repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
apdjustino/urbansim
urbansim/models/tests/test_supplydemand.py
9
4116
from __future__ import division import pandas as pd import pytest from pandas.util import testing as pdt from .. import supplydemand as supdem @pytest.fixture def choosers(): return pd.DataFrame( {'var1': range(5, 10), 'thing_id': ['a', 'c', 'e', 'g', 'i']}) @pytest.fixture def alternatives(): return pd.DataFrame( {'var2': range(10, 20), 'var3': range(20, 30), 'price_col': [1] * 10, 'zone_id': ['w', 'x', 'y', 'z', 'z', 'x', 'y', 'w', 'y', 'y']}, index=pd.Index([x for x in 'abcdefghij'], name='thing_id')) @pytest.fixture(scope='module') def alt_segmenter(): return 'zone_id' class _TestLCM(object): def apply_predict_filters(self, choosers, alternatives): choosers = choosers.query('var1 != 7') alternatives = alternatives.query('var2 != 14') return choosers, alternatives def summed_probabilities(self, choosers, alternatives): return pd.Series( [1, 0.25, 1, 2, 0.75, 2, 1, 1.5, 0.5], index=['a', 'b', 'c', 'd', 'f', 'g', 'h', 'i', 'j']) @pytest.fixture(scope='module') def lcm(): return _TestLCM() @pytest.fixture def filtered(lcm, choosers, alternatives): return lcm.apply_predict_filters(choosers, alternatives) @pytest.fixture(scope='module') def wxyz(): w = 1 x = 0.5 y = 1.25 z = 2 return w, x, y, z def test_calculate_adjustment_clips(lcm, filtered, alt_segmenter): clip = 1 choosers, alternatives = filtered alts_multiplier, submarkets_multiplier, finished = \ supdem._calculate_adjustment( lcm, choosers, alternatives, alternatives[alt_segmenter], clip, clip) pdt.assert_series_equal( alts_multiplier, pd.Series([1] * 9, index=alternatives.index), check_dtype=False) pdt.assert_series_equal( submarkets_multiplier, pd.Series([1] * 4, index=['w', 'x', 'y', 'z']), check_dtype=False) def test_calculate_adjustment(lcm, filtered, alt_segmenter, wxyz): clip_low = 0 clip_high = 2 choosers, alternatives = filtered alts_multiplier, submarkets_multiplier, finished = \ supdem._calculate_adjustment( lcm, choosers, alternatives, alternatives[alt_segmenter], clip_low, clip_high) w, x, y, z = wxyz pdt.assert_series_equal( alts_multiplier, pd.Series([w, x, y, z, x, y, w, y, y], index=alternatives.index)) pdt.assert_series_equal( submarkets_multiplier, pd.Series([w, x, y, z], index=['w', 'x', 'y', 'z'])) def test_supply_and_demand( lcm, choosers, alternatives, alt_segmenter, filtered, wxyz): clip_low = 0 clip_high = 2 price_col = 'price_col' w, x, y, z = wxyz filtered_choosers, filtered_alts = filtered new_price, submarkets_multiplier = supdem.supply_and_demand( lcm, choosers, alternatives, alt_segmenter, price_col, clip_change_low=clip_low, clip_change_high=clip_high) pdt.assert_series_equal( new_price, pd.Series( [w, x, y, z, x, y, w, y, y], index=filtered_alts.index, name='price_col') ** 5) pdt.assert_series_equal( submarkets_multiplier, pd.Series([w, x, y, z], index=['w', 'x', 'y', 'z']) ** 5) def test_supply_and_demand_base_ratio( lcm, choosers, alternatives, alt_segmenter, filtered, wxyz): clip_low = 0 clip_high = 2 price_col = 'price_col' w, x, y, z = wxyz filtered_choosers, filtered_alts = filtered base_multiplier = pd.Series([w, x, y, z], index=['w', 'x', 'y', 'z']) new_price, submarkets_multiplier = supdem.supply_and_demand( lcm, choosers, alternatives, alt_segmenter, price_col, base_multiplier, clip_low, clip_high) pdt.assert_series_equal( new_price, pd.Series( [w, x, y, z, x, y, w, y, y], index=filtered_alts.index, name='price_col') ** 6) pdt.assert_series_equal( submarkets_multiplier, pd.Series([w, x, y, z], index=['w', 'x', 'y', 'z']) ** 6)
bsd-3-clause
JeanKossaifi/scikit-learn
sklearn/utils/tests/test_validation.py
79
18547
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( NotFittedError, has_fit_parameter, check_is_fitted, check_consistent_length, DataConversionWarning, ) from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=(10, 10), dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M.ravel()) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) @ignore_warnings def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d assert_warns(DeprecationWarning, check_array, [0, 1, 2]) X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [[]]) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = assert_warns(DeprecationWarning, check_array, [42], ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
dropofwill/author-attr-experiments
sklearn_pipeline_SVM.py
1
2809
from __future__ import print_function from pprint import pprint from time import time import logging import numpy as np import os import time as tm from sklearn import datasets from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline ############################################################################### docs = datasets.load_files(container_path="../../sklearn_data/problemC") X, y = docs.data, docs.target print(y.shape) baseline = 1/float(len(list(np.unique(y)))) # define a pipeline combining a text feature extractor with a simple classifier pipeline = Pipeline([ ('vect', CountVectorizer(charset_error='ignore')), ('tfidf', TfidfTransformer(use_idf=True)), ('clf', MultinomialNB()) ]) # features to cross-check parameters = { 'vect__max_df': (0.75, 1.0), 'vect__max_features': (None, 100, 5000, 10000), 'vect__analyzer' : ('char', 'word'), 'vect__ngram_range': ((1, 1), (1, 2), (2,3)), # unigrams or bigrams #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (1.0, 0.5, 0.000001), #'clf__penalty': ('l2', 'elasticnet'), #'clf__n_iter': (10, 50, 100), } # classifier grid_search = GridSearchCV(pipeline, parameters, verbose=1) print("Performing grid search...") print("parameters:") pprint(parameters) t0 = time() grid_search.fit(X, y) print("done in %0.3fs" % (time() - t0)) print() improvement = (grid_search.best_score_ - baseline) / baseline print("Best score: %0.3f" % grid_search.best_score_) print("Baseline score: %0.3f" % baseline) print("Improved: %0.3f over baseline" % improvement) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name])) sub_dir = "Results/" location = "results" + tm.strftime("%Y%m%d-%H%M%S") + ".txt" with open( os.path.join(sub_dir, location), 'w+') as myFile: myFile.write("Best score: %0.3f \n" % grid_search.best_score_) myFile.write("Baseline score: %0.3f \n" % baseline) myFile.write("Best parameters set: \n") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): myFile.write("\t%s: %r \n" % (param_name, best_parameters[param_name])) myFile.write("All parameters tried: \n") all_parameters = grid_search.grid_scores_ for params, mean_score, scores in sorted(grid_search.grid_scores_): myFile.write("\t \t %0.3f (+/-%0.03f) for %r \n" % (mean_score, scores.std() / 2, params))
unlicense
janusnic/21v-python
unit_20/parallel_ml/00 - Tutorial Setup .py
1
2669
# coding: utf-8 # ## Tutorial Setup # ### Check your install # In[55]: import numpy # In[56]: import scipy # In[57]: import matplotlib # In[58]: import sklearn # In[59]: import psutil # In[60]: import pandas # In[61]: import IPython.parallel # Finding the location of an installed package and its version: # In[62]: numpy.__path__ # In[63]: numpy.__version__ # ### Check that you have the datasets # In[64]: get_ipython().magic(u'run ../fetch_data.py') # In[1]: import os for fname in os.listdir('../datasets/'): print(fname) # ## A NumPy primer # ### NumPy array dtypes and shapes # In[2]: import numpy as np # In[3]: a = np.array([1, 2, 3]) # In[4]: a # In[5]: b = np.array([[0, 2, 4], [1, 3, 5]]) # In[6]: b # In[7]: b.shape # In[8]: b.dtype # In[9]: a.shape # In[10]: a.dtype # In[11]: np.zeros(5) # In[12]: np.ones(shape=(3, 4), dtype=np.int32) # ### Common array operations # In[13]: c = b * 0.5 # In[14]: c # In[15]: c.shape # In[16]: c.dtype # In[17]: a # In[18]: d = a + c # In[19]: d # In[20]: d[0] # In[21]: d[0, 0] # In[22]: d[:, 0] # In[23]: d.sum() # In[24]: d.mean() # In[25]: d.sum(axis=0) # In[26]: d.mean(axis=1) # ### Reshaping and inplace update # In[27]: e = np.arange(12) # In[28]: e # In[29]: f = e.reshape(3, 4) # In[30]: f # In[31]: e # In[32]: e[5:] = 0 # In[33]: e # In[34]: f # ### Combining arrays # In[35]: a # In[36]: b # In[37]: d # In[38]: np.concatenate([a, a, a]) # In[39]: np.vstack([a, b, d]) # In[40]: np.hstack([b, d]) # ## A Matplotlib primer # In[41]: get_ipython().magic(u'matplotlib inline') # In[42]: import matplotlib.pyplot as plt # In[43]: x = np.linspace(0, 2, 10) # In[44]: x # In[45]: plt.plot(x, 'o-'); # In[46]: plt.plot(x, x, 'o-', label='linear') plt.plot(x, x ** 2, 'x-', label='quadratic') plt.legend(loc='best') plt.title('Linear vs Quadratic progression') plt.xlabel('Input') plt.ylabel('Output'); # In[47]: samples = np.random.normal(loc=1.0, scale=0.5, size=1000) # In[48]: samples.shape # In[49]: samples.dtype # In[50]: samples[:30] # In[51]: plt.hist(samples, bins=50); # In[52]: samples_1 = np.random.normal(loc=1, scale=.5, size=10000) samples_2 = np.random.standard_t(df=10, size=10000) # In[53]: bins = np.linspace(-3, 3, 50) _ = plt.hist(samples_1, bins=bins, alpha=0.5, label='samples 1') _ = plt.hist(samples_2, bins=bins, alpha=0.5, label='samples 2') plt.legend(loc='upper left'); # In[54]: plt.scatter(samples_1, samples_2, alpha=0.1); # In[ ]: # In[ ]: # In[ ]: # In[ ]:
mit
jrbourbeau/cr-composition
processing/legacy/anisotropy/random_trials/save_pvals.py
2
2479
#!/usr/bin/env python import os import argparse import numpy as np import healpy as hp from scipy.stats import ks_2samp import pandas as pd import comptools as comp import comptools.anisotropy.anisotropy as anisotropy if __name__ == "__main__": p = argparse.ArgumentParser( description='Extracts and saves desired information from simulation/data .i3 files') p.add_argument('--infiles_sample_0', dest='infiles_sample_0', nargs='*', help='Input reference map files') p.add_argument('--infiles_sample_1', dest='infiles_sample_1', nargs='*', help='Input reference map files') p.add_argument('--outfile', dest='outfile', help='Output DataFrame file') p.add_argument('--overwrite', dest='overwrite', default=False, action='store_true', help='Option to overwrite reference map file, ' 'if it alreadu exists') args = p.parse_args() if args.infiles_sample_0 is None or args.infiles_sample_1 is None: raise ValueError('Input files must be specified') elif len(args.infiles_sample_0) != len(args.infiles_sample_1): raise ValueError('Both samples of input files must be the same length') if args.outfile is None: raise ValueError('Outfile must be specified') else: comp.check_output_dir(args.outfile) data_dict = {'ks_statistic': [], 'pval': []} # Read in all the input maps kwargs_relint = {'smooth': 20, 'scale': None, 'decmax': -55} for file_0, file_1 in zip(args.infiles_sample_0, args.infiles_sample_1): relint_0 = anisotropy.get_map(files=file_0, name='relint', **kwargs_relint) relint_1 = anisotropy.get_map(files=file_1, name='relint', **kwargs_relint) ri_0, ra, ra_err = anisotropy.get_proj_relint(relint_0, n_bins=100) ri_1, ra, ra_err = anisotropy.get_proj_relint(relint_1, n_bins=100) print('Comparing:') print('ri_0 = {}'.format(ri_0)) print('ri_1 = {}\n'.format(ri_1)) ks_statistic, pval = ks_2samp(ri_0, ri_1) print('ks_statistic = {}'.format(ks_statistic)) print('pval = {}\n\n'.format(pval)) data_dict['ks_statistic'].append(ks_statistic) data_dict['pval'].append(pval) with pd.HDFStore(args.outfile) as output_store: dataframe = pd.DataFrame(data_dict) output_store.put('dataframe', dataframe, format='table', data_columns=True)
mit
ZallenLab/denticleorganization
statistical_modeling_PYTHON/StatisticalModel_DenticleOrganization_only.py
1
16515
# Statistical model for denticle organization # # For more details, see [Spencer, Schaumberg and Zallen, Molecular Biology of the Cell, 2017](https://www.ncbi.nlm.nih.gov/pubmed/28404752). If this code has been helpful to you, please cite our paper. # # Basic methodology: # The equation L = α*D + D(N-1) + α*D describes the general case for determining the distance between denticles (D) given the known cell length (L) and the number of denticles (N) in the cell, where α is the spacing ratio (the ratio of the average denticle-to-cell-edge distance to the average denticle-to-denticle distance). # # The ideal position of each denticle n_i can be described by the equation position_i = (α + n_i - 1) / (2α + N - 1) where α is the spacing ratio and N is the total number of denticles in the cell. # # This program generates simulated denticle positions for a dataset comprising (L,N,D) according to a series of truncated normal distributions with μ = the ideal position (calculated from the above equation) and σ = D/{a specified set of divisors}. Denticle spacing distances are calculated from the positional data. Simulated spacing distances are then compared to the in vivo spacing data. from __future__ import division from sys import argv import numpy as np import pandas as pd import scipy.stats as sps # import datetime as dt import time import string import csv # Functions def IdealPositionMu(celllength, dentnumber, alpha): # calculates the ideal position(s) of denticle(s) in a cell with length = celllength distances = [] for dent in range(1,dentnumber+1): distances.append(((alpha + dent - 1) / (2*alpha + dentnumber - 1)) * celllength) return distances def AddByLine(datatoadd, addto_list, frame, idx): datatoadd = np.array(datatoadd) datatoadd.T for line in datatoadd: addto_list.append(tuple(line)) tempseries = pd.Series(addto_list,index=idx) return frame.append(tempseries,ignore_index=True) def SigmasCalculator(celllength, dentnumber, alphas, stdevnumbers): alphas = np.array(alphas) # stdevnumbers = np.array([[5], [6], [7], [8]]) sigma_lengths = np.zeros((len(stdevnumbers),len(alphas))) sigma_lengths = (celllength / (2*alphas + dentnumber -1)) / stdevnumbers # sigmasFrame = pd.DataFrame(sigma_lengths) return sigma_lengths #, sigmasFrame def GenerateDistributions(mus, sigmas, celllength): # generates values from a truncated normal distribution (adjusted to account for cell length - denticles cannot be placed