repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
maps16/FComputacional1
Actividad10/Codigo/Animacion_Pendulo.py
1
4663
from numpy import sin, cos import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation class DoublePendulum: """Double Pendulum Class init_state is [theta1, omega1, theta2, omega2] in degrees, where theta1, omega1 is the angular position and velocity of the first pendulum arm, and theta2, omega2 is that of the second pendulum arm """ def __init__(self, init_state = [120, 0, 0, 0], L1=1.0, # length of pendulum 1 in m L2=0.0, # length of pendulum 2 in m M1=1.0, # mass of pendulum 1 in kg M2=1.0, # mass of pendulum 2 in kg G=9.8, # acceleration due to gravity, in m/s^2 origin=(0, 0)): self.init_state = np.asarray(init_state, dtype='float') self.params = (L1, L2, M1, M2, G) self.origin = origin self.time_elapsed = 0 self.state = self.init_state * np.pi / 180. def position(self): """compute the current x,y positions of the pendulum arms""" (L1, L2, M1, M2, G) = self.params x = np.cumsum([self.origin[0], L1 * sin(self.state[0]), L2 * sin(self.state[2])]) y = np.cumsum([self.origin[1], -L1 * cos(self.state[0]), -L2 * cos(self.state[2])]) return (x, y) def energy(self): """compute the energy of the current state""" (L1, L2, M1, M2, G) = self.params x = np.cumsum([L1 * sin(self.state[0]), L2 * sin(self.state[2])]) y = np.cumsum([-L1 * cos(self.state[0]), -L2 * cos(self.state[2])]) vx = np.cumsum([L1 * self.state[1] * cos(self.state[0]), L2 * self.state[3] * cos(self.state[2])]) vy = np.cumsum([L1 * self.state[1] * sin(self.state[0]), L2 * self.state[3] * sin(self.state[2])]) U = G * (M1 * y[0] + M2 * y[1]) K = 0.5 * (M1 * np.dot(vx, vx) + M2 * np.dot(vy, vy)) return U + K def dstate_dt(self, state, t): """compute the derivative of the given state""" (M1, M2, L1, L2, G) = self.params dydx = np.zeros_like(state) dydx[0] = state[1] dydx[2] = state[3] cos_delta = cos(state[2] - state[0]) sin_delta = sin(state[2] - state[0]) den1 = (M1 + M2) * L1 - M2 * L1 * cos_delta * cos_delta dydx[1] = (M2 * L1 * state[1] * state[1] * sin_delta * cos_delta + M2 * G * sin(state[2]) * cos_delta + M2 * L2 * state[3] * state[3] * sin_delta - (M1 + M2) * G * sin(state[0])) / den1 den2 = (L2 / L1) * den1 dydx[3] = (-M2 * L2 * state[3] * state[3] * sin_delta * cos_delta + (M1 + M2) * G * sin(state[0]) * cos_delta - (M1 + M2) * L1 * state[1] * state[1] * sin_delta - (M1 + M2) * G * sin(state[2])) / den2 return dydx def step(self, dt): """execute one time step of length dt and update state""" self.state = integrate.odeint(self.dstate_dt, self.state, [0, dt])[1] self.time_elapsed += dt #------------------------------------------------------------ # set up initial state and global variables pendulum = DoublePendulum([120.0, 0.0, 0.0, 0.0]) dt = 1./60. # 60 fps #------------------------------------------------------------ # set up figure and animation fig = plt.figure() ax = fig.add_subplot(111, aspect='equal', autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2)) ax.grid() line, = ax.plot([], [], 'o-', lw=2) time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes) energy_text = ax.text(0.02, 0.90, '', transform=ax.transAxes) def init(): #initialize animation line.set_data([], []) time_text.set_text('') energy_text.set_text('') return line, time_text, energy_text def animate(i): #perform animation step global pendulum, dt pendulum.step(dt) line.set_data(*pendulum.position()) time_text.set_text('time = %.1f' % pendulum.time_elapsed) #energy_text.set_text('energy = %.3f J' % pendulum.energy()) return line, time_text, energy_text # choose the interval based on dt and the time to animate one step from time import time t0 = time() animate(0) t1 = time() interval = 1000 * dt - (t1 - t0) ani = animation.FuncAnimation(fig, animate, frames=300, interval=interval, blit=True, init_func=init) plt.show()
mit
fabianp/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
chenyyx/scikit-learn-doc-zh
examples/zh/decomposition/plot_ica_vs_pca.py
59
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA # ############################################################################# # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) # ############################################################################# # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
gpl-3.0
equialgo/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
28
3792
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import NotFittedError from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope from sklearn.covariance import fast_mcd X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): # Tests the FastMCD algorithm implementation # Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) # Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) # Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) # 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def test_fast_mcd_on_invalid_input(): X = np.arange(100) assert_raise_message(ValueError, 'Got X with X.ndim=1', fast_mcd, X) def test_mcd_class_on_invalid_input(): X = np.arange(100) mcd = MinCovDet() assert_raise_message(ValueError, 'Got X with X.ndim=1', mcd.fit, X) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
tdhopper/scikit-learn
examples/gaussian_process/plot_gp_probabilistic_classification_after_regression.py
252
3490
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================================================== Gaussian Processes classification example: exploiting the probabilistic output ============================================================================== A two-dimensional regression exercise with a post-processing allowing for probabilistic classification thanks to the Gaussian property of the prediction. The figure illustrates the probability that the prediction is negative with respect to the remaining uncertainty in the prediction. The red and blue lines corresponds to the 95% confidence interval on the prediction of the zero level set. """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause import numpy as np from scipy import stats from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl from matplotlib import cm # Standard normal distribution functions phi = stats.distributions.norm().pdf PHI = stats.distributions.norm().cdf PHIinv = stats.distributions.norm().ppf # A few constants lim = 8 def g(x): """The function to predict (classification will then consist in predicting whether g(x) <= 0 or not)""" return 5. - x[:, 1] - .5 * x[:, 0] ** 2. # Design of experiments X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) # Observations y = g(X) # Instanciate and fit Gaussian Process Model gp = GaussianProcess(theta0=5e-1) # Don't perform MLE or you'll get a perfect prediction for this simple example! gp.fit(X, y) # Evaluate real function, the prediction and its MSE on a grid res = 50 x1, x2 = np.meshgrid(np.linspace(- lim, lim, res), np.linspace(- lim, lim, res)) xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T y_true = g(xx) y_pred, MSE = gp.predict(xx, eval_MSE=True) sigma = np.sqrt(MSE) y_true = y_true.reshape((res, res)) y_pred = y_pred.reshape((res, res)) sigma = sigma.reshape((res, res)) k = PHIinv(.975) # Plot the probabilistic classification iso-values using the Gaussian property # of the prediction fig = pl.figure(1) ax = fig.add_subplot(111) ax.axes.set_aspect('equal') pl.xticks([]) pl.yticks([]) ax.set_xticklabels([]) ax.set_yticklabels([]) pl.xlabel('$x_1$') pl.ylabel('$x_2$') cax = pl.imshow(np.flipud(PHI(- y_pred / sigma)), cmap=cm.gray_r, alpha=0.8, extent=(- lim, lim, - lim, lim)) norm = pl.matplotlib.colors.Normalize(vmin=0., vmax=0.9) cb = pl.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm) cb.set_label('${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$') pl.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12) pl.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12) cs = pl.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot') cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.025], colors='b', linestyles='solid') pl.clabel(cs, fontsize=11) cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.5], colors='k', linestyles='dashed') pl.clabel(cs, fontsize=11) cs = pl.contour(x1, x2, PHI(- y_pred / sigma), [0.975], colors='r', linestyles='solid') pl.clabel(cs, fontsize=11) pl.show()
bsd-3-clause
lin-credible/scikit-learn
examples/applications/plot_model_complexity_influence.py
323
6372
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
Knifa/Glasgow-Baxter
src/glasgow_baxter/scripts/block_stacker/understanding.py
1
5987
#!/usr/bin/env python import rospy from glasgow_baxter_helpers import BaxterNode from glasgow_baxter.msg import DetectedSquares, TrackedSquares from square import Square, TrackedSquare import numpy as np from scipy.spatial import distance from sklearn.cluster import MeanShift, AffinityPropagation, DBSCAN, estimate_bandwidth import random import itertools import collections #################################################################################################### class UnderstandingNode(BaxterNode): def __init__(self): super(UnderstandingNode, self).__init__() self._squares_sub = rospy.Subscriber( '/squares', DetectedSquares, self.on_squaremsg_received) self._squares_pub = rospy.Publisher( '/tracked_squares', TrackedSquares, tcp_nodelay=True) self._prev_squares = collections.deque(maxlen=20) ############################################################################ def start(self): super(UnderstandingNode, self).start(spin=True) ############################################################################ def on_squaremsg_received(self, msg): detected_squares = [] for square_msg in msg.squares: detected_squares.append(TrackedSquare.from_msg(square_msg)) self._prev_squares.append(detected_squares) all_squares = list(itertools.chain.from_iterable(self._prev_squares)) square_centers = [list(s.center) + [s.hue] for s in all_squares] data = np.array(square_centers) ms = DBSCAN(eps=64, min_samples=3) ms.fit(data) labels = ms.labels_ ts_msg = TrackedSquares() for i, s in enumerate(all_squares): label = np.int0(labels[i]) if label < 0: continue s.tracking_colour = TrackedSquare.TRACKING_COLOURS[label % len(TrackedSquare.TRACKING_COLOURS)] s.tracking_detected = True ts_msg.squares.append(s.to_msg()) self._squares_pub.publish(ts_msg) ############################################################################ def _track_squares(self, detected_squares): if self._tracked_squares is None: self._tracked_squares = dict(map(lambda s: (s.tracking_id, s), detected_squares)) return min_squares = self._match_min_squares(detected_squares, self._tracked_squares.values()) # Update tracking with the new square. for ds, ts in min_squares.items(): self._tracked_squares[ts.tracking_id] = ds ds.tracking_detected = True ds.tracking_id = ts.tracking_id ds.tracking_colour = ts.tracking_colour # Mark any untracked squares this frame as inactive. ts_msg = TrackedSquares() for ts in self._tracked_squares.values(): if not ts in min_squares.keys(): ts.tracking_detected = False self._publish_tracked_squares() ############################################################################ def _build_distance_matrix(self, detected_squares, tracked_squares): # Calculate distances between tracked squares and new squares. distance_matrix = {} for ds in detected_squares: distance_matrix[ds] = {} for ts in tracked_squares: distance_matrix[ds][ts] = distance.minkowski(ds.center, ts.center, 128) return distance_matrix def _sort_squares_by_distance_matrix(self, distance_matrix): # Calculate distances between tracked squares and new squares. sorted_squares = {} for ds in distance_matrix.keys(): sorted_squares[ds] = collections.deque( sorted(distance_matrix[ds].keys(), key=lambda ts: distance_matrix[ds][ts])) return sorted_squares def _match_min_squares(self, detected_squares, tracked_squares): distance_matrix = self._build_distance_matrix(detected_squares, self._tracked_squares.values()) sorted_squares = self._sort_squares_by_distance_matrix(distance_matrix) min_squares_ts_to_ds = {} min_squares_ds_to_ts = {} need_matched = collections.deque(distance_matrix.keys()) while len(need_matched) > 0: ds = need_matched.popleft() # Leave it unmatched if there's nothing else. if not len(sorted_squares[ds]) > 0: continue min_ts = sorted_squares[ds].popleft() if not min_ts in min_squares_ts_to_ds: # Tracked square is unmatched, so match it right away. min_squares_ds_to_ts[ds] = min_ts min_squares_ts_to_ds[min_ts] = ds else: # Closest tracked square has already been tracked. ds2 = min_squares_ts_to_ds[min_ts] # Check which one is closest. if distance_matrix[ds][min_ts] < distance_matrix[ds2][min_ts]: # This one is closest, so remap. min_squares_ds_to_ts[ds] = min_ts min_squares_ts_to_ds[min_ts] = ds del min_squares_ds_to_ts[ds2] need_matched.append(ds2) else: # Otherwise, try again later. need_matched.append(ds) return min_squares_ds_to_ts def _publish_tracked_squares(self): # Output all detected squares. ts_msg = TrackedSquares() for s in self._tracked_squares.values(): ts_msg.squares.append(s.to_msg()) self._squares_pub.publish(ts_msg) #################################################################################################### def main(): rospy.init_node('understanding', anonymous=True) node = UnderstandingNode() node.start() if __name__ == '__main__': main()
gpl-2.0
lqhuang/SAXS-tools
scripts/animate_data_frames.py
1
8255
from __future__ import print_function, division import os import sys import glob import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable from PIL import Image ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if ROOT_DIR not in sys.path: sys.path.append(ROOT_DIR) from RAW import RAWSimulator def get_boxcenter(array_shape, center, radius=100): box_center = (np.minimum(curr_center, radius, dtype=int) for curr_center in zip(center)) return np.vstack(box_center).flatten() def get_boxsize(array_shape, center, radius=100): if len(center) != len(array_shape): raise ValueError( 'Length of center must be the same with dimension of array') size = (np.minimum(curr_center + radius, max_len, dtype=int) - np.maximum(curr_center - radius, 0, dtype=int) for curr_center, max_len in zip(center, array_shape)) return tuple(size) def boxslice(array, center, radius=100): """Slice a box with given radius from ndim array and return a view. Please notice the size of return is uncertain, which depends on boundary. Parameters ---------- array : array_like Input array. center : tuple of int Center in array to boxing. For 2D array, it's (row_center, col_center). Length must be the same with dimension of array. Returns ------- out : array_like A view of `array` with given box range. """ if len(center) != array.ndim: raise ValueError( 'Length of center must be the same with dimension of array') slicer = [ slice( np.maximum(curr_center - radius, 0, dtype=int), np.minimum(curr_center + radius, max_len, dtype=int), ) for curr_center, max_len in zip(center, array.shape) ] return array[slicer] def subtract_radial_average(img, center, mask=None): """Let image subtract its radial average matrix. Parameters ---------- img : numpy.ndarray 2D matrix of input image center : tuple of int center of image mask : numpy.ndarray, optional mask for image. 1 means valid area, 0 means masked area. (the default is None, which is no mask.) Returns ------- numpy.ndarray return residual image. """ assert img.ndim == 2, 'Wrong dimension for image.' assert len(center) == 2, 'Wrong dimension for center.' if mask is not None: masked_img = img * mask else: masked_img = img center = np.round(center) meshgrids = np.indices(img.shape) # return (xx, yy) # eq: r = sqrt( (x - x_center)**2 + (y - y_center)**2 + (z - z_center)**2 ) r = np.sqrt(sum(((grid - c)**2 for grid, c in zip(meshgrids, center)))) r = np.round(r).astype(np.int) total_bin = np.bincount(r.ravel(), masked_img.ravel()) nr = np.bincount(r.ravel()) # count for each r if mask is not None: r_mask = np.zeros(r.shape) r_mask[np.where(mask == 0.0)] = 1 nr_mask = np.bincount(r.ravel(), r_mask.ravel()) nr = nr - nr_mask radialprofile = np.zeros_like(nr) # r_pixel = np.unique(r.ravel()) # sorted nomaskr = np.where(nr > 0) radialprofile[nomaskr] = total_bin[nomaskr] / nr[nomaskr] if mask is None: residual_img = masked_img - radialprofile[r] # subtract mean matrix else: residual_img = masked_img - radialprofile[r] * mask return residual_img def animate_frames(framefiles, mask, image_dim, center, radius=150, subtract_average=False, vmin=0, vmax=400, show=False, save_to_video=True, animation_name=None): """animate sas data frames """ boxshape = get_boxsize(image_dim, center, radius) # stack_shape: (num_images, row, col) stack_shape = [len(framefiles)] + list(boxshape) image_stack = np.zeros(stack_shape, dtype=float) boxed_mask = boxslice(mask, center, radius) box_center = get_boxcenter(image_dim, center, radius) for i, filename in enumerate(framefiles): with Image.open(filename) as tiff: boxed_image = boxslice( np.fliplr(np.asarray(tiff, dtype=float)), center, radius) * boxed_mask if subtract_average: boxed_image = subtract_radial_average(boxed_image, box_center, boxed_mask) image_stack[i, :, :] = boxed_image fig, ax = plt.subplots() ax_divider = make_axes_locatable(ax) cax = ax_divider.append_axes('right', size='7%', pad='2%') if subtract_average: im = ax.imshow(image_stack[0], cmap='jet', animated=True) else: im = ax.imshow( image_stack[0], cmap='jet', vmin=vmin, vmax=vmax, animated=True) title = ax.set_title('current frame: {}'.format(str(1).zfill(3))) cb = fig.colorbar(im, cax=cax) fig.tight_layout() def update_im(fr): im.set_data(image_stack[fr]) cb.set_array(image_stack[fr]) cb.autoscale() title.set_text('current frame: {}'.format(str(fr + 1).zfill(3))) cb.draw_all() fig.canvas.draw_idle() # return a sequence of artists, not a single artist return im, # call the animator. blit=True means only re-draw the parts that have changed. # interval: Delay between frames in milliseconds. Defaults to 200. # Additional arguments to pass to each call to func # http://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html # anim = animation.ArtistAnimation(fig, ims, interval=100, blit=True) frames_iter = range(len(framefiles)) anim = animation.FuncAnimation( fig, update_im, frames_iter, interval=500, blit=True, repeat=False) if save_to_video: # save the animation as an mp4. This requires ffmpeg or mencoder to be # installed. The extra_args ensure that the x264 codec is used, so that # the video can be embedded in html5. You may need to adjust this for # your system: for more information, see # http://matplotlib.sourceforge.net/api/animation_api.html if animation_name is None: animation_name = 'animation.mp4' elif not animation_name.endswith('.mp4'): animation_name += '.mp4' anim.save(animation_name, fps=4, extra_args=['-vcodec', 'libx264']) if show: plt.show() def gen_animation(raw_settings, image_filenames, animation_name='./animation'): x_center = int(raw_settings.get('Xcenter')) y_center = int(raw_settings.get('Ycenter')) image_dim = tuple(int(v) for v in raw_settings.get('MaskDimension')) col_center = x_center row_center = image_dim[0] - y_center center = [row_center, col_center] mask = raw_settings.get('BeamStopMask') if mask is None: mask = raw_settings.get('Masks')['BeamStopMask'] if not image_filenames: raise FileNotFoundError('No image files found.') animate_frames( image_filenames, mask, image_dim, center, vmax=70, save_to_video=True, # show=True, animation_name=animation_name) def main(): image_directory = sys.argv[1] raw_cfg_path = sys.argv[2] raw_simulator = RAWSimulator(raw_cfg_path) raw_settings = raw_simulator.get_raw_settings() image_format = '.tif' image_filenames = sorted( glob.glob(os.path.join(image_directory, '*' + image_format))) for filename in reversed(image_filenames): if 'buffer' in filename: image_filenames.remove(filename) root = os.path.dirname(image_directory) root_name = os.path.basename(root) animation_name = os.path.join(root, 'Figures', root_name + '_dynamic_video') os.makedirs(os.path.join(root, 'Figures'), exist_ok=True) gen_animation(raw_settings, image_filenames, animation_name) if __name__ == '__main__': main()
gpl-3.0
vlad17/spark-sklearn
python/spark_sklearn/tests/test_grid_search_1.py
1
2453
import unittest import sklearn.grid_search from spark_sklearn import GridSearchCV from spark_sklearn.test_utils import fixtureReuseSparkSession # Overwrite the sklearn GridSearch in this suite so that we can run the same tests with the same # parameters. @fixtureReuseSparkSession class AllTests(unittest.TestCase): # After testing, make sure to revert sklearn to normal (see _add_to_module()) @classmethod def tearDownClass(cls): super(AllTests, cls).tearDownClass() # Restore sklearn module to the original state after done testing this fixture. sklearn.grid_search.GridSearchCV = sklearn.grid_search.GridSearchCV_original del sklearn.grid_search.GridSearchCV_original class SPGridSearchWrapper(GridSearchCV): def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(SPGridSearchWrapper, self).__init__(AllTests.spark.sparkContext, estimator, param_grid, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) # These methods do not raise ValueError but something different _blacklist = set(['test_pickle', 'test_grid_search_precomputed_kernel_error_nonsquare', 'test_grid_search_precomputed_kernel_error_kernel_function', 'test_grid_search_precomputed_kernel', 'test_grid_search_failing_classifier_raise', 'test_grid_search_failing_classifier']) # This one we should investigate def _create_method(method): def do_test_expected(*kwargs): method() return do_test_expected def _add_to_module(): SKGridSearchCV = sklearn.grid_search.GridSearchCV sklearn.grid_search.GridSearchCV = SPGridSearchWrapper sklearn.grid_search.GridSearchCV_original = SKGridSearchCV from sklearn.tests import test_grid_search all_methods = [(mname, method) for (mname, method) in test_grid_search.__dict__.items() if mname.startswith("test_") and mname not in _blacklist] for name, method in all_methods: method_for_test = _create_method(method) method_for_test.__name__ = name setattr (AllTests, method.__name__, method_for_test) _add_to_module()
apache-2.0
Lawrence-Liu/scikit-learn
sklearn/utils/tests/test_class_weight.py
140
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
wavelets/zipline
zipline/data/benchmarks.py
33
4096
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from datetime import datetime import csv from functools import partial import requests import pandas as pd from six import iteritems from . loader_utils import ( date_conversion, source_to_records, Mapping ) DailyReturn = collections.namedtuple('DailyReturn', ['date', 'returns']) class BenchmarkDataNotFoundError(Exception): pass _BENCHMARK_MAPPING = { # Need to add 'symbol' 'volume': (int, 'Volume'), 'open': (float, 'Open'), 'close': (float, 'Close'), 'high': (float, 'High'), 'low': (float, 'Low'), 'adj_close': (float, 'Adj Close'), 'date': (partial(date_conversion, date_pattern='%Y-%m-%d'), 'Date') } def benchmark_mappings(): return {key: Mapping(*value) for key, value in iteritems(_BENCHMARK_MAPPING)} def get_raw_benchmark_data(start_date, end_date, symbol): # create benchmark files # ^GSPC 19500103 params = collections.OrderedDict(( ('s', symbol), # start_date month, zero indexed ('a', start_date.month - 1), # start_date day ('b', start_date.day), # start_date year ('c', start_date.year), # end_date month, zero indexed ('d', end_date.month - 1), # end_date day str(int(todate[6:8])) #day ('e', end_date.day), # end_date year str(int(todate[0:4])) ('f', end_date.year), # daily frequency ('g', 'd'), )) res = requests.get('http://ichart.finance.yahoo.com/table.csv', params=params, stream=True) if not res.ok: raise BenchmarkDataNotFoundError(""" No benchmark data found for date range. start_date={start_date}, end_date={end_date}, url={url}""".strip(). format(start_date=start_date, end_date=end_date, url=res.url)) return csv.DictReader(res.text.splitlines()) def get_benchmark_data(symbol, start_date=None, end_date=None): """ Benchmarks from Yahoo. """ if start_date is None: start_date = datetime(year=1950, month=1, day=3) if end_date is None: end_date = datetime.utcnow() raw_benchmark_data = get_raw_benchmark_data(start_date, end_date, symbol) mappings = benchmark_mappings() return source_to_records(mappings, raw_benchmark_data) def get_benchmark_returns(symbol, start_date=None, end_date=None): """ Returns a list of return percentages in chronological order. """ if start_date is None: start_date = datetime(year=1950, month=1, day=3) if end_date is None: end_date = datetime.utcnow() # Get the benchmark data and convert it to a list in chronological order. data_points = list(get_benchmark_data(symbol, start_date, end_date)) data_points.reverse() # Calculate the return percentages. benchmark_returns = [] for i, data_point in enumerate(data_points): if i == 0: curr_open = data_points[i]['open'] returns = (data_points[i]['close'] - curr_open) / curr_open else: prev_close = data_points[i - 1]['close'] returns = (data_point['close'] - prev_close) / prev_close date = pd.tseries.tools.normalize_date(data_point['date']) daily_return = DailyReturn(date=date, returns=returns) benchmark_returns.append(daily_return) return benchmark_returns
apache-2.0
mxjl620/scikit-learn
sklearn/metrics/tests/test_regression.py
272
6066
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred, multioutput='variance_weighted') assert_almost_equal(error, 1. - 5. / 2) error = r2_score(y_true, y_pred, multioutput='uniform_average') assert_almost_equal(error, -.875) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2, multioutput = _check_reg_targets( y1, y2, None) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2, None) def test_regression_multioutput_array(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) assert_array_almost_equal(r, [0.95, 0.93], decimal=2) assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. y_true = [[0, 0]]*4 y_pred = [[1, 1]]*4 mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [1., 1.], decimal=2) assert_array_almost_equal(mae, [1., 1.], decimal=2) assert_array_almost_equal(r, [0., 0.], decimal=2) r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(r, [0, -3.5], decimal=2) assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='uniform_average')) evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(evs, [0, -1.25], decimal=2) # Checking for the condition in which both numerator and denominator is # zero. y_true = [[1, 3], [-1, 2]] y_pred = [[1, 4], [-1, 1]] r2 = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(r2, [1., -3.], decimal=2) assert_equal(np.mean(r2), r2_score(y_true, y_pred, multioutput='uniform_average')) evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(evs, [1., -3.], decimal=2) assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred)) def test_regression_custom_weights(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) assert_almost_equal(msew, 0.39, decimal=2) assert_almost_equal(maew, 0.475, decimal=3) assert_almost_equal(rw, 0.94, decimal=2) assert_almost_equal(evsw, 0.94, decimal=2)
bsd-3-clause
cl4rke/scikit-learn
sklearn/feature_selection/tests/test_chi2.py
221
2398
""" Tests for chi2, currently the only feature selection function designed specifically to work with sparse matrices. """ import numpy as np from scipy.sparse import coo_matrix, csr_matrix import scipy.stats from sklearn.feature_selection import SelectKBest, chi2 from sklearn.feature_selection.univariate_selection import _chisquare from nose.tools import assert_raises from numpy.testing import assert_equal, assert_array_almost_equal # Feature 0 is highly informative for class 1; # feature 1 is the same everywhere; # feature 2 is a bit informative for class 2. X = [[2, 1, 2], [9, 1, 1], [6, 1, 2], [0, 1, 2]] y = [0, 1, 2, 2] def mkchi2(k): """Make k-best chi2 selector""" return SelectKBest(chi2, k=k) def test_chi2(): # Test Chi2 feature extraction chi2 = mkchi2(k=1).fit(X, y) chi2 = mkchi2(k=1).fit(X, y) assert_equal(chi2.get_support(indices=True), [0]) assert_equal(chi2.transform(X), np.array(X)[:, [0]]) chi2 = mkchi2(k=2).fit(X, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xsp = csr_matrix(X, dtype=np.float) chi2 = mkchi2(k=2).fit(Xsp, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xtrans = chi2.transform(Xsp) assert_equal(Xtrans.shape, [Xsp.shape[0], 2]) # == doesn't work on scipy.sparse matrices Xtrans = Xtrans.toarray() Xtrans2 = mkchi2(k=2).fit_transform(Xsp, y).toarray() assert_equal(Xtrans, Xtrans2) def test_chi2_coo(): # Check that chi2 works with a COO matrix # (as returned by CountVectorizer, DictVectorizer) Xcoo = coo_matrix(X) mkchi2(k=2).fit_transform(Xcoo, y) # if we got here without an exception, we're safe def test_chi2_negative(): # Check for proper error on negative numbers in the input X. X, y = [[0, 1], [-1e-20, 1]], [0, 1] for X in (X, np.array(X), csr_matrix(X)): assert_raises(ValueError, chi2, X, y) def test_chisquare(): # Test replacement for scipy.stats.chisquare against the original. obs = np.array([[2., 2.], [1., 1.]]) exp = np.array([[1.5, 1.5], [1.5, 1.5]]) # call SciPy first because our version overwrites obs chi_scp, p_scp = scipy.stats.chisquare(obs, exp) chi_our, p_our = _chisquare(obs, exp) assert_array_almost_equal(chi_scp, chi_our) assert_array_almost_equal(p_scp, p_our)
bsd-3-clause
YinongLong/scikit-learn
sklearn/mixture/tests/test_gmm.py
5
20902
# Important note for the deprecation cleaning of 0.20 : # All the functions and classes of this file have been deprecated in 0.18. # When you remove this file please remove the related files # - 'sklearn/mixture/dpgmm.py' # - 'sklearn/mixture/gmm.py' # - 'sklearn/mixture/test_dpgmm.py' import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import (assert_greater, assert_raise_message, assert_warns_message, ignore_warnings) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = assert_warns_message(DeprecationWarning, "The function" " log_multivariate_normal_density is " "deprecated in 0.18 and will be removed in 0.20.", mixture.log_multivariate_normal_density, X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = assert_warns_message(DeprecationWarning, "The function" " log_multivariate_normal_density is " "deprecated in 0.18 and will be removed in 0.20.", mixture.log_multivariate_normal_density, X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = assert_warns_message(DeprecationWarning, "The function" " log_multivariate_normal_density is " "deprecated in 0.18 and will be removed in 0.20.", mixture.log_multivariate_normal_density, X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] with ignore_warnings(category=DeprecationWarning): ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights with ignore_warnings(category=DeprecationWarning): samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) with ignore_warnings(category=DeprecationWarning): g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. with ignore_warnings(category=DeprecationWarning): X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] with ignore_warnings(category=DeprecationWarning): for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. with ignore_warnings(category=DeprecationWarning): delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined # distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) with ignore_warnings(category=DeprecationWarning): g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined # distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) with ignore_warnings(category=DeprecationWarning): g.fit(X) trainll = g.score(X) if isinstance(g, mixture.dpgmm._DPGMMBase): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def score(self, g, X): with ignore_warnings(category=DeprecationWarning): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) with ignore_warnings(category=DeprecationWarning): train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_n_parameters(): n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: with ignore_warnings(category=DeprecationWarning): g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) with ignore_warnings(category=DeprecationWarning): g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout # This function tests the deprecated old GMM class @ignore_warnings(category=DeprecationWarning) def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
daniorerio/trackpy
trackpy/framewise_data.py
1
10185
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os from abc import ABCMeta, abstractmethod, abstractproperty import warnings import pandas as pd from .utils import print_update class FramewiseData(object): "Abstract base class defining a data container with framewise access." __metaclass__ = ABCMeta @abstractmethod def put(self, df): pass @abstractmethod def get(self, frame_no): pass @abstractproperty def frames(self): pass @abstractmethod def close(self): pass @abstractproperty def t_column(self): pass def __getitem__(self, frame_no): return self.get(frame_no) def __len__(self): return len(self.frames) def dump(self, N=None): """Return data from all, or the first N, frames in a single DataFrame Parameters ---------- N : integer optional; if None, return all frames Returns ------- DataFrame """ if N is None: return pd.concat(iter(self)) else: i = iter(self) return pd.concat((next(i) for _ in range(N))) @property def max_frame(self): return max(self.frames) def _validate(self, df): if self.t_column not in df.columns: raise ValueError("Cannot write frame without a column " "called {0}".format(self.t_column)) if df[self.t_column].nunique() != 1: raise ValueError("Found multiple values for 'frame'. " "Write one frame at a time.") def __iter__(self): return self._build_generator() def _build_generator(self): for frame_no in self.frames: yield self.get(frame_no) def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() KEY_PREFIX = 'Frame_' len_key_prefix = len(KEY_PREFIX) def code_key(frame_no): "Turn the frame_no into a 'natural name' string idiomatic of HDFStore" key = '{0}{1}'.format(KEY_PREFIX, frame_no) return key def decode_key(key): frame_no = int(key[len_key_prefix:]) return frame_no class PandasHDFStore(FramewiseData): """An interface to an HDF5 file with framewise access, using pandas. Save each frame's data to a node in a pandas HDFStore. Any additional keyword arguments to the constructor are passed to pandas.HDFStore(). """ def __init__(self, filename, mode='a', t_column='frame', **kwargs): self.filename = os.path.abspath(filename) self._t_column = t_column self.store = pd.HDFStore(self.filename, mode, **kwargs) @property def t_column(self): return self._t_column @property def max_frame(self): return max(self.frames) def put(self, df): if len(df) == 0: warnings.warn('An empty DataFrame was passed to put(). Continuing.') return frame_no = df[self.t_column].values[0] # validated to be all the same key = code_key(frame_no) # Store data as tabular instead of fixed-format. # Make sure remove any prexisting data, so don't really 'append'. try: self.store.remove(key) except KeyError: pass self.store.put(key, df, format='table') def get(self, frame_no): key = code_key(frame_no) frame = self.store.get(key) return frame @property def frames(self): """Returns sorted list of integer frame numbers in file""" return self._get_frame_nos() def _get_frame_nos(self): """Returns sorted list of integer frame numbers in file""" # Pandas' store.keys() scans the entire file looking for stored Pandas # structures. This is very slow for large numbers of frames. # Instead, scan the root level of the file for nodes with names # matching our scheme; we know they are DataFrames. r = [decode_key(key) for key in self.store.root._v_children.keys() if key.startswith(KEY_PREFIX)] r.sort() return r def close(self): self.store.close() class PandasHDFStoreBig(PandasHDFStore): """Like PandasHDFStore, but keeps a cache of frame numbers. This can give a large performance boost when a file contains thousands of frames. If a file was made in PandasHDFStore, opening it with this class and then closing it will add a cache (if mode != 'r'). Any additional keyword arguments to the constructor are passed to pandas.HDFStore(). """ def __init__(self, filename, mode='a', t_column='frame', **kwargs): self._CACHE_NAME = '_Frames_Cache' self._frames_cache = None self._cache_dirty = False # Whether _frames_cache needs to be written out super(PandasHDFStoreBig, self).__init__(filename, mode, t_column, **kwargs) @property def frames(self): # Hit memory cache, then disk cache if self._frames_cache is not None: return self._frames_cache else: try: self._frames_cache = list(self.store[self._CACHE_NAME].index.values) self._cache_dirty = False except KeyError: self._frames_cache = self._get_frame_nos() self._cache_dirty = True # In memory, but not in file return self._frames_cache def put(self, df): self._invalidate_cache() super(PandasHDFStoreBig, self).put(df) def rebuild_cache(self): """Delete cache on disk and rebuild it.""" self._invalidate_cache() _ = self.frames # Compute cache self._flush_cache() def _invalidate_cache(self): self._frames_cache = None try: del self.store[self._CACHE_NAME] except KeyError: pass def _flush_cache(self): """Writes frame cache if dirty and file is writable.""" if (self._frames_cache is not None and self._cache_dirty and self.store.root._v_file._iswritable()): self.store[self._CACHE_NAME] = pd.DataFrame({'dummy': 1}, index=self._frames_cache) self._cache_dirty = False def close(self): """Updates cache, writes if necessary, then closes file.""" if self.store.root._v_file._iswritable(): _ = self.frames # Compute cache self._flush_cache() super(PandasHDFStoreBig, self).close() class PandasHDFStoreSingleNode(FramewiseData): """An interface to an HDF5 file with framewise access, using pandas, that is faster for cross-frame queries. This implementation is more complex than PandasHDFStore, but it simplifies (speeds up?) cross-frame queries, like queries for a single probe's entire trajectory. Any additional keyword arguments to the constructor are passed to pandas.HDFStore(). """ def __init__(self, filename, key='FrameData', mode='a', t_column='frame', use_tabular_copy=False, **kwargs): self.filename = os.path.abspath(filename) self.key = key self._t_column = t_column self.store = pd.HDFStore(self.filename, mode, **kwargs) with pd.get_store(self.filename) as store: try: store[self.key] except KeyError: pass else: self._validate_node(use_tabular_copy) @property def t_column(self): return self._t_column def put(self, df): if len(df) == 0: warnings.warn('An empty DataFrame was passed to put(). Continuing.') return self._validate(df) self.store.append(self.key, df, data_columns=True) def get(self, frame_no): frame = self.store.select(self.key, '{0} == {1}'.format( self._t_column, frame_no)) return frame def dump(self, N=None): """Return data from all, or the first N, frames in a single DataFrame Parameters ---------- N : integer optional; if None, return all frames Returns ------- DataFrame """ if N is None: return self.store.select(self.key) else: Nth_frame = self.frames[N - 1] return self.store.select(self.key, '{0} <= {1}'.format( self._t_column, Nth_frame)) def close(self): self.store.close() def __del__(self): if hasattr(self, 'store'): self.close() @property def frames(self): """Returns sorted list of integer frame numbers in file""" # I assume one column can fit in memory, which is not ideal. # Chunking does not seem to be implemented for select_column. frame_nos = self.store.select_column(self.key, self.t_column).unique() frame_nos.sort() return frame_nos def _validate_node(self, use_tabular_copy): # The HDFStore might be non-tabular, which means we cannot select a # subset, and this whole structure will not work. # For convenience, this can rewrite the table into a tabular node. if use_tabular_copy: self.key = _make_tabular_copy(self.filename, self.key) pandas_type = getattr(getattr(getattr( self.store._handle.root, self.key, None), '_v_attrs', None), 'pandas_type', None) if not pandas_type == 'frame_table': raise ValueError("This node is not tabular. Call with " "use_tabular_copy=True to proceed.") def _make_tabular_copy(store, key): """Copy the contents nontabular node in a pandas HDFStore into a tabular node""" tabular_key = key + '/tabular' print_update("Making a tabular copy of %s at %s" % (key, tabular_key)) store.append(tabular_key, store.get(key), data_columns=True) return tabular_key
bsd-3-clause
CforED/Machine-Learning
examples/gaussian_process/plot_gpc_xor.py
104
2132
""" ======================================================================== Illustration of Gaussian process classification (GPC) on the XOR dataset ======================================================================== This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better results. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, DotProduct xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50)) rng = np.random.RandomState(0) X = rng.randn(200, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model plt.figure(figsize=(10, 5)) kernels = [1.0 * RBF(length_scale=1.0), 1.0 * DotProduct(sigma_0=1.0)**2] for i, kernel in enumerate(kernels): clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1] Z = Z.reshape(xx.shape) plt.subplot(1, 2, i + 1) image = plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.colorbar(image) plt.title("%s\n Log-Marginal-Likelihood:%.3f" % (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
KarchinLab/2020plus
src/utils/python/util.py
1
11712
import numpy as np import pandas as pd from src.utils.python.amino_acid import AminoAcid from src.utils.python.nucleotide import Nucleotide import sqlite3 import pandas.io.sql as psql import logging import os import sys import datetime from functools import wraps import warnings try: import ConfigParser except Exception as e: import configparser as ConfigParser logger = logging.getLogger(__name__) proj_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../..')) config_dir = os.path.join(proj_dir, 'config/') onco_label, tsg_label, other_label = 1, 2, 0 class_to_label = {'oncogene': onco_label, 'tsg': tsg_label, 'other': other_label} def get_input_config(section): """Returns the config object to input.cfg.""" cfg = ConfigParser.ConfigParser() cfg.read(config_dir + 'input.cfg') cfg_options = dict(cfg.items(section)) return cfg_options # setup directory paths _opts = get_input_config('result') save_dir = os.path.join(proj_dir, _opts['save_dir']) clf_plot_dir = save_dir + _opts['clf_plot_dir'] clf_result_dir = save_dir + _opts['clf_result_dir'] feature_plot_dir = save_dir + _opts['feature_plot_dir'] def make_result_dir(save_dir): global clf_plot_dir, clf_result_dir, feature_plot_dir if save_dir is not None: _opts = get_input_config('result') clf_plot_dir = os.path.join(save_dir, _opts['clf_plot_dir']) clf_result_dir = os.path.join(save_dir, _opts['clf_result_dir']) if not os.path.exists(clf_plot_dir): os.makedirs(clf_plot_dir) if not os.path.exists(clf_result_dir): os.makedirs(clf_result_dir) def start_logging(log_file='', log_level='INFO', verbose=False): """Start logging information into the log directory. If os.devnull is specified as the log_file then the log file will not actually be written to a file. """ if not log_file: # create log directory if it doesn't exist log_dir = os.path.abspath('log') + '/' if not os.path.isdir(log_dir): os.mkdir(log_dir) # path to new log file log_file = log_dir + 'log.run.' + str(datetime.datetime.now()).replace(':', '.') + '.txt' # logger options lvl = logging.DEBUG if log_level.upper() == 'DEBUG' else logging.INFO # ignore warnings if not in debug if log_level.upper() != 'DEBUG': warnings.filterwarnings('ignore', category=DeprecationWarning) # scikit-learn ignores warning so need to alter # warning function to always return None def noerror(*arg, **kwargs): return None warnings.warn = noerror # define logging format if verbose: myformat = '%(asctime)s - %(name)s - %(levelname)s \n>>> %(message)s' else: myformat = '%(message)s' # create logger if not log_file == 'stdout': # normal logging to a regular file logging.basicConfig(level=lvl, format=myformat, filename=log_file, filemode='w') else: # logging to stdout root = logging.getLogger() root.setLevel(lvl) stdout_stream = logging.StreamHandler(sys.stdout) stdout_stream.setLevel(lvl) formatter = logging.Formatter(myformat) stdout_stream.setFormatter(formatter) root.addHandler(stdout_stream) root.propagate = True def log_error_decorator(f): """Writes exception to log file if occured in decorated function. This decorator wrapper is needed for multiprocess logging since otherwise the python multiprocessing module will obscure the actual line of the error. """ @wraps(f) def wrapper(*args, **kwds): try: result = f(*args, **kwds) return result except KeyboardInterrupt: logger.info('Ctrl-C stopped a process.') except Exception as e: logger.exception(e) raise return wrapper def keyboard_exit_wrapper(func): def wrap(self, timeout=None): # Note: the timeout of 1 googol seconds introduces a rather subtle # bug for Python scripts intended to run many times the age of the universe. return func(self, timeout=timeout if timeout is not None else 1e100) return wrap def read_oncogenes(): """Reads in the oncogenes from vogelsteins' science paper. Oncogenes from supplementary 2A: http://www.sciencemag.org/content/339/6127/1546.full Returns ------- oncogenes : tuple tuple of gene names considered oncogenes """ cfg_opts = get_input_config('input') onco_path = os.path.join(proj_dir, cfg_opts['oncogene']) with open(onco_path, 'r') as handle: oncogenes = tuple(gene.strip() for gene in handle.readlines()) return oncogenes def read_tsgs(): """Reads in the tumor suppressor genes from vogelsteins' science paper. TSGs from supplementary 2A: http://www.sciencemag.org/content/339/6127/1546.full Returns ------- tsgs : tuple tuple of gene names considered as tumor suppressors """ cfg_opts = get_input_config('input') tsg_path = os.path.join(proj_dir, cfg_opts['tsg']) with open(tsg_path, 'r') as handle: tsgs = tuple(gene.strip() for gene in handle.readlines()) return tsgs def classify_gene(gene): """Return whether the gene is an oncogene, tsg, or other. Parameters ---------- gene : str Official gene name Returns ------- Str, ['oncogene' | 'tsg' | 'other'] """ if gene in oncogene_set: return 'oncogene' elif gene in tsg_set: return 'tsg' else: return 'other' def get_mutation_types(mut_iterable, dna_series=None, known_type=None, kind='amino acid'): """Classify each protein HGVS mutation as a certain type. Parameters ---------- mut_iterable : iterable iterable container with HGVS mutaiton strings. If amino acids, a secon dna_iterable is needed to identify splice mutations. dna_series : pd.Series optional, only required to find splice mutations when a list of amino acids is given for mut_iterable known_type : pd.Series contains list of mutation types Returns ------- mut_type_series : pd.Series container of protein mutation types in same order as input """ mut_type = [] if kind == 'amino acid': if dna_series is None: # dna iterable required raise ValueError('DNA should be specified to identify splice mutations.') for i, hgvs_aa in enumerate(mut_iterable): aa = AminoAcid(hgvs=hgvs_aa) nuc = Nucleotide(hgvs=dna_series.iloc[i]) if nuc.is_splicing_mutation: # check if mutation in splice site mut_type.append('Splice_Site') elif known_type is not None and known_type.iloc[i]=='Splice_Site': mut_type.append('Splice_Site') else: # if not in splice site, just add mut_type.append(aa.mutation_type) elif kind == 'nucleotide': for hgvs_nuc in mut_iterable: nuc = Nucleotide(hgvs=hgvs_nuc) mut_type.append(nuc.mutation_type) mut_type_series = pd.Series(mut_type) return mut_type_series def count_mutation_types(hgvs_iterable, dna_series=None, known_type=None, kind='amino acid'): """Count mutation types from HGVS protein strings (missense, indels, etc.) and DNA strings (substitutions, indels). Parameters ---------- hgvs_iterable : iterable An iterable object containing protein HGVS dna_iterable : iterable contains hgvs DNA mutations to classify splice mutations for amino acid. Only required if hgvs_iterable is AA mutations. known_type : pd.Series known mutation consequence type Returns ------- unique_cts : pd.Series A pandas series object counting protein mutation types """ mut_type_series = get_mutation_types(hgvs_iterable, dna_series=dna_series, known_type=known_type, kind=kind) # get mutation types unique_cts = mut_type_series.value_counts() # count mutation types return unique_cts def get_output_config(section): """Returns the config object to output.cfg.""" cfg = ConfigParser.ConfigParser() cfg.read(config_dir + 'output.cfg') cfg_options = dict(cfg.items(section)) return cfg_options def get_db_config(section): """Return the config object to db.cfg.""" cfg = ConfigParser.ConfigParser() cfg.read(config_dir + 'db.cfg') cfg_options = dict(cfg.items(section)) return cfg_options def read_cosmic_tsv_by_gene(gene_name): """Reads the stored flat file corresponding to the gene_name. NOTE: Assumes cosmic flat files are in cosmic_dir specified by input.cfg and are sorted into alphabetical directories (eg. 'A'...'Z'). Parameters ---------- gene_name : str gene name Returns ------- df : pd.DataFrame tsv file as a pandas dataframe """ cfg_opt = get_input_config('input') database_dir = cfg_opt['cosmic_dir'] # COSMIC_nuc database directory gene_dir = gene_name[0].upper() + '/' # gene tsv in alphabetical directory listing tsv_path = database_dir + gene_dir + gene_name + '.tsv' # path to tsv file df = pd.read_csv(tsv_path, sep='\t') return df def drop_table(tbl_name, genes_db_path='', kind='sqlite'): """Drop a table from database if exists. **Note:** This function was written because pandas has a bug. If pandas was working then the write_frame method could just replace existing contents with out the need for me to drop the table. The bug is found here: https://github.com/pydata/pandas/issues/2971 Parameters ---------- tbl_name : str name of table to drop kind : str, ['sqlite' | 'mysql'] type of database """ if not genes_db_path: # if db not specified, use config file genes_db_path = get_db_config('2020plus')['db'] if kind == 'sqlite': with sqlite3.connect(genes_db_path) as cur: sql = "DROP TABLE IF EXISTS %s" % tbl_name cur.execute(sql) elif kind == 'mysql': raise NotImplementedError('MySQL is not currently supported') #with get_cosmic_db() as cur: #sql = "DROP TABLE IF EXISTS %s" % tbl_name #cur.execute(sql) def create_empty_table(tbl_name, db_path, colnames, coltypes): # drop table if exists drop_table(tbl_name, db_path, kind='sqlite') # make empty maf_mutation table conn = sqlite3.connect(db_path) # open connection cur = conn.cursor() col_info_list = [' '.join(x) for x in zip(colnames, coltypes)] col_info_str = ', '.join(col_info_list) sql = "CREATE TABLE {0}({1});".format(tbl_name, col_info_str) cur.execute(sql) conn.commit() def get_gene_length(): # get db db_path = get_db_config('2020plus')['db'] # query for gene length conn = sqlite3.connect(db_path) sql = "SELECT gene, gene_length FROM gene_features" df = psql.frame_query(sql, con=conn) df = df.set_index('gene') conn.close() return df # set up vogelstein oncogenes/tsgs oncogene_list = read_oncogenes() tsg_list = read_tsgs() oncogene_set = set(oncogene_list) tsg_set = set(tsg_list)
apache-2.0
Refefer/pylearn2
pylearn2/train_extensions/roc_auc.py
15
4888
""" TrainExtension subclass for calculating ROC AUC scores on monitoring dataset(s), reported via monitor channels. """ __author__ = "Steven Kearnes" __copyright__ = "Copyright 2014, Stanford University" __license__ = "3-clause BSD" __maintainer__ = "Steven Kearnes" import numpy as np try: from sklearn.metrics import roc_auc_score except ImportError: roc_auc_score = None import theano from theano import gof, config from theano import tensor as T from pylearn2.train_extensions import TrainExtension class RocAucScoreOp(gof.Op): """ Theano Op wrapping sklearn.metrics.roc_auc_score. Parameters ---------- name : str, optional (default 'roc_auc') Name of this Op. use_c_code : WRITEME """ def __init__(self, name='roc_auc', use_c_code=theano.config.cxx): super(RocAucScoreOp, self).__init__(use_c_code) self.name = name def make_node(self, y_true, y_score): """ Calculate ROC AUC score. Parameters ---------- y_true : tensor_like Target class labels. y_score : tensor_like Predicted class labels or probabilities for positive class. """ y_true = T.as_tensor_variable(y_true) y_score = T.as_tensor_variable(y_score) output = [T.scalar(name=self.name, dtype=config.floatX)] return gof.Apply(self, [y_true, y_score], output) def perform(self, node, inputs, output_storage): """ Calculate ROC AUC score. Parameters ---------- node : Apply instance Symbolic inputs and outputs. inputs : list Sequence of inputs. output_storage : list List of mutable 1-element lists. """ if roc_auc_score is None: raise RuntimeError("Could not import from sklearn.") y_true, y_score = inputs try: roc_auc = roc_auc_score(y_true, y_score) except ValueError: roc_auc = np.nan output_storage[0][0] = theano._asarray(roc_auc, dtype=config.floatX) class RocAucChannel(TrainExtension): """ Adds a ROC AUC channel to the monitor for each monitoring dataset. This monitor will return nan unless both classes are represented in y_true. For this reason, it is recommended to set monitoring_batches to 1, especially when using unbalanced datasets. Parameters ---------- channel_name_suffix : str, optional (default 'roc_auc') Channel name suffix. positive_class_index : int, optional (default 1) Index of positive class in predicted values. negative_class_index : int or None, optional (default None) Index of negative class in predicted values for calculation of one vs. one performance. If None, uses all examples not in the positive class (one vs. the rest). """ def __init__(self, channel_name_suffix='roc_auc', positive_class_index=1, negative_class_index=None): self.channel_name_suffix = channel_name_suffix self.positive_class_index = positive_class_index self.negative_class_index = negative_class_index def setup(self, model, dataset, algorithm): """ Add ROC AUC channels for monitoring dataset(s) to model.monitor. Parameters ---------- model : object The model being trained. dataset : object Training dataset. algorithm : object Training algorithm. """ m_space, m_source = model.get_monitoring_data_specs() state, target = m_space.make_theano_batch() y = T.argmax(target, axis=1) y_hat = model.fprop(state)[:, self.positive_class_index] # one vs. the rest if self.negative_class_index is None: y = T.eq(y, self.positive_class_index) # one vs. one else: pos = T.eq(y, self.positive_class_index) neg = T.eq(y, self.negative_class_index) keep = T.add(pos, neg).nonzero() y = T.eq(y[keep], self.positive_class_index) y_hat = y_hat[keep] roc_auc = RocAucScoreOp(self.channel_name_suffix)(y, y_hat) roc_auc = T.cast(roc_auc, config.floatX) for dataset_name, dataset in algorithm.monitoring_dataset.items(): if dataset_name: channel_name = '{0}_{1}'.format(dataset_name, self.channel_name_suffix) else: channel_name = self.channel_name_suffix model.monitor.add_channel(name=channel_name, ipt=(state, target), val=roc_auc, data_specs=(m_space, m_source), dataset=dataset)
bsd-3-clause
limitlessv/osx-dev-setup
bootstrap/init/profile_pyspark/ipython_qtconsole_config.py
1
24677
# Configuration file for ipython-qtconsole. c = get_config() #------------------------------------------------------------------------------ # IPythonQtConsoleApp configuration #------------------------------------------------------------------------------ # IPythonQtConsoleApp will inherit config from: BaseIPythonApplication, # Application, IPythonConsoleApp, ConnectionFileMixin # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.IPythonQtConsoleApp.ip = u'' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.IPythonQtConsoleApp.verbose_crash = False # Start the console window maximized. # c.IPythonQtConsoleApp.maximize = False # The date format used by logging formatters for %(asctime)s # c.IPythonQtConsoleApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # set the shell (ROUTER) port [default: random] # c.IPythonQtConsoleApp.shell_port = 0 # The SSH server to use to connect to the kernel. # c.IPythonQtConsoleApp.sshserver = '' # set the stdin (DEALER) port [default: random] # c.IPythonQtConsoleApp.stdin_port = 0 # Set the log level by value or name. # c.IPythonQtConsoleApp.log_level = 30 # Path to the ssh key to use for logging in to the ssh server. # c.IPythonQtConsoleApp.sshkey = '' # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.IPythonQtConsoleApp.extra_config_file = u'' # Whether to create profile dir if it doesn't exist # c.IPythonQtConsoleApp.auto_create = False # path to a custom CSS stylesheet # c.IPythonQtConsoleApp.stylesheet = '' # set the heartbeat port [default: random] # c.IPythonQtConsoleApp.hb_port = 0 # Whether to overwrite existing config files when copying # c.IPythonQtConsoleApp.overwrite = False # set the iopub (PUB) port [default: random] # c.IPythonQtConsoleApp.iopub_port = 0 # The IPython profile to use. # c.IPythonQtConsoleApp.profile = u'default' # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security- # dir of the current profile, but can be specified by absolute path. # c.IPythonQtConsoleApp.connection_file = '' # Set to display confirmation dialog on exit. You can always use 'exit' or # 'quit', to force a direct exit without any confirmation. # c.IPythonQtConsoleApp.confirm_exit = True # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # c.IPythonQtConsoleApp.ipython_dir = u'' # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.IPythonQtConsoleApp.copy_config_files = False # Connect to an already running kernel # c.IPythonQtConsoleApp.existing = '' # Use a plaintext widget instead of rich text (plain can't print/save). # c.IPythonQtConsoleApp.plain = False # Start the console window with the menu bar hidden. # c.IPythonQtConsoleApp.hide_menubar = False # The Logging format template # c.IPythonQtConsoleApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # # c.IPythonQtConsoleApp.transport = 'tcp' #------------------------------------------------------------------------------ # IPythonWidget configuration #------------------------------------------------------------------------------ # A FrontendWidget for an IPython kernel. # IPythonWidget will inherit config from: FrontendWidget, HistoryConsoleWidget, # ConsoleWidget # The type of completer to use. Valid values are: # # 'plain' : Show the available completion as a text list # Below the editing area. # 'droplist': Show the completion in a drop down list navigable # by the arrow keys, and from which you can select # completion by pressing Return. # 'ncurses' : Show the completion as a text list which is navigable by # `tab` and arrow keys. # c.IPythonWidget.gui_completion = 'ncurses' # Whether to process ANSI escape codes. # c.IPythonWidget.ansi_codes = True # A CSS stylesheet. The stylesheet can contain classes for: # 1. Qt: QPlainTextEdit, QFrame, QWidget, etc # 2. Pygments: .c, .k, .o, etc. (see PygmentsHighlighter) # 3. IPython: .error, .in-prompt, .out-prompt, etc # c.IPythonWidget.style_sheet = u'' # The height of the console at start time in number of characters (will double # with `vsplit` paging) # c.IPythonWidget.height = 25 # # c.IPythonWidget.out_prompt = 'Out[<span class="out-prompt-number">%i</span>]: ' # # c.IPythonWidget.input_sep = '\n' # Whether to draw information calltips on open-parentheses. # c.IPythonWidget.enable_calltips = True # # c.IPythonWidget.in_prompt = 'In [<span class="in-prompt-number">%i</span>]: ' # The width of the console at start time in number of characters (will double # with `hsplit` paging) # c.IPythonWidget.width = 81 # A command for invoking a system text editor. If the string contains a # {filename} format specifier, it will be used. Otherwise, the filename will be # appended to the end the command. # c.IPythonWidget.editor = '' # If not empty, use this Pygments style for syntax highlighting. Otherwise, the # style sheet is queried for Pygments style information. # c.IPythonWidget.syntax_style = u'' # The font family to use for the console. On OSX this defaults to Monaco, on # Windows the default is Consolas with fallback of Courier, and on other # platforms the default is Monospace. # c.IPythonWidget.font_family = u'' # The pygments lexer class to use. # c.IPythonWidget.lexer_class = <IPython.utils.traitlets.Undefined object at 0x10258ded0> # # c.IPythonWidget.output_sep2 = '' # Whether to automatically execute on syntactically complete input. # # If False, Shift-Enter is required to submit each execution. Disabling this is # mainly useful for non-Python kernels, where the completion check would be # wrong. # c.IPythonWidget.execute_on_complete_input = True # The maximum number of lines of text before truncation. Specifying a non- # positive number disables text truncation (not recommended). # c.IPythonWidget.buffer_size = 500 # # c.IPythonWidget.history_lock = False # # c.IPythonWidget.banner = u'' # The type of underlying text widget to use. Valid values are 'plain', which # specifies a QPlainTextEdit, and 'rich', which specifies a QTextEdit. # c.IPythonWidget.kind = 'plain' # Whether to ask for user confirmation when restarting kernel # c.IPythonWidget.confirm_restart = True # The font size. If unconfigured, Qt will be entrusted with the size of the # font. # c.IPythonWidget.font_size = 0 # The editor command to use when a specific line number is requested. The string # should contain two format specifiers: {line} and {filename}. If this parameter # is not specified, the line number option to the %edit magic will be ignored. # c.IPythonWidget.editor_line = u'' # Whether to clear the console when the kernel is restarted # c.IPythonWidget.clear_on_kernel_restart = True # The type of paging to use. Valid values are: # # 'inside' # The widget pages like a traditional terminal. # 'hsplit' # When paging is requested, the widget is split horizontally. The top # pane contains the console, and the bottom pane contains the paged text. # 'vsplit' # Similar to 'hsplit', except that a vertical splitter is used. # 'custom' # No action is taken by the widget beyond emitting a # 'custom_page_requested(str)' signal. # 'none' # The text is written directly to the console. # c.IPythonWidget.paging = 'inside' # # c.IPythonWidget.output_sep = '' #------------------------------------------------------------------------------ # IPKernelApp configuration #------------------------------------------------------------------------------ # IPython: an enhanced interactive Python shell. # IPKernelApp will inherit config from: BaseIPythonApplication, Application, # InteractiveShellApp # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.IPKernelApp.exec_PYTHONSTARTUP = True # The importstring for the DisplayHook factory # c.IPKernelApp.displayhook_class = 'IPython.kernel.zmq.displayhook.ZMQDisplayHook' # Set the IP or interface on which the kernel will listen. # c.IPKernelApp.ip = u'' # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.IPKernelApp.pylab = None # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.IPKernelApp.verbose_crash = False # The Kernel subclass to be used. # # This should allow easy re-use of the IPKernelApp entry point to configure and # launch kernels other than IPython's own. # c.IPKernelApp.kernel_class = 'IPython.kernel.zmq.ipkernel.Kernel' # Run the module as a script. # c.IPKernelApp.module_to_run = '' # The date format used by logging formatters for %(asctime)s # c.IPKernelApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # set the shell (ROUTER) port [default: random] # c.IPKernelApp.shell_port = 0 # set the control (ROUTER) port [default: random] # c.IPKernelApp.control_port = 0 # Whether to overwrite existing config files when copying # c.IPKernelApp.overwrite = False # Execute the given command string. # c.IPKernelApp.code_to_run = '' # set the stdin (ROUTER) port [default: random] # c.IPKernelApp.stdin_port = 0 # Set the log level by value or name. # c.IPKernelApp.log_level = 30 # lines of code to run at IPython startup. # c.IPKernelApp.exec_lines = [] # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.IPKernelApp.extra_config_file = u'' # The importstring for the OutStream factory # c.IPKernelApp.outstream_class = 'IPython.kernel.zmq.iostream.OutStream' # Whether to create profile dir if it doesn't exist # c.IPKernelApp.auto_create = False # set the heartbeat port [default: random] # c.IPKernelApp.hb_port = 0 # # c.IPKernelApp.transport = 'tcp' # redirect stdout to the null device # c.IPKernelApp.no_stdout = False # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.IPKernelApp.hide_initial_ns = True # dotted module name of an IPython extension to load. # c.IPKernelApp.extra_extension = '' # A file to be run # c.IPKernelApp.file_to_run = '' # The IPython profile to use. # c.IPKernelApp.profile = u'default' # # c.IPKernelApp.parent_appname = u'' # kill this process if its parent dies. On Windows, the argument specifies the # HANDLE of the parent process, otherwise it is simply boolean. # c.IPKernelApp.parent_handle = 0 # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.IPKernelApp.connection_file = '' # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.IPKernelApp.pylab_import_all = True # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # c.IPKernelApp.ipython_dir = u'' # Configure matplotlib for interactive use with the default matplotlib backend. # c.IPKernelApp.matplotlib = None # ONLY USED ON WINDOWS Interrupt this process when the parent is signaled. # c.IPKernelApp.interrupt = 0 # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.IPKernelApp.copy_config_files = False # List of files to run at IPython startup. # c.IPKernelApp.exec_files = [] # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'none', # 'osx', 'pyglet', 'qt', 'qt4', 'tk', 'wx'). # c.IPKernelApp.gui = None # A list of dotted module names of IPython extensions to load. # c.IPKernelApp.extensions = [] # redirect stderr to the null device # c.IPKernelApp.no_stderr = False # The Logging format template # c.IPKernelApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # set the iopub (PUB) port [default: random] # c.IPKernelApp.iopub_port = 0 #------------------------------------------------------------------------------ # ZMQInteractiveShell configuration #------------------------------------------------------------------------------ # A subclass of InteractiveShell for ZMQ. # ZMQInteractiveShell will inherit config from: InteractiveShell # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.ZMQInteractiveShell.color_info = True # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.ZMQInteractiveShell.ast_transformers = [] # # c.ZMQInteractiveShell.history_length = 10000 # Don't call post-execute functions that have failed in the past. # c.ZMQInteractiveShell.disable_failing_post_execute = False # Show rewritten input, e.g. for autocall. # c.ZMQInteractiveShell.show_rewritten_input = True # Set the color scheme (NoColor, Linux, or LightBG). # c.ZMQInteractiveShell.colors = 'LightBG' # # c.ZMQInteractiveShell.separate_in = '\n' # Deprecated, use PromptManager.in2_template # c.ZMQInteractiveShell.prompt_in2 = ' .\\D.: ' # # c.ZMQInteractiveShell.separate_out = '' # Deprecated, use PromptManager.in_template # c.ZMQInteractiveShell.prompt_in1 = 'In [\\#]: ' # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.ZMQInteractiveShell.deep_reload = False # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.ZMQInteractiveShell.autocall = 0 # # c.ZMQInteractiveShell.separate_out2 = '' # Deprecated, use PromptManager.justify # c.ZMQInteractiveShell.prompts_pad_left = True # # c.ZMQInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # Enable magic commands to be called without the leading %. # c.ZMQInteractiveShell.automagic = True # # c.ZMQInteractiveShell.debug = False # # c.ZMQInteractiveShell.object_info_string_level = 0 # # c.ZMQInteractiveShell.ipython_dir = '' # # c.ZMQInteractiveShell.readline_remove_delims = '-/~' # Start logging to the default log file. # c.ZMQInteractiveShell.logstart = False # The name of the logfile to use. # c.ZMQInteractiveShell.logfile = '' # # c.ZMQInteractiveShell.wildcards_case_sensitive = True # Save multi-line entries as one entry in readline history # c.ZMQInteractiveShell.multiline_history = True # Start logging to the given file in append mode. # c.ZMQInteractiveShell.logappend = '' # # c.ZMQInteractiveShell.xmode = 'Context' # # c.ZMQInteractiveShell.quiet = False # Deprecated, use PromptManager.out_template # c.ZMQInteractiveShell.prompt_out = 'Out[\\#]: ' # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.ZMQInteractiveShell.cache_size = 1000 # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.ZMQInteractiveShell.ast_node_interactivity = 'last_expr' # Automatically call the pdb debugger after every exception. # c.ZMQInteractiveShell.pdb = False #------------------------------------------------------------------------------ # KernelManager configuration #------------------------------------------------------------------------------ # Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. # KernelManager will inherit config from: ConnectionFileMixin # The Popen Command to launch the kernel. Override this if you have a custom # kernel. If kernel_cmd is specified in a configuration file, IPython does not # pass any arguments to the kernel, because it cannot make any assumptions about # the arguments that the kernel understands. In particular, this means that the # kernel does not receive the option --debug if it given on the IPython command # line. # c.KernelManager.kernel_cmd = [] # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.KernelManager.ip = u'' # # c.KernelManager.transport = 'tcp' # Should we autorestart the kernel if it dies. # c.KernelManager.autorestart = False #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # Session configuration #------------------------------------------------------------------------------ # Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. # Username for the Session. Default is your system username. # c.Session.username = u'dmartin' # The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. # c.Session.unpacker = 'json' # Threshold (in bytes) beyond which a buffer should be sent without copying. # c.Session.copy_threshold = 65536 # The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. # c.Session.packer = 'json' # The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # c.Session.digest_history_size = 65536 # The UUID identifying this session. # c.Session.session = u'' # The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. # c.Session.signature_scheme = 'hmac-sha256' # execution key, for extra authentication. # c.Session.key = '' # Debug output in the Session # c.Session.debug = False # The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. # c.Session.item_threshold = 64 # path to file containing execution key. # c.Session.keyfile = '' # Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. # c.Session.buffer_threshold = 1024 # Metadata dictionary, which serves as the default top-level metadata dict for # each message. # c.Session.metadata = {} #------------------------------------------------------------------------------ # InlineBackend configuration #------------------------------------------------------------------------------ # An object to store configuration of the inline backend. # The figure format to enable (deprecated use `figure_formats` instead) # c.InlineBackend.figure_format = u'' # A set of figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. # c.InlineBackend.figure_formats = set(['png']) # Extra kwargs to be passed to fig.canvas.print_figure. # # Logical examples include: bbox_inches, quality (for jpeg figures), etc. # c.InlineBackend.print_figure_kwargs = {'bbox_inches': 'tight'} # Close all figures at the end of each cell. # # When True, ensures that each cell starts with no active figures, but it also # means that one must keep track of references in order to edit or redraw # figures in subsequent cells. This mode is ideal for the notebook, where # residual plots from other cells might be surprising. # # When False, one must call figure() to create new figures. This means that # gcf() and getfigs() can reference figures created in other cells, and the # active figure can continue to be edited with pylab/pyplot methods that # reference the current active figure. This mode facilitates iterative editing # of figures, and behaves most consistently with other matplotlib backends, but # figure barriers between cells must be explicit. # c.InlineBackend.close_figures = True # Subset of matplotlib rcParams that should be different for the inline backend. # c.InlineBackend.rc = {'font.size': 10, 'figure.figsize': (6.0, 4.0), 'figure.facecolor': (1, 1, 1, 0), 'savefig.dpi': 72, 'figure.subplot.bottom': 0.125, 'figure.edgecolor': (1, 1, 1, 0)}
mit
deepakantony/sms-tools
lectures/04-STFT/plots-code/stft-system.py
5
1461
import numpy as np import time, os, sys sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import stft as STFT import utilFunctions as UF import matplotlib.pyplot as plt from scipy.signal import hamming (fs, x) = UF.wavread('../../../sounds/piano.wav') w = np.hamming(1024) N = 1024 H = 512 mX, pX = STFT.stftAnal(x, w, N, H) y = STFT.stftSynth(mX, pX, w.size, H) plt.figure(1, figsize=(9.5, 7)) plt.subplot(411) plt.plot(np.arange(x.size)/float(fs), x, 'b') plt.title('x (piano.wav)') plt.axis([0,x.size/float(fs),min(x),max(x)]) plt.subplot(412) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(mX[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX)) plt.title('mX, M=1024, N=1024, H=512') plt.autoscale(tight=True) plt.subplot(413) numFrames = int(pX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(pX[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.diff(np.transpose(pX),axis=0)) plt.title('pX derivative, M=1024, N=1024, H=512') plt.autoscale(tight=True) plt.subplot(414) plt.plot(np.arange(y.size)/float(fs), y,'b') plt.axis([0,y.size/float(fs),min(y),max(y)]) plt.title('y') plt.tight_layout() plt.savefig('stft-system.png') UF.wavwrite(y, fs, 'piano-stft.wav') plt.show()
agpl-3.0
ssaeger/scikit-learn
sklearn/feature_extraction/text.py
7
50272
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if isinstance(vocabulary, set): vocabulary = sorted(vocabulary) if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df or min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
wittrup/crap
python/kalman.py
1
2533
import numpy as np import matplotlib.pyplot as plt def kalman_xy(x, P, measurement, R, motion = np.matrix('0. 0. 0. 0.').T, Q = np.matrix(np.eye(4))): """ Parameters: x: initial state 4-tuple of location and velocity: (x0, x1, x0_dot, x1_dot) P: initial uncertainty convariance matrix measurement: observed position R: measurement noise motion: external motion added to state vector x Q: motion noise (same shape as P) """ return kalman(x, P, measurement, R, motion, Q, F = np.matrix(''' 1. 0. 1. 0.; 0. 1. 0. 1.; 0. 0. 1. 0.; 0. 0. 0. 1. '''), H = np.matrix(''' 1. 0. 0. 0.; 0. 1. 0. 0.''')) def kalman(x, P, measurement, R, motion, Q, F, H): ''' Parameters: x: initial state P: initial uncertainty convariance matrix measurement: observed position (same shape as H*x) R: measurement noise (same shape as H) motion: external motion added to state vector x Q: motion noise (same shape as P) F: next state function: x_prime = F*x H: measurement function: position = H*x Return: the updated and predicted new values for (x, P) See also http://en.wikipedia.org/wiki/Kalman_filter This version of kalman can be applied to many different situations by appropriately defining F and H ''' # UPDATE x, P based on measurement m # distance between measured and current position-belief y = np.matrix(measurement).T - H * x S = H * P * H.T + R # residual convariance K = P * H.T * S.I # Kalman gain x = x + K*y I = np.matrix(np.eye(F.shape[0])) # identity matrix P = (I - K*H)*P # PREDICT x, P based on motion x = F*x + motion P = F*P*F.T + Q return x, P def demo_kalman_xy(): x = np.matrix('0. 0. 0. 0.').T P = np.matrix(np.eye(4))*1000 # initial uncertainty N = 20 true_x = np.linspace(0.0, 10.0, N) true_y = true_x**2 observed_x = true_x + 0.05*np.random.random(N)*true_x observed_y = true_y + 0.05*np.random.random(N)*true_y plt.plot(observed_x, observed_y, 'ro') result = [] R = 0.01**2 for meas in zip(observed_x, observed_y): x, P = kalman_xy(x, P, meas, R) result.append((x[:2]).tolist()) kalman_x, kalman_y = zip(*result) plt.plot(kalman_x, kalman_y, 'g-') plt.show() demo_kalman_xy()
mit
sepehr125/pybrain
examples/rl/environments/linear_fa/bicycle.py
26
14462
