.25*np.nanpercentile(yplot,99.9))) ax.plot(xplot, yplot, 'k.', markersize = 1., alpha=styles.get_scatter_alpha(len(self.radobj.xall))) if self.radobj.binning: if self.radobj.bgdist is not None: plotbinx, plotbiny = np.ravel(list(zip(self.radobj.bins[:-1], self.radobj.bins[1:]))), np.ravel(list(zip(self.radobj.mastery-self.radobj.bgfit(self.radobj.masterx), self.radobj.mastery-self.radobj.bgfit(self.radobj.masterx)))) else: plotbinx, plotbiny = np.ravel(list(zip(self.radobj.bins[:-1], self.radobj.bins[1:]))), np.ravel(list(zip(self.radobj.mastery, self.radobj.mastery))) ax.plot(plotbinx, plotbiny, 'r-') # Plot the range if self.radobj.fitdist is not None: ## symmetric fitting range if isinstance(self.radobj.fitdist, numbers.Number): ax.fill_between([-self.radobj.fitdist, self.radobj.fitdist], *ax.get_ylim(), facecolor = (0., 0., 1., .05), edgecolor = 'b', linestyle = '--', linewidth = 1.) ## asymmetric fitting range elif np.asarray(self.radobj.fitdist).shape == (2,): plot_fitdist = self.radobj.fitdist.copy() plot_fitdist[~np.isfinite(plot_fitdist)] = np.asarray(ax.get_xlim())[~np.isfinite(plot_fitdist)] ax.fill_between(plot_fitdist, *ax.get_ylim(), facecolor = (0., 0., 1., .05), edgecolor = 'b', linestyle = '--', linewidth = 1.) ## no fitting range; all data are used else: ax.fill_between(ax.get_xlim(), *ax.get_ylim(), facecolor = (0., 0., 1., .05), edgecolor = 'b', linestyle = '--', linewidth = 1.) # Plot the predicted curve ax.plot(np.linspace(ax.get_xlim()[0],ax.get_xlim()[1],500), self.radobj.profilefit(np.linspace(ax.get_xlim()[0],ax.get_xlim()[1],500)), 'b-', lw = 3., alpha = .6) ax.text(0.03, 0.95,"{}={:.2E}\n{}={:.2f}\n{}={:.2f}".format(self.radobj.profilefit.param_names[0],self.radobj.profilefit.parameters[0],self.radobj.profilefit.param_names[1],self.radobj.profilefit.parameters[1],self.radobj.profilefit.param_names[2],self.radobj.profilefit.parameters[2]),ha='left',va='top', fontweight='bold',fontsize=20,transform=ax.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1}) ax.text(0.97, 0.95,"{}\nFit".format(self.radobj.fitfunc.capitalize()), ha='right',va='top', color='blue',fontweight='bold', fontsize=20, transform=ax.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1}) #ax.tick_params(labelsize=14) elif plotFeature.lower() == 'bg': if self.radobj.bgdist is None: raise ValueError('No bgfit in the radfil object. Rerun fit_profile.') #xlim=np.max(np.absolute([np.nanpercentile(self.radobj.xall[np.isfinite(self.radobj.yall)],1),np.nanpercentile(self.radobj.xall[np.isfinite(self.radobj.yall)],99)])) xlim=np.max(self.radobj.bgdist*1.5) if not self.radobj.fold: ax.set_xlim(-xlim,+xlim) else: ax.set_xlim(0., +xlim) ax.set_ylim(np.nanpercentile(self.radobj.yall,0)-np.abs(0.5*np.nanpercentile(self.radobj.yall,0)),np.nanpercentile(self.radobj.yall,99.9)+np.abs(0.25*np.nanpercentile(self.radobj.yall,99.9))) ax.plot(self.radobj.xall, self.radobj.yall, 'k.', markersize = 1., alpha=styles.get_scatter_alpha(len(self.radobj.xall))) ########## if self.radobj.binning: plotbinx, plotbiny = np.ravel(list(zip(self.radobj.bins[:-1], self.radobj.bins[1:]))), np.ravel(list(zip(self.radobj.mastery, self.radobj.mastery))) ax.plot(plotbinx, plotbiny, 'r-') # Plot the range plot_bgdist = self.radobj.bgdist.copy() plot_bgdist[~np.isfinite(plot_bgdist)] = np.asarray(ax.get_xlim())[~np.isfinite(plot_bgdist)] ax.fill_between(plot_bgdist, *ax.get_ylim(), facecolor = (0., 1., 0., .05), edgecolor = 'g', linestyle = '--', linewidth = 1.) ax.fill_between(-plot_bgdist, *ax.get_ylim(), facecolor = (0., 1., 0., .05), edgecolor = 'g', linestyle = '--', linewidth = 1.) ax.plot(np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 500), self.radobj.bgfit(np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 500)),'g-', lw=3) #ax.set_xticklabels([]) #ax.tick_params(labelsize=14) xplot = self.radobj.xall yplot = self.radobj.yall - self.radobj.bgfit(xplot) #Add labels# if self.radobj.bgfit.degree == 1: ax.text(0.03, 0.95,"y=({:.2E})x+({:.2E})".format(self.radobj.bgfit.parameters[1],self.radobj.bgfit.parameters[0]),ha='left',va='top', fontweight='bold',fontsize=20, transform=ax.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1}) elif self.radobj.bgfit.degree == 0: ax.text(0.03, 0.95,"y=({:.2E})".format(self.radobj.bgfit.c0.value),ha='left',va='top', fontweight='bold',fontsize=20, transform=ax.transAxes) else: warnings.warn("Labeling BG functions of higher degrees during plotting are not supported yet.") ax.text(0.97, 0.95,"Background\nFit", ha='right',va='top', fontweight='bold',fontsize=20, color='green',transform=ax.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1}) else: raise ValueError('plotFeature has to be either "model" or "bg".') else: raise ValueError('plotFeature has to be either "model" or "bg".')
gpl-3.0
DOV-Vlaanderen/pydov
tests/test_search_itp_geotechnischecodering.py
1
7392
"""Module grouping tests for the interpretaties search module.""" import pandas as pd from owslib.fes import PropertyIsEqualTo from pandas import DataFrame from pydov.search.interpretaties import GeotechnischeCoderingSearch from pydov.types.interpretaties import GeotechnischeCodering from tests.abstract import AbstractTestSearch location_md_metadata = \ 'tests/data/types/interpretaties/geotechnische_codering/' \ 'md_metadata.xml' location_fc_featurecatalogue = \ 'tests/data/types/interpretaties/geotechnische_codering/' \ 'fc_featurecatalogue.xml' location_wfs_describefeaturetype = \ 'tests/data/types/interpretaties/geotechnische_codering/' \ 'wfsdescribefeaturetype.xml' location_wfs_getfeature = \ 'tests/data/types/interpretaties/geotechnische_codering/' \ 'wfsgetfeature.xml' location_wfs_feature = \ 'tests/data/types/interpretaties/geotechnische_codering/feature.xml' location_dov_xml = \ 'tests/data/types/interpretaties/geotechnische_codering' \ '/geotechnische_codering.xml' location_xsd_base = \ 'tests/data/types/interpretaties/geotechnische_codering/xsd_*.xml' class TestGeotechnischeCoderingSearch(AbstractTestSearch): search_instance = GeotechnischeCoderingSearch() datatype_class = GeotechnischeCodering valid_query_single = PropertyIsEqualTo(propertyname='Proefnummer', literal='GEO-15/139-B1') inexistent_field = 'onbestaand' wfs_field = 'Proefnummer' xml_field = 'grondsoort' valid_returnfields = ('pkey_interpretatie', 'betrouwbaarheid_interpretatie') valid_returnfields_subtype = ( 'pkey_interpretatie', 'diepte_laag_van', 'diepte_laag_tot') valid_returnfields_extra = ('pkey_interpretatie', 'gemeente') df_default_columns = ['pkey_interpretatie', 'pkey_boring', 'betrouwbaarheid_interpretatie', 'x', 'y', 'start_interpretatie_mtaw', 'diepte_laag_van', 'diepte_laag_tot', 'hoofdnaam1_grondsoort', 'hoofdnaam2_grondsoort', 'bijmenging1_plaatselijk', 'bijmenging1_hoeveelheid', 'bijmenging1_grondsoort', 'bijmenging2_plaatselijk', 'bijmenging2_hoeveelheid', 'bijmenging2_grondsoort', 'bijmenging3_plaatselijk', 'bijmenging3_hoeveelheid', 'bijmenging3_grondsoort'] def test_search_nan(self, mp_wfs, mp_get_schema, mp_remote_describefeaturetype, mp_remote_md, mp_remote_fc, mp_remote_wfs_feature, mp_dov_xml): """Test the search method with only the query parameter. Test whether the result is correct. Parameters ---------- mp_wfs : pytest.fixture Monkeypatch the call to the remote GetCapabilities request. mp_get_schema : pytest.fixture Monkeypatch the call to a remote OWSLib schema. mp_remote_describefeaturetype : pytest.fixture Monkeypatch the call to a remote DescribeFeatureType. mp_remote_md : pytest.fixture Monkeypatch the call to get the remote metadata. mp_remote_fc : pytest.fixture Monkeypatch the call to get the remote feature catalogue. mp_remote_wfs_feature : pytest.fixture Monkeypatch the call to get WFS features. mp_dov_xml : pytest.fixture Monkeypatch the call to get the remote XML data. """ self.search_instance.search( query=self.valid_query_single) def test_search_customreturnfields(self, mp_get_schema, mp_remote_describefeaturetype, mp_remote_wfs_feature, mp_dov_xml): """Test the search method with custom return fields. Test whether the output dataframe is correct. Parameters ---------- mp_get_schema : pytest.fixture Monkeypatch the call to a remote OWSLib schema. mp_remote_describefeaturetype : pytest.fixture Monkeypatch the call to a remote DescribeFeatureType . mp_remote_wfs_feature : pytest.fixture Monkeypatch the call to get WFS features. mp_dov_xml : pytest.fixture Monkeypatch the call to get the remote XML data. """ df = self.search_instance.search( query=self.valid_query_single, return_fields=('pkey_interpretatie', 'pkey_boring')) assert isinstance(df, DataFrame) assert list(df) == ['pkey_interpretatie', 'pkey_boring'] assert not pd.isnull(df.pkey_boring[0]) def test_search_xml_resolve(self, mp_get_schema, mp_remote_describefeaturetype, mp_remote_wfs_feature, mp_dov_xml): """Test the search method with return fields from XML but not from a subtype. Test whether the output dataframe contains the resolved XML data. Parameters ---------- mp_get_schema : pytest.fixture Monkeypatch the call to a remote OWSLib schema. mp_remote_describefeaturetype : pytest.fixture Monkeypatch the call to a remote DescribeFeatureType. mp_remote_wfs_feature : pytest.fixture Monkeypatch the call to get WFS features. mp_dov_xml : pytest.fixture Monkeypatch the call to get the remote XML data. """ df = self.search_instance.search( query=self.valid_query_single, return_fields=('pkey_interpretatie', 'diepte_laag_tot')) assert df.diepte_laag_tot[0] == 2.0 def test_search_multiple_return(self, mp_get_schema, mp_remote_describefeaturetype, mp_remote_wfs_feature, mp_dov_xml): """Test the search method returning multiple (sub)elements of the same subject. Test whether the output dataframe contains the resolved XML data. Parameters ---------- mp_get_schema : pytest.fixture Monkeypatch the call to a remote OWSLib schema. mp_remote_describefeaturetype : pytest.fixture Monkeypatch the call to a remote DescribeFeatureType. mp_remote_wfs_feature : pytest.fixture Monkeypatch the call to get WFS features. mp_dov_xml : pytest.fixture Monkeypatch the call to get the remote XML data. """ df = self.search_instance.search( query=self.valid_query_single, return_fields=('pkey_interpretatie', 'hoofdnaam1_grondsoort', 'hoofdnaam2_grondsoort', 'bijmenging1_grondsoort', 'bijmenging1_hoeveelheid', 'bijmenging1_plaatselijk' )) assert df.hoofdnaam1_grondsoort[0] == 'FZ' assert df.hoofdnaam2_grondsoort[0] == 'LE' assert df.bijmenging1_grondsoort[0] == 'SN' assert df.bijmenging1_hoeveelheid[0] == 'N' # mind that the column below is of dtype 'object' assert df.bijmenging1_plaatselijk[0] is False
mit
kjford/mlprojects
sparseAutoCoder.py
1
8192
# Neural network implementation of sparse encoder import numpy as np import scipy.io import scipy.optimize as optm import matplotlib.pyplot as plt # functions: def loadImagePatches(imfile='testdata/IMAGES.mat', imvar='IMAGES',patchsize=8,npatches=10000,edgebuff=5,scale0to1=True): # open .mat file containing images in a r x c x num images array # load patches that are patchsize x patchsize # normalize scale to 0 to 1 values imgdict = scipy.io.loadmat(imfile) imgarray = imgdict[imvar] # get dimentions r = imgarray.shape[0] - 2*edgebuff - patchsize c = imgarray.shape[1] - 2*edgebuff - patchsize nimg = imgarray.shape[2] # allocate random numbers and patches arrays patches = np.zeros([patchsize**2,npatches]) randrow = np.random.randint(r,size=npatches) + edgebuff randcol = np.random.randint(c,size=npatches) + edgebuff randimg = np.random.randint(nimg,size=npatches) for i in range(npatches): r1 = randrow[i] r2 = r1+patchsize c1 = randcol[i] c2 = c1 + patchsize imi = randimg[i] patchi = imgarray[r1:r2,c1:c2,imi] patches[:,i] = patchi.reshape(1,patchsize**2) # normalize # subtract mean and scale by 3 stdev's patches -= patches.mean(0) pstd = patches.std() * 3 patches = np.maximum(np.minimum(patches, pstd),-pstd) / pstd if scale0to1: # Rescale from [-1,1] to [0.1,0.9] patches = (patches+1) * 0.4 + 0.1 return patches def squareImgPlot(I): # show n square images in a L x M array as single large panel image # where each image is L**0.5 x L**0.5 pixels # plotted image is M**0.5 I = I - np.mean(I) (L, M)=I.shape sz=int(np.sqrt(L)) buf=1 if np.floor(np.sqrt(M))**2 != M : n=int(np.ceil(np.sqrt(M))) while M % n !