outside of the cell boundaries, ie less than 0 or more than celllength) # mus is a tuple or list, sigmas is a series or dict, celllength and dentnumber are values positions = np.zeros((len(mus), len(sigmas))) for s, sigma in enumerate(sigmas): for m, mu in enumerate(mus): lower, upper = 0, celllength positions[m,s] = sps. ((lower-mu)/sigma, (upper-mu)/sigma, loc=mu, scale=sigma) positions = np.sort(positions,axis=0) # sort by rows to order denticle positions from smallest to largest distances = positions[1:,:] - positions[0:-1,:] return positions.T, distances.T # each row is an entire cell with all the denticles # each row of the returned arrays hold positions for a different value of mu, columns correspond to different sigmas # arr.T : arr : # [m1] [m2] [m3] [m4] # [5] [6] [7] [8] # [5] a a a a # [m1] a a a a # [6] b b b b # [m2] b b b b # [7] c c c c # [m3] c c c c # [8] d d d d # [m4] d d d d def SliceSaver(array,names): # takes a 3d array, slices by z axis, saves each slice as a csv for dex, arr in enumerate(array): np.savetxt(genotype +'_'+ names[dex] + '.csv', arr, delimiter=',') def NameMaker(idx1, addon): names = [] for i, elem in enumerate(idx1): names.append(str(elem) + '_' + addon + time.strftime("%Y%m%d_%H%M%S")) # for windows # names.append(str(elem) + '_' + addon) return names def IndivStatTest(array, names, filename_out): # IN: 3D np array, list of strings with length=arr[X,:,:] (array axis 0), name of csv file for dex, section in enumerate(array): for itnumber, iterationdata in enumerate(section.T): simdata = iterationdata[np.nonzero(iterationdata)] test_ks = sps.ks_2samp(invivo_d, simdata) test_mwu = sps.mannwhitneyu(invivo_d[np.nonzero(invivo_d)], simdata) with open(filename_out, 'a') as f: csv.writer(f).writerows([[itnumber, names[dex], test_ks[0], test_ks[1], TestPasses(test_ks[1], 0.05), test_mwu[0], test_mwu[1], TestPasses(test_mwu[1], 0.05)]]) def TestPasses(pval, cutoff): if pval <= cutoff: return 'different' elif pval > cutoff: return 'same' def ComboStatTest(array,names,filename_out): # IN: 3D np array, list of strings with length=arr[X,:,:] (array axis 0), name of csv file for dex, section in enumerate(array): simdata = section[np.nonzero(section)].flatten() test_ks = sps.ks_2samp(invivo_d, simdata) test_mwu = sps.mannwhitneyu(invivo_d, simdata) with open(filename_out, 'a') as f: csv.writer(f).writerows([['-', names[dex], test_ks[0], test_ks[1], TestPasses(test_ks[1], 0.05), test_mwu[0], test_mwu[1], TestPasses(test_mwu[1], 0.05)]]) starttime = time.clock() # returns time in seconds # for cmd line call script, input_file, cells_to_simulate = argv data = pd.read_csv(input_file) # # for jupyter notebook # input_file, cells_to_simulate = 'yw_CellbyCell.csv', 1 # data = pd.read_csv(input_file) # get genotype from filename genotype = input_file.split('_')[0] # split the string at the underscore, returns a list of the parts (no underscores), take the first/before part # clear out missing data data = data.replace(0,np.nan) # turn zeros into NaNs data = data.dropna(how='all') # drop any column (axis=0) or row (axis=1) where ALL values are NaN data = data.replace(np.nan,0) # turn NaNs back into zeros, so arithmetic can be normal for 'true-zero' values data = data[data.dentincell != 1] # drop columns where the cell has only 1 denticle # save the invivo denticle separation distances to a 1xN matrix invivo_d = data.as_matrix(columns=data.columns[10:]).flatten() invivo_d = invivo_d[np.nonzero(invivo_d)] # # using the 'absolute' DV length (dist between edge markers): # invivo_ln = pd.DataFrame(data,columns=['dentincell','Dvlen']) # invivo_ln.columns = ['dentincell','dvlength'] # using the summed DVlength (sum of dent-edge, dent-dent ... dent-dent, dent-edge); sum to get the additive, rather than absolute, DV length: invivo_ln = pd.DataFrame(data,columns=['dentincell']) invivo_ln['dvlength'] = data['dentEdgeL'] + data['dentEdgeR'] + (data[data.columns[10:]]).sum(axis=1,skipna=True,numeric_only=True) # invivo_ln['dentincell'] = invivo_ln['dentincell'].astype(int) invivo_ln = invivo_ln.T # data = None # clear data from memory # Constants and basic indicies maxDent = int(max(invivo_ln.ix['dentincell'])) alphas = (5/10, 6/10, 2/3, 7/10, 3/4, 8/10, 9/10, 1) idx_alphas = ['halfD','sixtenthsD','twothirdsD','sevententhsD','threequartersD','eighttenthsD','ninetenthsD','oneD'] basicinfo = ['dvlength','dentincell'] idx_positions = basicinfo + idx_alphas # define arrays for iteration data grouped by sigma value # alphas iterations cells in dataset * max denticles # sd_five = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_six = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_seven = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_eight = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # numberofstdevs = np.array([[5], [6], [7], [8]) # idx_sigmas = ['five','six','seven','eight'] # # define arrays for iteration data grouped by sigma value # # alphas iterations cells in dataset * max denticles # sd_five = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_six = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_seven = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_eight = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # # sdarrs = [sd_five, sd_six, sd_seven, sd_eight] numberofstdevs = np.array([[5], [6], [7], [8], [9]]) idx_sigmas = ['five','six','seven','eight','nine'] # sd_five = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_six = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_seven = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_eight = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sd_nine = np.zeros((len(idx_alphas), len(invivo_ln.T)*(int(maxDent)-1), int(cells_to_simulate))) # sdarrs = [sd_five, sd_six, sd_seven, sd_eight, sd_nine] # MAIN # initial calculations of the ideal positions and sigmas positionframe = pd.DataFrame() sigmaframe = pd.DataFrame() for dex, row in enumerate(invivo_ln): celllength = invivo_ln[row]['dvlength'] dentnumber = invivo_ln[row]['dentincell'].astype(int) # calculate mu (ideal positions); generates a len(invivo_ln) x 10 DataFrame positionlist = [] for alpha in alphas: positionlist.append(IdealPositionMu(celllength,dentnumber,alpha)) positionframe = AddByLine(positionlist, [celllength, dentnumber], positionframe, idx_positions) # calculate sigmas; generates a multi-indexed len(invivo_ln)*len(sigmas) x 8 DataFrame sigmaframe = pd.concat([sigmaframe, pd.DataFrame(SigmasCalculator(celllength,dentnumber,alphas,numberofstdevs), index=[[dex]*len(idx_sigmas),idx_sigmas],columns=idx_alphas)]) positionframe = positionframe[idx_positions] sigmaframe.index.names = ['cell','numbSDs'] sigmaframe.columns.names = ['alpha'] positionframe.index.names = ['cell'] # positionframe.to_csv('ideal_positions_' + dt.datetime.isoformat(dt.datetime.now()) + '_' + str(time.clock() - starttime) + '.csv') # sigmaframe.to_csv('sigmavalues_' + dt.datetime.isoformat(dt.datetime.now()) + '_' + str(time.clock() - starttime) + '.csv') positionframe.to_csv('ideal_positions.csv') sigmaframe.to_csv('sigmavalues.csv') # print('initial calcs',time.clock() - starttime) initcalctime = time.clock() - starttime # generate random positions for iteration in range(0, int(cells_to_simulate)): ittime = time.clock() # number of cells each (alpha,sigma) pair + L + N denticles possible randompositions = np.zeros((len(invivo_ln.T), (len(idx_sigmas) * len(idx_alphas) + 2), maxDent)) randomdistances = np.zeros((len(invivo_ln.T), (len(idx_sigmas) * len(idx_alphas) + 2), maxDent)) for cellnumber, __ in enumerate(positionframe.T): celllength, dentnumber = positionframe.iloc[cellnumber]['dvlength'], int(positionframe.iloc[cellnumber]['dentincell']) randomdistances[cellnumber, 0, :] = positionframe.iloc[cellnumber]['dvlength'] randomdistances[cellnumber, 1, :] = positionframe.iloc[cellnumber]['dentincell'] randompositions[cellnumber, 0, :] = positionframe.iloc[cellnumber]['dvlength'] randompositions[cellnumber, 1, :] = positionframe.iloc[cellnumber]['dentincell'] for alphano, elem in enumerate(idx_alphas): positionset = positionframe.iloc[cellnumber][elem] sigmaset = sigmaframe.ix[positionframe.iloc[cellnumber].name][elem] positions, distances = GenerateDistributions(positionframe.iloc[cellnumber][elem], sigmaframe.ix[positionframe.iloc[cellnumber].name][elem], celllength) randompositions[cellnumber, (len(idx_sigmas)*alphano)+len(basicinfo) : (len(idx_sigmas)*alphano + len(idx_sigmas))+len(basicinfo), 0:dentnumber] = positions randomdistances[cellnumber, (len(idx_sigmas)*alphano)+len(basicinfo) : (len(idx_sigmas)*alphano + len(idx_sigmas))+len(basicinfo), 0:dentnumber-1] = distances # sd_five[alphano, (dentnumber-1)*cellnumber : (dentnumber-1)*cellnumber+(dentnumber-1), iteration] = distances[0,:] # sd_six[alphano, (dentnumber-1)*cellnumber : (dentnumber-1)*cellnumber+(dentnumber-1), iteration] = distances[1,:] # sd_seven[alphano, (dentnumber-1)*cellnumber : (dentnumber-1)*cellnumber+(dentnumber-1), iteration] = distances[2,:] # sd_eight[alphano, (dentnumber-1)*cellnumber : (dentnumber-1)*cellnumber+(dentnumber-1), iteration] = distances[3,:] # print('iteration time',time.clock() - ittime) # items: axis 0, each item corresponds to a DataFrame contained inside; major_axis: axis 1, it is the index (rows) of each of the DataFrames; minor_axis: axis 2, it is the columns of each of the DataFrames randompositionpanel = pd.Panel(randompositions, major_axis=[list(np.repeat('basicinfo',2)) + list(np.repeat(idx_alphas, len(idx_sigmas))), ['celllength','dentnumber'] + list(idx_sigmas * len(idx_alphas))], minor_axis=list(string.ascii_lowercase[:maxDent])) randomdistancepanel = pd.Panel(randomdistances, major_axis=[list(np.repeat('basicinfo',2)) + list(np.repeat(idx_alphas, len(idx_sigmas))), ['celllength','dentnumber'] + list(idx_sigmas * len(idx_alphas))], minor_axis=list(string.ascii_lowercase[:maxDent])) randompositionframe = randompositionpanel.to_frame() randomdistanceframe = randomdistancepanel.to_frame() elapsedtime = time.clock() - ittime randompositionframe.to_csv(genotype + '_iteration' + str(iteration) + '_random_positions_' + time.strftime("%Y%m%d_%H%M%S") + '_iterationtime=' + str(elapsedtime) + '.csv') randomdistanceframe.to_csv(genotype + '_iteration' + str(iteration) + '_random_distances_' + time.strftime("%Y%m%d_%H%M%S") + '_iterationtime=' + str(elapsedtime) + '.csv') # for dex, varname in enumerate(sdarrs): # SliceSaver(varname,NameMaker(idx_alphas,idx_sigmas[dex])) # IndivStatTest(varname, NameMaker(idx_alphas, idx_sigmas[dex]), genotype + '_statistics_' + str(dex) + idx_sigmas[dex] + time.strftime("%Y%m%d_%H%M%S") + '.csv') # ComboStatTest(varname, NameMaker(idx_alphas, idx_sigmas[dex]), genotype + '_statistics_' + str(dex) + idx_sigmas[dex] + time.strftime("%Y%m%d_%H%M%S") + '.csv') # # for windows # IndivStatTest(varname, NameMaker(idx_alphas, idx_sigmas[dex]), genotype + '_statistics_' + str(dex) + idx_sigmas[dex] + '.csv') # ComboStatTest(varname, NameMaker(idx_alphas, idx_sigmas[dex]), genotype + '_statistics_' + str(dex) + idx_sigmas[dex] + '.csv') endtime = time.clock() # # save data from each alpha,sigma combo as a separate file # SliceSaver(sd_five,NameMaker(idx_alphas,'five')) # SliceSaver(sd_six,NameMaker(idx_alphas,'six')) # SliceSaver(sd_seven,NameMaker(idx_alphas,'seven')) # SliceSaver(sd_eight,NameMaker(idx_alphas,'eight')) # IndivStatTest(sd_five, NameMaker(idx_alphas, 'five'), genotype + '_statistics_five.csv') # ComboStatTest(sd_five, NameMaker(idx_alphas, 'five'), genotype + '_statistics_five.csv') # IndivStatTest(sd_six, NameMaker(idx_alphas, 'six'), genotype + '_statistics_six.csv') # ComboStatTest(sd_six, NameMaker(idx_alphas, 'six'), genotype + '_statistics_six.csv') # IndivStatTest(sd_seven, NameMaker(idx_alphas, 'seven'), genotype + '_statistics_seven.csv') # ComboStatTest(sd_seven, NameMaker(idx_alphas, 'seven'), genotype + '_statistics_seven.csv') # IndivStatTest(sd_eight, NameMaker(idx_alphas, 'eight'), genotype + '_statistics_eight.csv') # ComboStatTest(sd_eight, NameMaker(idx_alphas, 'eight'), genotype + '_statistics_eight.csv') # print('iteration time',elapsedtime) # print('total time',endtime-starttime)
gpl-3.0
rrohan/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
258
2861
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"dada": 42, "tzara": 37}, {"gaga": 17}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/matplotlib/testing/jpl_units/Duration.py
8
6762