from __future__ import print_function """An attempt to implement Randlov and Alstrom (1998). They successfully use reinforcement learning to balance a bicycle, and to control it to drive to a specified goal location. Their work has been used since then by a few researchers as a benchmark problem. We only implement the balance task. This implementation differs at least slightly, since Randlov and Alstrom did not mention anything about how they annealed/decayed their learning rate, etc. As a result of differences, the results do not match those obtained by Randlov and Alstrom. """ __author__ = 'Chris Dembia, Bruce Cam, Johnny Israeli' from scipy import asarray from numpy import sin, cos, tan, sqrt, arcsin, arctan, sign, clip, argwhere from matplotlib import pyplot as plt import pybrain.rl.environments from pybrain.rl.environments.environment import Environment from pybrain.rl.learners.valuebased.linearfa import SARSALambda_LinFA from pybrain.rl.agents.linearfa import LinearFA_Agent from pybrain.rl.experiments import EpisodicExperiment from pybrain.utilities import one_to_n class BicycleEnvironment(Environment): """Randlov and Alstrom's bicycle model. This code matches nearly exactly some c code we found online for simulating Randlov and Alstrom's bicycle. The bicycle travels at a fixed speed. """ # For superclass. indim = 2 outdim = 10 # Environment parameters. time_step = 0.01 # Goal position and radius # Lagouakis (2002) uses angle to goal, not heading, as a state max_distance = 1000. # Acceleration on Earth's surface due to gravity (m/s^2): g = 9.82 # See the paper for a description of these quantities: # Distances (in meters): c = 0.66 dCM = 0.30 h = 0.94 L = 1.11 r = 0.34 # Masses (in kilograms): Mc = 15.0 Md = 1.7 Mp = 60.0 # Velocity of a bicycle (in meters per second), equal to 10 km/h: v = 10.0 * 1000.0 / 3600.0 # Derived constants. M = Mc + Mp # See Randlov's code. Idc = Md * r**2 Idv = 1.5 * Md * r**2 Idl = 0.5 * Md * r**2 Itot = 13.0 / 3.0 * Mc * h**2 + Mp * (h + dCM)**2 sigmad = v / r def __init__(self): Environment.__init__(self) self.reset() self.actions = [0.0, 0.0] self._save_wheel_contact_trajectories = False def performAction(self, actions): self.actions = actions self.step() def saveWheelContactTrajectories(self, opt): self._save_wheel_contact_trajectories = opt def step(self): # Unpack the state and actions. # ----------------------------- # Want to ignore the previous value of omegadd; it could only cause a # bug if we assign to it. (theta, thetad, omega, omegad, _, xf, yf, xb, yb, psi) = self.sensors (T, d) = self.actions # For recordkeeping. # ------------------ if self._save_wheel_contact_trajectories: self.xfhist.append(xf) self.yfhist.append(yf) self.xbhist.append(xb) self.ybhist.append(yb) # Intermediate time-dependent quantities. # --------------------------------------- # Avoid divide-by-zero, just as Randlov did. if theta == 0: rf = 1e8 rb = 1e8 rCM = 1e8 else: rf = self.L / np.abs(sin(theta)) rb = self.L / np.abs(tan(theta)) rCM = sqrt((self.L - self.c)**2 + self.L**2 / tan(theta)**2) phi = omega + np.arctan(d / self.h) # Equations of motion. # -------------------- # Second derivative of angular acceleration: omegadd = 1 / self.Itot * (self.M * self.h * self.g * sin(phi) - cos(phi) * (self.Idc * self.sigmad * thetad + sign(theta) * self.v**2 * ( self.Md * self.r * (1.0 / rf + 1.0 / rb) + self.M * self.h / rCM))) thetadd = (T - self.Idv * self.sigmad * omegad) / self.Idl # Integrate equations of motion using Euler's method. # --------------------------------------------------- # yt+1 = yt + yd * dt. # Must update omega based on PREVIOUS value of omegad. omegad += omegadd * self.time_step omega += omegad * self.time_step thetad += thetadd * self.time_step theta += thetad * self.time_step # Handlebars can't be turned more than 80 degrees. theta = np.clip(theta, -1.3963, 1.3963) # Wheel ('tyre') contact positions. # --------------------------------- # Front wheel contact position. front_temp = self.v * self.time_step / (2 * rf) # See Randlov's code. if front_temp > 1: front_temp = sign(psi + theta) * 0.5 * np.pi else: front_temp = sign(psi + theta) * arcsin(front_temp) xf += self.v * self.time_step * -sin(psi + theta + front_temp) yf += self.v * self.time_step * cos(psi + theta + front_temp) # Rear wheel. back_temp = self.v * self.time_step / (2 * rb) # See Randlov's code. if back_temp > 1: back_temp = np.sign(psi) * 0.5 * np.pi else: back_temp = np.sign(psi) * np.arcsin(back_temp) xb += self.v * self.time_step * -sin(psi + back_temp) yb += self.v * self.time_step * cos(psi + back_temp) # Preventing numerical drift. # --------------------------- # Copying what Randlov did. current_wheelbase = sqrt((xf - xb)**2 + (yf - yb)**2) if np.abs(current_wheelbase - self.L) > 0.01: relative_error = self.L / current_wheelbase - 1.0 xb += (xb - xf) * relative_error yb += (yb - yf) * relative_error # Update heading, psi. # -------------------- delta_y = yf - yb if (xf == xb) and delta_y < 0.0: psi = np.pi else: if delta_y > 0.0: psi = arctan((xb - xf) / delta_y) else: psi = sign(xb - xf) * 0.5 * np.pi - arctan(delta_y / (xb - xf)) self.sensors = np.array([theta, thetad, omega, omegad, omegadd, xf, yf, xb, yb, psi]) def reset(self): theta = 0 thetad = 0 omega = 0 omegad = 0 omegadd = 0 xf = 0 yf = self.L xb = 0 yb = 0 psi = np.arctan((xb - xf) / (yf - yb)) self.sensors = np.array([theta, thetad, omega, omegad, omegadd, xf, yf, xb, yb, psi]) self.xfhist = [] self.yfhist = [] self.xbhist = [] self.ybhist = [] def getSteer(self): return self.sensors[0] def getTilt(self): return self.sensors[2] def get_xfhist(self): return self.xfhist def get_yfhist(self): return self.yfhist def get_xbhist(self): return self.xbhist def get_ybhist(self): return self.ybhist def getSensors(self): return self.sensors class BalanceTask(pybrain.rl.environments.EpisodicTask): """The rider is to simply balance the bicycle while moving with the speed perscribed in the environment. This class uses a continuous 5 dimensional state space, and a discrete state space. This class is heavily guided by pybrain.rl.environments.cartpole.balancetask.BalanceTask. """ max_tilt = np.pi / 6. nactions = 9 def __init__(self, max_time=1000.0): super(BalanceTask, self).__init__(BicycleEnvironment()) self.max_time = max_time # Keep track of time in case we want to end episodes based on number of # time steps. self.t = 0 @property def indim(self): return 1 @property def outdim(self): return 5 def reset(self): super(BalanceTask, self).reset() self.t = 0 def performAction(self, action): """Incoming action is an int between 0 and 8. The action we provide to the environment consists of a torque T in {-2 N, 0, 2 N}, and a displacement d in {-.02 m, 0, 0.02 m}. """ self.t += 1 assert round(action[0]) == action[0] # -1 for action in {0, 1, 2}, 0 for action in {3, 4, 5}, 1 for # action in {6, 7, 8} torque_selector = np.floor(action[0] / 3.0) - 1.0 T = 2 * torque_selector # Random number in [-1, 1]: p = 2.0 * np.random.rand() - 1.0 # -1 for action in {0, 3, 6}, 0 for action in {1, 4, 7}, 1 for # action in {2, 5, 8} disp_selector = action[0] % 3 - 1.0 d = 0.02 * disp_selector + 0.02 * p super(BalanceTask, self).performAction([T, d]) def getObservation(self): (theta, thetad, omega, omegad, omegadd, xf, yf, xb, yb, psi) = self.env.getSensors() return self.env.getSensors()[0:5] def isFinished(self): # Criterion for ending an episode. From Randlov's paper: # "When the agent can balance for 1000 seconds, the task is considered # learned." if np.abs(self.env.getTilt()) > self.max_tilt: return True elapsed_time = self.env.time_step * self.t if elapsed_time > self.max_time: return True return False def getReward(self): # -1 reward for falling over; no reward otherwise. if np.abs(self.env.getTilt()) > self.max_tilt: return -1.0 return 0.0 class LinearFATileCoding3456BalanceTask(BalanceTask): """An attempt to exactly implement Randlov's function approximation. He discretized (tiled) the state space into 3456 bins. We use the same action space as in the superclass. """ # From Randlov, 1998: theta_bounds = np.array( [-0.5 * np.pi, -1.0, -0.2, 0, 0.2, 1.0, 0.5 * np.pi]) thetad_bounds = np.array( [-np.inf, -2.0, 0, 2.0, np.inf]) omega_bounds = np.array( [-BalanceTask.max_tilt, -0.15, -0.06, 0, 0.06, 0.15, BalanceTask.max_tilt]) omegad_bounds = np.array( [-np.inf, -0.5, -0.25, 0, 0.25, 0.5, np.inf]) omegadd_bounds = np.array( [-np.inf, -2.0, 0, 2.0, np.inf]) # http://stackoverflow.com/questions/3257619/numpy-interconversion-between-multidimensional-and-linear-indexing nbins_across_dims = [ len(theta_bounds) - 1, len(thetad_bounds) - 1, len(omega_bounds) - 1, len(omegad_bounds) - 1, len(omegadd_bounds) - 1] # This array, when dotted with the 5-dim state vector, gives a 'linear' # index between 0 and 3455. magic_array = np.cumprod([1] + nbins_across_dims)[:-1] @property def outdim(self): # Used when constructing LinearFALearner's. return 3456 def getBin(self, theta, thetad, omega, omegad, omegadd): bin_indices = [ np.digitize([theta], self.theta_bounds)[0] - 1, np.digitize([thetad], self.thetad_bounds)[0] - 1, np.digitize([omega], self.omega_bounds)[0] - 1, np.digitize([omegad], self.omegad_bounds)[0] - 1, np.digitize([omegadd], self.omegadd_bounds)[0] - 1, ] return np.dot(self.magic_array, bin_indices) def getBinIndices(self, linear_index): """Given a linear index (integer between 0 and outdim), returns the bin indices for each of the state dimensions. """ return linear_index / self.magic_array % self.nbins_across_dims def getObservation(self): (theta, thetad, omega, omegad, omegadd, xf, yf, xb, yb, psi) = self.env.getSensors() state = one_to_n(self.getBin(theta, thetad, omega, omegad, omegadd), self.outdim) return state class SARSALambda_LinFA_ReplacingTraces(SARSALambda_LinFA): """Randlov used replacing traces, but this doesn't exist in PyBrain's SARSALambda. """ def _updateEtraces(self, state, action, responsibility=1.): self._etraces *= self.rewardDiscount * self._lambda * responsibility # This assumes that state is an identity vector (like, from one_to_n). self._etraces[action] = clip(self._etraces[action] + state, -np.inf, 1.) # Set the trace for all other actions in this state to 0: action_bit = one_to_n(action, self.num_actions) for argstate in argwhere(state == 1) : self._etraces[argwhere(action_bit != 1), argstate] = 0. task = LinearFATileCoding3456BalanceTask() env = task.env # The learning is very sensitive to the learning rate decay. learner = SARSALambda_LinFA_ReplacingTraces(task.nactions, task.outdim, learningRateDecay=2000) learner._lambda = 0.95 task.discount = learner.rewardDiscount agent = LinearFA_Agent(learner) agent.logging = False exp = EpisodicExperiment(task, agent) performance_agent = LinearFA_Agent(learner) performance_agent.logging = False performance_agent.greedy = True performance_agent.learning = False env.saveWheelContactTrajectories(True) plt.ion() plt.figure(figsize=(8, 4)) ax1 = plt.subplot(1, 2, 1) ax2 = plt.subplot(1, 2, 2) def update_wheel_trajectories(): front_lines = ax2.plot(env.get_xfhist(), env.get_yfhist(), 'r') back_lines = ax2.plot(env.get_xbhist(), env.get_ybhist(), 'b') plt.axis('equal') perform_cumrewards = [] for irehearsal in range(7000): # Learn. # ------ r = exp.doEpisodes(1) # Discounted reward. cumreward = exp.task.getTotalReward() #print 'cumreward: %.4f; nsteps: %i; learningRate: %.4f' % ( # cumreward, len(r[0]), exp.agent.learner.learningRate) if irehearsal % 50 == 0: # Perform (no learning). # ---------------------- # Swap out the agent. exp.agent = performance_agent # Perform. r = exp.doEpisodes(1) perform_cumreward = task.getTotalReward() perform_cumrewards.append(perform_cumreward) print('PERFORMANCE: cumreward:', perform_cumreward, 'nsteps:', len(r[0])) # Swap back the learning agent. performance_agent.reset() exp.agent = agent ax1.cla() ax1.plot(perform_cumrewards, '.--') # Wheel trajectories. update_wheel_trajectories() plt.pause(0.001)
bsd-3-clause
alphaBenj/zipline
zipline/assets/synthetic.py
3
9273
from itertools import product from string import ascii_uppercase import pandas as pd from pandas.tseries.offsets import MonthBegin from six import iteritems from .futures import CME_CODE_TO_MONTH def make_rotating_equity_info(num_assets, first_start, frequency, periods_between_starts, asset_lifetime): """ Create a DataFrame representing lifetimes of assets that are constantly rotating in and out of existence. Parameters ---------- num_assets : int How many assets to create. first_start : pd.Timestamp The start date for the first asset. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret next two arguments. periods_between_starts : int Create a new asset every `frequency` * `periods_between_new` asset_lifetime : int Each asset exists for `frequency` * `asset_lifetime` days. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ return pd.DataFrame( { 'symbol': [chr(ord('A') + i) for i in range(num_assets)], # Start a new asset every `periods_between_starts` days. 'start_date': pd.date_range( first_start, freq=(periods_between_starts * frequency), periods=num_assets, ), # Each asset lasts for `asset_lifetime` days. 'end_date': pd.date_range( first_start + (asset_lifetime * frequency), freq=(periods_between_starts * frequency), periods=num_assets, ), 'exchange': 'TEST', 'exchange_full': 'TEST FULL', }, index=range(num_assets), ) def make_simple_equity_info(sids, start_date, end_date, symbols=None, names=None): """ Create a DataFrame representing assets that exist for the full duration between `start_date` and `end_date`. Parameters ---------- sids : array-like of int start_date : pd.Timestamp, optional end_date : pd.Timestamp, optional symbols : list, optional Symbols to use for the assets. If not provided, symbols are generated from the sequence 'A', 'B', ... names : list, optional Names to use for the assets. If not provided, names are generated by adding " INC." to each of the symbols (which might also be auto-generated). Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ num_assets = len(sids) if symbols is None: symbols = list(ascii_uppercase[:num_assets]) else: symbols = list(symbols) if names is None: names = [str(s) + " INC." for s in symbols] return pd.DataFrame( { 'symbol': symbols, 'start_date': pd.to_datetime([start_date] * num_assets), 'end_date': pd.to_datetime([end_date] * num_assets), 'asset_name': list(names), 'exchange': 'TEST', 'exchange_full': 'TEST FULL', }, index=sids, columns=( 'start_date', 'end_date', 'symbol', 'exchange', 'exchange_full', 'asset_name', ), ) def make_jagged_equity_info(num_assets, start_date, first_end, frequency, periods_between_ends, auto_close_delta): """ Create a DataFrame representing assets that all begin at the same start date, but have cascading end dates. Parameters ---------- num_assets : int How many assets to create. start_date : pd.Timestamp The start date for all the assets. first_end : pd.Timestamp The date at which the first equity will end. frequency : str or pd.tseries.offsets.Offset (e.g. trading_day) Frequency used to interpret the next argument. periods_between_ends : int Starting after the first end date, end each asset every `frequency` * `periods_between_ends`. Returns ------- info : pd.DataFrame DataFrame representing newly-created assets. """ frame = pd.DataFrame( { 'symbol': [chr(ord('A') + i) for i in range(num_assets)], 'start_date': start_date, 'end_date': pd.date_range( first_end, freq=(periods_between_ends * frequency), periods=num_assets, ), 'exchange': 'TEST', 'exchange_full': 'TEST FULL', }, index=range(num_assets), ) # Explicitly pass None to disable setting the auto_close_date column. if auto_close_delta is not None: frame['auto_close_date'] = frame['end_date'] + auto_close_delta return frame def make_future_info(first_sid, root_symbols, years, notice_date_func, expiration_date_func, start_date_func, month_codes=None): """ Create a DataFrame representing futures for `root_symbols` during `year`. Generates a contract per triple of (symbol, year, month) supplied to `root_symbols`, `years`, and `month_codes`. Parameters ---------- first_sid : int The first sid to use for assigning sids to the created contracts. root_symbols : list[str] A list of root symbols for which to create futures. years : list[int or str] Years (e.g. 2014), for which to produce individual contracts. notice_date_func : (Timestamp) -> Timestamp Function to generate notice dates from first of the month associated with asset month code. Return NaT to simulate futures with no notice date. expiration_date_func : (Timestamp) -> Timestamp Function to generate expiration dates from first of the month associated with asset month code. start_date_func : (Timestamp) -> Timestamp, optional Function to generate start dates from first of the month associated with each asset month code. Defaults to a start_date one year prior to the month_code date. month_codes : dict[str -> [1..12]], optional Dictionary of month codes for which to create contracts. Entries should be strings mapped to values from 1 (January) to 12 (December). Default is zipline.futures.CME_CODE_TO_MONTH Returns ------- futures_info : pd.DataFrame DataFrame of futures data suitable for passing to an AssetDBWriter. """ if month_codes is None: month_codes = CME_CODE_TO_MONTH year_strs = list(map(str, years)) years = [pd.Timestamp(s, tz='UTC') for s in year_strs] # Pairs of string/date like ('K06', 2006-05-01) contract_suffix_to_beginning_of_month = tuple( (month_code + year_str[-2:], year + MonthBegin(month_num)) for ((year, year_str), (month_code, month_num)) in product( zip(years, year_strs), iteritems(month_codes), ) ) contracts = [] parts = product(root_symbols, contract_suffix_to_beginning_of_month) for sid, (root_sym, (suffix, month_begin)) in enumerate(parts, first_sid): contracts.append({ 'sid': sid, 'root_symbol': root_sym, 'symbol': root_sym + suffix, 'start_date': start_date_func(month_begin), 'notice_date': notice_date_func(month_begin), 'expiration_date': notice_date_func(month_begin), 'multiplier': 500, 'exchange': "TEST", 'exchange_full': 'TEST FULL', }) return pd.DataFrame.from_records(contracts, index='sid') def make_commodity_future_info(first_sid, root_symbols, years, month_codes=None): """ Make futures testing data that simulates the notice/expiration date behavior of physical commodities like oil. Parameters ---------- first_sid : int root_symbols : list[str] years : list[int] month_codes : dict[str -> int] Expiration dates are on the 20th of the month prior to the month code. Notice dates are are on the 20th two months prior to the month code. Start dates are one year before the contract month. See Also -------- make_future_info """ nineteen_days = pd.Timedelta(days=19) one_year = pd.Timedelta(days=365) return make_future_info( first_sid=first_sid, root_symbols=root_symbols, years=years, notice_date_func=lambda dt: dt - MonthBegin(2) + nineteen_days, expiration_date_func=lambda dt: dt - MonthBegin(1) + nineteen_days, start_date_func=lambda dt: dt - one_year, month_codes=month_codes, )
apache-2.0
alexvmarch/atomic
exatomic/core/molecule.py
3
6451
# -*- coding: utf-8 -*- # Copyright (c) 2015-2016, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 """ Molecule Table ################### """ import numpy as np import pandas as pd import networkx as nx import warnings from networkx.algorithms.components import connected_components from exa import DataFrame from exatomic.base import sym2mass from exatomic.formula import string_to_dict, dict_to_string class Molecule(DataFrame): """ Description of molecules in the atomic universe. """ _index = 'molecule' _categories = {'frame': np.int64, 'formula': str, 'classification': object} #@property #def _constructor(self): # return Molecule def classify(self, *classifiers): """ Classify molecules into arbitrary categories. .. code-block:: Python u.molecule.classify(('solute', 'Na'), ('solvent', 'H(2)O(1)')) Args: classifiers: Any number of tuples of the form ('label', 'identifier', exact) (see below) Note: A classifier has 3 parts, "label", e.g. "solvent", "identifier", e.g. "H(2)O(1)", and exact (true or false). If exact is false (default), classification is greedy and (in this example) molecules with formulas "H(1)O(1)", "H(3)O(1)", etc. would get classified as "solvent". If, instead, exact were set to true, those molecules would remain unclassified. Warning: Classifiers are applied in the order passed; where identifiers overlap, the latter classification is used. See Also: :func:`~exatomic.algorithms.nearest.compute_nearest_molecules` """ for c in classifiers: n = len(c) if n != 3 and n != 2: raise ClassificationError() self['classification'] = None for classifier in classifiers: identifier = string_to_dict(classifier[0]) classification = classifier[1] exact = classifier[2] if len(classifier) == 3 else False this = self for symbol, count in identifier.items(): this = this[this[symbol] == count] if exact else this[this[symbol] >= 1] if len(this) > 0: self.ix[self.index.isin(this.index), 'classification'] = classification else: raise KeyError('No records found for {}, with identifier {}.'.format(classification, identifier)) self['classification'] = self['classification'].astype('category') if len(self[self['classification'].isnull()]) > 0: warnings.warn("Unclassified molecules remaining...") def get_atom_count(self): """ Compute the number of atoms per molecule. """ symbols = self._get_symbols() return self[symbols].sum(axis=1) def get_formula(self, as_map=False): """ Compute the string representation of the molecule. """ symbols = self._get_symbols() mcules = self[symbols].to_dict(orient='index') ret = map(dict_to_string, mcules.values()) if as_map: return ret return list(ret) def _get_symbols(self): """ Helper method to get atom symbols. """ return [col for col in self if len(col) < 3 and col[0].istitle()] def compute_molecule(universe): """ Cluster atoms into molecules and create the :class:`~exatomic.molecule.Molecule` table. Args: universe: Atomic universe Returns: molecule: Molecule table Warning: This function modifies the universe's atom (:class:`~exatomic.atom.Atom`) table in place! """ nodes = universe.atom.index.values bonded = universe.atom_two.ix[universe.atom_two['bond'] == True, ['atom0', 'atom1']] edges = zip(bonded['atom0'].astype(np.int64), bonded['atom1'].astype(np.int64)) g = nx.Graph() g.add_nodes_from(nodes) g.add_edges_from(edges) # generate molecule indices for the atom table mapper = {} i = 0 for k, v in g.degree(): # First handle single atom "molecules" if v == 0: mapper[k] = i i += 1 for seht in connected_components(g): # Second handle multi atom molecules for adx in seht: mapper[adx] = i i += 1 universe.atom['molecule'] = universe.atom.index.map(lambda x: mapper[x]) universe.atom['mass'] = universe.atom['symbol'].map(sym2mass) grps = universe.atom.groupby('molecule') molecule = grps['symbol'].value_counts().unstack().fillna(0).astype(np.int64) molecule.columns.name = None molecule['mass'] = grps['mass'].sum() universe.atom['molecule'] = universe.atom['molecule'].astype('category') del universe.atom['mass'] return molecule def compute_molecule_count(universe): """ """ if 'molecule' not in universe.atom.columns: universe.compute_molecule() universe.atom._revert_categories() mapper = universe.atom.drop_duplicates('molecule').set_index('molecule')['frame'] universe.atom._set_categories() universe.molecule['frame'] = universe.molecule.index.map(lambda x: mapper[x]) molecule_count = universe.molecule.groupby('frame').size() del universe.molecule['frame'] return molecule_count def compute_molecule_com(universe): """ Compute molecules' centers of mass. """ if 'molecule' not in universe.atom.columns: universe.compute_molecule() mass = universe.atom.get_element_masses() if universe.frame.is_periodic(): xyz = universe.atom[['x', 'y', 'z']].copy() xyz.update(universe.visual_atom) else: xyz = universe.atom[['x', 'y', 'z']] xm = xyz['x'].mul(mass) ym = xyz['y'].mul(mass) zm = xyz['z'].mul(mass) #rm = xm.add(ym).add(zm) df = pd.DataFrame.from_dict({'xm': xm, 'ym': ym, 'zm': zm, 'mass': mass, 'molecule': universe.atom['molecule']}) groups = df.groupby('molecule') sums = groups.sum() cx = sums['xm'].div(sums['mass']) cy = sums['ym'].div(sums['mass']) cz = sums['zm'].div(sums['mass']) return cx, cy, cz
apache-2.0
dhruve/spark
python/pyspark/sql/session.py
14
25557
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings from functools import reduce from threading import RLock if sys.version >= '3': basestring = unicode = str else: from itertools import imap as map from pyspark import since from pyspark.rdd import RDD, ignore_unicode_prefix from pyspark.sql.catalog import Catalog from pyspark.sql.conf import RuntimeConfig from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import Row, DataType, StringType, StructType, _verify_type, \ _infer_schema, _has_nulltype, _merge_type, _create_converter, _parse_datatype_string from pyspark.sql.utils import install_exception_handler __all__ = ["SparkSession"] def _monkey_patch_RDD(sparkSession): def toDF(self, schema=None, sampleRatio=None): """ Converts current :class:`RDD` into a :class:`DataFrame` This is a shorthand for ``spark.createDataFrame(rdd, schema, sampleRatio)`` :param schema: a :class:`pyspark.sql.types.StructType` or list of names of columns :param samplingRatio: the sample ratio of rows used for inferring :return: a DataFrame >>> rdd.toDF().collect() [Row(name=u'Alice', age=1)] """ return sparkSession.createDataFrame(self, schema, sampleRatio) RDD.toDF = toDF class SparkSession(object): """The entry point to programming Spark with the Dataset and DataFrame API. A SparkSession can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. To create a SparkSession, use the following builder pattern: >>> spark = SparkSession.builder \\ ... .master("local") \\ ... .appName("Word Count") \\ ... .config("spark.some.config.option", "some-value") \\ ... .getOrCreate() """ class Builder(object): """Builder for :class:`SparkSession`. """ _lock = RLock() _options = {} @since(2.0) def config(self, key=None, value=None, conf=None): """Sets a config option. Options set using this method are automatically propagated to both :class:`SparkConf` and :class:`SparkSession`'s own configuration. For an existing SparkConf, use `conf` parameter. >>> from pyspark.conf import SparkConf >>> SparkSession.builder.config(conf=SparkConf()) <pyspark.sql.session... For a (key, value) pair, you can omit parameter names. >>> SparkSession.builder.config("spark.some.config.option", "some-value") <pyspark.sql.session... :param key: a key name string for configuration property :param value: a value for configuration property :param conf: an instance of :class:`SparkConf` """ with self._lock: if conf is None: self._options[key] = str(value) else: for (k, v) in conf.getAll(): self._options[k] = v return self @since(2.0) def master(self, master): """Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]" to run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster. :param master: a url for spark master """ return self.config("spark.master", master) @since(2.0) def appName(self, name): """Sets a name for the application, which will be shown in the Spark web UI. If no application name is set, a randomly generated name will be used. :param name: an application name """ return self.config("spark.app.name", name) @since(2.0) def enableHiveSupport(self): """Enables Hive support, including connectivity to a persistent Hive metastore, support for Hive serdes, and Hive user-defined functions. """ return self.config("spark.sql.catalogImplementation", "hive") @since(2.0) def getOrCreate(self): """Gets an existing :class:`SparkSession` or, if there is no existing one, creates a new one based on the options set in this builder. This method first checks whether there is a valid global default SparkSession, and if yes, return that one. If no valid global default SparkSession exists, the method creates a new SparkSession and assigns the newly created SparkSession as the global default. >>> s1 = SparkSession.builder.config("k1", "v1").getOrCreate() >>> s1.conf.get("k1") == s1.sparkContext.getConf().get("k1") == "v1" True In case an existing SparkSession is returned, the config options specified in this builder will be applied to the existing SparkSession. >>> s2 = SparkSession.builder.config("k2", "v2").getOrCreate() >>> s1.conf.get("k1") == s2.conf.get("k1") True >>> s1.conf.get("k2") == s2.conf.get("k2") True """ with self._lock: from pyspark.context import SparkContext from pyspark.conf import SparkConf session = SparkSession._instantiatedSession if session is None or session._sc._jsc is None: sparkConf = SparkConf() for key, value in self._options.items(): sparkConf.set(key, value) sc = SparkContext.getOrCreate(sparkConf) # This SparkContext may be an existing one. for key, value in self._options.items(): # we need to propagate the confs # before we create the SparkSession. Otherwise, confs like # warehouse path and metastore url will not be set correctly ( # these confs cannot be changed once the SparkSession is created). sc._conf.set(key, value) session = SparkSession(sc) for key, value in self._options.items(): session._jsparkSession.sessionState().conf().setConfString(key, value) for key, value in self._options.items(): session.sparkContext._conf.set(key, value) return session builder = Builder() _instantiatedSession = None @ignore_unicode_prefix def __init__(self, sparkContext, jsparkSession=None): """Creates a new SparkSession. >>> from datetime import datetime >>> spark = SparkSession(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> spark.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ from pyspark.sql.context import SQLContext self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if jsparkSession is None: jsparkSession = self._jvm.SparkSession(self._jsc.sc()) self._jsparkSession = jsparkSession self._jwrapped = self._jsparkSession.sqlContext() self._wrapped = SQLContext(self._sc, self, self._jwrapped) _monkey_patch_RDD(self) install_exception_handler() # If we had an instantiated SparkSession attached with a SparkContext # which is stopped now, we need to renew the instantiated SparkSession. # Otherwise, we will use invalid SparkSession when we call Builder.getOrCreate. if SparkSession._instantiatedSession is None \ or SparkSession._instantiatedSession._sc._jsc is None: SparkSession._instantiatedSession = self def _repr_html_(self): return """ <div> <p><b>SparkSession - {catalogImplementation}</b></p> {sc_HTML} </div> """.format( catalogImplementation=self.conf.get("spark.sql.catalogImplementation"), sc_HTML=self.sparkContext._repr_html_() ) @since(2.0) def newSession(self): """ Returns a new SparkSession as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self._jsparkSession.newSession()) @property @since(2.0) def sparkContext(self): """Returns the underlying :class:`SparkContext`.""" return self._sc @property @since(2.0) def version(self): """The version of Spark on which this application is running.""" return self._jsparkSession.version() @property @since(2.0) def conf(self): """Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any. """ if not hasattr(self, "_conf"): self._conf = RuntimeConfig(self._jsparkSession.conf()) return self._conf @property @since(2.0) def catalog(self): """Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc. """ if not hasattr(self, "_catalog"): self._catalog = Catalog(self) return self._catalog @property @since(2.0) def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ from pyspark.sql.context import UDFRegistration return UDFRegistration(self._wrapped) @since(2.0) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> spark.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> spark.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ if numPartitions is None: numPartitions = self._sc.defaultParallelism if end is None: jdf = self._jsparkSession.range(0, int(start), int(step), int(numPartitions)) else: jdf = self._jsparkSession.range(int(start), int(end), int(step), int(numPartitions)) return DataFrame(jdf, self._wrapped) def _inferSchemaFromList(self, data): """ Infer schema from list of Row or tuple. :param data: list of Row or tuple :return: :class:`pyspark.sql.types.StructType` """ if not data: raise ValueError("can not infer schema from empty dataset") first = data[0] if type(first) is dict: warnings.warn("inferring schema from dict is deprecated," "please use pyspark.sql.Row instead") schema = reduce(_merge_type, map(_infer_schema, data)) if _has_nulltype(schema): raise ValueError("Some of types cannot be determined after inferring") return schema def _inferSchema(self, rdd, samplingRatio=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ first = rdd.first() if not first: raise ValueError("The first row in RDD is empty, " "can not infer schema") if type(first) is dict: warnings.warn("Using RDD of dict to inferSchema is deprecated. " "Use pyspark.sql.Row instead") if samplingRatio is None: schema = _infer_schema(first) if _has_nulltype(schema): for row in rdd.take(100)[1:]: schema = _merge_type(schema, _infer_schema(row)) if not _has_nulltype(schema): break else: raise ValueError("Some of types cannot be determined by the " "first 100 rows, please try again with sampling") else: if samplingRatio < 0.99: rdd = rdd.sample(False, float(samplingRatio)) schema = rdd.map(_infer_schema).reduce(_merge_type) return schema def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema def _createFromLocal(self, data, schema): """ Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema. """ # make sure data could consumed multiple times if not isinstance(data, list): data = list(data) if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchemaFromList(data) converter = _create_converter(struct) data = map(converter, data) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data data = [schema.toInternal(row) for row in data] return self._sc.parallelize(data), schema @since(2.0) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is ``None``. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for ``IntegerType``. :param samplingRatio: the sample ratio of rows used for inferring :param verifySchema: verify data types of every row against schema. :return: :class:`DataFrame` .. versionchanged:: 2.1 Added verifySchema. >>> l = [('Alice', 1)] >>> spark.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> spark.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> spark.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> spark.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = spark.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = spark.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = spark.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> spark.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> spark.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ if isinstance(data, DataFrame): raise TypeError("data is already a DataFrame") if isinstance(schema, basestring): schema = _parse_datatype_string(schema) try: import pandas has_pandas = True except Exception: has_pandas = False if has_pandas and isinstance(data, pandas.DataFrame): if schema is None: schema = [str(x) for x in data.columns] data = [r.tolist() for r in data.to_records(index=False)] verify_func = _verify_type if verifySchema else lambda _, t: True if isinstance(schema, StructType): def prepare(obj): verify_func(obj, schema) return obj elif isinstance(schema, DataType): dataType = schema schema = StructType().add("value", schema) def prepare(obj): verify_func(obj, dataType) return obj, else: if isinstance(schema, list): schema = [x.encode('utf-8') if not isinstance(x, str) else x for x in schema] prepare = lambda obj: obj if isinstance(data, RDD): rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio) else: rdd, schema = self._createFromLocal(map(prepare, data), schema) jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd()) jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json()) df = DataFrame(jdf, self._wrapped) df._schema = schema return df @ignore_unicode_prefix @since(2.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) @since(2.0) def table(self, tableName): """Returns the specified table as a :class:`DataFrame`. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return DataFrame(self._jsparkSession.table(tableName), self._wrapped) @property @since(2.0) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self._wrapped) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Evolving. :return: :class:`DataStreamReader` """ return DataStreamReader(self._wrapped) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Evolving. :return: :class:`StreamingQueryManager` """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._jsparkSession.streams()) @since(2.0) def stop(self): """Stop the underlying :class:`SparkContext`. """ self._sc.stop() SparkSession._instantiatedSession = None @since(2.0) def __enter__(self): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. """ return self @since(2.0) def __exit__(self, exc_type, exc_val, exc_tb): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. Specifically stop the SparkSession on exit of the with block. """ self.stop() def _test(): import os import doctest from pyspark.context import SparkContext from pyspark.sql import Row import pyspark.sql.session os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.session.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['spark'] = SparkSession(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")]) globs['df'] = rdd.toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.session, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
apache-2.0
seancug/python-example
fatiando-0.2/fatiando/gridder.py
1
12677
""" Create and operate on grids and profiles. **Grid generation** * :func:`~fatiando.gridder.regular` * :func:`~fatiando.gridder.scatter` **Grid operations** * :func:`~fatiando.gridder.cut` * :func:`~fatiando.gridder.profile` **Interpolation** * :func:`~fatiando.gridder.interp` * :func:`~fatiando.gridder.interp_at` * :func:`~fatiando.gridder.extrapolate_nans` **Input/Output** * :func:`~fatiando.gridder.load_surfer`: Read a Surfer grid file and return three 1d numpy arrays and the grid shape **Misc** * :func:`~fatiando.gridder.spacing` ---- """ import numpy import scipy.interpolate import matplotlib.mlab def load_surfer(fname, fmt='ascii'): """ Read a Surfer grid file and return three 1d numpy arrays and the grid shape Surfer is a contouring, gridding and surface mapping software from GoldenSoftware. The names and logos for Surfer and Golden Software are registered trademarks of Golden Software, Inc. http://www.goldensoftware.com/products/surfer According to Surfer structure, x and y are horizontal and vertical screen-based coordinates respectively. If the grid is in geographic coordinates, x will be longitude and y latitude. If the coordinates are cartesian, x will be the easting and y the norting coordinates. WARNING: This is opposite to the convention used for Fatiando. See io_surfer.py in cookbook. Parameters: * fname : str Name of the Surfer grid file * fmt : str File type, can be 'ascii' or 'binary' Returns: * x : 1d-array Value of the horizontal coordinate of each grid point. * y : 1d-array Value of the vertical coordinate of each grid point. * grd : 1d-array Values of the field in each grid point. Field can be for example topography, gravity anomaly etc * shape : tuple = (ny, nx) The number of points in the vertical and horizontal grid dimensions, respectively """ assert fmt in ['ascii', 'binary'], "Invalid grid format '%s'. Should be \ 'ascii' or 'binary'." % (fmt) if fmt == 'ascii': # Surfer ASCII grid structure # DSAA Surfer ASCII GRD ID # nCols nRows number of columns and rows # xMin xMax X min max # yMin yMax Y min max # zMin zMax Z min max # z11 z21 z31 ... List of Z values with open(fname) as ftext: # DSAA is a Surfer ASCII GRD ID id = ftext.readline() # Read the number of columns (nx) and rows (ny) nx, ny = [int(s) for s in ftext.readline().split()] # Read the min/max value of x (columns/longitue) xmin, xmax = [float(s) for s in ftext.readline().split()] # Read the min/max value of y(rows/latitude) ymin, ymax = [float(s) for s in ftext.readline().split()] # Read the min/max value of grd zmin, zmax = [float(s) for s in ftext.readline().split()] data = numpy.fromiter((float(i) for line in ftext for i in line.split()), dtype='f') grd = numpy.ma.masked_greater_equal(data, 1.70141e+38) # Create x and y numpy arrays x = numpy.linspace(xmin, xmax, nx) y = numpy.linspace(ymin, ymax, ny) x, y = [tmp.ravel() for tmp in numpy.meshgrid(x, y)] if fmt == 'binary': raise NotImplementedError( "Binary file support is not implemented yet.") return x, y, grd, (ny,nx) def regular(area, shape, z=None): """ Create a regular grid. Order of the output grid is x varies first, then y. Parameters: * area ``(x1, x2, y1, y2)``: Borders of the grid * shape Shape of the regular grid, ie ``(ny, nx)``. * z Optional. z coordinate of the grid points. If given, will return an array with the value *z*. Returns: * ``[xcoords, ycoords]`` Numpy arrays with the x and y coordinates of the grid points * ``[xcoords, ycoords, zcoords]`` If *z* given. Numpy arrays with the x, y, and z coordinates of the grid points """ ny, nx = shape x1, x2, y1, y2 = area dy, dx = spacing(area, shape) x_range = numpy.arange(x1, x2, dx) y_range = numpy.arange(y1, y2, dy) # Need to make sure that the number of points in the grid is correct because # of rounding errors in arange. Sometimes x2 and y2 are included, sometimes # not if len(x_range) < nx: x_range = numpy.append(x_range, x2) if len(y_range) < ny: y_range = numpy.append(y_range, y2) assert len(x_range) == nx, "Failed! x_range doesn't have nx points" assert len(y_range) == ny, "Failed! y_range doesn't have ny points" xcoords, ycoords = [mat.ravel() for mat in numpy.meshgrid(x_range, y_range)] if z is not None: zcoords = z*numpy.ones_like(xcoords) return [xcoords, ycoords, zcoords] else: return [xcoords, ycoords] def scatter(area, n, z=None, seed=None): """ Create an irregular grid with a random scattering of points. Parameters: * area ``(x1, x2, y1, y2)``: Borders of the grid * n Number of points * z Optional. z coordinate of the points. If given, will return an array with the value *z*. * seed : None or int Seed used to generate the pseudo-random numbers. If `None`, will use a different seed every time. Use the same seed to generate the same random points. Returns: * ``[xcoords, ycoords]`` Numpy arrays with the x and y coordinates of the points * ``[xcoords, ycoords, zcoords]`` If *z* given. Arrays with the x, y, and z coordinates of the points """ x1, x2, y1, y2 = area numpy.random.seed(seed) xcoords = numpy.random.uniform(x1, x2, n) ycoords = numpy.random.uniform(y1, y2, n) numpy.random.seed() if z is not None: zcoords = z*numpy.ones(n) return [xcoords, ycoords, zcoords] else: return [xcoords, ycoords] def spacing(area, shape): """ Returns the spacing between grid nodes Parameters: * area ``(x1, x2, y1, y2)``: Borders of the grid * shape Shape of the regular grid, ie ``(ny, nx)``. Returns: * ``[dy, dx]`` Spacing the y and x directions """ x1, x2, y1, y2 = area ny, nx = shape dx = float(x2 - x1)/float(nx - 1) dy = float(y2 - y1)/float(ny - 1) return [dy, dx] def interp(x, y, v, shape, area=None, algorithm='cubic', extrapolate=False): """ Interpolate data onto a regular grid. Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. * shape : tuple = (ny, nx) Shape of the interpolated regular grid, ie (ny, nx). * area : tuple = (x1, x2, y1, y2) The are where the data will be interpolated. If None, then will get the area from *x* and *y*. * algorithm : string Interpolation algorithm. Either ``'cubic'``, ``'nearest'``, ``'linear'`` (see scipy.interpolate.griddata), or ``'nn'`` for nearest neighbors (using matplotlib.mlab.griddata) * extrapolate : True or False If True, will extrapolate values outside of the convex hull of the data points. Returns: * ``[x, y, v]`` Three 1D arrays with the interpolated x, y, and v """ if algorithm not in ['cubic', 'linear', 'nearest', 'nn']: raise ValueError("Invalid interpolation algorithm: " + str(algorithm)) ny, nx = shape if area is None: area = (x.min(), x.max(), y.min(), y.max()) x1, x2, y1, y2 = area xs = numpy.linspace(x1, x2, nx) ys = numpy.linspace(y1, y2, ny) xp, yp = [i.ravel() for i in numpy.meshgrid(xs, ys)] if algorithm == 'nn': grid = matplotlib.mlab.griddata(x, y, v, numpy.reshape(xp, shape), numpy.reshape(yp, shape), interp='nn').ravel() if extrapolate and numpy.ma.is_masked(grid): grid = extrapolate_nans(xp, yp, grid) else: grid = interp_at(x, y, v, xp, yp, algorithm=algorithm, extrapolate=extrapolate) return [xp, yp, grid] def interp_at(x, y, v, xp, yp, algorithm='cubic', extrapolate=False): """ Interpolate data onto the specified points. Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. * xp, yp : 1D arrays Points where the data values will be interpolated * algorithm : string Interpolation algorithm. Either ``'cubic'``, ``'nearest'``, ``'linear'`` (see scipy.interpolate.griddata) * extrapolate : True or False If True, will extrapolate values outside of the convex hull of the data points. Returns: * v : 1D array 1D array with the interpolated v values. """ if algorithm not in ['cubic', 'linear', 'nearest']: raise ValueError("Invalid interpolation algorithm: " + str(algorithm)) grid = scipy.interpolate.griddata((x, y), v, (xp, yp), method=algorithm).ravel() if extrapolate and algorithm != 'nearest' and numpy.any(numpy.isnan(grid)): grid = extrapolate_nans(xp, yp, grid) return grid def profile(x, y, v, point1, point2, size, extrapolate=False): """ Extract a data profile between 2 points. Uses interpolation to calculate the data values at the profile points. Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. * point1, point2 : lists = [x, y] Lists the x, y coordinates of the 2 points between which the profile will be extracted. * size : int Number of points along the profile. * extrapolate : True or False If True, will extrapolate values outside of the convex hull of the data points. Returns: * [xp, yp, distances, vp] : 1d arrays ``xp`` and ``yp`` are the x, y coordinates of the points along the profile. ``distances`` are the distances of the profile points to ``point1`` ``vp`` are the data points along the profile. """ x1, y1 = point1 x2, y2 = point2 maxdist = numpy.sqrt((x1 - x2)**2 + (y1 - y2)**2) distances = numpy.linspace(0, maxdist, size) angle = numpy.arctan2(y2 - y1, x2 - x1) xp = x1 + distances*numpy.cos(angle) yp = y1 + distances*numpy.sin(angle) vp = interp_at(x, y, v, xp, yp, algorithm='cubic', extrapolate=extrapolate) return xp, yp, distances, vp def extrapolate_nans(x, y, v): """" Extrapolate the NaNs or masked values in a grid INPLACE using nearest value. .. warning:: Replaces the NaN or masked values of the original array! Parameters: * x, y : 1D arrays Arrays with the x and y coordinates of the data points. * v : 1D array Array with the scalar value assigned to the data points. Returns: * v : 1D array The array with NaNs or masked values extrapolated. """ if numpy.ma.is_masked(v): nans = v.mask else: nans = numpy.isnan(v) notnans = numpy.logical_not(nans) v[nans] = scipy.interpolate.griddata((x[notnans], y[notnans]), v[notnans], (x[nans], y[nans]), method='nearest').ravel() return v def cut(x, y, scalars, area): """ Return a subsection of a grid. The returned subsection is not a copy! In technical terms, returns a slice of the numpy arrays. So changes made to the subsection reflect on the original grid. Use numpy.copy to make copies of the subsections and avoid this. Parameters: * x, y Arrays with the x and y coordinates of the data points. * scalars List of arrays with the scalar values assigned to the grid points. * area ``(x1, x2, y1, y2)``: Borders of the subsection Returns: * ``[subx, suby, subscalars]`` Arrays with x and y coordinates and scalar values of the subsection. """ xmin, xmax, ymin, ymax = area if len(x) != len(y): raise ValueError("x and y must have the same length") inside = [i for i in xrange(len(x)) if x[i] >= xmin and x[i] <= xmax and y[i] >= ymin and y[i] <= ymax] return [x[inside], y[inside], [s[inside] for s in scalars]]
gpl-2.0
yyjiang/scikit-learn
sklearn/linear_model/tests/test_base.py
120
10082
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.base import center_data, sparse_center_data from sklearn.utils import check_random_state from sklearn.datasets.samples_generator import make_sparse_uncorrelated from sklearn.datasets.samples_generator import make_regression def test_linear_regression(): # Test LinearRegression on a simple dataset. # a simple dataset X = [[1], [2]] Y = [1, 2] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [1, 2]) # test it also for degenerate input X = [[1]] Y = [0] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [0]) def test_fit_intercept(): # Test assertions on betas shape. X2 = np.array([[0.38349978, 0.61650022], [0.58853682, 0.41146318]]) X3 = np.array([[0.27677969, 0.70693172, 0.01628859], [0.08385139, 0.20692515, 0.70922346]]) y = np.array([1, 1]) lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y) lr2_with_intercept = LinearRegression(fit_intercept=True).fit(X2, y) lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y) lr3_with_intercept = LinearRegression(fit_intercept=True).fit(X3, y) assert_equal(lr2_with_intercept.coef_.shape, lr2_without_intercept.coef_.shape) assert_equal(lr3_with_intercept.coef_.shape, lr3_without_intercept.coef_.shape) assert_equal(lr2_without_intercept.coef_.ndim, lr3_without_intercept.coef_.ndim) def test_linear_regression_sparse(random_state=0): "Test that linear regression also works with sparse data" random_state = check_random_state(random_state) for i in range(10): n = 100 X = sparse.eye(n, n) beta = random_state.rand(n) y = X * beta[:, np.newaxis] ols = LinearRegression() ols.fit(X, y.ravel()) assert_array_almost_equal(beta, ols.coef_ + ols.intercept_) assert_array_almost_equal(ols.residues_, 0) def test_linear_regression_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions" X, y = make_regression(random_state=random_state) Y = np.vstack((y, y)).T n_features = X.shape[1] clf = LinearRegression(fit_intercept=True) clf.fit((X), Y) assert_equal(clf.coef_.shape, (2, n_features)) Y_pred = clf.predict(X) clf.fit(X, y) y_pred = clf.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_linear_regression_sparse_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions with sparse data" random_state = check_random_state(random_state) X, y = make_sparse_uncorrelated(random_state=random_state) X = sparse.coo_matrix(X) Y = np.vstack((y, y)).T n_features = X.shape[1] ols = LinearRegression() ols.fit(X, Y) assert_equal(ols.coef_.shape, (2, n_features)) Y_pred = ols.predict(X) ols.fit(X, y.ravel()) y_pred = ols.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) expected_X_mean = np.mean(X, axis=0) # XXX: currently scaled to variance=n_samples expected_X_std = np.std(X, axis=0) * np.sqrt(X.shape[0]) expected_y_mean = np.mean(y, axis=0) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_center_data_multioutput(): n_samples = 200 n_features = 3 n_outputs = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_outputs) expected_y_mean = np.mean(y, axis=0) args = [(center_data, X), (sparse_center_data, sparse.csc_matrix(X))] for center, X in args: _, yt, _, y_mean, _ = center(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(y_mean, np.zeros(n_outputs)) assert_array_almost_equal(yt, y) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) def test_center_data_weighted(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) sample_weight = rng.rand(n_samples) expected_X_mean = np.average(X, axis=0, weights=sample_weight) expected_y_mean = np.average(y, axis=0, weights=sample_weight) # XXX: if normalize=True, should we expect a weighted standard deviation? # Currently not weighted, but calculated with respect to weighted mean # XXX: currently scaled to variance=n_samples expected_X_std = (np.sqrt(X.shape[0]) * np.mean((X - expected_X_mean) ** 2, axis=0) ** .5) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_sparse_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) # random_state not supported yet in sparse.rand X = sparse.rand(n_samples, n_features, density=.5) # , random_state=rng X = X.tolil() y = rng.rand(n_samples) XA = X.toarray() # XXX: currently scaled to variance=n_samples expected_X_std = np.std(XA, axis=0) * np.sqrt(X.shape[0]) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt.A, XA / expected_X_std) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) def test_csr_sparse_center_data(): # Test output format of sparse_center_data, when input is csr X, y = make_regression() X[X < 2.5] = 0.0 csr = sparse.csr_matrix(X) csr_, y, _, _, _ = sparse_center_data(csr, y, True) assert_equal(csr_.getformat(), 'csr')
bsd-3-clause
mikecroucher/GPy
GPy/testing/plotting_tests.py
3
21811
#=============================================================================== # Copyright (c) 2015, Max Zwiessele # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of GPy nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== #=============================================================================== # SKIPPING PLOTTING BECAUSE IT BEHAVES DIFFERENTLY ON DIFFERENT # SYSTEMS, AND WILL MISBEHAVE from nose import SkipTest #raise SkipTest("Skipping Matplotlib testing") #=============================================================================== try: import matplotlib matplotlib.use('agg') except ImportError: # matplotlib not installed from nose import SkipTest raise SkipTest("Skipping Matplotlib testing") from unittest.case import TestCase import numpy as np import GPy, os from GPy.util.config import config from GPy.plotting import change_plotting_library, plotting_library class ConfigTest(TestCase): def tearDown(self): change_plotting_library('matplotlib') def test_change_plotting(self): self.assertRaises(ValueError, change_plotting_library, 'not+in9names') change_plotting_library('none') self.assertRaises(RuntimeError, plotting_library) change_plotting_library('matplotlib') if config.get('plotting', 'library') != 'matplotlib': raise SkipTest("Matplotlib not installed, not testing plots") try: from matplotlib import cbook, pyplot as plt from matplotlib.testing.compare import compare_images from matplotlib.testing.noseclasses import ImageComparisonFailure except ImportError: raise SkipTest("Matplotlib not installed, not testing plots") extensions = ['npz'] basedir = os.path.dirname(os.path.relpath(os.path.abspath(__file__))) def _image_directories(): """ Compute the baseline and result image directories for testing *func*. Create the result directory if it doesn't exist. """ #module_name = __init__.__module__ #mods = module_name.split('.') #basedir = os.path.join(*mods) result_dir = os.path.join(basedir, 'testresult','.') baseline_dir = os.path.join(basedir, 'baseline','.') if not os.path.exists(result_dir): cbook.mkdirs(result_dir) return baseline_dir, result_dir baseline_dir, result_dir = _image_directories() if not os.path.exists(baseline_dir): raise SkipTest("Not installed from source, baseline not available. Install from source to test plotting") def _image_comparison(baseline_images, extensions=['pdf','svg','png'], tol=11, rtol=1e-3, **kwargs): for num, base in zip(plt.get_fignums(), baseline_images): for ext in extensions: fig = plt.figure(num) fig.canvas.draw() #fig.axes[0].set_axis_off() #fig.set_frameon(False) if ext in ['npz']: figdict = flatten_axis(fig) np.savez_compressed(os.path.join(result_dir, "{}.{}".format(base, ext)), **figdict) fig.savefig(os.path.join(result_dir, "{}.{}".format(base, 'png')), transparent=True, edgecolor='none', facecolor='none', #bbox='tight' ) else: fig.savefig(os.path.join(result_dir, "{}.{}".format(base, ext)), transparent=True, edgecolor='none', facecolor='none', #bbox='tight' ) for num, base in zip(plt.get_fignums(), baseline_images): for ext in extensions: #plt.close(num) actual = os.path.join(result_dir, "{}.{}".format(base, ext)) expected = os.path.join(baseline_dir, "{}.{}".format(base, ext)) if ext == 'npz': def do_test(): if not os.path.exists(expected): import shutil shutil.copy2(actual, expected) #shutil.copy2(os.path.join(result_dir, "{}.{}".format(base, 'png')), os.path.join(baseline_dir, "{}.{}".format(base, 'png'))) raise IOError("Baseline file {} not found, copying result {}".format(expected, actual)) else: exp_dict = dict(np.load(expected).items()) act_dict = dict(np.load(actual).items()) for name in act_dict: if name in exp_dict: try: np.testing.assert_allclose(exp_dict[name], act_dict[name], err_msg="Mismatch in {}.{}".format(base, name), rtol=rtol, **kwargs) except AssertionError as e: raise SkipTest(e) else: def do_test(): err = compare_images(expected, actual, tol, in_decorator=True) if err: raise SkipTest("Error between {} and {} is {:.5f}, which is bigger then the tolerance of {:.5f}".format(actual, expected, err['rms'], tol)) yield do_test plt.close('all') def flatten_axis(ax, prevname=''): import inspect members = inspect.getmembers(ax) arrays = {} def _flatten(l, pre): arr = {} if isinstance(l, np.ndarray): if l.size: arr[pre] = np.asarray(l) elif isinstance(l, dict): for _n in l: _tmp = _flatten(l, pre+"."+_n+".") for _nt in _tmp.keys(): arrays[_nt] = _tmp[_nt] elif isinstance(l, list) and len(l)>0: for i in range(len(l)): _tmp = _flatten(l[i], pre+"[{}]".format(i)) for _n in _tmp: arr["{}".format(_n)] = _tmp[_n] else: return flatten_axis(l, pre+'.') return arr for name, l in members: if isinstance(l, np.ndarray): arrays[prevname+name] = np.asarray(l) elif isinstance(l, list) and len(l)>0: for i in range(len(l)): _tmp = _flatten(l[i], prevname+name+"[{}]".format(i)) for _n in _tmp: arrays["{}".format(_n)] = _tmp[_n] return arrays def _a(x,y,decimal): np.testing.assert_array_almost_equal(x, y, decimal) def compare_axis_dicts(x, y, decimal=6): try: assert(len(x)==len(y)) for name in x: _a(x[name], y[name], decimal) except AssertionError as e: raise SkipTest(e.message) def test_figure(): np.random.seed(1239847) from GPy.plotting import plotting_library as pl #import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") ax, _ = pl().new_canvas(num="imshow_interact") def test_func(x): return x[:, 0].reshape(3,3) pl().imshow_interact(ax, test_func, extent=(-1,1,-1,1), resolution=3) ax, _ = pl().new_canvas() def test_func_2(x): y = x[:, 0].reshape(3,3) anno = np.argmax(x, axis=1).reshape(3,3) return y, anno pl().annotation_heatmap_interact(ax, test_func_2, extent=(-1,1,-1,1), resolution=3) pl().annotation_heatmap_interact(ax, test_func_2, extent=(-1,1,-1,1), resolution=3, imshow_kwargs=dict(interpolation='nearest')) ax, _ = pl().new_canvas(figsize=(4,3)) x = np.linspace(0,1,100) y = [0,1,2] array = np.array([.4,.5]) cmap = matplotlib.colors.LinearSegmentedColormap.from_list('WhToColor', ('r', 'b'), N=array.size) pl().fill_gradient(ax, x, y, facecolors=['r', 'g'], array=array, cmap=cmap) ax, _ = pl().new_canvas(num="3d_plot", figsize=(4,3), projection='3d', xlabel='x', ylabel='y', zlabel='z', title='awsome title', xlim=(-1,1), ylim=(-1,1), zlim=(-3,3)) z = 2-np.abs(np.linspace(-2,2,(100)))+1 x, y = z*np.sin(np.linspace(-2*np.pi,2*np.pi,(100))), z*np.cos(np.linspace(-np.pi,np.pi,(100))) pl().plot(ax, x, y, z, linewidth=2) for do_test in _image_comparison( baseline_images=['coverage_{}'.format(sub) for sub in ["imshow_interact",'annotation_interact','gradient','3d_plot',]], extensions=extensions): yield (do_test, ) def test_kernel(): np.random.seed(1239847) #import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") k = GPy.kern.RBF(5, ARD=True) * GPy.kern.Linear(3, active_dims=[0,2,4], ARD=True) + GPy.kern.Bias(2) k.randomize() k2 = GPy.kern.RBF(5, ARD=True) * GPy.kern.Linear(3, active_dims=[0,2,4], ARD=True) + GPy.kern.Bias(2) + GPy.kern.White(4) k2[:-1] = k[:] k2.plot_ARD(['rbf', 'linear', 'bias'], legend=True) k2.plot_covariance(visible_dims=[0, 3], plot_limits=(-1,3)) k2.plot_covariance(visible_dims=[2], plot_limits=(-1, 3)) k2.plot_covariance(visible_dims=[2, 4], plot_limits=((-1, 0), (5, 3)), projection='3d', rstride=10, cstride=10) k2.plot_covariance(visible_dims=[1, 4]) for do_test in _image_comparison( baseline_images=['kern_{}'.format(sub) for sub in ["ARD", 'cov_2d', 'cov_1d', 'cov_3d', 'cov_no_lim']], extensions=extensions): yield (do_test, ) def test_plot(): np.random.seed(111) import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") X = np.random.uniform(-2, 2, (40, 1)) f = .2 * np.sin(1.3*X) + 1.3*np.cos(2*X) Y = f+np.random.normal(0, .1, f.shape) m = GPy.models.SparseGPRegression(X, Y, X_variance=np.ones_like(X)*[0.06]) #m.optimize() m.plot_data() m.plot_mean() m.plot_confidence() m.plot_density() m.plot_errorbars_trainset() m.plot_samples() m.plot_data_error() for do_test in _image_comparison(baseline_images=['gp_{}'.format(sub) for sub in ["data", "mean", 'conf', 'density', 'out_error', 'samples', 'in_error']], extensions=extensions): yield (do_test, ) def test_twod(): np.random.seed(11111) import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False X = np.random.uniform(-2, 2, (40, 2)) f = .2 * np.sin(1.3*X[:,[0]]) + 1.3*np.cos(2*X[:,[1]]) Y = f+np.random.normal(0, .1, f.shape) m = GPy.models.SparseGPRegression(X, Y, X_variance=np.ones_like(X)*[0.01, 0.2]) #m.optimize() m.plot_data() m.plot_mean() m.plot_inducing(legend=False, marker='s') #m.plot_errorbars_trainset() m.plot_data_error() for do_test in _image_comparison(baseline_images=['gp_2d_{}'.format(sub) for sub in ["data", "mean", 'inducing', #'out_error', 'in_error', ]], extensions=extensions): yield (do_test, ) def test_threed(): np.random.seed(11111) import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False X = np.random.uniform(-2, 2, (40, 2)) f = .2 * np.sin(1.3*X[:,[0]]) + 1.3*np.cos(2*X[:,[1]]) Y = f+np.random.normal(0, .1, f.shape) m = GPy.models.SparseGPRegression(X, Y) m.likelihood.variance = .1 #m.optimize() m.plot_samples(projection='3d', samples=1) m.plot_samples(projection='3d', plot_raw=False, samples=1) plt.close('all') m.plot_data(projection='3d') m.plot_mean(projection='3d', rstride=10, cstride=10) m.plot_inducing(projection='3d') #m.plot_errorbars_trainset(projection='3d') for do_test in _image_comparison(baseline_images=['gp_3d_{}'.format(sub) for sub in ["data", "mean", 'inducing', #'error', #"samples", "samples_lik" ]], extensions=extensions): yield (do_test, ) def test_sparse(): np.random.seed(11111) import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False X = np.random.uniform(-2, 2, (40, 1)) f = .2 * np.sin(1.3*X) + 1.3*np.cos(2*X) Y = f+np.random.normal(0, .1, f.shape) m = GPy.models.SparseGPRegression(X, Y, X_variance=np.ones_like(X)*0.1) #m.optimize() #m.plot_inducing() _, ax = plt.subplots() m.plot_data(ax=ax) m.plot_data_error(ax=ax) for do_test in _image_comparison(baseline_images=['sparse_gp_{}'.format(sub) for sub in ['data_error']], extensions=extensions): yield (do_test, ) def test_classification(): np.random.seed(11111) import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False X = np.random.uniform(-2, 2, (40, 1)) f = .2 * np.sin(1.3*X) + 1.3*np.cos(2*X) Y = f+np.random.normal(0, .1, f.shape) m = GPy.models.GPClassification(X, Y>Y.mean()) #m.optimize() _, ax = plt.subplots() m.plot(plot_raw=False, apply_link=False, ax=ax) m.plot_errorbars_trainset(plot_raw=False, apply_link=False, ax=ax) _, ax = plt.subplots() m.plot(plot_raw=True, apply_link=False, ax=ax) m.plot_errorbars_trainset(plot_raw=True, apply_link=False, ax=ax) _, ax = plt.subplots() m.plot(plot_raw=True, apply_link=True, ax=ax) m.plot_errorbars_trainset(plot_raw=True, apply_link=True, ax=ax) for do_test in _image_comparison(baseline_images=['gp_class_{}'.format(sub) for sub in ["likelihood", "raw", 'raw_link']], extensions=extensions): yield (do_test, ) def test_sparse_classification(): np.random.seed(11111) import matplotlib matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False X = np.random.uniform(-2, 2, (40, 1)) f = .2 * np.sin(1.3*X) + 1.3*np.cos(2*X) Y = f+np.random.normal(0, .1, f.shape) m = GPy.models.SparseGPClassification(X, Y>Y.mean()) #m.optimize() m.plot(plot_raw=False, apply_link=False, samples_likelihood=3) np.random.seed(111) m.plot(plot_raw=True, apply_link=False, samples=3) np.random.seed(111) m.plot(plot_raw=True, apply_link=True, samples=3) for do_test in _image_comparison(baseline_images=['sparse_gp_class_{}'.format(sub) for sub in ["likelihood", "raw", 'raw_link']], extensions=extensions, rtol=2): yield (do_test, ) def test_gplvm(): from GPy.models import GPLVM np.random.seed(12345) matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False #Q = 3 # Define dataset #N = 60 #k1 = GPy.kern.RBF(5, variance=1, lengthscale=1./np.random.dirichlet(np.r_[10,10,10,0.1,0.1]), ARD=True) #k2 = GPy.kern.RBF(5, variance=1, lengthscale=1./np.random.dirichlet(np.r_[10,0.1,10,0.1,10]), ARD=True) #k3 = GPy.kern.RBF(5, variance=1, lengthscale=1./np.random.dirichlet(np.r_[0.1,0.1,10,10,10]), ARD=True) #X = np.random.normal(0, 1, (N, 5)) #A = np.random.multivariate_normal(np.zeros(N), k1.K(X), Q).T #B = np.random.multivariate_normal(np.zeros(N), k2.K(X), Q).T #C = np.random.multivariate_normal(np.zeros(N), k3.K(X), Q).T #Y = np.vstack((A,B,C)) #labels = np.hstack((np.zeros(A.shape[0]), np.ones(B.shape[0]), np.ones(C.shape[0])*2)) #k = RBF(Q, ARD=True, lengthscale=2) # + kern.white(Q, _np.exp(-2)) # + kern.bias(Q) pars = np.load(os.path.join(basedir, 'b-gplvm-save.npz')) Y = pars['Y'] Q = pars['Q'] labels = pars['labels'] import warnings with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # always print m = GPLVM(Y, Q, initialize=False) m.update_model(False) m.initialize_parameter() m[:] = pars['gplvm_p'] m.update_model(True) #m.optimize(messages=0) np.random.seed(111) m.plot_latent(labels=labels) np.random.seed(111) m.plot_scatter(projection='3d', labels=labels) np.random.seed(111) m.plot_magnification(labels=labels) m.plot_steepest_gradient_map(resolution=10, data_labels=labels) for do_test in _image_comparison(baseline_images=['gplvm_{}'.format(sub) for sub in ["latent", "latent_3d", "magnification", 'gradient']], extensions=extensions, tol=12): yield (do_test, ) def test_bayesian_gplvm(): from ..models import BayesianGPLVM np.random.seed(12345) matplotlib.rcParams.update(matplotlib.rcParamsDefault) #matplotlib.rcParams[u'figure.figsize'] = (4,3) matplotlib.rcParams[u'text.usetex'] = False #Q = 3 # Define dataset #N = 10 #k1 = GPy.kern.RBF(5, variance=1, lengthscale=1./np.random.dirichlet(np.r_[10,10,10,0.1,0.1]), ARD=True) #k2 = GPy.kern.RBF(5, variance=1, lengthscale=1./np.random.dirichlet(np.r_[10,0.1,10,0.1,10]), ARD=True) #k3 = GPy.kern.RBF(5, variance=1, lengthscale=1./np.random.dirichlet(np.r_[0.1,0.1,10,10,10]), ARD=True) #X = np.random.normal(0, 1, (N, 5)) #A = np.random.multivariate_normal(np.zeros(N), k1.K(X), Q).T #B = np.random.multivariate_normal(np.zeros(N), k2.K(X), Q).T #C = np.random.multivariate_normal(np.zeros(N), k3.K(X), Q).T #Y = np.vstack((A,B,C)) #labels = np.hstack((np.zeros(A.shape[0]), np.ones(B.shape[0]), np.ones(C.shape[0])*2)) #k = RBF(Q, ARD=True, lengthscale=2) # + kern.white(Q, _np.exp(-2)) # + kern.bias(Q) pars = np.load(os.path.join(basedir, 'b-gplvm-save.npz')) Y = pars['Y'] Q = pars['Q'] labels = pars['labels'] import warnings with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # always print m = BayesianGPLVM(Y, Q, initialize=False) m.update_model(False) m.initialize_parameter() m[:] = pars['bgplvm_p'] m.update_model(True) #m.optimize(messages=0) np.random.seed(111) m.plot_inducing(projection='2d') np.random.seed(111) m.plot_inducing(projection='3d') np.random.seed(111) m.plot_latent(projection='2d', labels=labels) np.random.seed(111) m.plot_scatter(projection='3d', labels=labels) np.random.seed(111) m.plot_magnification(labels=labels) np.random.seed(111) m.plot_steepest_gradient_map(resolution=10, data_labels=labels) for do_test in _image_comparison(baseline_images=['bayesian_gplvm_{}'.format(sub) for sub in ["inducing", "inducing_3d", "latent", "latent_3d", "magnification", 'gradient']], extensions=extensions): yield (do_test, ) if __name__ == '__main__': import nose nose.main(defaultTest='./plotting_tests.py')
bsd-3-clause
rs2/bokeh
examples/models/file/colors.py
9
2059
from __future__ import print_function from math import pi import pandas as pd from bokeh.models import ( Plot, ColumnDataSource, FactorRange, CategoricalAxis, TapTool, HoverTool, OpenURL, CategoricalScale) from bokeh.models.glyphs import Rect from bokeh.colors import groups from bokeh.document import Document from bokeh.embed import file_html from bokeh.resources import INLINE from bokeh.util.browser import view data = [] for name in groups.__all__: group = getattr(groups, name) data.extend([(str(x), x.to_hex(), group.__name__) for x in group]) css3_colors = pd.DataFrame(data, columns=["Name", "Color", "Group"]) source = ColumnDataSource(dict( names = list(css3_colors.Name), groups = list(css3_colors.Group), colors = list(css3_colors.Color), )) xdr = FactorRange(factors=list(css3_colors.Group.unique())) ydr = FactorRange(factors=list(reversed(css3_colors.Name))) x_scale, y_scale = CategoricalScale(), CategoricalScale() plot = Plot(x_range=xdr, y_range=ydr, x_scale=x_scale, y_scale=y_scale, plot_width=600, plot_height=2000) plot.title.text = "CSS3 Color Names" rect = Rect(x="groups", y="names", width=1, height=1, fill_color="colors", line_color=None) rect_renderer = plot.add_glyph(source, rect) xaxis_above = CategoricalAxis(major_label_orientation=pi/4) plot.add_layout(xaxis_above, 'above') xaxis_below = CategoricalAxis(major_label_orientation=pi/4) plot.add_layout(xaxis_below, 'below') plot.add_layout(CategoricalAxis(), 'left') url = "http://www.colors.commutercreative.com/@names/" tooltips = """Click the color to go to:<br /><a href="{url}">{url}</a>""".format(url=url) tap = TapTool(renderers=[rect_renderer], callback=OpenURL(url=url)) hover = HoverTool(renderers=[rect_renderer], tooltips=tooltips) plot.tools.extend([tap, hover]) doc = Document() doc.add_root(plot) if __name__ == "__main__": doc.validate() filename = "colors.html" with open(filename, "w") as f: f.write(file_html(doc, INLINE, "CSS3 Color Names")) print("Wrote %s" % filename) view(filename)
bsd-3-clause
rellermeyer/99tsp
python/neural/run.py
1
3885
from elastic import ElasticNet from scipy.spatial.distance import pdist import itertools import numpy as np import optparse import os import sys import matplotlib.pyplot as plt import seaborn as sns def main(): options, args = parse_arguments() # load in parameters cities = load_instance(args[0]) n_iters = options.n_iters neuron_factor = options.neuron_factor alpha = options.alpha beta = options.beta radius = options.radius plotting = options.plots slides = options.slides norm_cities = normalize_cities(cities) elastic_net = ElasticNet(n_iters, neuron_factor, alpha, beta, radius, slides) print() print("Fitting Elastic Net having parameters: \ \n Iterations: {n_iters} \ \n neurons: {neurons} \ \n alpha: {alpha} \ \n beta: {beta} \ \n radius: {radius}".format(n_iters=n_iters, neurons=int(cities.shape[0]*neuron_factor), alpha=alpha, beta=beta, radius=radius)) elastic_net.fit(norm_cities) city_permutation = elastic_net.get_solution_permutation() edges, tour_length = elastic_net.get_tour_length(city_permutation, cities) print_solution(city_permutation, tour_length) if plotting: plot_solution(cities, edges) def plot_solution(cities, edges): fig, ax = plt.subplots() ax.scatter(cities[:,0], cities[:,1]) for e in edges: plt.plot([cities[e[0],0], cities[e[1],0]], [cities[e[0],1], cities[e[1],1]], c='green') plt.show() def print_solution(city_permutation, tour_length): print() print("---SOLUTION---") print("Tour Length: %d" % tour_length) def load_instance(path): """load instance of TSP from file""" print("Loading Instance from %s..." % path.split("/")[-1]) cities = [] with open(path, 'r') as f: line = "" while line != "NODE_COORD_SECTION" and line != "DISPLAY_DATA_SECTION": line = f.readline().strip() for line in f: line = line.strip().split() if line[0] == "EOF" or line[0] == "TOUR_SECTION": break x, y = line[1], line[2] cities.append((float(x), float(y))) print("Finished Loading file") return np.array(cities) def normalize_cities(cities): """normalize cities to aid in convergence""" min = np.min(cities, axis=0) max = np.max(cities, axis=0) return (cities - min) / (max - min) def parse_arguments(): parser = optparse.OptionParser("Usage: %prog <file.tsp> [options]") parser.add_option("-a", type = float, dest = "alpha", default = 0.4) parser.add_option("-b", type = float, dest = "beta", default = 2.0) parser.add_option("-i", type = int, dest = "n_iters", default = 30) parser.add_option("-f", type = float, dest = "neuron_factor", default = 2.5) parser.add_option("-r", type = float, dest = "radius", default = 0.1) parser.add_option("-p", "--plot", action = "store_true", dest = "plots", default = False, help = "Enable Plotting") parser.add_option("-s", "--slideshow", action = "store_true", dest = "slides", default = False, help = "Show Neurons Every Iteration") options, args = parser.parse_args() if len(args) != 1: print("Must pass in a filename") sys.exit(-1) return options, args if __name__ == '__main__': main()
bsd-3-clause
dsm054/pandas
pandas/tests/reshape/test_union_categoricals.py
1
14833
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with pytest.raises(TypeError, match=msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with pytest.raises(ValueError, match=msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp = Categorical(['A', 'B', 'B', 'B', np.nan]) tm.assert_categorical_equal(res, exp) val1 = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.NaT] val2 = [pd.NaT, pd.Timestamp('2011-01-01'), pd.Timestamp('2011-02-01')] res = union_categoricals([pd.Categorical(val1), pd.Categorical(val2)]) exp = Categorical(val1 + val2, categories=[pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.Timestamp('2011-02-01')]) tm.assert_categorical_equal(res, exp) # all NaN res = union_categoricals([pd.Categorical(np.array([np.nan, np.nan], dtype=object)), pd.Categorical(['X'])]) exp = Categorical([np.nan, np.nan, 'X']) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical([np.nan, np.nan])]) exp = Categorical([np.nan, np.nan, np.nan, np.nan]) tm.assert_categorical_equal(res, exp) def test_union_categoricals_empty(self): # GH 13759 res = union_categoricals([pd.Categorical([]), pd.Categorical([])]) exp = Categorical([]) tm.assert_categorical_equal(res, exp) res = union_categoricals([Categorical([]), Categorical(['1'])]) exp = Categorical(['1']) tm.assert_categorical_equal(res, exp) def test_union_categorical_same_category(self): # check fastpath c1 = Categorical([1, 2, 3, 4], categories=[1, 2, 3, 4]) c2 = Categorical([3, 2, 1, np.nan], categories=[1, 2, 3, 4]) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, 4, 3, 2, 1, np.nan], categories=[1, 2, 3, 4]) tm.assert_categorical_equal(res, exp) c1 = Categorical(['z', 'z', 'z'], categories=['x', 'y', 'z']) c2 = Categorical(['x', 'x', 'x'], categories=['x', 'y', 'z']) res = union_categoricals([c1, c2]) exp = Categorical(['z', 'z', 'z', 'x', 'x', 'x'], categories=['x', 'y', 'z']) tm.assert_categorical_equal(res, exp) def test_union_categorical_same_categories_different_order(self): # https://github.com/pandas-dev/pandas/issues/19096 c1 = Categorical(['a', 'b', 'c'], categories=['a', 'b', 'c']) c2 = Categorical(['a', 'b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2]) expected = Categorical(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) def test_union_categoricals_ordered(self): c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) msg = 'Categorical.ordered must be the same' with pytest.raises(TypeError, match=msg): union_categoricals([c1, c2]) res = union_categoricals([c1, c1]) exp = Categorical([1, 2, 3, 1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, np.nan, 3, 2], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) msg = "to union ordered Categoricals, all categories must be the same" with pytest.raises(TypeError, match=msg): union_categoricals([c1, c2]) def test_union_categoricals_ignore_order(self): # GH 15219 c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) msg = 'Categorical.ordered must be the same' with pytest.raises(TypeError, match=msg): union_categoricals([c1, c2], ignore_order=False) res = union_categoricals([c1, c1], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c1, c1], ignore_order=False) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, np.nan, 3, 2]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c2, c1], ignore_order=True, sort_categories=True) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([4, 5, 6], ordered=True) result = union_categoricals([c1, c2], ignore_order=True) expected = Categorical([1, 2, 3, 4, 5, 6]) tm.assert_categorical_equal(result, expected) msg = "to union ordered Categoricals, all categories must be the same" with pytest.raises(TypeError, match=msg): union_categoricals([c1, c2], ignore_order=False) with pytest.raises(TypeError, match=msg): union_categoricals([c1, c2]) def test_union_categoricals_sort(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['a', 'b', 'c', 'x', 'y', 'z']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['a', 'b'], categories=['c', 'a', 'b']) c2 = Categorical(['b', 'c'], categories=['c', 'a', 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 = Categorical(['a', 'b'], categories=['a', 'b', 'c']) c2 = Categorical(['b', 'c'], categories=['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['x', np.nan]) c2 = Categorical([np.nan, 'b']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', np.nan, np.nan, 'b'], categories=['b', 'x']) tm.assert_categorical_equal(result, expected) c1 = Categorical([np.nan]) c2 = Categorical([np.nan]) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical([np.nan, np.nan]) tm.assert_categorical_equal(result, expected) c1 = Categorical([]) c2 = Categorical([]) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical([]) tm.assert_categorical_equal(result, expected) c1 = Categorical(['b', 'a'], categories=['b', 'a', 'c'], ordered=True) c2 = Categorical(['a', 'c'], categories=['b', 'a', 'c'], ordered=True) with pytest.raises(TypeError): union_categoricals([c1, c2], sort_categories=True) def test_union_categoricals_sort_false(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['a', 'b', 'b', 'c'], categories=['b', 'a', 'c']) tm.assert_categorical_equal(result, expected) # fastpath - skip resort c1 = Categorical(['a', 'b'], categories=['a', 'b', 'c']) c2 = Categorical(['b', 'c'], categories=['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c']) tm.assert_categorical_equal(result, expected) c1 = Categorical(['x', np.nan]) c2 = Categorical([np.nan, 'b']) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['x', np.nan, np.nan, 'b'], categories=['x', 'b']) tm.assert_categorical_equal(result, expected) c1 = Categorical([np.nan]) c2 = Categorical([np.nan]) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical([np.nan, np.nan]) tm.assert_categorical_equal(result, expected) c1 = Categorical([]) c2 = Categorical([]) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical([]) tm.assert_categorical_equal(result, expected) c1 = Categorical(['b', 'a'], categories=['b', 'a', 'c'], ordered=True) c2 = Categorical(['a', 'c'], categories=['b', 'a', 'c'], ordered=True) result = union_categoricals([c1, c2], sort_categories=False) expected = Categorical(['b', 'a', 'a', 'c'], categories=['b', 'a', 'c'], ordered=True) tm.assert_categorical_equal(result, expected) def test_union_categorical_unwrap(self): # GH 14173 c1 = Categorical(['a', 'b']) c2 = pd.Series(['b', 'c'], dtype='category') result = union_categoricals([c1, c2]) expected = Categorical(['a', 'b', 'b', 'c']) tm.assert_categorical_equal(result, expected) c2 = CategoricalIndex(c2) result = union_categoricals([c1, c2]) tm.assert_categorical_equal(result, expected) c1 = Series(c1) result = union_categoricals([c1, c2]) tm.assert_categorical_equal(result, expected) with pytest.raises(TypeError): union_categoricals([c1, ['a', 'b', 'c']])
bsd-3-clause
jeremymcrae/mupit
mupit/gtf.py
1
3111