=0 and n<1.2*np.sqrt(M): n+=1 m=int(np.ceil(M/n)) else: n=int(np.sqrt(M)) m=n a=-np.ones([buf+m*(sz+buf)-1,buf+n*(sz+buf)-1]) k=0 for i in range(m): for j in range(n): if k>M: continue clim=np.max(np.abs(I[:,k])) r1=buf+i*(sz+buf) r2=r1+sz c1=buf+j*(sz+buf) c2=c1+sz a[r1:r2,c1:c2]=I[:,k].reshape(sz,sz)/clim k+=1 h = plt.imshow(a,cmap='gray',interpolation='none',vmin=-1,vmax=1) def initWeights(layervec,usebias=True): # initialize weights to each layer of network between -r and r # layervec is array with size of input layer, each hidden layer, and output layer # outputs initialized weights rolled into a single vector # option to use a bias input to each layer r = np.sqrt(6) / np.sqrt(np.sum(layervec[1:])) inweights = layervec[:-1] nunits = layervec[1:] totalW=np.multiply(inweights,nunits).sum() W=np.random.rand(totalW)*2*r-r if usebias: W=np.append(W,np.zeros(sum(nunits))) return W def numericalGradient(J,theta,e=1e-4): # compute numerical gradient as slope of J at theta values # J is a function handle that returns a cost value (and probably gradient) perturb = np.zeros(np.size(theta)) numgrad = np.zeros(np.size(theta)) for p in range(np.size(theta)): perturb[p] = e loss1 = J(theta - perturb) loss2 = J(theta + perturb) # Compute Numerical Gradient numgrad[p] = (loss2[0] - loss1[0]) / (2*e) perturb[p] = 0 return numgrad def sparseNNCost(X,Y,theta,layervec,lam=0.0001,sparsityParam=0.01,beta=3,costtype='ss',outtype='sig'): # compute the cost and gradient of neural network # X is ndarray of n features by m examples # Y is ndarray of output layer size by m examples # note: for a sparse autoencoder X=Y # theta is a rolled vector of parameters # layervec is an list with the architecture of the network # lam is the regularization cost parameter # sparsityParam is the target sparsity value # beta is the sparsity cost parameter # defaults to a sum of squares cost (ss) of 1/m*(h(x)-y)**2 # optional log likelihood cost (costtype='ll') # Defaults to a sigmoid (sig) output layer # optional linear (outtype='linear') output layer # get number of examples and number of layers m=X.shape[1] inweights = layervec[:-1] nunits = layervec[1:] totalW=np.multiply(inweights,nunits).sum() if theta.size>totalW: usebias=1 B=[] bcount=0 # perform forward pass through layers W=[] A=[X] wcount=0 sigmoid = lambda x: (1+np.exp(-x))**-1 for i in range(len(nunits)): nwi=inweights[i] nui=nunits[i] wi=theta[wcount:wcount+nwi*nui].reshape(nwi,nui) W.append(wi) a = np.dot(wi.T,A[i]) if usebias: bi=theta[totalW+bcount:totalW+bcount+nui] a+=bi.reshape(nui,1) B.append(bi) bcount+=nui wcount+=nwi*nui if outtype=='linear' and i==len(nunits-1): A.append(a) else: A.append(sigmoid(a)) # compute error if costtype=='ss': errcost = ((A[-1] - Y)**2).sum()/(2.0*m) elif costtype == 'll': errcost = (-Y*log(A[-1]) - (1-Y)*log(1-A[-1])).sum() else: print('Error type not recognized. Using sum of squares error\n') errcost = ((A[-1] - Y)**2).sum()/(2.0*m) costtype='ss' # compute regularization cost regcost = 0.5 * lam * (theta[:totalW]**2).sum() # sparsity cost using KL divergence # for now only assessed on first hidden layer pj = (1.0/m)*A[1].sum(axis=1) p=sparsityParam KLdiv=p*np.log(p/pj) + (1-p)*np.log((1-p)/(1-pj)) sparcost = beta * KLdiv.sum() # add up costs cost = errcost + regcost + sparcost #print(cost) # perform backpropagation if costtype=='ss': if outtype=='sig': errout = -(Y-A[-1])*A[-1]*(1-A[-1]) # vis x m else: errout = -(Y-A[-1]) else: if outtype=='sig': errout = -(Y-A[-1]) else: print('Log-likelihood error with linear outputs is not valid. Using sigmoid.') outtype=='sig' errout = -(Y-A[-1]) # go backward through hidden layers layercount = range(len(A)) revlayer = layercount[::-1][1:] #reversed count less last layer layererr = [errout,] Wgrad = W[:] if usebias: Bgrad = B[:] for i in revlayer: # err in layer is: # (weights transpose * err in layer+1) element wise * # deriv of layer activation wrt activation fxn (sigmoid) # get outgoing weights wi=W[i] # err from layer n+1 erri=layererr[-1] # activation of layer i ai=A[i] derivi=ai*(1-ai) # if second layer then add sparsity err if i==1: # use pj (sparsity of layer 2 averaged over m samples (size l2) KLderiv = -(p/pj) + (1-p)/(1-pj); # need to make l2 x 1 to add to err of weights sparerr = beta * KLderiv.reshape(KLderiv.size,1) layererr.append((np.dot(wi,erri)+sparerr) * derivi) elif i>1: layererr.append(np.dot(wi,erri) * derivi) Wgrad[i] = np.dot(ai,erri.T)/m + lam * wi if usebias: Bgrad[i] = (erri.sum(axis=1))/m # string together gradients thetagrad=theta*1. wcount=0 bcount=0 for i in range(len(Wgrad)): nw=Wgrad[i].size thetagrad[wcount:nw+wcount]=Wgrad[i].reshape(nw) wcount+=nw if usebias: nb=Bgrad[i].size thetagrad[totalW+bcount:totalW+bcount+nb]=Bgrad[i].reshape(nb) bcount+=nb return(cost,thetagrad) if __name__ == "__main__": # run with defaults p=loadImagePatches() l=[64,25,64] w0=initWeights(l) theta,fcost,fl=optm.fmin_l_bfgs_b(lambda x: sparseNNCost(p,p,x,l),w0) squareImgPlot(theta[:(64*25)].reshape(64,25)) plt.savefig('W1.eps')
gpl-3.0
brandonckelly/bck_stats
bck_stats/super_pca.py
2
11974
__author__ = 'brandonkelly' import numpy as np from sklearn import cross_validation, metrics from sklearn.decomposition import PCA import multiprocessing import copy import matplotlib.pyplot as plt class SupervisedPCABase(object): def __init__(self, regressor, max_components=None, n_components=1, whiten=True): """ Base class for performing supervised principal component regression. This is useful for cases where the number of inputs (features) is greater than the number of data points. @param regressor: The object that will perform the regression. The following members must be defined for this object: regressor.fit(X, y) : Fits the regression model y = f(X). regressor.predict(X) : Compute the prediction y = f(X). regressor.coef_score_ : The score of each parameter, used for ranking the most important features when computing the reduced feature space. In general this will be the absolute value of the coefficient value divided by its standard error. Note that this should *not* include the intercept. @param max_components: Maximum number of components to search over. The default is p. @param n_components: The number of reduced data matrix PCA components to use in the regression. @param whiten: Remove differences in variance among the components, i.e., principal components will have unit variance """ self.regressor = regressor self.max_components = max_components self.pca_object = PCA(n_components=n_components, whiten=whiten) self.n_components = n_components self.whiten = whiten self.n_reduced = 0 self.sort_idx = np.zeros(1) def _compute_stnd_coefs(self, X, y): """ Compute the standardized regression coefficients, up to a common scaling factor. @param X: The matrix of inputs, shape (n,p). @param y: The array of response values, size n. @return: The standardized regression coefficients, size p. """ p = X.shape[1] scoefs = np.zeros(p) for j in xrange(p): thisX = X[:, j] self.regressor.fit(thisX[:, np.newaxis], y) scoefs[j] = self.regressor.coef_score_ return scoefs def _get_reduced_features(self, X, coefs, pmax): """ Return the data projected onto the first n_components principal components computed using the reduced feature space. @param X: The array of inputs, shape (n, p). @param coefs: The array of standardized coefficients, size p. @param pmax: The maximum number of features to use in the reduced feature space PCA. @return: The data projected onto the reduced feature space PCA, shape (n, self.n_components). """ sort_idx = np.argsort(coefs)[::-1] sort_idx = sort_idx[:pmax] self.pca_object.fit(X[:, sort_idx]) X_reduced = self.pca_object.transform(X[:, sort_idx]) return X_reduced, sort_idx def fit(self, X, y, n_reduced): """ Perform the regression using the first self.n_components principal components from the reduced feature space. Note that this will call self.regressor.fit(X,y) to perform the regression. @param X: The array of inputs, shape (n, p). @param y: The array of response values, size n. @param n_reduced: The number of features to use in the reduced feature space. """ scoefs = self._compute_stnd_coefs(X, y) X_reduced, sort_idx = self._get_reduced_features(X, scoefs, n_reduced) self.sort_idx = sort_idx self.regressor.fit(X_reduced, y) def predict(self, X): """ Predict the value y = f(X) based on the PCA using the reduced feature space, based on the most recent call to self.fit(X, y, n_reduced). @param X: The array of inputs, shape (n, p). @return: The predicted values of the response. """ X_reduced = self.pca_object.transform(X[:, self.sort_idx]) y_predict = self.regressor.predict(X_reduced) return y_predict def launch_coef_scores(args): """ Wrapper to compute the standardized scores of the regression coefficients, used when computing the number of features in the reduced parameter set. @param args: Tuple containing the instance of SupervisedPCABase, feature matrix and response array. @return: The standardzed scores of the coefficients. """ spca, X, y = args scoefs = spca._compute_stnd_coefs(X, y) return scoefs def compute_cv_prediction(args): """ Internal method to get predictions based on supervised PCA regression for each cross-validation fold. Need this format in order to compute the predictions for the CV folds in parallel. """ spca, X_train, y_train, X_test, n_reduced, scoef = args SPCA = SupervisedPCABase(copy.deepcopy(spca.regressor), spca.max_components, spca.n_components, spca.whiten) X_reduced, sort_idx = SPCA._get_reduced_features(X_train, scoef, n_reduced) SPCA.regressor.fit(X_reduced, y_train) X_test_reduced = SPCA.pca_object.transform(X_test[:, sort_idx]) y_predict = SPCA.regressor.predict(X_test_reduced) return y_predict class SupervisedPCA(SupervisedPCABase): def __init__(self, regressor, max_components=None, n_components=1, whiten=True, n_jobs=1): """ Class for performing supervised principal component regression. This is useful for cases where the number of inputs (features) is greater than the number of data points. @param regressor: The object that will perform the regression. The following members must be defined for this object: regressor.fit(X, y) : Fits the regression model y = f(X). regressor.predict(X) : Compute the prediction y = f(X). regressor.coef_score_ : The score of each parameter, used for ranking the most important features when computing the reduced feature space. In general this will be the absolute value of the coefficient value divided by its standard error. Note that this should *not* include the intercept. @param max_components: Maximum number of components to search over. The default is p. @param n_components: The number of reduced data matrix PCA components to use in the regression. @param whiten: Remove differences in variance among the components, i.e., principal components will have unit variance @param n_jobs: The number of threads to use for parallel processing. If n_jobs = -1 then use maximum number available. """ super(SupervisedPCA, self).__init__(regressor, max_components, n_components, whiten) if n_jobs < 0: n_jobs = multiprocessing.cpu_count() self.n_jobs = n_jobs def _compute_cv_prediction(self, args): """ Internal method to get predictions based on supervised PCA regression for each cross-validation fold. Need this format in order to compute the predictions for the CV folds in parallel. """ X_train, y_train, X_test, n_reduced, scoef = args SPCA = SupervisedPCABase(copy.deepcopy(self.regressor), self.max_components, self.n_components, self.whiten) X_reduced, sort_idx = SPCA._get_reduced_features(X_train, scoef, n_reduced) SPCA.regressor.fit(X_reduced, y_train) X_test_reduced = SPCA.pca_object.transform(X_test[:, sort_idx]) y_predict = SPCA.regressor.predict(X_test_reduced) return y_predict def _launch_coef_scores(self, args): """ Wrapper to compute the standardized scores of the regression coefficients, used when computing the number of features in the reduced parameter set. @param args: Tuple containing the feature matrix and response array. @return: The standardzed scores of the coefficients. """ X, y = args scoefs = self._compute_stnd_coefs(X, y) return scoefs def choose_nreduced(self, X, y, lossfunc=None, cv=None, verbose=False, cvplot=False): """ Choose the number of features to use in the reduced feature set by minimizing the cross-validation error. @param X: The feature matrix, shape (n,p) @param y: The vector of response values, size n. @param lossfunc: The loss function to use for the CV error, callable. The default is mean squared error. @param cv: Number of CV folds (if int), or cross-validation iterator. @param verbose: Print helpful information. @param cvplot: Plot the CV error as a function of the number features in the reduced feature set. @return: The number of features in the reduced feature set that minimized the CV error. """ if self.n_jobs > 1: pool = multiprocessing.Pool(self.n_jobs) pool.map(int, range(self.n_jobs)) # Trick to "warm up" the Pool # setup cross-validation iterator if cv is None: K_folds = 8 if isinstance(cv, int): K_folds = cv cv = cross_validation.KFold(y.size, n_folds=K_folds) if lossfunc is None: lossfunc = metrics.mean_squared_error if self.max_components is None: self.max_components = X.shape[1] if verbose: print 'Searching over', self.max_components, ' features to include in the reduced feature space.' print 'Computing univariate regression tests statistics for each feature...' # first compute coefficients scores sargs = [] for train_idx, test_idx in cv: if self.n_jobs == 1: sargs.append((X[train_idx, :], y[train_idx])) else: sargs.append((self, X[train_idx, :], y[train_idx])) if self.n_jobs == 1: scoefs = map(self._launch_coef_scores, sargs) else: scoefs = pool.map(launch_coef_scores, sargs) # find optimal number of features to use in PCA on reduced feature set, do this by minimizing cross-validation # error on a grid. cverrors = np.zeros(self.max_components) if verbose: print 'Computing cross-validation errors on a grid of up to', self.max_components, 'features used in the', \ 'reduced feature space...' for k in xrange(self.max_components): cverror_args = [] ytest = [] fold_idx = 0 for train_idx, test_idx in cv: if self.n_jobs == 1: cverror_args.append((X[train_idx, :], y[train_idx], X[test_idx, :], k + 1, scoefs[fold_idx])) else: cverror_args.append((self, X[train_idx, :], y[train_idx], X[test_idx, :], k + 1, scoefs[fold_idx])) ytest.append(y[test_idx]) fold_idx += 1 if self.n_jobs == 1: ypredictions = map(self._compute_cv_prediction, cverror_args) else: ypredictions = pool.map(compute_cv_prediction, cverror_args) cverror_k = 0.0 for yt, yp in zip(ytest, ypredictions): cverror_k += lossfunc(yt, yp) / K_folds cverrors[k] = cverror_k if cvplot: plt.plot(np.arange(1, self.max_components + 1), cverrors) plt.xlabel('# of features in reduced set') plt.ylabel('CV Loss Function') plt.show() n_reduced = cverrors.argmin() + 1 if verbose: print 'Selected', n_reduced, 'features to use in the reduced feature set.' return n_reduced
mit
ashwyn/eden-message_parser
modules/tests/smoke/broken_links.py