#=========================================================================== # # Duration # #=========================================================================== """Duration module.""" #=========================================================================== # Place all imports after here. # from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six # # Place all imports before here. #=========================================================================== #=========================================================================== class Duration(object): """Class Duration in development. """ allowed = [ "ET", "UTC" ] #----------------------------------------------------------------------- def __init__( self, frame, seconds ): """Create a new Duration object. = ERROR CONDITIONS - If the input frame is not in the allowed list, an error is thrown. = INPUT VARIABLES - frame The frame of the duration. Must be 'ET' or 'UTC' - seconds The number of seconds in the Duration. """ if frame not in self.allowed: msg = "Input frame '%s' is not one of the supported frames of %s" \ % ( frame, str( self.allowed ) ) raise ValueError( msg ) self._frame = frame self._seconds = seconds #----------------------------------------------------------------------- def frame( self ): """Return the frame the duration is in.""" return self._frame #----------------------------------------------------------------------- def __abs__( self ): """Return the absolute value of the duration.""" return Duration( self._frame, abs( self._seconds ) ) #----------------------------------------------------------------------- def __neg__( self ): """Return the negative value of this Duration.""" return Duration( self._frame, -self._seconds ) #----------------------------------------------------------------------- def seconds( self ): """Return the number of seconds in the Duration.""" return self._seconds #----------------------------------------------------------------------- def __nonzero__( self ): """Compare two Durations. = INPUT VARIABLES - rhs The Duration to compare against. = RETURN VALUE - Returns -1 if self < rhs, 0 if self == rhs, +1 if self > rhs. """ return self._seconds != 0 if six.PY3: __bool__ = __nonzero__ #----------------------------------------------------------------------- def __cmp__( self, rhs ): """Compare two Durations. = ERROR CONDITIONS - If the input rhs is not in the same frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to compare against. = RETURN VALUE - Returns -1 if self < rhs, 0 if self == rhs, +1 if self > rhs. """ self.checkSameFrame( rhs, "compare" ) return cmp( self._seconds, rhs._seconds ) #----------------------------------------------------------------------- def __add__( self, rhs ): """Add two Durations. = ERROR CONDITIONS - If the input rhs is not in the same frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to add. = RETURN VALUE - Returns the sum of ourselves and the input Duration. """ # Delay-load due to circular dependencies. import matplotlib.testing.jpl_units as U if isinstance( rhs, U.Epoch ): return rhs + self self.checkSameFrame( rhs, "add" ) return Duration( self._frame, self._seconds + rhs._seconds ) #----------------------------------------------------------------------- def __sub__( self, rhs ): """Subtract two Durations. = ERROR CONDITIONS - If the input rhs is not in the same frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to subtract. = RETURN VALUE - Returns the difference of ourselves and the input Duration. """ self.checkSameFrame( rhs, "sub" ) return Duration( self._frame, self._seconds - rhs._seconds ) #----------------------------------------------------------------------- def __mul__( self, rhs ): """Scale a UnitDbl by a value. = INPUT VARIABLES - rhs The scalar to multiply by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, self._seconds * float( rhs ) ) #----------------------------------------------------------------------- def __rmul__( self, lhs ): """Scale a Duration by a value. = INPUT VARIABLES - lhs The scalar to multiply by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, self._seconds * float( lhs ) ) #----------------------------------------------------------------------- def __div__( self, rhs ): """Divide a Duration by a value. = INPUT VARIABLES - rhs The scalar to divide by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, self._seconds / float( rhs ) ) #----------------------------------------------------------------------- def __rdiv__( self, rhs ): """Divide a Duration by a value. = INPUT VARIABLES - rhs The scalar to divide by. = RETURN VALUE - Returns the scaled Duration. """ return Duration( self._frame, float( rhs ) / self._seconds ) #----------------------------------------------------------------------- def __str__( self ): """Print the Duration.""" return "%g %s" % ( self._seconds, self._frame ) #----------------------------------------------------------------------- def __repr__( self ): """Print the Duration.""" return "Duration( '%s', %g )" % ( self._frame, self._seconds ) #----------------------------------------------------------------------- def checkSameFrame( self, rhs, func ): """Check to see if frames are the same. = ERROR CONDITIONS - If the frame of the rhs Duration is not the same as our frame, an error is thrown. = INPUT VARIABLES - rhs The Duration to check for the same frame - func The name of the function doing the check. """ if self._frame != rhs._frame: msg = "Cannot %s Duration's with different frames.\n" \ "LHS: %s\n" \ "RHS: %s" % ( func, self._frame, rhs._frame ) raise ValueError( msg ) #===========================================================================
apache-2.0
HolgerPeters/scikit-learn
examples/cluster/plot_dbscan.py
346
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
Starkiller4011/tsat
tsat/sf/astro_sf.py
1
1552
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ ##################################### # ╔╗ ┬ ┬ ┬┌─┐ ╔╦╗┌─┐┌┬┐ # # ╠╩╗│ │ │├┤ ║║│ │ │ # # ╚═╝┴─┘└─┘└─┘ ═╩╝└─┘ ┴ # # ╔═╗┌─┐┌─┐┌┬┐┬ ┬┌─┐┬─┐┌─┐ # # ╚═╗│ │├┤ │ │││├─┤├┬┘├┤ # # ╚═╝└─┘└ ┴ └┴┘┴ ┴┴└─└─┘ # ##################################### Author: Derek Blue """ # Imports import warnings try: import matplotlib.pyplot as plt from matplotlib import rcParams as rcp from matplotlib import ticker as tk except ImportError: print "Matplotlib not installed, try installing Annaconda or pip install matplotlib" import sys sys.exit() import sf_classes as sfc import sf_methods as sfm # For now warnings.filterwarnings("ignore") def __main__(): ######################################## root_path = '/home/dblue/Documents/School/Summer2017/PY-SF/astroSF/Data/VEGA/' file_name = 'ngc7469_opt-4845A.lc' headers = True source = 'ngc7469' band = 'OP' freq = 1315 ######################################## file_path = root_path + file_name attribs = [source, band, freq] ######################################## test = sfc.LightCurve('./RAW/TESTING/ark564.lc', False, ['ark564', 'XR', 10]) test.plot() __main__()
mit
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/pyRiemann-0.2.2/pyriemann/tangentspace.py
2
2127
from .utils.mean import mean_covariance from .utils.tangentspace import tangent_space, untangent_space import numpy from sklearn.base import BaseEstimator, TransformerMixin from sklearn.lda import LDA class TangentSpace(BaseEstimator, TransformerMixin): def __init__(self, metric='riemann', tsupdate=False): self.metric = metric self.tsupdate = tsupdate def fit(self, X, y=None): # compute mean covariance self.Cr = mean_covariance(X, metric=self.metric) return self def transform(self, X): if self.tsupdate: Cr = mean_covariance(X, metric=self.metric) else: Cr = self.Cr return tangent_space(X, Cr) def fit_transform(self, X, y=None): # compute mean covariance self.Cr = mean_covariance(X, metric=self.metric) return tangent_space(X, self.Cr) def inverse_transform(self, X, y=None): return untangent_space(X, self.Cr) ######################################################################## class FGDA(BaseEstimator, TransformerMixin): def __init__(self, metric='riemann', tsupdate=False): self.metric = metric self.tsupdate = tsupdate self._ts = TangentSpace(metric=metric, tsupdate=tsupdate) def _fit_lda(self, X, y): self.classes = numpy.unique(y) self._lda = LDA( n_components=len( self.classes) - 1, solver='lsqr', shrinkage='auto') ts = self._ts.fit_transform(X) self._lda.fit(ts, y) W = self._lda.coef_.copy() self._W = numpy.dot( numpy.dot(W.T, numpy.linalg.pinv(numpy.dot(W, W.T))), W) return ts def _retro_project(self, ts): ts = numpy.dot(ts, self._W) return self._ts.inverse_transform(ts) def fit(self, X, y=None): self._fit_lda(X, y) return self def transform(self, X): ts = self._ts.transform(X) return self._retro_project(ts) def fit_transform(self, X, y=None): ts = self._fit_lda(X, y) return self._retro_project(ts)
bsd-3-clause
ua-snap/downscale
old/bin/old/cru_ts31_to_cl20_downscaling.py
2
18759
# # # # Current implementation of the cru ts31 (ts32) delta downscaling procedure # # Author: Michael Lindgren ([email protected]) # # # import numpy as np def write_gtiff( output_arr, template_meta, output_filename, compress=True ): ''' DESCRIPTION: ------------ output a GeoTiff given a numpy ndarray, rasterio-style metadata dictionary, and and output_filename. If a multiband file is to be processed, the Longitude dimension is expected to be the right-most. --> dimensions should be (band, latitude, longitude) ARGUMENTS: ---------- output_arr = [numpy.ndarray] with longitude as the right-most dimension template_meta = [dict] rasterio-style raster meta dictionary. Typically found in a template raster by: rasterio.open( fn ).meta output_filename = [str] path to and name of the output GeoTiff to be created. currently only 'GTiff' is supported. compress = [bool] if True (default) LZW-compression is applied to the output GeoTiff. If False, no compression is applied. * this can also be added (along with many other gdal creation options) to the template meta as a key value pair template_meta.update( compress='lzw' ). See Rasterio documentation for more details. This is just a common one that is supported here. RETURNS: -------- string path to the new output_filename created ''' import os if 'transform' in template_meta.keys(): _ = template_meta.pop( 'transform' ) if not output_filename.endswith( '.tif' ): UserWarning( 'output_filename does not end with ".tif", it has been fixed for you.' ) output_filename = os.path.splitext( output_filename )[0] + '.tif' if output_arr.ndim == 2: # add in a new dimension - can get you into trouble with very large rasters... output_arr = output_arr[ np.newaxis, ... ] elif output_arr.ndim < 2: raise ValueError( 'output_arr must have at least 2 dimensions' ) nbands, nrows, ncols = output_arr.shape if template_meta[ 'count' ] != nbands: raise ValueError( 'template_meta[ "count" ] must match output_arr bands' ) if compress == True and 'compress' not in template_meta.keys(): template_meta.update( compress='lzw' ) with rasterio.open( output_filename, 'w', **template_meta ) as out: for band in range( 1, nbands+1 ): out.write( output_arr[ band-1, ... ], band ) return output_filename def shiftgrid(lon0,datain,lonsin,start=True,cyclic=360.0): import numpy as np """ Shift global lat/lon grid east or west. .. tabularcolumns:: |l|L| ============== ==================================================== Arguments Description ============== ==================================================== lon0 starting longitude for shifted grid (ending longitude if start=False). lon0 must be on input grid (within the range of lonsin). datain original data with longitude the right-most dimension. lonsin original longitudes. ============== ==================================================== .. tabularcolumns:: |l|L| ============== ==================================================== Keywords Description ============== ==================================================== start if True, lon0 represents the starting longitude of the new grid. if False, lon0 is the ending longitude. Default True. cyclic width of periodic domain (default 360) ============== ==================================================== returns ``dataout,lonsout`` (data and longitudes on shifted grid). """ if np.fabs(lonsin[-1]-lonsin[0]-cyclic) > 1.e-4: # Use all data instead of raise ValueError, 'cyclic point not included' start_idx = 0 else: # If cyclic, remove the duplicate point start_idx = 1 if lon0 < lonsin[0] or lon0 > lonsin[-1]: raise ValueError('lon0 outside of range of lonsin') i0 = np.argmin(np.fabs(lonsin-lon0)) i0_shift = len(lonsin)-i0 if np.ma.isMA(datain): dataout = np.ma.zeros(datain.shape,datain.dtype) else: dataout = np.zeros(datain.shape,datain.dtype) if np.ma.isMA(lonsin): lonsout = np.ma.zeros(lonsin.shape,lonsin.dtype) else: lonsout = np.zeros(lonsin.shape,lonsin.dtype) if start: lonsout[0:i0_shift] = lonsin[i0:] else: lonsout[0:i0_shift] = lonsin[i0:]-cyclic dataout[...,0:i0_shift] = datain[...,i0:] if start: lonsout[i0_shift:] = lonsin[start_idx:i0+start_idx]+cyclic else: lonsout[i0_shift:] = lonsin[start_idx:i0+start_idx] dataout[...,i0_shift:] = datain[...,start_idx:i0+start_idx] return dataout,lonsout def bounds_to_extent( bounds ): ''' take input rasterio bounds object and return an extent ''' l,b,r,t = bounds return [ (l,b), (r,b), (r,t), (l,t), (l,b) ] def padded_bounds( rst, npixels, crs ): ''' convert the extents of 2 overlapping rasters to a shapefile with an expansion of the intersection of the rasters extents by npixels rst1: rasterio raster object rst2: rasterio raster object npixels: tuple of 4 (left(-),bottom(-),right(+),top(+)) number of pixels to expand in each direction. for 5 pixels in each direction it would look like this: (-5. -5. 