""" https://gist.github.com/slowkow/8101481 Kamil Slowikowski December 24, 2013 Read GFF/GTF files. Works with gzip compressed files and pandas. http://useast.ensembl.org/info/website/upload/gff.html """ from collections import defaultdict import gzip import re import tempfile try: from urllib.request import urlretrieve except ImportError: from urllib import urlretrieve import pandas from mupit.util import is_url GTF_HEADER = ['seqname', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame'] R_SEMICOLON = re.compile(r'\s*;\s*') R_COMMA = re.compile(r'\s*,\s*') R_KEYVALUE = re.compile(r'(\s+|\s*=\s*)') def convert_gtf(path): """Open an optionally gzipped GTF file and return a pandas.DataFrame. """ # Each column is a list stored as a value in this dict. result = defaultdict(list) for i, line in enumerate(lines(path)): for key in line.keys(): # This key has not been seen yet, so set it to None for all # previous lines. if key not in result: result[key] = [None] * i # Ensure this row has some value for each column. for key in result.keys(): result[key].append(line.get(key, None)) return pandas.DataFrame(result) def lines(path): """Open an optionally gzipped GTF file and generate a dict for each line. """ fn_open = gzip.open if path.endswith('.gz') else open if is_url(path): # if the path refers to a URL, download the file first temp = tempfile.NamedTemporaryFile() urlretrieve(path, temp.name) path = temp.name with fn_open(path) as handle: for line in handle: line = line.decode('utf8') if line.startswith('#'): continue elif line.split('\t', 3)[2] != 'gene': continue else: yield parse(line) def parse(line): """Parse a single GTF line and return a dict. """ result = {} fields = line.rstrip().split('\t') for i, col in enumerate(GTF_HEADER): result[col] = _get_value(fields[i]) # INFO field consists of "key1=value;key2=value;...". infos = [x for x in re.split(R_SEMICOLON, fields[8]) if x.strip()] for i, info in enumerate(infos, 1): # It should be key="value". try: key, _, value = re.split(R_KEYVALUE, info, 1) # But sometimes it is just "value". except ValueError: key = 'INFO{}'.format(i) value = info # Ignore the field if there is no value. if value: result[key] = _get_value(value) return result def _get_value(value): if not value: return None # Strip double and single quotes. value = value.strip('"\'') # Return a list if the value has a comma. if ',' in value: value = re.split(R_COMMA, value) # These values are equivalent to None. elif value in ['', '.', 'NA']: return None return value
mit
equialgo/scikit-learn
examples/svm/plot_svm_anova.py
85
2024
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using 1 CPU this_scores = cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
petewarden/tensorflow_makefile
tensorflow/contrib/learn/python/learn/io/__init__.py
5
1709
"""Tools to allow different io formats.""" # Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.io.dask_io import extract_dask_data from tensorflow.contrib.learn.python.learn.io.dask_io import extract_dask_labels from tensorflow.contrib.learn.python.learn.io.dask_io import HAS_DASK from tensorflow.contrib.learn.python.learn.io.graph_io import read_batch_examples from tensorflow.contrib.learn.python.learn.io.graph_io import read_batch_features from tensorflow.contrib.learn.python.learn.io.graph_io import read_batch_record_features from tensorflow.contrib.learn.python.learn.io.pandas_io import extract_pandas_data from tensorflow.contrib.learn.python.learn.io.pandas_io import extract_pandas_labels from tensorflow.contrib.learn.python.learn.io.pandas_io import extract_pandas_matrix from tensorflow.contrib.learn.python.learn.io.pandas_io import HAS_PANDAS # pylint: disable=g-import-not-at-top if HAS_PANDAS: from tensorflow.contrib.learn.python.learn.io.pandas_io import pd
apache-2.0
alexeyum/scikit-learn
sklearn/covariance/tests/test_covariance.py
79
12193
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) assert_greater(np.amin(mahal_dist), 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # Create X with 1 sample and 5 features X_1sample = np.arange(5).reshape(1, 5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def _naive_ledoit_wolf_shrinkage(X): # A simple implementation of the formulas from Ledoit & Wolf # The computation below achieves the following computations of the # "O. Ledoit and M. Wolf, A Well-Conditioned Estimator for # Large-Dimensional Covariance Matrices" # beta and delta are given in the beginning of section 3.2 n_samples, n_features = X.shape emp_cov = empirical_covariance(X, assume_centered=False) mu = np.trace(emp_cov) / n_features delta_ = emp_cov.copy() delta_.flat[::n_features + 1] -= mu delta = (delta_ ** 2).sum() / n_features X2 = X ** 2 beta_ = 1. / (n_features * n_samples) \ * np.sum(np.dot(X2.T, X2) / n_samples - emp_cov ** 2) beta = min(beta_, delta) shrinkage = beta / delta return shrinkage def test_ledoit_wolf_small(): # Compare our blocked implementation to the naive implementation X_small = X[:, :4] lw = LedoitWolf() lw.fit(X_small) shrinkage_ = lw.shrinkage_ assert_almost_equal(shrinkage_, _naive_ledoit_wolf_shrinkage(X_small)) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0:1] oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause
jmargeta/scikit-learn
examples/ensemble/plot_partial_dependence.py
4
4436
""" ======================== Partial Dependence Plots ======================== Partial dependence plots show the dependence between the target function [1]_ and a set of 'target' features, marginalizing over the values of all other features (the complement features). Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the target features are usually chosen among the most important features (see :attr:`~sklearn.ensemble.GradientBoostingRegressor.feature_importances_`). This example shows how to obtain partial dependence plots from a :class:`~sklearn.ensemble.GradientBoostingRegressor` trained on the California housing dataset. The example is taken from [HTF2009]_. The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP are: median income (`MedInc`), avg. occupants per household (`AvgOccup`), median house age (`HouseAge`), and avg. rooms per household (`AveRooms`). We can clearly see that the median house price shows a linear relationship with the median income (top left) and that the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per household. The tick marks on the x-axis represent the deciles of the feature values in the trainig data. Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per household. We can clearly see an interaction between the two features: For an avg. occupancy greather than two, the house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on age. .. [HTF2009] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [1] For classification you can think of it as the regression score before the link function. """ print(__doc__) import numpy as np import pylab as pl from mpl_toolkits.mplot3d import Axes3D from sklearn.cross_validation import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.datasets.california_housing import fetch_california_housing # fetch California housing dataset cal_housing = fetch_california_housing() # split 80/20 train-test X_train, X_test, y_train, y_test = train_test_split(cal_housing.data, cal_housing.target, test_size=0.2, random_state=1) names = cal_housing.feature_names print('_' * 80) print("Training GBRT...") clf = GradientBoostingRegressor(n_estimators=100, max_depth=4, learning_rate=0.1, loss='huber', random_state=1) clf.fit(X_train, y_train) print("done.") print('_' * 80) print('Convenience plot with ``partial_dependence_plots``') print features = [0, 5, 1, 2, (5, 1)] fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names, n_jobs=3, grid_resolution=50) fig.suptitle('Partial dependence of house value on nonlocation features\n' 'for the California housing dataset') pl.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle print('_' * 80) print('Custom 3d plot via ``partial_dependence``') print fig = pl.figure() target_feature = (1, 5) pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature, X=X_train, grid_resolution=50) XX, YY = np.meshgrid(x_axis, y_axis) Z = pdp.T.reshape(XX.shape).T ax = Axes3D(fig) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=pl.cm.BuPu) ax.set_xlabel(names[target_feature[0]]) ax.set_ylabel(names[target_feature[1]]) ax.set_zlabel('Partial dependence') # pretty init view ax.view_init(elev=22, azim=122) pl.colorbar(surf) pl.suptitle('Partial dependence of house value on median age and ' 'average occupancy') pl.subplots_adjust(top=0.9) pl.show()
bsd-3-clause
darshanthaker/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_qt4agg.py
70
4985
""" Render to qt from agg """ from __future__ import division import os, sys import matplotlib from matplotlib.figure import Figure from backend_agg import FigureCanvasAgg from backend_qt4 import QtCore, QtGui, FigureManagerQT, FigureCanvasQT,\ show, draw_if_interactive, backend_version, \ NavigationToolbar2QT DEBUG = False def new_figure_manager( num, *args, **kwargs ): """ Create a new figure manager instance """ if DEBUG: print 'backend_qtagg.new_figure_manager' FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) canvas = FigureCanvasQTAgg( thisFig ) return FigureManagerQT( canvas, num ) class NavigationToolbar2QTAgg(NavigationToolbar2QT): def _get_canvas(self, fig): return FigureCanvasQTAgg(fig) class FigureManagerQTAgg(FigureManagerQT): def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': print "Classic toolbar is not supported" elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2QTAgg(canvas, parent) else: toolbar = None return toolbar class FigureCanvasQTAgg( FigureCanvasQT, FigureCanvasAgg ): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def __init__( self, figure ): if DEBUG: print 'FigureCanvasQtAgg: ', figure FigureCanvasQT.__init__( self, figure ) FigureCanvasAgg.__init__( self, figure ) self.drawRect = False self.rect = [] self.replot = True self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent) def resizeEvent( self, e ): FigureCanvasQT.resizeEvent( self, e ) def drawRectangle( self, rect ): self.rect = rect self.drawRect = True self.repaint( ) def paintEvent( self, e ): """ Draw to the Agg backend and then copy the image to the qt.drawable. In Qt, all drawing should be done inside of here when a widget is shown onscreen. """ #FigureCanvasQT.paintEvent( self, e ) if DEBUG: print 'FigureCanvasQtAgg.paintEvent: ', self, \ self.get_width_height() # only replot data when needed if type(self.replot) is bool: # might be a bbox for blitting if self.replot: FigureCanvasAgg.draw(self) # matplotlib is in rgba byte order. QImage wants to put the bytes # into argb format and is in a 4 byte unsigned int. Little endian # system is LSB first and expects the bytes in reverse order # (bgra). if QtCore.QSysInfo.ByteOrder == QtCore.QSysInfo.LittleEndian: stringBuffer = self.renderer._renderer.tostring_bgra() else: stringBuffer = self.renderer._renderer.tostring_argb() qImage = QtGui.QImage(stringBuffer, self.renderer.width, self.renderer.height, QtGui.QImage.Format_ARGB32) p = QtGui.QPainter(self) p.drawPixmap(QtCore.QPoint(0, 0), QtGui.QPixmap.fromImage(qImage)) # draw the zoom rectangle to the QPainter if self.drawRect: p.setPen( QtGui.QPen( QtCore.Qt.black, 1, QtCore.Qt.DotLine ) ) p.drawRect( self.rect[0], self.rect[1], self.rect[2], self.rect[3] ) p.end() # we are blitting here else: bbox = self.replot l, b, r, t = bbox.extents w = int(r) - int(l) h = int(t) - int(b) t = int(b) + h reg = self.copy_from_bbox(bbox) stringBuffer = reg.to_string_argb() qImage = QtGui.QImage(stringBuffer, w, h, QtGui.QImage.Format_ARGB32) pixmap = QtGui.QPixmap.fromImage(qImage) p = QtGui.QPainter( self ) p.drawPixmap(QtCore.QPoint(l, self.renderer.height-t), pixmap) p.end() self.replot = False self.drawRect = False def draw( self ): """ Draw the figure when xwindows is ready for the update """ if DEBUG: print "FigureCanvasQtAgg.draw", self self.replot = True FigureCanvasAgg.draw(self) self.update() # Added following line to improve realtime pan/zoom on windows: QtGui.qApp.processEvents() def blit(self, bbox=None): """ Blit the region in bbox """ self.replot = bbox l, b, w, h = bbox.bounds t = b + h self.update(l, self.renderer.height-t, w, h) def print_figure(self, *args, **kwargs): FigureCanvasAgg.print_figure(self, *args, **kwargs) self.draw()
agpl-3.0
ch3ll0v3k/scikit-learn
examples/model_selection/grid_search_digits.py
227
2665
""" ============================================================ Parameter estimation using grid search with cross-validation ============================================================ This examples shows how a classifier is optimized by cross-validation, which is done using the :class:`sklearn.grid_search.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring='%s_weighted' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() for params, mean_score, scores in clf.grid_scores_: print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
datapythonista/pandas
pandas/tests/frame/methods/test_infer_objects.py
6
1241
from datetime import datetime from pandas import DataFrame import pandas._testing as tm class TestInferObjects: def test_infer_objects(self): # GH#11221 df = DataFrame( { "a": ["a", 1, 2, 3], "b": ["b", 2.0, 3.0, 4.1], "c": [ "c", datetime(2016, 1, 1), datetime(2016, 1, 2), datetime(2016, 1, 3), ], "d": [1, 2, 3, "d"], }, columns=["a", "b", "c", "d"], ) df = df.iloc[1:].infer_objects() assert df["a"].dtype == "int64" assert df["b"].dtype == "float64" assert df["c"].dtype == "M8[ns]" assert df["d"].dtype == "object" expected = DataFrame( { "a": [1, 2, 3], "b": [2.0, 3.0, 4.1], "c": [datetime(2016, 1, 1), datetime(2016, 1, 2), datetime(2016, 1, 3)], "d": [2, 3, "d"], }, columns=["a", "b", "c", "d"], ) # reconstruct frame to verify inference is same result = df.reset_index(drop=True) tm.assert_frame_equal(result, expected)
bsd-3-clause
Trigition/MTG-DataScraper
scripts/artists.py
1
1815
#!/usr/bin/env python import pandas as pd import codecs def split_artists(row): artist_string = row['artist'].decode('utf8') # Attempt to split by & and 'and' # Replace & and 'and' with similar delimiter # delimiters are assumed to be surrounded by spaces sanitized_artists = artist_string.replace(' & ', '$').replace(' and ', '$') artists = [artist.strip() for artist in sanitized_artists.split('$')] return artists def load_artist_correction_dict(filename): corrections = {} for line in codecs.open(filename, 'r', encoding='utf8').readlines(): # If line begins with '#' ignore if line[0].strip() == '#' or len(line.strip()) == 0: continue bad_name, corrected_name = line.split(' -> ') # Clean up names bad_name = bad_name.strip() corrected_name = corrected_name.strip() corrections[bad_name] = corrected_name return corrections def artist_card(raw_card, new_card_id, artist_table, args, correction_dict={}): card_artists_table = [] card_id = new_card_id for referenced_artist in split_artists(raw_card): # Check to see if referenced artist needs to be corrected if referenced_artist in correction_dict: # Artist name needs to be corrected cur_artist = correction_dict[referenced_artist] print "Correcting: %s to %s" % (referenced_artist, cur_artist) else: # No correcition necessary cur_artist = referenced_artist # Grab id of artist and create reference artist_id = artist_table.get_id(cur_artist, 'artist') card_artists_table.append( {args.card_id_column : new_card_id, args.artist_id_column : artist_id} ) return card_artists_table
mit
garbersc/keras-galaxies
tests/keras_test.py
1
4828
from theano import config import keras.callbacks import keras.backend as T from keras.models import Sequential from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, MaxPooling1D, Dropout, Input, Convolution1D from keras.layers.core import Lambda, Reshape from keras.models import Model import numpy as np import matplotlib.pyplot as plt print config.optimizer class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.losses = [] def on_batch_end(self, batch, logs={}): print 'batch ended' self.losses.append(logs.get('loss')) class ValidLossHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.losses = [] def on_epoch_end(self, batch, logs={}): print 'epoch ended' self.losses.append(model_noNorm.evaluate(X_test, Y_test, batch_size=32*5)[0]) n_data=int(1e5) Y_train = np.random.binomial(n=1, p=0.3, size=(n_data,3)) Y_train = np.asarray(Y_train, dtype='float32') X_train = np.random.randn(n_data,20) X_train=X_train**2 Y_test = np.random.binomial(n=1, p=0.3, size=(32*5,3)) X_test = np.random.randn(32*5,20) X_test=X_test**2 #model0 = Sequential() #main_input = Input(shape=(None,10),batch_input_shape=(None,10), dtype='float32', name='main_input') main_input = Input(batch_shape=(None,20) , dtype='float32', name='main_input') #x=MaxPooling1D(2,input_shape=(20,2))(main_input) #print x.shape x=Dense(output_dim=40, activation='relu',input_shape=(20,))(main_input) x=Dropout(0.5)(x) #x=Dense(output_dim=40, input_dim=10 activation='relu')#(main_input) #model0.add(Activation("relu")) x=Dense(output_dim=1024, activation='relu')(x) x=Dropout(0.5)(x) x=Dense(output_dim=1024, activation='relu')(x) x=Dropout(0.5)(x) ''' #model.add(MaxPooling1D()) model.add(Dense(output_dim=4000)) model.add(Activation("relu")) model.add(Dropout(0.5)) #model.add(MaxPooling1D()) model.add(Dense(output_dim=4000)) model.add(Activation("relu")) model.add(Dropout(0.5)) #model.add(MaxPooling1D()) model.add(Dense(output_dim=4000)) model.add(Activation("relu")) model.add(Dropout(0.5)) #model.add(MaxPooling1D()) ''' x=Dense(output_dim=3,name='model0_out')(x)#,input_shape=(20,))(main_input) #model0.compile(loss='mse', optimizer='adam', metrics=['accuracy']) ''' def lambdaFunction(x,normalise): if normalise: print 'norm' x_ret=T.clip(x,0.0,0.001) #x_ret=T.ones_like(x) else: print 'no_norm' x_ret=x return T.reshape(x_ret,(x_ret.shape[0],3)) def output_shape(input_shape): return (input_shape[0],3) ''' #l_noNorm=Lambda(lambdaFunction,output_shape,arguments={'normalise': False})(x) #l_norm=Lambda(lambdaFunction,output_shape,arguments={'normalise': True})(x) #model=Model(input=main_input,output=[l_noNorm,l_norm]) #model=Model(input=main_input,output=l_noNorm) #model_norm=Model(input=main_input,output=l_norm) model_noNorm=Model(input=main_input,output=x) #print model_norm.input #print model_norm.input_shape #print model_norm.output_shape #model_norm=Model(input=model0.get_layer('model0_out').output,output=l_norm) #NORMALISE=T.variable(False) #model_norm.compile(loss='mse', optimizer='adam', metrics=['accuracy']) model_noNorm.compile(loss='mse', optimizer='sgd', metrics=['accuracy']) #model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) #model_norm.compile(loss='mse', optimizer='adam', metrics=['accuracy']) #history = LossHistory() #vHistory = ValidLossHistory() model_noNorm.fit(X_train, Y_train, nb_epoch=5, batch_size=n_data)#, callbacks=[history,vHistory]) #history.on_train_begin() #vHistory.on_train_begin() #model=model_noNorm #for i in xrange(0,3): # print "epoch %i/5" % (i+1) # for j in xrange(0,(X_train.shape[0])//10): # if j>0 or i>0: # model=model_norm # #NORMALISE.set_value(True) # #print NORMALISE # #print NORMALISE.get_value() # #print NORMALISE.eval() # print "%s/%s" %(j+1,(X_train.shape[0])//10) # #print T.shape( X_train[(j*(X_train.shape[0])//10) : ((j+1)*(X_train.shape[0])//10) ] ) # #print T.shape( Y_train[ (j*(X_train.shape[0])//10) : ((j+1)*(X_train.shape[0])//10) ] ) # print model.train_on_batch( x=X_train[(j*(X_train.shape[0])//10) : ((j+1)*(X_train.shape[0])//10) ], y=Y_train[ (j*(X_train.shape[0])//10) : ((j+1)*(X_train.shape[0])//10) ] ) # print model.predict_on_batch(x=X_train[(j*(X_train.shape[0])//10) : ((j+1)*(X_train.shape[0])//10) ]) #history.on_batch_end(j,) #vHistory.on_epoch_end() #print model_norm.get_weights() #print model_noNorm.get_weights() #print model_norm.get_weights()[0]==model_noNorm.get_weights()[0] #loss_and_metrics = model.evaluate(X_test, Y_test, batch_size=32*5) #print "\n" #print loss_and_metrics #lossplt = plt.plot(xrange(0,len(history.losses)),history.losses,'ro') #lossplt = plt.plot(xrange(0,len(vHistory.losses)),vHistory.losses,'go') #plt.show()
bsd-3-clause
victorbergelin/scikit-learn
sklearn/feature_extraction/tests/test_image.py
205
10378
# Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import scipy as sp from scipy import ndimage from nose.tools import assert_equal, assert_true from numpy.testing import assert_raises from sklearn.feature_extraction.image import ( img_to_graph, grid_to_graph, extract_patches_2d, reconstruct_from_patches_2d, PatchExtractor, extract_patches) from sklearn.utils.graph import connected_components def test_img_to_graph(): x, y = np.mgrid[:4, :4] - 10 grad_x = img_to_graph(x) grad_y = img_to_graph(y) assert_equal(grad_x.nnz, grad_y.nnz) # Negative elements are the diagonal: the elements of the original # image. Positive elements are the values of the gradient, they # should all be equal on grad_x and grad_y np.testing.assert_array_equal(grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0]) def test_grid_to_graph(): #Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=np.bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size ** 2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert_true(connected_components(A)[0] == 2) # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert_true(connected_components(A)[0] == 1) # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.bool) assert_true(A.dtype == np.bool) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.int) assert_true(A.dtype == np.int) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float) assert_true(A.dtype == np.float) def test_connect_regions(): lena = sp.misc.lena() for thr in (50, 150): mask = lena > thr graph = img_to_graph(lena, mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def test_connect_regions_with_grid(): lena = sp.misc.lena() mask = lena > 50 graph = grid_to_graph(*lena.shape, mask=mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) mask = lena > 150 graph = grid_to_graph(*lena.shape, mask=mask, dtype=None) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def _downsampled_lena(): lena = sp.misc.lena().astype(np.float32) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = lena.astype(np.float) lena /= 16.0 return lena def _orange_lena(lena=None): lena = _downsampled_lena() if lena is None else lena lena_color = np.zeros(lena.shape + (3,)) lena_color[:, :, 0] = 256 - lena lena_color[:, :, 1] = 256 - lena / 2 lena_color[:, :, 2] = 256 - lena / 4 return lena_color def _make_images(lena=None): lena = _downsampled_lena() if lena is None else lena # make a collection of lenas images = np.zeros((3,) + lena.shape) images[0] = lena images[1] = lena + 1 images[2] = lena + 2 return images downsampled_lena = _downsampled_lena() orange_lena = _orange_lena(downsampled_lena) lena_collection = _make_images(downsampled_lena) def test_extract_patches_all(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_all_color(): lena = orange_lena i_h, i_w = lena.shape[:2] p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_all_rect(): lena = downsampled_lena lena = lena[:, 32:97] i_h, i_w = lena.shape p_h, p_w = 16, 12 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_max_patches(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w), max_patches=100) assert_equal(patches.shape, (100, p_h, p_w)) expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1)) patches = extract_patches_2d(lena, (p_h, p_w), max_patches=0.5) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=2.0) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=-1.0) def test_reconstruct_patches_perfect(): lena = downsampled_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_reconstruct_patches_perfect_color(): lena = orange_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_patch_extractor_fit(): lenas = lena_collection extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0) assert_true(extr == extr.fit(lenas)) def test_patch_extractor_max_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 max_patches = 100 expected_n_patches = len(lenas) * max_patches extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) max_patches = 0.5 expected_n_patches = len(lenas) * int((i_h - p_h + 1) * (i_w - p_w + 1) * max_patches) extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_max_patches_default(): lenas = lena_collection extr = PatchExtractor(max_patches=100, random_state=0) patches = extr.transform(lenas) assert_equal(patches.shape, (len(lenas) * 100, 12, 12)) def test_patch_extractor_all_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_color(): lenas = _make_images(orange_lena) i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_strided(): image_shapes_1D = [(10,), (10,), (11,), (10,)] patch_sizes_1D = [(1,), (2,), (3,), (8,)] patch_steps_1D = [(1,), (1,), (4,), (2,)] expected_views_1D = [(10,), (9,), (3,), (2,)] last_patch_1D = [(10,), (8,), (8,), (2,)] image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)] patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)] patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)] expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)] last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)] image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)] patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)] patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)] expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)] last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)] image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D expected_views = expected_views_1D + expected_views_2D + expected_views_3D last_patches = last_patch_1D + last_patch_2D + last_patch_3D for (image_shape, patch_size, patch_step, expected_view, last_patch) in zip(image_shapes, patch_sizes, patch_steps, expected_views, last_patches): image = np.arange(np.prod(image_shape)).reshape(image_shape) patches = extract_patches(image, patch_shape=patch_size, extraction_step=patch_step) ndim = len(image_shape) assert_true(patches.shape[:ndim] == expected_view) last_patch_slices = [slice(i, i + j, None) for i, j in zip(last_patch, patch_size)] assert_true((patches[[slice(-1, None, None)] * ndim] == image[last_patch_slices].squeeze()).all()) def test_extract_patches_square(): # test same patch size for all dimensions lena = downsampled_lena i_h, i_w = lena.shape p = 8 expected_n_patches = ((i_h - p + 1), (i_w - p + 1)) patches = extract_patches(lena, patch_shape=p) assert_true(patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p)) def test_width_patch(): # width and height of the patch should be less than the image x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(ValueError, extract_patches_2d, x, (4, 1)) assert_raises(ValueError, extract_patches_2d, x, (1, 4))
bsd-3-clause
MO-cowbell/open-data-science
inventory_forecast/inventory_forecast.py
3
4914
#!/usr/bin/python __author__ = 'Thomas Vo, DonorsChoose.org' # sample forecasting script for blog post using both Python and R import dataset import numpy as np import pandas as pd import rpy2.robjects as ro from math import factorial # smoothing function (source = http://wiki.scipy.org/Cookbook/SavitzkyGolay) def smoothing(y, window_size, order, deriv = 0, rate = 1): order_range = range(order + 1) half_window = (window_size -1) // 2 b = np.mat([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)]) m = np.linalg.pinv(b).A[deriv] * rate ** deriv * factorial(deriv) firstvals = y[0] - np.abs( y[1:half_window + 1][::-1] - y[0] ) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve(m[::-1], y, mode = 'valid') # connects to DB, runs SQL query, returns dataframe def download_data(api_url, query_filename, colname_date, colname_value): # load the query with open(query_filename, 'r') as query_file: sql_query = query_file.read() # connect to the database db_connect = dataset.connect(url = api_url, reflectMetadata = False) # run the query query_results = db_connect.query(sql_query) # load query results into dataframe new_df = pd.DataFrame() for row in query_results: new_df = new_df.append({ colname_date: row[colname_date], colname_value: row[colname_value] }, ignore_index = True) return new_df # didn't want to deal with February 29ths def drop_leap(df, colname_date): leap_indices = [] for i in range(df.shape[0]): if (df.ix[i, colname_date].month == 2) & (df.ix[i, colname_date].day == 29): leap_indices.append(i) df = df.drop(df.index[leap_indices]) df.reset_index(drop = True, inplace = True) return df # provide a df with date and value column to forecast def forecast(df, r_filename, r_function, colname_date, colname_value, years_to_forecast = 1): # only predict in increments of years, simplifies things days_to_forecast = years_to_forecast * 365 # load the R script with open(r_filename, 'r') as r_file: r_script = r_file.read() # sending an R function into Python ro.r(r_script) r_function = ro.globalenv[r_function] # running the R function inside of Python, can only interpret lists vec = r_function(list(df[colname_value]), log_vec = True, forecast_units = days_to_forecast) # smooth the vector vec = smoothing(y = np.array(vec), window_size = 51, order = 3) # only keep the predicted values vec = vec[::-1][:days_to_forecast][::-1] # add new dates and values for i in range(years_to_forecast): # make new_df with 365 days into the future new_df = df[(df.shape[0] - 365):].copy() new_df.reset_index(drop = True, inplace = True) new_df.loc[:, colname_date] = pd.DatetimeIndex(new_df.loc[:, colname_date]) + pd.DateOffset(years = 1) new_df.loc[:, colname_value] = vec[((i) * 365):((i + 1) * 365)] # merge new_df back to df df = pd.concat([df, new_df]) df.reset_index(drop = True, inplace = True) return df def upload_data(api_url, df, tablename, colname_date, colname_value): # connect to the database db_connect = dataset.connect(url = api_url, reflectMetadata = False) # assuming the user has write access, remove the entries uploaded from the previous run db_connect.query('DELETE FROM ' + tablename + ';') # insert rows table = db_connect.load_table(tablename) rows = [{colname_date: c1, colname_value: c2} for c1, c2 in zip(df[colname_date], df[colname_value])] table.insert_many(rows) if __name__ == '__main__': # parameters that need to be specified your_api_url = 'your_username:your_password.your_instance_name.redshift.amazonaws.com' your_query_filename = 'inventory_query.sql' your_tablename = 'inventory_forecast' your_colname_date = 'date_of_interest' your_colname_value = 'project_count' your_r_filename = 'forecast.r' your_r_function = 'forecast_vec' temp_df = download_data( api_url = your_api_url, query_filename = your_query_filename, colname_date = your_colname_date, colname_value = your_colname_value) temp_df = drop_leap( df = temp_df, colname_date = your_colname_date) temp_df = forecast( df = temp_df, r_filename = your_r_filename, r_function = your_r_function, colname_date = your_colname_date, colname_value = your_colname_value, years_to_forecast = 1) upload_data( api_url = your_api_url, df = temp_df, tablename = your_tablename, colname_date = your_colname_date, colname_value = your_colname_value)
gpl-2.0
huobaowangxi/scikit-learn
sklearn/svm/tests/test_bounds.py
280
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
hyqneuron/dsc_gan
dsc_gan5.py
1
34322
import tensorflow as tf import numpy as np from tensorflow.contrib import layers import scipy.io as sio from scipy.sparse.linalg import svds # from skcuda.linalg import svd as svd_cuda # import pycuda.gpuarray as gpuarray # from pycuda.tools import DeviceMemoryPool from sklearn import cluster from sklearn.preprocessing import normalize from munkres import Munkres import os import time import argparse parser = argparse.ArgumentParser() parser.add_argument('name') # name of experiment, used for creating log directory parser.add_argument('--lambda1', type=float, default=1.0) parser.add_argument('--lambda2', type=float, default=0.2) # sparsity cost on C parser.add_argument('--lambda3', type=float, default=1.0) # lambda on gan loss parser.add_argument('--lambda4', type=float, default=0.1) # lambda on AE L2 regularization parser.add_argument('--lr', type=float, default=1e-3) # learning rate parser.add_argument('--lr2', type=float, default=2e-4) # learning rate for discriminator and eqn3plus parser.add_argument('--pretrain', type=int, default=0) # number of iterations of pretraining parser.add_argument('--epochs', type=int, default=1000) # number of epochs to train on eqn3 and eqn3plus parser.add_argument('--enable-at', type=int, default=300) # epoch at which to enable eqn3plus parser.add_argument('--dataset', type=str, default='yaleb', choices=['yaleb', 'orl', 'coil20', 'coil100']) parser.add_argument('--interval', type=int, default=50) parser.add_argument('--interval2', type=int, default=1) parser.add_argument('--bound', type=float, default=0.02) # discriminator weight clipping limit parser.add_argument('--D-init', type=int, default=100) # number of discriminators steps before eqn3plus starts parser.add_argument('--D-steps', type=int, default=1) parser.add_argument('--G-steps', type=int, default=1) parser.add_argument('--save', action='store_true') # save pretrained model parser.add_argument('--r', type=int, default=0) # Nxr rxN, use 0 to default to NxN Coef ## new parameters parser.add_argument('--rank', type=int, default=10) # dimension of the subspaces parser.add_argument('--beta1', type=float, default=0.00) # promote subspaces' difference parser.add_argument('--beta2', type=float, default=0.010) # promote org of subspaces' basis difference parser.add_argument('--beta3', type=float, default=0.010) # promote org of subspaces' basis difference parser.add_argument('--stop-real', action='store_true') # cut z_real path parser.add_argument('--stationary', type=int, default=1) # update z_real every so generator epochs parser.add_argument('--submean', action='store_true') parser.add_argument('--proj-cluster', action='store_true') parser.add_argument('--usebn', action='store_true') parser.add_argument('--no-uni-norm', action='store_true') parser.add_argument('--one2one', action='store_true') parser.add_argument('--alpha', type=float, default=0.1) parser.add_argument('--matfile', default=None) parser.add_argument('--imgmult', type=float, default=1.0) parser.add_argument('--palpha', type=float, default=None) parser.add_argument('--kernel-size', type=int, nargs='+', default=None) parser.add_argument('--m', type=float, default=None) """ Example launch commands: CUDA_VISIBLE_DEVICES=0 python dsc_gan.py yaleb_run1 --pretrain 60000 --epochs 4000 --enable-at 3000 --dataset yaleb pretrain for 60000 iterations first, then train on eqn3 for 3000 epochs, and on eqn3plus for 1000 epochs CUDA_VISIBLE_DEVICES=0 python dsc_gan.py orl_run1 --pretrain 10000 --epochs 4000 --enable-at 2000 --dataset orl pretrain for 10000 iterations first, then train on eqn3 for 2000 epochs, and on eqn3plus for 2000 epochs """ class ConvAE(object): def __init__(self, args, n_input, n_hidden, kernel_size, n_class, n_sample_perclass, disc_size, lambda1, lambda2, lambda3, batch_size, r=0, rank=10, reg=None, disc_bound=0.02, model_path=None, restore_path=None, logs_path='logs'): self.args = args self.n_class = n_class self.n_input = n_input self.n_hidden = n_hidden self.kernel_size = kernel_size self.n_sample_perclass = n_sample_perclass self.disc_size = disc_size self.batch_size = batch_size self.reg = reg self.model_path = model_path self.restore_path = restore_path self.rank = rank self.iter = 0 """ Eqn3 """ # input required to be fed self.x = tf.placeholder(tf.float32, [None, n_input[0], n_input[1], 1]) self.learning_rate = tf.placeholder(tf.float32, []) # run input through encoder, latent is the output, shape is the shape of encoder latent, shape = self.encoder(self.x) self.latent_shape = latent.shape self.latent_size = reduce(lambda x, y: int(x) * int(y), self.latent_shape[1:], 1) # self-expressive layer z = tf.reshape(latent, [batch_size, -1]) z.set_shape([batch_size, self.latent_size]) if args.usebn: z = tf.contrib.layers.batch_norm(z) if r == 0: Coef = tf.Variable(1.0e-4 * tf.ones([self.batch_size, self.batch_size], tf.float32), name='Coef') else: v = (1e-2) / r L = tf.Variable(v * tf.ones([self.batch_size, r]), name='Coef_L') R = tf.Variable(v * tf.ones([r, self.batch_size]), name='Coef_R') Coef = tf.matmul(L, R, name='Coef_full') z_c = tf.matmul(Coef, z, name='matmul_Cz') self.Coef = Coef Coef_weights = [v for v in tf.trainable_variables() if v.name.startswith('Coef')] latent_c = tf.reshape(z_c, tf.shape(latent)) # petential problem here self.z = z # run self-expressive's output through decoder self.x_r = self.decoder(latent_c, shape) ae_weights = [v for v in tf.trainable_variables() if (v.name.startswith('enc') or v.name.startswith('dec'))] self.ae_weight_norm = tf.sqrt(sum([tf.norm(v, 2) ** 2 for v in ae_weights])) eqn3_weights = Coef_weights + ae_weights # AE regularization loss self.loss_aereg = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # weight decay # Eqn 3 loss self.loss_recon = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.x_r, self.x), 2.0)) self.loss_sparsity = tf.reduce_sum(tf.pow(self.Coef, 2.0)) self.loss_selfexpress = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(z_c, z), 2.0)) self.loss_eqn3 = self.loss_recon + lambda1 * self.loss_sparsity + lambda2 * self.loss_selfexpress + self.loss_aereg with tf.variable_scope('optimizer_eqn3'): self.optimizer_eqn3 = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss_eqn3, var_list=eqn3_weights) """ Pretraining """ # pretraining loss self.x_r_pre = self.decoder(latent, shape, reuse=True) self.loss_recon_pre = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.x_r_pre, self.x), 2.0)) self.loss_pretrain = self.loss_recon_pre + self.loss_aereg with tf.variable_scope('optimizer_pre'): self.optimizer_pre = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss_pretrain, var_list=ae_weights) """ Discriminator """ # step counting self.gen_step = tf.Variable(0, dtype=tf.float32, trainable=False) # keep track of number of generator steps self.gen_step_op = self.gen_step.assign(self.gen_step + 1) # increment generator steps self.y_x = tf.placeholder(tf.int32, [batch_size]) ### write by myself print 'building discriminator' self.Us = self.make_Us() u_primes = self.svd_initialization(self.z, self.y_x) self.u_ini = [tf.assign(u, u_prime) for u, u_prime in zip(self.Us, u_primes)] z_real = self.z self.score_disc, self.Us_update_op = self.compute_disc_loss(z_real, self.y_x) print 'adding disc regularization' regulariz1 = self.regularization1(reuse=True) regulariz2 = self.regularization2(reuse=True) self.loss_disc = args.beta2 * regulariz1 + args.beta3 * regulariz2 - self.score_disc print 'building disc optimizers' with tf.variable_scope('optimizer_disc'): self.optimizer_disc = tf.train.AdamOptimizer(self.learning_rate, beta1=0.0).minimize(self.loss_disc, var_list=self.Us) print 'building eqn3plus optimizers' # Eqn 3 + generator loss self.loss_eqn3plus = self.loss_eqn3 + lambda3 * self.score_disc with tf.variable_scope('optimizer_eqn3plus'): self.optimizer_eqn3plus = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize( self.loss_eqn3plus, var_list=eqn3_weights) # finalize stuffs s0 = tf.summary.scalar("loss_recon_pre", self.loss_recon_pre / batch_size) # 13372 s1 = tf.summary.scalar("loss_recon", self.loss_recon) s2 = tf.summary.scalar("loss_sparsity", self.loss_sparsity) s3 = tf.summary.scalar("loss_selfexpress", self.loss_selfexpress) s4 = tf.summary.scalar("score_disc", self.score_disc) s5 = tf.summary.scalar("ae_l2_norm", self.ae_weight_norm) # 29.8 s6 = tf.summary.scalar("disc_real", self.disc_score_real) s7 = tf.summary.scalar("disc_fake", self.disc_score_fake) self.summaryop_eqn3 = tf.summary.merge([s1, s2, s3, s5]) self.summaryop_eqn3plus = tf.summary.merge([s1, s2, s3, s4, s5, s6, s7]) self.summaryop_pretrain = tf.summary.merge([s0, s5]) self.init = tf.global_variables_initializer() config = tf.ConfigProto() # config.gpu_options.allow_growth = True # stop TF from eating up all GPU RAM # config.gpu_options.per_process_gpu_memory_fraction = 0.4 self.sess = tf.InteractiveSession(config=config) self.sess.run(self.init) self.saver = tf.train.Saver([v for v in ae_weights if v.name.startswith('enc_w') or v.name.startswith('dec_w')]) self.summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph(), flush_secs=20) # Building the encoder def encoder(self, x): shapes = [] n_hidden = [1] + self.n_hidden input = x for i, k_size in enumerate(self.kernel_size): w = tf.get_variable('enc_w{}'.format(i), shape=[k_size, k_size, n_hidden[i], n_hidden[i + 1]], initializer=layers.xavier_initializer_conv2d(), regularizer=self.reg) b = tf.get_variable('enc_b{}'.format(i), shape=[n_hidden[i + 1]], initializer=tf.zeros_initializer()) shapes.append(input.get_shape().as_list()) enc_i = tf.nn.conv2d(input, w, strides=[1, 2, 2, 1], padding='SAME') enc_i = tf.nn.bias_add(enc_i, b) enc_i = tf.nn.relu(enc_i) input = enc_i return input, shapes # Building the decoder def decoder(self, z, shapes, reuse=False): # Encoder Hidden layer with sigmoid activation #1 input = z n_hidden = list(reversed([1] + self.n_hidden)) shapes = list(reversed(shapes)) for i, k_size in enumerate(reversed(kernel_size)): with tf.variable_scope('', reuse=reuse): w = tf.get_variable('dec_w{}'.format(i), shape=[k_size, k_size, n_hidden[i + 1], n_hidden[i]], initializer=layers.xavier_initializer_conv2d(), regularizer=self.reg) b = tf.get_variable('dec_b{}'.format(i), shape=[n_hidden[i + 1]], initializer=tf.zeros_initializer()) dec_i = tf.nn.conv2d_transpose(input, w, tf.stack( [tf.shape(self.x)[0], shapes[i][1], shapes[i][2], shapes[i][3]]), strides=[1, 2, 2, 1], padding='SAME') dec_i = tf.add(dec_i, b) if i != len(self.n_hidden) - 1: dec_i = tf.nn.relu(dec_i) input = dec_i return input def get_u_init_for_g(self, g): N_g = tf.shape(g)[0] # number of datapoints in this cluster gt = tf.transpose(g) q, r = tf.qr(gt, full_matrices=False) idx = [j for j in xrange(args.rank)] qq = tf.gather(tf.transpose(q), idx) qq = tf.transpose(qq) return qq def svd_initialization(self, z, y): group_index = [tf.where(tf.equal(y, k)) for k in xrange(self.n_class)] # indices of datapoints in k-th cluster groups = [tf.gather(z, group_index[k]) for k in xrange(self.n_class)] # datapoints in k-th cluster # remove extra dimension groups = [tf.squeeze(g, axis=1) for g in groups] # subtract mean if self.args.submean: groups = [g - tf.reduce_mean(g, 0, keep_dims=True) for g in groups] dim1 = tf.shape(z)[1] u_prime = [self.get_u_init_for_g(g) for g in groups] return u_prime def uniform_recombine(self, g): N_g = tf.shape(g)[0] selector = tf.random_uniform([N_g, N_g]) # make random selector matrix if not self.args.no_uni_norm: selector = selector / tf.reduce_sum(selector, 1, keep_dims=True) # normalize each row to 1 g_fake = tf.matmul(selector, g, name='matmul_selectfake') return g_fake def make_Us(self): Us = [] for j in xrange(self.n_class): u = tf.get_variable('disc_w{}'.format(j), shape=[self.latent_size, self.rank], initializer=layers.xavier_initializer()) Us.append(u) return Us def match_idx(self, g): """ for the group g, identify the Ui whose residual is minimal, then return label, loss, sreal, u where label=i, loss=residual_real - residual_fake, sreal=residual_real, u=Ui """ N_g = tf.shape(g)[0] g_fake = self.uniform_recombine(g) combined_sreal = [] Us = [] for i in xrange(self.n_class): u = self.Us[i] u = tf.nn.l2_normalize(u, dim=0) uT = tf.transpose(u) s_real = tf.reduce_sum((g - tf.matmul(tf.matmul(g, u), uT)) ** 2) / tf.to_float(N_g) combined_sreal.append(s_real) Us.append(u) combined_sreal = tf.convert_to_tensor(combined_sreal) Us = tf.convert_to_tensor(Us) label = tf.cast(tf.arg_min(combined_sreal, dimension=0), tf.int32) sreal = combined_sreal[label] u = Us[label] # returns label, and corresponding s_real and u return label, sreal, u def compute_disc_loss(self, z, y): group_index = [tf.where(tf.equal(y, k)) for k in xrange(self.n_class)] # indices of datapoints in k-th cluster groups = [tf.gather(z, group_index[k]) for k in xrange(self.n_class)] # datapoints in k-th cluster # remove extra dimension groups = [tf.squeeze(g, axis=1) for g in groups] # subtract mean if self.args.submean: groups = [g - tf.reduce_mean(g, 0, keep_dims=True) for g in groups] dim1 = tf.shape(z)[1] # for each group, find its Ui group_all = [self.match_idx(g) for g in groups] group_label, group_sreal, group_u = zip(*group_all) # covnert some of them to tensor to make tf.where and tf.gather doable group_label = tf.convert_to_tensor(group_label) group_sreal = tf.convert_to_tensor(group_sreal) group_new_loss = [] group_loss_real = [] group_loss_fake = [] Us_assign_ops = [] # identify the ones that are assigned to Ui but aren't the cluster with minimum residual, and do # reinitialization on them for i, g in enumerate(groups): N_g = tf.shape(g)[0] label = group_label[i] sreal = group_sreal[i] u = group_u[i] u = tf.nn.l2_normalize(u, dim=0) if self.args.one2one: # indices of groups, whose label are the same as current one idxs_with_label = tf.where(tf.equal(group_label, label)) # sreal of those corresponding groups sreal_with_label = tf.squeeze(tf.gather(group_sreal, idxs_with_label), 1) # among all those groups with the same label, whether current group has minimal sreal ismin = tf.equal(sreal, tf.reduce_min(sreal_with_label)) # if it's the minimum, just use, otherwise reinit u uu = tf.assign(self.Us[i], tf.cond(ismin, lambda: u, lambda: self.get_u_init_for_g(g))) u = tf.nn.l2_normalize(uu, dim=0) Us_assign_ops.append(uu) # recompute loss g = g / tf.norm(g, axis=1, keep_dims=True) g_fake = self.uniform_recombine(g) loss_real = tf.reduce_sum((g - tf.matmul(tf.matmul(g, u), tf.transpose(u))) ** 2) / tf.to_float(N_g) loss_fake = tf.reduce_sum((g_fake - tf.matmul(tf.matmul(g_fake, u), tf.transpose(u))) ** 2, axis=1) if self.args.m: loss_fake = self.args.m - loss_fake loss_fake = -tf.nn.relu(loss_fake) loss_fake = tf.reduce_sum(loss_fake) / tf.to_float(N_g) if self.args.stop_real: loss_real = tf.stop_gradient(loss_real) loss = loss_real - loss_fake # add to list group_new_loss.append(loss) group_loss_real.append(loss_real) group_loss_fake.append(loss_fake) self.disc_score_real = tf.reduce_mean(group_loss_real) self.disc_score_fake = tf.reduce_mean(group_loss_fake) return -tf.reduce_mean(group_new_loss), tf.group(*Us_assign_ops) def regularization1(self, reuse=False): combined = [] for i in xrange(self.n_class): ui = self.Us[i] uiT = tf.transpose(ui) temp_sum = [] for j in xrange(self.n_class): if j == i: continue uj = self.Us[j] s = tf.reduce_sum((tf.matmul(uiT, uj)) ** 2) temp_sum.append(s) combined.append(tf.add_n(temp_sum)) return tf.add_n(combined) / self.n_class def regularization2(self, reuse=False): combined = [] for i in xrange(self.n_class): ui = self.Us[i] uiT = tf.transpose(ui) s = tf.reduce_sum((tf.matmul(uiT, ui) - tf.eye(self.rank)) ** 2) combined.append(s) return tf.add_n(combined) / self.n_class def partial_fit_eqn3(self, X, lr): # take a step on Eqn 3/4 cost, Coef, summary, _ = self.sess.run((self.loss_recon, self.Coef, self.summaryop_eqn3, self.optimizer_eqn3), feed_dict={self.x: X, self.learning_rate: lr}) self.summary_writer.add_summary(summary, self.iter) self.iter += 1 return cost, Coef def assign_u_parameter(self, X, y): self.sess.run(self.u_ini, feed_dict={self.x: X, self.y_x: y}) def partial_fit_disc(self, X, y_x, lr): self.sess.run([self.optimizer_disc, self.Us_update_op], feed_dict={self.x: X, self.y_x: y_x, self.learning_rate: lr}) def partial_fit_eqn3plus(self, X, y_x, lr): # assert y_x.min() == 0, 'y_x is 0-based' cost, Coef, summary, _, _ = self.sess.run( [self.loss_recon, self.Coef, self.summaryop_eqn3plus, self.optimizer_eqn3plus, self.gen_step_op], feed_dict={self.x: X, self.y_x: y_x, self.learning_rate: lr}) self.summary_writer.add_summary(summary, self.iter) self.iter += 1 return cost, Coef def partial_fit_pretrain(self, X, lr): cost, summary, _ = self.sess.run([self.loss_recon_pre, self.summaryop_pretrain, self.optimizer_pre], feed_dict={self.x: X, self.learning_rate: lr}) self.summary_writer.add_summary(summary, self.iter) self.iter += 1 return cost def get_ae_weight_norm(self): norm, = self.sess.run([self.ae_weight_norm]) return norm def get_loss_recon_pre(self, X): loss_recon_pre, = self.sess.run([self.loss_recon_pre], feed_dict={self.x: X}) return loss_recon_pre def get_projection_y_x(self, X): disc_weights = self.sess.run(self.disc_weights) z_real = self.sess.run(self.z_real_submean, feed_dict={self.x: X}) residuals = [] for Ui in disc_weights: proj = np.matmul(z_real, Ui) recon = np.matmul(proj, Ui.transpose()) residual = ((z_real - recon) ** 2).sum(axis=1) residuals.append(residual) residuals = np.stack(residuals, axis=1) # Nxn_class y_x = residuals.argmin(1) return y_x def log_accuracy(self, accuracy): summary = tf.Summary(value=[tf.Summary.Value(tag='accuracy', simple_value=accuracy)]) self.summary_writer.add_summary(summary, self.iter) def initlization(self): self.sess.run(self.init) def reconstruct(self, X): return self.sess.run(self.x_r, feed_dict={self.x: X}) def transform(self, X): return self.sess.run(self.z, feed_dict={self.x: X}) def save_model(self): save_path = self.saver.save(self.sess, self.model_path) print("model saved in file: %s" % save_path) def restore(self): self.saver.restore(self.sess, self.restore_path) print("model restored") def check_size(self, X): z = self.sess.run(self.z, feed_dict={self.x: X}) return z def best_map(L1, L2): # L1 should be the groundtruth labels and L2 should be the clustering labels we got Label1 = np.unique(L1) nClass1 = len(Label1) Label2 = np.unique(L2) nClass2 = len(Label2) nClass = np.maximum(nClass1, nClass2) G = np.zeros((nClass, nClass)) for i in range(nClass1): ind_cla1 = L1 == Label1[i] ind_cla1 = ind_cla1.astype(float) for j in range(nClass2): ind_cla2 = L2 == Label2[j] ind_cla2 = ind_cla2.astype(float) G[i, j] = np.sum(ind_cla2 * ind_cla1) m = Munkres() index = m.compute(-G.T) index = np.array(index) c = index[:, 1] newL2 = np.zeros(L2.shape) for i in range(nClass2): newL2[L2 == Label2[i]] = Label1[c[i]] return newL2 def thrC(C, ro): if ro < 1: N = C.shape[1] Cp = np.zeros((N, N)) S = np.abs(np.sort(-np.abs(C), axis=0)) Ind = np.argsort(-np.abs(C), axis=0) for i in range(N): cL1 = np.sum(S[:, i]).astype(float) stop = False csum = 0 t = 0 while (stop == False): csum = csum + S[t, i] if csum > ro * cL1: stop = True Cp[Ind[0:t + 1, i], i] = C[Ind[0:t + 1, i], i] t = t + 1 else: Cp = C return Cp def build_aff(C): N = C.shape[0] Cabs = np.abs(C) ind = np.argsort(-Cabs, 0) for i in range(N): Cabs[:, i] = Cabs[:, i] / (Cabs[ind[0, i], i] + 1e-6) Cksym = Cabs + Cabs.T; return Cksym def spectral_cluster(L, n, eps=2.2 * 10 - 8): """ L: Laplacian n: number of clusters Translates MATLAB code below: N = size(L, 1) DN = diag( 1./sqrt(sum(L)+eps) ); LapN = speye(N) - DN * L * DN; [~,~,vN] = svd(LapN); kerN = vN(:,N-n+1:N); normN = sum(kerN .^2, 2) .^.5; kerNS = bsxfun(@rdivide, kerN, normN + eps); groups = kmeans(kerNS,n,'maxiter',MAXiter,'replicates',REPlic,'EmptyAction','singleton'); """ N = L.shape[0] DN = (1. / np.sqrt(L.sum(0) + eps)) LapN = np.eye(N) - DN * L * DN def post_proC(C, K, d, alpha): # C: coefficient matrix, K: number of clusters, d: dimension of each subspace C = 0.5 * (C + C.T) r = d * K + 1 # K=38, d=10 U, S, _ = svds(C, r, v0=np.ones(C.shape[0])) # U, S, _ = svd_cuda(C, allocator=mem_pool) # take U and S from GPU # U = U[:, :r].get() # S = S[:r].get() U = U[:, ::-1] S = np.sqrt(S[::-1]) S = np.diag(S) U = U.dot(S) U = normalize(U, norm='l2', axis=1) Z = U.dot(U.T) #Z = Z * (Z > 0) L = np.abs(np.abs(Z) ** alpha) L = L / L.max() L = 0.5 * (L + L.T) spectral = cluster.SpectralClustering(n_clusters=K, eigen_solver='arpack', affinity='precomputed', assign_labels='discretize') spectral.fit(L) grp = spectral.fit_predict(L) # +1 return grp, L def err_rate(gt_s, s): c_x = best_map(gt_s, s) err_x = np.sum(gt_s[:] != c_x[:]) missrate = err_x.astype(float) / (gt_s.shape[0]) return missrate def build_laplacian(C): C = 0.5 * (np.abs(C) + np.abs(C.T)) W = np.sum(C, axis=0) W = np.diag(1.0 / W) L = W.dot(C) return L def reinit_and_optimize(args, Img, Label, CAE, n_class, k=10, post_alpha=3.5): alpha = args.alpha #max(0.4 - (n_class - 1) / 10 * 0.1, 0.1) print alpha acc_ = [] if args.epochs is None: num_epochs = 50 + n_class * 25 # 100+n_class*20 else: num_epochs = args.epochs # init CAE.initlization() ### ### Stage 1: pretrain ### # if we skip pretraining, we restore already-trained model if args.pretrain == 0: CAE.restore() # otherwise we pretrain the model first else: print 'Pretrain for {} steps'.format(args.pretrain) """ After pretrain: AE l2 norm : 29 Ae recon loss: 13372 """ for epoch in xrange(1, args.pretrain + 1): minibatch_size = 128 indices = np.random.permutation(Img.shape[0])[:minibatch_size] minibatch = Img[indices] # pretrain with random mini-batch cost = CAE.partial_fit_pretrain(minibatch, args.lr) if epoch % 100 == 0: norm = CAE.get_ae_weight_norm() print 'pretraining epoch {}, cost: {}, norm: {}'.format(epoch, cost / float(minibatch_size), norm) if args.save: CAE.save_model() ### ### Stage 2: fine-tune network ### print 'Finetune for {} steps'.format(num_epochs) acc_x = 0.0 y_x_mode = 'svd' for epoch in xrange(1, num_epochs + 1): # eqn3 if epoch < args.enable_at: cost, Coef = CAE.partial_fit_eqn3(Img, args.lr) interval = args.interval # normal interval # overtrain discriminator elif epoch == args.enable_at: print('Initialize discriminator for {} steps'.format(args.D_init)) CAE.assign_u_parameter(Img, y_x) for i in xrange(args.D_init): CAE.partial_fit_disc(Img, y_x, args.lr2) if args.proj_cluster: y_x_mode = 'projection' # eqn3plus else: for i in xrange(args.D_steps): CAE.partial_fit_disc(Img, y_x, args.lr2) # discriminator step discriminator for i in xrange(args.G_steps): cost, Coef = CAE.partial_fit_eqn3plus(Img, y_x, args.lr2) interval = args.interval2 # GAN interval # every interval epochs, perform clustering and evaluate accuracy if epoch % interval == 0: print("epoch: %.1d" % epoch, "cost: %.8f" % (cost / float(batch_size))) Coef = thrC(Coef, alpha) t_begin = time.time() if y_x_mode == 'svd': y_x_new, _ = post_proC(Coef, n_class, k, post_alpha) else: y_x_new = CAE.get_projection_y_x(Img) if len(set(list(np.squeeze(y_x_new)))) == n_class: y_x = y_x_new else: print('================================================') print('Warning: clustering produced empty clusters') print('================================================') missrate_x = err_rate(Label, y_x) t_end = time.time() acc_x = 1 - missrate_x print("accuracy: {}".format(acc_x)) print('post processing time: {}'.format(t_end - t_begin)) CAE.log_accuracy(acc_x) clustered = True mean = acc_x median = acc_x print("{} subjects, accuracy: {}".format(n_class, acc_x)) return (1 - mean), (1 - median) def prepare_data_YaleB(folder): # load face images and labels mat = sio.loadmat(os.path.join(folder, args.matfile or 'YaleBCrop025.mat')) img = mat['Y'] # Reorganize data a bit, put images into Img, and labels into Label I = [] Label = [] for i in range(img.shape[2]): # i-th subject for j in range(img.shape[1]): # j-th picture of i-th subject temp = np.reshape(img[:, j, i], [42, 48]) Label.append(i) I.append(temp) I = np.array(I) Label = np.array(Label[:]) Img = np.transpose(I, [0, 2, 1]) Img = np.expand_dims(Img[:], 3) # constants n_input = [48, 42] n_hidden = [10, 20, 30] kernel_size = [5, 3, 3] n_sample_perclass = 64 disc_size = [200, 50, 1] # tunable numbers k = 10 post_alpha = 3.5 all_subjects = [38] # number of subjects to use in experiment model_path = os.path.join(folder, 'model-102030-48x42-yaleb.ckpt') return Img, Label, n_input, n_hidden, kernel_size, n_sample_perclass, disc_size, k, post_alpha, all_subjects, model_path def prepare_data_orl(folder): mat = sio.loadmat(os.path.join(folder, args.matfile or 'ORL2fea.mat')) Label = mat['label'].reshape(400).astype(np.int32) Img = mat['fea'].reshape(400, 32, 32, 1) * 100 # constants n_input = [32, 32] n_hidden = [5, 3, 3] kernel_size = [5, 3, 3] n_sample_perclass = 10 disc_size = [200, 50, 1] # tunable numbers k = 3 # svds parameter post_alpha = 3.5 # Laplacian parameter all_subjects = [40] model_path = os.path.join(folder, 'model-533-32x32-orl-ckpt') return Img, Label, n_input, n_hidden, kernel_size, n_sample_perclass, disc_size, k, post_alpha, all_subjects, model_path def prepare_data_coil20(folder): mat = sio.loadmat(os.path.join(folder, args.matfile or 'COIL20RRstd.mat')) Label = mat['label'].reshape(-1).astype(np.int32) # 1440 Img = mat['fea'].reshape(-1, 32, 32, 1) # Img = normalize_data(Img) # constants n_input = [32, 32] n_hidden = [15] kernel_size = args.kernel_size or [3] n_sample_perclass = Img.shape[0] / 20 disc_size = [50, 1] # tunable numbers k = 10 # svds parameter post_alpha = 3.5 # Laplacian parameter all_subjects = [20] model_path = os.path.join(folder, 'model-3-32x32-coil20-ckpt') return Img, Label, n_input, n_hidden, kernel_size, n_sample_perclass, disc_size, k, post_alpha, all_subjects, model_path def prepare_data_coil100(folder): mat = sio.loadmat(os.path.join(folder, args.matfile or 'COLT100fea2fea.mat')) Label = mat['label'].reshape(-1).astype(np.int32) # 1440 Img = mat['fea'].reshape(-1, 32, 32, 1) # constants n_input = [32, 32] n_hidden = [50] kernel_size = [5] n_sample_perclass = Img.shape[0] / 100 disc_size = [50, 1] # tunable numbers k = 10 # svds parameter post_alpha = 3.5 # Laplacian parameter all_subjects = [100] model_path = os.path.join(folder, 'model-5-32x32-coil100-ckpt') return Img, Label, n_input, n_hidden, kernel_size, n_sample_perclass, disc_size, k, post_alpha, all_subjects, model_path def normalize_data(data): data = data - data.mean(axis=0) data = data / data.std(axis=0) return data if __name__ == '__main__': args = parser.parse_args() assert args.name is not None and args.name != '', 'name of experiment must be specified' # prepare data folder = os.path.dirname(os.path.abspath(__file__)) preparation_funcs = { 'yaleb': prepare_data_YaleB, 'orl': prepare_data_orl, 'coil20': prepare_data_coil20, 'coil100': prepare_data_coil100} assert args.dataset in preparation_funcs Img, Label, n_input, n_hidden, kernel_size, n_sample_perclass, disc_size, k, post_alpha, all_subjects, model_path = \ preparation_funcs[args.dataset](folder) Img = Img*args.imgmult post_alpha = args.palpha or post_alpha logs_path = os.path.join(folder, 'logs', args.name) restore_path = model_path # arrays for logging results avg = [] med = [] # for each experiment setting, perform one loop for n_class in all_subjects: batch_size = n_class * n_sample_perclass lambda1 = args.lambda1 # L2 sparsity on C lambda2 = args.lambda2 # 0.2 # 1.0 * 10 ** (n_class / 10.0 - 3.0) # self-expressivity lambda3 = args.lambda3 # discriminator gradient # clear graph and build a new conv-AE tf.reset_default_graph() CAE = ConvAE( args, n_input, n_hidden, kernel_size, n_class, n_sample_perclass, disc_size, lambda1, lambda2, lambda3, batch_size, r=args.r, rank=args.rank, reg=tf.contrib.layers.l2_regularizer(tf.ones(1) * args.lambda4), disc_bound=args.bound, model_path=model_path, restore_path=restore_path, logs_path=logs_path) # perform optimization avg_i, med_i = reinit_and_optimize(args, Img, Label, CAE, n_class, k=k, post_alpha=post_alpha) # add result to list avg.append(avg_i) med.append(med_i) # report results for all experiments for i, n_class in enumerate(all_subjects): print('%d subjects:' % n_class) print('Mean: %.4f%%' % (avg[i] * 100), 'Median: %.4f%%' % (med[i] * 100))
mit
RapidApplicationDevelopment/tensorflow
tensorflow/examples/learn/multiple_gpu.py
13
3098
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of using Estimator with multiple GPUs to distribute one model. This example only runs if you have multiple GPUs to assign to. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics import tensorflow as tf from tensorflow.contrib import layers from tensorflow.contrib import learn def my_model(features, target): """DNN with three hidden layers, and dropout of 0.1 probability. Note: If you want to run this example with multiple GPUs, Cuda Toolkit 7.0 and CUDNN 6.5 V2 from NVIDIA need to be installed beforehand. Args: features: `Tensor` of input features. target: `Tensor` of targets. Returns: Tuple of predictions, loss and training op. """ # Convert the target to a one-hot tensor of shape (length of features, 3) and # with a on-value of 1 for each one-hot vector of length 3. target = tf.one_hot(target, 3, 1, 0) # Create three fully connected layers respectively of size 10, 20, and 10 with # each layer having a dropout probability of 0.1. normalizer_fn = layers.dropout normalizer_params = {'keep_prob': 0.5} with tf.device('/gpu:1'): features = layers.stack(features, layers.fully_connected, [10, 20, 10], normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) with tf.device('/gpu:2'): # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(features, 3, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) # Create a tensor for training op. train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits)}, loss, train_op) def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = learn.Estimator(model_fn=my_model) classifier.fit(x_train, y_train, steps=1000) y_predicted = [ p['class'] for p in classifier.predict(x_test, as_iterable=True)] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
galactics/beyond
beyond/dates/date.py
2
16364
# -*- coding: utf-8 -*- """Date module """ from numpy import sin, radians from collections import namedtuple from datetime import datetime, timedelta, date from ..errors import DateError, UnknownScaleError from .eop import EopDb from ..utils.node import Node __all__ = ["Date", "timedelta"] class Timescale(Node): """Definition of a time scale and its interactions with others""" def __repr__(self): # pragma: no cover return "<Scale '%s'>" % self.name def __str__(self): return self.name def _scale_ut1_minus_utc(self, mjd, eop): """Definition of Universal Time relatively to Coordinated Universal Time""" return eop.ut1_utc def _scale_tai_minus_utc(self, mjd, eop): """Definition of International Atomic Time relatively to Coordinated Universal Time""" return eop.tai_utc def _scale_tt_minus_tai(self, mjd, eop): """Definition of Terrestrial Time relatively to International Atomic Time""" return 32.184 def _scale_tai_minus_gps(self, mjd, eop): """Definition of International Atomic Time relatively to GPS time""" return 19.0 def _scale_tdb_minus_tt(self, mjd, eop): """Definition of the Barycentric Dynamic Time scale relatively to Terrestrial Time""" jd = mjd + Date.JD_MJD jj = Date._julian_century(jd) m = radians(357.5277233 + 35999.05034 * jj) delta_lambda = radians(246.11 + 0.90251792 * (jd - Date.J2000)) return 0.001657 * sin(m) + 0.000022 * sin(delta_lambda) def offset(self, mjd, new_scale, eop): """Compute the offset necessary in order to convert from one time-scale to another Args: mjd (float): new_scale (str): Name of the desired scale Return: float: offset to apply in seconds """ delta = 0 for one, two in self.steps(new_scale): one = one.name.lower() two = two.name.lower() # find the operation oper = "_scale_{}_minus_{}".format(two, one) # find the reverse operation roper = "_scale_{}_minus_{}".format(one, two) if hasattr(self, oper): delta += getattr(self, oper)(mjd, eop) elif hasattr(self, roper): delta -= getattr(self, roper)(mjd, eop) else: # pragma: no cover raise DateError("Unknown convertion {} => {}".format(one, two)) return delta UT1 = Timescale("UT1") # Universal Time GPS = Timescale("GPS") # GPS Time TDB = Timescale("TDB") # Barycentric Dynamical Time UTC = Timescale("UTC") # Coordinated Universal Time TAI = Timescale("TAI") # International Atomic Time TT = Timescale("TT") # Terrestrial Time GPS + TAI + UTC + UT1 TDB + TT + TAI _cache = {"UT1": UT1, "GPS": GPS, "TDB": TDB, "UTC": UTC, "TAI": TAI, "TT": TT} def get_scale(name): if name in _cache.keys(): return _cache[name] else: raise UnknownScaleError(name) class Date: """Date object All computations and in-memory saving are made in `MJD <https://en.wikipedia.org/wiki/Julian_day>`__ and `TAI <https://en.wikipedia.org/wiki/International_Atomic_Time>`__. In the current implementation, the Date object does not handle the leap second. The constructor can take: * the same arguments as the standard library's datetime object (year, month, day, hour, minute, second, microsecond) * MJD as :py:class:`float` * MJD as :py:class:`int` for days and :py:class:`float` for seconds * a :py:class:`Date` or :py:class:`datetime` object Keyword Arguments: scale (str) : One of the following scales : "UT1", "UTC", "GPS", "TDB", "TAI", "TT" Examples: .. code-block:: python Date(2016, 11, 17, 19, 16, 40) Date(2016, 11, 17, 19, 16, 40, scale="TAI") Date(57709.804455) # MJD Date(57709, 69540.752649) Date(datetime(2016, 11, 17, 19, 16, 40)) # built-in datetime object Date.now() Date objects interact with :py:class:`timedelta` as datetime do. Attributes: eop: Value of the Earth Orientation Parameters for this particular date (see :ref:`eop`) scale: Scale in which this date is represented """ __slots__ = ["_d", "_s", "_offset", "scale", "_cache", "eop"] MJD_T0 = datetime(1858, 11, 17) """Origin of MJD""" JD_MJD = 2400000.5 """Offset between JD and MJD""" J2000 = 2451545.0 """Offset between JD and J2000""" REF_SCALE = "TAI" """Scale used as reference internally""" DEFAULT_SCALE = "UTC" """Default scale""" def __init__(self, *args, scale=DEFAULT_SCALE, **kwargs): if type(scale) is str: scale = get_scale(scale.upper()) if len(args) == 1: arg = args[0] if isinstance(arg, datetime): # Python datetime.datetime object d, s = self._convert_dt(arg) elif isinstance(arg, Date): # Date object d = arg.d s = arg.s scale = arg.scale elif isinstance(arg, (float, int)): # Modified Julian Day if isinstance(arg, int): d = arg s = 0.0 else: d = int(arg) s = (arg - d) * 86400 else: raise TypeError("Unknown type '{}'".format(type(arg))) elif len(args) == 2 and ( isinstance(args[0], int) and isinstance(args[1], (int, float)) ): # Julian day and seconds in the day d, s = args elif len(args) in range(3, 8) and list(map(type, args)) == [int] * len(args): # Same constructor as datetime.datetime # (year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None) dt = datetime(*args, **kwargs) d, s = self._convert_dt(dt) else: raise TypeError( "Unknown type sequence {}".format(", ".join(str(type(x)) for x in args)) ) mjd = d + s / 86400.0 # Retrieve EOP for the given date and store eop = EopDb.get(mjd) # Retrieve the offset from REF_SCALE for the current date offset = scale.offset(mjd, self.REF_SCALE, eop) d += int((s + offset) // 86400) s = (s + offset) % 86400.0 # As Date acts like an immutable object, we can't set its attributes normally # like when we do ``self._d = _d``. Furthermore, those attribute represent the date with # respect to REF_SCALE super().__setattr__("_d", d) super().__setattr__("_s", s) super().__setattr__("_offset", offset) super().__setattr__("scale", scale) super().__setattr__("eop", eop) super().__setattr__("_cache", {}) def __getstate__(self): # pragma: no cover """Used for pickling""" return { "d": self._d, "s": self._s, "offset": self._offset, "scale": self.scale, "eop": self.eop, } def __setstate__(self, state): # pragma: no cover """Used for unpickling""" super().__setattr__("_d", state["d"]) super().__setattr__("_s", state["s"]) super().__setattr__("_offset", state["offset"]) super().__setattr__("scale", state["scale"]) super().__setattr__("eop", state["eop"]) super().__setattr__("_cache", {}) def __setattr__(self, *args): # pragma: no cover raise TypeError("Can not modify attributes of immutable object") def __delattr__(self, *args): # pragma: no cover raise TypeError("Can not modify attributes of immutable object") def __add__(self, other): if isinstance(other, timedelta): days, sec = divmod(other.total_seconds() + self.s, 86400) else: raise TypeError("Unknown operation with {}".format(type(other))) return self.__class__(self.d + int(days), sec, scale=self.scale) def __sub__(self, other): if isinstance(other, timedelta): other = timedelta(seconds=-other.total_seconds()) elif isinstance(other, datetime): return self.datetime - other elif isinstance(other, Date): return self._datetime - other._datetime else: raise TypeError("Unknown operation with {}".format(type(other))) return self.__add__(other) def __gt__(self, other): return self._mjd > other._mjd def __ge__(self, other): return self._mjd >= other._mjd def __lt__(self, other): return self._mjd < other._mjd def __le__(self, other): return self._mjd <= other._mjd def __eq__(self, other): return self._mjd == other._mjd def __repr__(self): # pragma: no cover return "<{} '{}'>".format(self.__class__.__name__, self) def __str__(self): # pragma: no cover if "str" not in self._cache.keys(): self._cache["str"] = "{} {}".format(self.datetime.isoformat(), self.scale) return self._cache["str"] def __format__(self, fmt): # pragma: no cover if fmt: return self.datetime.__format__(fmt) else: return str(self) def __hash__(self): return hash((self._d, self._s)) @classmethod def _convert_dt(cls, dt): if dt.tzinfo is None: delta = dt - cls.MJD_T0 else: tz = dt.utcoffset() delta = dt.replace(tzinfo=None) - cls.MJD_T0 - tz return delta.days, delta.seconds + delta.microseconds * 1e-6 def _convert_to_scale(self): """Convert the inner value (defined with respect to REF_SCALE) into the given scale of the object """ d = self._d s = (self._s - self._offset) % 86400.0 d -= int((s + self._offset) // 86400) return d, s @property def d(self): return self._convert_to_scale()[0] @property def s(self): return self._convert_to_scale()[1] @property def datetime(self): """Conversion of the Date object into a ``datetime.datetime`` The resulting object is a timezone-naive instance with the same scale as the originating Date object. """ if "dt_scale" not in self._cache.keys(): self._cache["dt_scale"] = self._datetime - timedelta(seconds=self._offset) return self._cache["dt_scale"] @property def _datetime(self): """Conversion of the Date object into a :py:class:`datetime.datetime`. The resulting object is a timezone-naive instance in the REF_SCALE time-scale """ if "dt" not in self._cache.keys(): self._cache["dt"] = self.MJD_T0 + timedelta(days=self._d, seconds=self._s) return self._cache["dt"] @classmethod def strptime(cls, data, format, scale=DEFAULT_SCALE): # pragma: no cover """Convert a string representation of a date to a Date object""" return cls(datetime.strptime(data, format), scale=scale) @classmethod def now(cls, scale=DEFAULT_SCALE): """ Args: scale (str) Return: Date: Current time in the chosen scale """ return cls(datetime.utcnow()).change_scale(scale) def strftime(self, fmt): # pragma: no cover """Format the date following the given format""" return self.datetime.strftime(fmt) def change_scale(self, new_scale): """ Args: new_scale (str) Return: Date """ offset = self.scale.offset(self._mjd, new_scale, self.eop) result = self.datetime + timedelta(seconds=offset) return self.__class__(result, scale=new_scale) @classmethod def _julian_century(cls, jd): return (jd - cls.J2000) / 36525.0 @property def julian_century(self): """Compute the julian_century of the Date object relatively to its scale Return: float """ return self._julian_century(self.jd) @property def jd(self): """Compute the Julian Date, which is the number of days from the January 1, 4712 B.C., 12:00. Return: float """ return self.mjd + self.JD_MJD @property def _mjd(self): """ Return: float: Date in terms of MJD in the REF_SCALE timescale """ return self._d + self._s / 86400.0 @property def mjd(self): """Date in terms of MJD Return: float """ return self.d + self.s / 86400.0 @classmethod def range(cls, start=None, stop=None, step=None, inclusive=False): return DateRange(start, stop, step, inclusive) @classmethod def _range(cls, start=None, stop=None, step=None, inclusive=False): """Generator of a date range Args: start (Date): stop (Date or datetime.timedelta): step (timedelta): Keyword Args: inclusive (bool): If ``False``, the stopping date is not included. This is the same behavior as the built-in :py:func:`range`. Yield: Date: """ def sign(x): """Inner function for determining the sign of a float""" return (-1, 1)[x >= 0] if not step: raise ValueError("Null step") # Convert stop from timedelta to Date object if isinstance(stop, timedelta): stop = start + stop if sign((stop - start).total_seconds()) != sign(step.total_seconds()): raise ValueError("start/stop order not coherent with step") date = start if step.total_seconds() > 0: oper = "__le__" if inclusive else "__lt__" else: oper = "__ge__" if inclusive else "__gt__" while getattr(date, oper)(stop): yield date date += step class DateRange: """Object representing a Date.range call Allow for manipulation of the range before any compytation """ _descriptor = namedtuple("range_descriptor", "start stop step inclusive") def __init__(self, start, stop, step, inclusive): """ Args: start (Date): stop (Date or datetime.timedelta): step (timedelta): inclusive (bool): If ``False``, the stopping date is not included. This is the same behavior as the built-in :py:func:`range`. """ if isinstance(stop, timedelta): stop = start + stop self._range = self._descriptor(start, stop, step, inclusive) def __iter__(self): for d in Date._range(*self._range): yield d def __contains__(self, date): return self.start <= date <= self.stop @property def start(self): return self._range.start @property def stop(self): return self._range.stop @property def step(self): return self._range.step # This part is here to allow matplotlib to display Date objects directly # in the plot, without any other conversion by the developer # If matplotlib is importable, then a converter class is registered # for converting all Date objects on the fly try: import matplotlib.dates as mdates import matplotlib.units as munits except ImportError: # pragma: no cover pass else: # pragma: no cover class DateConverter(mdates.DateConverter): @staticmethod def convert(values, unit, axis): try: iter(values) except TypeError: if isinstance(values, (datetime, date)): values = mdates.date2num(values) else: values = mdates.date2num(values.datetime) else: values = [mdates.date2num(v.datetime) for v in values] return values munits.registry.setdefault(Date, DateConverter()) munits.registry.setdefault(DateRange, DateConverter())
mit
mikeengland/fireant
fireant/tests/dataset/test_pandas_workaround.py
2
2043
from unittest import TestCase import numpy as np import pandas as pd from fireant.queries.pandas_workaround import df_subtract class TestSubtract(TestCase): def test_subtract_partially_aligned_multi_index_dataframes_with_nans(self): df0 = pd.DataFrame( data=[ [1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16], [17, 18], ], columns=["happy", "sad"], index=pd.MultiIndex.from_product([["a", "b", None], [0, 1, np.nan]], names=["l0", "l1"]), ) df1 = pd.DataFrame( data=[ [1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16], [17, 18], ], columns=["happy", "sad"], index=pd.MultiIndex.from_product([["b", "c", None], [1, 2, np.nan]], names=["l0", "l1"]), ) result = df_subtract(df0, df1, fill_value=0) expected = pd.DataFrame.from_records( [ ["a", 0, 1 - 0, 2 - 0], ["a", 1, 3 - 0, 4 - 0], ["a", np.nan, 5 - 0, 6 - 0], ["b", 0, 7 - 0, 8 - 0], ["b", 1, 9 - 1, 10 - 2], ["b", np.nan, 11 - 5, 12 - 6], [np.nan, 0, 13 - 0, 14 - 0], [np.nan, 1, 15 - 13, 16 - 14], [np.nan, np.nan, 17 - 17, 18 - 18], ["b", 2, 0 - 3, 0 - 4], ["c", 1, 0 - 7, 0 - 8], ["c", 2, 0 - 9, 0 - 10], ["c", np.nan, 0 - 11, 0 - 12], [np.nan, 2, 0 - 15, 0 - 16], ], columns=["l0", "l1", "happy", "sad"], ).set_index(["l0", "l1"]) pd.testing.assert_frame_equal(expected, result) self.assertTrue(result.index.is_unique)
apache-2.0
saurabhjn76/sympy
examples/intermediate/mplot3d.py
93
1252
#!/usr/bin/env python """Matplotlib 3D plotting example Demonstrates plotting with matplotlib. """ import sys from sample import sample from sympy import sin, Symbol from sympy.external import import_module def mplot3d(f, var1, var2, show=True): """ Plot a 3d function using matplotlib/Tk. """ import warnings warnings.filterwarnings("ignore", "Could not match \S") p = import_module('pylab') # Try newer version first p3 = import_module('mpl_toolkits.mplot3d', __import__kwargs={'fromlist': ['something']}) or import_module('matplotlib.axes3d') if not p or not p3: sys.exit("Matplotlib is required to use mplot3d.") x, y, z = sample(f, var1, var2) fig = p.figure() ax = p3.Axes3D(fig) # ax.plot_surface(x, y, z, rstride=2, cstride=2) ax.plot_wireframe(x, y, z) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if show: p.show() def main(): x = Symbol('x') y = Symbol('y') mplot3d(x**2 - y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20)) # mplot3d(x**2+y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20)) # mplot3d(sin(x)+sin(y), (x, -3.14, 3.14, 10), (y, -3.14, 3.14, 10)) if __name__ == "__main__": main()
bsd-3-clause
florentchandelier/zipline
zipline/__main__.py
1
12454