1
11841
from time import time try: from cStringIO import StringIO # Faster, where available except: from StringIO import StringIO import sys from tests.web2unittest import Web2UnitTest from gluon import current try: from twill import get_browser from twill import set_output from twill.browser import * except ImportError: raise NameError("Twill not installed") try: import mechanize # from mechanize import BrowserStateError # from mechanize import ControlNotFoundError except ImportError: raise NameError("Mechanize not installed") class BrokenLinkTest(Web2UnitTest): """ Selenium Unit Test """ def __init__(self): Web2UnitTest.__init__(self) self.b = get_browser() self.b_data = StringIO() set_output(self.b_data) self.clearRecord() # This string must exist in the URL for it to be followed # Useful to avoid going to linked sites self.homeURL = self.url # Link used to identify a URL to a ticket self.url_ticket = "/admin/default/ticket/" # Tuple of strings that if in the URL will be ignored # Useful to avoid dynamic URLs that trigger the same functionality self.include_ignore = ("_language=", "logout", "appadmin", "admin" ) # tuple of strings that should be removed from the URL before storing # Typically this will be some variables passed in via the URL self.strip_url = ("?_next=", ) self.maxDepth = 16 # sanity check self.setUser("[email protected]/eden") self.linkDepth = [] def clearRecord(self): # list of links that return a http_code other than 200 # with the key being the URL and the value the http code self.brokenLinks = dict() # List of links visited (key) with the parent self.urlParentList = dict() # List of links visited (key) with the depth self.urlList = dict() # List of urls for each model self.model_url = dict() self.totalLinks = 0 def setDepth(self, depth): self.maxDepth = depth def setUser(self, user): self.credentials = user.split(",") def login(self, credentials): if credentials == "UNAUTHENTICATED": url = "%s/default/user/logout" % self.homeURL self.b.go(url) return True try: (self.user, self.password) = credentials.split("/",1) except: msg = "Unable to split %s into a user name and password" % user self.reporter(msg) return False url = "%s/default/user/login" % self.homeURL self.b.go(url) forms = self.b.get_all_forms() for form in forms: try: if form["_formname"] == "login": self.b._browser.form = form form["email"] = self.user form["password"] = self.password self.b.submit("Login") # If login is successful then should be redirected to the homepage return self.b.get_url()[len(self.homeURL):] == "/default/index" except: # This should be a mechanize.ControlNotFoundError, but # for some unknown reason that isn't caught on Windows or Mac pass return False def runTest(self): """ Test to find all exposed links and check the http code returned. This test doesn't run any javascript so some false positives will be found. The test can also display an histogram depicting the number of links found at each depth. """ for user in self.credentials: self.clearRecord() if self.login(user): self.visitLinks() def visitLinks(self): url = self.homeURL to_visit = [url] start = time() for depth in range(self.maxDepth): if len(to_visit) == 0: break self.linkDepth.append(len(to_visit)) self.totalLinks += len(to_visit) visit_start = time() url_visited = "%d urls" % len(to_visit) to_visit = self.visit(to_visit, depth) msg = "%.2d Visited %s in %.3f seconds, %d more urls found" % (depth, url_visited, time()-visit_start, len(to_visit)) self.reporter(msg) if self.config.verbose == 2: if self.stdout.isatty(): # terminal should support colour msg = "%.2d Visited \033[1;32m%s\033[0m in %.3f seconds, \033[1;31m%d\033[0m more urls found" % (depth, url_visited, time()-visit_start, len(to_visit)) print >> self.stdout, msg if len(to_visit) > 0: self.linkDepth.append(len(to_visit)) finish = time() self.report() self.reporter("Finished took %.3f seconds" % (finish - start)) self.report_link_depth() # self.report_model_url() def add_to_model(self, url, depth, parent): start = url.find(self.homeURL) + len(self.homeURL) end = url.find("/",start) model = url[start:end] if model in self.model_url: self.model_url[model].append((url, depth, parent)) else: self.model_url[model] = [(url, depth, parent)] def visit(self, url_list, depth): repr_list = [".pdf", ".xls", ".rss", ".kml"] to_visit = [] for visited_url in url_list: index_url = visited_url[len(self.homeURL):] # Find out if the page can be visited open_novisit = False for repr in repr_list: if repr in index_url: open_novisit = True break try: if open_novisit: self.b._journey("open_novisit", visited_url) http_code = self.b.get_code() if http_code != 200: # an error situation self.b.go(visited_url) http_code = self.b.get_code() else: self.b.go(visited_url) http_code = self.b.get_code() except Exception as e: import traceback print traceback.format_exc() self.brokenLinks[index_url] = ("-","Exception raised") continue http_code = self.b.get_code() if http_code != 200: url = "<a href=%s target=\"_blank\">URL</a>" % (visited_url) self.brokenLinks[index_url] = (http_code,url) elif open_novisit: continue links = [] try: if self.b._browser.viewing_html(): links = self.b._browser.links() else: continue except Exception as e: import traceback print traceback.format_exc() self.brokenLinks[index_url] = ("-","Exception raised") continue for link in (links): url = link.absolute_url if url.find(self.url_ticket) != -1: # A ticket was raised so... # capture the details and add to brokenLinks if current.test_config.html: ticket = "<a href=%s target=\"_blank\">Ticket</a> at <a href=%s target=\"_blank\">URL</a>" % (url,visited_url) else: ticket = "Ticket: %s" % url self.brokenLinks[index_url] = (http_code,ticket) break # no need to check any other links on this page if url.find(self.homeURL) == -1: continue ignore_link = False for ignore in self.include_ignore: if url.find(ignore) != -1: ignore_link = True break if ignore_link: continue for strip in self.strip_url: location = url.find(strip) if location != -1: url = url[0:location] if url not in self.urlList: self.urlList[url] = depth self.urlParentList[url[len(self.homeURL):]] = visited_url self.add_to_model(url, depth, visited_url) if url not in to_visit: to_visit.append(url) return to_visit def report(self): # print "Visited pages" # n = 1 # for (url, depth) in self.urlList.items(): # print "%d. depth %d %s" % (n, depth, url,) # n += 1 self.reporter("%d URLs visited" % self.totalLinks) self.reporter("Broken Links") n = 1 for (url, result) in self.brokenLinks.items(): http_code = result[0] try: parent = self.urlParentList[url] if current.test_config.html: parent = "<a href=%s target=\"_blank\">Parent</a>" % (parent) except: parent = "unknown" if len(result) == 1: self.reporter("%3d. (%s) %s called from %s" % (n, http_code, url, parent ) ) else: self.reporter("%3d. (%s-%s) %s called from %s" % (n, http_code, result[1], url, parent ) ) n += 1 def report_link_depth(self): """ Method to draw a histogram of the number of new links discovered at each depth. (i.e. show how many links are required to reach a link) """ try: from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas self.FigureCanvas = FigureCanvas from matplotlib.figure import Figure self.Figure = Figure from numpy import arange except ImportError: return self.reporter("Analysis of link depth") fig = Figure(figsize=(4, 2.5)) # Draw a histogram width = 0.9 rect = [0.12, 0.08, 0.9, 0.85] ax = fig.add_axes(rect) left = arange(len(self.linkDepth)) plot = ax.bar(left, self.linkDepth, width=width) # Add the x axis labels ax.set_xticks(left+(width*0.5)) ax.set_xticklabels(left) chart = StringIO() canvas = self.FigureCanvas(fig) canvas.print_figure(chart) image = chart.getvalue() import base64 base64Img = base64.b64encode(image) image = "<img src=\"data:image/png;base64,%s\">" % base64Img self.reporter(image) def report_model_url(self): print "Report breakdown by module" for (model, value) in self.model_url.items(): print model for ud in value: url = ud[0] depth = ud[1] parent = ud[2] tabs = "\t" * depth print "%s %s-%s (parent url - %s)" % (tabs, depth, url, parent)
mit
glouppe/scikit-learn
sklearn/model_selection/_search.py
18
38851
""" The :mod:`sklearn.model_selection._search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from ..base import BaseEstimator, is_classifier, clone from ..base import MetaEstimatorMixin, ChangedBehaviorWarning from ._split import check_cv from ._validation import _fit_and_score from ..externals.joblib import Parallel, delayed from ..externals import six from ..utils import check_random_state from ..utils.fixes import sp_version from ..utils.random import sample_without_replacement from ..utils.validation import _num_samples, indexable from ..utils.metaestimators import if_delegate_has_method from ..metrics.scorer import check_scoring __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.model_selection import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: Uses :class:`ParameterGrid` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that before SciPy 0.16, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Deterministic behavior is however guaranteed from SciPy 0.16 onwards. Read more in the :ref:`User Guide <search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.model_selection import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): if sp_version < (0, 16): params[k] = v.rvs() else: params[k] = v.rvs(random_state=rnd) else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, labels, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = check_cv(self.cv, y, classifier=is_classifier(estimator)) self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y, labels = indexable(X, y, labels) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) n_splits = cv.get_n_splits(X, y, labels) if self.verbose > 0 and isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(n_splits, n_candidates, n_candidates * n_splits)) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )(delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv.split(X, y, labels)) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_splits): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_splits]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_splits) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : estimator object. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, ``StratifiedKFold`` is used for classification tasks, when ``y`` is binary or multiclass. See the :mod:`sklearn.model_selection` module for the list of cross-validation strategies that can be used here. Also refer :ref:`cross-validation documentation <cross_validation>` refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, datasets >>> from sklearn.model_selection import GridSearchCV >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a an hyperparameter grid. :func:`sklearn.model_selection.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None, labels=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. """ return self._fit(X, y, labels, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, ``StratifiedKFold`` is used for classification tasks, when ``y`` is binary or multiclass. See the :mod:`sklearn.model_selection` module for the list of cross-validation strategies that can be used here. Also refer :ref:`cross-validation documentation <cross_validation>` refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settins, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None, labels=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, labels, sampled_params)
bsd-3-clause
PrashntS/scikit-learn
examples/manifold/plot_manifold_sphere.py
258
5101
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================= Manifold Learning methods on a severed sphere ============================================= An application of the different :ref:`manifold` techniques on a spherical data-set. Here one can see the use of dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning techniques to 'spread it open' whilst projecting it onto two dimensions. For a similar example, where the methods are applied to the S-curve dataset, see :ref:`example_manifold_plot_compare_methods.py` Note that the purpose of the :ref:`MDS <multidimensional_scaling>` is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem matches fairly that of representing a flat map of the Earth, as with `map projection <http://en.wikipedia.org/wiki/Map_projection>`_ """ # Author: Jaques Grobler <[email protected]> # License: BSD 3 clause print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold from sklearn.utils import check_random_state # Next line to silence pyflakes. Axes3D # Variables for manifold learning. n_neighbors = 10 n_samples = 1000 # Create our sphere. random_state = check_random_state(0) p = random_state.rand(n_samples) * (2 * np.pi - 0.55) t = random_state.rand(n_samples) * np.pi # Sever the poles from the sphere. indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8)))) colors = p[indices] x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \ np.sin(t[indices]) * np.sin(p[indices]), \ np.cos(t[indices]) # Plot our dataset. fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) ax = fig.add_subplot(251, projection='3d') ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow) try: # compatibility matplotlib < 1.0 ax.view_init(40, -10) except: pass sphere_data = np.array([x, y, z]).T # Perform Locally Linear Embedding Manifold learning methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() trans_data = manifold\ .LocallyLinearEmbedding(n_neighbors, 2, method=method).fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Isomap Manifold learning. t0 = time() trans_data = manifold.Isomap(n_neighbors, n_components=2)\ .fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % ('ISO', t1 - t0)) ax = fig.add_subplot(257) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Multi-dimensional scaling. t0 = time() mds = manifold.MDS(2, max_iter=100, n_init=1) trans_data = mds.fit_transform(sphere_data).T t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Spectral Embedding. t0 = time() se = manifold.SpectralEmbedding(n_components=2, n_neighbors=n_neighbors) trans_data = se.fit_transform(sphere_data).T t1 = time() print("Spectral Embedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform t-distributed stochastic neighbor embedding. t0 = time() tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) trans_data = tsne.fit_transform(sphere_data).T t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