5, 5) or just in the right and top directions like this: (0,0,5,5). crs: epsg code or proj4string defining the geospatial reference system output_shapefile: string full path to the newly created output shapefile ''' import rasterio, os, sys from shapely.geometry import Polygon resolution = rst.res[0] new_bounds = [ bound+(expand*resolution) for bound, expand in zip( rst.bounds, npixels ) ] # new_ext = bounds_to_extent( new_bounds ) return new_bounds def xyz_to_grid( x, y, z, grid, method='cubic', output_dtype=np.float32 ): ''' interpolate points to a grid. simple wrapper around scipy.interpolate.griddata. Points and grid must be in the same coordinate system x = 1-D np.array of x coordinates / x,y,z must be same length y = 1-D np.array of y coordinates / x,y,z must be same length z = 1-D np.array of z coordinates / x,y,z must be same length grid = tuple of meshgrid as made using numpy.meshgrid() order (xi, yi) method = one of 'cubic', 'near', linear ''' import numpy as np from scipy.interpolate import griddata zi = griddata( (x, y), z, grid, method=method ) zi = np.flipud( zi.astype( output_dtype ) ) return zi def run( df, meshgrid_tuple, lons_pcll, template_raster_fn, src_transform, src_crs, src_nodata, output_filename ): ''' run the interpolation to a grid, and reprojection / resampling to the Alaska / Canada rasters extent, resolution, origin (template_raster). This function is intended to be used to run a pathos.multiprocessing Pool's map function across a list of pre-computed arguments. RETURNS: [str] path to the output filename generated ''' template_raster = rasterio.open( template_raster_fn ) interp_arr = xyz_to_grid( np.array(df['lon'].tolist()), \ np.array(df['lat'].tolist()), \ np.array(df['anom'].tolist()), grid=meshgrid_tuple, method='cubic' ) src_nodata = -9999.0 # nodata interp_arr[ np.isnan( interp_arr ) ] = src_nodata dat, lons = shiftgrid( 180., interp_arr, lons_pcll, start=False ) output_arr = np.empty_like( template_raster.read( 1 ) ) # mask it with the internal mask in the template raster, where 0 is oob. output_arr = np.ma.masked_where( template_raster.read_masks( 1 ) == 0, output_arr ) template_meta = template_raster.meta if 'transform' in template_meta.keys(): template_meta.pop( 'transform' ) reproject( dat, output_arr, src_transform=src_transform, src_crs=src_crs, src_nodata=src_nodata, \ dst_transform=template_meta['affine'], dst_crs=template_meta['crs'],\ dst_nodata=None, resampling=RESAMPLING.nearest, num_threads=1, SOURCE_EXTRA=1000 ) return write_gtiff( output_arr, template_meta, output_filename, compress=True ) def fn_month_grouper( x ): ''' take a filename and return the month element of the naming convention ''' return os.path.splitext(os.path.basename(x))[0].split( '_' )[5] def downscale_cru_historical( file_list, cru_cl20_arr, output_path, downscaling_operation ): ''' take a list of cru_historical anomalies filenames, groupby month, then downscale with the cru_cl20 climatology as a numpy 2d ndarray that is also on the same grid as the anomalies files. (intended to be the akcan 1km/2km extent). operation can be one of 'mult', 'add', 'div' and represents the downscaling operation to be use to scale the anomalies on top of the baseline. this is based on how the anomalies were initially calculated. RETURNS: output path location of the new downscaled files. ''' from functools import partial def f( anomaly_fn, baseline_arr, output_path ): def add( cru, anom ): return cru + anom def mult( cru, anom ): return cru * anom def div( cru, anom ): # return cru / anom # this one may not be useful, but the placeholder is here return NotImplementedError cru_ts31 = rasterio.open( anomaly_fn ) meta = cru_ts31.meta meta.update( compress='lzw' ) cru_ts31 = cru_ts31.read( 1 ) operation_switch = { 'add':add, 'mult':mult, 'div':div } downscaled = operation_switch[ downscaling_operation ]( baseline_arr, cru_ts31 ) # this is hardwired stuff for this fairly hardwired script. output_filename = os.path.basename( anomaly_fn ).replace( 'anom', 'downscaled' ) output_filename = os.path.join( output_path, output_filename ) output_arr = baseline_arr * cru_ts31 # multiply since it was relative anomalies if 'transform' in meta.keys(): meta.pop( 'transform' ) with rasterio.open( output_filename, 'w', **meta ) as out: out.write( output_arr, 1 ) return output_filename partial_f = partial( f, baseline_arr=cru_cl20_arr, output_path=output_path ) cru_ts31 = file_list.apply( lambda fn: partial_f( anomaly_fn=fn ) ) return output_path if __name__ == '__main__': import rasterio, xray, os, glob, affine from rasterio.warp import reproject, RESAMPLING import geopandas as gpd import pandas as pd import numpy as np from collections import OrderedDict from shapely.geometry import Point from pathos import multiprocessing as mp import argparse # parse the commandline arguments parser = argparse.ArgumentParser( description='preprocess cmip5 input netcdf files to a common type and single files' ) parser.add_argument( "-hi", "--cru_ts31", action='store', dest='cru_ts31', type=str, help="path to historical CRU TS3.1 input NetCDF file" ) parser.add_argument( "-ci", "--cl20_path", action='store', dest='cl20_path', type=str, help="path to historical CRU TS2.0 Climatology input directory in single-band GTiff Format" ) parser.add_argument( "-tr", "--template_raster_fn", action='store', dest='template_raster_fn', type=str, help="path to ALFRESCO Formatted template raster to match outputs to." ) parser.add_argument( "-base", "--base_path", action='store', dest='base_path', type=str, help="string path to the folder to put the output files into" ) parser.add_argument( "-bt", "--year_begin", action='store', dest='year_begin', type=int, help="string in format YYYY of the beginning year in the series" ) parser.add_argument( "-et", "--year_end", action='store', dest='year_end', type=int, help="string in format YYYY of the ending year in the series" ) parser.add_argument( "-cbt", "--climatology_begin_time", nargs='?', const='196101', action='store', dest='climatology_begin', type=str, help="string in format YYYY of the beginning year of the climatology period" ) parser.add_argument( "-cet", "--climatology_end_time", nargs='?', const='199012', action='store', dest='climatology_end', type=str, help="string in format YYYY of the ending year of the climatology period" ) parser.add_argument( "-nc", "--ncores", nargs='?', const=2, action='store', dest='ncores', type=int, help="integer valueof number of cores to use. default:2" ) parser.add_argument( "-at", "--anomalies_calc_type", nargs='?', const='absolute', action='store', dest='anomalies_calc_type', type=str, help="string of 'proportional' or 'absolute' to inform of anomalies calculation type to perform." ) parser.add_argument( "-m", "--metric", nargs='?', const='metric', action='store', dest='metric', type=str, help="string of whatever the metric type is of the outputs to put in the filename." ) parser.add_argument( "-dso", "--downscaling_operation", action='store', dest='downscaling_operation', type=str, help="string of 'add', 'mult', 'div', which refers to the type or downscaling operation to use." ) parser.add_argument( "-v", "--variable", action='store', dest='variable', type=str, help="string of the abbreviation used to identify the variable (i.e. cld)." ) # parse args args = parser.parse_args() # unpack args ncores = args.ncores base_path = args.base_path cru_ts31 = args.cru_ts31 cl20_path = args.cl20_path template_raster_fn = args.template_raster_fn anomalies_calc_type = args.anomalies_calc_type downscaling_operation = args.downscaling_operation climatology_begin = args.climatology_begin climatology_end = args.climatology_end year_begin = args.year_begin year_end = args.year_end variable = args.variable metric = args.metric # make some output directories if they are not there already to dump # our output files anomalies_path = os.path.join( base_path, variable, 'anom' ) if not os.path.exists( anomalies_path ): os.makedirs( anomalies_path ) downscaled_path = os.path.join( base_path, variable, 'downscaled' ) if not os.path.exists( downscaled_path ): os.makedirs( downscaled_path ) # open with xray cru_ts31 = xray.open_dataset( cru_ts31 ) # open template raster template_raster = rasterio.open( template_raster_fn ) template_meta = template_raster.meta template_meta.update( crs={'init':'epsg:3338'} ) # make a mask with values of 0=nodata and 1=data template_raster_mask = template_raster.read_masks( 1 ) template_raster_mask[ template_raster_mask == 255 ] = 1 # calculate the anomalies # this is temporary name change for the tmp (tas) data naming diff. if variable == 'tas': variable = 'tmp' clim_ds = cru_ts31.loc[ {'time':slice(climatology_begin,climatology_end)} ] climatology = clim_ds[ variable ].groupby( 'time.month' ).mean( 'time' ) if anomalies_calc_type == 'relative': anomalies = cru_ts31[ variable ].groupby( 'time.month' ) / climatology if anomalies_calc_type == 'absolute': anomalies = cru_ts31[ variable ].groupby( 'time.month' ) - climatology # reset the variable if tas if variable == 'tmp': variable = 'tas' # rotate the anomalies to pacific centered latlong -- this is already in the greenwich latlong dat_pcll, lons_pcll = shiftgrid( 0., anomalies, anomalies.lon.data ) # # generate an expanded extent (from the template_raster) to interpolate across template_raster = rasterio.open( template_raster_fn ) # output_resolution = (1000.0, 1000.0) # hardwired, but we are building this for IEM which requires 1km template_meta = template_raster.meta # # interpolate to a new grid # get longitudes and latitudes using meshgrid lo, la = [ i.ravel() for i in np.meshgrid( lons_pcll, anomalies.lat ) ] # mesh the lons/lats # convert into GeoDataFrame and drop all the NaNs df_list = [ pd.DataFrame({ 'anom':i.ravel(), 'lat':la, 'lon':lo }).dropna( axis=0, how='any' ) for i in dat_pcll ] xi, yi = np.meshgrid( lons_pcll, anomalies.lat.data ) # meshgrid_tuple = np.meshgrid( lons_pcll, anomalies.lat.data ) # argument setup src_transform = affine.Affine( 0.5, 0.0, -180.0, 0.0, -0.5, 90.0 ) src_crs = {'init':'epsg:4326'} src_nodata = -9999.0 # output_filenames setup years = np.arange( year_begin, year_end+1, 1 ).astype( str ).tolist() months = [ i if len(i)==2 else '0'+i for i in np.arange( 1, 12+1, 1 ).astype( str ).tolist() ] month_year = [ (month, year) for year in years for month in months ] output_filenames = [ os.path.join( anomalies_path, '_'.join([ variable,metric,'cru_ts31_anom',month,year])+'.tif' ) for month, year in month_year ] # build a list of keyword args to pass to the pool of workers. args_list = [ {'df':df, 'meshgrid_tuple':(xi, yi), 'lons_pcll':lons_pcll, \ 'template_raster_fn':template_raster_fn, 'src_transform':src_transform, \ 'src_crs':src_crs, 'src_nodata':src_nodata, 'output_filename':fn } \ for df, fn in zip( df_list, output_filenames ) ] # interpolate / reproject / resample the anomalies to match template_raster_fn pool = mp.Pool( processes=ncores ) out = pool.map( lambda args: run( **args ), args_list ) pool.close() # To Complete the CRU TS3.1 Downscaling we need the following: # read in the pre-processed CL2.0 Cloud Climatology l = sorted( glob.glob( os.path.join( cl20_path, '*.tif' ) ) ) # this could catch you. cl20_dict = { month:rasterio.open( fn ).read( 1 ) for month, fn in zip( months, l ) } # group the data by months out = pd.Series( out ) out_months = out.apply( fn_month_grouper ) months_grouped = out.groupby( out_months ) # unpack groups for parallelization and make a list of tuples of arguments to pass to the downscale function mg = [(i,j) for i,j in months_grouped ] args_list = [ ( i[1], cl20_dict[i[0]], downscaled_path, downscaling_operation ) for i in mg ] # downscale / write to disk pool = mp.Pool( processes=ncores ) out = pool.map( lambda args: downscale_cru_historical( *args ), args_list ) pool.close() # # # # # HOW TO RUN THE APPLICATION # # # # # # # # # input args -- argparse it # import os # os.chdir( '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/CODE/tem_ar5_inputs/downscale_cmip5/bin' ) # ncores = '10' # base_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_october_final/cru_ts31' # cru_ts31 = '/Data/Base_Data/Climate/World/CRU_grids/CRU_TS31/cru_ts_3_10.1901.2009.tmp.nc' # cru_ts_3_10.1901.2009.reh.dat.nc' # cl20_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_v2/cru_ts20/tas/akcan' # template_raster_fn = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/templates/tas_mean_C_AR5_GFDL-CM3_historical_01_1860.tif' # anomalies_calc_type = 'absolute' # 'relative' # downscaling_operation = 'add' # 'mult', 'div' # climatology_begin = '1961' # climatology_end = '1990' # year_begin = '1901' # year_end = '2009' # variable = 'tas' # metric = 'C' # args_tuples = [ ('hi', cru_ts31), ('ci', cl20_path), ('tr', template_raster_fn), # ('base', base_path), ('bt', year_begin), ('et', year_end), # ('cbt', climatology_begin), ('cet', climatology_end), # ('nc', ncores), ('at', anomalies_calc_type), ('m', metric), # ('dso', downscaling_operation), ('v', variable) ] # args = ''.join([ ' -'+flag+' '+value for flag, value in args_tuples ]) # os.system( 'python cru_ts31_to_cl20_downscaling.py ' + args )
mit
justincassidy/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
230
4762
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n=X_train.shape[0], n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv: cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
RPGOne/Skynet
numpy-master/numpy/lib/npyio.py
2
75575
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter, index as opindex import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode, is_pathlib_path ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(file, *args, **kwargs): """ Create a ZipFile. Allows for Zip64, and the `file` argument can accept file, str, or pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile constructor. """ if is_pathlib_path(file): file = str(file) import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(file, *args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object, string, or pathlib.Path The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif is_pathlib_path(file): fid = file.open("rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of NumPy arrays is loaded # in. Pickle does not pass on the encoding information to # NumPy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) # If the file size is less than N, we need to make sure not # to seek past the beginning of the file fid.seek(-min(N, len(magic)), 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file, str, or pathlib.Path File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string or Path, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True elif is_pathlib_path(file): if not file.name.endswith('.npy'): file = file.parent / (file.name + '.npy') fid = file.open("wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- numpy.save : Save a single array to a binary file in NumPy format. numpy.savetxt : Save an array to a file as plain text. numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is compressed with ``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> test_array = np.random.rand(3, 2) >>> test_vector = np.random.rand(4) >>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector) >>> loaded = np.load('/tmp/123.npz') >>> print(np.array_equal(test_array, loaded['a'])) True >>> print(np.array_equal(test_vector, loaded['b'])) True """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' elif is_pathlib_path(file): if not file.name.endswith('.npz'): file = file.parent / (file.name + '.npz') namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. # Since target file might be big enough to exceed capacity of a global # temporary directory, create temp file side-by-side with the target file. file_dir, file_prefix = os.path.split(file) if _is_string_like(file) else (None, 'tmp') fd, tmpfile = tempfile.mkstemp(prefix=file_prefix, dir=file_dir, suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) except IOError as exc: raise IOError("Failed to write to %s: %s" % (tmpfile, exc)) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return asbytes else: return asstr def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file, str, or pathlib.Path File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : int or sequence, optional Which columns to read, with 0 being the first. For example, usecols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. .. versionadded:: 1.11.0 Also when a single column has to be read it is possible to use an integer instead of a tuple. E.g ``usecols = 3`` reads the fourth column the same way as `usecols = (3,)`` would. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: # Allow usecols to be a single int or a sequence of ints try: usecols_as_list = list(usecols) except TypeError: usecols_as_list = [usecols] for col_idx in usecols_as_list: try: opindex(col_idx) except TypeError as e: e.args = ( "usecols must be an int or a sequence of ints but " "it contains at least one element of type %s" % type(col_idx), ) raise # Fall back to existing code usecols = usecols_as_list fown = False try: if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname, stacklevel=2) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, pathlib.Path, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] NumPy User Guide, section `I/O with NumPy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if is_pathlib_path(fname): fname = str(fname) if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning, stacklevel=2) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