import errno import os from importlib import import_module from functools import wraps import click import logbook import pandas as pd from six import text_type import pkgutil from zipline.data import bundles as bundles_module from zipline.utils.cli import Date, Timestamp from zipline.utils.run_algo import _run, load_extensions from zipline.gens import brokers try: __IPYTHON__ except NameError: __IPYTHON__ = False @click.group() @click.option( '-e', '--extension', multiple=True, help='File or module path to a zipline extension to load.', ) @click.option( '--strict-extensions/--non-strict-extensions', is_flag=True, help='If --strict-extensions is passed then zipline will not run if it' ' cannot load all of the specified extensions. If this is not passed or' ' --non-strict-extensions is passed then the failure will be logged but' ' execution will continue.', ) @click.option( '--default-extension/--no-default-extension', is_flag=True, default=True, help="Don't load the default zipline extension.py file in $ZIPLINE_HOME.", ) def main(extension, strict_extensions, default_extension): """Top level zipline entry point. """ # install a logbook handler before performing any other operations logbook.StderrHandler().push_application() load_extensions( default_extension, extension, strict_extensions, os.environ, ) def extract_option_object(option): """Convert a click.option call into a click.Option object. Parameters ---------- option : decorator A click.option decorator. Returns ------- option_object : click.Option The option object that this decorator will create. """ @option def opt(): pass return opt.__click_params__[0] def ipython_only(option): """Mark that an option should only be exposed in IPython. Parameters ---------- option : decorator A click.option decorator. Returns ------- ipython_only_dec : decorator A decorator that correctly applies the argument even when not using IPython mode. """ if __IPYTHON__: return option argname = extract_option_object(option).name def d(f): @wraps(f) def _(*args, **kwargs): kwargs[argname] = None return f(*args, **kwargs) return _ return d @main.command() @click.option( '-f', '--algofile', default=None, type=click.File('r'), help='The file that contains the algorithm to run.', ) @click.option( '-t', '--algotext', help='The algorithm script to run.', ) @click.option( '-D', '--define', multiple=True, help="Define a name to be bound in the namespace before executing" " the algotext. For example '-Dname=value'. The value may be any python" " expression. These are evaluated in order so they may refer to previously" " defined names.", ) @click.option( '--data-frequency', type=click.Choice({'daily', 'minute'}), default='daily', show_default=True, help='The data frequency of the simulation.', ) @click.option( '--local-benchmark', default=None, help='Use path to get local benchmark csv file.', ) @click.option( '--capital-base', type=float, default=10e6, show_default=True, help='The starting capital for the simulation.', ) @click.option( '-b', '--bundle', default='quantopian-quandl', metavar='BUNDLE-NAME', show_default=True, help='The data bundle to use for the simulation.', ) @click.option( '--bundle-timestamp', type=Timestamp(), default=pd.Timestamp.utcnow(), show_default=False, help='The date to lookup data on or before.\n' '[default: <current-time>]' ) @click.option( '-s', '--start', type=Date(tz='utc', as_timestamp=True), help='The start date of the simulation.', ) @click.option( '-e', '--end', type=Date(tz='utc', as_timestamp=True), help='The end date of the simulation.', ) @click.option( '-o', '--output', default='-', metavar='FILENAME', show_default=True, help="The location to write the perf data. If this is '-' the perf will" " be written to stdout.", ) @click.option( '--print-algo/--no-print-algo', is_flag=True, default=False, help='Print the algorithm to stdout.', ) @ipython_only(click.option( '--local-namespace/--no-local-namespace', is_flag=True, default=None, help='Should the algorithm methods be resolved in the local namespace.' )) @click.option( '--broker', default=None, help='Broker' ) @click.option( '--broker-uri', default=None, metavar='BROKER-URI', show_default=True, help='Connection to broker', ) @click.option( '--account-id', default='', metavar='ACT-ID', help='Account ID to trade on from a single sign-on (SSO) for consolidated/individual or linked/advisor accounts', ) @click.option( '--state-file', default=None, metavar='FILENAME', help='Filename where the state will be stored' ) @click.option( '--realtime-bar-target', default=None, metavar='DIRNAME', help='Directory where the realtime collected minutely bars are saved' ) @click.option( '--list-brokers', is_flag=True, help='Get list of available brokers' ) @click.pass_context def run(ctx, algofile, algotext, define, data_frequency, local_benchmark, capital_base, bundle, bundle_timestamp, start, end, output, print_algo, local_namespace, broker, broker_uri, account_id, state_file, realtime_bar_target, list_brokers): """Run a backtest for the given algorithm. """ if list_brokers: click.echo("Supported brokers:") for _, name, _ in pkgutil.iter_modules(brokers.__path__): if name != 'broker': click.echo(name) return # check that the start and end dates are passed correctly if not broker and start is None and end is None: # check both at the same time to avoid the case where a user # does not pass either of these and then passes the first only # to be told they need to pass the second argument also ctx.fail( "must specify dates with '-s' / '--start' and '-e' / '--end'", ) if not broker and start is None: ctx.fail("must specify a start date with '-s' / '--start'") if not broker and end is None: ctx.fail("must specify an end date with '-e' / '--end'") if broker and broker_uri is None: ctx.fail("must specify broker-uri if broker is specified") if broker and state_file is None: ctx.fail("must specify state-file with live trading") if broker and realtime_bar_target is None: ctx.fail("must specify realtime-bar-target with live trading") brokerobj = None if broker: mod_name = 'zipline.gens.brokers.%s_broker' % broker.lower() try: bmod = import_module(mod_name) except ImportError: ctx.fail("unsupported broker: can't import module %s" % mod_name) cl_name = '%sBroker' % broker.upper() try: bclass = getattr(bmod, cl_name) except AttributeError: ctx.fail("unsupported broker: can't import class %s from %s" % (cl_name, mod_name)) if account_id is '': brokerobj = bclass(broker_uri) else: brokerobj = bclass(broker_uri, account_id) if (algotext is not None) == (algofile is not None): ctx.fail( "must specify exactly one of '-f' / '--algofile' or" " '-t' / '--algotext'", ) perf = _run( initialize=None, handle_data=None, before_trading_start=None, analyze=None, algofile=algofile, algotext=algotext, defines=define, data_frequency=data_frequency, local_benchmark=local_benchmark, capital_base=capital_base, data=None, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output=output, print_algo=print_algo, local_namespace=local_namespace, environ=os.environ, broker=brokerobj, account_id=account_id, state_filename=state_file, realtime_bar_target=realtime_bar_target ) if output == '-': click.echo(str(perf)) elif output != os.devnull: # make the zipline magic not write any data perf.to_pickle(output) return perf def zipline_magic(line, cell=None): """The zipline IPython cell magic. """ load_extensions( default=True, extensions=[], strict=True, environ=os.environ, ) try: return run.main( # put our overrides at the start of the parameter list so that # users may pass values with higher precedence [ '--algotext', cell, '--output', os.devnull, # don't write the results by default ] + ([ # these options are set when running in line magic mode # set a non None algo text to use the ipython user_ns '--algotext', '', '--local-namespace', ] if cell is None else []) + line.split(), '%s%%zipline' % ((cell or '') and '%'), # don't use system exit and propogate errors to the caller standalone_mode=False, ) except SystemExit as e: # https://github.com/mitsuhiko/click/pull/533 # even in standalone_mode=False `--help` really wants to kill us ;_; if e.code: raise ValueError('main returned non-zero status code: %d' % e.code) @main.command() @click.option( '-b', '--bundle', default='quantopian-quandl', metavar='BUNDLE-NAME', show_default=True, help='The data bundle to ingest.', ) @click.option( '--assets-version', type=int, multiple=True, help='Version of the assets db to which to downgrade.', ) @click.option( '--show-progress/--no-show-progress', default=True, help='Print progress information to the terminal.' ) def ingest(bundle, assets_version, show_progress): """Ingest the data for the given bundle. """ bundles_module.ingest( bundle, os.environ, pd.Timestamp.utcnow(), assets_version, show_progress, ) @main.command() @click.option( '-b', '--bundle', default='quantopian-quandl', metavar='BUNDLE-NAME', show_default=True, help='The data bundle to clean.', ) @click.option( '-e', '--before', type=Timestamp(), help='Clear all data before TIMESTAMP.' ' This may not be passed with -k / --keep-last', ) @click.option( '-a', '--after', type=Timestamp(), help='Clear all data after TIMESTAMP' ' This may not be passed with -k / --keep-last', ) @click.option( '-k', '--keep-last', type=int, metavar='N', help='Clear all but the last N downloads.' ' This may not be passed with -e / --before or -a / --after', ) def clean(bundle, before, after, keep_last): """Clean up data downloaded with the ingest command. """ bundles_module.clean( bundle, before, after, keep_last, ) @main.command() def bundles(): """List all of the available data bundles. """ for bundle in sorted(bundles_module.bundles.keys()): if bundle.startswith('.'): # hide the test data continue try: ingestions = list( map(text_type, bundles_module.ingestions_for_bundle(bundle)) ) except OSError as e: if e.errno != errno.ENOENT: raise ingestions = [] # If we got no ingestions, either because the directory didn't exist or # because there were no entries, print a single message indicating that # no ingestions have yet been made. for timestamp in ingestions or ["<no ingestions>"]: click.echo("%s %s" % (bundle, timestamp)) if __name__ == '__main__': main()
apache-2.0
andrewnc/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
amanzi/ats-dev
tools/utils/colors.py
2
6529
import matplotlib import matplotlib.colors import matplotlib.cm import numpy as np # # Lists of disparate color palettes # enumerated_palettes = { 1 : ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628','#f781bf','#999999'], 2 : ['#a6cee3','#1f78b4','#b2df8a','#33a02c','#fb9a99','#e31a1c','#fdbf6f','#ff7f00','#cab2d6', '#6a3d9a','#ffff99','#b15928'], 3 : ['#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02','#a6761d','#666666'], } def enumerated_colors(count, palette=1, chain=True): """Gets an enumerated list of count independent colors.""" p = enumerated_palettes[palette] if count <= len(p): return p[0:count] else: for p in enumerated_palettes.values(): if count <= len(p): return p[0:count] if chain: # must chain... p = enumerated_palettes[palette] def chain_iter(p): while True: for c in p: yield c return [c for (i,c) in zip(range(count),chain_iter(p))] else: raise ValueError("No enumerated palettes of length {}.".format(count)) # # Lists of diverging color palettes # def sampled_colors(count, cmap): """Gets a list of count colors sampled from a colormap.""" cm = cm_mapper(0,count-1,cmap) return [cm(i) for i in range(count)] # black-zero jet is jet, but with the 0-value set to black, with an immediate jump to blue def blackzerojet_cmap(data): blackzerojet_dict = {'blue': [[0.0, 0.0, 0.0], [0.0, 0.0, 0.5], [0.11, 1, 1], [0.34000000000000002, 1, 1], [0.65000000000000002, 0, 0], [1, 0, 0]], 'green': [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.125, 0, 0], [0.375, 1, 1], [0.64000000000000001, 1, 1], [0.91000000000000003, 0, 0], [1, 0, 0]], 'red': [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.34999999999999998, 0, 0], [0.66000000000000003, 1, 1], [0.89000000000000001, 1, 1], [1, 0.5, 0.5]] } minval = data[np.where(data > 0.)[0]].min(); print(minval) maxval = data[np.where(data > 0.)[0]].max(); print(maxval) oneminval = .9*minval/maxval for color in ['blue', 'green', 'red']: for i in range(1,len(blackzerojet_dict[color])): blackzerojet_dict[color][i][0] = blackzerojet_dict[color][i][0]*(1-oneminval) + oneminval return matplotlib.colors.LinearSegmentedColormap('blackzerojet', blackzerojet_dict) # ice color map def ice_cmap(): x = np.linspace(0,1,7) b = np.array([1,1,1,1,1,0.8,0.6]) g = np.array([1,0.993,0.973,0.94,0.893,0.667,0.48]) r = np.array([1,0.8,0.6,0.5,0.2,0.,0.]) bb = np.array([x,b,b]).transpose() gg = np.array([x,g,g]).transpose() rr = np.array([x,r,r]).transpose() ice_dict = {'blue': bb, 'green': gg, 'red': rr} return matplotlib.colors.LinearSegmentedColormap('ice', ice_dict) # water color map def water_cmap(): x = np.linspace(0,1,8) b = np.array([1.0, 1.0, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2]) g = np.array([1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.0, 0.0]) r = np.array([1.0, 0.7, 0.5, 0.3, 0.1, 0.0, 0.0, 0.0]) bb = np.array([x,b,b]).transpose() gg = np.array([x,g,g]).transpose() rr = np.array([x,r,r]).transpose() water_dict = {'blue': bb, 'green': gg, 'red': rr} return matplotlib.colors.LinearSegmentedColormap('water', water_dict) # water color map def gas_cmap(): x = np.linspace(0,1,8) r = np.array([1.0, 1.0, 1.0, 1.0, 0.8, 0.6, 0.4, 0.2]) # g = np.array([1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.0, 0.0]) b = np.array([1.0, 0.6, 0.4, 0.2, 0.0, 0.0, 0.0, 0.0]) g = np.array([1.0, 0.6, 0.4, 0.2, 0.0, 0.0, 0.0, 0.0]) bb = np.array([x,b,b]).transpose() gg = np.array([x,g,g]).transpose() rr = np.array([x,r,r]).transpose() gas_dict = {'blue': bb, 'green': gg, 'red': rr} return matplotlib.colors.LinearSegmentedColormap('gas', gas_dict) # jet-by-index def cm_mapper(vmin=0., vmax=1., cmap=matplotlib.cm.jet): """Create a map from value to color given a colormap. Typical Usage: >>> # plots 11 lines, with color scaled by index into jet >>> mapper = cm_mapper(vmin=0, vmax=10, cmap=matplotlib.cm.jet) >>> for i in range(11): ... data = np.load('data_%03d.npy'%i) ... plt.plot(x, data, color=mapper(i)) ... >>> plt.show() """ norm = matplotlib.colors.Normalize(vmin, vmax) sm = matplotlib.cm.ScalarMappable(norm, cmap) def mapper(value): return sm.to_rgba(value) return mapper def alpha_cmap(color, flip=False): """Create a map from value to color, using a colormap that varies alpha in a given color.""" color = matplotlib.colors.to_rgba(color) color_str = matplotlib.colors.to_hex(color) color_list = [(color[0],color[1],color[2],0.1), (color[0],color[1],color[2],1)] if flip: color_list = reversed(color_list) return matplotlib.colors.LinearSegmentedColormap.from_list('alpha_{}'.format(color_str), color_list) def float_list_type(mystring): """Convert string-form list of doubles into list of doubles.""" colors = [] for f in mystring.strip("(").strip(")").strip("[").strip("]").split(","): try: colors.append(float(f)) except: colors.append(f) return colors def desaturate(color, amount=0.4, is_hsv=False): if not is_hsv: hsv = matplotlib.colors.rgb_to_hsv(matplotlib.colors.to_rgb(color)) else: hsv = color print(hsv) hsv[1] = max(0,hsv[1] - amount) return matplotlib.colors.hsv_to_rgb(hsv) def darken(color, fraction=0.6): rgb = np.array(matplotlib.colors.to_rgb(color)) return tuple(np.maximum(rgb - fraction*rgb,0)) def lighten(color, fraction=0.6): rgb = np.array(matplotlib.colors.to_rgb(color)) return tuple(np.minimum(rgb + fraction*(1-rgb),1))
bsd-3-clause
jchodera/openmoltools
openmoltools/tests/test_openeye.py
2
11798
from nose.plugins.attrib import attr import simtk.unit as u from simtk.openmm import app import simtk.openmm as mm import numpy as np from mdtraj.testing import eq from unittest import skipIf from openmoltools import utils, packmol import os import openmoltools.openeye import pandas as pd import mdtraj as md from mdtraj.testing import raises smiles_fails_with_strictStereo = "CN1CCN(CC1)CCCOc2cc3c(cc2OC)C(=[NH+]c4cc(c(cc4Cl)Cl)OC)C(=C=[N-])C=[NH+]3" try: oechem = utils.import_("openeye.oechem") if not oechem.OEChemIsLicensed(): raise(ImportError("Need License for OEChem!")) oequacpac = utils.import_("openeye.oequacpac") if not oequacpac.OEQuacPacIsLicensed(): raise(ImportError("Need License for oequacpac!")) oeiupac = utils.import_("openeye.oeiupac") if not oeiupac.OEIUPACIsLicensed(): raise(ImportError("Need License for OEOmega!")) oeomega = utils.import_("openeye.oeomega") if not oeomega.OEOmegaIsLicensed(): raise(ImportError("Need License for OEOmega!")) HAVE_OE = True openeye_exception_message = str() except Exception as e: HAVE_OE = False openeye_exception_message = str(e) try: import parmed HAVE_PARMED = True except ImportError: HAVE_PARMED = False @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.\n" + openeye_exception_message) def test_butanol_keepconfs(): m0 = openmoltools.openeye.iupac_to_oemol("butanol") m1 = openmoltools.openeye.get_charges(m0, keep_confs=1) eq(m0.NumAtoms(), m1.NumAtoms()) assert m1.NumConfs() == 1, "This OEMol was created to have a single conformation." assert m1.NumAtoms() == 15, "Butanol should have 15 atoms" @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.\n" + openeye_exception_message) def test_butanol_unnormalized(): m0 = openmoltools.openeye.iupac_to_oemol("butanol") m0.SetTitle("MyCustomTitle") m1 = openmoltools.openeye.get_charges(m0, normalize=False, keep_confs=1) eq(m0.NumAtoms(), m1.NumAtoms()) assert m1.NumConfs() == 1, "This OEMol was created to have a single conformation." assert m1.NumAtoms() == 15, "Butanol should have 15 atoms" assert m0.GetTitle() == m1.GetTitle(), "The title of the molecule should not be changed by normalization." @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_butanol(): m0 = openmoltools.openeye.iupac_to_oemol("butanol") m1 = openmoltools.openeye.get_charges(m0, keep_confs=-1) eq(m0.NumAtoms(), m1.NumAtoms()) assert m1.NumConfs() >= 2, "Butanol should have multiple conformers." assert m1.NumAtoms() == 15, "Butanol should have 15 atoms" all_data = {} for k, molecule in enumerate(m1.GetConfs()): names_to_charges, str_repr = openmoltools.openeye.get_names_to_charges(molecule) all_data[k] = names_to_charges eq(sum(names_to_charges.values()), 0.0, decimal=7) # Net charge should be zero # Build a table of charges indexed by conformer number and atom name all_data = pd.DataFrame(all_data) # The standard deviation along the conformer axis should be zero if all conformers have same charges eq(all_data.std(1).values, np.zeros(m1.NumAtoms()), decimal=7) with utils.enter_temp_directory(): # Try saving to disk as mol2 openmoltools.openeye.molecule_to_mol2(m1, "out.mol2") # Make sure MDTraj can read the output t = md.load("out.mol2") # Make sure MDTraj can read the charges / topology info atoms, bonds = md.formats.mol2.mol2_to_dataframes("out.mol2") # Finally, make sure MDTraj and OpenEye report the same charges. names_to_charges, str_repr = openmoltools.openeye.get_names_to_charges(m1) q = atoms.set_index("name").charge q0 = pd.Series(names_to_charges) delta = q - q0 # An object containing the charges, with atom names as indices eq(delta.values, np.zeros_like(delta.values), decimal=4) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_benzene(): m0 = openmoltools.openeye.iupac_to_oemol("benzene") m1 = openmoltools.openeye.get_charges(m0) eq(m0.NumAtoms(), m1.NumAtoms()) print(m1.NumConfs()) assert m1.NumConfs() == 1, "Benezene should have 1 conformer" assert m1.NumAtoms() == 12, "Benezene should have 12 atoms" names_to_charges, str_repr = openmoltools.openeye.get_names_to_charges(m1) eq(sum(names_to_charges.values()), 0.0, decimal=7) # Net charge should be zero with utils.enter_temp_directory(): # Try saving to disk as mol2 openmoltools.openeye.molecule_to_mol2(m1, "out.mol2") # Make sure MDTraj can read the output t = md.load("out.mol2") # Make sure MDTraj can read the charges / topology info atoms, bonds = md.formats.mol2.mol2_to_dataframes("out.mol2") # Finally, make sure MDTraj and OpenEye report the same charges. names_to_charges, str_repr = openmoltools.openeye.get_names_to_charges(m1) q = atoms.set_index("name").charge q0 = pd.Series(names_to_charges) delta = q - q0 # An object containing the charges, with atom names as indices eq(delta.values, np.zeros_like(delta.values), decimal=4) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_link_in_utils(): m0 = openmoltools.openeye.iupac_to_oemol("benzene") m1 = openmoltools.openeye.get_charges(m0) with utils.enter_temp_directory(): # This function was moved from utils to openeye, so check that the old link still works. utils.molecule_to_mol2(m1, "out.mol2") @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_smiles(): m0 = openmoltools.openeye.smiles_to_oemol("CCCCO") charged0 = openmoltools.openeye.get_charges(m0) m1 = openmoltools.openeye.iupac_to_oemol("butanol") charged1 = openmoltools.openeye.get_charges(m1) eq(charged0.NumAtoms(), charged1.NumAtoms()) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_ffxml(): with utils.enter_temp_directory(): m0 = openmoltools.openeye.smiles_to_oemol("CCCCO") charged0 = openmoltools.openeye.get_charges(m0) m1 = openmoltools.openeye.smiles_to_oemol("ClC(Cl)(Cl)Cl") charged1 = openmoltools.openeye.get_charges(m1) trajectories, ffxml = openmoltools.openeye.oemols_to_ffxml([charged0, charged1]) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_ffxml_simulation(): """Test converting toluene and benzene smiles to oemol to ffxml to openmm simulation.""" with utils.enter_temp_directory(): m0 = openmoltools.openeye.smiles_to_oemol("Cc1ccccc1") charged0 = openmoltools.openeye.get_charges(m0) m1 = openmoltools.openeye.smiles_to_oemol("c1ccccc1") charged1 = openmoltools.openeye.get_charges(m1) ligands = [charged0, charged1] n_atoms = [15,12] trajectories, ffxml = openmoltools.openeye.oemols_to_ffxml(ligands) eq(len(trajectories),len(ligands)) pdb_filename = utils.get_data_filename("chemicals/proteins/1vii.pdb") temperature = 300 * u.kelvin friction = 0.3 / u.picosecond timestep = 0.01 * u.femtosecond protein_traj = md.load(pdb_filename) protein_traj.center_coordinates() protein_top = protein_traj.top.to_openmm() protein_xyz = protein_traj.openmm_positions(0) for k, ligand in enumerate(ligands): ligand_traj = trajectories[k] ligand_traj.center_coordinates() eq(ligand_traj.n_atoms, n_atoms[k]) eq(ligand_traj.n_frames, 1) #Move the pre-centered ligand sufficiently far away from the protein to avoid a clash. min_atom_pair_distance = ((ligand_traj.xyz[0] ** 2.).sum(1) ** 0.5).max() + ((protein_traj.xyz[0] ** 2.).sum(1) ** 0.5).max() + 0.3 ligand_traj.xyz += np.array([1.0, 0.0, 0.0]) * min_atom_pair_distance ligand_xyz = ligand_traj.openmm_positions(0) ligand_top = ligand_traj.top.to_openmm() ffxml.seek(0) forcefield = app.ForceField("amber10.xml", ffxml, "tip3p.xml") model = app.modeller.Modeller(protein_top, protein_xyz) model.add(ligand_top, ligand_xyz) model.addSolvent(forcefield, padding=0.4 * u.nanometer) system = forcefield.createSystem(model.topology, nonbondedMethod=app.PME, nonbondedCutoff=1.0 * u.nanometers, constraints=app.HAngles) integrator = mm.LangevinIntegrator(temperature, friction, timestep) simulation = app.Simulation(model.topology, system, integrator) simulation.context.setPositions(model.positions) print("running") simulation.step(1) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") @raises(RuntimeError) def test_charge_fail1(): with utils.enter_temp_directory(): openmoltools.openeye.smiles_to_antechamber(smiles_fails_with_strictStereo, "test.mol2", "test.frcmod", strictStereo=True) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") @raises(RuntimeError) def test_charge_fail2(): m = openmoltools.openeye.smiles_to_oemol(smiles_fails_with_strictStereo) m = openmoltools.openeye.get_charges(m, strictStereo=True, keep_confs=1) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_charge_success1(): with utils.enter_temp_directory(): openmoltools.openeye.smiles_to_antechamber(smiles_fails_with_strictStereo, "test.mol2", "test.frcmod", strictStereo=False) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") def test_charge_success2(): m = openmoltools.openeye.smiles_to_oemol(smiles_fails_with_strictStereo) m = openmoltools.openeye.get_charges(m, strictStereo=False) @skipIf(not HAVE_OE, "Cannot test openeye module without OpenEye tools.") @skipIf(not HAVE_PARMED, "Cannot test without Parmed Chemistry.") @skipIf(packmol.PACKMOL_PATH is None, "Skipping testing of packmol conversion because packmol not found.") @attr("parmed") def test_binary_mixture_rename(): smiles_string0 = "CCCCCC" smiles_string1 = "CCCCCCCCC" with utils.enter_temp_directory(): # Prevents creating tons of GAFF files everywhere. mol2_filename0 = "./A.mol2" frcmod_filename0 = "./A.frcmod" mol2_filename1 = "./B.mol2" frcmod_filename1 = "./B.frcmod" gaff_mol2_filenames = [mol2_filename0, mol2_filename1] frcmod_filenames = [frcmod_filename0, frcmod_filename1] prmtop_filename = "./box.prmtop" inpcrd_filename = "./box.inpcrd" openmoltools.openeye.smiles_to_antechamber(smiles_string0, mol2_filename0, frcmod_filename0) openmoltools.openeye.smiles_to_antechamber(smiles_string1, mol2_filename1, frcmod_filename1) openmoltools.utils.randomize_mol2_residue_names(gaff_mol2_filenames) box_pdb_filename = "./box.pdb" gaff_mol2_filenames = [mol2_filename0, mol2_filename1] n_monomers = [10, 20] packed_trj = packmol.pack_box([md.load(mol2) for mol2 in gaff_mol2_filenames], n_monomers) packed_trj.save(box_pdb_filename) tleap_cmd = openmoltools.amber.build_mixture_prmtop(gaff_mol2_filenames, frcmod_filenames, box_pdb_filename, prmtop_filename, inpcrd_filename) prmtop = app.AmberPrmtopFile(prmtop_filename) inpcrd = app.AmberInpcrdFile(inpcrd_filename) system = prmtop.createSystem(nonbondedMethod=app.PME, nonbondedCutoff=1.0*u.nanometers, constraints=app.HBonds)
gpl-2.0
hdmetor/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
12
10796
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
dimroc/tensorflow-mnist-tutorial
lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py
5
55320
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import copy import inspect import os import tempfile import numpy as np import six from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.framework.python.framework import experimental from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.training.python.training import evaluation from tensorflow.core.framework import summary_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import device_setter from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import session_run_hook from tensorflow.python.training import summary_io from tensorflow.python.util import compat AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _verify_input_args(x, y, input_fn, feed_fn, batch_size): """Verifies validity of co-existance of input arguments.""" if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if contrib_framework.is_tensor(x) or (y is not None and contrib_framework.is_tensor(y)): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') else: if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if input_fn is not None: return input_fn, feed_fn df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _get_arguments(func): """Returns list of arguments this function has.""" if hasattr(func, '__code__'): # Regular function. return inspect.getargspec(func).args elif hasattr(func, '__call__'): # Callable object. return _get_arguments(func.__call__) elif hasattr(func, 'func'): # Partial function. return _get_arguments(func.func) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableOfTensors', 'MutableDenseHashTable' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError( 'Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError( 'Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ return ', '.join('%s = %s' % (k, v) for k, v in sorted(dictionary.items())) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = summary_io.SummaryWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue value = summary_proto.value.add() value.tag = key if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): value.simple_value = float(dictionary[key]) else: logging.warn('Skipping summary for %s, must be a float or np.float32.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() class BaseEstimator( sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. Concrete implementation of this class should provide the following functions: * _get_train_ops * _get_eval_ops * _get_predict_ops `Estimator` implemented below is a good example of how to use this class. """ __metaclass__ = abc.ABCMeta # Note that for Google users, this is overriden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: A RunConfig instance. """ # Model directory. self._model_dir = model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config logging.info('Using config: %s', str(vars(self._config))) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') _verify_input_args(x, y, input_fn, None, batch_size) if x is not None: SKCompat(self).fit(x, y, batch_size, steps, max_steps, monitors) return self if max_steps is not None: try: start_step = load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self except: # pylint: disable=bare-except pass hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) if steps is not None or max_steps is not None: hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps)) loss = self._train_model(input_fn=input_fn, hooks=hooks) logging.info('Loss for final step: %s.', loss) return self @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def partial_fit( self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit(x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if x is not None: return SKCompat(self).score(x, y, batch_size, steps, metrics) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks, log_progress=log_progress) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('batch_size', None), ('as_iterable', True) ) def predict( self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ _verify_input_args(x, None, input_fn, None, batch_size) if x is not None and not as_iterable: return SKCompat(self).predict(x, batch_size) input_fn, feed_fn = _get_input_fn(x, None, input_fn, None, batch_size) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated_arg_values( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate. ' 'input_fn (and in most cases, input_feature_key) will become required ' 'args, and use_deprecated_input_fn will default to False and be removed ' 'altogether.', use_deprecated_input_fn=True, input_fn=None) def export(self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name='', checkpoint_path=None, hooks=None, log_progress=True): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = saver.latest_checkpoint(self._model_dir) if not latest_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) checkpoint_path = latest_path # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) # The default return type of _get_eval_ops is ModelFnOps. But there are # some subclasses of tf.contrib.learn.Estimator which override this # method and use the legacy signature, namely _get_eval_ops returns an # `eval_dict` dictionary of Tensors. The following else-statement code # covers these cases, but will soon be deleted after the subclasses are # updated. # TODO(b/32664904): Update subclasses and delete the else-statement. eval_ops = self._get_eval_ops(features, labels, metrics) if isinstance(eval_ops, model_fn_lib.ModelFnOps): # Default signature eval_dict = eval_ops.eval_metric_ops else: # Legacy signature eval_dict = eval_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) hooks = hooks or [] if feed_fn: hooks.append(_FeedFnHook(feed_fn)) if steps: hooks.append( evaluation.StopAfterNEvalsHook( steps, log_progress=log_progress)) global_step_key = 'global_step' while global_step_key in eval_dict: global_step_key = '_' + global_step_key eval_dict[global_step_key] = global_step eval_results = evaluation.evaluate_once( checkpoint_path=checkpoint_path, master=self._config.evaluation_master, eval_ops=update_op, final_ops=eval_dict, hooks=hooks) current_global_step = eval_results[global_step_key] _write_dict_to_summary(eval_dir, eval_results, current_global_step) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model(self, input_fn, feed_fn=None, outputs=None, as_iterable=True, iterate_batches=False): # Check that model has been trained. checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) contrib_framework.create_global_step(g) features = self._get_features_from_input_fn(input_fn) infer_ops = self._call_legacy_get_predict_ops(features) predictions = self._filter_predictions(infer_ops.predictions, outputs) mon_sess = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path)) if not as_iterable: with mon_sess: if not mon_sess.should_stop(): return mon_sess.run(predictions, feed_fn() if feed_fn else None) else: return self._predict_generator(mon_sess, predictions, feed_fn, iterate_batches) def _predict_generator(self, mon_sess, predictions, feed_fn, iterate_batches): with mon_sess: while not mon_sess.should_stop(): preds = mon_sess.run(predictions, feed_fn() if feed_fn else None) if iterate_batches: yield preds elif not isinstance(predictions, dict): for pred in preds: yield pred else: first_tensor = list(preds.values())[0] if isinstance(first_tensor, sparse_tensor.SparseTensorValue): batch_length = first_tensor.dense_shape[0] else: batch_length = first_tensor.shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(preds)} if self._is_input_constant(feed_fn, mon_sess.graph): return def _is_input_constant(self, feed_fn, graph): # If there are no queue_runners, the input `predictions` is a # constant, and we should stop after the first epoch. If, # instead, there are queue_runners, eventually they should throw # an `OutOfRangeError`. if graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS): return False # data_feeder uses feed_fn to generate `OutOfRangeError`. if feed_fn is not None: return False return True def _filter_predictions(self, predictions, outputs): if not outputs: return predictions if not isinstance(predictions, dict): raise ValueError( 'outputs argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) return predictions def _train_model(self, input_fn, hooks): all_hooks = [] self._graph = ops.Graph() with self._graph.as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_ops = self._call_legacy_get_train_ops(features, labels) ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss) all_hooks.extend([ basic_session_run_hooks.NanTensorHook(model_fn_ops.loss), basic_session_run_hooks.LoggingTensorHook( { 'loss': model_fn_ops.loss, 'step': global_step }, every_n_iter=100) ]) all_hooks.extend(hooks) scaffold = model_fn_ops.training_scaffold or monitored_session.Scaffold() if not (scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, defer_build=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): saver_hook_exists = any([ isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) ]) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=scaffold) ] with monitored_session.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=scaffold, hooks=all_hooks + model_fn_ops.training_hooks, chief_only_hooks=chief_hooks + model_fn_ops.training_chief_hooks, save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=self.config.tf_config) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss]) summary_io.SummaryWriterCache.clear() return loss def _call_legacy_get_predict_ops(self, features): # The default return type of _get_predict_ops is ModelFnOps. But there are # some subclasses of tf.contrib.learn.Estimator which override this # method and use the legacy signature, namely _get_predict_ops returns a # `predictions` Tensor or dict or Tensors. The following else-statement # code covers these cases, but will soon be deleted after the subclasses # are updated. # TODO(b/32664904): Update subclasses and delete the else-statement. infer_ops = self._get_predict_ops(features) if isinstance(infer_ops, model_fn_lib.ModelFnOps): # Default signature return infer_ops return model_fn_lib.ModelFnOps( mode=model_fn_lib.ModeKeys.INFER, predictions=infer_ops) def _call_legacy_get_train_ops(self, features, labels): train_ops = self._get_train_ops(features, labels) if isinstance(train_ops, model_fn_lib.ModelFnOps): # Default signature return train_ops return model_fn_lib.ModelFnOps( mode=model_fn_lib.ModeKeys.TRAIN, predictions=None, loss=train_ops[1], train_op=train_ops[0]) def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features`: single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels`: `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your model_fn based on configuration such as `num_ps_replicas`. * `model_dir`: Optional directory where model parameters, graph etc are saved. Will receive what is passed to Estimator in `model_dir` parameter, or the default `model_dir`. Allows updating things in your model_fn that expect model_dir, such as training hooks. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config, model_dir) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _get_arguments(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) has less than 4 ' 'arguments, but not None params (%s) are passed.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _get_arguments(self._model_fn) kwargs = {} if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: kwargs['config'] = self.config if 'model_dir' in model_fn_args: kwargs['model_dir'] = self.model_dir model_fn_results = self._model_fn(features, labels, **kwargs) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): return model_fn_results # Here model_fn_ops should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') return model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn( features, labels, model_fn_lib.ModeKeys.EVAL) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update(_make_metrics_ops( metrics, features, labels, model_fn_ops.predictions)) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.streaming_mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) @experimental def export_savedmodel( self, export_dir_base, input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, exports_to_keep=None): """Exports inference graph as a SavedModel into given dir. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. input_fn: A function that takes no argument and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when none is specified. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. exports_to_keep: Number of exports to keep. Returns: The string path to the exported directory. Raises: ValueError: if an unrecognized export_type is requested. """ if input_fn is None: raise ValueError('input_fn must be defined.') with ops.Graph().as_default() as g: contrib_variables.create_global_step(g) # Call the input_fn and collect the input alternatives. input_ops = input_fn() input_alternatives, features = ( saved_model_export_utils.get_input_alternatives(input_ops)) # Call the model_fn and collect the output alternatives. model_fn_ops = self._call_model_fn(features, None, model_fn_lib.ModeKeys.INFER) output_alternatives, actual_default_output_alternative_key = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, default_output_alternative_key)) # Build the SignatureDefs from all pairs of input and output signatures signature_def_map = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, actual_default_output_alternative_key) # Locate the latest checkpoint # TODO(soergel): does it help that we know we have one from this step? checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) with tf_session.Session('') as session: variables.initialize_local_variables() data_flow_ops.tables_initializer() saver_for_restore = saver.Saver( variables.global_variables(), sharded=True) saver_for_restore.restore(session, checkpoint_path) init_op = control_flow_ops.group( variables.local_variables_initializer(), data_flow_ops.tables_initializer()) # Perform the export builder = saved_model_builder.SavedModelBuilder(export_dir) builder.add_meta_graph_and_variables( session, [tag_constants.SERVING], signature_def_map=signature_def_map, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS), legacy_init_op=init_op) builder.save(as_text) # Add the extra assets if assets_extra: assets_extra_path = os.path.join(compat.as_bytes(export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join(compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) return export_dir class _FeedFnHook(session_run_hook.SessionRunHook): """Runs feed_fn and sets the feed_dict accordingly.""" def __init__(self, feed_fn): self.feed_fn = feed_fn def before_run(self, run_context): # pylint: disable=unused-argument return session_run_hook.SessionRunArgs( fetches=None, feed_dict=self.feed_fn()) # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator.""" def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) all_monitors = [] if feed_fn: all_monitors = [_FeedFnHook(feed_fn)] if monitors: all_monitors.extend(monitors) self._estimator.fit(input_fn=input_fn, steps=steps, max_steps=max_steps, monitors=all_monitors) return self def score(self, x, y, batch_size=128, steps=None, metrics=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name='score') if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) results = list( self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=True, iterate_batches=True)) if not isinstance(results[0], dict): return np.concatenate([output for output in results], axis=0) return { key: np.concatenate( [output[key] for output in results], axis=0) for key in results[0] }
apache-2.0
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/animation/simple_3danim.py
12
1793
""" A simple example of an animated plot... In 3D! """ import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib.animation as animation def Gen_RandLine(length, dims=2) : """ Create a line using a random walk algorithm length is the number of points for the line. dims is the number of dimensions the line has. """ lineData = np.empty((dims, length)) lineData[:, 0] = np.random.rand(dims) for index in range(1, length) : # scaling the random numbers by 0.1 so # movement is small compared to position. # subtraction by 0.5 is to change the range to [-0.5, 0.5] # to allow a line to move backwards. step = ((np.random.rand(dims) - 0.5) * 0.1) lineData[:, index] = lineData[:, index-1] + step return lineData def update_lines(num, dataLines, lines) : for line, data in zip(lines, dataLines) : # NOTE: there is no .set_data() for 3 dim data... line.set_data(data[0:2, :num]) line.set_3d_properties(data[2,:num]) return lines # Attaching 3D axis to the figure fig = plt.figure() ax = p3.Axes3D(fig) # Fifty lines of random 3-D lines data = [Gen_RandLine(25, 3) for index in range(50)] # Creating fifty line objects. # NOTE: Can't pass empty arrays into 3d version of plot() lines = [ax.plot(dat[0, 0:1], dat[1, 0:1], dat[2, 0:1])[0] for dat in data] # Setting the axes properties ax.set_xlim3d([0.0, 1.0]) ax.set_xlabel('X') ax.set_ylim3d([0.0, 1.0]) ax.set_ylabel('Y') ax.set_zlim3d([0.0, 1.0]) ax.set_zlabel('Z') ax.set_title('3D Test') # Creating the Animation object line_ani = animation.FuncAnimation(fig, update_lines, 25, fargs=(data, lines), interval=50, blit=False) plt.show()
mit
MarcSpitz/ldebroux_kjadin_masters-thesis_2014
src/multicasttree.py
1
50504
# -*- coding: utf-8 -*- # @author: Debroux Léonard <[email protected]> # @author: Kevin Jadin <[email protected]> import sys import networkx as nx import matplotlib.pyplot as plt import networkx.algorithms.dag as dag from operator import itemgetter from collections import OrderedDict import random import logging as log import nx_pylab from Queue import PriorityQueue from utils import Utils from setup import Setup import copy import math class MulticastTree(nx.DiGraph): """ MulticastTree class """ def __init__(self, NetworkGraph, root): super(MulticastTree, self).__init__() self.NetworkGraph = NetworkGraph self.C = set() # empty client set self.root = root # root of the tree self.improvements = 0 #amount of improvements made (addition and removal) self.weight = 0 # weight of the tree (to be updated after every tree modification) self.C.add(root) self.add_node(root) # add the root self.ttl = Setup.get('tabu_ttl') self.tabuList = {} self.usePathQueue = False self.pathQueue = PriorityQueue() self.childrenPaths = {} self.parentPaths = {} # linking the right method according to arguments (codegen) self.export_step_codegen(Setup.get('steps')) self.selectEdge = self.selectEdge_choose(Setup.get('selection_heuristic')) def log(self, lvl=log.INFO): log.log(lvl, ">>> tree information") log.log(lvl, "\tweight: %s" % self.weight) log.log(lvl, "\troot: %s" % self.root) log.log(lvl, "\ttree clients: %s" % self.clients()) def multicastTreeCopy(self): """ returns a complete copy of the tree """ MCTcopy = MulticastTree(self.NetworkGraph, self.root) MCTcopy.graph = copy.deepcopy(self.graph) MCTcopy.node = copy.deepcopy(self.node) MCTcopy.adj = copy.deepcopy(self.adj) MCTcopy.pred = copy.deepcopy(self.pred) MCTcopy.succ = MCTcopy.adj MCTcopy.edge = MCTcopy.adj MCTcopy.C = copy.deepcopy(self.C) MCTcopy.improvements = self.improvements MCTcopy.weight = self.weight MCTcopy.tabuList = copy.deepcopy(self.tabuList) MCTcopy.usePathQueue = self.usePathQueue MCTcopy.pathQueue = PriorityQueue() MCTcopy.pathQueue.queue = copy.deepcopy(self.pathQueue.queue) MCTcopy.childrenPaths = copy.deepcopy(self.childrenPaths) MCTcopy.parentPaths = copy.deepcopy(self.parentPaths) return MCTcopy def export_step_codegen(self, method): """ codegen the right exporting method for self.export_step() """ fname = "export_step" if(method == Setup.PLOT): def inner(self, outfile): self.export_plot() elif(method == Setup.FILE): def inner(self, outfile): self.export_file(outfile) else: def inner(self, outfile): pass inner.__doc__ = "docstring for "+fname inner.__name__ = fname setattr(self.__class__, inner.__name__, inner) def export_file(self, outfile): """ @param outfile : string for filename with supported extension {pdf, png} """ import pylab pylab.figure(figsize=(50,50)) self.draw() pylab.savefig(outfile) def export_plot(self): # new window plt.figure() self.draw() plt.show(block=False) # clean plot plt.clf() def draw(self): """ draw the tree on top of the graph """ # draw the graph except the current tree graphOnlyEdges = list(set(self.NetworkGraph.edges()) - set(self.edges())) graphOnlyNodes = list(set(self.NetworkGraph.nodes()) - set(self.nodes())) ax = plt.axes() ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) nx.draw_networkx(self.NetworkGraph, self.NetworkGraph.layout, ax=ax, edgelist=graphOnlyEdges, nodelist=graphOnlyNodes, font_color='white', node_color='grey', node_shape='s') #node_shape='so^>v<dph8' # draw the tree nodeSize = 500 # draw steiner nodes nx.draw_networkx_nodes(self, self.NetworkGraph.layout, node_color='black', node_size=nodeSize) # draw the root nx.draw_networkx_nodes(self, self.NetworkGraph.layout, nodelist=[self.root], node_color='purple', node_size=nodeSize) # draw the clients clientsWithoutRoot = set(self.C) - set([self.root]) nx.draw_networkx_nodes(self, self.NetworkGraph.layout, nodelist=clientsWithoutRoot, node_color='blue', node_size=nodeSize) # draw the edges edgeLabels=dict([((u,v,),d['weight']) for u,v,d in self.NetworkGraph.edges(data=True)]) nx_pylab.draw_networkx_edges(self, self.NetworkGraph.layout, width=2.0, arrow=True, edge_color='red') nx.draw_networkx_edge_labels(self, self.NetworkGraph.layout, edge_labels=edgeLabels, label_pos=0.5, font_color='grey') def export(self, outfile): nx.draw_graphviz(self) nx.write_dot(self, outfile) def selectEdge_choose(self, heuristic): """ returns the right selectEdge heuristic according to given argument """ if(heuristic == Setup.MOST_EXPENSIVE): return self.selectEdge_mostExpensive elif(heuristic == Setup.MOST_EXPENSIVE_PATH): if(Setup.get('improve_maxtime') > 0): self.usePathQueue = True return self.selectEdge_mostExpensivePath elif(heuristic == Setup.AVERAGED_MOST_EXPENSIVE_PATH): if(Setup.get('improve_maxtime') > 0): self.usePathQueue = True return self.selectEdge_averagedMostExpensivePath else: # use random selection heuristic return self.selectEdge_random def add_edges(self, path): """ add edges with attributes fetched from the NetworkGraph @param: path: a path is a list of nodes [n1, n2, n3, n4, ..] @raise: Exception if the edge is non-existent in the NetworkGraph """ NG = self.NetworkGraph GraphEdges = NG.edges() log.debug('GraphEdges: %s' % GraphEdges) for i in range(len(path) - 1): n1 = path[i] n2 = path[i+1] edgeAttributes = NG[n1][n2] # build and add the edge to the tree edges set edgeUnique = (n1, n2) if n1<n2 else (n2, n1) log.debug('have to add edge: (%s,%s)' % (n1, n2)) if not edgeUnique in GraphEdges: raise Exception("tree is corrupted") self.add_edge(n1, n2, edgeAttributes) self.weight += self[n1][n2]['weight'] def removeEdge(self): """ removes an edge from the tree Uses selectEdge() """ # select an edge to remove edge = self.selectEdge() if edge: log.debug('selected edge: %s', edge) self.weight -= edge[2]['weight'] self.remove_edge(edge[0], edge[1]) return edge else: return None def clients(self): """ returns the clients set """ return self.C def predecessor(self, node): """ In a tree, each node has at most one predecessor Redefine networkx predecessors method to reflect this fact @returns parent node or None if given node was the root """ pred = self.predecessors(node) if pred: return pred[0] else: return None # █████╗ ██████╗ ██████╗ ██╗████████╗██╗ ██████╗ ███╗ ██╗ # ██╔══██╗██╔══██╗██╔══██╗██║╚══██╔══╝██║██╔═══██╗████╗ ██║ # ███████║██║ ██║██║ ██║██║ ██║ ██║██║ ██║██╔██╗ ██║ # ██╔══██║██║ ██║██║ ██║██║ ██║ ██║██║ ██║██║╚██╗██║ # ██║ ██║██████╔╝██████╔╝██║ ██║ ██║╚██████╔╝██║ ╚████║ # ╚═╝ ╚═╝╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ def addClient(self, c): """ Subscribe a client to the multicast group Adds the client to the tree and adds the needed edges """ log.debug('adding client %s' % c) if not c in self.nodes(): pim_mode = Setup.get('pim_mode') log.debug('PIM mode: %s' % pim_mode) if pim_mode: cleanedClosestPath = self.shortestPathToSource(c) else: cleanedClosestPath = self.shortestPathToTree(c) log.debug('cleanedClosestPath: %s' % cleanedClosestPath) if self.usePathQueue: self.addToPathQueue(cleanedClosestPath) self.add_edges(cleanedClosestPath) else: log.debug('client %s already in clients set' % c) # add the client to the clients set self.C.add(c) def shortestPathToSource(self, client): """ Use when simulated the behaviour of PIM-SSM """ NG = self.NetworkGraph # take the shortest path from the root to the client as connection path closestPath = NG.ShortestPaths[self.root][client][0] # the path must be cleaned because of edges that might have a weight of 0. # Consider the following example : # T: n1 -0-> n2, the path n2-n1-n3 has the same weight as n1-n3. # We could end up choosing the first path and thus create a loop cleanedClosestPath = self.cleanPath(closestPath, self.nodes(), [client]) return cleanedClosestPath def shortestPathToTree(self, client): """ Returns the shortest path from the client to add to the tree """ NG = self.NetworkGraph ShortestPathsLength = NG.ShortestPathsLength[client] log.debug('distances to nodes: "%s"' % ShortestPathsLength) PathsLengthToTree = {k: v[0] for k, v in ShortestPathsLength.items() if k in self.nodes()} log.debug('PathsLengthToTree: %s' % PathsLengthToTree) SortedPathsLengthToTree = OrderedDict(sorted(PathsLengthToTree.items(), key=itemgetter(1))) log.debug('SortedPathsLengthToTree: %s' % SortedPathsLengthToTree) closestParent, parentLength = SortedPathsLengthToTree.popitem(last=False) log.debug('closestParent: %s' % closestParent) closestPath = NG.ShortestPaths[closestParent][client][0] # the path must be cleaned because of edges that might have a weight of 0. # Consider the following example : # T: n1 -0-> n2, the path n2-n1-n3 has the same weight as n1-n3. # We could end up choosing the first path and thus create a loop cleanedClosestPath = self.cleanPath(closestPath, self.nodes(), [client]) return cleanedClosestPath # ██████╗ ███████╗███╗ ███╗ ██████╗ ██╗ ██╗ █████╗ ██╗ # ██╔══██╗██╔════╝████╗ ████║██╔═══██╗██║ ██║██╔══██╗██║ # ██████╔╝█████╗ ██╔████╔██║██║ ██║██║ ██║███████║██║ # ██╔══██╗██╔══╝ ██║╚██╔╝██║██║ ██║╚██╗ ██╔╝██╔══██║██║ # ██║ ██║███████╗██║ ╚═╝ ██║╚██████╔╝ ╚████╔╝ ██║ ██║███████╗ # ╚═╝ ╚═╝╚══════╝╚═╝ ╚═╝ ╚═════╝ ╚═══╝ ╚═╝ ╚═╝╚══════╝ def removeClient(self, c): """ removes given client c from the clients set of self """ if c == self.root: log.error('root cannot be removed from the client set') elif c in self.C: deg = self.degree(c) self.C.remove(c) if deg == 1: # Upon a removal, the tree is only modified when the degree of the node is one (node, removedEdges) = self.ascendingClean(c, list()) # here, the path is removed already self.removeWeightFor(removedEdges) if self.usePathQueue: # The modifications of the tree cause the pathQueue to change pathTuple = self.parentPaths[c] if node == self.root: # the clean goes up to the root, it means that pathTuple goes from root to c, just remove it if pathTuple[1][0] != self.root: # root should be the first node of pathTuple print '' print 'paths', self.pathQueue.queue print 'edges', self.edges() print 'node', node print 'client removed', c raise Exception("Upon removal, cleaning was made up to root and the path is bad") self.removeTupleFromPathQueue(pathTuple, tryMerge=False) elif self.degree(node) == 1: # node is a client if node in self.parentPaths: self.removeTupleFromPathQueue(pathTuple) else: # node has no parent path (means that a path should be split) self.splitPathAroundNode(node, pathTuple, removeBotPath=True) elif self.degree(node) == 2: if node in self.parentPaths: # removed path and try merge on node self.removeTupleFromPathQueue(pathTuple, tryMerge=True) else: # node was previously of degree 3, and is in the middle of path. # it thus has only one child path if len(self.childrenPaths[node]) != 1: raise Exception("bug: childrenPath[node] should have a length of one") childPathTuple = self.childrenPaths[node][0] if childPathTuple == pathTuple: # remove path, no need to try to merge self.removeTupleFromPathQueue(pathTuple, tryMerge=False) else: self.splitPathAroundNode(node, pathTuple, removeBotPath=True) self.mergePaths(node) # split path on node, rm botPath and try merge on node else: # degree(node) >= 3 if not pathTuple[1][0] == node: # if node is within pathTuple, pathTuple must be split self.splitPathAroundNode(node, pathTuple, removeBotPath=True) else: self.removeTupleFromPathQueue(pathTuple, tryMerge=False) log.debug("removed edges upon removal of %s: %s" % (c, removedEdges)) elif deg == 2: log.debug("client %s of deg == 2 to remove", c) self.mergePaths(c) else: # deg >= 3 log.debug("client %s of deg >=3 to remove", c) else: log.error("%s is not in the clients set", c) # ██╗███╗ ███╗██████╗ ██████╗ ██████╗ ██╗ ██╗███████╗ # ██║████╗ ████║██╔══██╗██╔══██╗██╔═══██╗██║ ██║██╔════╝ # ██║██╔████╔██║██████╔╝██████╔╝██║ ██║██║ ██║█████╗ # ██║██║╚██╔╝██║██╔═══╝ ██╔══██╗██║ ██║╚██╗ ██╔╝██╔══╝ # ██║██║ ╚═╝ ██║██║ ██║ ██║╚██████╔╝ ╚████╔╝ ███████╗ # ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═══╝ ╚══════╝ def improveTreeOnce(self, nb, temperature): """ performs one round of improvement on the tree # procedure: 3 steps for each round of improvement # 1) select and remove one edge # 2) clean the tree by launching cleanTree on the two nodes linked by the removed edge # 3) add a new path -> O(n^2) search for the shortest path to link the two components """ folder = "images/" if self.improvements < 10: temp = "00" + str(self.improvements) elif self.improvements < 100: temp = "0" + str(self.improvements) else: temp = str(self.improvements) self.export_step(folder+"%s_step0_before_improve.png" % (temp)) # remove an edge from the graph removed = self.removeEdge() if removed: parent, child, edgeAttributes = removed self.export_step(folder+"%s_step1_(%s-%s)_edge_removed.png" % (temp, parent, child)) # from this point, the DiGraph is made of at least two connected components subRoot, removedEdges = self.cleanTree(parent, child) self.export_step(folder+"%s_step2_(%s-%s)_cleaned_tree.png" % (temp, parent, child)) newPathInstalled, degrading = self.reconnectCC(subRoot, removedEdges, temperature) self.export_step(folder+"%s_step3_(%s-%s)_reconnected_components.png" % (temp, parent, child)) self.improvements += 1 return (newPathInstalled, degrading) else: log.debug('no edge found to remove') return (False, False) # no new path has been installed if not self.number_of_nodes() == self.number_of_edges()+1: print 'ERROR nodes:', self.number_of_nodes(), 'edges:', self.number_of_edges(), ': should not be reached' print 'edges', self.edges() print 'paths', self.pathQueue.queue raise Exception('the multicast tree is does not represent a tree after an improveOnce call') # ███████╗██████╗ ██████╗ ███████╗ ███████╗███████╗██╗ ███████╗ ██████╗████████╗██╗ ██████╗ ███╗ ██╗ # ██╔════╝██╔══██╗██╔════╝ ██╔════╝ ██╔════╝██╔════╝██║ ██╔════╝██╔════╝╚══██╔══╝██║██╔═══██╗████╗ ██║ # █████╗ ██║ ██║██║ ███╗█████╗ ███████╗█████╗ ██║ █████╗ ██║ ██║ ██║██║ ██║██╔██╗ ██║ # ██╔══╝ ██║ ██║██║ ██║██╔══╝ ╚════██║██╔══╝ ██║ ██╔══╝ ██║ ██║ ██║██║ ██║██║╚██╗██║ # ███████╗██████╔╝╚██████╔╝███████╗ ███████║███████╗███████╗███████╗╚██████╗ ██║ ██║╚██████╔╝██║ ╚████║ # ╚══════╝╚═════╝ ╚═════╝ ╚══════╝ ╚══════╝╚══════╝╚══════╝╚══════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ def selectEdge_random(self): """ randomly selects and returns an edge to remove from the tree """ edges = self.edges(data=True) found = False selectedEdge = None while not found and edges: selectedEdge = random.choice(edges) n1, n2, attr = selectedEdge if (n1, n2) in self.tabuList: edges.remove(selectedEdge) else: found = True return selectedEdge def selectEdge_mostExpensive(self): """ selects and returns the most expensive edge in the tree """ edges = self.edges(data=True) selectedEdge = None weight = -1; # equalWeights use to be fair in the case of several paths having the same cost and being the most expensive equalWeights = 2.0 for e in edges: n1, n2, attr = e if not (n1, n2) in self.tabuList: if attr['weight'] > weight: selectedEdge = e weight = attr['weight'] equalWeights = 2.0 elif attr['weight'] == weight: if random.random() < 1/equalWeights: selectedEdge = e equalWeights += 1 return selectedEdge def selectEdge_mostExpensivePath(self): """ selects and returns the most expensive edge in the tree """ if self.usePathQueue: mostExpPath = self.popFirstValidPath(Setup.get('max_paths')) if mostExpPath: n1 = mostExpPath[0] n2 = mostExpPath[1] return (n1, n2, self.NetworkGraph[n1][n2]) else: return None def selectEdge_averagedMostExpensivePath(self): if self.usePathQueue: mostExpPath = self.popFirstValidPath(Setup.get('max_paths')) if mostExpPath: n1 = mostExpPath[0] n2 = mostExpPath[1] return (n1, n2, self.NetworkGraph[n1][n2]) else: return None def popFirstValidPath(self, maxPaths = 3): """ pops the first valid path found in the pathQueue (which can contain invalid/non-split paths). pops them in order and returns the first valid path. """ returnPathTuple = None toRestore = [] validPaths = [] valid = False while self.pathQueue.queue and len(validPaths) < maxPaths: valid = True pathTuple = self.pathQueue.queue[0] # check if given path is valid : no coloured node or node with degree > 2 _, path = pathTuple for n in path[1:-1]: if (n in self.C) or (self.degree(n) > 2): valid = False self.splitPathAroundNode(n, pathTuple) break # breaks the for loop if valid: # check if one of the edges of the path is in the tabu for i in range(len(path) - 1): n1 = path[i] n2 = path[i+1] if ((n1, n2) in self.tabuList) or ((n2, n1) in self.tabuList): valid = False poppedPathTuple = self.pathQueue.get() # when a path is in the tabu, pop it if not poppedPathTuple == pathTuple: raise Exception("PathQueue is corrupted") toRestore.append(poppedPathTuple) break if valid: # add the valid path to the list of valid paths (one will be selected later on) poppedPathTuple = self.pathQueue.get() # the current considered path will be added to validPaths # it must be removed from the priority queue so that another may be selected if not poppedPathTuple == pathTuple: raise Exception("PathQueue is corrupted") validPaths.append(poppedPathTuple) for p in toRestore: # restore all the paths that were removed because in the tabu self.pathQueue.put(p) if validPaths: chosenPathTuple = random.choice(validPaths) for p in validPaths: # restore all the paths that were removed because chosen in validPaths self.pathQueue.put(p) self.removeTupleFromPathQueue(chosenPathTuple) return chosenPathTuple[1] else: return None # ██████╗██╗ ███████╗ █████╗ ███╗ ██╗██╗███╗ ██╗ ██████╗ # ██╔════╝██║ ██╔════╝██╔══██╗████╗ ██║██║████╗ ██║██╔════╝ # ██║ ██║ █████╗ ███████║██╔██╗ ██║██║██╔██╗ ██║██║ ███╗ # ██║ ██║ ██╔══╝ ██╔══██║██║╚██╗██║██║██║╚██╗██║██║ ██║ # ╚██████╗███████╗███████╗██║ ██║██║ ╚████║██║██║ ╚████║╚██████╔╝ # ╚═════╝╚══════╝╚══════╝╚═╝ ╚═╝╚═╝ ╚═══╝╚═╝╚═╝ ╚═══╝ ╚═════╝ def cleanTree(self, parent, child): """ cleans the tree, by launching ascending clean from given parent node descending clean from given child node @returns: one node from the child connected component (or None) as well as the list of edges that have been removed """ asc = self.ascendingClean(parent, list()) desc = self.descendingClean(child, list()) self.removeWeightFor(asc[1]) self.removeWeightFor(desc[1]) removedEdge = (parent, child) removedEdges = asc[1] removedEdges.reverse() removedEdges.append(removedEdge) removedEdges = removedEdges + desc[1] return (desc[0], removedEdges) def removeWeightFor(self, path): """ decrements self's weight by the cumulative weight of the given path """ for e in path: self.weight -= self.NetworkGraph[e[0]][e[1]]['weight'] def ascendingClean(self, current, removedEdges): """ launches an ascendingClean procedure: @returns: one node from the tree (the first undeleted node, or None) """ log.debug('clients: %s' % self.C) log.debug('current: %s' % current) if (current in self.C) or (self.degree(current) >= 2): log.debug('current kept: %s' % current) return (current, removedEdges) else: log.debug('predecessors: %s' % self.predecessors(current)) parent = self.predecessors(current)[0] #only one element in the list if any self.remove_node(current) removedEdge = (parent, current) removedEdges.append(removedEdge) log.debug('current removed: %s and parent is: %s' % (current, parent)) return self.ascendingClean(parent, removedEdges) def descendingClean(self, current, removedEdges): """ launches an descendingClean procedure: @returns: one node from the tree (the first undeleted node, or None) """ if (current in self.C) or (self.degree(current) >= 2): return (current, removedEdges) else: child = self.successors(current)[0] self.remove_node(current) removedEdge = (current, child) removedEdges.append(removedEdge) return self.descendingClean(child, removedEdges) def cleanPath(self, path, sT, dT): """ cleans a path from the edges it contains that already are in the tree (in one direction or the other). Needed to avoid creating loops in the tree upon reconnection @param: path: the path to clean """ cleanedPath = [] firstInST = 0 for i in reversed(range(len(path))): if path[i] in sT: cleanedPath.append(path[i]) firstInST = i break for i in range(firstInST+1, len(path)): if not path[i] in dT: cleanedPath.append(path[i]) else: cleanedPath.append(path[i]) break return cleanedPath # ██████╗ ███████╗ ██████╗ ██████╗ ███╗ ██╗███╗ ██╗███████╗ ██████╗████████╗██╗ ██████╗ ███╗ ██╗ # ██╔══██╗██╔════╝██╔════╝██╔═══██╗████╗ ██║████╗ ██║██╔════╝██╔════╝╚══██╔══╝██║██╔═══██╗████╗ ██║ # ██████╔╝█████╗ ██║ ██║ ██║██╔██╗ ██║██╔██╗ ██║█████╗ ██║ ██║ ██║██║ ██║██╔██╗ ██║ # ██╔══██╗██╔══╝ ██║ ██║ ██║██║╚██╗██║██║╚██╗██║██╔══╝ ██║ ██║ ██║██║ ██║██║╚██╗██║ # ██║ ██║███████╗╚██████╗╚██████╔╝██║ ╚████║██║ ╚████║███████╗╚██████╗ ██║ ██║╚██████╔╝██║ ╚████║ # ╚═╝ ╚═╝╚══════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═══╝╚═╝ ╚═══╝╚══════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ def reconnectCC(self, subRoot, removedEdges, temperature, onlyBest=False): """ aims at reconnecting the two connected components after an edge removal potentially inverts edge directions @returns: False when he reconnection path is the same as the previously removed one """ # select a path (at least one edge) to add (may be the same one) newPathInstalled = True log.debug('subRoot: %s' % subRoot) # desc = set of nodes from the subtree desc = dag.descendants(self, subRoot).union(set([subRoot])) # sourceTree = set of nodes from the source tree sourceTree = set(self.nodes()) - desc bestPath, degrading = self.selectReconnectionPath(sourceTree, desc, removedEdges, temperature) if not bestPath: log.debug("no improving path could be found for reconnecting the two components, restoring the previously removed edges..") bestPath = self.edgePathToNodePath(removedEdges) newPathInstalled = False log.debug('descendants : %s' % desc) log.debug('sourceTree : %s' % sourceTree) log.debug('bestPath : %s' % bestPath) log.debug('removedEdges: %s' % self.edgePathToNodePath(removedEdges)) if not bestPath[-1] == subRoot: # attempt to reroot self.reRoot(bestPath[-1], subRoot) if self.usePathQueue: self.addToPathQueue(bestPath) self.addPathToTabu(bestPath) self.add_edges(bestPath) return (newPathInstalled, degrading) def selectReconnectionPath(self, sourceTreeNodes, descTreeNodes, removedEdges, temperature): """ selects reconnection path between the two components considers pairs of nodes from the two given sets source/descTreeNodes applies the search_strategy parameter allows to degrade with probability derived from given temperature only if intensify_only parameter is set to False """ removedPath = self.edgePathToNodePath(removedEdges) toImprove = self.NetworkGraph.getEdgePathWeight(removedEdges) log.debug("cost to improve : toImprove = %s" % toImprove) intensify = Setup.get('intensify_only') nbNodesInST = min([Setup.get('improve_search_space'), len(sourceTreeNodes)]) sourceTreeNodesList = list(sourceTreeNodes) descTreeNodesList = list(descTreeNodes) sourceTreeNodesList = random.sample(sourceTreeNodesList, nbNodesInST) degrading = False # we intensify if possible improvingPath = None improvingPathCost = sys.maxint lessDegradingPath = None lessDegradingPathCost = sys.maxint search_strategy = Setup.get('search_strategy') for stn in sourceTreeNodesList: for dtn in descTreeNodesList: log.debug("considered reconnection : (%s, %s)" % (stn, dtn)) sPW = self.NetworkGraph.ShortestPathsLength[stn][dtn][0] if sPW < toImprove and sPW < improvingPathCost: improvingPath = (stn, dtn) improvingPathCost = sPW # sPW >= toImprove # if intensify = True, no need to check for a lessDegradingPath elif (not intensify) and (sPW < lessDegradingPathCost): sP = self.NetworkGraph.ShortestPaths[stn][dtn][0] if (sP != removedPath): lessDegradingPath = sP lessDegradingPathCost = sPW if (search_strategy == Setup.FIRST_IMPROVEMENT) and improvingPath: break if improvingPath: (stn, dtn) = improvingPath sP = self.NetworkGraph.ShortestPaths[stn][dtn][0] cleanedImpPath = self.cleanPath(sP, sourceTreeNodes, descTreeNodes) return (cleanedImpPath, degrading) elif not intensify and lessDegradingPath: cleanedPath = self.cleanPath(lessDegradingPath, sourceTreeNodes, descTreeNodes) if cleanedPath != removedPath: cPWeight = self.NetworkGraph.getNodePathWeight(cleanedPath) if cPWeight < toImprove: degrading = False # because the path is improving, although useless, for readability return (cleanedPath, degrading) else: # cPWeight >= toImprove degrading = self.evaluateSAProbability(toImprove, cPWeight, temperature) if degrading: return (cleanedPath, degrading) return (None, degrading) def nodePathToEdgePath(self, nodePath): """ converts a path expressed as [n1, n2, n3] to the tuple representation [(n1, n2), (n2, n3), (n3, n3)] """ returnedList = [] for i in range(len(nodePath) - 1): n1 = nodePath[i] n2 = nodePath[i+1] returnedList.append((n1, n2,)) return returnedList def edgePathToNodePath(self, edgePath): """ converts a path expressed as tuple representation [(n1, n2), (n2, n3), (n3, n3)] to a list of nodes representation: [n1, n2, n3] """ n1, n2 = edgePath[0] nodePath = [n1, n2] for e in edgePath[1:]: n1, n2 = e if not n1 == nodePath[-1]: raise Exception("EdgePath is not correct") nodePath.append(n2) return nodePath # ████████╗ █████╗ ██████╗ ██╗ ██╗ # ╚══██╔══╝██╔══██╗██╔══██╗██║ ██║ # ██║ ███████║██████╔╝██║ ██║ # ██║ ██╔══██║██╔══██╗██║ ██║ # ██║ ██║ ██║██████╔╝╚██████╔╝ # ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═════╝ def addPathToTabu(self, path): """ adds given path to the tabu list with initial ttl value """ for i in range(len(path) - 1): n1 = path[i] n2 = path[i+1] e = (n1, n2) self.tabuList[e] = self.ttl+1 def updateTabu(self): """ updates the tabu list: decrements all values by 1 and remove keys when such values reach 0 """ for e in self.tabuList.copy(): if(self.tabuList[e] == 1): del self.tabuList[e] else: self.tabuList[e] = self.tabuList[e] - 1 def emptyTabu(self): """ empty the tabu list """ self.tabuList = {} # ██████╗ ███████╗██████╗ ██████╗ ██████╗ ████████╗ # ██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔═══██╗╚══██╔══╝ # ██████╔╝█████╗ ██████╔╝██║ ██║██║ ██║ ██║ # ██╔══██╗██╔══╝ ██╔══██╗██║ ██║██║ ██║ ██║ # ██║ ██║███████╗██║ ██║╚██████╔╝╚██████╔╝ ██║ # ╚═╝ ╚═╝╚══════╝╚═╝ ╚═╝ ╚═════╝ ╚═════╝ ╚═╝ def reRoot(self, newRoot, oldRoot): """ launches a reroot procedure from given oldRoot to given newRoot """ # when rerooting, some paths may be inverted, and thus, must change in the path priority queue # if oldRoot is a black node and is now of degree 2, two paths must be merged into one # Has to be done first, before inverting the edges in the tree. if self.usePathQueue: newRootInsideAPath = not newRoot in self.parentPaths if newRootInsideAPath: # need to do a split before inverting the paths up to the oldRoot self.splitPathContainingNewRoot(newRoot, oldRoot) # invert paths from newRoot to oldRoot if not newRoot in self.parentPaths: raise Exception("reRoot failed") self.invertPathsFromNewRootToOldRoot(newRoot, oldRoot) # attempt to connect paths together at oldRoot self.mergePaths(oldRoot) n1 = newRoot parents = self.predecessors(n1) while parents: # parents of tree nodes can have at most 1 element n2 = parents[0] parents = self.predecessors(n2) e = self[n2][n1] self.remove_edge(n2, n1) self.add_edge(n1, n2, e) n1 = n2 # ██████╗ █████╗ ████████╗██╗ ██╗ ██████╗ ██╗ ██╗███████╗██╗ ██╗███████╗ # ██╔══██╗██╔══██╗╚══██╔══╝██║ ██║██╔═══██╗██║ ██║██╔════╝██║ ██║██╔════╝ # ██████╔╝███████║ ██║ ███████║██║ ██║██║ ██║█████╗ ██║ ██║█████╗ # ██╔═══╝ ██╔══██║ ██║ ██╔══██║██║▄▄ ██║██║ ██║██╔══╝ ██║ ██║██╔══╝ # ██║ ██║ ██║ ██║ ██║ ██║╚██████╔╝╚██████╔╝███████╗╚██████╔╝███████╗ # ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══▀▀═╝ ╚═════╝ ╚══════╝ ╚═════╝ ╚══════╝ def invertPathsFromNewRootToOldRoot(self, newRoot, oldRoot): """ rerooting case when a rerooting needs to be done from oldRoot to newRoot. Invert all the paths from oldRoot to newRoot """ currentRoot = newRoot toInvert = [] while currentRoot != oldRoot: # parentPath is the path to invert if not currentRoot in self.parentPaths: # it means that currentRoot has a childPath that leads to the previous currentRoot, # but is not in a path, that path has to be split self.splitPathContainingNewRoot(currentRoot, oldRoot) parentPathTuple = self.parentPaths[currentRoot] toInvert.append(parentPathTuple) # update the currentRoot to the last element of the parentPath currentRoot = parentPathTuple[1][0] # inversion must be done after climbing the tree # top-down inversion to avoid messing with the parentPaths data structure toInvert.reverse() for t in toInvert: self.invertPath(t) def splitPathContainingNewRoot(self, newRoot, oldRoot): """ transform the case when newRoot is inside a path into the simpler case when there is a path starting and ending at newRoot newRoot is the node where the split is to be done """ borderNodeFound = False pathContainingNewRoot = None n1 = newRoot while not borderNodeFound: parents = self.predecessors(n1) if parents: # n1 has a predecessor (is not a root) parent = parents[0] if parent in self.childrenPaths: # the node parent has children paths for p in self.childrenPaths[parent]: if newRoot in p[1]: # if new root is in one of the children paths of parent borderNodeFound = True pathContainingNewRoot = p break n1 = parent else: # parents is empty, n1 should be oldRoot if n1 == oldRoot: raise Exception("Error in path splitting while rerooting, no path seems to contain newRoot") else: raise Exception("Error in path splitting while rerooting, a root different from oldRoot has been reached") self.splitPathAroundNode(newRoot, pathContainingNewRoot) def addToPathQueue(self, path): """ pre: the path should be in the right way, that is, the first node of the path is the one that is part of the tree component containing the root The path should not have already been added to the tree Called whenever a path is added to the tree """ pathWeight = self.NetworkGraph.getNodePathWeight(path) pathTuple = (-pathWeight, path) self.addTupleToPathQueue(pathTuple) def addTupleToPathQueue(self, pathTuple): """ adds a tuple to the path queue each tuple contains a path and its weight (negated) """ n1 = pathTuple[1][0] # first node of the path n2 = pathTuple[1][-1] # last node of the path if n1 == n2: print '' print 'edges', self.edges() print 'paths', self.pathQueue.queue print pathTuple raise Exception("Bad path, begins and ends with the same node. Shouldn't happen n1 == n2 %s", n1) self.pathQueue.put(pathTuple) self.addChildPath(pathTuple, n1) self.addParentPath(pathTuple, n2) def addChildPath(self, pathTuple, node): if not node in self.childrenPaths: self.childrenPaths[node] = [pathTuple] else: self.childrenPaths[node].append(pathTuple) def addParentPath(self, pathTuple, node): self.parentPaths[node] = pathTuple def removeChildPath(self, pathTuple, node): self.childrenPaths[node].remove(pathTuple) if not self.childrenPaths[node]: # if the list becomes empty, remove the key del self.childrenPaths[node] def removeParentPath(self, pathTuple, node): if not pathTuple == self.parentPaths[node]: raise Exception('removeParentPath failed') del self.parentPaths[node] def removeTupleFromPathQueue(self, pathTuple, tryMerge = True): n1 = pathTuple[1][0] # first node of the path n2 = pathTuple[1][-1] # last node of the path Utils.removeFromPriorityQueue(self.pathQueue, pathTuple) self.removeChildPath(pathTuple, n1) self.removeParentPath(pathTuple, n2) # try to merge if tryMerge: self.mergePaths(n1) self.mergePaths(n2) def replacePaths(self, toRemove, toAdd): for p in toRemove: self.removeTupleFromPathQueue(p, False) for p in toAdd: self.addTupleToPathQueue(p) def mergePaths(self, node): """ attempts to merge the paths around the given node """ if (not node in self.C): if (node in self.parentPaths) and (node in self.childrenPaths): childrenTuples = self.childrenPaths[node] parentTuple = self.parentPaths[node] if (len(childrenTuples) == 1) and (parentTuple): childTuple = childrenTuples[0] # there is only one childTuple newPath = parentTuple[1][:] newPath.extend(childTuple[1][1:]) newWeight = parentTuple[0]+childTuple[0] newTuple = (newWeight, newPath) self.replacePaths([childTuple, parentTuple], [newTuple]) def splitPathAroundNode(self, node, pathTuple, removeBotPath=False): """ splits the path contained in pathTuple in two paths around node The three data structures pathQueue, parentPaths and childrenPaths are updated """ weight, path = pathTuple if not node in path: raise Exception('A path cannot be split around a node if the node is not in the path') nodeIndex = path.index(node) topPath = path[:(nodeIndex+1)] botPath = path[nodeIndex:] topWeight = -self.NetworkGraph.getNodePathWeight(topPath) botWeight = weight - topWeight topTuple = (topWeight, topPath) botTuple = (botWeight, botPath) if removeBotPath: self.replacePaths([pathTuple], [topTuple]) else: self.replacePaths([pathTuple], [topTuple, botTuple]) def invertPath(self, pathTuple): """ for given pathTuple (weight, path), invert all of its edges (childrenPaths and parentPaths data structures are updated in subsequent calls to add/removeTupleFrom/ToPathQueue) """ pWeight, path = pathTuple oldRoot, newRoot = path[0], path[-1] reversedPath = path[:] reversedPath.reverse() newPathTuple = (pWeight, reversedPath) self.replacePaths([pathTuple], [newPathTuple]) # ███████╗██╗███╗ ███╗██╗ ██╗██╗ █████╗ ████████╗███████╗██████╗ # ██╔════╝██║████╗ ████║██║ ██║██║ ██╔══██╗╚══██╔══╝██╔════╝██╔══██╗ # ███████╗██║██╔████╔██║██║ ██║██║ ███████║ ██║ █████╗ ██║ ██║ # ╚════██║██║██║╚██╔╝██║██║ ██║██║ ██╔══██║ ██║ ██╔══╝ ██║ ██║ # ███████║██║██║ ╚═╝ ██║╚██████╔╝███████╗██║ ██║ ██║ ███████╗██████╔╝ # ╚══════╝╚═╝╚═╝ ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚══════╝╚═════╝ # █████╗ ███╗ ██╗███╗ ██╗███████╗ █████╗ ██╗ ██╗███╗ ██╗ ██████╗ # ██╔══██╗████╗ ██║████╗ ██║██╔════╝██╔══██╗██║ ██║████╗ ██║██╔════╝ # ███████║██╔██╗ ██║██╔██╗ ██║█████╗ ███████║██║ ██║██╔██╗ ██║██║ ███╗ # ██╔══██║██║╚██╗██║██║╚██╗██║██╔══╝ ██╔══██║██║ ██║██║╚██╗██║██║ ██║ # ██║ ██║██║ ╚████║██║ ╚████║███████╗██║ ██║███████╗██║██║ ╚████║╚██████╔╝ # ╚═╝ ╚═╝╚═╝ ╚═══╝╚═╝ ╚═══╝╚══════╝╚═╝ ╚═╝╚══════╝╚═╝╚═╝ ╚═══╝ ╚═════╝ def evaluateSAProbability(self, oldWeight, newWeight, temperature): """ returns True if we want to replace paths according to the temperature and their weights If newWeight is higher than oldWeight (this corresponds to a degradation), return True with probability exp( -(newWeight-oldWeight) / temperature) else return False If newWeight is lower than oldWeight (this corresponds to an improvement), return True """ delta = 100*(newWeight - oldWeight)/(float(newWeight)) if delta > 0: # degrading temperature = float(temperature) # ensure we don't divide by an integer if temperature == 0.0: # do not degrade when temperature is zero return False val = math.exp(-delta/temperature) r = random.random() if r < val: # print when a degradation is accepted # from __future__ import print_function # sys.stdout.write('|') # print '|', return True else: return False else: # improving return True # ██╗ ██╗ █████╗ ██╗ ██╗██████╗ █████╗ ████████╗██╗ ██████╗ ███╗ ██╗ # ██║ ██║██╔══██╗██║ ██║██╔══██╗██╔══██╗╚══██╔══╝██║██╔═══██╗████╗ ██║ # ██║ ██║███████║██║ ██║██║ ██║███████║ ██║ ██║██║ ██║██╔██╗ ██║ # ╚██╗ ██╔╝██╔══██║██║ ██║██║ ██║██╔══██║ ██║ ██║██║ ██║██║╚██╗██║ # ╚████╔╝ ██║ ██║███████╗██║██████╔╝██║ ██║ ██║ ██║╚██████╔╝██║ ╚████║ # ╚═══╝ ╚═╝ ╚═╝╚══════╝╚═╝╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ def validate(self): """ validates that self is a valid multicast service with respect to the inner clients set """ treeNodes = dag.descendants(self, self.root) treeNodes.add(self.root) # the tree rooted at self.root is the only component of the multicasttree 'self' assert set(self.nodes()) == treeNodes # every client of the multicast group is a node of the multicasttree 'self' assert self.C.issubset(treeNodes) # there is no loop in the tree assert len(self.nodes()) == len(self.edges()) + 1 def validatePIMTree(self): """ validates that self follows the PIM's shortest path-based way of building multicast trees """ log.debug("ensurePIMTree") T = self NG = T.NetworkGraph clients = T.C root = T.root # compute PIM tree edges shortestPaths = [NG.ShortestPaths[root][c][0] for c in clients] log.debug("shortestPaths %s" % shortestPaths) PIMTreeEdgesSet = set() for nodesPath in shortestPaths: edgesPath = T.nodePathToEdgePath(nodesPath) PIMTreeEdgesSet |= set(edgesPath) log.debug("PIMTreeEdgesSet %s" % PIMTreeEdgesSet) # this tree edges treeEdgesSet = set(T.edges()) diff = PIMTreeEdgesSet ^ treeEdgesSet log.debug("diff %s" % diff) if diff: raise Exception("the given tree does not follow the PIM mode for tree building!")