GuessWhoSamFoo/pandas
pandas/tests/indexes/period/test_indexing.py
1
25104
from datetime import datetime, timedelta import numpy as np import pytest from pandas._libs.tslibs import period as libperiod from pandas.compat import lrange import pandas as pd from pandas import ( DatetimeIndex, Period, PeriodIndex, Series, notna, period_range) from pandas.util import testing as tm class TestGetItem(object): def test_ellipsis(self): # GH#21282 idx = period_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx[...] assert result.equals(idx) assert result is not idx def test_getitem(self): idx1 = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') for idx in [idx1]: result = idx[0] assert result == pd.Period('2011-01-01', freq='D') result = idx[-1] assert result == pd.Period('2011-01-31', freq='D') result = idx[0:5] expected = pd.period_range('2011-01-01', '2011-01-05', freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' result = idx[0:10:2] expected = pd.PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-07', '2011-01-09'], freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' result = idx[-20:-5:3] expected = pd.PeriodIndex(['2011-01-12', '2011-01-15', '2011-01-18', '2011-01-21', '2011-01-24'], freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' result = idx[4::-1] expected = PeriodIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' def test_getitem_index(self): idx = period_range('2007-01', periods=10, freq='M', name='x') result = idx[[1, 3, 5]] exp = pd.PeriodIndex(['2007-02', '2007-04', '2007-06'], freq='M', name='x') tm.assert_index_equal(result, exp) result = idx[[True, True, False, False, False, True, True, False, False, False]] exp = pd.PeriodIndex(['2007-01', '2007-02', '2007-06', '2007-07'], freq='M', name='x') tm.assert_index_equal(result, exp) def test_getitem_partial(self): rng = period_range('2007-01', periods=50, freq='M') ts = Series(np.random.randn(len(rng)), rng) pytest.raises(KeyError, ts.__getitem__, '2006') result = ts['2008'] assert (result.index.year == 2008).all() result = ts['2008':'2009'] assert len(result) == 24 result = ts['2008-1':'2009-12'] assert len(result) == 24 result = ts['2008Q1':'2009Q4'] assert len(result) == 24 result = ts[:'2009'] assert len(result) == 36 result = ts['2009':] assert len(result) == 50 - 24 exp = result result = ts[24:] tm.assert_series_equal(exp, result) ts = ts[10:].append(ts[10:]) msg = "left slice bound for non-unique label: '2008'" with pytest.raises(KeyError, match=msg): ts[slice('2008', '2009')] def test_getitem_datetime(self): rng = period_range(start='2012-01-01', periods=10, freq='W-MON') ts = Series(lrange(len(rng)), index=rng) dt1 = datetime(2011, 10, 2) dt4 = datetime(2012, 4, 20) rs = ts[dt1:dt4] tm.assert_series_equal(rs, ts) def test_getitem_nat(self): idx = pd.PeriodIndex(['2011-01', 'NaT', '2011-02'], freq='M') assert idx[0] == pd.Period('2011-01', freq='M') assert idx[1] is pd.NaT s = pd.Series([0, 1, 2], index=idx) assert s[pd.NaT] == 1 s = pd.Series(idx, index=idx) assert (s[pd.Period('2011-01', freq='M')] == pd.Period('2011-01', freq='M')) assert s[pd.NaT] is pd.NaT def test_getitem_list_periods(self): # GH 7710 rng = period_range(start='2012-01-01', periods=10, freq='D') ts = Series(lrange(len(rng)), index=rng) exp = ts.iloc[[1]] tm.assert_series_equal(ts[[Period('2012-01-02', freq='D')]], exp) def test_getitem_seconds(self): # GH#6716 didx = pd.date_range(start='2013/01/01 09:00:00', freq='S', periods=4000) pidx = period_range(start='2013/01/01 09:00:00', freq='S', periods=4000) for idx in [didx, pidx]: # getitem against index should raise ValueError values = ['2014', '2013/02', '2013/01/02', '2013/02/01 9H', '2013/02/01 09:00'] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s['2013/01/01 10:00'], s[3600:3660]) tm.assert_series_equal(s['2013/01/01 9H'], s[:3600]) for d in ['2013/01/01', '2013/01', '2013']: tm.assert_series_equal(s[d], s) def test_getitem_day(self): # GH#6716 # Confirm DatetimeIndex and PeriodIndex works identically didx = pd.date_range(start='2013/01/01', freq='D', periods=400) pidx = period_range(start='2013/01/01', freq='D', periods=400) for idx in [didx, pidx]: # getitem against index should raise ValueError values = ['2014', '2013/02', '2013/01/02', '2013/02/01 9H', '2013/02/01 09:00'] for v in values: # GH7116 # these show deprecations as we are trying # to slice with non-integer indexers # with pytest.raises(IndexError): # idx[v] continue s = Series(np.random.rand(len(idx)), index=idx) tm.assert_series_equal(s['2013/01'], s[0:31]) tm.assert_series_equal(s['2013/02'], s[31:59]) tm.assert_series_equal(s['2014'], s[365:]) invalid = ['2013/02/01 9H', '2013/02/01 09:00'] for v in invalid: with pytest.raises(KeyError): s[v] class TestWhere(object): @pytest.mark.parametrize('klass', [list, tuple, np.array, Series]) def test_where(self, klass): i = period_range('20130101', periods=5, freq='D') cond = [True] * len(i) expected = i result = i.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * (len(i) - 1) expected = PeriodIndex([pd.NaT] + i[1:].tolist(), freq='D') result = i.where(klass(cond)) tm.assert_index_equal(result, expected) def test_where_other(self): i = period_range('20130101', periods=5, freq='D') for arr in [np.nan, pd.NaT]: result = i.where(notna(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq='D') result = i.where(notna(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq='D') result = i.where(notna(i2), i2.values) tm.assert_index_equal(result, i2) class TestTake(object): def test_take(self): # GH#10295 idx1 = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) assert result == pd.Period('2011-01-01', freq='D') result = idx.take([5]) assert result == pd.Period('2011-01-06', freq='D') result = idx.take([0, 1, 2]) expected = pd.period_range('2011-01-01', '2011-01-03', freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == 'D' assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = pd.PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05'], freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' result = idx.take([7, 4, 1]) expected = pd.PeriodIndex(['2011-01-08', '2011-01-05', '2011-01-02'], freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' result = idx.take([3, 2, 5]) expected = PeriodIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' result = idx.take([-3, 2, 5]) expected = PeriodIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq='D', name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == 'D' def test_take_misc(self): index = period_range(start='1/1/10', end='12/31/12', freq='D', name='idx') expected = PeriodIndex([datetime(2010, 1, 6), datetime(2010, 1, 7), datetime(2010, 1, 9), datetime(2010, 1, 13)], freq='D', name='idx') taken1 = index.take([5, 6, 8, 12]) taken2 = index[[5, 6, 8, 12]] for taken in [taken1, taken2]: tm.assert_index_equal(taken, expected) assert isinstance(taken, PeriodIndex) assert taken.freq == index.freq assert taken.name == expected.name def test_take_fill_value(self): # GH#12631 idx = pd.PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01'], name='xxx', freq='D') result = idx.take(np.array([1, 0, -1])) expected = pd.PeriodIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx', freq='D') tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.PeriodIndex(['2011-02-01', '2011-01-01', 'NaT'], name='xxx', freq='D') tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.PeriodIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx', freq='D') tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) class TestIndexing(object): def test_get_loc_msg(self): idx = period_range('2000-1-1', freq='A', periods=10) bad_period = Period('2012', 'A') pytest.raises(KeyError, idx.get_loc, bad_period) try: idx.get_loc(bad_period) except KeyError as inst: assert inst.args[0] == bad_period def test_get_loc_nat(self): didx = DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03']) pidx = PeriodIndex(['2011-01-01', 'NaT', '2011-01-03'], freq='M') # check DatetimeIndex compat for idx in [didx, pidx]: assert idx.get_loc(pd.NaT) == 1 assert idx.get_loc(None) == 1 assert idx.get_loc(float('nan')) == 1 assert idx.get_loc(np.nan) == 1 def test_get_loc(self): # GH 17717 p0 = pd.Period('2017-09-01') p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') # get the location of p1/p2 from # monotonic increasing PeriodIndex with non-duplicate idx0 = pd.PeriodIndex([p0, p1, p2]) expected_idx1_p1 = 1 expected_idx1_p2 = 2 assert idx0.get_loc(p1) == expected_idx1_p1 assert idx0.get_loc(str(p1)) == expected_idx1_p1 assert idx0.get_loc(p2) == expected_idx1_p2 assert idx0.get_loc(str(p2)) == expected_idx1_p2 msg = "Cannot interpret 'foo' as period" with pytest.raises(KeyError, match=msg): idx0.get_loc('foo') pytest.raises(KeyError, idx0.get_loc, 1.1) pytest.raises(TypeError, idx0.get_loc, idx0) # get the location of p1/p2 from # monotonic increasing PeriodIndex with duplicate idx1 = pd.PeriodIndex([p1, p1, p2]) expected_idx1_p1 = slice(0, 2) expected_idx1_p2 = 2 assert idx1.get_loc(p1) == expected_idx1_p1 assert idx1.get_loc(str(p1)) == expected_idx1_p1 assert idx1.get_loc(p2) == expected_idx1_p2 assert idx1.get_loc(str(p2)) == expected_idx1_p2 msg = "Cannot interpret 'foo' as period" with pytest.raises(KeyError, match=msg): idx1.get_loc('foo') pytest.raises(KeyError, idx1.get_loc, 1.1) pytest.raises(TypeError, idx1.get_loc, idx1) # get the location of p1/p2 from # non-monotonic increasing/decreasing PeriodIndex with duplicate idx2 = pd.PeriodIndex([p2, p1, p2]) expected_idx2_p1 = 1 expected_idx2_p2 = np.array([True, False, True]) assert idx2.get_loc(p1) == expected_idx2_p1 assert idx2.get_loc(str(p1)) == expected_idx2_p1 tm.assert_numpy_array_equal(idx2.get_loc(p2), expected_idx2_p2) tm.assert_numpy_array_equal(idx2.get_loc(str(p2)), expected_idx2_p2) def test_is_monotonic_increasing(self): # GH 17717 p0 = pd.Period('2017-09-01') p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') idx_inc0 = pd.PeriodIndex([p0, p1, p2]) idx_inc1 = pd.PeriodIndex([p0, p1, p1]) idx_dec0 = pd.PeriodIndex([p2, p1, p0]) idx_dec1 = pd.PeriodIndex([p2, p1, p1]) idx = pd.PeriodIndex([p1, p2, p0]) assert idx_inc0.is_monotonic_increasing is True assert idx_inc1.is_monotonic_increasing is True assert idx_dec0.is_monotonic_increasing is False assert idx_dec1.is_monotonic_increasing is False assert idx.is_monotonic_increasing is False def test_is_monotonic_decreasing(self): # GH 17717 p0 = pd.Period('2017-09-01') p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') idx_inc0 = pd.PeriodIndex([p0, p1, p2]) idx_inc1 = pd.PeriodIndex([p0, p1, p1]) idx_dec0 = pd.PeriodIndex([p2, p1, p0]) idx_dec1 = pd.PeriodIndex([p2, p1, p1]) idx = pd.PeriodIndex([p1, p2, p0]) assert idx_inc0.is_monotonic_decreasing is False assert idx_inc1.is_monotonic_decreasing is False assert idx_dec0.is_monotonic_decreasing is True assert idx_dec1.is_monotonic_decreasing is True assert idx.is_monotonic_decreasing is False def test_is_unique(self): # GH 17717 p0 = pd.Period('2017-09-01') p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') idx0 = pd.PeriodIndex([p0, p1, p2]) assert idx0.is_unique is True idx1 = pd.PeriodIndex([p1, p1, p2]) assert idx1.is_unique is False def test_contains(self): # GH 17717 p0 = pd.Period('2017-09-01') p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') p3 = pd.Period('2017-09-04') ps0 = [p0, p1, p2] idx0 = pd.PeriodIndex(ps0) for p in ps0: assert idx0.contains(p) assert p in idx0 assert idx0.contains(str(p)) assert str(p) in idx0 assert idx0.contains('2017-09-01 00:00:01') assert '2017-09-01 00:00:01' in idx0 assert idx0.contains('2017-09') assert '2017-09' in idx0 assert not idx0.contains(p3) assert p3 not in idx0 def test_get_value(self): # GH 17717 p0 = pd.Period('2017-09-01') p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') idx0 = pd.PeriodIndex([p0, p1, p2]) input0 = np.array([1, 2, 3]) expected0 = 2 result0 = idx0.get_value(input0, p1) assert result0 == expected0 idx1 = pd.PeriodIndex([p1, p1, p2]) input1 = np.array([1, 2, 3]) expected1 = np.array([1, 2]) result1 = idx1.get_value(input1, p1) tm.assert_numpy_array_equal(result1, expected1) idx2 = pd.PeriodIndex([p1, p2, p1]) input2 = np.array([1, 2, 3]) expected2 = np.array([1, 3]) result2 = idx2.get_value(input2, p1) tm.assert_numpy_array_equal(result2, expected2) def test_get_indexer(self): # GH 17717 p1 = pd.Period('2017-09-01') p2 = pd.Period('2017-09-04') p3 = pd.Period('2017-09-07') tp0 = pd.Period('2017-08-31') tp1 = pd.Period('2017-09-02') tp2 = pd.Period('2017-09-05') tp3 = pd.Period('2017-09-09') idx = pd.PeriodIndex([p1, p2, p3]) tm.assert_numpy_array_equal(idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)) target = pd.PeriodIndex([tp0, tp1, tp2, tp3]) tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'), np.array([-1, 