bsd-3-clause
mengxn/tensorflow
tensorflow/examples/tutorials/input_fn/boston.py
51
2709
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def input_fn(data_set): feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES} labels = tf.constant(data_set[LABEL].values) return feature_cols, labels def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.contrib.layers.real_valued_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Fit regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000) # Score accuracy ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions y = regressor.predict(input_fn=lambda: input_fn(prediction_set)) # .predict() returns an iterator; convert to a list and print predictions predictions = list(itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
potis/ufldl_tutorial
display_network.py
6
3148
import numpy as np import matplotlib.pyplot as plt import matplotlib import PIL # This function visualizes filters in matrix A. Each column of A is a # filter. We will reshape each column into a square image and visualizes # on each cell of the visualization panel. # All other parameters are optional, usually you do not need to worry # about it. # opt_normalize: whether we need to normalize the filter so that all of # them can have similar contrast. Default value is true. # opt_graycolor: whether we use gray as the heat map. Default is true. # opt_colmajor: you can switch convention to row major for A. In that # case, each row of A is a filter. Default value is false. def display_network(A, filename='weights.png'): opt_normalize = True opt_graycolor = True # Rescale A = A - np.average(A) # Compute rows & cols (row, col) = A.shape sz = int(np.ceil(np.sqrt(row))) buf = 1 n = np.ceil(np.sqrt(col)) m = np.ceil(col / n) image = np.ones(shape=(buf + m * (sz + buf), buf + n * (sz + buf))) if not opt_graycolor: image *= 0.1 k = 0 for i in range(int(m)): for j in range(int(n)): if k >= col: continue clim = np.max(np.abs(A[:, k])) if opt_normalize: image[buf + i * (sz + buf):buf + i * (sz + buf) + sz, buf + j * (sz + buf):buf + j * (sz + buf) + sz] = \ A[:, k].reshape(sz, sz) / clim else: image[buf + i * (sz + buf):buf + i * (sz + buf) + sz, buf + j * (sz + buf):buf + j * (sz + buf) + sz] = \ A[:, k].reshape(sz, sz) / np.max(np.abs(A)) k += 1 plt.imsave(filename, image, cmap=matplotlib.cm.gray) def display_color_network(A, filename='weights.png'): """ # display receptive field(s) or basis vector(s) for image patches # # A the basis, with patches as column vectors # In case the midpoint is not set at 0, we shift it dynamically :param A: :param file: :return: """ if np.min(A) >= 0: A = A - np.mean(A) cols = np.round(np.sqrt(A.shape[1])) channel_size = A.shape[0] / 3 dim = np.sqrt(channel_size) dimp = dim + 1 rows = np.ceil(A.shape[1] / cols) B = A[0:channel_size, :] C = A[channel_size:2 * channel_size, :] D = A[2 * channel_size:3 * channel_size, :] B = B / np.max(np.abs(B)) C = C / np.max(np.abs(C)) D = D / np.max(np.abs(D)) # Initialization of the image image = np.ones(shape=(dim * rows + rows - 1, dim * cols + cols - 1, 3)) for i in range(int(rows)): for j in range(int(cols)): # This sets the patch image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 0] = B[:, i * cols + j].reshape(dim, dim) image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 1] = C[:, i * cols + j].reshape(dim, dim) image[i * dimp:i * dimp + dim, j * dimp:j * dimp + dim, 2] = D[:, i * cols + j].reshape(dim, dim) image = (image + 1) / 2 PIL.Image.fromarray(np.uint8(image * 255), 'RGB').save(filename) return 0
mit
jni/networkx
examples/drawing/labels_and_colors.py
44
1330
#!/usr/bin/env python """ Draw a graph with matplotlib, color by degree. You must have matplotlib for this to work. """ __author__ = """Aric Hagberg ([email protected])""" import matplotlib.pyplot as plt import networkx as nx G=nx.cubical_graph() pos=nx.spring_layout(G) # positions for all nodes # nodes nx.draw_networkx_nodes(G,pos, nodelist=[0,1,2,3], node_color='r', node_size=500, alpha=0.8) nx.draw_networkx_nodes(G,pos, nodelist=[4,5,6,7], node_color='b', node_size=500, alpha=0.8) # edges nx.draw_networkx_edges(G,pos,width=1.0,alpha=0.5) nx.draw_networkx_edges(G,pos, edgelist=[(0,1),(1,2),(2,3),(3,0)], width=8,alpha=0.5,edge_color='r') nx.draw_networkx_edges(G,pos, edgelist=[(4,5),(5,6),(6,7),(7,4)], width=8,alpha=0.5,edge_color='b') # some math labels labels={} labels[0]=r'$a$' labels[1]=r'$b$' labels[2]=r'$c$' labels[3]=r'$d$' labels[4]=r'$\alpha$' labels[5]=r'$\beta$' labels[6]=r'$\gamma$' labels[7]=r'$\delta$' nx.draw_networkx_labels(G,pos,labels,font_size=16) plt.axis('off') plt.savefig("labels_and_colors.png") # save as png plt.show() # display
bsd-3-clause
jopohl/urh
data/pyinstaller_helper.py
1
2642
import os import shutil import sys HIDDEN_IMPORTS = ["packaging.specifiers", "packaging.requirements", "pkg_resources.py2_warn", "numpy.core._methods", "numpy.core._dtype_ctypes", "numpy.random.common", "numpy.random.entropy", "numpy.random.bounded_integers"] DATA = [("src/urh/dev/native/lib/shared", "."), ("src/urh/plugins", "urh/plugins"), ] EXCLUDE = ["matplotlib"] def run_pyinstaller(cmd_list: list, env: list=None): cmd = " ".join(cmd_list) print(cmd, flush=True) env = [] if env is None else env if env: os.system(" ".join(env) + " " + cmd) else: os.system(cmd) if __name__ == '__main__': cmd = ["pyinstaller", "--clean"] if sys.platform == "darwin": cmd.append("--onefile") for hidden_import in HIDDEN_IMPORTS: cmd.append("--hidden-import={}".format(hidden_import)) for src, dst in DATA: cmd.append("--add-data") cmd.append('"{}{}{}"'.format(src, os.pathsep, dst)) for exclude in EXCLUDE: cmd.append("--exclude-module={}".format(exclude)) urh_path = os.path.realpath(os.path.join(os.path.dirname(__file__), "..")) if sys.platform == "darwin": cmd.append('--icon="{}"'.format(os.path.join(urh_path, "data/icons/appicon.icns"))) else: cmd.append('--icon="{}"'.format(os.path.join(urh_path, "data/icons/appicon.ico"))) cmd.extend(["--distpath", "./pyinstaller"]) urh_cmd = cmd + ["--name=urh", "--windowed", "--workpath", "./urh_build", os.path.join(urh_path, "src/urh/main.py")] urh_debug_cmd = cmd + ["--name=urh_debug", "--workpath", "./urh_debug_build", os.path.join(urh_path, "src/urh/main.py")] cli_cmd = cmd + ["--workpath", "./urh_cli_build", os.path.join(urh_path, "src/urh/cli/urh_cli.py")] os.makedirs("./pyinstaller") if sys.platform == "darwin": run_pyinstaller(urh_cmd, env=["DYLD_LIBRARY_PATH=src/urh/dev/native/lib/shared"]) import plistlib with open("pyinstaller/urh.app/Contents/Info.plist", "rb") as f: p = plistlib.load(f) p["NSHighResolutionCapable"] = True p["NSRequiresAquaSystemAppearance"] = True with open("pyinstaller/urh.app/Contents/Info.plist", "wb") as f: plistlib.dump(p, f) else: for cmd in [urh_cmd, cli_cmd, urh_debug_cmd]: run_pyinstaller(cmd) shutil.copy("./pyinstaller/urh_cli/urh_cli.exe", "./pyinstaller/urh/urh_cli.exe") shutil.copy("./pyinstaller/urh_debug/urh_debug.exe", "./pyinstaller/urh/urh_debug.exe")
gpl-3.0
mhdella/scikit-learn
examples/text/document_classification_20newsgroups.py
222
10500
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='r') plt.barh(indices + .3, training_time, .2, label="training time", color='g') plt.barh(indices + .6, test_time, .2, label="test time", color='b') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
tmills/neural-assertion
scripts/keras/multitask/assertion_multitask_optimize.py
1
7074
#!/usr/bin/env python ## Common python modules: import os.path import pickle import random import sys ## library imports: import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils import sklearn as sk import sklearn.cross_validation from sklearn.cross_validation import train_test_split from zipfile import ZipFile ## Local imports: from random_search import RandomSearch import cleartk_io as ctk_io import nn_models batch_size = (64, 128, 256, 512) #filters = ((128,), (256,), (512,), (1024,)) filters = ((128,),) #layers = ((64,), (128,), (256,), (512,), (1024,)) layers = ((64,), (128,)) embed_dim = (10, 25, 50, 100, 200) #widths = ((2,3,), (3,4), (2,3,4), (3,4,5), (2,3,4,5)) widths = ((2,3,),) distances = (True, False) start_symbol = "<e>" end_symbol = "</e>" def get_random_config(weights=None): config = {} config['distances'] = random.choice(distances) config['batch_size'] = random.choice(batch_size) config['filters'] = random.choice(filters) config['layers'] = random.choice(layers) config['embed_dim'] = random.choice(embed_dim) config['widths'] = random.choice(widths) return config def run_one_eval(epochs, config, train_x, train_y, valid_x, valid_y, vocab_size, output_dims_list, weights): print("Running with config: %s" % (config) ) np.random.seed(1337) stopper = nn_models.get_early_stopper() model = nn_models.get_multitask_cnn(train_x.shape, vocab_size, output_dims_list, conv_layers=config['filters'], fc_layers=config['layers'], embed_dim=config['embed_dim'], filter_widths=config['widths']) history = model.fit(train_x, train_y, nb_epoch=max(2, epochs), batch_size=config['batch_size'], verbose=1, validation_data=(valid_x, valid_y), callbacks=[stopper]) pred_y = model.predict(valid_x) tp = [calc_tp(valid_y[i], pred_y[i], output_dims_list[i]) for i in range(len(pred_y))] fp = [calc_fp(valid_y[i], pred_y[i], output_dims_list[i]) for i in range(len(pred_y))] fn = [calc_fn(valid_y[i], pred_y[i], output_dims_list[i]) for i in range(len(pred_y))] if sum(tp) > 0: print("tp = %s" % tp) if sum(fp) > 0: print("fp = %s" % fp) if sum(fn) > 0: print("fn = %s" % fn) recalls = [0 if tp[i] == 0 else float(tp[i]) / (tp[i] + fn[i]) for i in range(len(pred_y))] precision = [0 if tp[i] == 0 else float(tp[i]) / (tp[i] + fp[i]) for i in range(len(pred_y))] f1 = [calc_f1(recalls[i], precision[i]) for i in range(len(pred_y))] loss = 1 - np.mean(f1) print("Returning loss: %f" % (loss) ) #loss = history.history['val_loss'][-1] return loss def dim2index(dim): #return 1 if dim == 2 else dim-1 return 1 def calc_f1(recall, precision): if recall == 0.0 or precision == 0.0: return 0 else: return 2 * recall * precision / (recall + precision) def calc_tp(gold_y, pred_y, dims): ''' Get the index of all the positives in the gold vector, use that as an index into the predicted vector and count the number of times that value is > 0.5 ''' if dims == 1: return len(np.where(pred_y[np.where(gold_y > 0.5)] > 0.5)[0]) else: return float(len(np.where(pred_y.argmax(dim2index(dims))[np.where(gold_y.argmax(dim2index(dims)) > 0)] > 0)[0])) def calc_fp(gold_y, pred_y, dims): if dims == 1: return len(np.where(pred_y[np.where(gold_y < 0.5)] > 0.5)[0]) else: return float(len(np.where(pred_y.argmax(dim2index(dims))[np.where(gold_y.argmax(dim2index(dims)) == 0)] > 0)[0])) def calc_fn(gold_y, pred_y, dims): if dims == 1: return len(np.where(pred_y[np.where(gold_y > 0.5)] < 0.5)[0]) else: return float(len(np.where(pred_y.argmax(dim2index(dims))[np.where(gold_y.argmax(dim2index(dims)) > 0)] == 0)[0])) def main(args): if len(args) < 1: sys.stderr.write("Error - one required argument: <data directory>\n") sys.exit(-1) working_dir = args[0] print("Reading data...") Y, outcome_map, outcome_list, X, feature_alphabet = ctk_io.read_multitask_token_sequence_data(working_dir) start_ind = feature_alphabet[start_symbol] end_ind = feature_alphabet[end_symbol] train_x, valid_x, train_y, valid_y = train_test_split(X, Y, test_size=0.2, random_state=7) # X_distance = get_distance_features(X, start_ind, end_ind) print("Shape of X is %s and Y is %s" % (str(X.shape), str(Y.shape))) num_examples, dimension = X.shape num_y_examples, num_labels = Y.shape assert num_examples == num_y_examples weights = None if len(args) > 1: weights = ctk_io.read_embeddings(args[1], feats_alphabet) train_y_adj, train_indices = ctk_io.flatten_outputs(train_y) valid_y_adj, valid_indices = ctk_io.flatten_outputs(valid_y) if not train_indices == valid_indices: print("Error: training and valid sets have different index sets -- may be missing some labels in one set or the other") sys.exit(-1) output_dims_list = [] train_y_list = [] valid_y_list = [] indices = train_indices for i in range(len(indices)-1): label_dims = indices[i+1] - indices[i] output_dims_list.append(label_dims) if label_dims == 1: train_y_list.append(train_y_adj[:, indices[i]]) valid_y_list.append(valid_y_adj[:, indices[i]]) else: train_y_list.append(train_y_adj[:, indices[i]:indices[i+1]]) valid_y_list.append(valid_y_adj[:, indices[i]:indices[i+1]]) print("Dimensions of label %d are %s" % (i, str(train_y_list[-1].shape) ) ) ## pass a function to the search that it uses to get a random config ## and a function that it will get an eval given (e)pochs and (c)onfig file: optim = RandomSearch(lambda: get_random_config(weights), lambda e, c: run_one_eval(e, c, train_x, train_y_list, valid_x, valid_y_list, len(feature_alphabet), output_dims_list, weights ) ) best_config = optim.optimize(max_iter=27) open(os.path.join(working_dir, 'model_0.config'), 'w').write( str(best_config) ) print("Best config returned by optimizer is %s" % str(best_config) ) def get_distance_features(X, start_symbol, end_symbol): dist = np.zeros_like(X) dist = np.expand_dims(dist, 2) other_dim = X.shape[1] for row_ind in range(X.shape[0]): left_ind = np.where(X[row_ind] == start_symbol)[0][0] right_ind = np.where(X[row_ind] == end_symbol)[0][0] dist[row_ind, 0:left_ind, 0] += (np.arange(-left_ind, 0) / other_dim) dist[row_ind, right_ind+1:, 0] += (np.arange(1, other_dim-right_ind) / other_dim) return dist if __name__ == "__main__": main(sys.argv[1:])