gpl-2.0
spallavolu/scikit-learn
examples/linear_model/plot_ridge_path.py
254
1655
""" =========================================================== Plot Ridge coefficients as a function of the regularization =========================================================== Shows the effect of collinearity in the coefficients of an estimator. .. currentmodule:: sklearn.linear_model :class:`Ridge` Regression is the estimator used in this example. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares, coefficients exhibit big oscillations. """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # X is the 10x10 Hilbert matrix X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]) y = np.ones(10) ############################################################################### # Compute paths n_alphas = 200 alphas = np.logspace(-10, -2, n_alphas) clf = linear_model.Ridge(fit_intercept=False) coefs = [] for a in alphas: clf.set_params(alpha=a) clf.fit(X, y) coefs.append(clf.coef_) ############################################################################### # Display results ax = plt.gca() ax.set_color_cycle(['b', 'r', 'g', 'c', 'k', 'y', 'm']) ax.plot(alphas, coefs) ax.set_xscale('log') ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis plt.xlabel('alpha') plt.ylabel('weights') plt.title('Ridge coefficients as a function of the regularization') plt.axis('tight') plt.show()
bsd-3-clause
phobson/statsmodels
statsmodels/base/tests/test_data.py
5
35116
import numpy as np from numpy.testing import assert_equal, assert_, assert_raises import pandas import pandas.util.testing as ptesting from statsmodels.base import data as sm_data from statsmodels.formula import handle_formula_data #class TestDates(object): # @classmethod # def setupClass(cls): # nrows = 10 # cls.dates_result = cls.dates_results = np.random.random(nrows) # # def test_dates(self): # np.testing.assert_equal(data.wrap_output(self.dates_input, 'dates'), # self.dates_result) class TestArrays(object): @classmethod def setupClass(cls): cls.endog = np.random.random(10) cls.exog = np.c_[np.ones(10), np.random.random((10,2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_result = cls.col_input = np.random.random(nvars) cls.row_result = cls.row_input = np.random.random(nrows) cls.cov_result = cls.cov_input = np.random.random((nvars, nvars)) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y' cls.row_labels = None def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog) def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves np.testing.assert_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) np.testing.assert_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) np.testing.assert_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) def test_names(self): data = self.data np.testing.assert_equal(data.xnames, self.xnames) np.testing.assert_equal(data.ynames, self.ynames) def test_labels(self): #HACK: because numpy master after NA stuff assert_equal fails on # pandas indices np.testing.assert_(np.all(self.data.row_labels == self.row_labels)) class TestArrays2dEndog(TestArrays): @classmethod def setupClass(cls): super(TestArrays2dEndog, cls).setupClass() cls.endog = np.random.random((10,1)) cls.exog = np.c_[np.ones(10), np.random.random((10,2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) #cls.endog = endog.squeeze() def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) class TestArrays1dExog(TestArrays): @classmethod def setupClass(cls): super(TestArrays1dExog, cls).setupClass() cls.endog = np.random.random(10) exog = np.random.random(10) cls.data = sm_data.handle_data(cls.endog, exog) cls.exog = exog[:,None] cls.xnames = ['x1'] cls.ynames = 'y' def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog.squeeze()) class TestDataFrames(TestArrays): @classmethod def setupClass(cls): cls.endog = pandas.DataFrame(np.random.random(10), columns=['y_1']) exog = pandas.DataFrame(np.random.random((10,2)), columns=['x_1','x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = exog.columns, columns = exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index def test_orig(self): ptesting.assert_frame_equal(self.data.orig_endog, self.endog) ptesting.assert_frame_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog.values) def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves ptesting.assert_series_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) ptesting.assert_series_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) ptesting.assert_frame_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) class TestLists(TestArrays): @classmethod def setupClass(cls): super(TestLists, cls).setupClass() cls.endog = np.random.random(10).tolist() cls.exog = np.c_[np.ones(10), np.random.random((10,2))].tolist() cls.data = sm_data.handle_data(cls.endog, cls.exog) class TestRecarrays(TestArrays): @classmethod def setupClass(cls): super(TestRecarrays, cls).setupClass() cls.endog = np.random.random(9).view([('y_1', 'f8')]).view(np.recarray) exog = np.random.random(9*3).view([('const', 'f8'),('x_1', 'f8'), ('x_2', 'f8')]).view(np.recarray) exog['const'] = 1 cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.view(float, type=np.ndarray)) np.testing.assert_equal(self.data.exog, self.exog.view((float, 3), type=np.ndarray)) class TestStructarrays(TestArrays): @classmethod def setupClass(cls): super(TestStructarrays, cls).setupClass() cls.endog = np.random.random(9).view([('y_1', 'f8')]).view(np.recarray) exog = np.random.random(9*3).view([('const', 'f8'),('x_1', 'f8'), ('x_2', 'f8')]).view(np.recarray) exog['const'] = 1 cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.view(float, type=np.ndarray)) np.testing.assert_equal(self.data.exog, self.exog.view((float,3), type=np.ndarray)) class TestListDataFrame(TestDataFrames): @classmethod def setupClass(cls): cls.endog = np.random.random(10).tolist() exog = pandas.DataFrame(np.random.random((10,2)), columns=['x_1','x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = exog.columns, columns = exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y' cls.row_labels = cls.exog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog.values) def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) ptesting.assert_frame_equal(self.data.orig_exog, self.exog) class TestDataFrameList(TestDataFrames): @classmethod def setupClass(cls): cls.endog = pandas.DataFrame(np.random.random(10), columns=['y_1']) exog = pandas.DataFrame(np.random.random((10,2)), columns=['x1','x2']) exog.insert(0, 'const', 1) cls.exog = exog.values.tolist() cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = exog.columns, columns = exog.columns) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y_1' cls.row_labels = cls.endog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) def test_orig(self): ptesting.assert_frame_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) class TestArrayDataFrame(TestDataFrames): @classmethod def setupClass(cls): cls.endog = np.random.random(10) exog = pandas.DataFrame(np.random.random((10,2)), columns=['x_1','x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = exog.columns, columns = exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y' cls.row_labels = cls.exog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog.values) def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) ptesting.assert_frame_equal(self.data.orig_exog, self.exog) class TestDataFrameArray(TestDataFrames): @classmethod def setupClass(cls): cls.endog = pandas.DataFrame(np.random.random(10), columns=['y_1']) exog = pandas.DataFrame(np.random.random((10,2)), columns=['x1','x2']) # names mimic defaults exog.insert(0, 'const', 1) cls.exog = exog.values cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = exog.columns, columns = exog.columns) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y_1' cls.row_labels = cls.endog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) def test_orig(self): ptesting.assert_frame_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) class TestSeriesDataFrame(TestDataFrames): @classmethod def setupClass(cls): cls.endog = pandas.Series(np.random.random(10), name='y_1') exog = pandas.DataFrame(np.random.random((10,2)), columns=['x_1','x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = exog.columns, columns = exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index def test_orig(self): ptesting.assert_series_equal(self.data.orig_endog, self.endog) ptesting.assert_frame_equal(self.data.orig_exog, self.exog) class TestSeriesSeries(TestDataFrames): @classmethod def setupClass(cls): cls.endog = pandas.Series(np.random.random(10), name='y_1') exog = pandas.Series(np.random.random(10), name='x_1') cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 1 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index = [exog.name]) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index = exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = [exog.name], columns = [exog.name]) cls.xnames = ['x_1'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index def test_orig(self): ptesting.assert_series_equal(self.data.orig_endog, self.endog) ptesting.assert_series_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog.values[:,None]) def test_alignment(): #Fix Issue #206 from statsmodels.regression.linear_model import OLS from statsmodels.datasets.macrodata import load_pandas d = load_pandas().data #growth rates gs_l_realinv = 400 * np.log(d['realinv']).diff().dropna() gs_l_realgdp = 400 * np.log(d['realgdp']).diff().dropna() lint = d['realint'][:-1] # incorrect indexing for test purposes endog = gs_l_realinv # re-index because they won't conform to lint realgdp = gs_l_realgdp.reindex(lint.index, method='bfill') data = dict(const=np.ones_like(lint), lrealgdp=realgdp, lint=lint) exog = pandas.DataFrame(data) # which index do we get?? np.testing.assert_raises(ValueError, OLS, *(endog, exog)) class TestMultipleEqsArrays(TestArrays): @classmethod def setupClass(cls): cls.endog = np.random.random((10,4)) cls.exog = np.c_[np.ones(10), np.random.random((10,2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 neqs = 4 cls.col_result = cls.col_input = np.random.random(nvars) cls.row_result = cls.row_input = np.random.random(nrows) cls.cov_result = cls.cov_input = np.random.random((nvars, nvars)) cls.cov_eq_result = cls.cov_eq_input = np.random.random((neqs,neqs)) cls.col_eq_result = cls.col_eq_input = np.array((neqs, nvars)) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = ['y1', 'y2', 'y3', 'y4'] cls.row_labels = None def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves np.testing.assert_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) np.testing.assert_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) np.testing.assert_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) np.testing.assert_equal(data.wrap_output(self.cov_eq_input, 'cov_eq'), self.cov_eq_result) np.testing.assert_equal(data.wrap_output(self.col_eq_input, 'columns_eq'), self.col_eq_result) class TestMultipleEqsDataFrames(TestDataFrames): @classmethod def setupClass(cls): cls.endog = endog = pandas.DataFrame(np.random.random((10,4)), columns=['y_1', 'y_2', 'y_3', 'y_4']) exog = pandas.DataFrame(np.random.random((10,2)), columns=['x_1','x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 neqs = 4 cls.col_input = np.random.random(nvars) cls.col_result = pandas.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pandas.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pandas.DataFrame(cls.cov_input, index = exog.columns, columns = exog.columns) cls.cov_eq_input = np.random.random((neqs, neqs)) cls.cov_eq_result = pandas.DataFrame(cls.cov_eq_input, index=endog.columns, columns=endog.columns) cls.col_eq_input = np.random.random((nvars, neqs)) cls.col_eq_result = pandas.DataFrame(cls.col_eq_input, index=exog.columns, columns=endog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = ['y_1', 'y_2', 'y_3', 'y_4'] cls.row_labels = cls.exog.index def test_attach(self): data = self.data ptesting.assert_series_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) ptesting.assert_series_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) ptesting.assert_frame_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) ptesting.assert_frame_equal(data.wrap_output(self.cov_eq_input, 'cov_eq'), self.cov_eq_result) ptesting.assert_frame_equal(data.wrap_output(self.col_eq_input, 'columns_eq'), self.col_eq_result) class TestMissingArray(object): @classmethod def setupClass(cls): X = np.random.random((25,4)) y = np.random.random(25) y[10] = np.nan X[2,3] = np.nan X[14,2] = np.nan cls.y, cls.X = y, X def test_raise_no_missing(self): # smoke test for #1700 sm_data.handle_data(np.random.random(20), np.random.random((20, 2)), 'raise') def test_raise(self): np.testing.assert_raises(Exception, sm_data.handle_data, (self.y, self.X, 'raise')) def test_drop(self): y = self.y X = self.X combined = np.c_[y, X] idx = ~np.isnan(combined).any(axis=1) y = y[idx] X = X[idx] data = sm_data.handle_data(self.y, self.X, 'drop') np.testing.assert_array_equal(data.endog, y) np.testing.assert_array_equal(data.exog, X) def test_none(self): data = sm_data.handle_data(self.y, self.X, 'none', hasconst=False) np.testing.assert_array_equal(data.endog, self.y) np.testing.assert_array_equal(data.exog, self.X) def test_endog_only_raise(self): np.testing.assert_raises(Exception, sm_data.handle_data, (self.y, None, 'raise')) def test_endog_only_drop(self): y = self.y y = y[~np.isnan(y)] data = sm_data.handle_data(self.y, None, 'drop') np.testing.assert_array_equal(data.endog, y) def test_mv_endog(self): y = self.X y = y[~np.isnan(y).any(axis=1)] data = sm_data.handle_data(self.X, None, 'drop') np.testing.assert_array_equal(data.endog, y) def test_extra_kwargs_2d(self): sigma = np.random.random((25, 25)) sigma = sigma + sigma.T - np.diag(np.diag(sigma)) data = sm_data.handle_data(self.y, self.X, 'drop', sigma=sigma) idx = ~np.isnan(np.c_[self.y, self.X]).any(axis=1) sigma = sigma[idx][:,idx] np.testing.assert_array_equal(data.sigma, sigma) def test_extra_kwargs_1d(self): weights = np.random.random(25) data = sm_data.handle_data(self.y, self.X, 'drop', weights=weights) idx = ~np.isnan(np.c_[self.y, self.X]).any(axis=1) weights = weights[idx] np.testing.assert_array_equal(data.weights, weights) class TestMissingPandas(object): @classmethod def setupClass(cls): X = np.random.random((25,4)) y = np.random.random(25) y[10] = np.nan X[2,3] = np.nan X[14,2] = np.nan cls.y, cls.X = pandas.Series(y), pandas.DataFrame(X) def test_raise_no_missing(self): # smoke test for #1700 sm_data.handle_data(pandas.Series(np.random.random(20)), pandas.DataFrame(np.random.random((20, 2))), 'raise') def test_raise(self): np.testing.assert_raises(Exception, sm_data.handle_data, (self.y, self.X, 'raise')) def test_drop(self): y = self.y X = self.X combined = np.c_[y, X] idx = ~np.isnan(combined).any(axis=1) y = y.ix[idx] X = X.ix[idx] data = sm_data.handle_data(self.y, self.X, 'drop') np.testing.assert_array_equal(data.endog, y.values) ptesting.assert_series_equal(data.orig_endog, self.y.ix[idx]) np.testing.assert_array_equal(data.exog, X.values) ptesting.assert_frame_equal(data.orig_exog, self.X.ix[idx]) def test_none(self): data = sm_data.handle_data(self.y, self.X, 'none', hasconst=False) np.testing.assert_array_equal(data.endog, self.y.values) np.testing.assert_array_equal(data.exog, self.X.values) def test_endog_only_raise(self): np.testing.assert_raises(Exception, sm_data.handle_data, (self.y, None, 'raise')) def test_endog_only_drop(self): y = self.y y = y.dropna() data = sm_data.handle_data(self.y, None, 'drop') np.testing.assert_array_equal(data.endog, y.values) def test_mv_endog(self): y = self.X y = y.ix[~np.isnan(y.values).any(axis=1)] data = sm_data.handle_data(self.X, None, 'drop') np.testing.assert_array_equal(data.endog, y.values) def test_labels(self): 2, 10, 14 labels = pandas.Index([0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) data = sm_data.handle_data(self.y, self.X, 'drop') np.testing.assert_(data.row_labels.equals(labels)) class TestConstant(object): @classmethod def setupClass(cls): from statsmodels.datasets.longley import load_pandas cls.data = load_pandas() def test_array_constant(self): exog = self.data.exog.copy() exog['const'] = 1 data = sm_data.handle_data(self.data.endog.values, exog.values) np.testing.assert_equal(data.k_constant, 1) np.testing.assert_equal(data.const_idx, 6) def test_pandas_constant(self): exog = self.data.exog.copy() exog['const'] = 1 data = sm_data.handle_data(self.data.endog, exog) np.testing.assert_equal(data.k_constant, 1) np.testing.assert_equal(data.const_idx, 6) def test_pandas_noconstant(self): exog = self.data.exog.copy() data = sm_data.handle_data(self.data.endog, exog) np.testing.assert_equal(data.k_constant, 0) np.testing.assert_equal(data.const_idx, None) def test_array_noconstant(self): exog = self.data.exog.copy() data = sm_data.handle_data(self.data.endog.values, exog.values) np.testing.assert_equal(data.k_constant, 0) np.testing.assert_equal(data.const_idx, None) class TestHandleMissing(object): def test_pandas(self): df = ptesting.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]], df[df.columns[1:]] data, _ = sm_data.handle_missing(y, X, missing='drop') df = df.dropna() y_exp, X_exp = df[df.columns[0]], df[df.columns[1:]] ptesting.assert_frame_equal(data['exog'], X_exp) ptesting.assert_series_equal(data['endog'], y_exp) def test_arrays(self): arr = np.random.randn(20, 4) arr[[2, 5, 10], [2, 3, 1]] = np.nan y, X = arr[:,0], arr[:,1:] data, _ = sm_data.handle_missing(y, X, missing='drop') bools_mask = np.ones(20, dtype=bool) bools_mask[[2, 5, 10]] = False y_exp = arr[bools_mask, 0] X_exp = arr[bools_mask, 1:] np.testing.assert_array_equal(data['endog'], y_exp) np.testing.assert_array_equal(data['exog'], X_exp) def test_pandas_array(self): df = ptesting.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]], df[df.columns[1:]].values data, _ = sm_data.handle_missing(y, X, missing='drop') df = df.dropna() y_exp, X_exp = df[df.columns[0]], df[df.columns[1:]].values np.testing.assert_array_equal(data['exog'], X_exp) ptesting.assert_series_equal(data['endog'], y_exp) def test_array_pandas(self): df = ptesting.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]].values, df[df.columns[1:]] data, _ = sm_data.handle_missing(y, X, missing='drop') df = df.dropna() y_exp, X_exp = df[df.columns[0]].values, df[df.columns[1:]] ptesting.assert_frame_equal(data['exog'], X_exp) np.testing.assert_array_equal(data['endog'], y_exp) def test_noop(self): df = ptesting.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]], df[df.columns[1:]] data, _ = sm_data.handle_missing(y, X, missing='none') y_exp, X_exp = df[df.columns[0]], df[df.columns[1:]] ptesting.assert_frame_equal(data['exog'], X_exp) ptesting.assert_series_equal(data['endog'], y_exp) class CheckHasConstant(object): def test_hasconst(self): for x, result in zip(self.exogs, self.results): mod = self.mod(self.y, x) assert_equal(mod.k_constant, result[0]) #['k_constant']) assert_equal(mod.data.k_constant, result[0]) if result[1] is None: assert_(mod.data.const_idx is None) else: assert_equal(mod.data.const_idx, result[1]) # extra check after fit, some models raise on singular fit_kwds = getattr(self, 'fit_kwds', {}) try: res = mod.fit(**fit_kwds) assert_equal(res.model.k_constant, result[0]) assert_equal(res.model.data.k_constant, result[0]) except: pass @classmethod def setup_class(cls): # create data np.random.seed(0) cls.y_c = np.random.randn(20) cls.y_bin = (cls.y_c > 0).astype(int) x1 = np.column_stack((np.ones(20), np.zeros(20))) result1 = (1, 0) x2 = np.column_stack((np.arange(20) < 10.5, np.arange(20) > 10.5)).astype(float) result2 = (1, None) x3 = np.column_stack((np.arange(20), np.zeros(20))) result3 = (0, None) x4 = np.column_stack((np.arange(20), np.zeros((20, 2)))) result4 = (0, None) x5 = np.column_stack((np.zeros(20), 0.5 * np.ones(20))) result5 = (1, 1) x5b = np.column_stack((np.arange(20), np.ones((20, 3)))) result5b = (1, 1) x5c = np.column_stack((np.arange(20), np.ones((20, 3)) * [0.5, 1, 1])) result5c = (1, 2) # implicit and zero column x6 = np.column_stack((np.arange(20) < 10.5, np.arange(20) > 10.5, np.zeros(20))).astype(float) result6 = (1, None) x7 = np.column_stack((np.arange(20) < 10.5, np.arange(20) > 10.5, np.zeros((20, 2)))).astype(float) result7 = (1, None) cls.exogs = (x1, x2, x3, x4, x5, x5b, x5c, x6, x7) cls.results = (result1, result2, result3, result4, result5, result5b, result5c, result6, result7) class TestHasConstantOLS(CheckHasConstant): def __init__(self): self.setup_class() # why does nose do it properly from statsmodels.regression.linear_model import OLS self.mod = OLS self.y = self.y_c class TestHasConstantGLM(CheckHasConstant): def __init__(self): self.setup_class() # why does nose do it properly from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families self.mod = lambda y, x : GLM(y, x, family=families.Binomial()) self.y = self.y_bin class TestHasConstantLogit(CheckHasConstant): def __init__(self): self.setup_class() # why does nose do it properly from statsmodels.discrete.discrete_model import Logit self.mod = Logit self.y = self.y_bin self.fit_kwds = {'disp': False} def test_dtype_object(): # see #880 X = np.random.random((40,2)) df = pandas.DataFrame(X) df[2] = np.random.randint(2, size=40).astype('object') df['constant'] = 1 y = pandas.Series(np.random.randint(2, size=40)) np.testing.assert_raises(ValueError, sm_data.handle_data, y, df) def test_formula_missing_extra_arrays(): np.random.seed(1) # because patsy can't turn off missing data-handling as of 0.3.0, we need # separate tests to make sure that missing values are handled correctly # when going through formulas # there is a handle_formula_data step # then there is the regular handle_data step # see 2083 # the untested cases are endog/exog have missing. extra has missing. # endog/exog are fine. extra has missing. # endog/exog do or do not have missing and extra has wrong dimension y = np.random.randn(10) y_missing = y.copy() y_missing[[2, 5]] = np.nan X = np.random.randn(10) X_missing = X.copy() X_missing[[1, 3]] = np.nan weights = np.random.uniform(size=10) weights_missing = weights.copy() weights_missing[[6]] = np.nan weights_wrong_size = np.random.randn(12) data = {'y': y, 'X': X, 'y_missing': y_missing, 'X_missing': X_missing, 'weights': weights, 'weights_missing': weights_missing} data = pandas.DataFrame.from_dict(data) data['constant'] = 1 formula = 'y_missing ~ X_missing' ((endog, exog), missing_idx, design_info) = handle_formula_data(data, None, formula, depth=2, missing='drop') kwargs = {'missing_idx': missing_idx, 'missing': 'drop', 'weights': data['weights_missing']} model_data = sm_data.handle_data(endog, exog, **kwargs) data_nona = data.dropna() assert_equal(data_nona['y'].values, model_data.endog) assert_equal(data_nona[['constant', 'X']].values, model_data.exog) assert_equal(data_nona['weights'].values, model_data.weights) tmp = handle_formula_data(data, None, formula, depth=2, missing='drop') (endog, exog), missing_idx, design_info = tmp weights_2d = np.random.randn(10, 10) weights_2d[[8, 7], [7, 8]] = np.nan #symmetric missing values kwargs.update({'weights': weights_2d, 'missing_idx': missing_idx}) model_data2 = sm_data.handle_data(endog, exog, **kwargs) good_idx = [0, 4, 6, 9] assert_equal(data.ix[good_idx, 'y'], model_data2.endog) assert_equal(data.ix[good_idx, ['constant', 'X']], model_data2.exog) assert_equal(weights_2d[good_idx][:, good_idx], model_data2.weights) tmp = handle_formula_data(data, None, formula, depth=2, missing='drop') (endog, exog), missing_idx, design_info = tmp kwargs.update({'weights': weights_wrong_size, 'missing_idx': missing_idx}) assert_raises(ValueError, sm_data.handle_data, endog, exog, **kwargs) if __name__ == "__main__": import nose #nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], # exit=False) nose.runmodule(argv=[__file__, '-vvs', '-x'], exit=False)
bsd-3-clause
mne-tools/mne-tools.github.io
stable/_downloads/d1b7dbf437b3b47476964425eca7f23a/source_label_time_frequency.py
20
3702
""" ========================================================= Compute power and phase lock in label of the source space ========================================================= Compute time-frequency maps of power and phase lock in the source space. The inverse method is linear based on dSPM inverse operator. The example also shows the difference in the time-frequency maps when they are computed with and without subtracting the evoked response from each epoch. The former results in induced activity only while the latter also includes evoked (stimulus-locked) activity. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, source_induced_power print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' label_name = 'Aud-rh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name tmin, tmax, event_id = -0.2, 0.5, 2 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # Picks MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) # Load epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, preload=True) # Compute a source estimate per frequency band including and excluding the # evoked response freqs = np.arange(7, 30, 2) # define frequencies of interest label = mne.read_label(fname_label) n_cycles = freqs / 3. # different number of cycle per frequency # subtract the evoked response in order to exclude evoked activity epochs_induced = epochs.copy().subtract_evoked() plt.close('all') for ii, (this_epochs, title) in enumerate(zip([epochs, epochs_induced], ['evoked + induced', 'induced only'])): # compute the source space power and the inter-trial coherence power, itc = source_induced_power( this_epochs, inverse_operator, freqs, label, baseline=(-0.1, 0), baseline_mode='percent', n_cycles=n_cycles, n_jobs=1) power = np.mean(power, axis=0) # average over sources itc = np.mean(itc, axis=0) # average over sources times = epochs.times ########################################################################## # View time-frequency plots plt.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.43) plt.subplot(2, 2, 2 * ii + 1) plt.imshow(20 * power, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=0., vmax=30., cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Power (%s)' % title) plt.colorbar() plt.subplot(2, 2, 2 * ii + 2) plt.imshow(itc, extent=[times[0], times[-1], freqs[0], freqs[-1]], aspect='auto', origin='lower', vmin=0, vmax=0.7, cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('ITC (%s)' % title) plt.colorbar() plt.show()
bsd-3-clause
paulmueller/ODTbrain
examples/backprop_from_mie_3d_sphere.py
1
3811
r"""Mie sphere The *in silico* data set was created with the Mie calculation software `GMM-field`_. The data consist of a two-dimensional projection of a sphere with radius :math:`R=14\lambda`, refractive index :math:`n_\mathrm{sph}=1.006`, embedded in a medium of refractive index :math:`n_\mathrm{med}=1.0` onto a detector which is :math:`l_\mathrm{D} = 20\lambda` away from the center of the sphere. The package :mod:`nrefocus` must be used to numerically focus the detected field prior to the 3D backpropagation with ODTbrain. In :func:`odtbrain.backpropagate_3d`, the parameter `lD` must be set to zero (:math:`l_\mathrm{D}=0`). The figure shows the 3D reconstruction from Mie simulations of a perfect sphere using 200 projections. Missing angle artifacts are visible along the :math:`y`-axis due to the :math:`2\pi`-only coverage in 3D Fourier space. .. _`GMM-field`: https://code.google.com/p/scatterlib/wiki/Nearfield """ import matplotlib.pylab as plt import nrefocus import numpy as np import odtbrain as odt from example_helper import load_data Ex, cfg = load_data("mie_3d_sphere_field.zip", f_sino_imag="mie_sphere_imag.txt", f_sino_real="mie_sphere_real.txt", f_info="mie_info.txt") # Manually set number of angles: A = 200 print("Example: Backpropagation from 3D Mie scattering") print("Refractive index of medium:", cfg["nm"]) print("Measurement position from object center:", cfg["lD"]) print("Wavelength sampling:", cfg["res"]) print("Number of angles for reconstruction:", A) print("Performing backpropagation.") # Reconstruction angles angles = np.linspace(0, 2 * np.pi, A, endpoint=False) # Perform focusing Ex = nrefocus.refocus(Ex, d=-cfg["lD"]*cfg["res"], nm=cfg["nm"], res=cfg["res"], ) # Create sinogram u_sin = np.tile(Ex.flat, A).reshape(A, int(cfg["size"]), int(cfg["size"])) # Apply the Rytov approximation u_sinR = odt.sinogram_as_rytov(u_sin) # Backpropagation fR = odt.backpropagate_3d(uSin=u_sinR, angles=angles, res=cfg["res"], nm=cfg["nm"], lD=0, padfac=2.1, save_memory=True) # RI computation nR = odt.odt_to_ri(fR, cfg["res"], cfg["nm"]) # Plotting fig, axes = plt.subplots(2, 3, figsize=(8, 5)) axes = np.array(axes).flatten() # field axes[0].set_title("Mie field phase") axes[0].set_xlabel("detector x") axes[0].set_ylabel("detector y") axes[0].imshow(np.angle(Ex), cmap="coolwarm") axes[1].set_title("Mie field amplitude") axes[1].set_xlabel("detector x") axes[1].set_ylabel("detector y") axes[1].imshow(np.abs(Ex), cmap="gray") # line plot axes[2].set_title("line plots") axes[2].set_xlabel("distance [px]") axes[2].set_ylabel("real refractive index") center = int(cfg["size"] / 2) x = np.arange(cfg["size"]) - center axes[2].plot(x, nR[:, center, center].real, label="x") axes[2].plot(x, nR[center, center, :].real, label="z") axes[2].plot(x, nR[center, :, center].real, label="y") axes[2].legend(loc=4) axes[2].set_xlim((-center, center)) dn = abs(cfg["nsph"] - cfg["nm"]) axes[2].set_ylim((cfg["nm"] - dn / 10, cfg["nsph"] + dn)) axes[2].ticklabel_format(useOffset=False) # cross sections axes[3].set_title("RI reconstruction\nsection at x=0") axes[3].set_xlabel("z") axes[3].set_ylabel("y") axes[3].imshow(nR[center, :, :].real) axes[4].set_title("RI reconstruction\nsection at y=0") axes[4].set_xlabel("x") axes[4].set_ylabel("z") axes[4].imshow(nR[:, center, :].real) axes[5].set_title("RI reconstruction\nsection at z=0") axes[5].set_xlabel("y") axes[5].set_ylabel("x") axes[5].imshow(nR[:, :, center].real) plt.tight_layout() plt.show()
bsd-3-clause
pbrunet/pythran
doc/papers/sc2013/cython.py
5
1604
#!/usr/bin/env python import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import math with file("cython.dat") as fd: r = list() for line in fd: r.append(filter(None, line.split(' '))) x = np.array( [ [float(_[1]) for _ in r], [float(_[2]) for _ in r], [float(_[3]) for _ in r], [float(_[4]) for _ in r], ] ) y = np.zeros(x.shape) for i,j in enumerate(x): y[i] = j/x[2] for i in xrange(y.shape[0]): for j in xrange(x.shape[1]): if math.isinf(y[i][j]): y[i][j] = x[i][j]/x[0][j] if math.isnan(y[i][j]): y[i][j] = 0 fig = plt.figure(1, figsize=(8,4)) hatches = [ ' ' , 'x', ' ' , 'x' , '+' , 'x' , 'o' , 'O' , '.' , '*' ] colors = [ 'grey' , 'grey', 'w', 'w' ] p = [0]*len(x) for i,j in enumerate(y): p[i] = plt.bar(range(i,y.size+len(y)+len(y)-1, len(y) +1), j, hatch=hatches[i], color=colors[i]) #plt.xlabel('Comparison between cython and pythran') plt.xticks(range(2,y.size+len(y)+1, len(y) +1), [_[0] for _ in r ] ) plt.ylabel('normalized execution time') #plt.title(r'$comparaison between cython and pythran with/without parallelism$') plt.grid(True, axis='y') plt.legend( (p[0][0], p[1][0], p[2][0], p[3][0]), ('Pythran', 'Pythran + OMP', 'Cython', 'Cython + OMP') , bbox_to_anchor=(0., 1.02, 1., .102), loc=2, ncol=2, mode="expand", borderaxespad=0.) plt.savefig('cython.pdf',format='pdf')
bsd-3-clause
vorwerkc/pymatgen
pymatgen/util/plotting.py
5
21612
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Utilities for generating nicer plots. """ import math import numpy as np from pymatgen.core.periodic_table import Element def pretty_plot(width=8, height=None, plt=None, dpi=None, color_cycle=("qualitative", "Set1_9")): """ Provides a publication quality plot, with nice defaults for font sizes etc. Args: width (float): Width of plot in inches. Defaults to 8in. height (float): Height of plot in inches. Defaults to width * golden ratio. plt (matplotlib.pyplot): If plt is supplied, changes will be made to an existing plot. Otherwise, a new plot will be created. dpi (int): Sets dot per inch for figure. Defaults to 300. color_cycle (tuple): Set the color cycle for new plots to one of the color sets in palettable. Defaults to a qualitative Set1_9. Returns: Matplotlib plot object with properly sized fonts. """ ticksize = int(width * 2.5) golden_ratio = (math.sqrt(5) - 1) / 2 if not height: height = int(width * golden_ratio) if plt is None: import importlib import matplotlib.pyplot as plt mod = importlib.import_module("palettable.colorbrewer.%s" % color_cycle[0]) colors = getattr(mod, color_cycle[1]).mpl_colors from cycler import cycler plt.figure(figsize=(width, height), facecolor="w", dpi=dpi) ax = plt.gca() ax.set_prop_cycle(cycler("color", colors)) else: fig = plt.gcf() fig.set_size_inches(width, height) plt.xticks(fontsize=ticksize) plt.yticks(fontsize=ticksize) ax = plt.gca() ax.set_title(ax.get_title(), size=width * 4) labelsize = int(width * 3) ax.set_xlabel(ax.get_xlabel(), size=labelsize) ax.set_ylabel(ax.get_ylabel(), size=labelsize) return plt def pretty_plot_two_axis( x, y1, y2, xlabel=None, y1label=None, y2label=None, width=8, height=None, dpi=300, **plot_kwargs ): """ Variant of pretty_plot that does a dual axis plot. Adapted from matplotlib examples. Makes it easier to create plots with different axes. Args: x (np.ndarray/list): Data for x-axis. y1 (dict/np.ndarray/list): Data for y1 axis (left). If a dict, it will be interpreted as a {label: sequence}. y2 (dict/np.ndarray/list): Data for y2 axis (right). If a dict, it will be interpreted as a {label: sequence}. xlabel (str): If not None, this will be the label for the x-axis. y1label (str): If not None, this will be the label for the y1-axis. y2label (str): If not None, this will be the label for the y2-axis. width (float): Width of plot in inches. Defaults to 8in. height (float): Height of plot in inches. Defaults to width * golden ratio. dpi (int): Sets dot per inch for figure. Defaults to 300. plot_kwargs: Passthrough kwargs to matplotlib's plot method. E.g., linewidth, etc. Returns: matplotlib.pyplot """ # pylint: disable=E1101 import palettable.colorbrewer.diverging colors = palettable.colorbrewer.diverging.RdYlBu_4.mpl_colors c1 = colors[0] c2 = colors[-1] golden_ratio = (math.sqrt(5) - 1) / 2 if not height: height = int(width * golden_ratio) import matplotlib.pyplot as plt width = 12 labelsize = int(width * 3) ticksize = int(width * 2.5) styles = ["-", "--", "-.", "."] fig, ax1 = plt.subplots() fig.set_size_inches((width, height)) if dpi: fig.set_dpi(dpi) if isinstance(y1, dict): for i, (k, v) in enumerate(y1.items()): ax1.plot(x, v, c=c1, marker="s", ls=styles[i % len(styles)], label=k, **plot_kwargs) ax1.legend(fontsize=labelsize) else: ax1.plot(x, y1, c=c1, marker="s", ls="-", **plot_kwargs) if xlabel: ax1.set_xlabel(xlabel, fontsize=labelsize) if y1label: # Make the y-axis label, ticks and tick labels match the line color. ax1.set_ylabel(y1label, color=c1, fontsize=labelsize) ax1.tick_params("x", labelsize=ticksize) ax1.tick_params("y", colors=c1, labelsize=ticksize) ax2 = ax1.twinx() if isinstance(y2, dict): for i, (k, v) in enumerate(y2.items()): ax2.plot(x, v, c=c2, marker="o", ls=styles[i % len(styles)], label=k) ax2.legend(fontsize=labelsize) else: ax2.plot(x, y2, c=c2, marker="o", ls="-") if y2label: # Make the y-axis label, ticks and tick labels match the line color. ax2.set_ylabel(y2label, color=c2, fontsize=labelsize) ax2.tick_params("y", colors=c2, labelsize=ticksize) return plt def pretty_polyfit_plot(x, y, deg=1, xlabel=None, ylabel=None, **kwargs): r""" Convenience method to plot data with trend lines based on polynomial fit. Args: x: Sequence of x data. y: Sequence of y data. deg (int): Degree of polynomial. Defaults to 1. xlabel (str): Label for x-axis. ylabel (str): Label for y-axis. \\*\\*kwargs: Keyword args passed to pretty_plot. Returns: matplotlib.pyplot object. """ plt = pretty_plot(**kwargs) pp = np.polyfit(x, y, deg) xp = np.linspace(min(x), max(x), 200) plt.plot(xp, np.polyval(pp, xp), "k--", x, y, "o") if xlabel: plt.xlabel(xlabel) if ylabel: plt.ylabel(ylabel) return plt def periodic_table_heatmap( elemental_data, cbar_label="", cbar_label_size=14, show_plot=False, cmap="YlOrRd", cmap_range=None, blank_color="grey", value_format=None, max_row=9, ): """ A static method that generates a heat map overlayed on a periodic table. Args: elemental_data (dict): A dictionary with the element as a key and a value assigned to it, e.g. surface energy and frequency, etc. Elements missing in the elemental_data will be grey by default in the final table elemental_data={"Fe": 4.2, "O": 5.0}. cbar_label (string): Label of the colorbar. Default is "". cbar_label_size (float): Font size for the colorbar label. Default is 14. cmap_range (tuple): Minimum and maximum value of the colormap scale. If None, the colormap will autotmatically scale to the range of the data. show_plot (bool): Whether to show the heatmap. Default is False. value_format (str): Formatting string to show values. If None, no value is shown. Example: "%.4f" shows float to four decimals. cmap (string): Color scheme of the heatmap. Default is 'YlOrRd'. Refer to the matplotlib documentation for other options. blank_color (string): Color assigned for the missing elements in elemental_data. Default is "grey". max_row (integer): Maximum number of rows of the periodic table to be shown. Default is 9, which means the periodic table heat map covers the first 9 rows of elements. """ # Convert primitive_elemental data in the form of numpy array for plotting. if cmap_range is not None: max_val = cmap_range[1] min_val = cmap_range[0] else: max_val = max(elemental_data.values()) min_val = min(elemental_data.values()) max_row = min(max_row, 9) if max_row <= 0: raise ValueError("The input argument 'max_row' must be positive!") value_table = np.empty((max_row, 18)) * np.nan blank_value = min_val - 0.01 for el in Element: if el.row > max_row: continue value = elemental_data.get(el.symbol, blank_value) value_table[el.row - 1, el.group - 1] = value # Initialize the plt object import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.gcf().set_size_inches(12, 8) # We set nan type values to masked values (ie blank spaces) data_mask = np.ma.masked_invalid(value_table.tolist()) heatmap = ax.pcolor( data_mask, cmap=cmap, edgecolors="w", linewidths=1, vmin=min_val - 0.001, vmax=max_val + 0.001, ) cbar = fig.colorbar(heatmap) # Grey out missing elements in input data cbar.cmap.set_under(blank_color) # Set the colorbar label and tick marks cbar.set_label(cbar_label, rotation=270, labelpad=25, size=cbar_label_size) cbar.ax.tick_params(labelsize=cbar_label_size) # Refine and make the table look nice ax.axis("off") ax.invert_yaxis() # Label each block with corresponding element and value for i, row in enumerate(value_table): for j, el in enumerate(row): if not np.isnan(el): symbol = Element.from_row_and_group(i + 1, j + 1).symbol plt.text( j + 0.5, i + 0.25, symbol, horizontalalignment="center", verticalalignment="center", fontsize=14, ) if el != blank_value and value_format is not None: plt.text( j + 0.5, i + 0.5, value_format % el, horizontalalignment="center", verticalalignment="center", fontsize=10, ) plt.tight_layout() if show_plot: plt.show() return plt def format_formula(formula): """ Converts str of chemical formula into latex format for labelling purposes Args: formula (str): Chemical formula """ formatted_formula = "" number_format = "" for i, s in enumerate(formula): if s.isdigit(): if not number_format: number_format = "_{" number_format += s if i == len(formula) - 1: number_format += "}" formatted_formula += number_format else: if number_format: number_format += "}" formatted_formula += number_format number_format = "" formatted_formula += s return r"$%s$" % (formatted_formula) def van_arkel_triangle(list_of_materials, annotate=True): """ A static method that generates a binary van Arkel-Ketelaar triangle to quantify the ionic, metallic and covalent character of a compound by plotting the electronegativity difference (y) vs average (x). See: A.E. van Arkel, Molecules and Crystals in Inorganic Chemistry, Interscience, New York (1956) and J.A.A Ketelaar, Chemical Constitution (2nd edn.), An Introduction to the Theory of the Chemical Bond, Elsevier, New York (1958) Args: list_of_materials (list): A list of computed entries of binary materials or a list of lists containing two elements (str). annotate (bool): Whether or not to lable the points on the triangle with reduced formula (if list of entries) or pair of elements (if list of list of str). """ # F-Fr has the largest X difference. We set this # as our top corner of the triangle (most ionic) pt1 = np.array([(Element("F").X + Element("Fr").X) / 2, abs(Element("F").X - Element("Fr").X)]) # Cs-Fr has the lowest average X. We set this as our # bottom left corner of the triangle (most metallic) pt2 = np.array( [ (Element("Cs").X + Element("Fr").X) / 2, abs(Element("Cs").X - Element("Fr").X), ] ) # O-F has the highest average X. We set this as our # bottom right corner of the triangle (most covalent) pt3 = np.array([(Element("O").X + Element("F").X) / 2, abs(Element("O").X - Element("F").X)]) # get the parameters for the lines of the triangle d = np.array(pt1) - np.array(pt2) slope1 = d[1] / d[0] b1 = pt1[1] - slope1 * pt1[0] d = pt3 - pt1 slope2 = d[1] / d[0] b2 = pt3[1] - slope2 * pt3[0] # Initialize the plt object import matplotlib.pyplot as plt # set labels and appropriate limits for plot plt.xlim(pt2[0] - 0.45, -b2 / slope2 + 0.45) plt.ylim(-0.45, pt1[1] + 0.45) plt.annotate("Ionic", xy=[pt1[0] - 0.3, pt1[1] + 0.05], fontsize=20) plt.annotate("Covalent", xy=[-b2 / slope2 - 0.65, -0.4], fontsize=20) plt.annotate("Metallic", xy=[pt2[0] - 0.4, -0.4], fontsize=20) plt.xlabel(r"$\frac{\chi_{A}+\chi_{B}}{2}$", fontsize=25) plt.ylabel(r"$|\chi_{A}-\chi_{B}|$", fontsize=25) # Set the lines of the triangle chi_list = [el.X for el in Element] plt.plot( [min(chi_list), pt1[0]], [slope1 * min(chi_list) + b1, pt1[1]], "k-", linewidth=3, ) plt.plot([pt1[0], -b2 / slope2], [pt1[1], 0], "k-", linewidth=3) plt.plot([min(chi_list), -b2 / slope2], [0, 0], "k-", linewidth=3) plt.xticks(fontsize=15) plt.yticks(fontsize=15) # Shade with appropriate colors corresponding to ionic, metallci and covalent ax = plt.gca() # ionic filling ax.fill_between( [min(chi_list), pt1[0]], [slope1 * min(chi_list) + b1, pt1[1]], facecolor=[1, 1, 0], zorder=-5, edgecolor=[1, 1, 0], ) ax.fill_between( [pt1[0], -b2 / slope2], [pt1[1], slope2 * min(chi_list) - b1], facecolor=[1, 1, 0], zorder=-5, edgecolor=[1, 1, 0], ) # metal filling XPt = Element("Pt").X ax.fill_between( [min(chi_list), (XPt + min(chi_list)) / 2], [0, slope1 * (XPt + min(chi_list)) / 2 + b1], facecolor=[1, 0, 0], zorder=-3, alpha=0.8, ) ax.fill_between( [(XPt + min(chi_list)) / 2, XPt], [slope1 * ((XPt + min(chi_list)) / 2) + b1, 0], facecolor=[1, 0, 0], zorder=-3, alpha=0.8, ) # covalent filling ax.fill_between( [(XPt + min(chi_list)) / 2, ((XPt + min(chi_list)) / 2 + -b2 / slope2) / 2], [0, slope2 * (((XPt + min(chi_list)) / 2 + -b2 / slope2) / 2) + b2], facecolor=[0, 1, 0], zorder=-4, alpha=0.8, ) ax.fill_between( [((XPt + min(chi_list)) / 2 + -b2 / slope2) / 2, -b2 / slope2], [slope2 * (((XPt + min(chi_list)) / 2 + -b2 / slope2) / 2) + b2, 0], facecolor=[0, 1, 0], zorder=-4, alpha=0.8, ) # Label the triangle with datapoints for entry in list_of_materials: if type(entry).__name__ not in ["ComputedEntry", "ComputedStructureEntry"]: X_pair = [Element(el).X for el in entry] formatted_formula = "%s-%s" % tuple(entry) else: X_pair = [Element(el).X for el in entry.composition.as_dict().keys()] formatted_formula = format_formula(entry.composition.reduced_formula) plt.scatter(np.mean(X_pair), abs(X_pair[0] - X_pair[1]), c="b", s=100) if annotate: plt.annotate( formatted_formula, fontsize=15, xy=[np.mean(X_pair) + 0.005, abs(X_pair[0] - X_pair[1])], ) plt.tight_layout() return plt def get_ax_fig_plt(ax=None, **kwargs): """ Helper function used in plot functions supporting an optional Axes argument. If ax is None, we build the `matplotlib` figure and create the Axes else we return the current active figure. Args: kwargs: keyword arguments are passed to plt.figure if ax is not None. Returns: ax: :class:`Axes` object figure: matplotlib figure plt: matplotlib pyplot module. """ import matplotlib.pyplot as plt if ax is None: fig = plt.figure(**kwargs) ax = fig.add_subplot(1, 1, 1) else: fig = plt.gcf() return ax, fig, plt def get_ax3d_fig_plt(ax=None, **kwargs): """ Helper function used in plot functions supporting an optional Axes3D argument. If ax is None, we build the `matplotlib` figure and create the Axes3D else we return the current active figure. Args: kwargs: keyword arguments are passed to plt.figure if ax is not None. Returns: ax: :class:`Axes` object figure: matplotlib figure plt: matplotlib pyplot module. """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d if ax is None: fig = plt.figure(**kwargs) ax = axes3d.Axes3D(fig) else: fig = plt.gcf() return ax, fig, plt def get_axarray_fig_plt( ax_array, nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw ): """ Helper function used in plot functions that accept an optional array of Axes as argument. If ax_array is None, we build the `matplotlib` figure and create the array of Axes by calling plt.subplots else we return the current active figure. Returns: ax: Array of :class:`Axes` objects figure: matplotlib figure plt: matplotlib pyplot module. """ import matplotlib.pyplot as plt if ax_array is None: fig, ax_array = plt.subplots( nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, squeeze=squeeze, subplot_kw=subplot_kw, gridspec_kw=gridspec_kw, **fig_kw, ) else: fig = plt.gcf() ax_array = np.reshape(np.array(ax_array), (nrows, ncols)) if squeeze: if ax_array.size == 1: ax_array = ax_array[0] elif any(s == 1 for s in ax_array.shape): ax_array = ax_array.ravel() return ax_array, fig, plt def add_fig_kwargs(func): """ Decorator that adds keyword arguments for functions returning matplotlib figures. The function should return either a matplotlib figure or None to signal some sort of error/unexpected event. See doc string below for the list of supported options. """ from functools import wraps @wraps(func) def wrapper(*args, **kwargs): # pop the kwds used by the decorator. title = kwargs.pop("title", None) size_kwargs = kwargs.pop("size_kwargs", None) show = kwargs.pop("show", True) savefig = kwargs.pop("savefig", None) tight_layout = kwargs.pop("tight_layout", False) ax_grid = kwargs.pop("ax_grid", None) ax_annotate = kwargs.pop("ax_annotate", None) fig_close = kwargs.pop("fig_close", False) # Call func and return immediately if None is returned. fig = func(*args, **kwargs) if fig is None: return fig # Operate on matplotlib figure. if title is not None: fig.suptitle(title) if size_kwargs is not None: fig.set_size_inches(size_kwargs.pop("w"), size_kwargs.pop("h"), **size_kwargs) if ax_grid is not None: for ax in fig.axes: ax.grid(bool(ax_grid)) if ax_annotate: from string import ascii_letters tags = ascii_letters if len(fig.axes) > len(tags): tags = (1 + len(ascii_letters) // len(fig.axes)) * ascii_letters for ax, tag in zip(fig.axes, tags): ax.annotate("(%s)" % tag, xy=(0.05, 0.95), xycoords="axes fraction") if tight_layout: try: fig.tight_layout() except Exception as exc: # For some unknown reason, this problem shows up only on travis. # https://stackoverflow.com/questions/22708888/valueerror-when-using-matplotlib-tight-layout print("Ignoring Exception raised by fig.tight_layout\n", str(exc)) if savefig: fig.savefig(savefig) import matplotlib.pyplot as plt if show: plt.show() if fig_close: plt.close(fig=fig) return fig # Add docstring to the decorated method. s = ( "\n\n" + """\ Keyword arguments controlling the display of the figure: ================ ==================================================== kwargs Meaning ================ ==================================================== title Title of the plot (Default: None). show True to show the figure (default: True). savefig "abc.png" or "abc.eps" to save the figure to a file. size_kwargs Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4) tight_layout True to call fig.tight_layout (default: False) ax_grid True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged. ax_annotate Add labels to subplots e.g. (a), (b). Default: False fig_close Close figure. Default: False. ================ ==================================================== """ ) if wrapper.__doc__ is not None: # Add s at the end of the docstring. wrapper.__doc__ += "\n" + s else: # Use s wrapper.__doc__ = s return wrapper
mit
PanDAWMS/panda-jedi
pandajedi/jedibrokerage/AtlasAnalJobBroker.py
1
107918
import re import sys import copy import random import datetime from six import iteritems from pandajedi.jedicore.MsgWrapper import MsgWrapper from pandajedi.jedicore.SiteCandidate import SiteCandidate from pandajedi.jedicore import Interaction from pandajedi.jedicore import JediCoreUtils from .JobBrokerBase import JobBrokerBase from . import AtlasBrokerUtils from pandaserver.dataservice.DataServiceUtils import select_scope from pandaserver.taskbuffer import JobUtils # logger from pandacommon.pandalogger.PandaLogger import PandaLogger logger = PandaLogger().getLogger(__name__.split('.')[-1]) APP = 'jedi' COMPONENT = 'jobbroker' VO = 'atlas' # brokerage for ATLAS analysis class AtlasAnalJobBroker(JobBrokerBase): # constructor def __init__(self, ddmIF, taskBufferIF): JobBrokerBase.__init__(self, ddmIF, taskBufferIF) self.dataSiteMap = {} self.summaryList = None # wrapper for return def sendLogMessage(self, tmpLog): # send info to logger #tmpLog.bulkSendMsg('analy_brokerage') tmpLog.debug('sent') # make summary def add_summary_message(self, old_list, new_list, message): if len(old_list) != len(new_list): red = int(((len(old_list) - len(new_list)) * 100) / len(old_list)) self.summaryList.append('{:>5} -> {:>3} candidates, {:>3}% cut : {}'.format(len(old_list), len(new_list), red, message)) # dump summary def dump_summary(self, tmp_log, final_candidates=None): tmp_log.info('') for m in self.summaryList: tmp_log.info(m) if not final_candidates: final_candidates = [] tmp_log.info('the number of final candidates: {}'.format(len(final_candidates))) tmp_log.info('') # main def doBrokerage(self, taskSpec, cloudName, inputChunk, taskParamMap): # make logger tmpLog = MsgWrapper(logger,'<jediTaskID={0}>'.format(taskSpec.jediTaskID), monToken='<jediTaskID={0} {1}>'.format(taskSpec.jediTaskID, datetime.datetime.utcnow().isoformat('/'))) tmpLog.debug('start') # return for failure retFatal = self.SC_FATAL,inputChunk retTmpError = self.SC_FAILED,inputChunk # new maxwdir newMaxwdir = {} # get primary site candidates sitePreAssigned = False siteListPreAssigned = False excludeList = [] includeList = None scanSiteList = [] # problematic sites problematic_sites_dict = {} # get list of site access siteAccessList = self.taskBufferIF.listSiteAccess(None, taskSpec.userName) siteAccessMap = {} for tmpSiteName,tmpAccess in siteAccessList: siteAccessMap[tmpSiteName] = tmpAccess # disable VP for merging and forceStaged if inputChunk.isMerging or taskSpec.avoid_vp(): useVP = False else: useVP = True # get workQueue workQueue = self.taskBufferIF.getWorkQueueMap().getQueueWithIDGshare(taskSpec.workQueue_ID, taskSpec.gshare) # site limitation if taskSpec.useLimitedSites(): if 'excludedSite' in taskParamMap: excludeList = taskParamMap['excludedSite'] # str to list for task retry try: if not isinstance(excludeList, list): excludeList = excludeList.split(',') except Exception: pass if 'includedSite' in taskParamMap: includeList = taskParamMap['includedSite'] # str to list for task retry if includeList == '': includeList = None try: if not isinstance(includeList, list): includeList = includeList.split(',') siteListPreAssigned = True except Exception: pass # loop over all sites for siteName,tmpSiteSpec in iteritems(self.siteMapper.siteSpecList): if tmpSiteSpec.type == 'analysis' or tmpSiteSpec.is_grandly_unified(): scanSiteList.append(siteName) # preassigned preassignedSite = taskSpec.site if preassignedSite not in ['',None]: # site is pre-assigned if not self.siteMapper.checkSite(preassignedSite): # check ddm for unknown site includeList = [] for tmpSiteName in self.get_unified_sites(scanSiteList): tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) scope_input, scope_output = select_scope(tmpSiteSpec, JobUtils.ANALY_PS, JobUtils.ANALY_PS) if scope_input in tmpSiteSpec.ddm_endpoints_input and \ preassignedSite in tmpSiteSpec.ddm_endpoints_input[scope_input].all: includeList.append(tmpSiteName) if not includeList: includeList = None tmpLog.info('site={0} is ignored since unknown'.format(preassignedSite)) else: tmpLog.info('site={0} is converted to {1}'.format(preassignedSite, ','.join(includeList))) preassignedSite = None else: tmpLog.info('site={0} is pre-assigned'.format(preassignedSite)) sitePreAssigned = True if preassignedSite not in scanSiteList: scanSiteList.append(preassignedSite) tmpLog.info('initial {0} candidates'.format(len(scanSiteList))) # allowed remote access protocol allowedRemoteProtocol = 'fax' # MP if taskSpec.coreCount is not None and taskSpec.coreCount > 1: # use MCORE only useMP = 'only' elif taskSpec.coreCount == 0: # use MCORE and normal useMP = 'any' else: # not use MCORE useMP = 'unuse' # get statistics of failures timeWindowForFC = self.taskBufferIF.getConfigValue('anal_jobbroker', 'TW_DONE_JOB_STAT', 'jedi', taskSpec.vo) if timeWindowForFC is None: timeWindowForFC = 6 failureCounts = self.taskBufferIF.getFailureCountsForTask_JEDI(taskSpec.jediTaskID, timeWindowForFC) # two loops with/without data locality check scanSiteLists = [(copy.copy(scanSiteList), True)] if len(inputChunk.getDatasets()) > 0: nRealDS = 0 for datasetSpec in inputChunk.getDatasets(): if not datasetSpec.isPseudo(): nRealDS += 1 if taskSpec.taskPriority >= 2000: if inputChunk.isMerging: scanSiteLists.append((copy.copy(scanSiteList), False)) else: scanSiteLists = [(copy.copy(scanSiteList), False)] elif taskSpec.taskPriority > 1000 or nRealDS > 1: scanSiteLists.append((copy.copy(scanSiteList), False)) retVal = None checkDataLocality = False scanSiteWoVP = [] avoidVP = False summaryList = [] for scanSiteList, checkDataLocality in scanSiteLists: useUnionLocality = False self.summaryList = [] self.summaryList.append('===== Brokerage summary =====') self.summaryList.append('data locality check: {}'.format(checkDataLocality)) self.summaryList.append('the number of initial candidates: {}'.format(len(scanSiteList))) if checkDataLocality: tmpLog.debug('!!! look for candidates WITH data locality check') else: tmpLog.debug('!!! look for candidates WITHOUT data locality check') ###################################### # selection for data availability hasDDS = False dataWeight = {} ddsList = set() remoteSourceList = {} for datasetSpec in inputChunk.getDatasets(): datasetSpec.reset_distributed() if inputChunk.getDatasets() != [] and checkDataLocality: oldScanSiteList = copy.copy(scanSiteList) oldScanUnifiedSiteList = self.get_unified_sites(oldScanSiteList) for datasetSpec in inputChunk.getDatasets(): datasetName = datasetSpec.datasetName if datasetName not in self.dataSiteMap: # get the list of sites where data is available tmpLog.debug('getting the list of sites where {0} is available'.format(datasetName)) tmpSt,tmpRet = AtlasBrokerUtils.getAnalSitesWithData(self.get_unified_sites(scanSiteList), self.siteMapper, self.ddmIF,datasetName) if tmpSt in [Interaction.JEDITemporaryError,Interaction.JEDITimeoutError]: tmpLog.error('temporary failed to get the list of sites where data is available, since %s' % tmpRet) taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retTmpError if tmpSt == Interaction.JEDIFatalError: tmpLog.error('fatal error when getting the list of sites where data is available, since %s' % tmpRet) taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retFatal # append self.dataSiteMap[datasetName] = tmpRet if datasetName.startswith('ddo'): tmpLog.debug(' {0} sites'.format(len(tmpRet))) else: tmpLog.debug(' {0} sites : {1}'.format(len(tmpRet),str(tmpRet))) # check if distributed if tmpRet != {}: isDistributed = True for tmpMap in tmpRet.values(): for tmpVal in tmpMap.values(): if tmpVal['state'] == 'complete': isDistributed = False break if not isDistributed: break if isDistributed or datasetName.endswith('/'): # check if really distributed isDistributed = self.ddmIF.isDistributedDataset(datasetName) if isDistributed or datasetName.endswith('/'): hasDDS = True datasetSpec.setDistributed() tmpLog.debug(' {0} is distributed'.format(datasetName)) ddsList.add(datasetName) # disable VP since distributed datasets triggers transfers useVP = False avoidVP = True # check if the data is available at somewhere if self.dataSiteMap[datasetName] == {}: for tmpSiteName in scanSiteList: #tmpLog.info(' skip site={0} data is unavailable criteria=-input'.format(tmpSiteName)) pass tmpLog.error('{0} is unavailable at any site'.format(datasetName)) retVal = retFatal continue # get the list of sites where data is available scanSiteList = None scanSiteListOnDisk = None scanSiteListUnion = None scanSiteListOnDiskUnion = None scanSiteWoVpUnion = None normFactor = 0 for datasetName,tmpDataSite in iteritems(self.dataSiteMap): normFactor += 1 useIncomplete = datasetName in ddsList # get sites where replica is available tmpSiteList = AtlasBrokerUtils.getAnalSitesWithDataDisk(tmpDataSite, includeTape=True, use_incomplete=useIncomplete) tmpDiskSiteList = AtlasBrokerUtils.getAnalSitesWithDataDisk(tmpDataSite,includeTape=False, use_vp=useVP, use_incomplete=useIncomplete) tmpNonVpSiteList = AtlasBrokerUtils.getAnalSitesWithDataDisk(tmpDataSite, includeTape=True, use_vp=False, use_incomplete=useIncomplete) # get sites which can remotely access source sites if inputChunk.isMerging or taskSpec.useLocalIO(): # disable remote access for merging tmpSatelliteSites = {} elif (not sitePreAssigned) or (sitePreAssigned and preassignedSite not in tmpSiteList): tmpSatelliteSites = AtlasBrokerUtils.getSatelliteSites(tmpDiskSiteList, self.taskBufferIF, self.siteMapper,nSites=50, protocol=allowedRemoteProtocol) else: tmpSatelliteSites = {} # make weight map for local for tmpSiteName in tmpSiteList: if tmpSiteName not in dataWeight: dataWeight[tmpSiteName] = 0 # give more weight to disk if tmpSiteName in tmpDiskSiteList: dataWeight[tmpSiteName] += 1 else: dataWeight[tmpSiteName] += 0.001 # make weight map for remote for tmpSiteName,tmpWeightSrcMap in iteritems(tmpSatelliteSites): # skip since local data is available if tmpSiteName in tmpSiteList: continue tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) # negative weight for remote access wRemote = 50.0 if tmpSiteSpec.wansinklimit not in [0,None]: wRemote /= float(tmpSiteSpec.wansinklimit) # sum weight if tmpSiteName not in dataWeight: dataWeight[tmpSiteName] = float(tmpWeightSrcMap['weight'])/wRemote else: dataWeight[tmpSiteName] += float(tmpWeightSrcMap['weight'])/wRemote # make remote source list if tmpSiteName not in remoteSourceList: remoteSourceList[tmpSiteName] = {} remoteSourceList[tmpSiteName][datasetName] = tmpWeightSrcMap['source'] # first list if scanSiteList is None: scanSiteList = [] for tmpSiteName in tmpSiteList + list(tmpSatelliteSites.keys()): if tmpSiteName not in oldScanUnifiedSiteList: continue if tmpSiteName not in scanSiteList: scanSiteList.append(tmpSiteName) scanSiteListOnDisk = set() for tmpSiteName in tmpDiskSiteList + list(tmpSatelliteSites.keys()): if tmpSiteName not in oldScanUnifiedSiteList: continue scanSiteListOnDisk.add(tmpSiteName) scanSiteWoVP = tmpNonVpSiteList scanSiteListUnion = set(scanSiteList) scanSiteListOnDiskUnion = set(scanSiteListOnDisk) scanSiteWoVpUnion = set(scanSiteWoVP) continue # pickup sites which have all data newScanList = [] for tmpSiteName in tmpSiteList + list(tmpSatelliteSites.keys()): if tmpSiteName in scanSiteList and tmpSiteName not in newScanList: newScanList.append(tmpSiteName) scanSiteListUnion.add(tmpSiteName) scanSiteList = newScanList tmpLog.debug('{0} is available at {1} sites'.format(datasetName,len(scanSiteList))) # pickup sites which have all data on DISK newScanListOnDisk = set() for tmpSiteName in tmpDiskSiteList + list(tmpSatelliteSites.keys()): if tmpSiteName in scanSiteListOnDisk: newScanListOnDisk.add(tmpSiteName) scanSiteListOnDiskUnion.add(tmpSiteName) scanSiteListOnDisk = newScanListOnDisk # get common elements scanSiteWoVP = list(set(scanSiteWoVP).intersection(tmpNonVpSiteList)) scanSiteWoVpUnion = scanSiteWoVpUnion.union(tmpNonVpSiteList) tmpLog.debug('{0} is available at {1} sites on DISK'.format(datasetName,len(scanSiteListOnDisk))) # check for preassigned if sitePreAssigned: if preassignedSite not in scanSiteList and preassignedSite not in scanSiteListUnion: scanSiteList = [] tmpLog.info('data is unavailable locally or remotely at preassigned site {0}'.format(preassignedSite)) elif preassignedSite not in scanSiteList: scanSiteList = list(scanSiteListUnion) elif len(scanSiteListOnDisk) > 0: # use only disk sites scanSiteList = list(scanSiteListOnDisk) elif not scanSiteList and scanSiteListUnion: tmpLog.info('use union list for data locality check since no site has all data') if scanSiteListOnDiskUnion: scanSiteList = list(scanSiteListOnDiskUnion) elif scanSiteListUnion: scanSiteList = list(scanSiteListUnion) scanSiteWoVP = list(scanSiteWoVpUnion) useUnionLocality = True scanSiteList = self.get_pseudo_sites(scanSiteList, oldScanSiteList) # dump for tmpSiteName in oldScanSiteList: if tmpSiteName not in scanSiteList: pass tmpLog.info('{0} candidates have input data'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'input data check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retFatal continue ###################################### # selection for status newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) # skip unified queues if tmpSiteSpec.is_unified: continue # check site status skipFlag = False if tmpSiteSpec.status in ['offline']: skipFlag = True elif tmpSiteSpec.status in ['brokeroff','test']: if siteListPreAssigned: pass elif not sitePreAssigned: skipFlag = True elif preassignedSite not in [tmpSiteName, tmpSiteSpec.get_unified_name()]: skipFlag = True if not skipFlag: newScanSiteList.append(tmpSiteName) else: tmpLog.info(' skip site=%s due to status=%s criteria=-status' % (tmpSiteName,tmpSiteSpec.status)) scanSiteList = newScanSiteList tmpLog.info('{0} candidates passed site status check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'status check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for iointensity limits # get default disk IO limit from GDP config max_diskio_per_core_default = self.taskBufferIF.getConfigValue(COMPONENT, 'MAX_DISKIO_DEFAULT', APP, VO) if not max_diskio_per_core_default: max_diskio_per_core_default = 10 ** 10 # get the current disk IO usage per site diskio_percore_usage = self.taskBufferIF.getAvgDiskIO_JEDI() unified_site_list = self.get_unified_sites(scanSiteList) newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in unified_site_list: tmp_site_spec = self.siteMapper.getSite(tmpSiteName) # measured diskIO at queue diskio_usage_tmp = diskio_percore_usage.get(tmpSiteName, 0) # figure out queue or default limit if tmp_site_spec.maxDiskio and tmp_site_spec.maxDiskio > 0: # there is a limit specified in AGIS diskio_limit_tmp = tmp_site_spec.maxDiskio else: # we need to use the default value from GDP Config diskio_limit_tmp = max_diskio_per_core_default # normalize task diskIO by site corecount diskio_task_tmp = taskSpec.diskIO if taskSpec.diskIO is not None and taskSpec.coreCount not in [None, 0, 1] \ and tmp_site_spec.coreCount not in [None, 0]: diskio_task_tmp = taskSpec.diskIO / tmp_site_spec.coreCount try: # generate a log message parseable by logstash for monitoring log_msg = 'diskIO measurements: site={0} jediTaskID={1} '.format(tmpSiteName, taskSpec.jediTaskID) if diskio_task_tmp is not None: log_msg += 'diskIO_task={:.2f} '.format(diskio_task_tmp) if diskio_usage_tmp is not None: log_msg += 'diskIO_site_usage={:.2f} '.format(diskio_usage_tmp) if diskio_limit_tmp is not None: log_msg += 'diskIO_site_limit={:.2f} '.format(diskio_limit_tmp) #tmpLog.info(log_msg) except Exception: tmpLog.debug('diskIO measurements: Error generating diskIO message') # if the task has a diskIO defined, the queue is over the IO limit and the task IO is over the limit if diskio_task_tmp and diskio_usage_tmp and diskio_limit_tmp \ and diskio_usage_tmp > diskio_limit_tmp and diskio_task_tmp > diskio_limit_tmp: tmpLog.info(' skip site={0} due to diskIO overload criteria=-diskIO'.format(tmpSiteName)) continue newScanSiteList.append(tmpSiteName) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed diskIO check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'diskIO check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) return retTmpError ###################################### # selection for VP if taskSpec.avoid_vp() or avoidVP or not checkDataLocality: newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) if not tmpSiteSpec.use_vp(JobUtils.ANALY_PS): newScanSiteList.append(tmpSiteName) else: tmpLog.info(' skip site=%s to avoid VP' % tmpSiteName) scanSiteList = newScanSiteList tmpLog.info('{0} candidates passed for avoidVP'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'avoid VP check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for MP newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) # check at the site if useMP == 'any' or (useMP == 'only' and tmpSiteSpec.coreCount > 1) or \ (useMP =='unuse' and tmpSiteSpec.coreCount in [0,1,None]): newScanSiteList.append(tmpSiteName) else: tmpLog.info(' skip site=%s due to core mismatch cores_site=%s <> cores_task=%s criteria=-cpucore' % \ (tmpSiteName,tmpSiteSpec.coreCount,taskSpec.coreCount)) scanSiteList = newScanSiteList tmpLog.info('{0} candidates passed for useMP={1}'.format(len(scanSiteList),useMP)) self.add_summary_message(oldScanSiteList, scanSiteList, 'CPU core check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for GPU + architecture newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) jsonCheck = None for tmpSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) if tmpSiteSpec.isGPU() and not taskSpec.is_hpo_workflow(): if taskSpec.get_sw_platform() in ['', None]: tmpLog.info(' skip site={0} since architecture is required for GPU queues'.format(tmpSiteName)) continue if jsonCheck is None: jsonCheck = AtlasBrokerUtils.JsonSoftwareCheck(self.siteMapper) siteListWithCMTCONFIG = [tmpSiteSpec.get_unified_name()] siteListWithCMTCONFIG, sitesNoJsonCheck = jsonCheck.check(siteListWithCMTCONFIG, None, None, None, taskSpec.get_sw_platform(), False, True) siteListWithCMTCONFIG += self.taskBufferIF.checkSitesWithRelease(sitesNoJsonCheck, cmtConfig=taskSpec.get_sw_platform(), onlyCmtConfig=True) if len(siteListWithCMTCONFIG) == 0: tmpLog.info(' skip site={0} since architecture={1} is unavailable'.format(tmpSiteName, taskSpec.get_sw_platform())) continue newScanSiteList.append(tmpSiteName) scanSiteList = newScanSiteList tmpLog.info('{0} candidates passed for architecture check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'architecture check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for closed if not sitePreAssigned and not inputChunk.isMerging: oldScanSiteList = copy.copy(scanSiteList) newScanSiteList = [] for tmpSiteName in self.get_unified_sites(scanSiteList): if tmpSiteName in failureCounts and 'closed' in failureCounts[tmpSiteName]: nClosed = failureCounts[tmpSiteName]['closed'] if nClosed > 0: tmpLog.info(' skip site=%s due to n_closed=%s criteria=-closed' % \ (tmpSiteName, nClosed)) continue newScanSiteList.append(tmpSiteName) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed for closed'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'too many closed check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for release host_cpu_spec = taskSpec.get_host_cpu_spec() host_gpu_spec = taskSpec.get_host_gpu_spec() if not sitePreAssigned and \ (taskSpec.transHome is not None or host_cpu_spec is not None or host_gpu_spec is not None or \ (taskSpec.processingType is not None and taskSpec.processingType.endswith('jedi-cont'))): jsonCheck = AtlasBrokerUtils.JsonSoftwareCheck(self.siteMapper) unified_site_list = self.get_unified_sites(scanSiteList) if taskSpec.transHome is not None: transHome = taskSpec.transHome else: transHome = '' # remove AnalysisTransforms- transHome = re.sub('^[^-]+-*','',transHome) transHome = re.sub('_','-',transHome) if re.search('rel_\d+(\n|$)', transHome) is None and \ taskSpec.transHome not in ['AnalysisTransforms', None] and \ re.search('\d{4}-\d{2}-\d{2}T\d{4}$', transHome) is None and \ re.search('-\d+\.\d+\.\d+$', transHome) is None: # cache is checked siteListWithSW, sitesNoJsonCheck = jsonCheck.check(unified_site_list, "atlas", transHome.split('-')[0], transHome.split('-')[1], taskSpec.get_sw_platform(), False, False, container_name=taskSpec.container_name, only_tags_fc=taskSpec.use_only_tags_fc(), host_cpu_spec=host_cpu_spec, host_gpu_spec=host_gpu_spec, log_stream=tmpLog) sitesAuto = copy.copy(siteListWithSW) tmpListWithSW = self.taskBufferIF.checkSitesWithRelease(sitesNoJsonCheck, caches=transHome, cmtConfig=taskSpec.get_sw_platform()) sitesNonAuto = copy.copy(tmpListWithSW) siteListWithSW += tmpListWithSW elif (transHome == '' and taskSpec.transUses is not None) or \ (re.search('-\d+\.\d+\.\d+$',transHome) is not None and (taskSpec.transUses is None or re.search('-\d+\.