0, 1, 2], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'), np.array([0, 1, 2, -1], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'), np.array([0, 0, 1, 2], dtype=np.intp)) res = idx.get_indexer(target, 'nearest', tolerance=pd.Timedelta('1 day')) tm.assert_numpy_array_equal(res, np.array([0, 0, 1, -1], dtype=np.intp)) def test_get_indexer_non_unique(self): # GH 17717 p1 = pd.Period('2017-09-02') p2 = pd.Period('2017-09-03') p3 = pd.Period('2017-09-04') p4 = pd.Period('2017-09-05') idx1 = pd.PeriodIndex([p1, p2, p1]) idx2 = pd.PeriodIndex([p2, p1, p3, p4]) result = idx1.get_indexer_non_unique(idx2) expected_indexer = np.array([1, 0, 2, -1, -1], dtype=np.intp) expected_missing = np.array([2, 3], dtype=np.int64) tm.assert_numpy_array_equal(result[0], expected_indexer) tm.assert_numpy_array_equal(result[1], expected_missing) # TODO: This method came from test_period; de-dup with version above def test_get_loc2(self): idx = pd.period_range('2000-01-01', periods=3) for method in [None, 'pad', 'backfill', 'nearest']: assert idx.get_loc(idx[1], method) == 1 assert idx.get_loc(idx[1].asfreq('H', how='start'), method) == 1 assert idx.get_loc(idx[1].to_timestamp(), method) == 1 assert idx.get_loc(idx[1].to_timestamp() .to_pydatetime(), method) == 1 assert idx.get_loc(str(idx[1]), method) == 1 idx = pd.period_range('2000-01-01', periods=5)[::2] assert idx.get_loc('2000-01-02T12', method='nearest', tolerance='1 day') == 1 assert idx.get_loc('2000-01-02T12', method='nearest', tolerance=pd.Timedelta('1D')) == 1 assert idx.get_loc('2000-01-02T12', method='nearest', tolerance=np.timedelta64(1, 'D')) == 1 assert idx.get_loc('2000-01-02T12', method='nearest', tolerance=timedelta(1)) == 1 msg = 'unit abbreviation w/o a number' with pytest.raises(ValueError, match=msg): idx.get_loc('2000-01-10', method='nearest', tolerance='foo') msg = 'Input has different freq=None from PeriodArray\\(freq=D\\)' with pytest.raises(ValueError, match=msg): idx.get_loc('2000-01-10', method='nearest', tolerance='1 hour') with pytest.raises(KeyError): idx.get_loc('2000-01-10', method='nearest', tolerance='1 day') with pytest.raises( ValueError, match='list-like tolerance size must match target index size'): idx.get_loc('2000-01-10', method='nearest', tolerance=[pd.Timedelta('1 day').to_timedelta64(), pd.Timedelta('1 day').to_timedelta64()]) # TODO: This method came from test_period; de-dup with version above def test_get_indexer2(self): idx = pd.period_range('2000-01-01', periods=3).asfreq('H', how='start') tm.assert_numpy_array_equal(idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)) target = pd.PeriodIndex(['1999-12-31T23', '2000-01-01T12', '2000-01-02T01'], freq='H') tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'), np.array([-1, 0, 1], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'), np.array([0, 1, 2], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'), np.array([0, 1, 1], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest', tolerance='1 hour'), np.array([0, -1, 1], dtype=np.intp)) msg = 'Input has different freq=None from PeriodArray\\(freq=H\\)' with pytest.raises(ValueError, match=msg): idx.get_indexer(target, 'nearest', tolerance='1 minute') tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest', tolerance='1 day'), np.array([0, 1, 1], dtype=np.intp)) tol_raw = [pd.Timedelta('1 hour'), pd.Timedelta('1 hour'), np.timedelta64(1, 'D'), ] tm.assert_numpy_array_equal( idx.get_indexer(target, 'nearest', tolerance=[np.timedelta64(x) for x in tol_raw]), np.array([0, -1, 1], dtype=np.intp)) tol_bad = [pd.Timedelta('2 hour').to_timedelta64(), pd.Timedelta('1 hour').to_timedelta64(), np.timedelta64(1, 'M'), ] with pytest.raises( libperiod.IncompatibleFrequency, match='Input has different freq=None from'): idx.get_indexer(target, 'nearest', tolerance=tol_bad) def test_indexing(self): # GH 4390, iat incorrectly indexing index = period_range('1/1/2001', periods=10) s = Series(np.random.randn(10), index=index) expected = s[index[0]] result = s.iat[0] assert expected == result def test_period_index_indexer(self): # GH4125 idx = pd.period_range('2002-01', '2003-12', freq='M') df = pd.DataFrame(pd.np.random.randn(24, 10), index=idx) tm.assert_frame_equal(df, df.loc[idx]) tm.assert_frame_equal(df, df.loc[list(idx)]) tm.assert_frame_equal(df, df.loc[list(idx)]) tm.assert_frame_equal(df.iloc[0:5], df.loc[idx[0:5]]) tm.assert_frame_equal(df, df.loc[list(idx)])
bsd-3-clause
unnikrishnankgs/va
venv/lib/python3.5/site-packages/matplotlib/textpath.py
10
16668
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) from collections import OrderedDict import six from six.moves import zip import warnings import numpy as np from matplotlib.path import Path from matplotlib import rcParams import matplotlib.font_manager as font_manager from matplotlib.ft2font import KERNING_DEFAULT, LOAD_NO_HINTING from matplotlib.ft2font import LOAD_TARGET_LIGHT from matplotlib.mathtext import MathTextParser import matplotlib.dviread as dviread from matplotlib.font_manager import FontProperties, get_font from matplotlib.transforms import Affine2D from six.moves.urllib.parse import quote as urllib_quote class TextToPath(object): """ A class that convert a given text to a path using ttf fonts. """ FONT_SCALE = 100. DPI = 72 def __init__(self): """ Initialization """ self.mathtext_parser = MathTextParser('path') self.tex_font_map = None from matplotlib.cbook import maxdict self._ps_fontd = maxdict(50) self._texmanager = None self._adobe_standard_encoding = None def _get_adobe_standard_encoding(self): enc_name = dviread.find_tex_file('8a.enc') enc = dviread.Encoding(enc_name) return dict([(c, i) for i, c in enumerate(enc.encoding)]) def _get_font(self, prop): """ find a ttf font. """ fname = font_manager.findfont(prop) font = get_font(fname) font.set_size(self.FONT_SCALE, self.DPI) return font def _get_hinting_flag(self): return LOAD_NO_HINTING def _get_char_id(self, font, ccode): """ Return a unique id for the given font and character-code set. """ sfnt = font.get_sfnt() try: ps_name = sfnt[(1, 0, 0, 6)].decode('macroman') except KeyError: ps_name = sfnt[(3, 1, 0x0409, 6)].decode('utf-16be') char_id = urllib_quote('%s-%x' % (ps_name, ccode)) return char_id def _get_char_id_ps(self, font, ccode): """ Return a unique id for the given font and character-code set (for tex). """ ps_name = font.get_ps_font_info()[2] char_id = urllib_quote('%s-%d' % (ps_name, ccode)) return char_id def glyph_to_path(self, font, currx=0.): """ convert the ft2font glyph to vertices and codes. """ verts, codes = font.get_path() if currx != 0.0: verts[:, 0] += currx return verts, codes def get_text_width_height_descent(self, s, prop, ismath): if rcParams['text.usetex']: texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent(s, fontsize, renderer=None) return w, h, d fontsize = prop.get_size_in_points() scale = float(fontsize) / self.FONT_SCALE if ismath: prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, trash, used_characters = \ self.mathtext_parser.parse(s, 72, prop) return width * scale, height * scale, descent * scale font = self._get_font(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 return w * scale, h * scale, d * scale def get_text_path(self, prop, s, ismath=False, usetex=False): """ convert text *s* to path (a tuple of vertices and codes for matplotlib.path.Path). *prop* font property *s* text to be converted *usetex* If True, use matplotlib usetex mode. *ismath* If True, use mathtext parser. Effective only if usetex == False. """ if not usetex: if not ismath: font = self._get_font(prop) glyph_info, glyph_map, rects = self.get_glyphs_with_font( font, s) else: glyph_info, glyph_map, rects = self.get_glyphs_mathtext( prop, s) else: glyph_info, glyph_map, rects = self.get_glyphs_tex(prop, s) verts, codes = [], [] for glyph_id, xposition, yposition, scale in glyph_info: verts1, codes1 = glyph_map[glyph_id] if len(verts1): verts1 = np.array(verts1) * scale + [xposition, yposition] verts.extend(verts1) codes.extend(codes1) for verts1, codes1 in rects: verts.extend(verts1) codes.extend(codes1) return verts, codes def get_glyphs_with_font(self, font, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes using the provided ttf font. """ # Mostly copied from backend_svg.py. lastgind = None currx = 0 xpositions = [] glyph_ids = [] if glyph_map is None: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map # I'm not sure if I get kernings right. Needs to be verified. -JJL for c in s: ccode = ord(c) gind = font.get_char_index(ccode) if gind is None: ccode = ord('?') gind = 0 if lastgind is not None: kern = font.get_kerning(lastgind, gind, KERNING_DEFAULT) else: kern = 0 glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) horiz_advance = (glyph.linearHoriAdvance / 65536.0) char_id = self._get_char_id(font, ccode) if char_id not in glyph_map: glyph_map_new[char_id] = self.glyph_to_path(font) currx += (kern / 64.0) xpositions.append(currx) glyph_ids.append(char_id) currx += horiz_advance lastgind = gind ypositions = [0] * len(xpositions) sizes = [1.] * len(xpositions) rects = [] return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, rects) def get_glyphs_mathtext(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes by parsing it with mathtext. """ prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.DPI, prop) if not glyph_map: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map xpositions = [] ypositions = [] glyph_ids = [] sizes = [] currx, curry = 0, 0 for font, fontsize, ccode, ox, oy in glyphs: char_id = self._get_char_id(font, ccode) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) glyph_map_new[char_id] = self.glyph_to_path(font) xpositions.append(ox) ypositions.append(oy) glyph_ids.append(char_id) size = fontsize / self.FONT_SCALE sizes.append(size) myrects = [] for ox, oy, w, h in rects: vert1 = [(ox, oy), (ox, oy + h), (ox + w, oy + h), (ox + w, oy), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_glyphs_tex(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ convert the string *s* to vertices and codes using matplotlib's usetex mode. """ # codes are modstly borrowed from pdf backend. texmanager = self.get_texmanager() if self.tex_font_map is None: self.tex_font_map = dviread.PsfontsMap( dviread.find_tex_file('pdftex.map')) if self._adobe_standard_encoding is None: self._adobe_standard_encoding = self._get_adobe_standard_encoding() fontsize = prop.get_size_in_points() if hasattr(texmanager, "get_dvi"): dvifilelike = texmanager.get_dvi(s, self.FONT_SCALE) dvi = dviread.DviFromFileLike(dvifilelike, self.DPI) else: dvifile = texmanager.make_dvi(s, self.FONT_SCALE) dvi = dviread.Dvi(dvifile, self.DPI) try: page = next(iter(dvi)) finally: dvi.close() if glyph_map is None: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map glyph_ids, xpositions, ypositions, sizes = [], [], [], [] # Gather font information and do some setup for combining # characters into strings. # oldfont, seq = None, [] for x1, y1, dvifont, glyph, width in page.text: font_and_encoding = self._ps_fontd.get(dvifont.texname) font_bunch = self.tex_font_map[dvifont.texname] if font_and_encoding is None: font = get_font(font_bunch.filename) for charmap_name, charmap_code in [("ADOBE_CUSTOM", 1094992451), ("ADOBE_STANDARD", 1094995778)]: try: font.select_charmap(charmap_code) except (ValueError, RuntimeError): pass else: break else: charmap_name = "" warnings.warn("No supported encoding in font (%s)." % font_bunch.filename) if charmap_name == "ADOBE_STANDARD" and font_bunch.encoding: enc0 = dviread.Encoding(font_bunch.encoding) enc = dict([(i, self._adobe_standard_encoding.get(c, None)) for i, c in enumerate(enc0.encoding)]) else: enc = dict() self._ps_fontd[dvifont.texname] = font, enc else: font, enc = font_and_encoding ft2font_flag = LOAD_TARGET_LIGHT char_id = self._get_char_id_ps(font, glyph) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) if enc: charcode = enc.get(glyph, None) else: charcode = glyph if charcode is not None: glyph0 = font.load_char(charcode, flags=ft2font_flag) else: warnings.warn("The glyph (%d) of font (%s) cannot be " "converted with the encoding. Glyph may " "be wrong" % (glyph, font_bunch.filename)) glyph0 = font.load_char(glyph, flags=ft2font_flag) glyph_map_new[char_id] = self.glyph_to_path(font) glyph_ids.append(char_id) xpositions.append(x1) ypositions.append(y1) sizes.append(dvifont.size / self.FONT_SCALE) myrects = [] for ox, oy, h, w in page.boxes: vert1 = [(ox, oy), (ox + w, oy), (ox + w, oy + h), (ox, oy + h), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) text_to_path = TextToPath() class TextPath(Path): """ Create a path from the text. """ def __init__(self, xy, s, size=None, prop=None, _interpolation_steps=1, usetex=False, *kl, **kwargs): """ Create a path from the text. No support for TeX yet. Note that it simply is a path, not an artist. You need to use the PathPatch (or other artists) to draw this path onto the canvas. xy : position of the text. s : text size : font size prop : font property """ if prop is None: prop = FontProperties() if size is None: size = prop.get_size_in_points() self._xy = xy self.set_size(size) self._cached_vertices = None self._vertices, self._codes = self.text_get_vertices_codes( prop, s, usetex=usetex) self._should_simplify = False self._simplify_threshold = rcParams['path.simplify_threshold'] self._has_nonfinite = False self._interpolation_steps = _interpolation_steps def set_size(self, size): """ set the size of the text """ self._size = size self._invalid = True def get_size(self): """ get the size of the text """ return self._size def _get_vertices(self): """ Return the cached path after updating it if necessary. """ self._revalidate_path() return self._cached_vertices def _get_codes(self): """ Return the codes """ return self._codes vertices = property(_get_vertices) codes = property(_get_codes) def _revalidate_path(self): """ update the path if necessary. The path for the text is initially create with the font size of FONT_SCALE, and this path is rescaled to other size when necessary. """ if (self._invalid or (self._cached_vertices is None)): tr = Affine2D().scale( self._size / text_to_path.FONT_SCALE, self._size / text_to_path.FONT_SCALE).translate(*self._xy) self._cached_vertices = tr.transform(self._vertices) self._invalid = False def is_math_text(self, s): """ Returns True if the given string *s* contains any mathtext. """ # copied from Text.is_math_text -JJL # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) if rcParams['text.usetex']: return s, 'TeX' if even_dollars: return s, True else: return s.replace(r'\$', '$'), False def text_get_vertices_codes(self, prop, s, usetex): """ convert the string *s* to vertices and codes using the provided font property *prop*. Mostly copied from backend_svg.py. """ if usetex: verts, codes = text_to_path.get_text_path(prop, s, usetex=True) else: clean_line, ismath = self.is_math_text(s) verts, codes = text_to_path.get_text_path(prop, clean_line, ismath=ismath) return verts, codes