apache-2.0
jreback/pandas
pandas/core/dtypes/cast.py
1
58216
""" Routines for casting. """ from __future__ import annotations from contextlib import suppress from datetime import datetime, timedelta from typing import ( TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Set, Sized, Tuple, Type, Union, cast, ) import warnings import numpy as np from pandas._libs import lib, missing as libmissing, tslib from pandas._libs.tslibs import ( NaT, OutOfBoundsDatetime, Period, Timedelta, Timestamp, conversion, iNaT, ints_to_pydatetime, ) from pandas._libs.tslibs.timezones import tz_compare from pandas._typing import AnyArrayLike, ArrayLike, Dtype, DtypeObj, Scalar from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.common import ( DT64NS_DTYPE, POSSIBLY_CAST_DTYPES, TD64NS_DTYPE, ensure_int8, ensure_int16, ensure_int32, ensure_int64, ensure_object, ensure_str, is_bool, is_bool_dtype, is_categorical_dtype, is_complex, is_complex_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_integer, is_integer_dtype, is_numeric_dtype, is_object_dtype, is_scalar, is_sparse, is_string_dtype, is_timedelta64_dtype, is_timedelta64_ns_dtype, is_unsigned_integer_dtype, ) from pandas.core.dtypes.dtypes import ( DatetimeTZDtype, ExtensionDtype, IntervalDtype, PeriodDtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCExtensionArray, ABCIndex, ABCSeries, ) from pandas.core.dtypes.inference import is_list_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna, notna if TYPE_CHECKING: from pandas import Series from pandas.core.arrays import DatetimeArray, ExtensionArray _int8_max = np.iinfo(np.int8).max _int16_max = np.iinfo(np.int16).max _int32_max = np.iinfo(np.int32).max _int64_max = np.iinfo(np.int64).max def maybe_convert_platform(values): """ try to do platform conversion, allow ndarray or list here """ if isinstance(values, (list, tuple, range)): values = construct_1d_object_array_from_listlike(values) if getattr(values, "dtype", None) == np.object_: if hasattr(values, "_values"): values = values._values values = lib.maybe_convert_objects(values) return values def is_nested_object(obj) -> bool: """ return a boolean if we have a nested object, e.g. a Series with 1 or more Series elements This may not be necessarily be performant. """ return bool( isinstance(obj, ABCSeries) and is_object_dtype(obj.dtype) and any(isinstance(v, ABCSeries) for v in obj._values) ) def maybe_box_datetimelike(value: Scalar, dtype: Optional[Dtype] = None) -> Scalar: """ Cast scalar to Timestamp or Timedelta if scalar is datetime-like and dtype is not object. Parameters ---------- value : scalar dtype : Dtype, optional Returns ------- scalar """ if dtype == object: pass elif isinstance(value, (np.datetime64, datetime)): value = Timestamp(value) elif isinstance(value, (np.timedelta64, timedelta)): value = Timedelta(value) return value def maybe_unbox_datetimelike(value: Scalar, dtype: DtypeObj) -> Scalar: """ Convert a Timedelta or Timestamp to timedelta64 or datetime64 for setting into a numpy array. Failing to unbox would risk dropping nanoseconds. Notes ----- Caller is responsible for checking dtype.kind in ["m", "M"] """ if is_valid_nat_for_dtype(value, dtype): # GH#36541: can't fill array directly with pd.NaT # > np.empty(10, dtype="datetime64[64]").fill(pd.NaT) # ValueError: cannot convert float NaN to integer value = dtype.type("NaT", "ns") elif isinstance(value, Timestamp): if value.tz is None: value = value.to_datetime64() elif isinstance(value, Timedelta): value = value.to_timedelta64() _disallow_mismatched_datetimelike(value, dtype) return value def _disallow_mismatched_datetimelike(value, dtype: DtypeObj): """ numpy allows np.array(dt64values, dtype="timedelta64[ns]") and vice-versa, but we do not want to allow this, so we need to check explicitly """ vdtype = getattr(value, "dtype", None) if vdtype is None: return elif (vdtype.kind == "m" and dtype.kind == "M") or ( vdtype.kind == "M" and dtype.kind == "m" ): raise TypeError(f"Cannot cast {repr(value)} to {dtype}") def maybe_downcast_to_dtype(result, dtype: Union[str, np.dtype]): """ try to cast to the specified dtype (e.g. convert back to bool/int or could be an astype of float64->float32 """ do_round = False if is_scalar(result): return result elif isinstance(result, ABCDataFrame): # occurs in pivot_table doctest return result if isinstance(dtype, str): if dtype == "infer": inferred_type = lib.infer_dtype(ensure_object(result), skipna=False) if inferred_type == "boolean": dtype = "bool" elif inferred_type == "integer": dtype = "int64" elif inferred_type == "datetime64": dtype = "datetime64[ns]" elif inferred_type == "timedelta64": dtype = "timedelta64[ns]" # try to upcast here elif inferred_type == "floating": dtype = "int64" if issubclass(result.dtype.type, np.number): do_round = True else: dtype = "object" dtype = np.dtype(dtype) elif dtype.type is Period: from pandas.core.arrays import PeriodArray with suppress(TypeError): # e.g. TypeError: int() argument must be a string, a # bytes-like object or a number, not 'Period return PeriodArray(result, freq=dtype.freq) converted = maybe_downcast_numeric(result, dtype, do_round) if converted is not result: return converted # a datetimelike # GH12821, iNaT is cast to float if dtype.kind in ["M", "m"] and result.dtype.kind in ["i", "f"]: if isinstance(dtype, DatetimeTZDtype): # convert to datetime and change timezone i8values = result.astype("i8", copy=False) cls = dtype.construct_array_type() # equiv: DatetimeArray(i8values).tz_localize("UTC").tz_convert(dtype.tz) result = cls._simple_new(i8values, dtype=dtype) else: result = result.astype(dtype) return result def maybe_downcast_numeric(result, dtype: DtypeObj, do_round: bool = False): """ Subset of maybe_downcast_to_dtype restricted to numeric dtypes. Parameters ---------- result : ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype do_round : bool Returns ------- ndarray or ExtensionArray """ if not isinstance(dtype, np.dtype): # e.g. SparseDtype has no itemsize attr return result def trans(x): if do_round: return x.round() return x if dtype.kind == result.dtype.kind: # don't allow upcasts here (except if empty) if result.dtype.itemsize <= dtype.itemsize and result.size: return result if is_bool_dtype(dtype) or is_integer_dtype(dtype): if not result.size: # if we don't have any elements, just astype it return trans(result).astype(dtype) # do a test on the first element, if it fails then we are done r = result.ravel() arr = np.array([r[0]]) if isna(arr).any(): # if we have any nulls, then we are done return result elif not isinstance(r[0], (np.integer, np.floating, int, float, bool)): # a comparable, e.g. a Decimal may slip in here return result if ( issubclass(result.dtype.type, (np.object_, np.number)) and notna(result).all() ): new_result = trans(result).astype(dtype) if new_result.dtype.kind == "O" or result.dtype.kind == "O": # np.allclose may raise TypeError on object-dtype if (new_result == result).all(): return new_result else: if np.allclose(new_result, result, rtol=0): return new_result elif ( issubclass(dtype.type, np.floating) and not is_bool_dtype(result.dtype) and not is_string_dtype(result.dtype) ): return result.astype(dtype) return result def maybe_cast_result( result: ArrayLike, obj: "Series", numeric_only: bool = False, how: str = "" ) -> ArrayLike: """ Try casting result to a different type if appropriate Parameters ---------- result : array-like Result to cast. obj : Series Input Series from which result was calculated. numeric_only : bool, default False Whether to cast only numerics or datetimes as well. how : str, default "" How the result was computed. Returns ------- result : array-like result maybe casted to the dtype. """ dtype = obj.dtype dtype = maybe_cast_result_dtype(dtype, how) assert not is_scalar(result) if ( is_extension_array_dtype(dtype) and not is_categorical_dtype(dtype) and dtype.kind != "M" ): # We have to special case categorical so as not to upcast # things like counts back to categorical cls = dtype.construct_array_type() result = maybe_cast_to_extension_array(cls, result, dtype=dtype) elif numeric_only and is_numeric_dtype(dtype) or not numeric_only: result = maybe_downcast_to_dtype(result, dtype) return result def maybe_cast_result_dtype(dtype: DtypeObj, how: str) -> DtypeObj: """ Get the desired dtype of a result based on the input dtype and how it was computed. Parameters ---------- dtype : DtypeObj Input dtype. how : str How the result was computed. Returns ------- DtypeObj The desired dtype of the result. """ from pandas.core.arrays.boolean import BooleanDtype from pandas.core.arrays.floating import Float64Dtype from pandas.core.arrays.integer import Int64Dtype, _IntegerDtype if how in ["add", "cumsum", "sum", "prod"]: if dtype == np.dtype(bool): return np.dtype(np.int64) elif isinstance(dtype, (BooleanDtype, _IntegerDtype)): return Int64Dtype() elif how in ["mean", "median", "var"] and isinstance( dtype, (BooleanDtype, _IntegerDtype) ): return Float64Dtype() return dtype def maybe_cast_to_extension_array( cls: Type["ExtensionArray"], obj: ArrayLike, dtype: Optional[ExtensionDtype] = None ) -> ArrayLike: """ Call to `_from_sequence` that returns the object unchanged on Exception. Parameters ---------- cls : class, subclass of ExtensionArray obj : arraylike Values to pass to cls._from_sequence dtype : ExtensionDtype, optional Returns ------- ExtensionArray or obj """ from pandas.core.arrays.string_ import StringArray from pandas.core.arrays.string_arrow import ArrowStringArray assert isinstance(cls, type), f"must pass a type: {cls}" assertion_msg = f"must pass a subclass of ExtensionArray: {cls}" assert issubclass(cls, ABCExtensionArray), assertion_msg # Everything can be converted to StringArrays, but we may not want to convert if ( issubclass(cls, (StringArray, ArrowStringArray)) and lib.infer_dtype(obj) != "string" ): return obj try: result = cls._from_sequence(obj, dtype=dtype) except Exception: # We can't predict what downstream EA constructors may raise result = obj return result def maybe_upcast_putmask(result: np.ndarray, mask: np.ndarray) -> np.ndarray: """ A safe version of putmask that potentially upcasts the result. The result is replaced with the first N elements of other, where N is the number of True values in mask. If the length of other is shorter than N, other will be repeated. Parameters ---------- result : ndarray The destination array. This will be mutated in-place if no upcasting is necessary. mask : boolean ndarray Returns ------- result : ndarray Examples -------- >>> arr = np.arange(1, 6) >>> mask = np.array([False, True, False, True, True]) >>> result = maybe_upcast_putmask(arr, mask) >>> result array([ 1., nan, 3., nan, nan]) """ if not isinstance(result, np.ndarray): raise ValueError("The result input must be a ndarray.") # NB: we never get here with result.dtype.kind in ["m", "M"] if mask.any(): # we want to decide whether place will work # if we have nans in the False portion of our mask then we need to # upcast (possibly), otherwise we DON't want to upcast (e.g. if we # have values, say integers, in the success portion then it's ok to not # upcast) new_dtype, _ = maybe_promote(result.dtype, np.nan) if new_dtype != result.dtype: result = result.astype(new_dtype, copy=True) np.place(result, mask, np.nan) return result def maybe_promote(dtype, fill_value=np.nan): """ Find the minimal dtype that can hold both the given dtype and fill_value. Parameters ---------- dtype : np.dtype or ExtensionDtype fill_value : scalar, default np.nan Returns ------- dtype Upcasted from dtype argument if necessary. fill_value Upcasted from fill_value argument if necessary. Raises ------ ValueError If fill_value is a non-scalar and dtype is not object. """ if not is_scalar(fill_value) and not is_object_dtype(dtype): # with object dtype there is nothing to promote, and the user can # pass pretty much any weird fill_value they like raise ValueError("fill_value must be a scalar") # if we passed an array here, determine the fill value by dtype if isinstance(fill_value, np.ndarray): if issubclass(fill_value.dtype.type, (np.datetime64, np.timedelta64)): fill_value = fill_value.dtype.type("NaT", "ns") else: # we need to change to object type as our # fill_value is of object type if fill_value.dtype == np.object_: dtype = np.dtype(np.object_) fill_value = np.nan if dtype == np.object_ or dtype.kind in ["U", "S"]: # We treat string-like dtypes as object, and _always_ fill # with np.nan fill_value = np.nan dtype = np.dtype(np.object_) # returns tuple of (dtype, fill_value) if issubclass(dtype.type, np.datetime64): if isinstance(fill_value, datetime) and fill_value.tzinfo is