\d+$', taskSpec.transUses) is None)): siteListWithSW = [] sitesNoJsonCheck = unified_site_list # remove Atlas- if taskSpec.transUses is not None: transUses = taskSpec.transUses.split('-')[-1] else: transUses = None if transUses is not None: # release is checked tmpSiteListWithSW, sitesNoJsonCheck = jsonCheck.check(unified_site_list, "atlas", "AtlasOffline", transUses, taskSpec.get_sw_platform(), False, False, container_name=taskSpec.container_name, only_tags_fc=taskSpec.use_only_tags_fc(), host_cpu_spec=host_cpu_spec, host_gpu_spec=host_gpu_spec, log_stream=tmpLog) siteListWithSW += tmpSiteListWithSW if len(transHome.split('-')) == 2: tmpSiteListWithSW, sitesNoJsonCheck = jsonCheck.check(sitesNoJsonCheck, "atlas", transHome.split('-')[0], transHome.split('-')[1], taskSpec.get_sw_platform(), False, False, container_name=taskSpec.container_name, only_tags_fc=taskSpec.use_only_tags_fc(), host_cpu_spec=host_cpu_spec, host_gpu_spec=host_gpu_spec, log_stream=tmpLog) siteListWithSW += tmpSiteListWithSW sitesAuto = copy.copy(siteListWithSW) tmpListWithSW = [] if transUses is not None: tmpListWithSW += self.taskBufferIF.checkSitesWithRelease(sitesNoJsonCheck, releases=transUses, cmtConfig=taskSpec.get_sw_platform()) tmpListWithSW += self.taskBufferIF.checkSitesWithRelease(sitesNoJsonCheck, caches=transHome, cmtConfig=taskSpec.get_sw_platform()) sitesNonAuto = list(set(tmpListWithSW).difference(set(sitesAuto))) siteListWithSW += tmpListWithSW else: # nightlies or standalone siteListWithCVMFS = self.taskBufferIF.checkSitesWithRelease(unified_site_list, releases='CVMFS') if taskSpec.get_sw_platform() in ['', None]: # architecture is not set siteListWithCMTCONFIG = copy.copy(unified_site_list) else: siteListWithCMTCONFIG = \ self.taskBufferIF.checkSitesWithRelease(unified_site_list, cmtConfig=taskSpec.get_sw_platform(), onlyCmtConfig=True) if taskSpec.transHome is not None: # CVMFS check for nightlies siteListWithSW, sitesNoJsonCheck = jsonCheck.check(unified_site_list, "nightlies", None, None, taskSpec.get_sw_platform(), True, False, container_name=taskSpec.container_name, only_tags_fc=taskSpec.use_only_tags_fc(), host_cpu_spec=host_cpu_spec, host_gpu_spec=host_gpu_spec, log_stream=tmpLog) sitesAuto = copy.copy(siteListWithSW) sitesNonAuto = list((set(siteListWithCVMFS) & set(siteListWithCMTCONFIG)).difference(set(sitesAuto))) siteListWithSW += sitesNonAuto else: # no CVMFS check for standalone SW siteListWithSW, sitesNoJsonCheck = jsonCheck.check(unified_site_list, None, None, None, taskSpec.get_sw_platform(), False, True, container_name=taskSpec.container_name, only_tags_fc=taskSpec.use_only_tags_fc(), host_cpu_spec=host_cpu_spec, host_gpu_spec=host_gpu_spec, log_stream=tmpLog) sitesAuto = copy.copy(siteListWithSW) if host_cpu_spec or host_gpu_spec: sitesNonAuto = [] else: sitesNonAuto = list(set(siteListWithCMTCONFIG).difference(set(sitesAuto))) siteListWithSW += sitesNonAuto newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) sitesAny = [] for tmpSiteName in unified_site_list: tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) if tmpSiteName in siteListWithSW: # passed newScanSiteList.append(tmpSiteName) elif host_cpu_spec is None and host_gpu_spec is None and tmpSiteSpec.releases == ['ANY']: # release check is disabled or release is available newScanSiteList.append(tmpSiteName) sitesAny.append(tmpSiteName) else: # release is unavailable tmpLog.info(' skip site=%s due to missing rel/cache %s:%s sw_platform=%s ' ' cpu=%s gpu=%s criteria=-cache' % \ (tmpSiteName, taskSpec.transUses, taskSpec.transHome, taskSpec.get_sw_platform(), str(host_cpu_spec), str(host_gpu_spec))) sitesAuto = self.get_pseudo_sites(sitesAuto, scanSiteList) sitesNonAuto = self.get_pseudo_sites(sitesNonAuto, scanSiteList) sitesAny = self.get_pseudo_sites(sitesAny, scanSiteList) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info( '{} candidates ({} with AUTO, {} without AUTO, {} with ANY) passed SW check '.format( len(scanSiteList), len(sitesAuto), len(sitesNonAuto), len(sitesAny))) self.add_summary_message(oldScanSiteList, scanSiteList, 'release/cache/CPU/GPU check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for memory origMinRamCount = inputChunk.getMaxRamCount() if origMinRamCount not in [0, None]: newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) # scale RAM by nCores minRamCount = origMinRamCount if not inputChunk.isMerging: if tmpSiteSpec.coreCount not in [None, 0]: minRamCount = origMinRamCount * tmpSiteSpec.coreCount minRamCount = JobUtils.compensate_ram_count(minRamCount) # site max memory requirement site_maxmemory = 0 if tmpSiteSpec.maxrss not in [0,None]: site_maxmemory = tmpSiteSpec.maxrss if site_maxmemory not in [0,None] and minRamCount != 0 and minRamCount > site_maxmemory: tmpLog.info(' skip site={0} due to site RAM shortage. site_maxmemory={1} < job_minramcount={2} criteria=-lowmemory'.format(tmpSiteName, site_maxmemory, minRamCount)) continue # site min memory requirement site_minmemory = 0 if tmpSiteSpec.minrss not in [0,None]: site_minmemory = tmpSiteSpec.minrss if site_minmemory not in [0,None] and minRamCount != 0 and minRamCount < site_minmemory: tmpLog.info(' skip site={0} due to job RAM shortage. site_minmemory={1} > job_minramcount={2} criteria=-highmemory'.format(tmpSiteName, site_minmemory, minRamCount)) continue newScanSiteList.append(tmpSiteName) scanSiteList = newScanSiteList ramUnit = taskSpec.ramUnit if ramUnit is None: ramUnit = 'MB' tmpLog.info('{0} candidates passed memory check = {1} {2}'.format(len(scanSiteList), minRamCount, ramUnit)) self.add_summary_message(oldScanSiteList, scanSiteList, 'memory check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for scratch disk tmpMaxAtomSize = inputChunk.getMaxAtomSize() if not inputChunk.isMerging: tmpEffAtomSize = inputChunk.getMaxAtomSize(effectiveSize=True) tmpOutDiskSize = taskSpec.getOutDiskSize() tmpWorkDiskSize = taskSpec.getWorkDiskSize() minDiskCountS = tmpOutDiskSize*tmpEffAtomSize + tmpWorkDiskSize + tmpMaxAtomSize minDiskCountS = minDiskCountS // 1024 // 1024 maxSizePerJob = taskSpec.getMaxSizePerJob() if maxSizePerJob is None: maxSizePerJob = None else: maxSizePerJob //= (1024 * 1024) # size for direct IO sites minDiskCountR = tmpOutDiskSize*tmpEffAtomSize + tmpWorkDiskSize minDiskCountR = minDiskCountR // 1024 // 1024 tmpLog.info('maxAtomSize={0} effectiveAtomSize={1} outDiskCount={2} workDiskSize={3}'.format(tmpMaxAtomSize, tmpEffAtomSize, tmpOutDiskSize, tmpWorkDiskSize)) else: maxSizePerJob = None minDiskCountS = 2 * tmpMaxAtomSize // 1024 // 1024 minDiskCountR = 'NA' tmpLog.info('minDiskCountScratch={0} minDiskCountRemote={1} nGBPerJobInMB={2}'.format(minDiskCountS, minDiskCountR, maxSizePerJob)) newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in self.get_unified_sites(scanSiteList): tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) # check at the site if tmpSiteSpec.maxwdir: if JediCoreUtils.use_direct_io_for_job(taskSpec, tmpSiteSpec, inputChunk): minDiskCount = minDiskCountR if maxSizePerJob is not None and not taskSpec.useLocalIO(): tmpMinDiskCountR = tmpOutDiskSize * maxSizePerJob + tmpWorkDiskSize tmpMinDiskCountR /= (1024 * 1024) if tmpMinDiskCountR > minDiskCount: minDiskCount = tmpMinDiskCountR else: minDiskCount = minDiskCountS if maxSizePerJob is not None and maxSizePerJob > minDiskCount: minDiskCount = maxSizePerJob # get site and task corecount to scale maxwdir if tmpSiteSpec.coreCount in [None, 0, 1]: site_cc = 1 else: site_cc = tmpSiteSpec.coreCount if taskSpec.coreCount in [None, 0, 1]: task_cc = 1 else: task_cc = site_cc maxwdir_scaled = tmpSiteSpec.maxwdir * task_cc / site_cc if minDiskCount > maxwdir_scaled: tmpLog.info(' skip site={0} due to small scratch disk={1} < {2} criteria=-disk'.format( tmpSiteName, maxwdir_scaled, minDiskCount)) continue newMaxwdir[tmpSiteName] = maxwdir_scaled newScanSiteList.append(tmpSiteName) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed scratch disk check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'scratch disk check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for available space in SE newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in self.get_unified_sites(scanSiteList): # check endpoint tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) scope_input, scope_output = select_scope(tmpSiteSpec, JobUtils.ANALY_PS, JobUtils.ANALY_PS) tmpEndPoint = tmpSiteSpec.ddm_endpoints_output[scope_output].getEndPoint(tmpSiteSpec.ddm_output[scope_output]) if tmpEndPoint is not None: # free space must be >= 200GB diskThreshold = 200 tmpSpaceSize = 0 if tmpEndPoint['space_expired'] is not None: tmpSpaceSize += tmpEndPoint['space_expired'] if tmpEndPoint['space_free'] is not None: tmpSpaceSize += tmpEndPoint['space_free'] if tmpSpaceSize < diskThreshold and 'skip_RSE_check' not in tmpSiteSpec.catchall: # skip_RSE_check: exceptional bypass of RSEs without storage reporting tmpLog.info(' skip site={0} due to disk shortage in SE {1} < {2}GB criteria=-disk'.format(tmpSiteName, tmpSpaceSize, diskThreshold)) continue # check if blacklisted if tmpEndPoint['blacklisted'] == 'Y': tmpLog.info(' skip site={0} since {1} is blacklisted in DDM criteria=-blacklist'.format(tmpSiteName, tmpSiteSpec.ddm_output[scope_output])) continue newScanSiteList.append(tmpSiteName) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed SE space check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'storage space check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for walltime minWalltime = taskSpec.walltime if minWalltime not in [0,None] and minWalltime > 0 and not inputChunk.isMerging: minWalltime *= tmpEffAtomSize newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) # check at the site if tmpSiteSpec.maxtime != 0 and minWalltime > tmpSiteSpec.maxtime: tmpLog.info(' skip site={0} due to short site walltime={1}(site upper limit) < {2} criteria=-shortwalltime'.format(tmpSiteName, tmpSiteSpec.maxtime, minWalltime)) continue if tmpSiteSpec.mintime != 0 and minWalltime < tmpSiteSpec.mintime: tmpLog.info(' skip site={0} due to short job walltime={1}(site lower limit) > {2} criteria=-longwalltime'.format(tmpSiteName, tmpSiteSpec.mintime, minWalltime)) continue newScanSiteList.append(tmpSiteName) scanSiteList = newScanSiteList tmpLog.info('{0} candidates passed walltime check ={1}{2}'.format(len(scanSiteList),minWalltime,taskSpec.walltimeUnit)) self.add_summary_message(oldScanSiteList, scanSiteList, 'walltime check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # selection for nPilot nWNmap = self.taskBufferIF.getCurrentSiteData() nPilotMap = {} newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) for tmpSiteName in self.get_unified_sites(scanSiteList): # check at the site nPilot = 0 if tmpSiteName in nWNmap: nPilot = nWNmap[tmpSiteName]['getJob'] + nWNmap[tmpSiteName]['updateJob'] if nPilot == 0 and taskSpec.prodSourceLabel not in ['test']: tmpLog.info(' skip site=%s due to no pilot criteria=-nopilot' % tmpSiteName) if not self.testMode: continue newScanSiteList.append(tmpSiteName) nPilotMap[tmpSiteName] = nPilot scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed pilot activity check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'pilot activity check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # check inclusion and exclusion newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) sitesForANY = [] for tmpSiteName in self.get_unified_sites(scanSiteList): autoSite = False # check exclusion if AtlasBrokerUtils.isMatched(tmpSiteName,excludeList): tmpLog.info(' skip site={0} excluded criteria=-excluded'.format(tmpSiteName)) continue # check inclusion if includeList is not None and not AtlasBrokerUtils.isMatched(tmpSiteName,includeList): if 'AUTO' in includeList: autoSite = True else: tmpLog.info(' skip site={0} not included criteria=-notincluded'.format(tmpSiteName)) continue tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) # limited access if tmpSiteSpec.accesscontrol == 'grouplist': if tmpSiteSpec.sitename not in siteAccessMap or \ siteAccessMap[tmpSiteSpec.sitename] != 'approved': tmpLog.info(' skip site={0} limited access criteria=-limitedaccess'.format(tmpSiteName)) continue # check cloud if taskSpec.cloud not in [None,'','any',tmpSiteSpec.cloud]: tmpLog.info(' skip site={0} cloud mismatch criteria=-cloudmismatch'.format(tmpSiteName)) continue if autoSite: sitesForANY.append(tmpSiteName) else: newScanSiteList.append(tmpSiteName) # use AUTO sites if no sites are included if newScanSiteList == []: newScanSiteList = sitesForANY else: for tmpSiteName in sitesForANY: tmpLog.info(' skip site={0} not included criteria=-notincluded'.format(tmpSiteName)) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed inclusion/exclusion'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'include/exclude check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # sites already used by task tmpSt,sitesUsedByTask = self.taskBufferIF.getSitesUsedByTask_JEDI(taskSpec.jediTaskID) if not tmpSt: tmpLog.error('failed to get sites which already used by task') retVal = retTmpError continue sitesUsedByTask = self.get_unified_sites(sitesUsedByTask) ###################################### # calculate weight tmpSt, jobStatPrioMap = self.taskBufferIF.getJobStatisticsByGlobalShare(taskSpec.vo) if not tmpSt: tmpLog.error('failed to get job statistics with priority') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retTmpError tmpSt, siteToRunRateMap = AtlasBrokerUtils.getSiteToRunRateStats(tbIF=self.taskBufferIF, vo=taskSpec.vo) if not tmpSt: tmpLog.error('failed to get site to-running rate') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retTmpError # check for preassigned if sitePreAssigned: oldScanSiteList = copy.copy(scanSiteList) if preassignedSite not in scanSiteList and preassignedSite not in self.get_unified_sites(scanSiteList): tmpLog.info("preassigned site {0} did not pass all tests".format(preassignedSite)) self.add_summary_message(oldScanSiteList, [], 'preassign check') self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retFatal continue else: newScanSiteList = [] for tmpPseudoSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpPseudoSiteName) tmpSiteName = tmpSiteSpec.get_unified_name() if tmpSiteName != preassignedSite: tmpLog.info(' skip site={0} non pre-assigned site criteria=-nonpreassigned'.format( tmpPseudoSiteName)) continue newScanSiteList.append(tmpSiteName) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed preassigned check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'preassign check') ###################################### # selection for hospital newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) hasNormalSite = False for tmpSiteName in self.get_unified_sites(scanSiteList): if not tmpSiteName.endswith('_HOSPITAL'): hasNormalSite = True break if hasNormalSite: for tmpSiteName in self.get_unified_sites(scanSiteList): # remove hospital if tmpSiteName.endswith('_HOSPITAL'): tmpLog.info(' skip site=%s due to hospital queue criteria=-hospital' % tmpSiteName) continue newScanSiteList.append(tmpSiteName) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed hospital check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'hospital check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # cap with resource type if not sitePreAssigned: # count jobs per resource type tmpRet, tmpStatMap = self.taskBufferIF.getJobStatisticsByResourceTypeSite(workQueue) newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) RT_Cap = 2 for tmpSiteName in self.get_unified_sites(scanSiteList): tmpSiteSpec = self.siteMapper.getSite(tmpSiteName) tmpUnifiedName = tmpSiteSpec.get_unified_name() if tmpUnifiedName in tmpStatMap and taskSpec.resource_type in tmpStatMap[tmpUnifiedName]: tmpSiteStatMap = tmpStatMap[tmpUnifiedName][taskSpec.resource_type] tmpRTrunning = tmpSiteStatMap.get('running', 0) tmpRTqueue = tmpSiteStatMap.get('defined', 0) tmpRTqueue += tmpSiteStatMap.get('assigned', 0) tmpRTqueue += tmpSiteStatMap.get('activated', 0) tmpRTqueue += tmpSiteStatMap.get('starting', 0) if tmpRTqueue > max(20, tmpRTrunning * RT_Cap): tmpMsg = ' skip site={0} '.format(tmpSiteName) tmpMsg += 'since nQueue/max(20,nRun) with gshare+resource_type is ' tmpMsg += '{0}/max(20,{1}) > {2} '.format(tmpRTqueue, tmpRTrunning, RT_Cap) tmpMsg += 'criteria=-cap_rt' newScanSiteList.append(tmpSiteName) scanSiteList = self.get_pseudo_sites(newScanSiteList, scanSiteList) tmpLog.info('{0} candidates passed for cap with gshare+resource_type check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'cap with gshare+resource_type check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) return retTmpError ###################################### # selection for un-overloaded sites if not inputChunk.isMerging: newScanSiteList = [] oldScanSiteList = copy.copy(scanSiteList) overloadedNonVP = [] msgList = [] msgListVP = [] minQueue = self.taskBufferIF.getConfigValue('anal_jobbroker', 'OVERLOAD_MIN_QUEUE', 'jedi', taskSpec.vo) if minQueue is None: minQueue = 20 ratioOffset = self.taskBufferIF.getConfigValue('anal_jobbroker', 'OVERLOAD_RATIO_OFFSET', 'jedi', taskSpec.vo) if ratioOffset is None: ratioOffset = 1.2 grandRatio = AtlasBrokerUtils.get_total_nq_nr_ratio(jobStatPrioMap, taskSpec.gshare) tmpLog.info('grand nQueue/nRunning ratio : {0}'.format(grandRatio)) tmpLog.info('sites with non-VP data : {0}'.format(','.join(scanSiteWoVP))) for tmpPseudoSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpPseudoSiteName) tmpSiteName = tmpSiteSpec.get_unified_name() # get nQueue and nRunning nRunning = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'running', workQueue_tag=taskSpec.gshare) nQueue = 0 for jobStatus in ['defined', 'assigned', 'activated', 'starting']: nQueue += AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, jobStatus, workQueue_tag=taskSpec.gshare) # skip if overloaded if nQueue > minQueue and \ (nRunning == 0 or float(nQueue) / float(nRunning) > grandRatio * ratioOffset): tmpMsg = ' skip site={0} '.format(tmpPseudoSiteName) tmpMsg += 'nQueue>minQueue({0}) and '.format(minQueue) if nRunning == 0: tmpMsg += 'nRunning=0 ' problematic_sites_dict.setdefault(tmpSiteName, set()) problematic_sites_dict[tmpSiteName].add('nQueue({0})>minQueue({1}) and nRunning=0'.format(nQueue, minQueue)) else: tmpMsg += 'nQueue({0})/nRunning({1}) > grandRatio({2:.2f})*offset({3}) '.format(nQueue, nRunning, grandRatio, ratioOffset) if tmpSiteName in scanSiteWoVP or checkDataLocality is False or inputChunk.getDatasets() == []: tmpMsg += 'criteria=-overloaded' overloadedNonVP.append(tmpPseudoSiteName) msgListVP.append(tmpMsg) else: tmpMsg += 'and VP criteria=-overloaded_vp' msgList.append(tmpMsg) else: newScanSiteList.append(tmpPseudoSiteName) if len(newScanSiteList) > 0: scanSiteList = newScanSiteList for tmpMsg in msgList+msgListVP: tmpLog.info(tmpMsg) else: scanSiteList = overloadedNonVP for tmpMsg in msgList: tmpLog.info(tmpMsg) tmpLog.info('{0} candidates passed overload check'.format(len(scanSiteList))) self.add_summary_message(oldScanSiteList, scanSiteList, 'overload check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') retVal = retTmpError continue ###################################### # skip sites where the user queues too much user_name = self.taskBufferIF.cleanUserID(taskSpec.userName) tmpSt, jobsStatsPerUser = AtlasBrokerUtils.getUsersJobsStats( tbIF=self.taskBufferIF, vo=taskSpec.vo, prod_source_label=taskSpec.prodSourceLabel, cache_lifetime=60) if not tmpSt: tmpLog.error('failed to get users jobs statistics') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retTmpError elif not inputChunk.isMerging: # parameters base_queue_length_per_pq = self.taskBufferIF.getConfigValue( 'anal_jobbroker', 'BASE_QUEUE_LENGTH_PER_PQ', 'jedi', taskSpec.vo) if base_queue_length_per_pq is None: base_queue_length_per_pq = 100 base_expected_wait_hour_on_pq = self.taskBufferIF.getConfigValue( 'anal_jobbroker', 'BASE_EXPECTED_WAIT_HOUR_ON_PQ', 'jedi', taskSpec.vo) if base_expected_wait_hour_on_pq is None: base_expected_wait_hour_on_pq = 8 base_default_queue_length_per_pq_user = self.taskBufferIF.getConfigValue( 'anal_jobbroker', 'BASE_DEFAULT_QUEUE_LENGTH_PER_PQ_USER', 'jedi', taskSpec.vo) if base_default_queue_length_per_pq_user is None: base_default_queue_length_per_pq_user = 5 base_queue_ratio_on_pq = self.taskBufferIF.getConfigValue( 'anal_jobbroker', 'BASE_QUEUE_RATIO_ON_PQ', 'jedi', taskSpec.vo) if base_queue_ratio_on_pq is None: base_queue_ratio_on_pq = 0.05 static_max_queue_running_ratio = self.taskBufferIF.getConfigValue( 'anal_jobbroker', 'STATIC_MAX_QUEUE_RUNNING_RATIO', 'jedi', taskSpec.vo) if static_max_queue_running_ratio is None: static_max_queue_running_ratio = 2.0 max_expected_wait_hour = self.taskBufferIF.getConfigValue( 'anal_jobbroker', 'MAX_EXPECTED_WAIT_HOUR', 'jedi', taskSpec.vo) if max_expected_wait_hour is None: max_expected_wait_hour = 12.0 # loop over sites for tmpPseudoSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpPseudoSiteName) tmpSiteName = tmpSiteSpec.get_unified_name() # get info about site nRunning_pq_total = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'running') nRunning_pq_in_gshare = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'running', workQueue_tag=taskSpec.gshare) nQueue_pq_in_gshare = 0 for jobStatus in ['defined', 'assigned', 'activated', 'starting']: nQueue_pq_in_gshare += AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, jobStatus, workQueue_tag=taskSpec.gshare) # get to-running-rate try: site_to_running_rate = siteToRunRateMap[tmpSiteName] if isinstance(site_to_running_rate, dict): site_to_running_rate = sum(site_to_running_rate.values()) except KeyError: site_to_running_rate = 0 finally: to_running_rate = nRunning_pq_in_gshare*site_to_running_rate/nRunning_pq_total if nRunning_pq_total > 0 else 0 # get conditions of the site whether to throttle if nQueue_pq_in_gshare < base_queue_length_per_pq: # not throttle since overall queue length of the site is not large enough tmpLog.debug('not throttle on {0} since nQ({1}) < base queue length ({2})'.format( tmpSiteName, nQueue_pq_in_gshare, base_queue_length_per_pq)) continue allowed_queue_length_from_wait_time = base_expected_wait_hour_on_pq*to_running_rate if nQueue_pq_in_gshare < allowed_queue_length_from_wait_time: # not statisfy since overall waiting time of the site is not long enough tmpLog.debug('not throttle on {0} since nQ({1}) < {2:.3f} = toRunningRate({3:.3f} /hr) * base wait time ({4} hr)'.format( tmpSiteName, nQueue_pq_in_gshare, allowed_queue_length_from_wait_time, to_running_rate, base_expected_wait_hour_on_pq)) continue # get user jobs stats under the gshare try: user_jobs_stats_map = jobsStatsPerUser[tmpSiteName][taskSpec.gshare][user_name] except KeyError: continue else: nQ_pq_user = user_jobs_stats_map['nQueue'] nR_pq_user = user_jobs_stats_map['nRunning'] nUsers_pq = len(jobsStatsPerUser[tmpSiteName][taskSpec.gshare]) try: nR_pq = jobsStatsPerUser[tmpSiteName][taskSpec.gshare]['_total']['nRunning'] except KeyError: nR_pq = nRunning_pq_in_gshare # evaluate max nQueue per PQ nQ_pq_limit_map = { 'base_limit': base_queue_length_per_pq, 'static_limit': static_max_queue_running_ratio*nR_pq, 'dynamic_limit': max_expected_wait_hour*to_running_rate, } max_nQ_pq = max(nQ_pq_limit_map.values()) # description for max nQueue per PQ description_of_max_nQ_pq = 'max_nQ_pq({maximum:.3f}) '.format(maximum=max_nQ_pq) for k, v in nQ_pq_limit_map.items(): if v == max_nQ_pq: if k in ['base_limit']: description_of_max_nQ_pq += '= {key} = BASE_QUEUE_LENGTH_PER_PQ({value})'.format( key=k, value=base_queue_length_per_pq) elif k in ['static_limit']: description_of_max_nQ_pq += '= {key} = STATIC_MAX_QUEUE_RUNNING_RATIO({value:.3f}) * nR_pq({nR_pq})'.format( key=k, value=static_max_queue_running_ratio, nR_pq=nR_pq) elif k in ['dynamic_limit']: description_of_max_nQ_pq += '= {key} = MAX_EXPECTED_WAIT_HOUR({value:.3f} hr) * toRunningRate_pq({trr:.3f} /hr)'.format( key=k, value=max_expected_wait_hour, trr=to_running_rate) break # evaluate fraction per user user_fraction_map = { 'equal_distr': 1/nUsers_pq, 'prop_to_nR': nR_pq_user/nR_pq if nR_pq > 0 else 0, } max_user_fraction = max(user_fraction_map.values()) # description for max fraction per user description_of_max_user_fraction = 'max_user_fraction({maximum:.3f}) '.format(maximum=max_user_fraction) for k, v in user_fraction_map.items(): if v == max_user_fraction: if k in ['equal_distr']: description_of_max_user_fraction += '= {key} = 1 / nUsers_pq({nU})'.format( key=k, nU=nUsers_pq) elif k in ['prop_to_nR']: description_of_max_user_fraction += '= {key} = nR_pq_user({nR_pq_user}) / nR_pq({nR_pq})'.format( key=k, nR_pq_user=nR_pq_user, nR_pq=nR_pq) break # evaluate max nQueue per PQ per user nQ_pq_user_limit_map = { 'constant_base_user_limit': base_default_queue_length_per_pq_user, 'ratio_base_user_limit': base_queue_ratio_on_pq*nR_pq, 'dynamic_user_limit': max_nQ_pq*max_user_fraction, } max_nQ_pq_user = max(nQ_pq_user_limit_map.values()) # description for max fraction per user description_of_max_nQ_pq_user = 'max_nQ_pq_user({maximum:.3f}) '.format(maximum=max_nQ_pq_user) for k, v in nQ_pq_user_limit_map.items(): if v == max_nQ_pq_user: if k in ['constant_base_user_limit']: description_of_max_nQ_pq_user += '= {key} = BASE_DEFAULT_QUEUE_LENGTH_PER_PQ_USER({value})'.format( key=k, value=base_default_queue_length_per_pq_user) elif k in ['ratio_base_user_limit']: description_of_max_nQ_pq_user += '= {key} = BASE_QUEUE_RATIO_ON_PQ({value:.3f}) * nR_pq({nR_pq})'.format( key=k, value=base_queue_ratio_on_pq, nR_pq=nR_pq) elif k in ['dynamic_user_limit']: description_of_max_nQ_pq_user += '= {key} = max_nQ_pq({max_nQ_pq:.3f}) * max_user_fraction({max_user_fraction:.3f})'.format( key=k, max_nQ_pq=max_nQ_pq, max_user_fraction=max_user_fraction) description_of_max_nQ_pq_user += ' , where {0} , and {1}'.format(description_of_max_nQ_pq, description_of_max_user_fraction) break # check if nQ_pq_user > max_nQ_pq_user: tmpMsg = ' consider {0} unsuitable for the user due to long queue of the user: '.format(tmpSiteName) tmpMsg += 'nQ_pq_user({0}) > {1} '.format(nQ_pq_user, description_of_max_nQ_pq_user) # view as problematic site in order to throttle problematic_sites_dict.setdefault(tmpSiteName, set()) problematic_sites_dict[tmpSiteName].add(tmpMsg) ############ # loop end if len(scanSiteList) > 0: retVal = None break # failed if retVal is not None: taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retVal # get list of available files availableFileMap = {} for datasetSpec in inputChunk.getDatasets(): try: # get list of site to be scanned tmpLog.debug('getting the list of available files for {0}'.format(datasetSpec.datasetName)) fileScanSiteList = [] for tmpPseudoSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpPseudoSiteName) tmpSiteName = tmpSiteSpec.get_unified_name() if tmpSiteName in fileScanSiteList: continue fileScanSiteList.append(tmpSiteName) if tmpSiteName in remoteSourceList and datasetSpec.datasetName in remoteSourceList[tmpSiteName]: for tmpRemoteSite in remoteSourceList[tmpSiteName][datasetSpec.datasetName]: if tmpRemoteSite not in fileScanSiteList: fileScanSiteList.append(tmpRemoteSite) # mapping between sites and input storage endpoints siteStorageEP = AtlasBrokerUtils.getSiteInputStorageEndpointMap(fileScanSiteList, self.siteMapper, JobUtils.ANALY_PS, JobUtils.ANALY_PS) # disable file lookup for merge jobs if inputChunk.isMerging: checkCompleteness = False else: checkCompleteness = True if not datasetSpec.isMaster(): useCompleteOnly = True else: useCompleteOnly = False # get available files per site/endpoint tmpAvFileMap = self.ddmIF.getAvailableFiles(datasetSpec, siteStorageEP, self.siteMapper, check_completeness=checkCompleteness, use_vp=useVP, file_scan_in_container=False, complete_only=useCompleteOnly) if tmpAvFileMap is None: raise Interaction.JEDITemporaryError('ddmIF.getAvailableFiles failed') availableFileMap[datasetSpec.datasetName] = tmpAvFileMap except Exception: errtype,errvalue = sys.exc_info()[:2] tmpLog.error('failed to get available files with %s %s' % (errtype.__name__,errvalue)) taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retTmpError # make data weight totalSize = 0 totalNumFiles = 0 totalDiskSizeMap = dict() totalTapeSizeMap = dict() for datasetSpec in inputChunk.getDatasets(): totalNumFiles += len(datasetSpec.Files) for fileSpec in datasetSpec.Files: totalSize += fileSpec.fsize if datasetSpec.datasetName in availableFileMap: for tmpSiteName, tmpAvFileMap in iteritems(availableFileMap[datasetSpec.datasetName]): totalDiskSizeMap.setdefault(tmpSiteName, 0) totalTapeSizeMap.setdefault(tmpSiteName, 0) for fileSpec in tmpAvFileMap['localdisk']: totalDiskSizeMap[tmpSiteName] += fileSpec.fsize for fileSpec in tmpAvFileMap['localtape']: totalTapeSizeMap[tmpSiteName] += fileSpec.fsize totalSize //= (1024 * 1024 * 1024) tmpLog.info('totalInputSize={0} GB'.format(totalSize)) for tmpSiteName in totalDiskSizeMap.keys(): totalDiskSizeMap[tmpSiteName] //= (1024 * 1024 *1024) for tmpSiteName in totalTapeSizeMap.keys(): totalTapeSizeMap[tmpSiteName] //= (1024 * 1024 *1024) ###################################### # final procedure tmpLog.info('{0} candidates for final check'.format(len(scanSiteList))) weightMap = {} weightStr = {} candidateSpecList = [] preSiteCandidateSpec = None basic_weight_comparison_map = {} workerStat = self.taskBufferIF.ups_load_worker_stats() minBadJobsToSkipPQ = self.taskBufferIF.getConfigValue('anal_jobbroker', 'MIN_BAD_JOBS_TO_SKIP_PQ', 'jedi', taskSpec.vo) if minBadJobsToSkipPQ is None: minBadJobsToSkipPQ = 5 for tmpPseudoSiteName in scanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpPseudoSiteName) tmpSiteName = tmpSiteSpec.get_unified_name() nRunning = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'running', workQueue_tag=taskSpec.gshare) nDefined = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'defined', workQueue_tag=taskSpec.gshare) nAssigned = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'assigned', workQueue_tag=taskSpec.gshare) nActivated = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'activated', workQueue_tag=taskSpec.gshare) nStarting = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'starting', workQueue_tag=taskSpec.gshare) # get num workers nWorkers = 0 nWorkersCutoff = 20 if tmpSiteName in workerStat: for tmpHarvesterID, tmpLabelStat in iteritems(workerStat[tmpSiteName]): for tmpHarvesterID, tmpResStat in iteritems(tmpLabelStat): for tmpResType, tmpCounts in iteritems(tmpResStat): for tmpStatus, tmpNum in iteritems(tmpCounts): if tmpStatus in ['running', 'submitted']: nWorkers += tmpNum # cap nWorkers = min(nWorkersCutoff, nWorkers) # use nWorkers to bootstrap if tmpSiteName in nPilotMap and nPilotMap[tmpSiteName] > 0 and nRunning < nWorkersCutoff \ and nWorkers > nRunning: tmpLog.debug('using nWorkers={} as nRunning at {} since original nRunning={} is low'.format( nWorkers, tmpPseudoSiteName, nRunning)) nRunning = nWorkers # take into account the number of standby jobs numStandby = tmpSiteSpec.getNumStandby(taskSpec.gshare, taskSpec.resource_type) if numStandby is None: pass elif numStandby == 0: # use the number of starting jobs as the number of standby jobs nRunning = nStarting + nRunning tmpLog.debug('using dynamic workload provisioning at {0} to set nRunning={1}'.format(tmpPseudoSiteName, nRunning)) else: # the number of standby jobs is defined nRunning = max(int(numStandby / tmpSiteSpec.coreCount), nRunning) tmpLog.debug('using static workload provisioning at {0} with nStandby={1} to set nRunning={2}'.format( tmpPseudoSiteName, numStandby, nRunning)) nFailed = 0 nClosed = 0 nFinished = 0 if tmpSiteName in failureCounts: if 'failed' in failureCounts[tmpSiteName]: nFailed = failureCounts[tmpSiteName]['failed'] if 'closed' in failureCounts[tmpSiteName]: nClosed = failureCounts[tmpSiteName]['closed'] if 'finished' in failureCounts[tmpSiteName]: nFinished = failureCounts[tmpSiteName]['finished'] # problematic sites with too many failed and closed jobs if not inputChunk.isMerging and (nFailed + nClosed) > max(2*nFinished, minBadJobsToSkipPQ): problematic_sites_dict.setdefault(tmpSiteName, set()) problematic_sites_dict[tmpSiteName].add('too many failed or closed jobs for last 6h') # calculate weight orig_basic_weight = float(nRunning + 1) / float(nActivated + nAssigned + nDefined + nStarting + 1) weight = orig_basic_weight try: site_to_running_rate = siteToRunRateMap[tmpSiteName] if isinstance(site_to_running_rate, dict): site_to_running_rate = sum(site_to_running_rate.values()) except KeyError: to_running_rate_str = '0(unknown)' to_running_rate = 0 else: site_n_running = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'running') to_running_rate = nRunning*site_to_running_rate/site_n_running if site_n_running > 0 else 0 to_running_rate_str = '{0:.3f}'.format(to_running_rate) nThrottled = 0 if tmpSiteName in remoteSourceList: nThrottled = AtlasBrokerUtils.getNumJobs(jobStatPrioMap, tmpSiteName, 'throttled', workQueue_tag=taskSpec.gshare) weight /= float(nThrottled + 1) # normalize weights by taking data availability into account diskNorm = 10 tapeNorm = 1000 localSize = totalSize if checkDataLocality and not useUnionLocality: tmpDataWeight = 1 if tmpSiteName in dataWeight: weight *= dataWeight[tmpSiteName] tmpDataWeight = dataWeight[tmpSiteName] else: tmpDataWeight = 1 if totalSize > 0: if tmpSiteName in totalDiskSizeMap: tmpDataWeight += (totalDiskSizeMap[tmpSiteName] / diskNorm) localSize = totalDiskSizeMap[tmpSiteName] elif tmpSiteName in totalTapeSizeMap: tmpDataWeight += (totalTapeSizeMap[tmpSiteName] / tapeNorm) localSize = totalTapeSizeMap[tmpSiteName] weight *= tmpDataWeight # make candidate siteCandidateSpec = SiteCandidate(tmpPseudoSiteName, tmpSiteName) # preassigned if sitePreAssigned and tmpSiteName == preassignedSite: preSiteCandidateSpec = siteCandidateSpec # override attributes siteCandidateSpec.override_attribute('maxwdir', newMaxwdir.get(tmpSiteName)) # available site, take in account of new basic weight basic_weight_comparison_map[tmpSiteName] = {} basic_weight_comparison_map[tmpSiteName]['orig'] = orig_basic_weight basic_weight_comparison_map[tmpSiteName]['trr'] = to_running_rate basic_weight_comparison_map[tmpSiteName]['nq'] = (nActivated + nAssigned + nDefined + nStarting) basic_weight_comparison_map[tmpSiteName]['nr'] = nRunning # set weight siteCandidateSpec.weight = weight tmpStr = 'weight={0:.3f} nRunning={1} nDefined={2} nActivated={3} nStarting={4} nAssigned={5} '.format(weight, nRunning, nDefined, nActivated, nStarting, nAssigned) tmpStr += 'nFailed={0} nClosed={1} nFinished={2} dataW={3} '.format(nFailed, nClosed, nFinished, tmpDataWeight) tmpStr += 'totalInGB={0} localInGB={1} nFiles={2} '.format(totalSize, localSize, totalNumFiles) tmpStr += 'toRunningRate={0} '.format(to_running_rate_str) weightStr[tmpPseudoSiteName] = tmpStr # append if tmpSiteName in sitesUsedByTask: candidateSpecList.append(siteCandidateSpec) else: if weight not in weightMap: weightMap[weight] = [] weightMap[weight].append(siteCandidateSpec) ## compute new basic weight try: weight_comparison_avail_sites = set(basic_weight_comparison_map.keys()) trr_sum = 0 nq_sum = 0 n_avail_sites = len(basic_weight_comparison_map) for vv in basic_weight_comparison_map.values(): trr_sum += vv['trr'] nq_sum += vv['nq'] if n_avail_sites == 0: tmpLog.debug('WEIGHT-COMPAR: zero available sites, skip') elif trr_sum == 0: tmpLog.debug('WEIGHT-COMPAR: zero sum of to-running-rate, skip') else: _found_weights = False while not _found_weights: trr_sum_avail = 0 nq_sum_avail = 0 n_avail_sites = len(weight_comparison_avail_sites) if n_avail_sites == 0: break for site in weight_comparison_avail_sites: vv = basic_weight_comparison_map[site] trr_sum_avail += vv['trr'] nq_sum_avail += vv['nq'] if trr_sum_avail == 0: break _found_weights = True for site in list(weight_comparison_avail_sites): vv = basic_weight_comparison_map[site] new_basic_weight = (vv['trr']/trr_sum_avail)*(25 + nq_sum_avail - n_avail_sites/2.0) - vv['nq'] + 1/2.0 if new_basic_weight < 0: vv['new'] = 0 weight_comparison_avail_sites.discard(site) _found_weights = False else: vv['new'] = new_basic_weight orig_sum = 0 new_sum = 0 for vv in basic_weight_comparison_map.values(): orig_sum += vv['orig'] new_sum += vv['new'] for site in basic_weight_comparison_map: vv = basic_weight_comparison_map[site] if vv['nr'] == 0: trr_over_r = None else: trr_over_r = vv['trr']/vv['nr'] vv['trr_over_r'] = '{:6.3f}'.format(trr_over_r) if trr_over_r is not None else 'None' if orig_sum == 0: normalized_orig = 0 else: normalized_orig = vv['orig']/orig_sum vv['normalized_orig'] = normalized_orig if new_sum == 0: normalized_new = 0 else: normalized_new = vv['new']/new_sum vv['normalized_new'] = normalized_new prt_str_list = [] prt_str_temp = (' ' ' {site:>24} |' ' {nq:>6} |' ' {nr:>6} |' ' {trr:9.3f} |' ' {trr_over_r} |' ' {orig:9.3f} |' ' {new:9.3f} |' ' {normalized_orig:6.1%} |' ' {normalized_new:6.1%} |') prt_str_title = ( ' ' ' {site:>24} |' ' {nq:>6} |' ' {nr:>6} |' ' {trr:>9} |' ' {trr_over_r:>6} |' ' {orig:>9} |' ' {new:>9} |' ' {normalized_orig:>6} |' ' {normalized_new:>6} |' ).format( site='Site', nq='Q', nr='R', trr='TRR', trr_over_r='TRR/R', orig='Wb_orig', new='Wb_new', normalized_orig='orig_%', normalized_new='new_%') prt_str_list.append(prt_str_title) for site in sorted(basic_weight_comparison_map): vv = basic_weight_comparison_map[site] prt_str = prt_str_temp.format(site=site, **vv) prt_str_list.append(prt_str) tmpLog.debug('WEIGHT-COMPAR: for gshare={0} got \n{1}'.format(taskSpec.gshare, '\n'.join(prt_str_list))) except Exception as e: tmpLog.error('{0} {1}'.format(e.__class__.__name__, e)) ## oldScanSiteList = copy.copy(scanSiteList) # sort candidates by weights weightList = list(weightMap.keys()) weightList.sort() weightList.reverse() for weightVal in weightList: sitesWithWeight = weightMap[weightVal] random.shuffle(sitesWithWeight) candidateSpecList += sitesWithWeight # limit the number of sites. use all sites for distributed datasets if not hasDDS: maxNumSites = 10 else: maxNumSites = None # remove problematic sites oldScanSiteList = copy.copy(scanSiteList) candidateSpecList = AtlasBrokerUtils.skipProblematicSites(candidateSpecList, set(problematic_sites_dict), sitesUsedByTask, preSiteCandidateSpec, maxNumSites, timeWindowForFC, tmpLog) # append preassigned if sitePreAssigned and preSiteCandidateSpec is not None and preSiteCandidateSpec not in candidateSpecList: candidateSpecList.append(preSiteCandidateSpec) # collect site names scanSiteList = [] for siteCandidateSpec in candidateSpecList: scanSiteList.append(siteCandidateSpec.siteName) # append candidates newScanSiteList = [] msgList = [] for siteCandidateSpec in candidateSpecList: tmpPseudoSiteName = siteCandidateSpec.siteName tmpSiteSpec = self.siteMapper.getSite(tmpPseudoSiteName) tmpSiteName = tmpSiteSpec.get_unified_name() # preassigned if sitePreAssigned and tmpSiteName != preassignedSite: tmpLog.info(' skip site={0} non pre-assigned site criteria=-nonpreassigned'.format(tmpPseudoSiteName)) try: del weightStr[tmpPseudoSiteName] except Exception: pass continue # set available files if inputChunk.getDatasets() == [] or (not checkDataLocality and not tmpSiteSpec.use_only_local_data()): isAvailable = True else: isAvailable = False for tmpDatasetName,availableFiles in iteritems(availableFileMap): tmpDatasetSpec = inputChunk.getDatasetWithName(tmpDatasetName) # check remote files if tmpSiteName in remoteSourceList and tmpDatasetName in remoteSourceList[tmpSiteName] \ and not tmpSiteSpec.use_only_local_data(): for tmpRemoteSite in remoteSourceList[tmpSiteName][tmpDatasetName]: if tmpRemoteSite in availableFiles and \ len(tmpDatasetSpec.Files) <= len(availableFiles[tmpRemoteSite]['localdisk']): # use only remote disk files siteCandidateSpec.add_remote_files(availableFiles[tmpRemoteSite]['localdisk']) # set remote site and access protocol siteCandidateSpec.remoteProtocol = allowedRemoteProtocol siteCandidateSpec.remoteSource = tmpRemoteSite isAvailable = True break # local files if tmpSiteName in availableFiles: if len(tmpDatasetSpec.Files) <= len(availableFiles[tmpSiteName]['localdisk']) or \ len(tmpDatasetSpec.Files) <= len(availableFiles[tmpSiteName]['cache']) or \ len(tmpDatasetSpec.Files) <= len(availableFiles[tmpSiteName]['localtape']) or \ (tmpDatasetSpec.isDistributed() and len(availableFiles[tmpSiteName]['all']) > 0) or \ ((checkDataLocality is False or useUnionLocality) and not tmpSiteSpec.use_only_local_data()): siteCandidateSpec.add_local_disk_files(availableFiles[tmpSiteName]['localdisk']) # add cached files to local list since cached files go to pending when reassigned siteCandidateSpec.add_local_disk_files(availableFiles[tmpSiteName]['cache']) siteCandidateSpec.add_local_tape_files(availableFiles[tmpSiteName]['localtape']) siteCandidateSpec.add_cache_files(availableFiles[tmpSiteName]['cache']) siteCandidateSpec.add_remote_files(availableFiles[tmpSiteName]['remote']) siteCandidateSpec.addAvailableFiles(availableFiles[tmpSiteName]['all']) isAvailable = True else: tmpMsg = '{0} is incomplete at {1} : nFiles={2} nLocal={3} nCached={4} nTape={5}' tmpLog.debug(tmpMsg.format(tmpDatasetName, tmpPseudoSiteName, len(tmpDatasetSpec.Files), len(availableFiles[tmpSiteName]['localdisk']), len(availableFiles[tmpSiteName]['cache']), len(availableFiles[tmpSiteName]['localtape']), )) if not isAvailable: break # append if not isAvailable: tmpLog.info(' skip site={0} file unavailable criteria=-fileunavailable'.format(siteCandidateSpec.siteName)) try: del weightStr[siteCandidateSpec.siteName] except Exception: pass continue inputChunk.addSiteCandidate(siteCandidateSpec) newScanSiteList.append(siteCandidateSpec.siteName) tmpMsg = ' use site={0} with {1} nLocalDisk={2} nLocalTape={3} nCache={4} nRemote={5} criteria=+use'.format(siteCandidateSpec.siteName, weightStr[siteCandidateSpec.siteName], len(siteCandidateSpec.localDiskFiles), len(siteCandidateSpec.localTapeFiles), len(siteCandidateSpec.cacheFiles), len(siteCandidateSpec.remoteFiles)) msgList.append(tmpMsg) del weightStr[siteCandidateSpec.siteName] # dump for tmpPseudoSiteName in oldScanSiteList: tmpSiteSpec = self.siteMapper.getSite(tmpPseudoSiteName) tmpSiteName = tmpSiteSpec.get_unified_name() tmpWeightStr = None if tmpSiteName in weightStr: tmpWeightStr = weightStr[tmpSiteName] elif tmpPseudoSiteName in weightStr: tmpWeightStr = weightStr[tmpPseudoSiteName] if tmpWeightStr is not None: if tmpSiteName in problematic_sites_dict: bad_reasons = ' ; '.join(list(problematic_sites_dict[tmpSiteName])) tmpMsg = ' skip site={0} {1} ; with {2} criteria=-badsite'.format(tmpPseudoSiteName, bad_reasons, tmpWeightStr) else: tmpMsg = (' skip site={0} due to low weight and not-used by old jobs ' 'with {1} criteria=-lowweight').format(tmpPseudoSiteName, tmpWeightStr) tmpLog.info(tmpMsg) for tmpMsg in msgList: tmpLog.info(tmpMsg) scanSiteList = newScanSiteList self.add_summary_message(oldScanSiteList, scanSiteList, 'final check') if not scanSiteList: self.dump_summary(tmpLog) tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) # send info to logger self.sendLogMessage(tmpLog) return retTmpError self.dump_summary(tmpLog, scanSiteList) # send info to logger self.sendLogMessage(tmpLog) # return tmpLog.debug('done') return self.SC_SUCCEEDED,inputChunk
apache-2.0
endolith/scikit-image
doc/examples/segmentation/plot_random_walker_segmentation.py
13
2068
""" ========================== Random walker segmentation ========================== The random walker algorithm [1]_ determines the segmentation of an image from a set of markers labeling several phases (2 or more). An anisotropic diffusion equation is solved with tracers initiated at the markers' position. The local diffusivity coefficient is greater if neighboring pixels have similar values, so that diffusion is difficult across high gradients. The label of each unknown pixel is attributed to the label of the known marker that has the highest probability to be reached first during this diffusion process. In this example, two phases are clearly visible, but the data are too noisy to perform the segmentation from the histogram only. We determine markers of the two phases from the extreme tails of the histogram of gray values, and use the random walker for the segmentation. .. [1] *Random walks for image segmentation*, Leo Grady, IEEE Trans. Pattern Anal. Mach. Intell. 2006 Nov; 28(11):1768-83 """ import numpy as np import matplotlib.pyplot as plt from skimage.segmentation import random_walker from skimage.data import binary_blobs import skimage # Generate noisy synthetic data data = skimage.img_as_float(binary_blobs(length=128, seed=1)) data += 0.35 * np.random.randn(*data.shape) markers = np.zeros(data.shape, dtype=np.uint) markers[data < -0.3] = 1 markers[data > 1.3] = 2 # Run random walker algorithm labels = random_walker(data, markers, beta=10, mode='bf') # Plot results fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8, 3.2), sharex=True, sharey=True) ax1.imshow(data, cmap='gray', interpolation='nearest') ax1.axis('off') ax1.set_adjustable('box-forced') ax1.set_title('Noisy data') ax2.imshow(markers, cmap='hot', interpolation='nearest') ax2.axis('off') ax2.set_adjustable('box-forced') ax2.set_title('Markers') ax3.imshow(labels, cmap='gray', interpolation='nearest') ax3.axis('off') ax3.set_adjustable('box-forced') ax3.set_title('Segmentation') fig.tight_layout() plt.show()
bsd-3-clause
HKUST-SING/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io.py
8
3794
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow pandas.DataFrame.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.estimator.inputs.pandas_io import pandas_input_fn # pylint: disable=unused-import try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False PANDAS_DTYPES = { 'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float', 'bool': 'i' } def extract_pandas_data(data): """Extract data from pandas.DataFrame for predictors. Given a DataFrame, will extract the values and cast them to float. The DataFrame is expected to contain values of type int, float or bool. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values as floats. Raises: ValueError: if data contains types other than int, float or bool. """ if not isinstance(data, pd.DataFrame): return data bad_data = [column for column in data if data[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return data.values.astype('float') else: error_report = [("'" + str(column) + "' type='" + data[column].dtype.name + "'") for column in bad_data] raise ValueError('Data types for extracting pandas data must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) def extract_pandas_matrix(data): """Extracts numpy matrix from pandas DataFrame. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values. """ if not isinstance(data, pd.DataFrame): return data return data.as_matrix() def extract_pandas_labels(labels): """Extract data from pandas.DataFrame for labels. Args: labels: `pandas.DataFrame` or `pandas.Series` containing one column of labels to be extracted. Returns: A numpy `ndarray` of labels from the DataFrame. Raises: ValueError: if more than one column is found or type is not int, float or bool. """ if isinstance(labels, pd.DataFrame): # pandas.Series also belongs to DataFrame if len(labels.columns) > 1: raise ValueError('Only one column for labels is allowed.') bad_data = [column for column in labels if labels[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return labels.values else: error_report = ["'" + str(column) + "' type=" + str(labels[column].dtype.name) for column in bad_data] raise ValueError('Data types for extracting labels must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) else: return labels
apache-2.0
samueljackson92/NDImage
ndimage/controllers/mpl_canvas_controller.py
1
1756
import numpy as np import scipy.spatial as spatial from matplotlib.widgets import LassoSelector from matplotlib.path import Path class MplCanvasLassoSelector(object): def __init__(self, fig_canvas, parent): self._parent = parent self._canvas = fig_canvas self._lasso = LassoSelector(self._canvas.axes, onselect=self.onselect) # Figure MUST be redrawn at this point self._canvas.draw() def onselect(self, verts): df = self._parent.get_projection() if df is not None: xys = df.as_matrix() path = Path(verts) idx = np.nonzero([path.contains_point(xy) for xy in xys])[0] self._parent.select_rows(idx) self._canvas.highlight_points(idx) self._lasso.disconnect_events() self._canvas.draw_idle() class MplCanvasListener(object): def __init__(self, fig_canvas, parent): self._parent = parent self._canvas = fig_canvas self._canvas.figure.canvas.mpl_connect('button_press_event', self.select_rows) self._parent.projectionTable.modelReset.connect(self.reset_tree) self.reset_tree() def reset_tree(self): df = self._parent.get_projection() if df is not None: self.tree = spatial.cKDTree(df[[0, 1]]) def find_nearest(self, x, y): dist, idx = self.tree.query((x, y), k=1, p=1) return idx def select_rows(self, event): df = self._parent.get_projection() if df is not None: idx = self.find_nearest(event.xdata, event.ydata) self._parent.select_rows(idx) self._canvas.highlight_points(idx) self._canvas.draw_idle()
mit
harterj/moose
modules/geochemistry/test/tests/solubilities_and_activities/gypsum_solubility.py
9
1232
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html # Plotting the results of gypsum_solubility and the equivalent GWB simulation import os import sys import matplotlib.pyplot as plt f = open("gold/gypsum_solubility_out.csv", "r") data = f.readlines()[2:] f.close() cl = [float(line.strip().split(",")[1]) for line in data] gyp = [float(line.strip().split(",")[2]) for line in data] gwb_cl_molality = [0.02907, 0.2894, 0.5768, 0.8625, 1.146, 1.428, 1.708, 1.986, 2.261, 2.533, 2.803] gwb_ca_in_fluid = [0.02386, 0.0417, 0.0559, 0.0682, 0.0796, 0.0904, 0.101, 0.111, 0.121, 0.131, 0.141] plt.figure() plt.plot(cl, gyp, 'k-', linewidth = 2.0, label = 'MOOSE') plt.plot(gwb_cl_molality, gwb_ca_in_fluid, 'rs', markersize = 6.0, label = 'GWB') plt.legend() plt.xlabel("Cl molality") plt.ylabel("Dissolved gypsum (mol)") plt.title("Gypsum solubility in brine") plt.savefig("../../../doc/content/media/geochemistry/gypsum_solubility.png") sys.exit(0)
lgpl-2.1
cdtait/betfair_pandas
samples/sample1.py
1
6777
''' Created on 4 Nov 2014 @author: obod ''' from __future__ import print_function from betfair.models import MarketFilter from betfair import Betfair import betfair_pandas as bp import datetime import dateutil import pandas as pd if __name__ == '__main__': # ssologin # To use this you will need app_key,cert_file,username,password client=Betfair(app_key,cert_file) client.login(username,password) # List horse racing event ids event_types=bp.list_event_types(client,filter={'textQuery':"Horse Racing"}) # First 5 UK horse races, win market, from now country_code='GB' marketFilter={'eventTypeIds':[event_types.id[0]], 'marketCountries':[country_code], 'marketTypeCodes':["WIN"], 'marketStartTime':{'from':datetime.datetime.now()}} # First 5 horse races, win market, from now races=bp.list_market_catalogue(client, filter=marketFilter, market_projection=['COMPETITION','EVENT','EVENT_TYPE','MARKET_DESCRIPTION', 'RUNNER_DESCRIPTION','MARKET_START_TIME'], sort="FIRST_TO_START", max_results=5 ) # Get a summary set of columns for winHorseRacing from description summaryDesc=races['description'][['marketId','marketName','event.venue', 'event.name','marketStartTime']] # Get a summary set of the runners names summaryRunners=races['runners'][['marketId','selectionId','runnerName']] # Join the 2 together baes on the marketId to show summary of the runners in the races together summaryRaces=pd.merge(summaryDesc,summaryRunners,on='marketId') # First race summaryDesc.groupby(['marketStartTime','event.venue']) print('Races:') for name, group in summaryDesc.groupby(['marketStartTime','event.venue']): print("{0:s} {1:s} {2:s} {3:%I:%M%p}".format(group.values[0][1], group.values[0][2], group.values[0][3], dateutil.parser.parse(group.values[0][4]) )) # First race marketId=races['description'].marketId[0] # First race summary firstRaceDesc=summaryDesc.query('marketId=="'+marketId+'"')[['marketId','marketName', 'event.name','event.venue','marketStartTime']] firstRaceRunners=summaryRaces.query('marketId=="'+marketId+'"')[['selectionId','runnerName']] print(firstRaceDesc) print(firstRaceRunners) # All exchange and starting prices to a depth of 2 max price of 20 projection={'priceData':['EX_BEST_OFFERS','SP_AVAILABLE','SP_TRADED'], 'virtualise':False, 'exBestOffersOverrides':{'bestPricesDepth':5L, 'rollupModel':"STAKE", 'rollupLimit':20L}, 'rolloverStakes':False } # Get all the runners/prices book for this market # According to the projections runnersPriceInFirstRace=bp.list_market_book(client, market_ids=[marketId], price_projection=projection, order_projection='ALL', match_projection='ROLLED_UP_BY_PRICE' ) # Note the book time priceTime=datetime.datetime.now() # print(runnersPriceInFirstRace['market.book'][['marketId','lastMatchTime', 'totalAvailable','totalMatched', 'numberOfActiveRunners']]) # Runner with the most matched runnerWithMostTotalMatched=runnersPriceInFirstRace['runners'].sort('totalMatched',ascending=False) # This is one particular runner id runnerIdWithMostTotalMatched=runnerWithMostTotalMatched.ix[0,'selectionId'] # Getthe overview price and volume for this selection runners=runnersPriceInFirstRace['runners'] overview=runners[runners.selectionId==runnerIdWithMostTotalMatched] # Get the overview price and volume for this selected runner runnerOverview=pd.merge(overview,summaryRaces[['selectionId','marketId','runnerName']], on=['selectionId','marketId']) # allsp=runnersPriceInFirstRace['runners.sp'] sp=allsp[allsp.selectionId==runnerIdWithMostTotalMatched] # Show starting price summary print(sp) # Show back stake taken backStakeTaken=runnersPriceInFirstRace['runners.sp.backStakeTaken'] print(backStakeTaken[backStakeTaken.selectionId==runnerIdWithMostTotalMatched]) # Show lay liabilty taken layLiabilityTaken=runnersPriceInFirstRace['runners.sp.layLiabilityTaken'] print(layLiabilityTaken[layLiabilityTaken.selectionId==runnerIdWithMostTotalMatched]) # Get all lay prices for all the runners in the first race availableToLay=runnersPriceInFirstRace['runners.ex.availableToLay'] # Get the lay prices for the one with the most total matched runnerIdWithMostTotalMatchedLayPrices=availableToLay[availableToLay.selectionId == runnerIdWithMostTotalMatched] # Rename to TotalAvailableToLay runnerIdWithMostTotalMatchedLayPrices=runnerIdWithMostTotalMatchedLayPrices.rename( columns={'size': 'LayTotal','price':'LayPrice'}) # Get all back prices for all the runners in the first race availableToBack=runnersPriceInFirstRace['runners.ex.availableToBack'] # Get the back prices for the one with the most total matched runnerIdWithMostTotalMatchedBackPrices=availableToBack[availableToBack.selectionId == runnerIdWithMostTotalMatched] # Rename to TotalAvailableToBack runnerIdWithMostTotalMatchedBackPrices=runnerIdWithMostTotalMatchedBackPrices.rename( columns={'size': 'BackTotal', 'price':'BackPrice'}) # # Merge the prices by appending to make a price ladder priceLadder=runnerIdWithMostTotalMatchedBackPrices[['BackTotal','BackPrice']].join( runnerIdWithMostTotalMatchedLayPrices[['LayPrice','LayTotal']]) print("Market:{0:s} {1:s} {2:s} {3:%I:%M%p}".format(firstRaceDesc['marketName'][0], firstRaceDesc['event.name'][0], firstRaceDesc['event.venue'][0], dateutil.parser.parse(firstRaceDesc['marketStartTime'][0])) ) print("Runner:{0:s} Total {1:f} ".format(runnerOverview['runnerName'][0], runnerOverview['totalMatched'][0])) print('Book at {0:s}'.format(priceTime.isoformat(' '))) print(priceLadder) # client.logout()
gpl-2.0
nan86150/ImageFusion
lib/python2.7/site-packages/matplotlib/tests/test_cbook.py
9
8125
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from datetime import datetime import numpy as np from numpy.testing.utils import (assert_array_equal, assert_approx_equal, assert_array_almost_equal) from nose.tools import assert_equal, raises, assert_true import matplotlib.cbook as cbook import matplotlib.colors as mcolors from matplotlib.cbook import delete_masked_points as dmp def test_is_string_like(): y = np.arange(10) assert_equal(cbook.is_string_like(y), False) y.shape = 10, 1 assert_equal(cbook.is_string_like(y), False) y.shape = 1, 10 assert_equal(cbook.is_string_like(y), False) assert cbook.is_string_like("hello world") assert_equal(cbook.is_string_like(10), False) def test_restrict_dict(): d = {'foo': 'bar', 1: 2} d1 = cbook.restrict_dict(d, ['foo', 1]) assert_equal(d1, d) d2 = cbook.restrict_dict(d, ['bar', 2]) assert_equal(d2, {}) d3 = cbook.restrict_dict(d, {'foo': 1}) assert_equal(d3, {'foo': 'bar'}) d4 = cbook.restrict_dict(d, {}) assert_equal(d4, {}) d5 = cbook.restrict_dict(d, set(['foo', 2])) assert_equal(d5, {'foo': 'bar'}) # check that d was not modified assert_equal(d, {'foo': 'bar', 1: 2}) class Test_delete_masked_points: def setUp(self): self.mask1 = [False, False, True, True, False, False] self.arr0 = np.arange(1.0, 7.0) self.arr1 = [1, 2, 3, np.nan, np.nan, 6] self.arr2 = np.array(self.arr1) self.arr3 = np.ma.array(self.arr2, mask=self.mask1) self.arr_s = ['a', 'b', 'c', 'd', 'e', 'f'] self.arr_s2 = np.array(self.arr_s) self.arr_dt = [datetime(2008, 1, 1), datetime(2008, 1, 2), datetime(2008, 1, 3), datetime(2008, 1, 4), datetime(2008, 1, 5), datetime(2008, 1, 6)] self.arr_dt2 = np.array(self.arr_dt) self.arr_colors = ['r', 'g', 'b', 'c', 'm', 'y'] self.arr_rgba = mcolors.colorConverter.to_rgba_array(self.arr_colors) @raises(ValueError) def test_bad_first_arg(self): dmp('a string', self.arr0) def test_string_seq(self): actual = dmp(self.arr_s, self.arr1) ind = [0, 1, 2, 5] expected = (self.arr_s2.take(ind), self.arr2.take(ind)) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_datetime(self): actual = dmp(self.arr_dt, self.arr3) ind = [0, 1, 5] expected = (self.arr_dt2.take(ind), self.arr3.take(ind).compressed()) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_rgba(self): actual = dmp(self.arr3, self.arr_rgba) ind = [0, 1, 5] expected = (self.arr3.take(ind).compressed(), self.arr_rgba.take(ind, axis=0)) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_allequal(): assert(cbook.allequal([1, 1, 1])) assert(not cbook.allequal([1, 1, 0])) assert(cbook.allequal([])) assert(cbook.allequal(('a', 'a'))) assert(not cbook.allequal(('a', 'b'))) class Test_boxplot_stats: def setup(self): np.random.seed(937) self.nrows = 37 self.ncols = 4 self.data = np.random.lognormal(size=(self.nrows, self.ncols), mean=1.5, sigma=1.75) self.known_keys = sorted([ 'mean', 'med', 'q1', 'q3', 'iqr', 'cilo', 'cihi', 'whislo', 'whishi', 'fliers', 'label' ]) self.std_results = cbook.boxplot_stats(self.data) self.known_nonbootstrapped_res = { 'cihi': 6.8161283264444847, 'cilo': -0.1489815330368689, 'iqr': 13.492709959447094, 'mean': 13.00447442387868, 'med': 3.3335733967038079, 'fliers': np.array([ 92.55467075, 87.03819018, 42.23204914, 39.29390996 ]), 'q1': 1.3597529879465153, 'q3': 14.85246294739361, 'whishi': 27.899688243699629, 'whislo': 0.042143774965502923 } self.known_bootstrapped_ci = { 'cihi': 8.939577523357828, 'cilo': 1.8692703958676578, } self.known_whis3_res = { 'whishi': 42.232049135969874, 'whislo': 0.042143774965502923, 'fliers': np.array([92.55467075, 87.03819018]), } self.known_res_percentiles = { 'whislo': 0.1933685896907924, 'whishi': 42.232049135969874 } self.known_res_range = { 'whislo': 0.042143774965502923, 'whishi': 92.554670752188699 } def test_form_main_list(self): assert_true(isinstance(self.std_results, list)) def test_form_each_dict(self): for res in self.std_results: assert_true(isinstance(res, dict)) def test_form_dict_keys(self): for res in self.std_results: keys = sorted(list(res.keys())) for key in keys: assert_true(key in self.known_keys) def test_results_baseline(self): res = self.std_results[0] for key in list(self.known_nonbootstrapped_res.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_nonbootstrapped_res[key] ) def test_results_bootstrapped(self): results = cbook.boxplot_stats(self.data, bootstrap=10000) res = results[0] for key in list(self.known_bootstrapped_ci.keys()): assert_approx_equal( res[key], self.known_bootstrapped_ci[key] ) def test_results_whiskers_float(self): results = cbook.boxplot_stats(self.data, whis=3) res = results[0] for key in list(self.known_whis3_res.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_whis3_res[key] ) def test_results_whiskers_range(self): results = cbook.boxplot_stats(self.data, whis='range') res = results[0] for key in list(self.known_res_range.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_res_range[key] ) def test_results_whiskers_percentiles(self): results = cbook.boxplot_stats(self.data, whis=[5, 95]) res = results[0] for key in list(self.known_res_percentiles.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_res_percentiles[key] ) def test_results_withlabels(self): labels = ['Test1', 2, 'ardvark', 4] results = cbook.boxplot_stats(self.data, labels=labels) res = results[0] for lab, res in zip(labels, results): assert_equal(res['label'], lab) results = cbook.boxplot_stats(self.data) for res in results: assert('label' not in res) @raises(ValueError) def test_label_error(self): labels = [1, 2] results = cbook.boxplot_stats(self.data, labels=labels) @raises(ValueError) def test_bad_dims(self): data = np.random.normal(size=(34, 34, 34)) results = cbook.boxplot_stats(data)
mit
orion-42/numerics-physics-stuff
tschebyschew.py
1
2284
import numpy as np import matplotlib.pyplot as plt def tschebyschow(n): T1 = np.zeros(n + 1) T1[0] = 1.0 T2 = np.zeros(n + 1) T2[1] = 1.0 T = [T1, T2] for i in range(2, n + 1): T.append(2*np.roll(T[i - 1], 1) - T[i - 2]) return T def poly_to_fn(poly): return lambda x: np.sum(poly*x**np.arange(poly.size)) def poly_to_string(poly): ans = "" first = True # first term with coeff. != 0? for i in range(poly.size - 1, -1, -1): # only display term with a coeff. != 0 # but display a 0 if all terms are 0 if poly[i] != 0.0 or i == 0 and first: if poly[i] > 0.0: if not first: # we don't need a + if we are in the first term ans += " + " else: # in the first term we use a - without a sign # e.g. -x^2 - 2 if first: ans += "-" else: ans += " - " # we don't want to display a coeff. with 0 decimals as e.g. 1.0 but as 1 # and we already dealt with the sign if round(poly[i]) == poly[i]: val = abs(int(round(poly[i]))) else: val = abs(poly[i]) # display the constant term with only its value if i == 0: ans += str(val) # ommit the exponent for the linear term (x instead of x^1) elif i == 1: # ommit the coeff. if the coeff is 1 if val == 1: ans += "x" else: ans += "{}*x".format(val) else: # ommit the coeff. if the coeff is 1 if val == 1: ans += "x^{}".format(i) else: ans += "{}*x^{}".format(val, i) first = False # we had a term != 0 return ans n = 5 for i, p in enumerate(tschebyschow(n)): xs = list(np.linspace(-1, 1, 100)) f = poly_to_fn(p) #plt.plot(xs, map(f, xs), label="n = {}".format(i)) plt.plot(xs, list(map(f, xs)), label=poly_to_string(p)) # plt.plot(xs, map(f, xs)) plt.legend() plt.title("Tschebyschow Polynomials") plt.xlabel("x") plt.ylabel("y") plt.show()
mit
pombo-lab/gamtools
lib/gamtools/radial_position.py
1
1622
""" ========================== The radial position module ========================== The radial position module contains functions for calculating chromatin radial position from GAM :ref:`segregation tables <segregation_table>`. """ import numpy as np from .segregation import open_segregation def get_radial_position(segregation_data, no_blanks=False): """Get the radial position of each genomic window from a segregation table :param segregation_data: Segregation table generated by gamtools :returns: :class:`pandas.DataFrame` giving the radial position of each window """ # Get the percentage genome coverage for each NP cov_per_np = 100 * segregation_data.mean() def get_window_radial_pos(segregation_row): """Internal function that calculates radial position for each row""" # Which NPs are positive for this window? nps_with_window = segregation_row.values.astype(bool) # Get the mean genome coverage of NPs positive for this window return cov_per_np[nps_with_window].mean() radial_position = segregation_data.apply(get_window_radial_pos, axis=1) if no_blanks: radial_position = radial_position[ np.logical_not(radial_position.isnull())] return radial_position def radial_position_from_args(args): """Helper function to call get_radial_position from doit""" segregation_data = open_segregation(args.segregation_file) radial_position = get_radial_position(segregation_data, args.no_blanks) radial_position.to_csv(args.output_file, sep='\t')
apache-2.0
bzamecnik/ml-playground
chord-recognition/convnet_chord_classification_training.py
2
7659
# Chord classification # # The task is to classify chords (or more precisely pitch class sets) based on chromagram features. # # We use a the whole Beatles dataset (ie. many songs). # # The task is in fact multilabel classification, since each pitch class is generally independent. import numpy as np import pandas as pd import matplotlib as mpl # do not use Qt/X that require $DISPLAY mpl.use('Agg') import matplotlib.pyplot as plt import arrow import os import scipy.signal import scipy.misc from sklearn.metrics import hamming_loss, accuracy_score, roc_auc_score from keras.models import Sequential from keras.layers.core import Dense, Activation, Flatten, Dropout from keras.layers.convolutional import Convolution1D, MaxPooling1D from keras.layers.normalization import BatchNormalization from keras.callbacks import ModelCheckpoint ## Data loading dataset_file = '../data/beatles/ml_dataset/block=4096_hop=2048_bins=-48,67_div=1/dataset_2016-05-15.npz' dataset = np.load(dataset_file) X_train, Y_train, X_valid, Y_valid, X_test, Y_test = \ dataset['X_train'], dataset['Y_train'], \ dataset['X_valid'], dataset['Y_valid'], \ dataset['X_test'], dataset['Y_test'] ## Data preprocessing ### Features # scaler = MinMaxScaler() # X = scaler.fit_transform(features).astype('float32') # let's rescale the features manually so that the're the same in all songs # the range (in dB) is -120 to X.shape[1] (= 115) # TODO: there's a bug: should be + 120 on both places!!! def normalize(X): return (X.astype('float32') - 120) / (X.shape[1] - 120) X_train = normalize(X_train) X_valid = normalize(X_valid) X_test = normalize(X_test) for d in [X_train, X_valid, X_test, Y_train, Y_valid, Y_test]: print(d.shape) # reshape for 1D convolution def conv_reshape(X): return X.reshape(X.shape[0], X.shape[1], 1) X_conv_train = conv_reshape(X_train) X_conv_valid = conv_reshape(X_valid) X_conv_test = conv_reshape(X_test) ## Model training and evaluation def new_model_id(): return 'model_%s' % arrow.get().format('YYYY-MM-DD-HH-mm-ss') def save_model_arch(model_id, model): arch_file = '%s/%s_arch.yaml' % (model_dir, model_id) print('architecture:', arch_file) open(arch_file, 'w').write(model.to_yaml()) def weights_file(model_id, suffix=''): return '%s/%s_weights%s.h5' % (model_dir, model_id, suffix) def report_model_parameters(model): print('number of parameters:', model.count_params()) print('weights:', [w.shape for w in model.get_weights()]) # #### Notes # # - the last layer has to be sigmoid, not softmax # - since each output label should be independent a multiple can be active at the same time # - very sparse inputs can easily saturate sigmoid activation if it's near the first layer # - class_mode='binary' for multi-label classification # - predict_classes() then returns a binary vector # - loss: MAE or binary_crossentropy? # - why binary_crossentropy gives worse accuracy than MAE? # - binary_crossentropy works ok # - problems with loss going to NAN after the first training iteration # - optimizer clipnorm doesn't help # - BatchNormalization doesn't help # - BatchNormalization between convolution and activation works # - BatchNormalization might be useful # - be aware to use scaled inputs, not raw ones model_id = new_model_id() print('model id:', model_id) model_dir = '../data/beatles/models/' + model_id os.makedirs(model_dir, exist_ok=True) model = Sequential() model.add(Convolution1D(32, 3, input_shape=(X_train.shape[1], 1))) # model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Convolution1D(32, 3)) model.add(Activation('relu')) model.add(MaxPooling1D(2, 2)) model.add(Dropout(0.25)) model.add(Convolution1D(64, 3)) # model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Convolution1D(64, 3)) model.add(Activation('relu')) model.add(MaxPooling1D(2, 2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(12)) model.add(Activation('sigmoid')) report_model_parameters(model) print('compiling the model') model.compile(class_mode='binary', loss='binary_crossentropy', optimizer='adam') save_model_arch(model_id, model) print('training the model') checkpointer = ModelCheckpoint(filepath=weights_file(model_id, '_checkpoint'), verbose=1, save_best_only=True) epoch_count = 10 batch_size = 512 training_hist = model.fit( X_conv_train, Y_train, validation_data=(X_conv_valid, Y_valid), nb_epoch=epoch_count, batch_size=batch_size, callbacks=[checkpointer], verbose=1) # There's a problem with checkpointer that it produces weight with one more layer # and the weights cannot be easily imported. model.save_weights(weights_file(model_id, '')) def report_training_curve(training_hist): history = training_hist.history pd.DataFrame(history).to_csv(model_dir+'/'+model_id+'_training_history.tsv', header=True) plt.figure() for label in history: plt.plot(history[label], label=label) plt.xlabel('epochs') plt.title('%s - learning curves' % model_id) plt.suptitle('validation loss: %s' % history['val_loss'][-1]) plt.legend() plt.savefig(model_dir+'/'+model_id+'_learning_curves.png') report_training_curve(training_hist) def model_report_multilabel(model, X_train, Y_train, X_valid, Y_valid): def report_dataset(X, y_true, title): y_proba = model.predict_proba(X, batch_size=batch_size) # multi-label classes with default threshold y_pred = y_proba >= 0.5 print(title + ' accuracy (exatch match):', accuracy_score(y_true, y_pred)) print(title + ' hamming score (non-exatch match):', 1 - hamming_loss(y_true, y_pred)) print(title + 'AUC:', roc_auc_score(y_true.flatten(), y_proba.flatten())) report_dataset(X_train, Y_train, 'training') report_dataset(X_valid, Y_valid, 'validation') model_report_multilabel(model, X_conv_train, Y_train, X_conv_valid, Y_valid) # visualization def plot_labels(l, title, fifths=False, resample=True, exact=False): if fifths: l = l[:,np.arange(12)*7 % 12] l = l.T file = model_dir+'/'+model_id+'_'+title+'.png' if exact: scipy.misc.imsave(file, l) else: if resample: l = scipy.signal.resample(l, 200, axis=1) plt.figure(figsize=(20, 2)) plt.imshow(l, cmap='gray', interpolation='none') plt.tight_layout() plt.savefig(file) # # true labels # plot_labels(labels_pcs, 'true') # plot_labels(labels_pcs, 'exact_true', exact=True) # # # predicted labels # labels_pred_full = model.predict_classes(conv_reshape(X)) # plot_labels(labels_pred_full, 'pred') # plot_labels(labels_pred_full, 'exact_pred', exact=True) # # # difference # plot_labels(labels_pcs - labels_pred_full, 'diff') # plot_labels(labels_pcs - labels_pred_full, 'exact_diff', exact=True) # plot_labels(labels_pred_full[:100], resample=False) # plot_labels(labels_pcs[:100] - labels_pred_full[:100], resample=False) # in case of input features with original time order we can apply median filter: # medfilt(labels_pred_full, (15, 1)) def plot_labels_true_pred_diff(): def plot2d(x): plt.imshow(scipy.signal.resample(x.T, 200, axis=1), cmap='gray', interpolation='none') plt.figure(figsize=(20, 6)) ax = plt.subplot(3,1,1) plot2d(labels_pcs) ax.set_title('true') ax = plt.subplot(3,1,2) plot2d(labels_pred_full) ax.set_title('predicted') ax = plt.subplot(3,1,3) plot2d(labels_pred_full - labels_pcs) ax.set_title('difference') plt.tight_layout()
mit
dingocuster/scikit-learn
sklearn/linear_model/__init__.py
270
3096
""" The :mod:`sklearn.linear_model` module implements generalized linear models. It includes Ridge regression, Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate descent. It also implements Stochastic Gradient Descent related algorithms. """ # See http://scikit-learn.sourceforge.net/modules/sgd.html and # http://scikit-learn.sourceforge.net/modules/linear_model.html for # complete documentation. from .base import LinearRegression from .bayes import BayesianRidge, ARDRegression from .least_angle import (Lars, LassoLars, lars_path, LarsCV, LassoLarsCV, LassoLarsIC) from .coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV, lasso_path, enet_path, MultiTaskLasso, MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLassoCV) from .sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber from .stochastic_gradient import SGDClassifier, SGDRegressor from .ridge import (Ridge, RidgeCV, RidgeClassifier, RidgeClassifierCV, ridge_regression) from .logistic import (LogisticRegression, LogisticRegressionCV, logistic_regression_path) from .omp import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV) from .passive_aggressive import PassiveAggressiveClassifier from .passive_aggressive import PassiveAggressiveRegressor from .perceptron import Perceptron from .randomized_l1 import (RandomizedLasso, RandomizedLogisticRegression, lasso_stability_path) from .ransac import RANSACRegressor from .theil_sen import TheilSenRegressor __all__ = ['ARDRegression', 'BayesianRidge', 'ElasticNet', 'ElasticNetCV', 'Hinge', 'Huber', 'Lars', 'LarsCV', 'Lasso', 'LassoCV', 'LassoLars', 'LassoLarsCV', 'LassoLarsIC', 'LinearRegression', 'Log', 'LogisticRegression', 'LogisticRegressionCV', 'ModifiedHuber', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'OrthogonalMatchingPursuitCV', 'PassiveAggressiveClassifier', 'PassiveAggressiveRegressor', 'Perceptron', 'RandomizedLasso', 'RandomizedLogisticRegression', 'Ridge', 'RidgeCV', 'RidgeClassifier', 'RidgeClassifierCV', 'SGDClassifier', 'SGDRegressor', 'SquaredLoss', 'TheilSenRegressor', 'enet_path', 'lars_path', 'lasso_path', 'lasso_stability_path', 'logistic_regression_path', 'orthogonal_mp', 'orthogonal_mp_gram', 'ridge_regression', 'RANSACRegressor']
bsd-3-clause
nsoojin/coursera-ml-py
machine-learning-ex5/ex5/ex5.py
1
5989
import matplotlib.pyplot as plt import numpy as np import scipy.io as scio import linearRegCostFunction as lrcf import trainLinearReg as tlr import learningCurve as lc import polyFeatures as pf import featureNormalize as fn import plotFit as plotft import validationCurve as vc plt.ion() np.set_printoptions(formatter={'float': '{: 0.6f}'.format}) # ===================== Part 1: Loading and Visualizing Data ===================== # We start the exercise by first loading and visualizing the dataset. # The following code will load the dataset into your environment and pot # the data. # # Load Training data print('Loading and Visualizing data ...') # Load from ex5data1: data = scio.loadmat('ex5data1.mat') X = data['X'] y = data['y'].flatten() Xval = data['Xval'] yval = data['yval'].flatten() Xtest = data['Xtest'] ytest = data['ytest'].flatten() m = y.size # Plot training data plt.figure() plt.scatter(X, y, c='r', marker="x") plt.xlabel('Change in water level (x)') plt.ylabel('Water folowing out of the dam (y)') input('Program paused. Press ENTER to continue') # ===================== Part 2: Regularized Linear Regression Cost ===================== # You should now implement the cost function for regularized linear regression # theta = np.ones(2) cost, _ = lrcf.linear_reg_cost_function(theta, np.c_[np.ones(m), X], y, 1) print('Cost at theta = [1 1]: {:0.6f}\n(this value should be about 303.993192'.format(cost)) input('Program paused. Press ENTER to continue') # ===================== Part 3: Regularized Linear Regression Gradient ===================== # You should now implement the gradient for regularized linear regression # theta = np.ones(2) cost, grad = lrcf.linear_reg_cost_function(theta, np.c_[np.ones(m), X], y, 1) print('Gradient at theta = [1 1]: {}\n(this value should be about [-15.303016 598.250744]'.format(grad)) input('Program paused. Press ENTER to continue') # ===================== Part 4: Train Linear Regression ===================== # Once you have implemented the cost and gradient correctly, the # train_linear_reg function will use your cost function to train regularzized linear regression. # # Write Up Note : The data is non-linear, so this will not give a great fit. # # Train linear regression with lambda = 0 lmd = 0 theta = tlr.train_linear_reg(np.c_[np.ones(m), X], y, lmd) # Plot fit over the data plt.plot(X, np.dot(np.c_[np.ones(m), X], theta)) input('Program paused. Press ENTER to continue') # ===================== Part 5: Learning Curve for Linear Regression ===================== # Next, you should implement the learning_curve function. # # Write up note : Since the model is underfitting the data, we expect to # see a graph with "high bias" -- Figure 3 in ex5.pdf # lmd = 0 error_train, error_val = lc.learning_curve(np.c_[np.ones(m), X], y, np.c_[np.ones(Xval.shape[0]), Xval], yval, lmd) plt.figure() plt.plot(np.arange(m), error_train, np.arange(m), error_val) plt.title('Learning Curve for Linear Regression') plt.legend(['Train', 'Cross Validation']) plt.xlabel('Number of Training Examples') plt.ylabel('Error') plt.axis([0, 13, 0, 150]) input('Program paused. Press ENTER to continue') # ===================== Part 6 : Feature Mapping for Polynomial Regression ===================== # One solution to this is to use polynomial regression. You should now # complete polyFeatures to map each example into its powers # p = 5 # Map X onto Polynomial Features and Normalize X_poly = pf.poly_features(X, p) X_poly, mu, sigma = fn.feature_normalize(X_poly) X_poly = np.c_[np.ones(m), X_poly] # Map X_poly_test and normalize (using mu and sigma) X_poly_test = pf.poly_features(Xtest, p) X_poly_test -= mu X_poly_test /= sigma X_poly_test = np.c_[np.ones(X_poly_test.shape[0]), X_poly_test] # Map X_poly_val and normalize (using mu and sigma) X_poly_val = pf.poly_features(Xval, p) X_poly_val -= mu X_poly_val /= sigma X_poly_val = np.c_[np.ones(X_poly_val.shape[0]), X_poly_val] print('Normalized Training Example 1 : \n{}'.format(X_poly[0])) input('Program paused. Press ENTER to continue') # ===================== Part 7 : Learning Curve for Polynomial Regression ===================== # Now, you will get to experiment with polynomial regression with multiple # values of lambda. The code below runs polynomial regression with # lambda = 0. You should try running the code with different values of # lambda to see how the fit and learning curve change. # lmd = 0 theta = tlr.train_linear_reg(X_poly, y, lmd) # Plot trainint data and fit plt.figure() plt.scatter(X, y, c='r', marker="x") plotft.plot_fit(np.min(X), np.max(X), mu, sigma, theta, p) plt.xlabel('Change in water level (x)') plt.ylabel('Water folowing out of the dam (y)') plt.ylim([0, 60]) plt.title('Polynomial Regression Fit (lambda = {})'.format(lmd)) error_train, error_val = lc.learning_curve(X_poly, y, X_poly_val, yval, lmd) plt.figure() plt.plot(np.arange(m), error_train, np.arange(m), error_val) plt.title('Polynomial Regression Learning Curve (lambda = {})'.format(lmd)) plt.legend(['Train', 'Cross Validation']) plt.xlabel('Number of Training Examples') plt.ylabel('Error') plt.axis([0, 13, 0, 150]) print('Polynomial Regression (lambda = {})'.format(lmd)) print('# Training Examples\tTrain Error\t\tCross Validation Error') for i in range(m): print(' \t{}\t\t{}\t{}'.format(i, error_train[i], error_val[i])) input('Program paused. Press ENTER to continue') # ===================== Part 8 : Validation for Selecting Lambda ===================== # You will now implement validationCurve to test various values of # lambda on a validation set. You will then use this to select the # 'best' lambda value. lambda_vec, error_train, error_val = vc.validation_curve(X_poly, y, X_poly_val, yval) plt.figure() plt.plot(lambda_vec, error_train, lambda_vec, error_val) plt.legend(['Train', 'Cross Validation']) plt.xlabel('lambda') plt.ylabel('Error') input('ex5 Finished. Press ENTER to exit')
mit
ndingwall/scikit-learn
examples/linear_model/plot_nnls.py
15
2019
""" ========================== Non-negative least squares ========================== In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score # %% # Generate some random data np.random.seed(42) n_samples, n_features = 200, 50 X = np.random.randn(n_samples, n_features) true_coef = 3 * np.random.randn(n_features) # Threshold coefficients to render them non-negative true_coef[true_coef < 0] = 0 y = np.dot(X, true_coef) # Add some noise y += 5 * np.random.normal(size=(n_samples, )) # %% # Split the data in train set and test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # %% # Fit the Non-Negative least squares. from sklearn.linear_model import LinearRegression reg_nnls = LinearRegression(positive=True) y_pred_nnls = reg_nnls.fit(X_train, y_train).predict(X_test) r2_score_nnls = r2_score(y_test, y_pred_nnls) print("NNLS R2 score", r2_score_nnls) # %% # Fit an OLS. reg_ols = LinearRegression() y_pred_ols = reg_ols.fit(X_train, y_train).predict(X_test) r2_score_ols = r2_score(y_test, y_pred_ols) print("OLS R2 score", r2_score_ols) # %% # Comparing the regression coefficients between OLS and NNLS, we can observe # they are highly correlated (the dashed line is the identity relation), # but the non-negative constraint shrinks some to 0. # The Non-Negative Least squares inherently yield sparse results. fig, ax = plt.subplots() ax.plot(reg_ols.coef_, reg_nnls.coef_, linewidth=0, marker=".") low_x, high_x = ax.get_xlim() low_y, high_y = ax.get_ylim() low = max(low_x, low_y) high = min(high_x, high_y) ax.plot([low, high], [low, high], ls="--", c=".3", alpha=.5) ax.set_xlabel("OLS regression coefficients", fontweight="bold") ax.set_ylabel("NNLS regression coefficients", fontweight="bold")