bsd-2-clause
elijah513/scikit-learn
sklearn/datasets/twenty_newsgroups.py
72
13586
"""Caching loader for the 20 newsgroups text classification dataset The description of the dataset is available on the official website at: http://people.csail.mit.edu/jrennie/20Newsgroups/ Quoting the introduction: The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder: Learning to filter netnews paper, though he does not explicitly mention this collection. The 20 newsgroups collection has become a popular data set for experiments in text applications of machine learning techniques, such as text classification and text clustering. This dataset loader will download the recommended "by date" variant of the dataset and which features a point in time split between the train and test sets. The compressed dataset size is around 14 Mb compressed. Once uncompressed the train set is 52 MB and the test set is 34 MB. The data is downloaded, extracted and cached in the '~/scikit_learn_data' folder. The `fetch_20newsgroups` function will not vectorize the data into numpy arrays but the dataset lists the filenames of the posts and their categories as target labels. The `fetch_20newsgroups_tfidf` function will in addition do a simple tf-idf vectorization step. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause import os import logging import tarfile import pickle import shutil import re import codecs import numpy as np import scipy.sparse as sp from .base import get_data_home from .base import Bunch from .base import load_files from ..utils import check_random_state from ..feature_extraction.text import CountVectorizer from ..preprocessing import normalize from ..externals import joblib, six if six.PY3: from urllib.request import urlopen else: from urllib2 import urlopen logger = logging.getLogger(__name__) URL = ("http://people.csail.mit.edu/jrennie/" "20Newsgroups/20news-bydate.tar.gz") ARCHIVE_NAME = "20news-bydate.tar.gz" CACHE_NAME = "20news-bydate.pkz" TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" def download_20newsgroups(target_dir, cache_path): """Download the 20 newsgroups data and stored it as a zipped pickle.""" archive_path = os.path.join(target_dir, ARCHIVE_NAME) train_path = os.path.join(target_dir, TRAIN_FOLDER) test_path = os.path.join(target_dir, TEST_FOLDER) if not os.path.exists(target_dir): os.makedirs(target_dir) if os.path.exists(archive_path): # Download is not complete as the .tar.gz file is removed after # download. logger.warning("Download was incomplete, downloading again.") os.remove(archive_path) logger.warning("Downloading dataset from %s (14 MB)", URL) opener = urlopen(URL) with open(archive_path, 'wb') as f: f.write(opener.read()) logger.info("Decompressing %s", archive_path) tarfile.open(archive_path, "r:gz").extractall(path=target_dir) os.remove(archive_path) # Store a zipped pickle cache = dict(train=load_files(train_path, encoding='latin1'), test=load_files(test_path, encoding='latin1')) compressed_content = codecs.encode(pickle.dumps(cache), 'zlib_codec') with open(cache_path, 'wb') as f: f.write(compressed_content) shutil.rmtree(target_dir) return cache def strip_newsgroup_header(text): """ Given text in "news" format, strip the headers, by removing everything before the first blank line. """ _before, _blankline, after = text.partition('\n\n') return after _QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:' r'|^In article|^Quoted from|^\||^>)') def strip_newsgroup_quoting(text): """ Given text in "news" format, strip lines beginning with the quote characters > or |, plus lines that often introduce a quoted section (for example, because they contain the string 'writes:'.) """ good_lines = [line for line in text.split('\n') if not _QUOTE_RE.search(line)] return '\n'.join(good_lines) def strip_newsgroup_footer(text): """ Given text in "news" format, attempt to remove a signature block. As a rough heuristic, we assume that signatures are set apart by either a blank line or a line made of hyphens, and that it is the last such line in the file (disregarding blank lines at the end). """ lines = text.strip().split('\n') for line_num in range(len(lines) - 1, -1, -1): line = lines[line_num] if line.strip().strip('-') == '': break if line_num > 0: return '\n'.join(lines[:line_num]) else: return text def fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True): """Load the filenames and data from the 20 newsgroups dataset. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify a download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. categories: None or collection of string or unicode If None (default), load all the categories. If not None, list of category names to load (other categories ignored). shuffle: bool, optional Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state: numpy random number generator or seed integer Used to shuffle the dataset. download_if_missing: optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. 'headers' follows an exact standard; the other filters are not always correct. """ data_home = get_data_home(data_home=data_home) cache_path = os.path.join(data_home, CACHE_NAME) twenty_home = os.path.join(data_home, "20news_home") cache = None if os.path.exists(cache_path): try: with open(cache_path, 'rb') as f: compressed_content = f.read() uncompressed_content = codecs.decode( compressed_content, 'zlib_codec') cache = pickle.loads(uncompressed_content) except Exception as e: print(80 * '_') print('Cache loading failed') print(80 * '_') print(e) if cache is None: if download_if_missing: cache = download_20newsgroups(target_dir=twenty_home, cache_path=cache_path) else: raise IOError('20Newsgroups dataset not found') if subset in ('train', 'test'): data = cache[subset] elif subset == 'all': data_lst = list() target = list() filenames = list() for subset in ('train', 'test'): data = cache[subset] data_lst.extend(data.data) target.extend(data.target) filenames.extend(data.filenames) data.data = data_lst data.target = np.array(target) data.filenames = np.array(filenames) else: raise ValueError( "subset can only be 'train', 'test' or 'all', got '%s'" % subset) data.description = 'the 20 newsgroups by date dataset' if 'headers' in remove: data.data = [strip_newsgroup_header(text) for text in data.data] if 'footers' in remove: data.data = [strip_newsgroup_footer(text) for text in data.data] if 'quotes' in remove: data.data = [strip_newsgroup_quoting(text) for text in data.data] if categories is not None: labels = [(data.target_names.index(cat), cat) for cat in categories] # Sort the categories to have the ordering of the labels labels.sort() labels, categories = zip(*labels) mask = np.in1d(data.target, labels) data.filenames = data.filenames[mask] data.target = data.target[mask] # searchsorted to have continuous labels data.target = np.searchsorted(labels, data.target) data.target_names = list(categories) # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[mask] data.data = data_lst.tolist() if shuffle: random_state = check_random_state(random_state) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.filenames = data.filenames[indices] data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst.tolist() return data def fetch_20newsgroups_vectorized(subset="train", remove=(), data_home=None): """Load the 20 newsgroups dataset and transform it into tf-idf vectors. This is a convenience function; the tf-idf transformation is done using the default settings for `sklearn.feature_extraction.text.Vectorizer`. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom `Vectorizer` or `CountVectorizer`. Read more in the :ref:`User Guide <20newsgroups>`. Parameters ---------- subset: 'train' or 'test', 'all', optional Select the dataset to load: 'train' for the training set, 'test' for the test set, 'all' for both, with shuffled ordering. data_home: optional, default: None Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in '~/scikit_learn_data' subfolders. remove: tuple May contain any subset of ('headers', 'footers', 'quotes'). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata. 'headers' removes newsgroup headers, 'footers' removes blocks at the ends of posts that look like signatures, and 'quotes' removes lines that appear to be quoting another post. Returns ------- bunch : Bunch object bunch.data: sparse matrix, shape [n_samples, n_features] bunch.target: array, shape [n_samples] bunch.target_names: list, length [n_classes] """ data_home = get_data_home(data_home=data_home) filebase = '20newsgroup_vectorized' if remove: filebase += 'remove-' + ('-'.join(remove)) target_file = os.path.join(data_home, filebase + ".pk") # we shuffle but use a fixed seed for the memoization data_train = fetch_20newsgroups(data_home=data_home, subset='train', categories=None, shuffle=True, random_state=12, remove=remove) data_test = fetch_20newsgroups(data_home=data_home, subset='test', categories=None, shuffle=True, random_state=12, remove=remove) if os.path.exists(target_file): X_train, X_test = joblib.load(target_file) else: vectorizer = CountVectorizer(dtype=np.int16) X_train = vectorizer.fit_transform(data_train.data).tocsr() X_test = vectorizer.transform(data_test.data).tocsr() joblib.dump((X_train, X_test), target_file, compress=9) # the data is stored as int16 for compactness # but normalize needs floats X_train = X_train.astype(np.float64) X_test = X_test.astype(np.float64) normalize(X_train, copy=False) normalize(X_test, copy=False) target_names = data_train.target_names if subset == "train": data = X_train target = data_train.target elif subset == "test": data = X_test target = data_test.target elif subset == "all": data = sp.vstack((X_train, X_test)).tocsr() target = np.concatenate((data_train.target, data_test.target)) else: raise ValueError("%r is not a valid subset: should be one of " "['train', 'test', 'all']" % subset) return Bunch(data=data, target=target, target_names=target_names)
bsd-3-clause
J535D165/recordlinkage
recordlinkage/index.py
1
16422
import warnings import numpy import pandas from recordlinkage import rl_logging as logging from recordlinkage.algorithms.indexing import ( random_pairs_with_replacement, random_pairs_without_replacement_low_memory, random_pairs_without_replacement) from recordlinkage.base import BaseIndexAlgorithm from recordlinkage.measures import full_index_size from recordlinkage.utils import DeprecationHelper, listify class Full(BaseIndexAlgorithm): """Class to generate a 'full' index. A full index is an index with all possible combinations of record pairs. In case of linking, this indexation method generates the cartesian product of both DataFrame's. In case of deduplicating DataFrame A, this indexation method are the pairs defined by the upper triangular matrix of the A x A. Parameters ---------- **kwargs : Additional keyword arguments to pass to :class:`recordlinkage.base.BaseIndexAlgorithm`. Note ---- This indexation method can be slow for large DataFrame's. The number of comparisons scales quadratic. Also, not all classifiers work well with large numbers of record pairs were most of the pairs are distinct. """ def __init__(self, **kwargs): super(Full, self).__init__(**kwargs) logging.warning( "indexing - performance warning " "- A full index can result in large number of record pairs.") def _link_index(self, df_a, df_b): return pandas.MultiIndex.from_product( [df_a.index.values, df_b.index.values]) def _dedup_index(self, df_a): levels = [df_a.index.values, df_a.index.values] codes = numpy.tril_indices(len(df_a.index), k=-1) return pandas.MultiIndex( levels=levels, codes=codes, verify_integrity=False) class Block(BaseIndexAlgorithm): """Make candidate record pairs that agree on one or more variables. Returns all record pairs that agree on the given variable(s). This method is known as *blocking*. Blocking is an effective way to make a subset of the record space (A * B). Parameters ---------- left_on : label, optional A column name or a list of column names of dataframe A. These columns are used to block on. right_on : label, optional A column name or a list of column names of dataframe B. These columns are used to block on. If 'right_on' is None, the `left_on` value is used. Default None. **kwargs : Additional keyword arguments to pass to :class:`recordlinkage.base.BaseIndexAlgorithm`. Examples -------- In the following example, the record pairs are made for two historical datasets with census data. The datasets are named ``census_data_1980`` and ``census_data_1990``. >>> indexer = recordlinkage.BlockIndex(on='first_name') >>> indexer.index(census_data_1980, census_data_1990) """ def __init__(self, left_on=None, right_on=None, **kwargs): on = kwargs.pop('on', None) super(Block, self).