not None: # Trying to insert tzaware into tznaive, have to cast to object dtype = np.dtype(np.object_) elif is_integer(fill_value) or (is_float(fill_value) and not isna(fill_value)): dtype = np.dtype(np.object_) elif is_valid_nat_for_dtype(fill_value, dtype): # e.g. pd.NA, which is not accepted by Timestamp constructor fill_value = np.datetime64("NaT", "ns") else: try: fill_value = Timestamp(fill_value).to_datetime64() except (TypeError, ValueError): dtype = np.dtype(np.object_) elif issubclass(dtype.type, np.timedelta64): if ( is_integer(fill_value) or (is_float(fill_value) and not np.isnan(fill_value)) or isinstance(fill_value, str) ): # TODO: What about str that can be a timedelta? dtype = np.dtype(np.object_) elif is_valid_nat_for_dtype(fill_value, dtype): # e.g pd.NA, which is not accepted by the Timedelta constructor fill_value = np.timedelta64("NaT", "ns") else: try: fv = Timedelta(fill_value) except ValueError: dtype = np.dtype(np.object_) else: if fv is NaT: # NaT has no `to_timedelta64` method fill_value = np.timedelta64("NaT", "ns") else: fill_value = fv.to_timedelta64() elif is_datetime64tz_dtype(dtype): if isna(fill_value): fill_value = NaT elif not isinstance(fill_value, datetime): dtype = np.dtype(np.object_) elif fill_value.tzinfo is None: dtype = np.dtype(np.object_) elif not tz_compare(fill_value.tzinfo, dtype.tz): # TODO: sure we want to cast here? dtype = np.dtype(np.object_) elif is_extension_array_dtype(dtype) and isna(fill_value): fill_value = dtype.na_value elif is_float(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif issubclass(dtype.type, np.integer): dtype = np.dtype(np.float64) elif dtype.kind == "f": mst = np.min_scalar_type(fill_value) if mst > dtype: # e.g. mst is np.float64 and dtype is np.float32 dtype = mst elif dtype.kind == "c": mst = np.min_scalar_type(fill_value) dtype = np.promote_types(dtype, mst) elif is_bool(fill_value): if not issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif is_integer(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif issubclass(dtype.type, np.integer): if not np.can_cast(fill_value, dtype): # upcast to prevent overflow mst = np.min_scalar_type(fill_value) dtype = np.promote_types(dtype, mst) if dtype.kind == "f": # Case where we disagree with numpy dtype = np.dtype(np.object_) elif is_complex(fill_value): if issubclass(dtype.type, np.bool_): dtype = np.dtype(np.object_) elif issubclass(dtype.type, (np.integer, np.floating)): mst = np.min_scalar_type(fill_value) dtype = np.promote_types(dtype, mst) elif dtype.kind == "c": mst = np.min_scalar_type(fill_value) if mst > dtype: # e.g. mst is np.complex128 and dtype is np.complex64 dtype = mst elif fill_value is None or fill_value is libmissing.NA: # Note: we already excluded dt64/td64 dtypes above if is_float_dtype(dtype) or is_complex_dtype(dtype): fill_value = np.nan elif is_integer_dtype(dtype): dtype = np.float64 fill_value = np.nan else: dtype = np.dtype(np.object_) if fill_value is not libmissing.NA: fill_value = np.nan else: dtype = np.dtype(np.object_) # in case we have a string that looked like a number if is_extension_array_dtype(dtype): pass elif issubclass(np.dtype(dtype).type, (bytes, str)): dtype = np.dtype(np.object_) fill_value = _ensure_dtype_type(fill_value, dtype) return dtype, fill_value def _ensure_dtype_type(value, dtype: DtypeObj): """ Ensure that the given value is an instance of the given dtype. e.g. if out dtype is np.complex64_, we should have an instance of that as opposed to a python complex object. Parameters ---------- value : object dtype : np.dtype or ExtensionDtype Returns ------- object """ # Start with exceptions in which we do _not_ cast to numpy types if is_extension_array_dtype(dtype): return value elif dtype == np.object_: return value elif isna(value): # e.g. keep np.nan rather than try to cast to np.float32(np.nan) return value return dtype.type(value) def infer_dtype_from(val, pandas_dtype: bool = False) -> Tuple[DtypeObj, Any]: """ Interpret the dtype from a scalar or array. Parameters ---------- val : object pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar/array belongs to pandas extension types is inferred as object """ if not is_list_like(val): return infer_dtype_from_scalar(val, pandas_dtype=pandas_dtype) return infer_dtype_from_array(val, pandas_dtype=pandas_dtype) def infer_dtype_from_scalar(val, pandas_dtype: bool = False) -> Tuple[DtypeObj, Any]: """ Interpret the dtype from a scalar. Parameters ---------- pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, scalar belongs to pandas extension types is inferred as object """ dtype: DtypeObj = np.dtype(object) # a 1-element ndarray if isinstance(val, np.ndarray): if val.ndim != 0: msg = "invalid ndarray passed to infer_dtype_from_scalar" raise ValueError(msg) dtype = val.dtype val = lib.item_from_zerodim(val) elif isinstance(val, str): # If we create an empty array using a string to infer # the dtype, NumPy will only allocate one character per entry # so this is kind of bad. Alternately we could use np.repeat # instead of np.empty (but then you still don't want things # coming out as np.str_! dtype = np.dtype(object) elif isinstance(val, (np.datetime64, datetime)): try: val = Timestamp(val) except OutOfBoundsDatetime: return np.dtype(object), val if val is NaT or val.tz is None: dtype = np.dtype("M8[ns]") else: if pandas_dtype: dtype = DatetimeTZDtype(unit="ns", tz=val.tz) else: # return datetimetz as object return np.dtype(object), val val = val.value elif isinstance(val, (np.timedelta64, timedelta)): val = Timedelta(val).value dtype = np.dtype("m8[ns]") elif is_bool(val): dtype = np.dtype(np.bool_) elif is_integer(val): if isinstance(val, np.integer): dtype = np.dtype(type(val)) else: dtype = np.dtype(np.int64) try: np.array(val, dtype=dtype) except OverflowError: dtype = np.array(val).dtype elif is_float(val): if isinstance(val, np.floating): dtype = np.dtype(type(val)) else: dtype = np.dtype(np.float64) elif is_complex(val): dtype = np.dtype(np.complex_) elif pandas_dtype: if lib.is_period(val): dtype = PeriodDtype(freq=val.freq) elif lib.is_interval(val): subtype = infer_dtype_from_scalar(val.left, pandas_dtype=True)[0] dtype = IntervalDtype(subtype=subtype) return dtype, val def dict_compat(d: Dict[Scalar, Scalar]) -> Dict[Scalar, Scalar]: """ Convert datetimelike-keyed dicts to a Timestamp-keyed dict. Parameters ---------- d: dict-like object Returns ------- dict """ return {maybe_box_datetimelike(key): value for key, value in d.items()} def infer_dtype_from_array( arr, pandas_dtype: bool = False ) -> Tuple[DtypeObj, ArrayLike]: """ Infer the dtype from an array. Parameters ---------- arr : array pandas_dtype : bool, default False whether to infer dtype including pandas extension types. If False, array belongs to pandas extension types is inferred as object Returns ------- tuple (numpy-compat/pandas-compat dtype, array) Notes ----- if pandas_dtype=False. these infer to numpy dtypes exactly with the exception that mixed / object dtypes are not coerced by stringifying or conversion if pandas_dtype=True. datetime64tz-aware/categorical types will retain there character. Examples -------- >>> np.asarray([1, '1']) array(['1', '1'], dtype='<U21') >>> infer_dtype_from_array([1, '1']) (dtype('O'), [1, '1']) """ if isinstance(arr, np.ndarray): return arr.dtype, arr if not is_list_like(arr): raise TypeError("'arr' must be list-like") if pandas_dtype and is_extension_array_dtype(arr): return arr.dtype, arr elif isinstance(arr, ABCSeries): return arr.dtype, np.asarray(arr) # don't force numpy coerce with nan's inferred = lib.infer_dtype(arr, skipna=False) if inferred in ["string", "bytes", "mixed", "mixed-integer"]: return (np.dtype(np.object_), arr) arr = np.asarray(arr) return arr.dtype, arr def maybe_infer_dtype_type(element): """ Try to infer an object's dtype, for use in arithmetic ops. Uses `element.dtype` if that's available. Objects implementing the iterator protocol are cast to a NumPy array, and from there the array's type is used. Parameters ---------- element : object Possibly has a `.dtype` attribute, and possibly the iterator protocol. Returns ------- tipo : type Examples -------- >>> from collections import namedtuple >>> Foo = namedtuple("Foo", "dtype") >>> maybe_infer_dtype_type(Foo(np.dtype("i8"))) dtype('int64') """ tipo = None if hasattr(element, "dtype"): tipo = element.dtype elif is_list_like(element): element = np.asarray(element) tipo = element.dtype return tipo def maybe_upcast( values: np.ndarray, fill_value: Scalar = np.nan, copy: bool = False, ) -> Tuple[np.ndarray, Scalar]: """ Provide explicit type promotion and coercion. Parameters ---------- values : np.ndarray The array that we may want to upcast. fill_value : what we want to fill with copy : bool, default True If True always make a copy even if no upcast is required. Returns ------- values: np.ndarray the original array, possibly upcast fill_value: the fill value, possibly upcast """ new_dtype, fill_value = maybe_promote(values.dtype, fill_value) # We get a copy in all cases _except_ (values.dtype == new_dtype and not copy) values = values.astype(new_dtype, copy=copy) return values, fill_value def invalidate_string_dtypes(dtype_set: Set[DtypeObj]): """ Change string like dtypes to object for ``DataFrame.select_dtypes()``. """ non_string_dtypes = dtype_set - {np.dtype("S").type, np.dtype("<U").type} if non_string_dtypes != dtype_set: raise TypeError("string dtypes are not allowed, use 'object' instead") def coerce_indexer_dtype(indexer, categories): """ coerce the indexer input array to the smallest dtype possible """ length = len(categories) if length < _int8_max: return ensure_int8(indexer) elif length < _int16_max: return ensure_int16(indexer) elif length < _int32_max: return ensure_int32(indexer) return ensure_int64(indexer) def astype_dt64_to_dt64tz( values: ArrayLike, dtype: DtypeObj, copy: bool, via_utc: bool = False ) -> "DatetimeArray": # GH#33401 we have inconsistent behaviors between # Datetimeindex[naive].astype(tzaware) # Series[dt64].astype(tzaware) # This collects them in one place to prevent further fragmentation. from pandas.core.construction import ensure_wrapped_if_datetimelike values = ensure_wrapped_if_datetimelike(values) values = cast("DatetimeArray", values) aware = isinstance(dtype, DatetimeTZDtype) if via_utc: # Series.astype behavior assert values.tz is None and aware # caller is responsible for checking this dtype = cast(DatetimeTZDtype, dtype) if copy: # this should be the only copy values = values.copy() # FIXME: GH#33401 this doesn't match DatetimeArray.astype, which # goes through the `not via_utc` path return values.tz_localize("UTC").tz_convert(dtype.tz) else: # DatetimeArray/DatetimeIndex.astype behavior if values.tz is None and aware: dtype = cast(DatetimeTZDtype, dtype) return values.tz_localize(dtype.tz) elif aware: # GH#18951: datetime64_tz dtype but not equal means different tz dtype = cast(DatetimeTZDtype, dtype) result = values.tz_convert(dtype.tz) if copy: result = result.copy() return result elif values.tz is not None: result = values.tz_convert("UTC").tz_localize(None) if copy: result = result.copy() return result raise NotImplementedError("dtype_equal case should be handled elsewhere") def astype_td64_unit_conversion( values: np.ndarray, dtype: np.dtype, copy: bool ) -> np.ndarray: """ By pandas convention, converting to non-nano timedelta64 returns an int64-dtyped array with ints representing multiples of the desired timedelta unit. This is essentially division. Parameters ---------- values : np.ndarray[timedelta64[ns]] dtype : np.dtype timedelta64 with unit not-necessarily nano copy : bool Returns ------- np.ndarray """ if is_dtype_equal(values.dtype, dtype): if copy: return values.copy() return values # otherwise we are converting to non-nano result = values.astype(dtype, copy=False) # avoid double-copying result = result.astype(np.float64) mask = isna(values) np.putmask(result, mask, np.nan) return result def astype_nansafe( arr: np.ndarray, dtype: DtypeObj, copy: bool = True, skipna: bool = False ) -> ArrayLike: """ Cast the elements of an array to a given dtype a nan-safe manner. Parameters ---------- arr : ndarray dtype : np.dtype or ExtensionDtype copy : bool, default True If False, a view will be attempted but may fail, if e.g. the item sizes don't align. skipna: bool, default False Whether or not we should skip NaN when casting as a string-type. Raises ------ ValueError The dtype was a datetime64/timedelta64 dtype, but it had no unit. """ if arr.ndim > 1: # Make sure we are doing non-copy ravel and reshape. flags = arr.flags flat = arr.ravel("K") result = astype_nansafe(flat, dtype, copy=copy, skipna=skipna) order = "F" if flags.f_contiguous else "C" return result.reshape(arr.shape, order=order) # We get here with 0-dim from sparse arr = np.atleast_1d(arr) # dispatch on extension dtype if needed if isinstance(dtype, ExtensionDtype): return dtype.construct_array_type()._from_sequence(arr, dtype=dtype, copy=copy) elif not isinstance(dtype, np.dtype): raise ValueError("dtype must be np.dtype or ExtensionDtype") if arr.dtype.kind in ["m", "M"] and ( issubclass(dtype.type, str) or dtype == object ): from pandas.core.construction import ensure_wrapped_if_datetimelike arr = ensure_wrapped_if_datetimelike(arr) return arr.astype(dtype, copy=copy) if issubclass(dtype.type, str): return lib.ensure_string_array(arr, skipna=skipna, convert_na_value=False) elif is_datetime64_dtype(arr): if dtype == np.int64: warnings.warn( f"casting {arr.dtype} values to int64 with .astype(...) " "is deprecated and will raise in a future version. " "Use .view(...) instead.", FutureWarning, # stacklevel chosen to be correct when reached via Series.astype stacklevel=7, ) if isna(arr).any(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) # allow frequency conversions if dtype.kind == "M": return arr.astype(dtype) raise TypeError(f"cannot astype a datetimelike from [{arr.dtype}] to [{dtype}]") elif