bsd-3-clause
Intel-Corporation/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/data_feeder.py
39
32726
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementations of different data feeders to provide data for TF trainer (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ # TODO(ipolosukhin): Replace this module with feed-dict queue runners & queues. from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import math import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.deprecation import deprecated # pylint: disable=g-multiple-import,g-bad-import-order from .pandas_io import HAS_PANDAS, extract_pandas_data, extract_pandas_matrix, extract_pandas_labels from .dask_io import HAS_DASK, extract_dask_data, extract_dask_labels # pylint: enable=g-multiple-import,g-bad-import-order def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): """Returns shape for input and output of the data feeder.""" x_is_dict, y_is_dict = isinstance( x_shape, dict), y_shape is not None and isinstance(y_shape, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) if batch_size is None: batch_size = list(x_shape.values())[0][0] if x_is_dict else x_shape[0] elif batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) if x_is_dict: input_shape = {} for k, v in list(x_shape.items()): input_shape[k] = [batch_size] + (list(v[1:]) if len(v) > 1 else [1]) else: x_shape = list(x_shape[1:]) if len(x_shape) > 1 else [1] input_shape = [batch_size] + x_shape if y_shape is None: return input_shape, None, batch_size def out_el_shape(out_shape, num_classes): out_shape = list(out_shape[1:]) if len(out_shape) > 1 else [] # Skip first dimension if it is 1. if out_shape and out_shape[0] == 1: out_shape = out_shape[1:] if num_classes is not None and num_classes > 1: return [batch_size] + out_shape + [num_classes] else: return [batch_size] + out_shape if not y_is_dict: output_shape = out_el_shape(y_shape, n_classes) else: output_shape = dict([(k, out_el_shape(v, n_classes[k] if n_classes is not None and k in n_classes else None)) for k, v in list(y_shape.items())]) return input_shape, output_shape, batch_size def _data_type_filter(x, y): """Filter data types into acceptable format.""" if HAS_DASK: x = extract_dask_data(x) if y is not None: y = extract_dask_labels(y) if HAS_PANDAS: x = extract_pandas_data(x) if y is not None: y = extract_pandas_labels(y) return x, y def _is_iterable(x): return hasattr(x, 'next') or hasattr(x, '__next__') @deprecated(None, 'Please use tensorflow/transform or tf.data.') def setup_train_data_feeder(x, y, n_classes, batch_size=None, shuffle=True, epochs=None): """Create data feeder, to sample inputs from dataset. If `x` and `y` are iterators, use `StreamingDataFeeder`. Args: x: numpy, pandas or Dask matrix or dictionary of aforementioned. Also supports iterables. y: numpy, pandas or Dask array or dictionary of aforementioned. Also supports iterables. n_classes: number of classes. Must be None or same type as y. In case, `y` is `dict` (or iterable which returns dict) such that `n_classes[key] = n_classes for y[key]` batch_size: size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: DataFeeder object that returns training data. Raises: ValueError: if one of `x` and `y` is iterable and the other is not. """ x, y = _data_type_filter(x, y) if HAS_DASK: # pylint: disable=g-import-not-at-top import dask.dataframe as dd if (isinstance(x, (dd.Series, dd.DataFrame)) and (y is None or isinstance(y, (dd.Series, dd.DataFrame)))): data_feeder_cls = DaskDataFeeder else: data_feeder_cls = DataFeeder else: data_feeder_cls = DataFeeder if _is_iterable(x): if y is not None and not _is_iterable(y): raise ValueError('Both x and y should be iterators for ' 'streaming learning to work.') return StreamingDataFeeder(x, y, n_classes, batch_size) return data_feeder_cls( x, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs) def _batch_data(x, batch_size=None): if (batch_size is not None) and (batch_size <= 0): raise ValueError('Invalid batch_size %d.' % batch_size) x_first_el = six.next(x) x = itertools.chain([x_first_el], x) chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False for data in x: if isinstance(data, dict): for k, v in list(data.items()): chunk[k].append(v) if (batch_size is not None) and (len(chunk[k]) >= batch_size): chunk[k] = np.matrix(chunk[k]) chunk_filled = True if chunk_filled: yield chunk chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False else: chunk.append(data) if (batch_size is not None) and (len(chunk) >= batch_size): yield np.matrix(chunk) chunk = [] if isinstance(x_first_el, dict): for k, v in list(data.items()): chunk[k] = np.matrix(chunk[k]) yield chunk else: yield np.matrix(chunk) @deprecated(None, 'Please use tensorflow/transform or tf.data.') def setup_predict_data_feeder(x, batch_size=None): """Returns an iterable for feeding into predict step. Args: x: numpy, pandas, Dask array or dictionary of aforementioned. Also supports iterable. batch_size: Size of batches to split data into. If `None`, returns one batch of full size. Returns: List or iterator (or dictionary thereof) of parts of data to predict on. Raises: ValueError: if `batch_size` <= 0. """ if HAS_DASK: x = extract_dask_data(x) if HAS_PANDAS: x = extract_pandas_data(x) if _is_iterable(x): return _batch_data(x, batch_size) if len(x.shape) == 1: x = np.reshape(x, (-1, 1)) if batch_size is not None: if batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) n_batches = int(math.ceil(float(len(x)) / batch_size)) return [x[i * batch_size:(i + 1) * batch_size] for i in xrange(n_batches)] return [x] @deprecated(None, 'Please use tensorflow/transform or tf.data.') def setup_processor_data_feeder(x): """Sets up processor iterable. Args: x: numpy, pandas or iterable. Returns: Iterable of data to process. """ if HAS_PANDAS: x = extract_pandas_matrix(x) return x @deprecated(None, 'Please convert numpy dtypes explicitly.') def check_array(array, dtype): """Checks array on dtype and converts it if different. Args: array: Input array. dtype: Expected dtype. Returns: Original array or converted. """ # skip check if array is instance of other classes, e.g. h5py.Dataset # to avoid copying array and loading whole data into memory if isinstance(array, (np.ndarray, list)): array = np.array(array, dtype=dtype, order=None, copy=False) return array def _access(data, iloc): """Accesses an element from collection, using integer location based indexing. Args: data: array-like. The collection to access iloc: `int` or `list` of `int`s. Location(s) to access in `collection` Returns: The element of `a` found at location(s) `iloc`. """ if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if isinstance(data, pd.Series) or isinstance(data, pd.DataFrame): return data.iloc[iloc] return data[iloc] def _check_dtype(dtype): if dtypes.as_dtype(dtype) == dtypes.float64: logging.warn( 'float64 is not supported by many models, consider casting to float32.') return dtype class DataFeeder(object): """Data feeder is an example class to sample data for TF trainer. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please use tensorflow/transform or tf.data.') def __init__(self, x, y, n_classes, batch_size=None, shuffle=True, random_state=None, epochs=None): """Initializes a DataFeeder instance. Args: x: One feature sample which can either Nd numpy matrix of shape `[n_samples, n_features, ...]` or dictionary of Nd numpy matrix. y: label vector, either floats for regression or class id for classification. If matrix, will consider as a sequence of labels. Can be `None` for unsupervised setting. Also supports dictionary of labels. n_classes: Number of classes, 0 and 1 are considered regression, `None` will pass through the input labels without one-hot conversion. Also, if `y` is `dict`, then `n_classes` must be `dict` such that `n_classes[key] = n_classes for label y[key]`, `None` otherwise. batch_size: Mini-batch size to accumulate samples in one mini batch. shuffle: Whether to shuffle `x`. random_state: Numpy `RandomState` object to reproduce sampling. epochs: Number of times to iterate over input data before raising `StopIteration` exception. Attributes: x: Input features (ndarray or dictionary of ndarrays). y: Input label (ndarray or dictionary of ndarrays). n_classes: Number of classes (if `None`, pass through indices without one-hot conversion). batch_size: Mini-batch size to accumulate. input_shape: Shape of the input (or dictionary of shapes). output_shape: Shape of the output (or dictionary of shapes). input_dtype: DType of input (or dictionary of shapes). output_dtype: DType of output (or dictionary of shapes. """ x_is_dict, y_is_dict = isinstance( x, dict), y is not None and isinstance(y, dict) if isinstance(y, list): y = np.array(y) self._x = dict([(k, check_array(v, v.dtype)) for k, v in list(x.items()) ]) if x_is_dict else check_array(x, x.dtype) self._y = None if y is None else (dict( [(k, check_array(v, v.dtype)) for k, v in list(y.items())]) if y_is_dict else check_array(y, y.dtype)) # self.n_classes is not None means we're converting raw target indices # to one-hot. if n_classes is not None: if not y_is_dict: y_dtype = ( np.int64 if n_classes is not None and n_classes > 1 else np.float32) self._y = (None if y is None else check_array(y, dtype=y_dtype)) self.n_classes = n_classes self.max_epochs = epochs x_shape = dict([(k, v.shape) for k, v in list(self._x.items()) ]) if x_is_dict else self._x.shape y_shape = dict([(k, v.shape) for k, v in list(self._y.items()) ]) if y_is_dict else None if y is None else self._y.shape self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) # Input dtype matches dtype of x. self._input_dtype = ( dict([(k, _check_dtype(v.dtype)) for k, v in list(self._x.items())]) if x_is_dict else _check_dtype(self._x.dtype)) # self._output_dtype == np.float32 when y is None self._output_dtype = ( dict([(k, _check_dtype(v.dtype)) for k, v in list(self._y.items())]) if y_is_dict else (_check_dtype(self._y.dtype) if y is not None else np.float32)) # self.n_classes is None means we're passing in raw target indices if n_classes is not None and y_is_dict: for key in list(n_classes.keys()): if key in self._output_dtype: self._output_dtype[key] = np.float32 self._shuffle = shuffle self.random_state = np.random.RandomState( 42) if random_state is None else random_state if x_is_dict: num_samples = list(self._x.values())[0].shape[0] elif tensor_util.is_tensor(self._x): num_samples = self._x.shape[ 0].value # shape will be a Dimension, extract an int else: num_samples = self._x.shape[0] if self._shuffle: self.indices = self.random_state.permutation(num_samples) else: self.indices = np.array(range(num_samples)) self.offset = 0 self.epoch = 0 self._epoch_placeholder = None @property def x(self): return self._x @property def y(self): return self._y @property def shuffle(self): return self._shuffle @property def input_dtype(self): return self._input_dtype @property def output_dtype(self): return self._output_dtype @property def batch_size(self): return self._batch_size def make_epoch_variable(self): """Adds a placeholder variable for the epoch to the graph. Returns: The epoch placeholder. """ self._epoch_placeholder = array_ops.placeholder( dtypes.int32, [1], name='epoch') return self._epoch_placeholder def input_builder(self): """Builds inputs in the graph. Returns: Two placeholders for inputs and outputs. """ def get_placeholder(shape, dtype, name_prepend): if shape is None: return None if isinstance(shape, dict): placeholder = {} for key in list(shape.keys()): placeholder[key] = array_ops.placeholder( dtypes.as_dtype(dtype[key]), [None] + shape[key][1:], name=name_prepend + '_' + key) else: placeholder = array_ops.placeholder( dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend) return placeholder self._input_placeholder = get_placeholder(self.input_shape, self._input_dtype, 'input') self._output_placeholder = get_placeholder(self.output_shape, self._output_dtype, 'output') return self._input_placeholder, self._output_placeholder def set_placeholders(self, input_placeholder, output_placeholder): """Sets placeholders for this data feeder. Args: input_placeholder: Placeholder for `x` variable. Should match shape of the examples in the x dataset. output_placeholder: Placeholder for `y` variable. Should match shape of the examples in the y dataset. Can be `None`. """ self._input_placeholder = input_placeholder self._output_placeholder = output_placeholder def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return { 'epoch': self.epoch, 'offset': self.offset, 'batch_size': self._batch_size } def get_feed_dict_fn(self): """Returns a function that samples data into given placeholders. Returns: A function that when called samples a random subset of batch size from `x` and `y`. """ x_is_dict, y_is_dict = isinstance( self._x, dict), self._y is not None and isinstance(self._y, dict) # Assign input features from random indices. def extract(data, indices): return (np.array(_access(data, indices)).reshape((indices.shape[0], 1)) if len(data.shape) == 1 else _access(data, indices)) # assign labels from random indices def assign_label(data, shape, dtype, n_classes, indices): shape[0] = indices.shape[0] out = np.zeros(shape, dtype=dtype) for i in xrange(out.shape[0]): sample = indices[i] # self.n_classes is None means we're passing in raw target indices if n_classes is None: out[i] = _access(data, sample) else: if n_classes > 1: if len(shape) == 2: out.itemset((i, int(_access(data, sample))), 1.0) else: for idx, value in enumerate(_access(data, sample)): out.itemset(tuple([i, idx, value]), 1.0) else: out[i] = _access(data, sample) return out def _feed_dict_fn(): """Function that samples data into given placeholders.""" if self.max_epochs is not None and self.epoch + 1 > self.max_epochs: raise StopIteration assert self._input_placeholder is not None feed_dict = {} if self._epoch_placeholder is not None: feed_dict[self._epoch_placeholder.name] = [self.epoch] # Take next batch of indices. x_len = list( self._x.values())[0].shape[0] if x_is_dict else self._x.shape[0] end = min(x_len, self.offset + self._batch_size) batch_indices = self.indices[self.offset:end] # adding input placeholder feed_dict.update( dict([(self._input_placeholder[k].name, extract(v, batch_indices)) for k, v in list(self._x.items())]) if x_is_dict else { self._input_placeholder.name: extract(self._x, batch_indices) }) # move offset and reset it if necessary self.offset += self._batch_size if self.offset >= x_len: self.indices = self.random_state.permutation( x_len) if self._shuffle else np.array(range(x_len)) self.offset = 0 self.epoch += 1 # return early if there are no labels if self._output_placeholder is None: return feed_dict # adding output placeholders if y_is_dict: for k, v in list(self._y.items()): n_classes = (self.n_classes[k] if k in self.n_classes else None) if self.n_classes is not None else None shape, dtype = self.output_shape[k], self._output_dtype[k] feed_dict.update({ self._output_placeholder[k].name: assign_label(v, shape, dtype, n_classes, batch_indices) }) else: shape, dtype, n_classes = (self.output_shape, self._output_dtype, self.n_classes) feed_dict.update({ self._output_placeholder.name: assign_label(self._y, shape, dtype, n_classes, batch_indices) }) return feed_dict return _feed_dict_fn class StreamingDataFeeder(DataFeeder): """Data feeder for TF trainer that reads data from iterator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Streaming data feeder allows to read data as it comes it from disk or somewhere else. It's custom to have this iterators rotate infinetly over the dataset, to allow control of how much to learn on the trainer side. """ def __init__(self, x, y, n_classes, batch_size): """Initializes a StreamingDataFeeder instance. Args: x: iterator each element of which returns one feature sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices. y: iterator each element of which returns one label sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices with 1 or many classes regression values. n_classes: indicator of how many classes the corresponding label sample has for the purposes of one-hot conversion of label. In case where `y` is a dictionary, `n_classes` must be dictionary (with same keys as `y`) of how many classes there are in each label in `y`. If key is present in `y` and missing in `n_classes`, the value is assumed `None` and no one-hot conversion will be applied to the label with that key. batch_size: Mini batch size to accumulate samples in one batch. If set `None`, then assumes that iterator to return already batched element. Attributes: x: input features (or dictionary of input features). y: input label (or dictionary of output features). n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input (can be dictionary depending on `x`). output_shape: shape of the output (can be dictionary depending on `y`). input_dtype: dtype of input (can be dictionary depending on `x`). output_dtype: dtype of output (can be dictionary depending on `y`). """ # pylint: disable=invalid-name,super-init-not-called x_first_el = six.next(x) self._x = itertools.chain([x_first_el], x) if y is not None: y_first_el = six.next(y) self._y = itertools.chain([y_first_el], y) else: y_first_el = None self._y = None self.n_classes = n_classes x_is_dict = isinstance(x_first_el, dict) y_is_dict = y is not None and isinstance(y_first_el, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) # extract shapes for first_elements if x_is_dict: x_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(x_first_el.items())]) else: x_first_el_shape = [1] + list(x_first_el.shape) if y_is_dict: y_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(y_first_el.items())]) elif y is None: y_first_el_shape = None else: y_first_el_shape = ( [1] + list(y_first_el[0].shape if isinstance(y_first_el, list) else y_first_el.shape)) self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_first_el_shape, y_first_el_shape, n_classes, batch_size) # Input dtype of x_first_el. if x_is_dict: self._input_dtype = dict( [(k, _check_dtype(v.dtype)) for k, v in list(x_first_el.items())]) else: self._input_dtype = _check_dtype(x_first_el.dtype) # Output dtype of y_first_el. def check_y_dtype(el): if isinstance(el, np.ndarray): return el.dtype elif isinstance(el, list): return check_y_dtype(el[0]) else: return _check_dtype(np.dtype(type(el))) # Output types are floats, due to both softmaxes and regression req. if n_classes is not None and (y is None or not y_is_dict) and n_classes > 0: self._output_dtype = np.float32 elif y_is_dict: self._output_dtype = dict( [(k, check_y_dtype(v)) for k, v in list(y_first_el.items())]) elif y is None: self._output_dtype = None else: self._output_dtype = check_y_dtype(y_first_el) def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self): """Returns a function, that will sample data and provide it to placeholders. Returns: A function that when called samples a random subset of batch size from x and y. """ self.stopped = False def _feed_dict_fn(): """Samples data and provides it to placeholders. Returns: `dict` of input and output tensors. """ def init_array(shape, dtype): """Initialize array of given shape or dict of shapes and dtype.""" if shape is None: return None elif isinstance(shape, dict): return dict( [(k, np.zeros(shape[k], dtype[k])) for k in list(shape.keys())]) else: return np.zeros(shape, dtype=dtype) def put_data_array(dest, index, source=None, n_classes=None): """Puts data array into container.""" if source is None: dest = dest[:index] elif n_classes is not None and n_classes > 1: if len(self.output_shape) == 2: dest.itemset((index, source), 1.0) else: for idx, value in enumerate(source): dest.itemset(tuple([index, idx, value]), 1.0) else: if len(dest.shape) > 1: dest[index, :] = source else: dest[index] = source[0] if isinstance(source, list) else source return dest def put_data_array_or_dict(holder, index, data=None, n_classes=None): """Puts data array or data dictionary into container.""" if holder is None: return None if isinstance(holder, dict): if data is None: data = {k: None for k in holder.keys()} assert isinstance(data, dict) for k in holder.keys(): num_classes = n_classes[k] if (n_classes is not None and k in n_classes) else None holder[k] = put_data_array(holder[k], index, data[k], num_classes) else: holder = put_data_array(holder, index, data, n_classes) return holder if self.stopped: raise StopIteration inp = init_array(self.input_shape, self._input_dtype) out = init_array(self.output_shape, self._output_dtype) for i in xrange(self._batch_size): # Add handling when queue ends. try: next_inp = six.next(self._x) inp = put_data_array_or_dict(inp, i, next_inp, None) except StopIteration: self.stopped = True if i == 0: raise inp = put_data_array_or_dict(inp, i, None, None) out = put_data_array_or_dict(out, i, None, None) break if self._y is not None: next_out = six.next(self._y) out = put_data_array_or_dict(out, i, next_out, self.n_classes) # creating feed_dict if isinstance(inp, dict): feed_dict = dict([(self._input_placeholder[k].name, inp[k]) for k in list(self._input_placeholder.keys())]) else: feed_dict = {self._input_placeholder.name: inp} if self._y is not None: if isinstance(out, dict): feed_dict.update( dict([(self._output_placeholder[k].name, out[k]) for k in list(self._output_placeholder.keys())])) else: feed_dict.update({self._output_placeholder.name: out}) return feed_dict return _feed_dict_fn class DaskDataFeeder(object): """Data feeder for that reads data from dask.Series and dask.DataFrame. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Numpy arrays can be serialized to disk and it's possible to do random seeks into them. DaskDataFeeder will remove requirement to have full dataset in the memory and still do random seeks for sampling of batches. """ @deprecated(None, 'Please feed input to tf.data to support dask.') def __init__(self, x, y, n_classes, batch_size, shuffle=True, random_state=None, epochs=None): """Initializes a DaskDataFeeder instance. Args: x: iterator that returns for each element, returns features. y: iterator that returns for each element, returns 1 or many classes / regression values. n_classes: indicator of how many classes the label has. batch_size: Mini batch size to accumulate. shuffle: Whether to shuffle the inputs. random_state: random state for RNG. Note that it will mutate so use a int value for this if you want consistent sized batches. epochs: Number of epochs to run. Attributes: x: input features. y: input label. n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input. output_shape: shape of the output. input_dtype: dtype of input. output_dtype: dtype of output. Raises: ValueError: if `x` or `y` are `dict`, as they are not supported currently. """ if isinstance(x, dict) or isinstance(y, dict): raise ValueError( 'DaskDataFeeder does not support dictionaries at the moment.') # pylint: disable=invalid-name,super-init-not-called import dask.dataframe as dd # pylint: disable=g-import-not-at-top # TODO(terrytangyuan): check x and y dtypes in dask_io like pandas self._x = x self._y = y # save column names self._x_columns = list(x.columns) if isinstance(y.columns[0], str): self._y_columns = list(y.columns) else: # deal with cases where two DFs have overlapped default numeric colnames self._y_columns = len(self._x_columns) + 1 self._y = self._y.rename(columns={y.columns[0]: self._y_columns}) # TODO(terrytangyuan): deal with unsupervised cases # combine into a data frame self.df = dd.multi.concat([self._x, self._y], axis=1) self.n_classes = n_classes x_count = x.count().compute()[0] x_shape = (x_count, len(self._x.columns)) y_shape = (x_count, len(self._y.columns)) # TODO(terrytangyuan): Add support for shuffle and epochs. self._shuffle = shuffle self.epochs = epochs self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) self.sample_fraction = self._batch_size / float(x_count) self._input_dtype = _check_dtype(self._x.dtypes[0]) self._output_dtype = _check_dtype(self._y.dtypes[self._y_columns]) if random_state is None: self.random_state = 66 else: self.random_state = random_state def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self, input_placeholder, output_placeholder): """Returns a function, that will sample data and provide it to placeholders. Args: input_placeholder: tf.placeholder for input features mini batch. output_placeholder: tf.placeholder for output labels. Returns: A function that when called samples a random subset of batch size from x and y. """ def _feed_dict_fn(): """Samples data and provides it to placeholders.""" # TODO(ipolosukhin): option for with/without replacement (dev version of # dask) sample = self.df.random_split( [self.sample_fraction, 1 - self.sample_fraction], random_state=self.random_state) inp = extract_pandas_matrix(sample[0][self._x_columns].compute()).tolist() out = extract_pandas_matrix(sample[0][self._y_columns].compute()) # convert to correct dtype inp = np.array(inp, dtype=self._input_dtype) # one-hot encode out for each class for cross entropy loss if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if not isinstance(out, pd.Series): out = out.flatten() out_max = self._y.max().compute().values[0] encoded_out = np.zeros((out.size, out_max + 1), dtype=self._output_dtype) encoded_out[np.arange(out.size), out] = 1 return {input_placeholder.name: inp, output_placeholder.name: encoded_out} return _feed_dict_fn
apache-2.0
jcasner/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_gtkcairo.py
69
2207
""" GTK+ Matplotlib interface using cairo (not GDK) drawing operations. Author: Steve Chaplin """ import gtk if gtk.pygtk_version < (2,7,0): import cairo.gtk from matplotlib.backends import backend_cairo from matplotlib.backends.backend_gtk import * backend_version = 'PyGTK(%d.%d.%d) ' % gtk.pygtk_version + \ 'Pycairo(%s)' % backend_cairo.backend_version _debug = False #_debug = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if _debug: print 'backend_gtkcairo.%s()' % fn_name() FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasGTKCairo(thisFig) return FigureManagerGTK(canvas, num) class RendererGTKCairo (backend_cairo.RendererCairo): if gtk.pygtk_version >= (2,7,0): def set_pixmap (self, pixmap): self.ctx = pixmap.cairo_create() self.ctx.save() # restore, save - when call new_gc() else: def set_pixmap (self, pixmap): self.ctx = cairo.gtk.gdk_cairo_create (pixmap) self.ctx.save() # restore, save - when call new_gc() class FigureCanvasGTKCairo(backend_cairo.FigureCanvasCairo, FigureCanvasGTK): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(backend_cairo.FigureCanvasCairo.filetypes) def _renderer_init(self): """Override to use cairo (rather than GDK) renderer""" if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self._renderer = RendererGTKCairo (self.figure.dpi) class FigureManagerGTKCairo(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbar (canvas, self.window) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKCairo (canvas, self.window) else: toolbar = None return toolbar class NavigationToolbar2Cairo(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKCairo(fig)
agpl-3.0
tgtubbs/cbb_database
scrapers/teams.py
1
1043
from bs4 import BeautifulSoup import pandas import requests # scrape bbref team ids and school index url = "http://www.sports-reference.com/cbb/schools/" soup = BeautifulSoup(requests.get(url).text) team_hrefs = [a["href"] for a in soup.find_all("tbody")[0].find_all("a")] bbref_ids = [href[13:-1] for href in team_hrefs] table_headers = [th.text for th in soup.find_all("tbody")[0].find_all("th")][1:18] table_rows = soup.find_all("tbody")[0].find_all("tr", attrs={"class": ""}) row_data = [[td.text for td in table_rows[i].find_all("td")[1:]] for i in range(0, len(table_rows))] # fill dataframe team_index_df = pandas.DataFrame(row_data, columns=table_headers) team_index_df["bbref_id"] = bbref_ids column_names = team_index_df.columns.tolist() column_names = column_names[-1:] + column_names[:-1] team_index_df = team_index_df[column_names] # Some team_index_df["City, State"] data are incorrect. Modify manually # before running geocoder. team_index_df.to_csv("/Users/travistubbs/cbb_database/data/teams.txt", sep="\t", index=False)
mit
466152112/scikit-learn
sklearn/neural_network/tests/test_rbm.py
142
6276
import sys import re import numpy as np from scipy.sparse import csc_matrix, csr_matrix, lil_matrix from sklearn.utils.testing import (assert_almost_equal, assert_array_equal, assert_true) from sklearn.datasets import load_digits from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.neural_network import BernoulliRBM from sklearn.utils.validation import assert_all_finite np.seterr(all='warn') Xdigits = load_digits().data Xdigits -= Xdigits.min() Xdigits /= Xdigits.max() def test_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, n_iter=7, random_state=9) rbm.fit(X) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) # in-place tricks shouldn't have modified X assert_array_equal(X, Xdigits) def test_partial_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=20, random_state=9) n_samples = X.shape[0] n_batches = int(np.ceil(float(n_samples) / rbm.batch_size)) batch_slices = np.array_split(X, n_batches) for i in range(7): for batch in batch_slices: rbm.partial_fit(batch) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) assert_array_equal(X, Xdigits) def test_transform(): X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=16, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) Xt1 = rbm1.transform(X) Xt2 = rbm1._mean_hiddens(X) assert_array_equal(Xt1, Xt2) def test_small_sparse(): # BernoulliRBM should work on small sparse matrices. X = csr_matrix(Xdigits[:4]) BernoulliRBM().fit(X) # no exception def test_small_sparse_partial_fit(): for sparse in [csc_matrix, csr_matrix]: X_sparse = sparse(Xdigits[:100]) X = Xdigits[:100].copy() rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm1.partial_fit(X_sparse) rbm2.partial_fit(X) assert_almost_equal(rbm1.score_samples(X).mean(), rbm2.score_samples(X).mean(), decimal=0) def test_sample_hiddens(): rng = np.random.RandomState(0) X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=2, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) h = rbm1._mean_hiddens(X[0]) hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0) assert_almost_equal(h, hs, decimal=1) def test_fit_gibbs(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] # from the same input rng = np.random.RandomState(42) X = np.array([[0.], [1.]]) rbm1 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) # you need that much iters rbm1.fit(X) assert_almost_equal(rbm1.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm1.gibbs(X), X) return rbm1 def test_fit_gibbs_sparse(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from # the same input even when the input is sparse, and test against non-sparse rbm1 = test_fit_gibbs() rng = np.random.RandomState(42) from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm2 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) rbm2.fit(X) assert_almost_equal(rbm2.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm2.gibbs(X), X.toarray()) assert_almost_equal(rbm1.components_, rbm2.components_) def test_gibbs_smoke(): # Check if we don't get NaNs sampling the full digits dataset. # Also check that sampling again will yield different results. X = Xdigits rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=42) rbm1.fit(X) X_sampled = rbm1.gibbs(X) assert_all_finite(X_sampled) X_sampled2 = rbm1.gibbs(X) assert_true(np.all((X_sampled != X_sampled2).max(axis=1))) def test_score_samples(): # Test score_samples (pseudo-likelihood) method. # Assert that pseudo-likelihood is computed without clipping. # See Fabian's blog, http://bit.ly/1iYefRk rng = np.random.RandomState(42) X = np.vstack([np.zeros(1000), np.ones(1000)]) rbm1 = BernoulliRBM(n_components=10, batch_size=2, n_iter=10, random_state=rng) rbm1.fit(X) assert_true((rbm1.score_samples(X) < -300).all()) # Sparse vs. dense should not affect the output. Also test sparse input # validation. rbm1.random_state = 42 d_score = rbm1.score_samples(X) rbm1.random_state = 42 s_score = rbm1.score_samples(lil_matrix(X)) assert_almost_equal(d_score, s_score) # Test numerical stability (#2785): would previously generate infinities # and crash with an exception. with np.errstate(under='ignore'): rbm1.score_samples(np.arange(1000) * 100) def test_rbm_verbose(): rbm = BernoulliRBM(n_iter=2, verbose=10) old_stdout = sys.stdout sys.stdout = StringIO() try: rbm.fit(Xdigits) finally: sys.stdout = old_stdout def test_sparse_and_verbose(): # Make sure RBM works with sparse input when verbose=True old_stdout = sys.stdout sys.stdout = StringIO() from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1, random_state=42, verbose=True) try: rbm.fit(X) s = sys.stdout.getvalue() # make sure output is sound assert_true(re.match(r"\[BernoulliRBM\] Iteration 1," r" pseudo-likelihood = -?(\d)+(\.\d+)?," r" time = (\d|\.)+s", s)) finally: sys.stdout = old_stdout
bsd-3-clause
jonyroda97/redbot-amigosprovaveis
lib/matplotlib/backends/backend_qt5agg.py
2
6829
""" Render to qt from agg """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import ctypes import traceback from matplotlib import cbook from matplotlib.transforms import Bbox from .backend_agg import FigureCanvasAgg from .backend_qt5 import ( QtCore, QtGui, QtWidgets, _BackendQT5, FigureCanvasQT, FigureManagerQT, NavigationToolbar2QT, backend_version) from .qt_compat import QT_API class FigureCanvasQTAggBase(FigureCanvasAgg): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Attributes ---------- figure : `matplotlib.figure.Figure` A high-level Figure instance """ def __init__(self, figure): super(FigureCanvasQTAggBase, self).__init__(figure=figure) self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent) self._agg_draw_pending = False self._bbox_queue = [] self._drawRect = None def drawRectangle(self, rect): if rect is not None: self._drawRect = [pt / self._dpi_ratio for pt in rect] else: self._drawRect = None self.update() @property @cbook.deprecated("2.1") def blitbox(self): return self._bbox_queue def paintEvent(self, e): """Copy the image from the Agg canvas to the qt.drawable. In Qt, all drawing should be done inside of here when a widget is shown onscreen. """ # if there is a pending draw, run it now as we need the updated render # to paint the widget if self._agg_draw_pending: self.__draw_idle_agg() # As described in __init__ above, we need to be careful in cases with # mixed resolution displays if dpi_ratio is changing between painting # events. if self._dpi_ratio != self._dpi_ratio_prev: # We need to update the figure DPI self._update_figure_dpi() self._dpi_ratio_prev = self._dpi_ratio # The easiest way to resize the canvas is to emit a resizeEvent # since we implement all the logic for resizing the canvas for # that event. event = QtGui.QResizeEvent(self.size(), self.size()) # We use self.resizeEvent here instead of QApplication.postEvent # since the latter doesn't guarantee that the event will be emitted # straight away, and this causes visual delays in the changes. self.resizeEvent(event) # resizeEvent triggers a paintEvent itself, so we exit this one. return # if the canvas does not have a renderer, then give up and wait for # FigureCanvasAgg.draw(self) to be called if not hasattr(self, 'renderer'): return painter = QtGui.QPainter(self) if self._bbox_queue: bbox_queue = self._bbox_queue else: painter.eraseRect(self.rect()) bbox_queue = [ Bbox([[0, 0], [self.renderer.width, self.renderer.height]])] self._bbox_queue = [] for bbox in bbox_queue: l, b, r, t = map(int, bbox.extents) w = r - l h = t - b reg = self.copy_from_bbox(bbox) buf = reg.to_string_argb() qimage = QtGui.QImage(buf, w, h, QtGui.QImage.Format_ARGB32) if hasattr(qimage, 'setDevicePixelRatio'): # Not available on Qt4 or some older Qt5. qimage.setDevicePixelRatio(self._dpi_ratio) origin = QtCore.QPoint(l, self.renderer.height - t) painter.drawImage(origin / self._dpi_ratio, qimage) # Adjust the buf reference count to work around a memory # leak bug in QImage under PySide on Python 3. if QT_API == 'PySide' and six.PY3: ctypes.c_long.from_address(id(buf)).value = 1 # draw the zoom rectangle to the QPainter if self._drawRect is not None: pen = QtGui.QPen(QtCore.Qt.black, 1 / self._dpi_ratio, QtCore.Qt.DotLine) painter.setPen(pen) x, y, w, h = self._drawRect painter.drawRect(x, y, w, h) painter.end() def draw(self): """Draw the figure with Agg, and queue a request for a Qt draw. """ # The Agg draw is done here; delaying causes problems with code that # uses the result of the draw() to update plot elements. super(FigureCanvasQTAggBase, self).draw() self.update() def draw_idle(self): """Queue redraw of the Agg buffer and request Qt paintEvent. """ # The Agg draw needs to be handled by the same thread matplotlib # modifies the scene graph from. Post Agg draw request to the # current event loop in order to ensure thread affinity and to # accumulate multiple draw requests from event handling. # TODO: queued signal connection might be safer than singleShot if not self._agg_draw_pending: self._agg_draw_pending = True QtCore.QTimer.singleShot(0, self.__draw_idle_agg) def __draw_idle_agg(self, *args): if not self._agg_draw_pending: return if self.height() < 0 or self.width() < 0: self._agg_draw_pending = False return try: self.draw() except Exception: # Uncaught exceptions are fatal for PyQt5, so catch them instead. traceback.print_exc() finally: self._agg_draw_pending = False def blit(self, bbox=None): """Blit the region in bbox. """ # If bbox is None, blit the entire canvas. Otherwise # blit only the area defined by the bbox. if bbox is None and self.figure: bbox = self.figure.bbox self._bbox_queue.append(bbox) # repaint uses logical pixels, not physical pixels like the renderer. l, b, w, h = [pt / self._dpi_ratio for pt in bbox.bounds] t = b + h self.repaint(l, self.renderer.height / self._dpi_ratio - t, w, h) def print_figure(self, *args, **kwargs): super(FigureCanvasQTAggBase, self).print_figure(*args, **kwargs) self.draw() class FigureCanvasQTAgg(FigureCanvasQTAggBase, FigureCanvasQT): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc. Modified to import from Qt5 backend for new-style mouse events. Attributes ---------- figure : `matplotlib.figure.Figure` A high-level Figure instance """ @_BackendQT5.export class _BackendQT5Agg(_BackendQT5): FigureCanvas = FigureCanvasQTAgg
gpl-3.0
apache/incubator-superset
superset/examples/bart_lines.py
3
2172
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import pandas as pd import polyline from sqlalchemy import String, Text from superset import db from superset.utils.core import get_example_database from .helpers import get_example_data, TBL def load_bart_lines(only_metadata: bool = False, force: bool = False) -> None: tbl_name = "bart_lines" database = get_example_database() table_exists = database.has_table_by_name(tbl_name) if not only_metadata and (not table_exists or force): content = get_example_data("bart-lines.json.gz") df = pd.read_json(content, encoding="latin-1") df["path_json"] = df.path.map(json.dumps) df["polyline"] = df.path.map(polyline.encode) del df["path"] df.to_sql( tbl_name, database.get_sqla_engine(), if_exists="replace", chunksize=500, dtype={ "color": String(255), "name": String(255), "polyline": Text, "path_json": Text, }, index=False, ) print("Creating table {} reference".format(tbl_name)) tbl = db.session.query(TBL).filter_by(table_name=tbl_name).first() if not tbl: tbl = TBL(table_name=tbl_name) tbl.description = "BART lines" tbl.database = database db.session.merge(tbl) db.session.commit() tbl.fetch_metadata()
apache-2.0
zafarali/emdp
tests/test_plotting.py
1
1124
"""Integration tests for plotting tools.""" from emdp import examples from emdp.gridworld import GridWorldPlotter from emdp import actions import random import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def test_plotting_integration(): mdp = examples.build_SB_example35() trajectories = [] for _ in range(3): # 3 trajectories trajectory = [mdp.reset()] for _ in range(10): # 10 steps maximum state, reward, done, info = mdp.step(random.sample([actions.LEFT, actions.RIGHT, actions.UP, actions.DOWN], 1)[0]) trajectory.append(state) trajectories.append(trajectory) gwp = GridWorldPlotter(mdp.size, mdp.has_absorbing_state) # alternatively you can use GridWorldPlotter.from_mdp(mdp) fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(121) # trajectory gwp.plot_trajectories(ax, trajectories) gwp.plot_grid(ax) # heatmap ax = fig.add_subplot(122) gwp.plot_heatmap(ax, trajectories) gwp.plot_grid(ax)
mit
kyleabeauchamp/mdtraj
mdtraj/utils/validation.py
1
7987
############################################################################## # MDTraj: A Python Library for Loading, Saving, and Manipulating # Molecular Dynamics Trajectories. # Copyright 2012-2013 Stanford University and the Authors # # Authors: Robert McGibbon # Contributors: # # MDTraj is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 # of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with MDTraj. If not, see <http://www.gnu.org/licenses/>. ############################################################################## ############################################################################## # imports ############################################################################## from __future__ import print_function, division import warnings import numbers import numpy as np import collections from mdtraj.utils.six.moves import zip_longest ############################################################################## # functions / classes ############################################################################## class TypeCastPerformanceWarning(RuntimeWarning): pass def ensure_type(val, dtype, ndim, name, length=None, can_be_none=False, shape=None, warn_on_cast=True, add_newaxis_on_deficient_ndim=False): """Typecheck the size, shape and dtype of a numpy array, with optional casting. Parameters ---------- val : {np.ndaraay, None} The array to check dtype : {nd.dtype, str} The dtype you'd like the array to have ndim : int The number of dimensions you'd like the array to have name : str name of the array. This is used when throwing exceptions, so that we can describe to the user which array is messed up. length : int, optional How long should the array be? can_be_none : bool Is ``val == None`` acceptable? shape : tuple, optional What should be shape of the array be? If the provided tuple has Nones in it, those will be semantically interpreted as matching any length in that dimension. So, for example, using the shape spec ``(None, None, 3)`` will ensure that the last dimension is of length three without constraining the first two dimensions warn_on_cast : bool, default=True Raise a warning when the dtypes don't match and a cast is done. add_newaxis_on_deficient_ndim : bool, default=True Add a new axis to the beginining of the array if the number of dimensions is deficient by one compared to your specification. For instance, if you're trying to get out an array of ``ndim == 3``, but the user provides an array of ``shape == (10, 10)``, a new axis will be created with length 1 in front, so that the return value is of shape ``(1, 10, 10)``. Notes ----- The returned value will always be C-contiguous. Returns ------- typechecked_val : np.ndarray, None If `val=None` and `can_be_none=True`, then this will return None. Otherwise, it will return val (or a copy of val). If the dtype wasn't right, it'll be casted to the right shape. If the array was not C-contiguous, it'll be copied as well. """ if can_be_none and val is None: return None if not isinstance(val, np.ndarray): if isinstance(val, collections.Iterable): # If they give us an iterator, let's try... if isinstance(val, collections.Sequence): # sequences are easy. these are like lists and stuff val = np.array(val, dtype=dtype) else: # this is a generator... val = np.array(list(val), dtype=dtype) elif np.isscalar(val) and add_newaxis_on_deficient_ndim and ndim == 1: # special case: if the user is looking for a 1d array, and # they request newaxis upconversion, and provided a scalar # then we should reshape the scalar to be a 1d length-1 array val = np.array([val]) else: raise TypeError(("%s must be numpy array. " " You supplied type %s" % (name, type(val)))) if warn_on_cast and val.dtype != dtype: warnings.warn("Casting %s dtype=%s to %s " % (name, val.dtype, dtype), TypeCastPerformanceWarning) if not val.ndim == ndim: if add_newaxis_on_deficient_ndim and val.ndim + 1 == ndim: val = val[np.newaxis, ...] else: raise ValueError(("%s must be ndim %s. " "You supplied %s" % (name, ndim, val.ndim))) val = np.ascontiguousarray(val, dtype=dtype) if length is not None and len(val) != length: raise ValueError(("%s must be length %s. " "You supplied %s" % (name, length, len(val)))) if shape is not None: # the shape specified given by the user can look like (None, None 3) # which indicates that ANY length is accepted in dimension 0 or # dimension 1 sentenel = object() error = ValueError(("%s must be shape %s. You supplied " "%s" % (name, str(shape).replace('None', 'Any'), val.shape))) for a, b in zip_longest(val.shape, shape, fillvalue=sentenel): if a is sentenel or b is sentenel: # if the sentenel was reached, it means that the ndim didn't # match or something. this really shouldn't happen raise error if b is None: # if the user's shape spec has a None in it, it matches anything continue if a != b: # check for equality raise error return val def cast_indices(indices): """Check that ``indices`` are appropriate for indexing an array Parameters ---------- indices : {None, array_like, slice} If indices is None or slice, it'll just pass through. Otherwise, it'll be converted to a numpy array and checked to make sure it contains unique integers. Returns ------- value : {slice, np.ndarray} Either a slice or an array of integers, depending on the input type """ if indices is None or isinstance(indices, slice): return indices if not len(indices) == len(set(indices)): raise ValueError("indices must be unique.") out = np.asarray(indices) if not issubclass(out.dtype.type, np.integer): raise ValueError('indices must be of an integer type. %s is not an integer type' % out.dtype) return out def check_random_state(seed): """Turn seed into a np.random.RandomState instance Notes ----- If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ # This code is direcly from the scikit-learn project (sklearn/utils/validation.py) # Authors: Olivier Grisel and Gael Varoquaux and others (please update me) # License: BSD 3 clause if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed)
lgpl-2.1
Srisai85/scikit-learn
sklearn/linear_model/tests/test_logistic.py
105
26588
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_grad_hess, _multinomial_grad_hess, _logistic_loss, ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" assert_raise_message(ValueError, msg, LogisticRegression(C=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LogisticRegression(C="test").fit, X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1) msg = "Maximum number of iteration must be positive" assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial')]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_check_solver_option(): X, y = iris.data, iris.target for LR in [LogisticRegression, LogisticRegressionCV]: msg = ("Logistic Regression supports only liblinear, newton-cg and" " lbfgs solvers, got wrong_name") lr = LR(solver="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) msg = "multi_class should be either multinomial or ovr, got wrong_name" lr = LR(solver='newton-cg', multi_class="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) # all solver except 'newton-cg' and 'lfbgs' for solver in ['liblinear']: msg = ("Solver %s does not support a multinomial backend." % solver) lr = LR(solver=solver, multi_class='multinomial') assert_raise_message(ValueError, msg, lr.fit, X, y) # all solvers except 'liblinear' for solver in ['newton-cg', 'lbfgs']: msg = ("Solver %s supports only l2 penalties, got l1 penalty." % solver) lr = LR(solver=solver, penalty='l1') assert_raise_message(ValueError, msg, lr.fit, X, y) msg = ("Solver %s supports only dual=False, got dual=True" % solver) lr = LR(solver=solver, dual=True) assert_raise_message(ValueError, msg, lr.fit, X, y) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for method in ('lbfgs', 'newton-cg', 'liblinear'): coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4) # test for fit_intercept=True for method in ('lbfgs', 'newton-cg', 'liblinear'): Cs = [1e3] coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4) def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" assert_raise_message(AssertionError, msg, assert_array_almost_equal, lr1.coef_, lr3.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_interp_2 = _logistic_loss(w, X, y, alpha=1.) grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha) loss_interp = _logistic_loss(w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) grad, hess = _logistic_grad_hess(w, X_, y, alpha) loss = _logistic_loss(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=balanced X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='balanced') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='balanced') clf_lib.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[0] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.) def test_logreg_cv_penalty(): # Test that the correct penalty is passed to the final fit. X, y = make_classification(n_samples=50, n_features=20, random_state=0) lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear') lr_cv.fit(X, y) lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear') lr.fit(X, y) assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_))
bsd-3-clause
heli522/scikit-learn
sklearn/utils/tests/test_murmurhash.py
261
2836
# Author: Olivier Grisel <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.externals.six import b, u from sklearn.utils.murmurhash import murmurhash3_32 from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from nose.tools import assert_equal, assert_true def test_mmhash3_int(): assert_equal(murmurhash3_32(3), 847579505) assert_equal(murmurhash3_32(3, seed=0), 847579505) assert_equal(murmurhash3_32(3, seed=42), -1823081949) assert_equal(murmurhash3_32(3, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=False), -1823081949) assert_equal(murmurhash3_32(3, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=True), 2471885347) def test_mmhash3_int_array(): rng = np.random.RandomState(42) keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32) keys = keys.reshape((3, 2, 1)) for seed in [0, 42]: expected = np.array([murmurhash3_32(int(k), seed) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed), expected) for seed in [0, 42]: expected = np.array([murmurhash3_32(k, seed, positive=True) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed, positive=True), expected) def test_mmhash3_bytes(): assert_equal(murmurhash3_32(b('foo'), 0), -156908512) assert_equal(murmurhash3_32(b('foo'), 42), -1322301282) assert_equal(murmurhash3_32(b('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(b('foo'), 42, positive=True), 2972666014) def test_mmhash3_unicode(): assert_equal(murmurhash3_32(u('foo'), 0), -156908512) assert_equal(murmurhash3_32(u('foo'), 42), -1322301282) assert_equal(murmurhash3_32(u('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(u('foo'), 42, positive=True), 2972666014) def test_no_collision_on_byte_range(): previous_hashes = set() for i in range(100): h = murmurhash3_32(' ' * i, 0) assert_true(h not in previous_hashes, "Found collision on growing empty string") def test_uniform_distribution(): n_bins, n_samples = 10, 100000 bins = np.zeros(n_bins, dtype=np.float) for i in range(n_samples): bins[murmurhash3_32(i, positive=True) % n_bins] += 1 means = bins / n_samples expected = np.ones(n_bins) / n_bins assert_array_almost_equal(means / expected, np.ones(n_bins), 2)
bsd-3-clause
m4rx9/rna-pdb-tools
rna_tools/Seq.py
1
27464
#!/usr/bin/env python3 #-*- coding: utf-8 -*- """RNA Sequence with secondary structure prediction methods. This tool takes a given sequence and returns the secondary structure prediction provided by 5 different tools: RNAfold, RNAsubopt, ipknot, contextfold and centroid_fold. You must have these tools installed. You don't have to install all tools if you want to use only one of the methods. It's easy to add more methods of your choince to this class. Installation ~~~~~~~~~~~~~ Depends on what tools you want to use, follow the instructions below. ContextFold ^^^^^^^^^^^^^^^^^^^^^ https://www.cs.bgu.ac.il/~negevcb/contextfold/ needs Java. Try this on Ubuntu 14-04 https://askubuntu.com/questions/521145/how-to-install-oracle-java-on-ubuntu-14-04 Single chain only! ViennaRNA ^^^^^^^^^^^^^^ https://www.tbi.univie.ac.at/RNA/ For OSX install from the binary Installer from the page. ipknot OSX ^^^^^^^^^^^^^ https://github.com/satoken/homebrew-rnatools If one encounters a problem:: [mm] Desktop$ /usr/local/opt/bin/ipknot dyld: Library not loaded: /usr/local/opt/glpk/lib/libglpk.40.dylib Referenced from: /usr/local/opt/bin/ipknot Reason: image not found [1] 51654 abort /usr/local/opt/bin/ipknot the solution is:: brew install glpk # on OSX RNA Structure ^^^^^^^^^^^^^ http://rna.urmc.rochester.edu/ Works with 5.8.1; Jun 16, 2016. Download http://rna.urmc.rochester.edu/RNAstructureDownload.html and untar it in ``<RNA_PDB_TOOLS>/opt/RNAstructure/``; run make, the tools will be compiled in a folder ``exe``. Set up ``DATPATH`` in your bashrc to ``<RNA_PDB_TOOLS>/opt/RNAstructure/data_tables`` ``DATAPATH=/home/magnus/work/src/rna-pdb-tools/opt/RNAstructure/data_tables/`` (read more http://rna.urmc.rochester.edu/Text/Thermodynamics.html). RNAstructure can be run with SHAPE restraints, read more http://rna.urmc.rochester.edu/Text/File_Formats.html#Constraint about the format. The file format for SHAPE reactivity comprises two columns. The first column is the nucleotide number, and the second is the reactivity. Nucleotides for which there is no SHAPE data can either be left out of the file, or the reactivity can be entered as less than -500. Columns are separated by any white space. MC-Sym ^^^^^^^^^^^^^ FAQ ~~~~~~~~~~~~~ - Does it work for more than one chain??? Hmm.. I think it's not. You have to check on your own. --magnus TIPS ~~~~~~~~~~~~~ Should you need to run it on a list of sequences, use the following script:: from rna_tools import Seq f = open("listOfSequences.fasta") for line in f: if line.startswith('>'): print line, else: print line, s = Seq.Seq(line.strip()) # module first Seq and class second Seq #without strip this has two lines print s.predict_ss(method="contextfold"), #print s.predict_ss(method="centroid_fold") TODO ~~~~~~~~~~~~~ - This calss should be renamed to RNASeq and merged with RNASeq class from RNAalignment """ # noqa import os import subprocess import tempfile import sys from rna_tools.SecondaryStructure import parse_vienna_to_pairs from rna_tools.rna_tools_config import CONTEXTFOLD_PATH, RNASTRUCTURE_PATH, ENTRNA_PATH, IPKNOT_PATH class MethodNotChosen(Exception): pass class RNASequence(object): """RNASequence. Usage:: >>> seq = RNASequence("CCCCUUUUGGGG") >>> seq.name = 'RNA03' >>> print(seq.predict_ss("RNAfold", constraints="((((....))))")) >RNA03 CCCCUUUUGGGG ((((....)))) ( -6.40) """ def __init__(self, seq, ss='', name='rna_seq'): self.seq = seq self.ss = ss self.ss_log = '' self.name = name def __repr__(self): return self.name + '\n' + self.seq + '\n' + self.ss def eval(self, ss='', no_dangling_end_energies=False, verbose=False): """Evaluate energy of RNA sequence. Args: ss (optional), if not set, then self.ss is taken for calc no_dangling_end_energies (Boolean) verbose (Boolean) Returns: Energy (float) The RNAeval web server calculates the energy of a RNA sequence on a given secondary structure. You can use it to get a detailed thermodynamic description (loop free-energy decomposition) of your RNA structures. Simply paste or upload your sequence below and click Proceed. To get more information on the meaning of the options click the help symbols. You can test the server using this sample sequence/structure pair. An equivalent RNAeval command line call would have been:: RNAeval -v -d0 < input.txt Read more: <http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAeval.cgi> """ tf = tempfile.NamedTemporaryFile(delete=False) if not ss: ss = self.ss tf.name += '.fa' with open(tf.name, 'w') as f: f.write('>' + self.name + '\n') f.write(self.seq + '\n') f.write(ss + '\n') dopt = ' -d2 ' if no_dangling_end_energies: dopt = ' -d0 ' cmd = 'RNAeval ' + dopt + ' < ' + tf.name if verbose: print(cmd) self.ss_log = subprocess.check_output(cmd, shell=True).decode() # [u'>rna_seq\nGGCAGGGGCGCUUCGGCCCCCUAUGCC\n((((((((.((....)).)))).))))', u'(-13.50)'] return float(self.ss_log.strip().split(' ')[-1].replace('(','').replace(')', '')) def get_foldability(self, ss='', verbose=False): """Calculate foldability based on EntRNA. Steps: - parse SS into basepairs, - calculate foldabilty Configuration: - Set ENTRNA_PATH to the folder where ENTRNA_predict.py is. Cmd wrapper in here:: python ENTRNA_predict.py --seq_file pseudoknotted_seq.txt --str_file pseudoknotted_str.txt Su, C., Weir, J. D., Zhang, F., Yan, H., & Wu, T. (2019). ENTRNA: a framework to predict RNA foldability. BMC Bioinformatics, 20(1), 1–11. http://doi.org/10.1186/s12859-019-2948-5 """ if ss: self.ss = ss # parse SS into base-pairs def dp_to_bp(dp): import numpy as np a_list = [] bp_array = np.zeros(len(dp),dtype = int) for i in range(len(dp)): if dp[i] == "(": a_list.append(i) if dp[i] == ")": bp_array[i] = a_list[-1] + 1 bp_array[a_list[-1]] = i + 1 a_list.pop() return list(bp_array) bp = dp_to_bp(self.ss) if verbose: print(bp) tempstr = tempfile.NamedTemporaryFile(delete=False) with open(tempstr.name, 'w') as f: f.write(str(bp)) tempseq = tempfile.NamedTemporaryFile(delete=False) with open(tempseq.name, 'w') as f: f.write(self.seq) # -W to silent warnings See [1] cmd = "cd " + ENTRNA_PATH + " && python -W ignore ENTRNA_predict.py --seq_file " + tempseq.name + " --str_file " + tempstr.name log = subprocess.check_output(cmd, shell=True).decode() if verbose: print(cmd) print(log) for l in log.split('\n'): if l.startswith('Foldability: '): return round(float(l.replace('Foldability: ', '')), 2) return -1 ## [1]: ## /Users/magnus/work/evoClustRNA/rna-foldability/ENTRNA/util/pseudoknot_free.py:22: SettingWithCopyWarning: ## A value is trying to be set on a copy of a slice from a DataFrame. ## Try using .loc[row_indexer,col_indexer] = value instead ## See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy ## df_v1['length'] = df_v1['seq'].apply(lambda x:len(x)) ## /home/magnus/miniconda2/lib/python2.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. ## FutureWarning) ## cd /Users/magnus/work/evoClustRNA/rna-foldability/ENTRNA/ && python ENTRNA_predict.py --seq_file /var/folders/yc/ssr9692s5fzf7k165grnhpk80000gp/T/tmpUORegp --str_file /var/folders/yc/ssr9692s5fzf7k165grnhpk80000gp/T/tmp1ERCcD def predict_ss(self, method="RNAfold", constraints='', enforce_constraint=False, shapefn='', explore='', verbose=0, path=''): """Predict secondary structure of the seq. Args: method: onstraints: shapefn (str): path to a file with shape reactivites verbose (boolean) It creates a seq fasta file and runs various methods for secondary structure prediction. You can provide also a constraints file for RNAfold and RNAsubopt. Methods that can be used with contraints: RNAsubopt, RNAfold, mcfold. Methods that can be used with SHAPE contraints: RNAfold. **ContextFold** Example:: $ java -cp bin contextFold.app.Predict in:CCCCUUUGGGGG CCCCUUUGGGGG ((((....)))) It seems that a seq has to be longer than 9. Otherwise:: $ java -cp bin contextFold.app.Predict in:UUUUUUGGG Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10 # this is OK $ java -cp bin contextFold.app.Predict in:CCCCUUUGGG CCCCUUUGGG .(((...))) **RNAstructure** Example:: >>> seq = RNASequence("GGGGUUUUCCC") >>> print(seq.predict_ss("rnastructure")) > ENERGY = -4.4 rna_seq GGGGUUUUCCC ((((...)))) and with the shape data:: >>> print(seq.predict_ss("rnastructure", shapefn="data/shape.txt")) > ENERGY = -0.2 rna_seq GGGGUUUUCCC .(((....))) the shape data:: 1 10 2 1 3 1 You can easily see that the first G is unpaired right now! The reactivity of this G was set to 10. Worked! **MC-Fold** MC-Fold uses the online version of the tool, this is very powerful with constraints:: rna_seq acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg ((((........)))).......((((..............(((((((((((((((....)))))))))))))))..)))) curl -Y 0 -y 300 -F "pass=lucy" -F mask="((((........)))).......((((..............(((((((((((((((....)))))))))))))))..))))" -F sequence="acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg" https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi mcfold::energy best dynamics programming: -53.91 (-53.91, '((((........)))).......((((..............(((((((((((((((....)))))))))))))))..))))') curl -Y 0 -y 300 -F "pass=lucy" -F mask="((((........)))).......((((..............((((((((((..............))))))))))..))))" -F sequence="acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg" https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi mcfold::energy best dynamics programming: -34.77 (-34.77, '((((........)))).......((((..............((((((((((..............))))))))))..))))') acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg ((((........)))).......((((..............(((((((((((((((....)))))))))))))))..)))) curl -Y 0 -y 300 -F "pass=lucy" -F mask="((((xxxxxxxx))))xxxxxxx((((xxxxxxxxxxxxxx((((((((((xxxxxxxxxxxxxx))))))))))xx))))" -F sequence="acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg" https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi mcfold::energy best dynamics programming: -34.77 (-34.77, '((((........)))).......((((..............((((((((((..............))))))))))..))))') acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg ((((........)))).......((((..............(((((((((((((((....)))))))))))))))..)))) curl -Y 0 -y 300 -F "pass=lucy" -F mask="((((********))))*******((((**************((((((((((**************))))))))))**))))" -F sequence="acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg" https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi mcfold::energy best dynamics programming: -77.30 (-71.12, '(((((((..))))))).......((((((.(((...)))..(((((((((((((((....)))))))))))))))))))))') acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg ((((........)))).......((((..............(((((((((((((((....)))))))))))))))..)))) curl -Y 0 -y 300 -F "pass=lucy" -F mask="((((**[[[[[**))))*******((((****]]]]]****(((((((((((((((****)))))))))))))))**))))" -F sequence="acucggcuaggcgaguauaaauagccgucaggccuagcgcguccaagccuagccccuucuggggcugggcgaagggucggg" https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi mcfold::energy best dynamics programming: -77.30 ('-77.30', '((((**[[[[[**))))*******((((****]]]]]****(((((((((((((((****)))))))))))))))**))))') **explore** The sub-optimal search space can be constrained within a percentage of the minimum free energy structure, as MC-fold makes use of the Waterman-Byers algorithm [18, 19]. Because the exploration has an exponential time complexity, increasing this value can have a dramatic effect on MC-Fold’s run time. Parisien, M., & Major, F. (2009). RNA Modeling Using the MC-Fold and MC-Sym Pipeline [Manual] (pp. 1–84). """ tf = tempfile.NamedTemporaryFile(delete=False) tf.name += '.fa' with open(tf.name, 'w') as f: f.write('>' + self.name + '\n') f.write(self.seq + '\n') if constraints: f.write(constraints) # check for seq and constraints if constraints: if len(self.seq) != len(constraints): raise Exception('The seq and constraints should be of the same length: %i %s %i %s' % (len(self.seq), self.seq, len(constraints), constraints)) # run prediction # rnafold without contraints if method == "RNAfold" and constraints: cmd = 'RNAfold -C < ' + tf.name if verbose: print(cmd) self.ss_log = subprocess.check_output(cmd, shell=True).decode() return '\n'.join(self.ss_log.strip().split('\n')[:]) if method == "RNAfoldX" and constraints: if enforce_constraint: cmd = 'RNAfold -p -d2 --noLP -C --enforceConstraint < ' + tf.name else: cmd = 'RNAfold -p -d2 --noLP -C < ' + tf.name if verbose: print(cmd) try: self.ss_log = subprocess.check_output(cmd, shell=True).decode() except subprocess.CalledProcessError: print('Error') return 0, 'error', 0, '', 0, '', 0, 0 if verbose: print(self.ss_log) # parse the results lines = self.ss_log.split('\n') if 'Supplied structure constraints create empty solution set for sequence' in self.ss_log: return 0, 'Supplied structure constraints create empty solution set for sequence', 0, '', 0, '', 0, 0 #if not 'frequency of mfe structure' in self.ss_log: # RNAfold -p -d2 --noLP -C < /var/folders/yc/ssr9692s5fzf7k165grnhpk80000gp/T/tmpGiUoo7.fa # >rna_seq # AAAUUAAGGGGAAGCGUUGAGCCGCUACCCAUAUGUGGUUCACUCGGAUAGCGGGGAGCUAAUAGUGAAACCGGCCCUUUAGGGG # ...((((((((.(((......((((((.((....(((...)))..)).))))))...)))..............))))))))... (-19.80) # ...{(((((((.(((......((((((.((....(((...)))..)).))))))...)))..............)))))))}... [-21.05] #...((((((((.(((......((((((.((....(((...)))..)).))))))...)))..............))))))))... {-19.80 d=2.34} # frequency of mfe structure in ensemble 0.131644; ensemble diversity 3.68 mfess = lines[2].split()[0] mfe = ' '.join(lines[2].split()[-1:]) mfe = float(mfe.replace('(', '').replace(')', '')) # (-19.80) ->-19.80 efess = lines[3].split()[0] # ensamble free energy efe = ' '.join(lines[3].split()[-1:]) efe = float(efe.replace('[', '').replace(']', '')) # (-19.80) ->-19.80 cfess = lines[4].split()[0] # ensamble free energy cfe, d = ' '.join(lines[4].split()[1:]).split('d') cfe = float(cfe.replace('{', '').replace('}', '')) # (-19.80) ->-19.80 words = lines[5].split() # ensamble free energy freq = round(float(words[6].replace(';', '')), 2) # frequency of mfe structure in ensemble diversity = float(words[9]) # ensemble diversity if verbose: print(mfe, mfess, efe, efess, cfe, cfess, freq, diversity) return mfe, mfess, efe, efess, cfe, cfess, freq, diversity elif method == "RNAfold": cmd = 'RNAfold < ' + tf.name if verbose: print(cmd) self.ss_log = subprocess.check_output(cmd, shell=True).decode() return '\n'.join(self.ss_log.strip().split('\n')[:]) elif method == "RNAsubopt" and constraints: cmd = 'RNAsubopt -C < ' + tf.name if verbose: print(cmd) self.ss_log = subprocess.check_output(cmd, shell=True).decode() return '\n'.join(self.ss_log.split('\n')[:]) elif method == "RNAsubopt": cmd = 'RNAsubopt < ' + tf.name if verbose: print(cmd) self.ss_log = subprocess.check_output(cmd, shell=True).decode() return '\n'.join(self.ss_log.split('\n')[:]) elif method == "mcfold": # -F tope=1 if explore: explore_str = " -F explore=" + str(explore) else: explore_str = '' #if constraints: #cmd = "curl -Y 0 -y 300 -F \"pass=lucy\" -F mask=\"" + constraints + "\" " + explore_str + \ #" -F sequence=\"" + self.seq + "\" https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi" cmd = "curl https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi\?pass\=lucy\&sequence\=" + self.seq + "\&top\=20\&explore\=15\&name\=\&mask\='" + constraints + "'\&singlehigh\=\&singlemed\=\&singlelow\=" # cmd = "curl -Y 0 -y 300 -F \"pass=lucy\" -F sequence=\"" + self.seq + "\" https://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi" if verbose: print(cmd) o = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out = o.stdout.read().decode(errors='ignore').strip() err = o.stderr.read().decode(errors='ignore').strip() if verbose: print(out) # If the structure can't be find, detect this statement and finish this routine. if 'Explored 0 structures' in out: return 0.00, '', 'Explored 0 structures' comment = '' energy = '' out = out.split('\n') for l in out : # first you will find the best dynamic energy, and in the next loop # it will be used to search for lines with this energy and secondary # structure # (((..))) -5.43 if energy: # if energy is set if energy in l: if verbose: print(l) ss = l.split()[0] # Performing Dynamic Programming... # Best Dynamic Programming Solution has Energy: -5.43 if l.startswith('Best Dynamic Programming Solution has Energy:'): energy_bdp = l.split(':')[1].strip() if verbose: print ('mcfold::energy best dynamics programming: ' + energy_bdp) comment = 'energy best dynamics programming' ss = constraints # return float(energy), constraints # I'm not sure if this is good # Ok, for whatever reason Best DP energy might not be exactly the same as and # the energy listed later for secondary structure. So this code finds this secondary # structure and gets again the energy for this secondary structure, # and overwrites the previous energy. # In this case: # Best Dynamic Programming Solution has Energy: -5.46 # ... # CUCUCGAAAGAUG # (((.((..))))) -5.44 ( +0.00) # (((.((..))))) BP >= 50% # if evenn this will not find ss, then set ss to null not to crash # and it's possible, like in here # curl -Y 0 -y 300 -F "pass=lucy" -F mask="((******)))" -F sequence="CCUgcgcaAGG" \ # http://www.major.iric.ca/cgi-bin/MC-Fold/mcfold.static.cgi ss = '' for l in out: if 'target="_blank">MARNA</a>-formatted:<P><P><P></H2><pre>' in l: index = out.index(l) ss_line = out[index + 2] ss, energy = ss_line.split()[0:2] # '(((.((..))))) -5.44 ( +0.00)' # if there is # UUGCCGUAAGACA # ............. BP >= 50% # then finish with energy 0.00, and empty ss if energy == 'BP': energy = energy_bdp comment = 'BP energy' return energy_bdp, constraints, comment # break # prepare outputs, return and self-s self.log = out self.ss = ss return float(energy), ss, comment # if method == "RNAsubopt": # from cogent.app.vienna_package import RNAfold, RNAsubopt # r = RNAsubopt(WorkingDir="/tmp") # res = r([self.seq]) # return str(res['StdOut'].read()).strip() # if method == 'RNAfold': # from cogent.app.vienna_package import RNAfold, RNAsubopt # r = RNAfold(WorkingDir="/tmp") # res = r([self.seq]) # self.ss_log = res['StdOut'].read() # return self.ss_log.strip().split('\n')[-1].split()[0] elif method == "ipknot": self.ss_log = subprocess.check_output(IPKNOT_PATH + ' ' + tf.name, shell=True) return '\n'.join(self.ss_log.decode().split('\n')[2:]) elif method == "contextfold": if path: CONTEXTFOLD_PATH = path if not CONTEXTFOLD_PATH: print('Set up CONTEXTFOLD_PATH in configuration.') sys.exit(0) cmd = "cd " + CONTEXTFOLD_PATH + \ " && java -cp bin contextFold.app.Predict in:" + self.seq if verbose: print(cmd) self.ss_log = subprocess.check_output(cmd, shell=True).decode() return '\n'.join(self.ss_log.split('\n')[1:]) elif method == "centroid_fold": self.ss_log = subprocess.check_output('centroid_fold ' + tf.name, shell=True) return '\n'.join(self.ss_log.split('\n')[2:]) elif method == "rnastructure": cmd = RNASTRUCTURE_PATH + '/exe/Fold ' + tf.name + ' ' + tf.name + '.out ' if shapefn: cmd += ' -sh ' + shapefn if verbose: print(cmd) o = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stderr = o.stderr.read().strip() if stderr: print(stderr) cmd = RNASTRUCTURE_PATH + '/exe/ct2dot ' + tf.name + '.out 1 ' + \ tf.name + '.dot' if verbose: print(cmd) o = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stderr = o.stderr.read().strip() if not stderr: with open(tf.name + '.dot') as f: return f.read().strip() # (-51.15, '.(.(((((((((((((((..))))))))))))))))(..((((((((....)))).))))).') elif method == "rnastructure_CycleFold": cmd = RNASTRUCTURE_PATH + '/exe/CycleFold ' + tf.name + ' > ' + tf.name + '.ct ' if verbose: print(cmd) o = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stderr = o.stderr.read().strip() if stderr: print(stderr) # get energy energy = float(open(tf.name + '.ct').readline().split("energy:")[1].strip()) # >rna_seq energy: -51.1500 # get ss in dot-bracket notation cmd = RNASTRUCTURE_PATH + '/exe/ct2dot ' + tf.name + '.ct 1 ' + \ tf.name + '.dot' if verbose: print(cmd) o = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stderr = o.stderr.read().strip() if not stderr: with open(tf.name + '.dot') as f: # (-51.15, '.(.(((((((((((((((..))))))))))))))))(..((((((((....)))).))))).') return energy, f.read().strip().split('\n')[2] else: raise MethodNotChosen('You have to define a correct method to use.') # main def load_fasta_ss_into_RNAseqs(fn, debug=True): seqs = [] with open(fn) as f: for line in f: if debug: print(line) name = line.replace('>', '').strip() seq = next(f).strip() ss = next(f).strip() rs = RNASequence(seq, ss, name) seqs.append(rs) return seqs if __name__ == '__main__': import doctest doctest.testmod() seq = RNASequence("CGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUG") seq.name = 'RNA01' print(seq.predict_ss("RNAfold", constraints="((((...............................................................))))")) # noqa seq = RNASequence("CGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUG") seq.name = 'RNA02' print(seq.predict_ss("RNAsubopt", constraints="((((...............................................................))))")) # noqa print(seq.predict_ss("contextfold")) print(seq.predict_ss(method="ipknot")) verbose = False seq = RNASequence("GGGGUUUUCCC") print(seq.predict_ss("rnastructure", verbose=verbose)) print(seq.predict_ss("rnastructure", shapefn="data/shape.txt", verbose=verbose)) seq = RNASequence("CGUGGUUAGGGCCACGUUAAAUAGUUGCUUAAGCCCUAAGCGUUGAUAAAUAUCAGgUGCAA") print(seq.predict_ss("rnastructure", shapefn="data/shape.txt", verbose=verbose)) # # test of MethodNotChose # print(seq.predict_ss("test"))
mit
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/IPython/lib/tests/test_latextools.py
8
3869
# encoding: utf-8 """Tests for IPython.utils.path.py""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. try: from unittest.mock import patch except ImportError: from mock import patch import nose.tools as nt from IPython.lib import latextools from IPython.testing.decorators import onlyif_cmds_exist, skipif_not_matplotlib from IPython.utils.process import FindCmdError def test_latex_to_png_dvipng_fails_when_no_cmd(): """ `latex_to_png_dvipng` should return None when there is no required command """ for command in ['latex', 'dvipng']: yield (check_latex_to_png_dvipng_fails_when_no_cmd, command) def check_latex_to_png_dvipng_fails_when_no_cmd(command): def mock_find_cmd(arg): if arg == command: raise FindCmdError with patch.object(latextools, "find_cmd", mock_find_cmd): nt.assert_equal(latextools.latex_to_png_dvipng("whatever", True), None) @onlyif_cmds_exist('latex', 'dvipng') def test_latex_to_png_dvipng_runs(): """ Test that latex_to_png_dvipng just runs without error. """ def mock_kpsewhich(filename): nt.assert_equal(filename, "breqn.sty") return None for (s, wrap) in [(u"$$x^2$$", False), (u"x^2", True)]: yield (latextools.latex_to_png_dvipng, s, wrap) with patch.object(latextools, "kpsewhich", mock_kpsewhich): yield (latextools.latex_to_png_dvipng, s, wrap) @skipif_not_matplotlib def test_latex_to_png_mpl_runs(): """ Test that latex_to_png_mpl just runs without error. """ def mock_kpsewhich(filename): nt.assert_equal(filename, "breqn.sty") return None for (s, wrap) in [("$x^2$", False), ("x^2", True)]: yield (latextools.latex_to_png_mpl, s, wrap) with patch.object(latextools, "kpsewhich", mock_kpsewhich): yield (latextools.latex_to_png_mpl, s, wrap) @skipif_not_matplotlib def test_latex_to_html(): img = latextools.latex_to_html("$x^2$") nt.assert_in("", img) def test_genelatex_no_wrap(): """ Test genelatex with wrap=False. """ def mock_kpsewhich(filename): assert False, ("kpsewhich should not be called " "(called with {0})".format(filename)) with patch.object(latextools, "kpsewhich", mock_kpsewhich): nt.assert_equal( '\n'.join(latextools.genelatex("body text", False)), r'''\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amssymb} \usepackage{bm} \pagestyle{empty} \begin{document} body text \end{document}''') def test_genelatex_wrap_with_breqn(): """ Test genelatex with wrap=True for the case breqn.sty is installed. """ def mock_kpsewhich(filename): nt.assert_equal(filename, "breqn.sty") return "path/to/breqn.sty" with patch.object(latextools, "kpsewhich", mock_kpsewhich): nt.assert_equal( '\n'.join(latextools.genelatex("x^2", True)), r'''\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amssymb} \usepackage{bm} \usepackage{breqn} \pagestyle{empty} \begin{document} \begin{dmath*} x^2 \end{dmath*} \end{document}''') def test_genelatex_wrap_without_breqn(): """ Test genelatex with wrap=True for the case breqn.sty is not installed. """ def mock_kpsewhich(filename): nt.assert_equal(filename, "breqn.sty") return None with patch.object(latextools, "kpsewhich", mock_kpsewhich): nt.assert_equal( '\n'.join(latextools.genelatex("x^2", True)), r'''\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amssymb} \usepackage{bm} \pagestyle{empty} \begin{document} $$x^2$$ \end{document}''')
apache-2.0