__init__(**kwargs) # variables to block on self.left_on = left_on self.right_on = right_on if on is not None: warnings.warn( "The argument 'on' is deprecated. Use 'left_on=...' and " "'right_on=None' to simulate the behaviour of 'on'.", DeprecationWarning, stacklevel=2) self.left_on, self.right_on = on, on def __repr__(self): class_name = self.__class__.__name__ left_on, right_on = self._get_left_and_right_on() return "<{} left_on={!r}, right_on={!r}>".format( class_name, left_on, right_on) def _get_left_and_right_on(self): if self.right_on is None: return (self.left_on, self.left_on) else: return (self.left_on, self.right_on) def _link_index(self, df_a, df_b): left_on, right_on = self._get_left_and_right_on() left_on = listify(left_on) right_on = listify(right_on) blocking_keys = ["blocking_key_%d" % i for i, v in enumerate(left_on)] # make a dataset for the data on the left # 1. make a dataframe # 2. rename columns # 3. add index col # 4. drop na (last step to presever index) data_left = pandas.DataFrame(df_a[left_on], copy=False) data_left.columns = blocking_keys data_left['index_x'] = numpy.arange(len(df_a)) data_left.dropna(axis=0, how='any', subset=blocking_keys, inplace=True) # make a dataset for the data on the right data_right = pandas.DataFrame(df_b[right_on], copy=False) data_right.columns = blocking_keys data_right['index_y'] = numpy.arange(len(df_b)) data_right.dropna( axis=0, how='any', subset=blocking_keys, inplace=True) # merge the dataframes pairs_df = data_left.merge(data_right, how='inner', on=blocking_keys) return pandas.MultiIndex( levels=[df_a.index.values, df_b.index.values], codes=[pairs_df['index_x'].values, pairs_df['index_y'].values], verify_integrity=False) class SortedNeighbourhood(BaseIndexAlgorithm): """Make candidate record pairs with the SortedNeighbourhood algorithm. This algorithm returns record pairs that agree on the sorting key, but also records pairs in their neighbourhood. A large window size results in more record pairs. A window size of 1 returns the blocking index. The Sorted Neighbourhood Index method is a great method when there is relatively large amount of spelling mistakes. Blocking will fail in that situation because it excludes to many records on minor spelling mistakes. Parameters ---------- left_on : label, optional The column name of the sorting key of the first/left dataframe. right_on : label, optional The column name of the sorting key of the second/right dataframe. window: int, optional The width of the window, default is 3 sorting_key_values: array, optional A list of sorting key values (optional). block_on: label Additional columns to apply standard blocking on. block_left_on: label Additional columns in the left dataframe to apply standard blocking on. block_right_on: label Additional columns in the right dataframe to apply standard blocking on. **kwargs : Additional keyword arguments to pass to :class:`recordlinkage.base.BaseIndexAlgorithm`. Examples -------- In the following example, the record pairs are made for two historical datasets with census data. The datasets are named ``census_data_1980`` and ``census_data_1990``. >>> indexer = recordlinkage.SortedNeighbourhoodIndex( 'first_name', window=9 ) >>> indexer.index(census_data_1980, census_data_1990) When the sorting key has different names in both dataframes: >>> indexer = recordlinkage.SortedNeighbourhoodIndex( left_on='first_name', right_on='given_name', window=9 ) >>> indexer.index(census_data_1980, census_data_1990) """ def __init__(self, left_on=None, right_on=None, window=3, sorting_key_values=None, block_on=[], block_left_on=[], block_right_on=[], **kwargs): on = kwargs.pop('on', None) super(SortedNeighbourhood, self).__init__(**kwargs) # variables to block on self.left_on = left_on self.right_on = right_on self.window = window self.sorting_key_values = sorting_key_values self.block_on = block_on self.block_left_on = block_left_on self.block_right_on = block_right_on if on is not None: warnings.warn( "The argument 'on' is deprecated. Use 'left_on=...' and " "'right_on=None' to simulate the behaviour of 'on'.", DeprecationWarning, stacklevel=2) self.left_on, self.right_on = on, on def __repr__(self): class_name = self.__class__.__name__ left_on, right_on = self._get_left_and_right_on() return "<{} left_on={!r}, right_on={!r}>".format( class_name, left_on, right_on) def _get_left_and_right_on(self): if self.right_on is None: return (self.left_on, self.left_on) else: return (self.left_on, self.right_on) def _get_sorting_key_values(self, array1, array2): """return the sorting key values as a series""" concat_arrays = numpy.concatenate([array1, array2]) unique_values = numpy.unique(concat_arrays) return numpy.sort(unique_values) def _link_index(self, df_a, df_b): left_on, right_on = self._get_left_and_right_on() left_on = listify(left_on) right_on = listify(right_on) window = self.window # Check if window is an odd number if not isinstance(window, int) or (window < 0) or not bool(window % 2): raise ValueError('window is not a positive and odd integer') # # sorting key is single column # if isinstance(self.on, (tuple, list, dict)): # raise ValueError( # "sorting key is not a label") # make blocking keys correct block_left_on = listify(self.block_left_on) block_right_on = listify(self.block_right_on) if self.block_on: block_left_on = listify(self.block_on) block_right_on = listify(self.block_on) blocking_keys = ['sorting_key'] + \ ["blocking_key_%d" % i for i, v in enumerate(block_left_on)] # make a dataset for the data on the left # 1. make a dataframe # 2. rename columns # 3. add index col # 4. drop na (last step to presever index) data_left = pandas.DataFrame( df_a[listify(left_on) + block_left_on], copy=False) data_left.columns = blocking_keys data_left['index_x'] = numpy.arange(len(df_a)) data_left.dropna(axis=0, how='any', subset=blocking_keys, inplace=True) data_right = pandas.DataFrame( df_b[listify(right_on) + block_right_on], copy=False) data_right.columns = blocking_keys data_right['index_y'] = numpy.arange(len(df_b)) data_right.dropna( axis=0, how='any', subset=blocking_keys, inplace=True) # sorting_key_values is the terminology in Data Matching [Christen, # 2012] if self.sorting_key_values is None: self.sorting_key_values = self._get_sorting_key_values( data_left['sorting_key'].values, data_right['sorting_key'].values) sorting_key_factors = pandas.Series( numpy.arange(len(self.sorting_key_values)), index=self.sorting_key_values) data_left['sorting_key'] = data_left['sorting_key'].map( sorting_key_factors) data_right['sorting_key'] = data_right['sorting_key'].map( sorting_key_factors) # Internal window size _window = int((window - 1) / 2) def merge_lagged(x, y, w): """Merge two dataframes with a lag on in the sorting key.""" y = y.copy() y['sorting_key'] = y['sorting_key'] + w return x.merge(y, how='inner') pairs_concat = [ merge_lagged(data_left, data_right, w) for w in range(-_window, _window + 1) ] pairs_df = pandas.concat(pairs_concat, axis=0) return pandas.MultiIndex( levels=[df_a.index.values, df_b.index.values], codes=[pairs_df['index_x'].values, pairs_df['index_y'].values], verify_integrity=False) class Random(BaseIndexAlgorithm): """Class to generate random pairs of records. This class returns random pairs of records with or without replacement. Use the random_state parameter to seed the algorithm and reproduce results. This way to make record pairs is useful for the training of unsupervised learning models for record linkage. Parameters ---------- n : int The number of record pairs to return. In case replace=False, the integer n should be bounded by 0 < n <= n_max where n_max is the maximum number of pairs possible. replace : bool, optional Whether the sample of record pairs is with or without replacement. Default: True random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy.RandomState object. **kwargs : Additional keyword arguments to pass to :class:`recordlinkage.base.BaseIndexAlgorithm`. """ def __init__(self, n, replace=True, random_state=None, **kwargs): super(Random, self).__init__(**kwargs) self.n = n self.replace = replace self.random_state = random_state def __repr__(self): class_name = self.__class__.__name__ return "<{} n={!r}, replace={!r}>".format(class_name, self.n, self.replace) def _link_index(self, df_a, df_b): shape = (len(df_a), len(df_b)) n_max = full_index_size(shape) if not isinstance(self.n, int): raise ValueError('n must be an integer') # with replacement if self.replace: if n_max == 0: raise ValueError("one of the dataframes is empty") pairs = random_pairs_with_replacement(self.n, shape, self.random_state) # without replacement else: if self.n <= 0 or self.n > n_max: raise ValueError( "n must be a integer satisfying 0<n<=%s" % n_max) # the fraction of pairs in the sample frac = self.n / n_max # large dataframes if n_max < 1e6 or frac > 0.5: pairs = random_pairs_without_replacement( self.n, shape, self.random_state) # small dataframes else: pairs = random_pairs_without_replacement_low_memory( self.n, shape, self.random_state) levels = [df_a.index.values, df_b.index.values] codes = pairs return pandas.MultiIndex( levels=levels, codes=codes, verify_integrity=False) def _dedup_index(self, df_a): shape = (len(df_a), ) # with replacement if self.replace: pairs = random_pairs_with_replacement(self.n, shape, self.random_state) # without replacement else: n_max = full_index_size(shape) if not isinstance(self.n, int) or self.n <= 0 or self.n > n_max: raise ValueError( "n must be a integer satisfying 0<n<=%s" % n_max) # large dataframes if n_max < 1e6: pairs = random_pairs_without_replacement( self.n, shape, self.random_state) # small dataframes else: pairs = random_pairs_without_replacement_low_memory( self.n, shape, self.random_state) levels = [df_a.index.values, df_a.index.values] labels = pairs return pandas.MultiIndex( levels=levels, codes=labels, verify_integrity=False) FullIndex = DeprecationHelper( Full, "class recordlinkage.FullIndex is renamed and moved, " "use recordlinkage.index.Full") BlockIndex = DeprecationHelper( Block, "class recordlinkage.BlockIndex is renamed and moved, " "use recordlinkage.index.Block") SortedNeighbourhoodIndex = DeprecationHelper( SortedNeighbourhood, "class recordlinkage.SortedNeighbourhoodIndex " "is renamed and moved, use recordlinkage.index.SortedNeighbourhood") RandomIndex = DeprecationHelper( Random, "class recordlinkage.RandomIndex is renamed and moved, " "use recordlinkage.index.Random")
bsd-3-clause
conferency/find-my-reviewers
utilities/tokeniser.py
1
3837
import pandas as pd import sqlite3 import nltk from nltk.corpus import stopwords import glob from io import StringIO from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage import json from textblob import TextBlob from multiprocessing import Pool import sys ''' Usage: python tokenizer.py fulltext python tokenizer.py fulltext noun_phrases python tokenizer.py abstract python tokenizer.py fulltext noun_phrases ''' con = sqlite3.connect("data.sqlite") # specify your database here db_documents = pd.read_sql_query("SELECT * from documents", con) db_authors = pd.read_sql_query("SELECT * from authors", con) data = db_documents.set_index("submission_path") args = sys.argv tokenised = {} split = 0 mode = "abstract" # default mode np = False single_file_max_documents = 10 # the maximum documents per file. Useful when you have a limited memory. def save_json(target_object, filename): with open(filename, 'w') as fp: json.dump(target_object, fp) print("INFO: Saved", filename) def save(number_suffix=""): global np if number_suffix: number_suffix = "_" + str(number_suffix) else: number_suffix = "" if np: save_json(tokenised, mode + "_tokenised" + number_suffix + ".json") else: save_json(tokenised, mode + "_np_tokenised" + number_suffix + ".json") def log(result): global split global tokenised tokenised[result[0]] = result[1] if len(tokenised) == single_file_max_documents: print("INFO: Exceeded single_file_max_documents:", single_file_max_documents) save(split) print("INFO: Saved to split", split) split += 1 tokenised = {} def pdf2string(fname, pages=None): if not pages: pagenums = set() else: pagenums = set(pages) output = StringIO(newline=None) manager = PDFResourceManager() converter = TextConverter(manager, output, laparams=LAParams()) interpreter = PDFPageInterpreter(manager, converter) infile = open(fname, 'rb') for page in PDFPage.get_pages(infile, pagenums): try: interpreter.process_page(page) except: print("ERROR: Error while processing a page in", fname) pass infile.close() converter.close() text = output.getvalue() output.close return text def textblob_tokenise(path, prefix, suffix, mode, noun_phrase=False): filepath = prefix + path + suffix # filepath = "F:/FMR/aisel.aisnet.org/" + path + "/fulltext.pdf" print("INFO: Processing", path) text = data.loc[path]["title"] + " " + data.loc[path]["abstract"] def clean(text): return text.replace("<p>", " ").replace("</p>", " ").replace("- ", "").replace("-", "") if mode == "fulltext": try: text += " " + pdf2string(filepath) except: pass if noun_phrase: tokenised = list(TextBlob(clean(text).encode("ascii", "ignore").decode('ascii')).noun_phrases) else: tokenised = TextBlob(clean(text).encode("ascii", "ignore").decode('ascii')).words print("INFO:", path, "done.") return path, tokenised if __name__ == "__main__": p = Pool() print(args) try: mode = args[1] except IndexError: print("WARNING: Unspecificed argument. It could be 'abstract' or 'fulltext'. Using '", mode, "'.") try: if args[2] == "noun_phrases": print("INFO: Using noun phrase extraction.") np = True except IndexError: pass for i in data.index: p.apply_async(textblob_tokenise, args = (i, "F:/FMR/aisel.aisnet.org/", "/fulltext.pdf", mode, np), callback = log) p.close() p.join() save(split)
mit
neherlab/ffpopsim
tests/python_hiv.py
2
1305
# vim: fdm=indent ''' author: Fabio Zanini date: 25/04/12 content: Test script for the python bindings ''' # Import module import sys sys.path.insert(0, '../pkg/python') import numpy as np import matplotlib.pyplot as plt import FFPopSim as h # Construct class pop = h.hivpopulation(1000) # Test I/O fitness landscapes pop.set_replication_landscape(lethal_fraction=0.05, number_valleys=0) pop.read_replication_coefficients('hiv_model.dat') rep = pop.get_replication_additive() rep[np.random.random(10000) > 0.5] = -0.1 pop.set_replication_additive(rep) # Show the additive part of the fitness landscape print pop.get_trait_additive() # Test population initialization pop.set_allele_frequencies([0.3] * h.HIVGENOME, 1000) # Test allele frequency readout print np.max(pop.get_allele_frequency(4)) # Test evolution from time import time as ti t0 = ti() pop.evolve(30) t1 = ti() print 'Time for evolving HIV for 30 generations: {:1.1f} s'.format(t1-t0) # Write genotypes pop.write_genotypes('test.txt', 100) pop.write_genotypes_compressed('test.npz', 100) # Plot histograms plt.ion() pop.plot_fitness_histogram() pop.plot_divergence_histogram(color='r') pop.plot_diversity_histogram(color='g') # Test treatment changes pop.treatment = 0.4 print pop.treatment
gpl-3.0
matsushitayuki/space-modeling
denoise_2.py
1
1144
import numpy as np import matplotlib.pyplot as plt import cv2 from OD_setup import * from denoise_setup import * D = np.load('D_cifar_1.npy') stride = 16 M,K = D.shape n = int(M**0.5) lamda = 1 sigma = 20 mu = 30/sigma e = M*(1.15*sigma)**2 X_list = [] X = cv2.imread('barbara.jpg', 0) X = np.array(X,float) N = int(X.shape[0]) X_0 = np.array(X) X_list.append(X_0) np.random.seed(0) X += np.random.normal(0,sigma,(N,N)) X_noisy = np.array(X) X_list.append(X_noisy) RTR = R_T_R(N,n) RTR += mu*np.ones((N**2,1)) inv = 1/RTR for i in range(5): R_T_Dalpha = np.zeros((N,N)) for i in np.arange(0,(N-n+1),stride): for j in np.arange(0,(N-n+1),stride): print(i,j) RX = R(X,i,j,n) RX = RX.reshape(n**2,1) alpha = alpha_line(lamda,RX,D,50,e) Dalpha = (D@alpha).reshape(n,n) R_T_Dalpha += R_T(Dalpha,i,j,N) X = X.reshape(N**2,1) R_T_Dalpha = R_T_Dalpha.reshape(N**2,1) X = inv * (mu*X + R_T_Dalpha) X = X.reshape(N,N) X_list.append(X) for i in range(len(X_list)): plt.subplot(1,3,i+1) plt.imshow(X_list[i]) plt.gray() plt.show()
gpl-3.0
phobson/pybmpdb
pybmpdb/tests/test_bmpdb.py
2
7561
import sys import os import zipfile from io import StringIO from pkg_resources import resource_filename from urllib import request from pathlib import Path from unittest.mock import patch import pytest import numpy.testing as nptest import pandas.util.testing as pdtest import numpy import pandas from pybmpdb import bmpdb import wqio def get_data_file(filename): return resource_filename("pybmpdb.tests._data", filename) @pytest.fixture def df_for_quals(): df = pandas.DataFrame( [ {"res": 1, "DL": 2, "qual": "U"}, {"res": 1, "DL": 2, "qual": "UK"}, {"res": 1, "DL": 2, "qual": "UA"}, {"res": 1, "DL": 2, "qual": "UC"}, {"res": 1, "DL": 2, "qual": "K"}, {"res": 5.0, "DL": 15.0, "qual": "UJ"}, {"res": 5.0, "DL": 10.0, "qual": "UJ"}, {"res": 10.0, "DL": 5.0, "qual": "UJ"}, {"res": 10.0, "DL": 10.0, "qual": "UJ"}, {"res": 5.0, "DL": 5.0, "qual": "junk"}, ] ) return df def test__handle_ND_factors(df_for_quals): expected = numpy.array([2, 2, 2, 2, 2, 3, 2, 1, 1, 1]) result = bmpdb._handle_ND_factors(df_for_quals) nptest.assert_array_equal(result, expected) def test__handle_ND_qualifiers(df_for_quals): result = bmpdb._handle_ND_qualifiers(df_for_quals) expected = numpy.array(["ND", "ND", "ND", "ND", "ND", "ND", "ND", "=", "ND", "="]) nptest.assert_array_equal(result, expected) def test__process_screening(): df = pandas.DataFrame({"screen": ["Yes", "INC", "No", "eXC", "junk"]}) expected = numpy.array(["yes", "yes", "no", "no", "invalid"]) result = bmpdb._process_screening(df, "screen") nptest.assert_array_equal(result, expected) def test__process_sampletype(): df = pandas.DataFrame( {"sampletype": ["SRL GraB asdf", "SeL cOMPositE df", "jeL LSDR as"]} ) expected = numpy.array(["grab", "composite", "unknown"]) result = bmpdb._process_sampletype(df, "sampletype") nptest.assert_array_equal(result, expected) def test__check_levelnames(): bmpdb._check_levelnames(["epazone", "category"]) with pytest.raises(ValueError): bmpdb._check_levelnames(["site", "junk"]) @patch.object(pandas, "read_csv") def test_load_data(read_csv): bmpdb.load_data("bmp.csv") read_csv.assert_called_once_with( Path("bmp.csv"), parse_dates=["sampledate"], encoding="utf-8" ) @pytest.mark.skipif(True, reason="test not ready") def test_clean_raw_data(): pass def test_transform_parameters(): index_cols = ["storm", "param", "units"] df = pandas.DataFrame( { "storm": [1, 1, 2, 2, 3, 3], "param": list("ABABAB"), "units": ["mg/L"] * 6, "res": [1, 2, 3, 4, 5, 6], "qual": ["<", "="] * 3, } ).set_index(index_cols) expected = pandas.DataFrame( { "storm": [1, 1, 2, 2, 3, 3, 1, 2, 3], "param": list("ABABABCCC"), "units": (["mg/L"] * 6) + (["ug/L"] * 3), "res": [1, 2, 3, 4, 5, 6, 3000, 7000, 11000], "qual": (["<", "="] * 3) + (["="] * 3), } ).set_index(index_cols) old_params = ["A", "B"] new_param = "C" result = bmpdb.transform_parameters( df, old_params, new_param, "ug/L", lambda x: 1000 * x["res"].sum(axis=1), lambda x: x[("qual", "B")], paramlevel="param", ) pdtest.assert_frame_equal(result, expected) @pytest.mark.parametrize( ("fxn", "args", "index_cols", "infilename", "outfilename"), [ ( bmpdb._pick_best_station, [], ["site", "bmp", "storm", "parameter", "station"], "test_pick_station_input.csv", "test_pick_station_output.csv", ), ( bmpdb._pick_best_sampletype, [], ["site", "bmp", "storm", "parameter", "station", "sampletype"], "test_pick_sampletype_input.csv", "test_pick_sampletype_output.csv", ), ( bmpdb._filter_by_storm_count, [6], ["category", "site", "bmp", "storm", "parameter", "station"], "test_filter_bmp-storm_counts_input.csv", "test_filter_storm_counts_output.csv", ), ( bmpdb._filter_by_BMP_count, [4], ["category", "site", "bmp", "parameter", "station"], "test_filter_bmp-storm_counts_input.csv", "test_filter_bmp_counts_output.csv", ), ], ) def test_summary_filter_functions(fxn, args, index_cols, infilename, outfilename): input_df = pandas.read_csv(get_data_file(infilename), index_col=index_cols) expected_df = pandas.read_csv( get_data_file(outfilename), index_col=index_cols ).sort_index() test_df = fxn(input_df, *args).sort_index() pdtest.assert_frame_equal(expected_df.reset_index(), test_df.reset_index()) @pytest.mark.parametrize("doit", [True, False]) @pytest.mark.parametrize( ("fxn", "index_cols", "infilename", "outfilename"), [ ( bmpdb._maybe_filter_onesided_BMPs, ["category", "site", "bmp", "storm", "parameter", "station"], "test_filter_onesidedbmps_input.csv", "test_filter_onesidedbmps_output.csv", ), ( bmpdb._maybe_combine_nox, ["bmp", "category", "storm", "units", "parameter"], "test_WBRP_NOx_input.csv", "test_NOx_output.csv", ), ( bmpdb._maybe_combine_WB_RP, ["bmp", "category", "storm", "units", "parameter"], "test_WBRP_NOx_input.csv", "test_WBRP_output.csv", ), ( bmpdb._maybe_fix_PFCs, ["bmp", "category", "bmptype", "storm", "parameter"], "test_PFCs_input.csv", "test_PFCs_output.csv", ), ( bmpdb._maybe_remove_grabs, ["bmp", "category", "sampletype", "storm"], "test_grabsample_input.csv", "test_grabsample_output.csv", ), ], ) def test__maybe_filter_functions(fxn, doit, index_cols, infilename, outfilename): input_df = pandas.read_csv(get_data_file(infilename), index_col=index_cols) result = fxn(input_df, doit).sort_index() if doit: expected = pandas.read_csv( get_data_file(outfilename), index_col=index_cols ).sort_index() else: expected = input_df.copy().sort_index() pdtest.assert_frame_equal(result, expected) def test__pick_non_null(): df = pandas.DataFrame( { ("res", "this"): [1.0, numpy.nan, 2.0, numpy.nan], ("res", "that"): [numpy.nan, numpy.nan, 9.0, 3.0], } ) expected = numpy.array([1.0, numpy.nan, 2.0, 3.0]) result = bmpdb._pick_non_null(df, "res", "this", "that") nptest.assert_array_equal(result, expected) def test_paired_qual(): df = pandas.DataFrame( {"in_qual": ["=", "=", "ND", "ND"], "out_qual": ["=", "ND", "=", "ND"]} ) expected = ["Pair", "Effluent ND", "Influent ND", "Both ND"] result = bmpdb.paired_qual(df, "in_qual", "out_qual") nptest.assert_array_equal(result, expected)
bsd-3-clause
giorgiop/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
77
3825
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope from sklearn.covariance import fast_mcd X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def test_fast_mcd_on_invalid_input(): X = np.arange(100) assert_raise_message(ValueError, 'fast_mcd expects at least 2 samples', fast_mcd, X) def test_mcd_class_on_invalid_input(): X = np.arange(100) mcd = MinCovDet() assert_raise_message(ValueError, 'MinCovDet expects at least 2 samples', mcd.fit, X) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
mtdx/ml-algorithms
regression/linear-regression-eg.py
1
1818
import pandas as pd import quandl import math import numpy as np import datetime import matplotlib.pyplot as plt from matplotlib import style import pickle style.use('ggplot') from sklearn import preprocessing, model_selection, svm from sklearn.linear_model import LinearRegression df = quandl.get('WIKI/GOOGL') df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']] df['HL_PCT'] = (df['Adj. High'] - df['Adj. Low']) / df['Adj. Close'] * 100.0 df['PCT_change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] * 100.0 # df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']] forecast_c = 'Adj. Close' df.fillna(-99999, inplace=True) forecast_o = int(math.ceil(0.1 * len(df))) # set label df['label'] = df[forecast_c].shift(-forecast_o) X = np.array(df.drop(['label'], 1)) X = preprocessing.scale(X) X_lately = X[-forecast_o:] X = X[:-forecast_o] df.dropna(inplace=True) y = np.array(df['label']) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) clf = LinearRegression(n_jobs=-1) clf.fit(X_train, y_train) # with open('pickle/linearregression.pickle', 'wb') as f: # pickle.dump(clf, f) # pickle_in = open('pickle/linearregression.pickle', 'rb') # clf = pickle.load(pickle_in) accuracy = clf.score(X_test, y_test) forecast_set = clf.predict(X_lately) # print(forecast_set, accuracy, forecast_o) df['Forecast'] = np.nan last_date = df.iloc[-1].name last_unix = last_date.timestamp() one_day = 86400 next_unix = last_unix + one_day for i in forecast_set: next_date = datetime.datetime.fromtimestamp(next_unix) next_unix += 86400 df.loc[next_date] = [np.nan for _ in range(len(df.columns) - 1)] + [i] df['Adj. Close'].plot() df['Forecast'].plot() plt.legend(loc=4) plt.xlabel('Date') plt.ylabel('Price') plt.show()
mit
elaeon/ML
src/dama/clf/extended/w_sklearn.py
1
6212
from sklearn.calibration import CalibratedClassifierCV from dama.clf.wrappers import SKL, SKLP from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.linear_model import LogisticRegression as LReg from sklearn.linear_model import SGDClassifier as SGDClassif from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn import svm class SVC(SKL): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): model = CalibratedClassifierCV(svm.LinearSVC(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model) class RandomForest(SKLP): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): if model_params is None: model_params = dict(n_estimators=25, min_samples_split=2) model = CalibratedClassifierCV(RandomForestClassifier(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model) class ExtraTrees(SKLP): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): model = CalibratedClassifierCV(ExtraTreesClassifier(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model) class LogisticRegression(SKLP): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): model = CalibratedClassifierCV(LReg(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model) class SGDClassifier(SKLP): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): model = CalibratedClassifierCV(SGDClassif(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model) class AdaBoost(SKLP): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): model = CalibratedClassifierCV(AdaBoostClassifier(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model) class GradientBoost(SKLP): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): model = CalibratedClassifierCV(GradientBoostingClassifier(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model) class KNN(SKLP): def prepare_model(self, obj_fn=None, num_steps=None, model_params=None, batch_size: int = None): model = CalibratedClassifierCV(KNeighborsClassifier(**model_params), method="sigmoid") model_clf = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) cal_model = CalibratedClassifierCV(model_clf, method="sigmoid", cv="prefit") cal_model.fit(self.ds[self.data_groups["data_validation_group"]].to_ndarray(), self.ds[self.data_groups["target_validation_group"]].to_ndarray()) return self.ml_model(cal_model)
apache-2.0