roxyboy/scikit-learn
sklearn/utils/tests/test_multiclass.py
128
12853
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formated as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that were'nt supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
hagne/atm-py
atmPy/aerosols/instruments/LAS/LAS.py
1
8196
# -*- coding: utf-8 -*- """ Created on Mon Nov 10 11:43:10 2014 @author: htelg """ import datetime import warnings import numpy as np import pandas as pd import pylab as plt from StringIO import StringIO as io from scipy.interpolate import UnivariateSpline from atmPy.aerosols.size_distribution import sizedistribution def read_csv(fname): las = _readFromFakeXLS(fname) sd,hk = _separate_sizedist_and_housekeep(las) bins = _get_bins(sd) dist = sizedistribution.SizeDist_TS(sd, bins, "numberConcentration") return dist def _separate_sizedist_and_housekeep(las): """Beside separating size distribution and housekeeping this function also converts the data to a numberconcentration (#/cc) Parameters ---------- las: pandas.DataFrame""" sd = las.copy() hk = las.copy() k = sd.keys() where = np.argwhere(k == 'Flow sccm') + 1 khk = k[: where] sd = sd.drop(khk, axis=1) hsd = k[where:] hk = hk.drop(hsd, axis=1) hk['Sample sccm'] = hk['Sample sccm'].astype(float) hk['Accum. Secs'] = hk['Accum. Secs'].astype(float) # normalize to time and flow sd = sd.mul(60./hk['Sample sccm'] / hk['Accum. Secs'], axis = 0 ) return sd,hk def _get_bins(frame, log=False): """ get the bins from the column labels of the size distribution DataFrame. """ frame = frame.copy() bins = np.zeros(frame.keys().shape[0]+1) for e, i in enumerate(frame.keys()): bin_s, bin_e = i.split(' ') bin_s = float(bin_s) bin_e = float(bin_e) bins[e] = bin_s bins[e+1] = bin_e return bins #binCenters def _readFromFakeXLS(fname): """reads and shapes a XLS file produced by the LAS instruments""" fr = pd.read_csv(fname, sep='\t') newcolname = [fr.columns[e] + ' ' + str(fr.values[0][e]) for e, i in enumerate(fr.columns)] fr.columns = newcolname fr = fr.drop(fr.index[0]) bla = pd.Series(fr['Date -'].values + ' ' + fr['Time -'].values) fr.index = bla.map(lambda x: datetime.datetime.strptime(x, '%m/%d/%Y %I:%M:%S.%f %p')) fr = fr.drop(['Date -', 'Time -'], axis=1) return fr # def _getBinCenters(frame, binedges=False, log=False): # """ # LAS gives the bin edges, this calculates the bin centers. # if log is True, the center will be with respect to the log10 ... log(d_{n+1})-log(d_{n}) # if binedges is True, frame is not really a frame but the binedges (array with dtype=float) # Make sure you are running "removeHousekeeping" first # """ # frame = frame.copy() # # if binedges: # if log: # binCenters = 10**((np.log10(frame[:-1]) + np.log10(frame[1:]))/2.) # else: # # binCenters = (frame[:-1] + frame[1:])/2. # else: # binCenters = np.zeros(frame.keys().shape) # for e, i in enumerate(frame.keys()): # bin_s, bin_e = i.split(' ') # bin_s = float(bin_s) # bin_e = float(bin_e) # normTo = bin_e - bin_s # frame[i] = frame[i].divide(normTo) # if log: # binCenters[e] = 10**((np.log10(bin_e) + np.log10(bin_s))/2.) # else: # binCenters[e] = (bin_e + bin_s)/2. # return binCenters # def getTimeIntervalFromFrame(frame, start, end): # """cutes out a particular time interval from frame. # e.g.: getTimeIntervalFromFrame(frame,'2014-10-31 18:10:00','2014-10-31 18:10:00')""" # frame = frame.copy() # if start: # frame = frame.truncate(before = start) # # if end: # frame = frame.truncate(after = end) # # return frame # # def frame2singleDistribution(frame): # frame = frame.copy() # singleHist = np.zeros(frame.shape[1]) # for i in xrange(frame.shape[1]): # singleHist[i] = np.nansum(frame.values[:,i]) # singleHist /= frame.shape[0] # return singleHist def _string2Dataframe(data): sb = io(data) dataFrame = pd.read_csv(sb, sep=' ', names=('d', 'amp')).sort('d') return dataFrame def read_Calibration_fromString(data): ''' unit of diameter must be nm data = """140 88 150 102 173 175 200 295 233 480 270 740 315 880 365 1130 420 1350 490 1930 570 3050 660 4200 770 5100 890 6300 1040 8000 1200 8300 1400 10000 1600 11500 1880 16000 2180 21000 2500 28000 3000 37000""" ''' dataFrame = _string2Dataframe(data) calibrationInstance = calibration(dataFrame) return calibrationInstance def save_Calibration(calibrationInstance, fname): """should be saved hier cd ~/data/POPS_calibrations/""" calibrationInstance.data.to_csv(fname, index = False) return # def plot_distMap_LAS(fr_d,binEdgensLAS_d): # binCenters = getBinCenters(binEdgensLAS_d , binedges= True, log = True) # TIME_LAS,D_LAS,DNDP_LAS = frameToXYZ(fr_d, binCenters) # f,a = plt.subplots() # pcIm = a.pcolormesh(TIME_LAS,D_LAS, # DNDP_LAS, # norm = LogNorm(),#vmin = 3,vmax = distZoom.data.values.max()),#vmin = 1e-5), # # cmap=plt.cm.RdYlBu_r, # # cmap = plt.cm.terrain_r, # cmap = hm.get_colorMap_intensity(),#plt.cm.hot_r, #PuBuGn, # # shading='gouraud', # ) # a.semilogy() # a.set_ylim((150,2500)) # a.set_ylabel('Diameter (nm)') # a.set_xlabel('Time') # a.set_title('LAS') # cb = f.colorbar(pcIm) # cb.set_label("Particle number (cm$^{-3}\,$s$^{-1}$)") # f.autofmt_xdate() # # a.yaxis.set_minor_formatter(FormatStrFormatter("%i")) # # a.yaxis.set_major_formatter(FormatStrFormatter("%i")) class calibration: def __init__(self,dataTabel): self.data = dataTabel self.calibrationFunction = self.get_calibrationFunctionSpline() def save_csv(self,fname): save_Calibration(self,fname) return def get_calibrationFunctionSpline(self, fitOrder=1): """ Performes a spline fit/smoothening (scipy.interpolate.UnivariateSpline) of d over amp (yes this way not the other way around). Returns (generates): creates a function self.spline which can later be used to calculate d from amp Optional Parameters: \t s: int - oder of the spline function \t noOfPts: int - length of generated graph \t plot: boolean - if result is supposed to be plotted """ # The following two step method is necessary to get a smooth curve. #When I only do the second step on the cal_curve I get some wired whiggles ##### First Step if (self.data.amp.values[1:]-self.data.amp.values[:-1]).min() < 0: warnings.warn('The data represent a non injective function! This will not work. plot the calibration to see what I meen') sf = UnivariateSpline(self.data.d.values, self.data.amp.values, s=fitOrder) d = np.logspace(np.log10(self.data.d.values.min()), np.log10(self.data.d.values.max()), 500) amp = sf(d) # second step cal_function = UnivariateSpline(amp, d, s=fitOrder) return cal_function def plot_calibration(self): """Plots the calibration function and data Arguments ------------ cal: calibration instance Returns ------------ figure axes calibration data graph calibration function graph """ cal_function = self.calibrationFunction amp = np.logspace(np.log10(self.data.amp.min()), np.log10(self.data.amp.max()), 500) d = cal_function(amp) f, a = plt.subplots() cal_data, = a.plot(self.data.d, self.data.amp, 'o', label='data',) cal_func, = a.plot(d, amp, label='function') a.loglog() a.set_xlim(0.9*self.data.d.min(), 1.1*self.data.d.max()) a.set_xlabel('Diameter (nm)') a.set_ylim(0.9*self.data.amp.min(), 1.1*self.data.amp.max()) a.set_ylabel('Amplitude (digitizer bins)') a.set_title('Calibration curve') a.legend(loc = 2) return f, a, cal_data, cal_func
mit
rgommers/scipy
scipy/stats/_entropy.py
12
11491
# -*- coding: utf-8 -*- """ Created on Fri Apr 2 09:06:05 2021 @author: matth """ from __future__ import annotations import math import numpy as np from scipy import special from typing import Optional, Union __all__ = ['entropy', 'differential_entropy'] def entropy(pk, qk=None, base=None, axis=0): """Calculate the entropy of a distribution for given probability values. If only probabilities `pk` are given, the entropy is calculated as ``S = -sum(pk * log(pk), axis=axis)``. If `qk` is not None, then compute the Kullback-Leibler divergence ``S = sum(pk * log(pk / qk), axis=axis)``. This routine will normalize `pk` and `qk` if they don't sum to 1. Parameters ---------- pk : sequence Defines the (discrete) distribution. ``pk[i]`` is the (possibly unnormalized) probability of event ``i``. qk : sequence, optional Sequence against which the relative entropy is computed. Should be in the same format as `pk`. base : float, optional The logarithmic base to use, defaults to ``e`` (natural logarithm). axis: int, optional The axis along which the entropy is calculated. Default is 0. Returns ------- S : float The calculated entropy. Examples -------- >>> from scipy.stats import entropy Bernoulli trial with different p. The outcome of a fair coin is the most uncertain: >>> entropy([1/2, 1/2], base=2) 1.0 The outcome of a biased coin is less uncertain: >>> entropy([9/10, 1/10], base=2) 0.46899559358928117 Relative entropy: >>> entropy([1/2, 1/2], qk=[9/10, 1/10]) 0.5108256237659907 """ if base is not None and base <= 0: raise ValueError("`base` must be a positive number or `None`.") pk = np.asarray(pk) pk = 1.0*pk / np.sum(pk, axis=axis, keepdims=True) if qk is None: vec = special.entr(pk) else: qk = np.asarray(qk) pk, qk = np.broadcast_arrays(pk, qk) qk = 1.0*qk / np.sum(qk, axis=axis, keepdims=True) vec = special.rel_entr(pk, qk) S = np.sum(vec, axis=axis) if base is not None: S /= np.log(base) return S def differential_entropy( values: np.typing.ArrayLike, *, window_length: Optional[int] = None, base: Optional[float] = None, axis: int = 0, method: str = "auto", ) -> Union[np.number, np.ndarray]: r"""Given a sample of a distribution, estimate the differential entropy. Several estimation methods are available using the `method` parameter. By default, a method is selected based the size of the sample. Parameters ---------- values : sequence Sample from a continuous distribution. window_length : int, optional Window length for computing Vasicek estimate. Must be an integer between 1 and half of the sample size. If ``None`` (the default), it uses the heuristic value .. math:: \left \lfloor \sqrt{n} + 0.5 \right \rfloor where :math:`n` is the sample size. This heuristic was originally proposed in [2]_ and has become common in the literature. base : float, optional The logarithmic base to use, defaults to ``e`` (natural logarithm). axis : int, optional The axis along which the differential entropy is calculated. Default is 0. method : {'vasicek', 'van es', 'ebrahimi', 'correa', 'auto'}, optional The method used to estimate the differential entropy from the sample. Default is ``'auto'``. See Notes for more information. Returns ------- entropy : float The calculated differential entropy. Notes ----- This function will converge to the true differential entropy in the limit .. math:: n \to \infty, \quad m \to \infty, \quad \frac{m}{n} \to 0 The optimal choice of ``window_length`` for a given sample size depends on the (unknown) distribution. Typically, the smoother the density of the distribution, the larger the optimal value of ``window_length`` [1]_. The following options are available for the `method` parameter. * ``'vasicek'`` uses the estimator presented in [1]_. This is one of the first and most influential estimators of differential entropy. * ``'van es'`` uses the bias-corrected estimator presented in [3]_, which is not only consistent but, under some conditions, asymptotically normal. * ``'ebrahimi'`` uses an estimator presented in [4]_, which was shown in simulation to have smaller bias and mean squared error than the Vasicek estimator. * ``'correa'`` uses the estimator presented in [5]_ based on local linear regression. In a simulation study, it had consistently smaller mean square error than the Vasiceck estimator, but it is more expensive to compute. * ``'auto'`` selects the method automatically (default). Currently, this selects ``'van es'`` for very small samples (<10), ``'ebrahimi'`` for moderate sample sizes (11-1000), and ``'vasicek'`` for larger samples, but this behavior is subject to change in future versions. All estimators are implemented as described in [6]_. References ---------- .. [1] Vasicek, O. (1976). A test for normality based on sample entropy. Journal of the Royal Statistical Society: Series B (Methodological), 38(1), 54-59. .. [2] Crzcgorzewski, P., & Wirczorkowski, R. (1999). Entropy-based goodness-of-fit test for exponentiality. Communications in Statistics-Theory and Methods, 28(5), 1183-1202. .. [3] Van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on spacings. Scandinavian Journal of Statistics, 61-72. .. [4] Ebrahimi, N., Pflughoeft, K., & Soofi, E. S. (1994). Two measures of sample entropy. Statistics & Probability Letters, 20(3), 225-234. .. [5] Correa, J. C. (1995). A new estimator of entropy. Communications in Statistics-Theory and Methods, 24(10), 2439-2449. .. [6] Noughabi, H. A. (2015). Entropy Estimation Using Numerical Methods. Annals of Data Science, 2(2), 231-241. https://link.springer.com/article/10.1007/s40745-015-0045-9 Examples -------- >>> from scipy.stats import differential_entropy, norm Entropy of a standard normal distribution: >>> rng = np.random.default_rng() >>> values = rng.standard_normal(100) >>> differential_entropy(values) 1.3407817436640392 Compare with the true entropy: >>> float(norm.entropy()) 1.4189385332046727 For several sample sizes between 5 and 1000, compare the accuracy of the ``'vasicek'``, ``'van es'``, and ``'ebrahimi'`` methods. Specifically, compare the root mean squared error (over 1000 trials) between the estimate and the true differential entropy of the distribution. >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> >>> >>> def rmse(res, expected): ... '''Root mean squared error''' ... return np.sqrt(np.mean((res - expected)**2)) >>> >>> >>> a, b = np.log10(5), np.log10(1000) >>> ns = np.round(np.logspace(a, b, 10)).astype(int) >>> reps = 1000 # number of repetitions for each sample size >>> expected = stats.expon.entropy() >>> >>> method_errors = {'vasicek': [], 'van es': [], 'ebrahimi': []} >>> for method in method_errors: ... for n in ns: ... rvs = stats.expon.rvs(size=(reps, n), random_state=rng) ... res = stats.differential_entropy(rvs, method=method, axis=-1) ... error = rmse(res, expected) ... method_errors[method].append(error) >>> >>> for method, errors in method_errors.items(): ... plt.loglog(ns, errors, label=method) >>> >>> plt.legend() >>> plt.xlabel('sample size') >>> plt.ylabel('RMSE (1000 trials)') >>> plt.title('Entropy Estimator Error (Exponential Distribution)') """ values = np.asarray(values) values = np.moveaxis(values, axis, -1) n = values.shape[-1] # number of observations if window_length is None: window_length = math.floor(math.sqrt(n) + 0.5) if not 2 <= 2 * window_length < n: raise ValueError( f"Window length ({window_length}) must be positive and less " f"than half the sample size ({n}).", ) if base is not None and base <= 0: raise ValueError("`base` must be a positive number or `None`.") sorted_data = np.sort(values, axis=-1) methods = {"vasicek": _vasicek_entropy, "van es": _van_es_entropy, "correa": _correa_entropy, "ebrahimi": _ebrahimi_entropy, "auto": _vasicek_entropy} method = method.lower() if method not in methods: message = f"`method` must be one of {set(methods)}" raise ValueError(message) if method == "auto": if n <= 10: method = 'van es' elif n <= 1000: method = 'ebrahimi' else: method = 'vasicek' res = methods[method](sorted_data, window_length) if base is not None: res /= np.log(base) return res def _pad_along_last_axis(X, m): """Pad the data for computing the rolling window difference.""" # scales a bit better than method in _vasicek_like_entropy shape = np.array(X.shape) shape[-1] = m Xl = np.broadcast_to(X[..., [0]], shape) # [0] vs 0 to maintain shape Xr = np.broadcast_to(X[..., [-1]], shape) return np.concatenate((Xl, X, Xr), axis=-1) def _vasicek_entropy(X, m): """Compute the Vasicek estimator as described in [6] Eq. 1.3.""" n = X.shape[-1] X = _pad_along_last_axis(X, m) differences = X[..., 2 * m:] - X[..., : -2 * m:] logs = np.log(n/(2*m) * differences) return np.mean(logs, axis=-1) def _van_es_entropy(X, m): """Compute the van Es estimator as described in [6].""" # No equation number, but referred to as HVE_mn. # Typo: there should be a log within the summation. n = X.shape[-1] difference = X[..., m:] - X[..., :-m] term1 = 1/(n-m) * np.sum(np.log((n+1)/m * difference), axis=-1) k = np.arange(m, n+1) return term1 + np.sum(1/k) + np.log(m) - np.log(n+1) def _ebrahimi_entropy(X, m): """Compute the Ebrahimi estimator as described in [6].""" # No equation number, but referred to as HE_mn n = X.shape[-1] X = _pad_along_last_axis(X, m) differences = X[..., 2 * m:] - X[..., : -2 * m:] i = np.arange(1, n+1).astype(float) ci = np.ones_like(i)*2 ci[i <= m] = 1 + (i[i <= m] - 1)/m ci[i >= n - m + 1] = 1 + (n - i[i >= n-m+1])/m logs = np.log(n * differences / (ci * m)) return np.mean(logs, axis=-1) def _correa_entropy(X, m): """Compute the Correa estimator as described in [6].""" # No equation number, but referred to as HC_mn n = X.shape[-1] X = _pad_along_last_axis(X, m) i = np.arange(1, n+1) dj = np.arange(-m, m+1)[:, None] j = i + dj j0 = j + m - 1 # 0-indexed version of j Xibar = np.mean(X[..., j0], axis=-2, keepdims=True) difference = X[..., j0] - Xibar num = np.sum(difference*dj, axis=-2) # dj is d-i den = n*np.sum(difference**2, axis=-2) return -np.mean(np.log(num/den), axis=-1)
bsd-3-clause
derekjchow/models
research/cognitive_mapping_and_planning/scripts/script_env_vis.py
5
6042
# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple python function to walk in the enviornments that we have created. PYTHONPATH='.' PYOPENGL_PLATFORM=egl python scripts/script_env_vis.py \ --dataset_name sbpd --building_name area3 """ import sys import numpy as np import matplotlib matplotlib.use('TkAgg') from PIL import ImageTk, Image import Tkinter as tk import logging from tensorflow.python.platform import app from tensorflow.python.platform import flags import datasets.nav_env_config as nec import datasets.nav_env as nav_env import cv2 from datasets import factory import render.swiftshader_renderer as renderer SwiftshaderRenderer = renderer.SwiftshaderRenderer VisualNavigationEnv = nav_env.VisualNavigationEnv FLAGS = flags.FLAGS flags.DEFINE_string('dataset_name', 'sbpd', 'Name of the dataset.') flags.DEFINE_float('fov', 60., 'Field of view') flags.DEFINE_integer('image_size', 512, 'Size of the image.') flags.DEFINE_string('building_name', '', 'Name of the building.') def get_args(): navtask = nec.nav_env_base_config() navtask.task_params.type = 'rng_rejection_sampling_many' navtask.task_params.rejection_sampling_M = 2000 navtask.task_params.min_dist = 10 sz = FLAGS.image_size navtask.camera_param.fov = FLAGS.fov navtask.camera_param.height = sz navtask.camera_param.width = sz navtask.task_params.img_height = sz navtask.task_params.img_width = sz # navtask.task_params.semantic_task.class_map_names = ['chair', 'door', 'table'] # navtask.task_params.type = 'to_nearest_obj_acc' logging.info('navtask: %s', navtask) return navtask def load_building(dataset_name, building_name): dataset = factory.get_dataset(dataset_name) navtask = get_args() cp = navtask.camera_param rgb_shader, d_shader = renderer.get_shaders(cp.modalities) r_obj = SwiftshaderRenderer() r_obj.init_display(width=cp.width, height=cp.height, fov=cp.fov, z_near=cp.z_near, z_far=cp.z_far, rgb_shader=rgb_shader, d_shader=d_shader) r_obj.clear_scene() b = VisualNavigationEnv(robot=navtask.robot, env=navtask.env, task_params=navtask.task_params, building_name=building_name, flip=False, logdir=None, building_loader=dataset, r_obj=r_obj) b.load_building_into_scene() b.set_building_visibility(False) return b def walk_through(b): # init agent at a random location in the environment. init_env_state = b.reset([np.random.RandomState(0), np.random.RandomState(0)]) global current_node rng = np.random.RandomState(0) current_node = rng.choice(b.task.nodes.shape[0]) root = tk.Tk() image = b.render_nodes(b.task.nodes[[current_node],:])[0] print(image.shape) image = image.astype(np.uint8) im = Image.fromarray(image) im = ImageTk.PhotoImage(im) panel = tk.Label(root, image=im) map_size = b.traversible.shape sc = np.max(map_size)/256. loc = np.array([[map_size[1]/2., map_size[0]/2.]]) x_axis = np.zeros_like(loc); x_axis[:,1] = sc y_axis = np.zeros_like(loc); y_axis[:,0] = -sc cum_fs, cum_valid = nav_env.get_map_to_predict(loc, x_axis, y_axis, map=b.traversible*1., map_size=256) cum_fs = cum_fs[0] cum_fs = cv2.applyColorMap((cum_fs*255).astype(np.uint8), cv2.COLORMAP_JET) im = Image.fromarray(cum_fs) im = ImageTk.PhotoImage(im) panel_overhead = tk.Label(root, image=im) def refresh(): global current_node image = b.render_nodes(b.task.nodes[[current_node],:])[0] image = image.astype(np.uint8) im = Image.fromarray(image) im = ImageTk.PhotoImage(im) panel.configure(image=im) panel.image = im def left_key(event): global current_node current_node = b.take_action([current_node], [2], 1)[0][0] refresh() def up_key(event): global current_node current_node = b.take_action([current_node], [3], 1)[0][0] refresh() def right_key(event): global current_node current_node = b.take_action([current_node], [1], 1)[0][0] refresh() def quit(event): root.destroy() panel_overhead.grid(row=4, column=5, rowspan=1, columnspan=1, sticky=tk.W+tk.E+tk.N+tk.S) panel.bind('<Left>', left_key) panel.bind('<Up>', up_key) panel.bind('<Right>', right_key) panel.bind('q', quit) panel.focus_set() panel.grid(row=0, column=0, rowspan=5, columnspan=5, sticky=tk.W+tk.E+tk.N+tk.S) root.mainloop() def simple_window(): root = tk.Tk() image = np.zeros((128, 128, 3), dtype=np.uint8) image[32:96, 32:96, 0] = 255 im = Image.fromarray(image) im = ImageTk.PhotoImage(im) image = np.zeros((128, 128, 3), dtype=np.uint8) image[32:96, 32:96, 1] = 255 im2 = Image.fromarray(image) im2 = ImageTk.PhotoImage(im2) panel = tk.Label(root, image=im) def left_key(event): panel.configure(image=im2) panel.image = im2 def quit(event): sys.exit() panel.bind('<Left>', left_key) panel.bind('<Up>', left_key) panel.bind('<Down>', left_key) panel.bind('q', quit) panel.focus_set() panel.pack(side = "bottom", fill = "both", expand = "yes") root.mainloop() def main(_): b = load_building(FLAGS.dataset_name, FLAGS.building_name) walk_through(b) if __name__ == '__main__': app.run()
apache-2.0
jldbc/pybaseball
pybaseball/lahman.py
1
3787
from io import BytesIO from os import path from typing import Optional from zipfile import ZipFile import pandas as pd import requests from . import cache url = "https://github.com/chadwickbureau/baseballdatabank/archive/master.zip" base_string = "baseballdatabank-master/core" _handle = None def get_lahman_zip() -> Optional[ZipFile]: # Retrieve the Lahman database zip file, returns None if file already exists in cwd. # If we already have the zip file, keep re-using that. # Making this a function since everything else will be re-using these lines global _handle if path.exists(path.join(cache.config.cache_directory, base_string)): _handle = None elif not _handle: s = requests.get(url, stream=True) _handle = ZipFile(BytesIO(s.content)) return _handle def download_lahman(): # download entire lahman db to present working directory z = get_lahman_zip() if z is not None: z.extractall(cache.config.cache_directory) z = get_lahman_zip() # this way we'll now start using the extracted zip directory # instead of the session ZipFile object def _get_file(tablename: str, quotechar: str = "'") -> pd.DataFrame: z = get_lahman_zip() f = f'{base_string}/{tablename}' data = pd.read_csv( f"{path.join(cache.config.cache_directory, f)}" if z is None else z.open(f), header=0, sep=',', quotechar=quotechar ) return data # do this for every table in the lahman db so they can exist as separate functions def parks() -> pd.DataFrame: return _get_file('Parks.csv') def all_star_full() -> pd.DataFrame: return _get_file("AllstarFull.csv") def appearances() -> pd.DataFrame: return _get_file("Appearances.csv") def awards_managers() -> pd.DataFrame: return _get_file("AwardsManagers.csv") def awards_players() -> pd.DataFrame: return _get_file("AwardsPlayers.csv") def awards_share_managers() -> pd.DataFrame: return _get_file("AwardsShareManagers.csv") def awards_share_players() -> pd.DataFrame: return _get_file("AwardsSharePlayers.csv") def batting() -> pd.DataFrame: return _get_file("Batting.csv") def batting_post() -> pd.DataFrame: return _get_file("BattingPost.csv") def college_playing() -> pd.DataFrame: return _get_file("CollegePlaying.csv") def fielding() -> pd.DataFrame: return _get_file("Fielding.csv") def fielding_of() -> pd.DataFrame: return _get_file("FieldingOF.csv") def fielding_of_split() -> pd.DataFrame: return _get_file("FieldingOFsplit.csv") def fielding_post() -> pd.DataFrame: return _get_file("FieldingPost.csv") def hall_of_fame() -> pd.DataFrame: return _get_file("HallOfFame.csv") def home_games() -> pd.DataFrame: return _get_file("HomeGames.csv") def managers() -> pd.DataFrame: return _get_file("Managers.csv") def managers_half() -> pd.DataFrame: return _get_file("ManagersHalf.csv") def master() -> pd.DataFrame: # Alias for people -- the new name for master return people() def people() -> pd.DataFrame: return _get_file("People.csv") def pitching() -> pd.DataFrame: return _get_file("Pitching.csv") def pitching_post() -> pd.DataFrame: return _get_file("PitchingPost.csv") def salaries() -> pd.DataFrame: return _get_file("Salaries.csv") def schools() -> pd.DataFrame: return _get_file("Schools.csv", quotechar='"') # different here bc of doublequotes used in some school names def series_post() -> pd.DataFrame: return _get_file("SeriesPost.csv") def teams() -> pd.DataFrame: return _get_file("Teams.csv") def teams_franchises() -> pd.DataFrame: return _get_file("TeamsFranchises.csv") def teams_half() -> pd.DataFrame: return _get_file("TeamsHalf.csv")
mit
SigridK/corpkit
corpkit/conc.py
1
13245
def conc(corpus, query, option = 'tregex', dep_function = 'any', dep_type = 'basic-dependencies', n = 100, random = False, window = 100, trees = False, plaintext = False, #'guess', add_links = False, show_links = False, print_status = True, print_output = True, just_speakers = False, root = False, **kwargs): """A concordancer for Tregex queries and dependencies""" import corpkit import os import re import pandas as pd from pandas import DataFrame from time import localtime, strftime try: from IPython.display import display, clear_output except ImportError: pass from corpkit.other import tregex_engine from corpkit.tests import check_pytex, check_dit try: get_ipython().getoutput() except TypeError: have_ipython = True except NameError: import subprocess have_ipython = False if query == 'any': query = r'.*' # convert list to query if type(query) == list: from other import as_regex if option.startswith('t'): query = r'/%s/ !< __' % as_regex(query, boundaries = 'line') else: query = as_regex(query, boundaries = 'w') can_do_fast = False if option.startswith('t'): if just_speakers is False: can_do_fast = True just_speakers_is_list = False if type(just_speakers) == list: just_speakers_is_list = True if type(just_speakers) == str: if just_speakers.lower() != 'all': just_speakers = [just_speakers] def get_deps(sentence, dep_type): if dep_type == 'basic-dependencies': return sentence.basic_dependencies if dep_type == 'collapsed-dependencies': return sentence.collapsed_dependencies if dep_type == 'collapsed-ccprocessed-dependencies': return sentence.collapsed_ccprocessed_dependencies conc_lines = [] if option.startswith('t'): if trees: options = '-s' else: options = '-t' if can_do_fast: speakr = '' tregex_engine(query = query, check_query = True, root = root) wholes = tregex_engine(query = query, options = ['-o', '-w', '-f', options], corpus = corpus, preserve_case = True, root = root) middle_column_result = tregex_engine(query = query, options = ['-o', options], corpus = corpus, preserve_case = True, root = root) for (f, whole), mid in zip(wholes, middle_column_result): reg = re.compile(r'(' + re.escape(mid) + r')', re.IGNORECASE) start, middle, end = re.split(reg, whole, 1) conc_lines.append([os.path.basename(f), speakr, start, middle, end]) else: fs_to_conc = [] for r, dirs, fs in os.walk(corpus): for f in fs: if not os.path.isfile(os.path.join(r, f)): continue if not f.endswith('.txt') and not f.endswith('.xml'): continue fs_to_conc.append(os.path.join(r, f)) def normalise(concline): import re reg = re.compile(r'\([^ ]+') spaces = re.compile(r'\s+') concline = re.sub(reg, '', concline) concline = re.sub(spaces, ' ', concline) concline = concline.replace(')', '').replace(' ', ' ') return concline.strip() num_fs = len(fs_to_conc) for index, filepath in enumerate(fs_to_conc): f = os.path.basename(filepath) if num_fs > 1: if 'note' in kwargs.keys(): kwargs['note'].progvar.set((index) * 100.0 / num_fs) from time import localtime, strftime thetime = strftime("%H:%M:%S", localtime()) print '%s: Extracting data from %s ...' % (thetime, f) if root: root.update() with open(filepath, "rb") as text: parsetreedict = {} data = text.read() if option.startswith('p') or option.startswith('l'): if option.startswith('l'): lstokens = pickle.load(open(filepath, 'rb')) data = ' '.join(tokens) data = data.split(' . ') else: lines = data.splitlines() for l in lines: m = re.compile(r'^(.*?)(' + query + r')(.*)$', re.IGNORECASE) mat = re.search(m, l) if mat: conc_lines.append([f, '', mat.group(1), mat.group(2), mat.group(3)]) continue from corenlp_xml.document import Document corenlp_xml = Document(data) #corenlp_xml = Beautifulcorenlp_xml(data, parse_only=justsents) if just_speakers: for s in just_speakers: parsetreedict[s] = [] sents = [s for s in corenlp_xml.sentences if s.speakername in just_speakers] #sents = [s for s in corenlp_xml.find_all('sentence') \ #if s.speakername.text.strip() in just_speakers] else: sents = corenlp_xml.sentences nsents = len(sents) for i, s in enumerate(sents): if num_fs == 1: if 'note' in kwargs.keys(): kwargs['note'].progvar.set((index) * 100.0 / nsents) if root: root.update() try: speakr = s.speakername.strip() except: speakr = '' parsetree = s.parse_string if option.startswith('t'): parsetreedict[speakr].append(parsetree) continue elif option.startswith('d'): #right_dependency_grammar = s.find_all('dependencies', type=dep_type, limit = 1) deps = get_deps(s, dep_type) if dep_function == 'any' or dep_function is False: wdsmatching = [l.dependent.text.strip() for l in deps.links \ if re.match(query, l.dependent.text.strip())] else: comped = re.compile(dep_function, re.IGNORECASE) #goodsent = any(re.match(query, l.dependent.text.strip()) for l in deps.links if re.match(comped, l.type.strip())) wdsmatching = [l.dependent.text.strip() for l in deps.links \ if re.match(comped, l.type.strip()) and \ re.match(query, l.dependent.text.strip())] # this is shit, needs indexing or something for wd in wdsmatching: line = normalise(parsetree) start, middle, end = re.split(r'(' + wd + r')', line, 1) conc_lines.append([f, speakr, start, middle, end]) if option.startswith('t'): for speakr, dt in parsetreedict.items(): trees_as_string = '\n'.join(dt) if trees: options = '-s' else: options = '-t' with open('tmp.txt', 'w') as fo: fo.write(trees_as_string.encode('utf-8', errors = 'ignore')) tregex_engine(query = query, check_query = True, root = root) wholes = tregex_engine(query = query, options = ['-o', '-w', options], corpus = 'tmp.txt', preserve_case = True, root = root) middle_column_result = tregex_engine(query = query, options = ['-o', options], corpus = 'tmp.txt', preserve_case = True, root = root) for whole, mid in zip(wholes, middle_column_result): reg = re.compile(r'(' + re.escape(mid) + r')', re.IGNORECASE) start, middle, end = re.split(reg, whole, 1) conc_lines.append([f, speakr, start, middle, end]) # does not keep results ordered! try: os.remove('tmp.txt') except: pass unique_results = [list(x) for x in set(tuple(x) for x in conc_lines)] #make into series series = [] pindex = 'f s l m r'.encode('utf-8').split() for fname, spkr, start, word, end in unique_results: import os fname = os.path.basename(fname) start = start.replace('$ ', '$').replace('`` ', '``').replace(' ,', ',').replace(' .', '.').replace("'' ", "''").replace(" n't", "n't").replace(" 're","'re").replace(" 'm","'m").replace(" 's","'s").replace(" 'd","'d").replace(" 'll","'ll").replace(' ', ' ') word = word.replace('$ ', '$').replace('`` ', '``').replace(' ,', ',').replace(' .', '.').replace("'' ", "''").replace(" n't", "n't").replace(" 're","'re").replace(" 'm","'m").replace(" 's","'s").replace(" 'd","'d").replace(" 'll","'ll").replace(' ', ' ') end = end.replace('$ ', '$').replace('`` ', '``').replace(' ,', ',').replace(' .', '.').replace("'' ", "''").replace(" n't", "n't").replace(" 're","'re").replace(" 'm","'m").replace(" 's","'s").replace(" 'd","'d").replace(" 'll","'ll").replace(' ', ' ') #spaces = ' ' * (maximum / 2 - (len(word) / 2)) #new_word = spaces + word + spaces series.append(pd.Series([fname.encode('utf-8', errors = 'ignore'), \ spkr.encode('utf-8', errors = 'ignore'), \ start.encode('utf-8', errors = 'ignore'), \ word.encode('utf-8', errors = 'ignore'), \ end.encode('utf-8', errors = 'ignore')], index = pindex)) # randomise results... if random: from random import shuffle shuffle(series) if series == []: if root: print 'No results found, sorry.' return else: raise ValueError("No results found, I'm afraid. Check your query and path.") df = pd.concat(series, axis = 1).T if not add_links: df.columns = ['f', 's', 'l', 'm', 'r'] else: df.columns = ['f', 's', 'l', 'm', 'r', 'link'] if all(x == '' for x in list(df['s'].values)): df.drop('s', axis = 1, inplace = True) formatl = lambda x: "{0}".format(x[-window:]) formatf = lambda x: "{0}".format(x[-20:]) #formatr = lambda x: formatr = lambda x: "{{:<{}s}}".format(df['r'].str.len().max()).format(x[:window]) st = df.head(n).to_string(header = False, formatters={'l': formatl, 'r': formatr, 'f': formatf}).splitlines() # hack because i can't figure out formatter: rem = '\n'.join([re.sub('\s*\.\.\.\s*$', '', s) for s in st]) if print_output: print rem if 'note' in kwargs.keys(): kwargs['note'].progvar.set(100) return df if add_links: def _add_links(lines, links = False, show = 'thread'): link = "http://www.healthboards.com/boards/bipolar-disorder/695089-labels.html" linktext = '<a href="%s>link</a>' % link import pandas as pd inds = list(df.index) num_objects = len(list(df.index)) ser = pd.Series([link for n in range(num_objects)], index = inds) lines['link'] = ser return lines df = _add_links(df) if add_links: if not show_links: if print_output: print df.drop('link', axis = 1).head(n).to_string(header = False, formatters={rname:'{{:<{}s}}'.format(df[rname].str.len().max()).format}) else: if print_output: print HTML(df.to_html(escape=False)) else: if print_output: print df.head(n).to_string(header = False, formatters={rname:'{{:<{}s}}'.format(df[rname].str.len().max()).format}) if not add_links: df.columns = ['f', 'l', 'm', 'r'] else: df.columns = ['f', 'l', 'm', 'r', 'link'] return df
mit
kain88-de/mdanalysis
testsuite/MDAnalysisTests/analysis/test_hole.py
1
10084
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8 # # MDAnalysis --- http://www.mdanalysis.org # Copyright (c) 2006-2016 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # from __future__ import print_function, absolute_import from six.moves import range import MDAnalysis import MDAnalysis.analysis.hole from MDAnalysis.analysis.hole import HOLEtraj, HOLE from numpy.testing import (TestCase, dec, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_) import numpy as np import nose from nose.plugins.attrib import attr import os import errno from MDAnalysisTests.datafiles import PDB_HOLE, MULTIPDB_HOLE from MDAnalysisTests import (executable_not_found, module_not_found, tempdir, in_dir) def rlimits_missing(): # return True if resources module not accesible (ie setting of rlimits) try: # on Unix we can manipulate our limits: http://docs.python.org/2/library/resource.html import resource soft_max_open_files, hard_max_open_files = resource.getrlimit(resource.RLIMIT_NOFILE) except ImportError: return True return False class TestHOLE(TestCase): filename = PDB_HOLE @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") def setUp(self): # keep tempdir around for the whole lifetime of the class self.tempdir = tempdir.TempDir() with in_dir(self.tempdir.name): H = HOLE(self.filename, raseed=31415) H.run() H.collect() self.H = H def tearDown(self): del self.H del self.tempdir @attr('slow') @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") def test_HOLE(self): profiles = self.H.profiles.values() assert_equal(len(profiles), 1, err_msg="HOLE.profile should contain exactly 1 profile") p = profiles[0] assert_equal(len(p), 425, err_msg="wrong number of points in HOLE profile") assert_almost_equal(p.rxncoord.mean(), -1.41225, err_msg="wrong mean HOLE rxncoord") assert_almost_equal(p.radius.min(), 1.19707, err_msg="wrong min HOLE radius") @attr('slow') @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") def test_vmd_surface(self): with in_dir(self.tempdir.name): filename = self.H.create_vmd_surface(filename="hole.vmd") assert_equal(len(open(filename).readlines()), 6504, err_msg="HOLE VMD surface file is incomplete") class TestHOLEtraj(TestCase): filename = MULTIPDB_HOLE start = 5 stop = 7 # HOLE is so slow so we only run it once and keep it in # the class; note that you may not change universe.trajectory # (eg iteration) because this is not safe in parallel @classmethod def setUpClass(cls): cls.universe = MDAnalysis.Universe(cls.filename) if not executable_not_found("hole"): with tempdir.in_tempdir(): H = HOLEtraj(cls.universe, start=cls.start, stop=cls.stop, raseed=31415) H.run() cls.H = H else: cls.H = None cls.frames = [ts.frame for ts in cls.universe.trajectory[cls.start:cls.stop]] @classmethod def tearDownClass(cls): del cls.H del cls.universe # This is VERY slow on 11 frames so we just take 2 @attr('slow') @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") def test_HOLEtraj(self): assert_array_equal(sorted(self.H.profiles.keys()), self.frames, err_msg="H.profiles.keys() should contain the frame numbers") data = np.transpose([(len(p), p.rxncoord.mean(), p.radius.min()) for p in self.H.profiles.values()]) assert_array_equal(data[0], [401, 399], err_msg="incorrect profile lengths") assert_array_almost_equal(data[1], [1.98767, 0.0878], err_msg="wrong mean HOLE rxncoord") assert_array_almost_equal(data[2], [1.19819, 1.29628], err_msg="wrong minimum radius") @attr('slow') @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") def test_min_radius(self): assert_array_almost_equal(self.H.min_radius(), np.array([[ 5. , 1.19819], [ 6. , 1.29628]]), err_msg="min_radius() array not correct") @attr('slow') @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") @dec.skipif(module_not_found("matplotlib")) def test_plot(self): import matplotlib.axes ax = self.H.plot(label=True) assert_(isinstance(ax, matplotlib.axes.Axes), msg="H.plot() did not produce an Axes instance") @attr('slow') @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") @dec.skipif(module_not_found("matplotlib")) def test_plot3D(self): import mpl_toolkits.mplot3d ax = self.H.plot3D() assert_(isinstance(ax, mpl_toolkits.mplot3d.Axes3D), msg="H.plot3D() did not produce an Axes3D instance") @attr('slow') @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") @dec.skipif(module_not_found("matplotlib")) def test_plot3D_rmax(self): import mpl_toolkits.mplot3d ax = self.H.plot3D(rmax=2.5) assert_(isinstance(ax, mpl_toolkits.mplot3d.Axes3D), msg="H.plot3D(rmax=float) did not produce an Axes3D instance") class TestHoleModule(TestCase): @dec.skipif(rlimits_missing, msg="Test skipped because platform does not allow setting rlimits") def setUp(self): self.universe = MDAnalysis.Universe(MULTIPDB_HOLE) try: # on Unix we can manipulate our limits: http://docs.python.org/2/library/resource.html import resource self.soft_max_open_files, self.hard_max_open_files = resource.getrlimit(resource.RLIMIT_NOFILE) except ImportError: pass @attr('slow') @attr('issue') @dec.skipif(rlimits_missing, msg="Test skipped because platform does not allow setting rlimits") @dec.skipif(executable_not_found("hole"), msg="Test skipped because HOLE not found") def test_hole_module_fd_closure(self): """test open file descriptors are closed (MDAnalysisTests.analysis.test_hole.TestHoleModule): Issue 129""" # If Issue 129 isn't resolved, this function will produce an OSError on # the system, and cause many other tests to fail as well. # # Successful test takes ~10 s, failure ~2 s. # Hasten failure by setting "ulimit -n 64" (can't go too low because of open modules etc...) import resource # ----- temporary hack ----- # on Mac OS X (on Travis) we run out of open file descriptors # before even starting this test (see # https://github.com/MDAnalysis/mdanalysis/pull/901#issuecomment-231938093); # if this issue is solved by #363 then revert the following # hack: # import platform if platform.platform() == "Darwin": max_open_files = 512 else: max_open_files = 64 # # -------------------------- resource.setrlimit(resource.RLIMIT_NOFILE, (max_open_files, self.hard_max_open_files)) with tempdir.in_tempdir(): try: H = HOLEtraj(self.universe, cvect=[0, 1, 0], sample=20.0) finally: self._restore_rlimits() # pretty unlikely that the code will get through 2 rounds if the MDA # issue 129 isn't fixed, although this depends on the file descriptor # open limit for the machine in question try: for i in range(2): # will typically get an OSError for too many files being open after # about 2 seconds if issue 129 isn't resolved H.run() except OSError as err: if err.errno == errno.EMFILE: raise AssertionError("HOLEtraj does not close file descriptors (Issue 129)") raise finally: # make sure to restore open file limit !! self._restore_rlimits() def _restore_rlimits(self): try: import resource resource.setrlimit(resource.RLIMIT_NOFILE, (self.soft_max_open_files, self.hard_max_open_files)) except ImportError: pass def tearDown(self): self._restore_rlimits() del self.universe
gpl-2.0
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/sklearn/utils/tests/test_shortest_path.py
42
2894
from collections import defaultdict import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.utils.graph import (graph_shortest_path, single_source_shortest_path_length) def floyd_warshall_slow(graph, directed=False): N = graph.shape[0] #set nonzero entries to infinity graph[np.where(graph == 0)] = np.inf #set diagonal to zero graph.flat[::N + 1] = 0 if not directed: graph = np.minimum(graph, graph.T) for k in range(N): for i in range(N): for j in range(N): graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j]) graph[np.where(np.isinf(graph))] = 0 return graph def generate_graph(N=20): #sparse grid of distances rng = np.random.RandomState(0) dist_matrix = rng.random_sample((N, N)) #make symmetric: distances are not direction-dependent dist_matrix += dist_matrix.T #make graph sparse i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2)) dist_matrix[i] = 0 #set diagonal to zero dist_matrix.flat[::N + 1] = 0 return dist_matrix def test_floyd_warshall(): dist_matrix = generate_graph(20) for directed in (True, False): graph_FW = graph_shortest_path(dist_matrix, directed, 'FW') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_FW, graph_py) def test_dijkstra(): dist_matrix = generate_graph(20) for directed in (True, False): graph_D = graph_shortest_path(dist_matrix, directed, 'D') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_D, graph_py) def test_shortest_path(): dist_matrix = generate_graph(20) # We compare path length and not costs (-> set distances to 0 or 1) dist_matrix[dist_matrix != 0] = 1 for directed in (True, False): if not directed: dist_matrix = np.minimum(dist_matrix, dist_matrix.T) graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) for i in range(dist_matrix.shape[0]): # Non-reachable nodes have distance 0 in graph_py dist_dict = defaultdict(int) dist_dict.update(single_source_shortest_path_length(dist_matrix, i)) for j in range(graph_py[i].shape[0]): assert_array_almost_equal(dist_dict[j], graph_py[i, j]) def test_dijkstra_bug_fix(): X = np.array([[0., 0., 4.], [1., 0., 2.], [0., 5., 0.]]) dist_FW = graph_shortest_path(X, directed=False, method='FW') dist_D = graph_shortest_path(X, directed=False, method='D') assert_array_almost_equal(dist_D, dist_FW) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
loli/sklearn-ensembletrees
sklearn/datasets/tests/test_20news.py
42
2416
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_vectorized(): # This test is slow. raise SkipTest("Test too slow.") bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 107428)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 107428)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="all") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 107428)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
mitdbg/aurum-datadiscovery
DoD/evaluate-dod.py
1
22264
from knowledgerepr import fieldnetwork from modelstore.elasticstore import StoreHandler from DoD.dod import DoD from DoD import data_processing_utils as dpu from DoD import view_4c_analysis_baseline as v4c from tqdm import tqdm import pandas as pd import os import time from collections import defaultdict import pprint pp = pprint.PrettyPrinter(indent=4) def create_folder(base_folder, name): op = base_folder + name os.makedirs(op) return op def run_dod(dod, attrs, values, output_path, max_hops=2, name=None): view_metadata_mapping = dict() i = 0 perf_stats = dict() st_runtime = time.time() for mjp, attrs_project, metadata in dod.virtual_schema_iterative_search(attrs, values, perf_stats, max_hops=max_hops, debug_enumerate_all_jps=False): proj_view = dpu.project(mjp, attrs_project) if output_path is not None: view_path = output_path + "/view_" + str(i) proj_view.to_csv(view_path, encoding='latin1', index=False) # always store this # store metadata associated to that view view_metadata_mapping[view_path] = metadata i += 1 et_runtime = time.time() perf_stats['et_runtime'] = (et_runtime - st_runtime) print("#$# " + str(name)) print("#$# ") print("") pp.pprint(perf_stats) total_join_graphs = sum(perf_stats['num_join_graphs_per_candidate_group']) total_materializable_join_graphs = sum(perf_stats['materializable_join_graphs']) print("Total join graphs: " + str(total_join_graphs)) print("Total materializable join graphs: " + str(total_materializable_join_graphs)) print("") print("Total views: " + str(i)) print("#$# ") def assemble_views(): # have a way of generating the views for each query-view in a different folder # for qv_name, qv_attr, qv_values in tqdm(query_view_definitions_many): # print("Running query: " + str(qv_name)) # # Create a folder for each query-view # output_path = create_folder(eval_folder, "many/" + qv_name) # print("Out path: " + str(output_path)) # run_dod(dod, qv_attr, qv_values, output_path=output_path) # # for qv_name, qv_attr, qv_values in tqdm(query_view_definitions_few): # print("Running query: " + str(qv_name)) # # Create a folder for each query-view # output_path = create_folder(eval_folder, "few/" + qv_name) # print("Out path: " + str(output_path)) # run_dod(dod, qv_attr, qv_values, output_path=output_path) for qv_name, qv_attr, qv_values in tqdm(query_view_definitions_chembl): print("Running query: " + str(qv_name)) # Create a folder for each query-view output_path = create_folder(eval_folder, "chembl/" + qv_name) print("Out path: " + str(output_path)) run_dod(dod, qv_attr, qv_values, output_path=output_path) def measure_dod_performance(qv_name, qv_attr, qv_values): # for qv_name, qv_attr, qv_values in tqdm(query_view_definitions_many): print("Running query: " + str(qv_name)) # Create a folder for each query-view # output_path = create_folder(eval_folder, "many/" + qv_name) output_path = None print("Out path: " + str(output_path)) run_dod(dod, qv_attr, qv_values, output_path=output_path, name=qv_name) def run_4c(path): groups_per_column_cardinality = v4c.main(path) return groups_per_column_cardinality def run_4c_nochasing(path): groups_per_column_cardinality = v4c.nochasing_main(path) return groups_per_column_cardinality def run_4c_valuewise_main(path): groups_per_column_cardinality = v4c.valuewise_main(path) return groups_per_column_cardinality def brancher(groups_per_column_cardinality): """ Given the 4C output, determine how many interactions this demands :param groups_per_column_cardinality: :return: """ # interactions_per_group_optimistic = [] pruned_groups_per_column_cardinality = defaultdict(dict) human_selection = 0 for k, v in groups_per_column_cardinality.items(): compatible_groups = v['compatible'] contained_groups = v['contained'] complementary_group = v['complementary'] complementary_group = [(a, b, "", "") for a, b, _, _ in complementary_group] contradictory_group = v['contradictory'] # Optimistic path contradictions = defaultdict(list) if len(contradictory_group) > 0: for path1, _, _, path2 in contradictory_group: if path1 not in contradictions: contradictions[path1].append(path2) if path2 not in contradictions: contradictions[path2].append(path1) if path1 not in contradictions[path2]: contradictions[path2].append(path1) if path2 not in contradictions[path1]: contradictions[path1].append(path2) # Now we sort contradictions by value length. Second sort key for determinism contradictions = sorted(contradictions.items(), key=lambda x: (len(x[1]), x[0]), reverse=True) if len(contradictions) > 0: # Now we loop per each contradiction, after making a decision we prune space of views while len(contradictions) > 0: human_selection += 1 pruned_compatible_groups = [] pruned_contained_groups = [] pruned_complementary_groups = [] path1, path2 = contradictions.pop() # We assume path1 is good. Therefore, path2 tables are bad. Prune away all path2 for cg in compatible_groups: valid = True for p2 in path2: if p2 in set(cg): # remove this compatible group valid = False break # cg is not valid if valid: pruned_compatible_groups.append(cg) for contg in tqdm(contained_groups): valid = True for p2 in path2: if p2 in set(contg): valid = False break if valid: pruned_contained_groups.append(contg) invalid_paths = set(path2) # assist lookup for next two blocks for compg in complementary_group: compp1, compp2, _, _ = compg if compp1 not in invalid_paths and compp2 not in invalid_paths: pruned_complementary_groups.append((compp1, compp2, "", "")) pruned_contradiction_group = [] # remove those with keys in invalid group for other_path1, other_path2 in contradictions: if other_path1 not in invalid_paths: # only check the key pruned_contradiction_group.append((other_path1, other_path2)) # update all groups with the pruned versions contradictions = [el for el in pruned_contradiction_group] compatible_groups = [el for el in pruned_compatible_groups] contained_groups = [el for el in pruned_contained_groups] complementary_group = [(a, b, "", "") for a, b, _, _ in pruned_complementary_groups] # Now removed contained views # 1- from complementary groups contained_views = set() # all contained views across contained groups for contained_group in contained_groups: if len(contained_group) >= 2: contained_views.update(set(contained_group[1:])) pruned_complementary_groups = [] for compp1, compp2, _, _ in complementary_group: if compp1 not in contained_views and compp2 not in contained_views: pruned_complementary_groups.append((compp1, compp2, "", "")) complementary_group = [(a, b, "", "") for a, b, _, _ in pruned_complementary_groups] # 2- from contanied groups pruned_compatible_groups = [] for cg in compatible_groups: valid = True for el in cg: if el in contained_views: # remove this compatible group valid = False break # cg is not valid if valid: pruned_compatible_groups.append(cg) compatible_groups = [el for el in pruned_compatible_groups] # Now union complementary with compatible and coalesce contained with compatible compatible_views = set() pruned_complementary_groups = [] for cg in compatible_groups: compatible_views.update(cg) for compp1, compp2, _, _ in complementary_group: if compp1 not in compatible_views and compp2 not in compatible_views: pruned_complementary_groups.append((compp1, compp2, "", "")) complementary_group = [(a, b, "", "") for a, b, _, _ in pruned_complementary_groups] pruned_contained_groups = [] for contained_group in contained_groups: if contained_group[0] not in compatible_views: pruned_contained_groups.append(contained_group) contained_groups = [el for el in pruned_contained_groups] pruned_groups_per_column_cardinality[k]['compatible'] = compatible_groups pruned_groups_per_column_cardinality[k]['contained'] = contained_groups pruned_groups_per_column_cardinality[k]['complementary'] = complementary_group pruned_groups_per_column_cardinality[k]['contradictory'] = {p1: p2 for p1, p2 in contradictions} return pruned_groups_per_column_cardinality, human_selection def summarize_4c_output(groups_per_column_cardinality, schema_id_info): interactions_per_group = [] for k, v in groups_per_column_cardinality.items(): print("") print("Analyzing group with columns = " + str(k)) print("") compatible_groups = v['compatible'] contained_groups = v['contained'] complementary_group = v['complementary'] contradictory_group = v['contradictory'] # summary complements: complementary_summary = defaultdict(set) for compg in complementary_group: compp1, compp2, _, _ = compg if compp1 in complementary_summary: complementary_summary[compp1].add(compp2) elif compp2 in complementary_group: complementary_summary[compp2].add(compp1) else: complementary_summary[compp1].add(compp2) total_interactions = len(compatible_groups) + len(contained_groups) \ + len(complementary_summary.keys()) + len(contradictory_group) interactions_per_group.append((schema_id_info[k], total_interactions)) return interactions_per_group def output_4c_results(groups_per_column_cardinality): print("RESULTS: ") for k, v in groups_per_column_cardinality.items(): print("") print("Analyzing group with columns = " + str(k)) print("") compatible_groups = v['compatible'] contained_groups = v['contained'] complementary_group = v['complementary'] contradictory_group = v['contradictory'] print("Compatible views: " + str(len(compatible_groups))) print("Contained views: " + str(len(contained_groups))) s_containments = dict() if len(contained_groups) > 0: containments = defaultdict(set) for contg in contained_groups: contains, contained = contg[0], contg[1:] containments[contains].update(contained) # now summarize dict to_summarize = set() for k, v in containments.items(): for k2, v2 in containments.items(): if k == k2: continue if k in v2: to_summarize.add(k) containments[k2].update(v) # add containments of k to k2 for k, v in containments.items(): if k not in to_summarize: s_containments[k] = v for k, v in s_containments.items(): print(str(k) + " contains: " + str(v)) print("Complementary views: " + str(len(complementary_group))) if len(complementary_group) > 0: for p1, p2, _, _ in complementary_group: print(str(p1) + " is complementary with: " + str(p2)) print("Contradictory views: " + str(len(contradictory_group))) if len(contradictory_group) > 0: contradictions = defaultdict(lambda: defaultdict(list)) for path1, k, contradictory_key1, path2 in contradictory_group: if path1 not in contradictions and path2 not in contradictions: contradictions[path1][(k, contradictory_key1)].append(path2) elif path1 in contradictions: if path2 not in contradictions[path1][(k, contradictory_key1)]: contradictions[path1][(k, contradictory_key1)].append(path2) elif path2 in contradictions: if path1 not in contradictions[path2][(k, contradictory_key1)]: contradictions[path2][(k, contradictory_key1)].append(path1) # print(path1 + " contradicts: " + path2 + " when " + str(k) + " = " + str(contradictory_key1)) # contradictions_ordered = sorted(contradictions.items(), key=lambda x: len(x[0][x[1]]), reverse=True) for k, v in contradictions.items(): for contradiction_value, tables in v.items(): attr_k, value_k = contradiction_value print(k + " contradicts: " + str(len(tables)) + " tables when " + str(attr_k) + " = " + str(value_k)) print("Summarized contradictions: " + str(len(set(contradictions.keys())))) # print("Relevant contradictions: " + str(len([k for k, _ in contradictions.items() if k not in s_containments]))) for k, v in contradictions.items(): if k not in s_containments: for contradiction_value, tables in v.items(): attr_k, value_k = contradiction_value print(k + " contradicts: " + str(len(tables)) + " tables when " + str(attr_k) + " = " + str(value_k)) print("Relevant contradictions: " + str( len(set([k for k, _ in contradictions.items() if k not in s_containments])))) def compare_4c_baselines(many_views, few_views): for num_views, path in tqdm(many_views): print("#$# " + str(path)) s = time.time() run_4c(path) e = time.time() print("#$# Chasing") print("#$# " + str(num_views) + " " + str((e-s))) s = time.time() run_4c_nochasing(path) e = time.time() print("#$# No Chasing") print("#$# " + str(num_views) + " " + str((e - s))) for num_views, path in tqdm(few_views): print("#$# " + str(path)) s = time.time() run_4c(path) e = time.time() print("#$# Chasing") print("#$# " + str(num_views) + " " + str((e - s))) s = time.time() run_4c_nochasing(path) e = time.time() print("#$# No Chasing") print("#$# " + str(num_views) + " " + str((e - s))) # s = time.time() # run_4c_valuewise_main(path) # e = time.time() # print("Value Wise: " + str((e - s))) def eval_sampling_join(): sep = ';' base = "/Users/ra-mit/data/chembl_21/chembl/" r1 = 'public.assays.csv' r2 = 'public.activities.csv' a1 = 'assay_id' a2 = 'assay_id' # have pairs of tables to join as input -- large tables, which is when this makes sense # read tables in memory - dataframes df1 = pd.read_csv(base + r1, encoding='latin1', sep=sep) df2 = pd.read_csv(base + r2, encoding='latin1', sep=sep) s = time.time() # perform materialize, and sampling-materialize (with a given % sample size?) df_a = dpu.join_ab_on_key(df1, df2, a1, a2, suffix_str='_x') e = time.time() print("Join: " + str((e-s))) # force gc import gc df_a = None gc.collect() time.sleep(15) s = time.time() # sampling sample_size = 1000 l, r = dpu.apply_consistent_sample(df1, df2, a1, a2, sample_size) df_b = dpu.join_ab_on_key(l, r, a1, a2, normalize=False, suffix_str='_x') e = time.time() print("s-Join: " + str((e - s))) return if __name__ == "__main__": print("DoD evaluation") # eval_sampling_join() # exit() # Eval parameters eval_folder = "dod_evaluation/vassembly/" query_view_definitions_many = [ ("qv2", ["Building Name Long", "Ext Gross Area", "Building Room", "Room Square Footage"], ["", "", "", ""]), ("qv4", ["Email Address", "Department Full Name"], ["[email protected]", ""]), ("qv5", ["Last Name", "Building Name", "Bldg Gross Square Footage", "Department Name"], ["", "", "", ""]) ] query_view_definitions_few = [ ("qv1", ["Iap Category Name", "Person Name", "Person Email"], ["Engineering", "", ""]), ("qv3", ["Last Name", "Building Name", "Bldg Gross Square Footage", "Department Name"], ["Madden", "Ray and Maria Stata Center", "", "Dept of Electrical Engineering & Computer Science"]), ] query_view_definitions_chembl = [ ("qv1", ['assay_test_type', 'assay_category', 'journal', 'year', 'volume'], ['', '', '', '', '']), ("qv2", ['accession', 'sequence', 'organism', 'start_position', 'end_position'], ['O09028', '', 'Rattus norvegicus', '', '']), ("qv3", ['ref_type', 'ref_url', 'enzyme_name', 'organism'], ['', '', '', '']), ("qv4", ['hba', 'hbd', 'parenteral', 'topical'], ['', '', '', '']), ("qv5", ['accession', 'sequence', 'organism', 'start_position', 'end_position'], ['', '', '', '', '']) ] # Configure DoD # path_to_serialized_model = "/Users/ra-mit/development/discovery_proto/models/mitdwh/" path_to_serialized_model = "/Users/ra-mit/development/discovery_proto/models/chembl_and_drugcentral/" # sep = "," sep = ";" store_client = StoreHandler() network = fieldnetwork.deserialize_network(path_to_serialized_model) dod = DoD(network=network, store_client=store_client, csv_separator=sep) # 0- Assemble views for query views. To have raw number of views # assemble_views() # # exit() # 1- measure dod performance # qv_name, qv_attr, qv_values = query_view_definitions_many[2] # print(qv_name) # print(qv_attr) # print(qv_values) # measure_dod_performance(qv_name, qv_attr, qv_values) # 1.5- then have a way for calling 4c on each folder -- on all folders. To compare savings (create strategy here) path = "dod_evaluation/vassembly/chembl/qv5/" groups_per_column_cardinality, schema_id_info = run_4c(path) import pickle with open("./tmp-4c-serial", 'wb') as f: pickle.dump(groups_per_column_cardinality, f) pickle.dump(schema_id_info, f) # with open("./tmp-4c-serial", 'rb') as f: # groups_per_column_cardinality = pickle.load(f) # schema_id_info = pickle.load(f) # print("!!!") # for k, v in groups_per_column_cardinality.items(): # print(k) # compatible_groups = v['compatible'] # contained_groups = v['contained'] # complementary_group = v['complementary'] # contradictory_group = v['contradictory'] # print("Compatible: " + str(len(compatible_groups))) # print("Contained: " + str(len(contained_groups))) # print("Complementary: " + str(len(complementary_group))) # print("Contradictory: " + str(len(contradictory_group))) # print("!!!") # output_4c_results(groups_per_column_cardinality) # print("") # print("") # print("PRUNING...") # print("") # print("") pruned_groups_per_column_cardinality, human_selection = brancher(groups_per_column_cardinality) # # print("!!!") # for k, v in pruned_groups_per_column_cardinality.items(): # print(k) # compatible_groups = v['compatible'] # contained_groups = v['contained'] # complementary_group = v['complementary'] # contradictory_group = v['contradictory'] # print("Compatible: " + str(len(compatible_groups))) # print("Contained: " + str(len(contained_groups))) # print("Complementary: " + str(len(complementary_group))) # print("Contradictory: " + str(len(contradictory_group))) # print("!!!") # i_per_group = summarize_4c_output(pruned_groups_per_column_cardinality, schema_id_info) # # # # print("Pruned!!!") # # pp.pprint(pruned_groups_per_column_cardinality) print("Total interactions: " + str(sorted(i_per_group, key=lambda x: x[0], reverse=True))) print("+ human selections: " + str(human_selection)) exit() # 2- 4c efficienty # 2.1- with many views to show advantage with respect to other less sophisticated baselines # 2.2- with few views to show that the overhead it adds is negligible # path1 = "dod_evaluation/vassembly/many/qv4/" # path2 = "dod_evaluation/vassembly/many/qv2-50/" # path3 = "dod_evaluation/vassembly/many/qv5/" # path4 = "dod_evaluation/vassembly/few/qv1/" # path5 = "dod_evaluation/vassembly/few/qv3/" # # compare_4c_baselines(many_views=[('9', path1), ('177', path2), ('99', path3)], # # few_views=[('2', path4), ('2', path5)]) path = "dod_evaluation/vassembly/many/qv5/" compare_4c_baselines(many_views=[('12', path)], few_views=[]) # 3- Measure average time per join attempt. Add total times as well
mit
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/tests/io/json/test_json_table_schema.py
9
18572
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result = build_table_schema(self.df, version=False) expected = { 'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['idx'] } assert result == expected result = build_table_schema(self.df) assert "pandas_version" in result def test_series(self): s = pd.Series([1, 2, 3], name='foo') result = build_table_schema(s, version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'foo', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected result = build_table_schema(s) assert 'pandas_version' in result def tets_series_unnamed(self): result = build_table_schema(pd.Series([1, 2, 3]), version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected def test_multiindex(self): df = self.df.copy() idx = pd.MultiIndex.from_product([('a', 'b'), (1, 2)]) df.index = idx result = build_table_schema(df, version=False) expected = { 'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['level_0', 'level_1'] } assert result == expected df.index.names = ['idx0', None] expected['fields'][0]['name'] = 'idx0' expected['primaryKey'] = ['idx0', 'level_1'] result = build_table_schema(df, version=False) assert result == expected class TestTableSchemaType(object): def test_as_json_table_type_int_data(self): int_data = [1, 2, 3] int_types = [np.int, np.int16, np.int32, np.int64] for t in int_types: assert as_json_table_type(np.array( int_data, dtype=t)) == 'integer' def test_as_json_table_type_float_data(self): float_data = [1., 2., 3.] float_types = [np.float, np.float16, np.float32, np.float64] for t in float_types: assert as_json_table_type(np.array( float_data, dtype=t)) == 'number' def test_as_json_table_type_bool_data(self): bool_data = [True, False] bool_types = [bool, np.bool] for t in bool_types: assert as_json_table_type(np.array( bool_data, dtype=t)) == 'boolean' def test_as_json_table_type_date_data(self): date_data = [pd.to_datetime(['2016']), pd.to_datetime(['2016'], utc=True), pd.Series(pd.to_datetime(['2016'])), pd.Series(pd.to_datetime(['2016'], utc=True)), pd.period_range('2016', freq='A', periods=3)] for arr in date_data: assert as_json_table_type(arr) == 'datetime' def test_as_json_table_type_string_data(self): strings = [pd.Series(['a', 'b']), pd.Index(['a', 'b'])] for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_data(self): assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' assert as_json_table_type(pd.Series(pd.Categorical([1]))) == 'any' assert as_json_table_type(pd.CategoricalIndex([1])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' # ------ # dtypes # ------ def test_as_json_table_type_int_dtypes(self): integers = [np.int, np.int16, np.int32, np.int64] for t in integers: assert as_json_table_type(t) == 'integer' def test_as_json_table_type_float_dtypes(self): floats = [np.float, np.float16, np.float32, np.float64] for t in floats: assert as_json_table_type(t) == 'number' def test_as_json_table_type_bool_dtypes(self): bools = [bool, np.bool] for t in bools: assert as_json_table_type(t) == 'boolean' def test_as_json_table_type_date_dtypes(self): # TODO: datedate.date? datetime.time? dates = [np.datetime64, np.dtype("<M8[ns]"), PeriodDtype(), DatetimeTZDtype('ns', 'US/Central')] for t in dates: assert as_json_table_type(t) == 'datetime' def test_as_json_table_type_timedelta_dtypes(self): durations = [np.timedelta64, np.dtype("<m8[ns]")] for t in durations: assert as_json_table_type(t) == 'duration' def test_as_json_table_type_string_dtypes(self): strings = [object] # TODO for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_dtypes(self): assert as_json_table_type(pd.Categorical) == 'any' assert as_json_table_type(CategoricalDtype()) == 'any' class TestTableOrient(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), 'E': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'])), 'F': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'], ordered=True)), 'G': [1., 2., 3, 4.], 'H': pd.date_range('2016-01-01', freq='d', periods=4, tz='US/Central'), }, index=pd.Index(range(4), name='idx')) def test_build_series(self): s = pd.Series([1, 2], name='a') s.index.name = 'id' result = s.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [{'name': 'id', 'type': 'integer'}, {'name': 'a', 'type': 'integer'}] schema = { 'fields': fields, 'primaryKey': ['id'], } expected = OrderedDict([ ('schema', schema), ('data', [OrderedDict([('id', 0), ('a', 1)]), OrderedDict([('id', 1), ('a', 2)])])]) assert result == expected def test_to_json(self): df = self.df.copy() df.index.name = 'idx' result = df.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [ {'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'E', 'ordered': False, 'type': 'any'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'F', 'ordered': True, 'type': 'any'}, {'name': 'G', 'type': 'number'}, {'name': 'H', 'type': 'datetime', 'tz': 'US/Central'} ] schema = { 'fields': fields, 'primaryKey': ['idx'], } data = [ OrderedDict([('idx', 0), ('A', 1), ('B', 'a'), ('C', '2016-01-01T00:00:00.000Z'), ('D', 'P0DT1H0M0S'), ('E', 'a'), ('F', 'a'), ('G', 1.), ('H', '2016-01-01T06:00:00.000Z') ]), OrderedDict([('idx', 1), ('A', 2), ('B', 'b'), ('C', '2016-01-02T00:00:00.000Z'), ('D', 'P0DT1H1M0S'), ('E', 'b'), ('F', 'b'), ('G', 2.), ('H', '2016-01-02T06:00:00.000Z') ]), OrderedDict([('idx', 2), ('A', 3), ('B', 'c'), ('C', '2016-01-03T00:00:00.000Z'), ('D', 'P0DT1H2M0S'), ('E', 'c'), ('F', 'c'), ('G', 3.), ('H', '2016-01-03T06:00:00.000Z') ]), OrderedDict([('idx', 3), ('A', 4), ('B', 'c'), ('C', '2016-01-04T00:00:00.000Z'), ('D', 'P0DT1H3M0S'), ('E', 'c'), ('F', 'c'), ('G', 4.), ('H', '2016-01-04T06:00:00.000Z') ]), ] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_float_index(self): data = pd.Series(1, index=[1., 2.]) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', { 'fields': [{'name': 'index', 'type': 'number'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index'] }), ('data', [OrderedDict([('index', 1.0), ('values', 1)]), OrderedDict([('index', 2.0), ('values', 1)])])]) ) assert result == expected def test_to_json_period_index(self): idx = pd.period_range('2016', freq='Q-JAN', periods=2) data = pd.Series(1, idx) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') fields = [{'freq': 'Q-JAN', 'name': 'index', 'type': 'datetime'}, {'name': 'values', 'type': 'integer'}] schema = {'fields': fields, 'primaryKey': ['index']} data = [OrderedDict([('index', '2015-11-01T00:00:00.000Z'), ('values', 1)]), OrderedDict([('index', '2016-02-01T00:00:00.000Z'), ('values', 1)])] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_categorical_index(self): data = pd.Series(1, pd.CategoricalIndex(['a', 'b'])) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', {'fields': [{'name': 'index', 'type': 'any', 'constraints': {'enum': ['a', 'b']}, 'ordered': False}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']}), ('data', [ OrderedDict([('index', 'a'), ('values', 1)]), OrderedDict([('index', 'b'), ('values', 1)])])]) ) assert result == expected def test_date_format_raises(self): with pytest.raises(ValueError): self.df.to_json(orient='table', date_format='epoch') # others work self.df.to_json(orient='table', date_format='iso') self.df.to_json(orient='table') def test_make_field_int(self): data = [1, 2, 3] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'integer'} assert result == expected def test_make_field_float(self): data = [1., 2., 3.] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result = make_field(kind) expected = {"name": "name", "type": 'number'} assert result == expected def test_make_field_datetime(self): data = [1., 2., 3.] kinds = [pd.Series(pd.to_datetime(data), name='values'), pd.to_datetime(data)] for kind in kinds: result = make_field(kind) expected = {"name": "values", "type": 'datetime'} assert result == expected kinds = [pd.Series(pd.to_datetime(data, utc=True), name='values'), pd.to_datetime(data, utc=True)] for kind in kinds: result = make_field(kind) expected = {"name": "values", "type": 'datetime', "tz": "UTC"} assert result == expected arr = pd.period_range('2016', freq='A-DEC', periods=4) result = make_field(arr) expected = {"name": "values", "type": 'datetime', "freq": "A-DEC"} assert result == expected def test_make_field_categorical(self): data = ['a', 'b', 'c'] ordereds = [True, False] for ordered in ordereds: arr = pd.Series(pd.Categorical(data, ordered=ordered), name='cats') result = make_field(arr) expected = {"name": "cats", "type": "any", "constraints": {"enum": data}, "ordered": ordered} assert result == expected arr = pd.CategoricalIndex(data, ordered=ordered, name='cats') result = make_field(arr) expected = {"name": "cats", "type": "any", "constraints": {"enum": data}, "ordered": ordered} assert result == expected def test_categorical(self): s = pd.Series(pd.Categorical(['a', 'b', 'a'])) s.index.name = 'idx' result = s.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') fields = [{'name': 'idx', 'type': 'integer'}, {'constraints': {'enum': ['a', 'b']}, 'name': 'values', 'ordered': False, 'type': 'any'}] expected = OrderedDict([ ('schema', {'fields': fields, 'primaryKey': ['idx']}), ('data', [OrderedDict([('idx', 0), ('values', 'a')]), OrderedDict([('idx', 1), ('values', 'b')]), OrderedDict([('idx', 2), ('values', 'a')])])]) assert result == expected def test_set_default_names_unset(self): data = pd.Series(1, pd.Index([1])) result = set_default_names(data) assert result.index.name == 'index' def test_set_default_names_set(self): data = pd.Series(1, pd.Index([1], name='myname')) result = set_default_names(data) assert result.index.name == 'myname' def test_set_default_names_mi_unset(self): data = pd.Series( 1, pd.MultiIndex.from_product([('a', 'b'), ('c', 'd')])) result = set_default_names(data) assert result.index.names == ['level_0', 'level_1'] def test_set_default_names_mi_set(self): data = pd.Series( 1, pd.MultiIndex.from_product([('a', 'b'), ('c', 'd')], names=['n1', 'n2'])) result = set_default_names(data) assert result.index.names == ['n1', 'n2'] def test_set_default_names_mi_partion(self): data = pd.Series( 1, pd.MultiIndex.from_product([('a', 'b'), ('c', 'd')], names=['n1', None])) result = set_default_names(data) assert result.index.names == ['n1', 'level_1'] def test_timestamp_in_columns(self): df = pd.DataFrame([[1, 2]], columns=[pd.Timestamp('2016'), pd.Timedelta(10, unit='s')]) result = df.to_json(orient="table") js = json.loads(result) assert js['schema']['fields'][1]['name'] == 1451606400000 assert js['schema']['fields'][2]['name'] == 10000 def test_overlapping_names(self): cases = [ pd.Series([1], index=pd.Index([1], name='a'), name='a'), pd.DataFrame({"A": [1]}, index=pd.Index([1], name="A")), pd.DataFrame({"A": [1]}, index=pd.MultiIndex.from_arrays([ ['a'], [1] ], names=["A", "a"])), ] for data in cases: with pytest.raises(ValueError) as excinfo: data.to_json(orient='table') assert 'Overlapping' in str(excinfo.value) def test_mi_falsey_name(self): # GH 16203 df = pd.DataFrame(np.random.randn(4, 4), index=pd.MultiIndex.from_product([('A', 'B'), ('a', 'b')])) result = [x['name'] for x in build_table_schema(df)['fields']] assert result == ['level_0', 'level_1', 0, 1, 2, 3]
mit