is_timedelta64_dtype(arr): if dtype == np.int64: warnings.warn( f"casting {arr.dtype} values to int64 with .astype(...) " "is deprecated and will raise in a future version. " "Use .view(...) instead.", FutureWarning, # stacklevel chosen to be correct when reached via Series.astype stacklevel=7, ) if isna(arr).any(): raise ValueError("Cannot convert NaT values to integer") return arr.view(dtype) elif dtype.kind == "m": return astype_td64_unit_conversion(arr, dtype, copy=copy) raise TypeError(f"cannot astype a timedelta from [{arr.dtype}] to [{dtype}]") elif np.issubdtype(arr.dtype, np.floating) and np.issubdtype(dtype, np.integer): if not np.isfinite(arr).all(): raise ValueError("Cannot convert non-finite values (NA or inf) to integer") elif is_object_dtype(arr): # work around NumPy brokenness, #1987 if np.issubdtype(dtype.type, np.integer): return lib.astype_intsafe(arr, dtype) # if we have a datetime/timedelta array of objects # then coerce to a proper dtype and recall astype_nansafe elif is_datetime64_dtype(dtype): from pandas import to_datetime return astype_nansafe(to_datetime(arr).values, dtype, copy=copy) elif is_timedelta64_dtype(dtype): from pandas import to_timedelta return astype_nansafe(to_timedelta(arr)._values, dtype, copy=copy) if dtype.name in ("datetime64", "timedelta64"): msg = ( f"The '{dtype.name}' dtype has no unit. Please pass in " f"'{dtype.name}[ns]' instead." ) raise ValueError(msg) if copy or is_object_dtype(arr.dtype) or is_object_dtype(dtype): # Explicit copy, or required since NumPy can't view from / to object. return arr.astype(dtype, copy=True) return arr.astype(dtype, copy=copy) def soft_convert_objects( values: np.ndarray, datetime: bool = True, numeric: bool = True, timedelta: bool = True, copy: bool = True, ): """ Try to coerce datetime, timedelta, and numeric object-dtype columns to inferred dtype. Parameters ---------- values : np.ndarray[object] datetime : bool, default True numeric: bool, default True timedelta : bool, default True copy : bool, default True Returns ------- np.ndarray """ validate_bool_kwarg(datetime, "datetime") validate_bool_kwarg(numeric, "numeric") validate_bool_kwarg(timedelta, "timedelta") validate_bool_kwarg(copy, "copy") conversion_count = sum((datetime, numeric, timedelta)) if conversion_count == 0: raise ValueError("At least one of datetime, numeric or timedelta must be True.") # Soft conversions if datetime or timedelta: # GH 20380, when datetime is beyond year 2262, hence outside # bound of nanosecond-resolution 64-bit integers. try: values = lib.maybe_convert_objects( values, convert_datetime=datetime, convert_timedelta=timedelta ) except OutOfBoundsDatetime: return values if numeric and is_object_dtype(values.dtype): converted = lib.maybe_convert_numeric(values, set(), coerce_numeric=True) # If all NaNs, then do not-alter values = converted if not isna(converted).all() else values values = values.copy() if copy else values return values def convert_dtypes( input_array: AnyArrayLike, convert_string: bool = True, convert_integer: bool = True, convert_boolean: bool = True, convert_floating: bool = True, ) -> Dtype: """ Convert objects to best possible type, and optionally, to types supporting ``pd.NA``. Parameters ---------- input_array : ExtensionArray, Index, Series or np.ndarray convert_string : bool, default True Whether object dtypes should be converted to ``StringDtype()``. convert_integer : bool, default True Whether, if possible, conversion can be done to integer extension types. convert_boolean : bool, defaults True Whether object dtypes should be converted to ``BooleanDtypes()``. convert_floating : bool, defaults True Whether, if possible, conversion can be done to floating extension types. If `convert_integer` is also True, preference will be give to integer dtypes if the floats can be faithfully casted to integers. Returns ------- dtype new dtype """ is_extension = is_extension_array_dtype(input_array.dtype) if ( convert_string or convert_integer or convert_boolean or convert_floating ) and not is_extension: try: inferred_dtype = lib.infer_dtype(input_array) except ValueError: # Required to catch due to Period. Can remove once GH 23553 is fixed inferred_dtype = input_array.dtype if not convert_string and is_string_dtype(inferred_dtype): inferred_dtype = input_array.dtype if convert_integer: target_int_dtype = "Int64" if is_integer_dtype(input_array.dtype): from pandas.core.arrays.integer import INT_STR_TO_DTYPE inferred_dtype = INT_STR_TO_DTYPE.get( input_array.dtype.name, target_int_dtype ) if not is_integer_dtype(input_array.dtype) and is_numeric_dtype( input_array.dtype ): inferred_dtype = target_int_dtype else: if is_integer_dtype(inferred_dtype): inferred_dtype = input_array.dtype if convert_floating: if not is_integer_dtype(input_array.dtype) and is_numeric_dtype( input_array.dtype ): from pandas.core.arrays.floating import FLOAT_STR_TO_DTYPE inferred_float_dtype = FLOAT_STR_TO_DTYPE.get( input_array.dtype.name, "Float64" ) # if we could also convert to integer, check if all floats # are actually integers if convert_integer: arr = input_array[notna(input_array)] if (arr.astype(int) == arr).all(): inferred_dtype = "Int64" else: inferred_dtype = inferred_float_dtype else: inferred_dtype = inferred_float_dtype else: if is_float_dtype(inferred_dtype): inferred_dtype = input_array.dtype if convert_boolean: if is_bool_dtype(input_array.dtype): inferred_dtype = "boolean" else: if isinstance(inferred_dtype, str) and inferred_dtype == "boolean": inferred_dtype = input_array.dtype else: inferred_dtype = input_array.dtype return inferred_dtype def maybe_castable(arr: np.ndarray) -> bool: # return False to force a non-fastpath assert isinstance(arr, np.ndarray) # GH 37024 # check datetime64[ns]/timedelta64[ns] are valid # otherwise try to coerce kind = arr.dtype.kind if kind == "M": return is_datetime64_ns_dtype(arr.dtype) elif kind == "m": return is_timedelta64_ns_dtype(arr.dtype) return arr.dtype.name not in POSSIBLY_CAST_DTYPES def maybe_infer_to_datetimelike( value: Union[ArrayLike, Scalar], convert_dates: bool = False ): """ we might have a array (or single object) that is datetime like, and no dtype is passed don't change the value unless we find a datetime/timedelta set this is pretty strict in that a datetime/timedelta is REQUIRED in addition to possible nulls/string likes Parameters ---------- value : np.array / Series / Index / list-like convert_dates : bool, default False if True try really hard to convert dates (such as datetime.date), other leave inferred dtype 'date' alone """ if isinstance(value, (ABCIndex, ABCExtensionArray)): if not is_object_dtype(value.dtype): raise ValueError("array-like value must be object-dtype") v = value if not is_list_like(v): v = [v] v = np.array(v, copy=False) # we only care about object dtypes if not is_object_dtype(v): return value shape = v.shape if v.ndim != 1: v = v.ravel() if not len(v): return value def try_datetime(v): # safe coerce to datetime64 try: # GH19671 # tznaive only v = tslib.array_to_datetime(v, require_iso8601=True, errors="raise")[0] except ValueError: # we might have a sequence of the same-datetimes with tz's # if so coerce to a DatetimeIndex; if they are not the same, # then these stay as object dtype, xref GH19671 from pandas import DatetimeIndex try: values, tz = conversion.datetime_to_datetime64(v) except (ValueError, TypeError): pass else: return DatetimeIndex(values).tz_localize("UTC").tz_convert(tz=tz) except TypeError: # e.g. <class 'numpy.timedelta64'> is not convertible to datetime pass return v.reshape(shape) def try_timedelta(v): # safe coerce to timedelta64 # will try first with a string & object conversion from pandas import to_timedelta try: td_values = to_timedelta(v) except ValueError: return v.reshape(shape) else: return np.asarray(td_values).reshape(shape) inferred_type = lib.infer_datetimelike_array(ensure_object(v)) if inferred_type == "date" and convert_dates: value = try_datetime(v) elif inferred_type == "datetime": value = try_datetime(v) elif inferred_type == "timedelta": value = try_timedelta(v) elif inferred_type == "nat": # if all NaT, return as datetime if isna(v).all(): value = try_datetime(v) else: # We have at least a NaT and a string # try timedelta first to avoid spurious datetime conversions # e.g. '00:00:01' is a timedelta but technically is also a datetime value = try_timedelta(v) if lib.infer_dtype(value, skipna=False) in ["mixed"]: # cannot skip missing values, as NaT implies that the string # is actually a datetime value = try_datetime(v) return value def maybe_cast_to_datetime(value, dtype: Optional[DtypeObj]): """ try to cast the array/value to a datetimelike dtype, converting float nan to iNaT """ from pandas.core.tools.datetimes import to_datetime from pandas.core.tools.timedeltas import to_timedelta if not is_list_like(value): raise TypeError("value must be listlike") if dtype is not None: is_datetime64 = is_datetime64_dtype(dtype) is_datetime64tz = is_datetime64tz_dtype(dtype) is_timedelta64 = is_timedelta64_dtype(dtype) if is_datetime64 or is_datetime64tz or is_timedelta64: # Force the dtype if needed. msg = ( f"The '{dtype.name}' dtype has no unit. " f"Please pass in '{dtype.name}[ns]' instead." ) if is_datetime64: # unpack e.g. SparseDtype dtype = getattr(dtype, "subtype", dtype) if not is_dtype_equal(dtype, DT64NS_DTYPE): # pandas supports dtype whose granularity is less than [ns] # e.g., [ps], [fs], [as] if dtype <= np.dtype("M8[ns]"): if dtype.name == "datetime64": raise ValueError(msg) dtype = DT64NS_DTYPE else: raise TypeError( f"cannot convert datetimelike to dtype [{dtype}]" ) elif is_timedelta64 and not is_dtype_equal(dtype, TD64NS_DTYPE): # pandas supports dtype whose granularity is less than [ns] # e.g., [ps], [fs], [as] if dtype <= np.dtype("m8[ns]"): if dtype.name == "timedelta64": raise ValueError(msg) dtype = TD64NS_DTYPE else: raise TypeError(f"cannot convert timedeltalike to dtype [{dtype}]") if not is_sparse(value): value = np.array(value, copy=False) # have a scalar array-like (e.g. NaT) if value.ndim == 0: value = iNaT # we have an array of datetime or timedeltas & nulls elif np.prod(value.shape) or not is_dtype_equal(value.dtype, dtype): _disallow_mismatched_datetimelike(value, dtype) try: if is_datetime64: value = to_datetime(value, errors="raise") # GH 25843: Remove tz information since the dtype # didn't specify one if value.tz is not None: value = value.tz_localize(None) value = value._values elif is_datetime64tz: # The string check can be removed once issue #13712 # is solved. String data that is passed with a # datetime64tz is assumed to be naive which should # be localized to the timezone. is_dt_string = is_string_dtype(value.dtype) value = to_datetime(value, errors="raise").array if is_dt_string: # Strings here are naive, so directly localize value = value.tz_localize(dtype.tz) else: # Numeric values are UTC at this point, # so localize and convert value = value.tz_localize("UTC").tz_convert(dtype.tz) elif is_timedelta64: value = to_timedelta(value, errors="raise")._values except OutOfBoundsDatetime: raise except (ValueError, TypeError): pass # coerce datetimelike to object elif is_datetime64_dtype( getattr(value, "dtype", None) ) and not is_datetime64_dtype(dtype): if is_object_dtype(dtype): if value.dtype != DT64NS_DTYPE: value = value.astype(DT64NS_DTYPE) ints = np.asarray(value).view("i8") return ints_to_pydatetime(ints) # we have a non-castable dtype that was passed raise TypeError(f"Cannot cast datetime64 to {dtype}") else: is_array = isinstance(value, np.ndarray) # catch a datetime/timedelta that is not of ns variety # and no coercion specified if is_array and value.dtype.kind in ["M", "m"]: value = sanitize_to_nanoseconds(value) # only do this if we have an array and the dtype of the array is not # setup already we are not an integer/object, so don't bother with this # conversion elif not ( is_array and not ( issubclass(value.dtype.type, np.integer) or value.dtype == np.object_ ) ): value = maybe_infer_to_datetimelike(value) return value def sanitize_to_nanoseconds(values: np.ndarray) -> np.ndarray: """ Safely convert non-nanosecond datetime64 or timedelta64 values to nanosecond. """ dtype = values.dtype if dtype.kind == "M" and dtype != DT64NS_DTYPE: values = conversion.ensure_datetime64ns(values) elif dtype.kind == "m" and dtype != TD64NS_DTYPE: values = conversion.ensure_timedelta64ns(values) return values def find_common_type(types: List[DtypeObj]) -> DtypeObj: """ Find a common data type among the given dtypes. Parameters ---------- types : list of dtypes Returns ------- pandas extension or numpy dtype See Also -------- numpy.find_common_type """ if not types: raise ValueError("no types given") first = types[0] # workaround for find_common_type([np.dtype('datetime64[ns]')] * 2) # => object if all(is_dtype_equal(first, t) for t in types[1:]): return first # get unique types (dict.fromkeys is used as order-preserving set()) types = list(dict.fromkeys(types).keys()) if any(isinstance(t, ExtensionDtype) for t in types): for t in types: if isinstance(t, ExtensionDtype): res = t._get_common_dtype(types) if res is not None: return res return np.dtype("object") # take lowest unit if all(is_datetime64_dtype(t) for t in types): return np.dtype("datetime64[ns]") if all(is_timedelta64_dtype(t) for t in types): return np.dtype("timedelta64[ns]") # don't mix bool / int or float or complex # this is different from numpy, which casts bool with float/int as int has_bools = any(is_bool_dtype(t) for t in types) if has_bools: for t in types: if is_integer_dtype(t) or is_float_dtype(t) or is_complex_dtype(t): return np.dtype("object") return np.find_common_type(types, []) def construct_2d_arraylike_from_scalar( value: Scalar, length: int, width: int, dtype: np.dtype, copy: bool ) -> np.ndarray: if dtype.kind in ["m", "M"]: value = maybe_unbox_datetimelike(value, dtype) # Attempt to coerce to a numpy array try: arr = np.array(value, dtype=dtype, copy=copy) except (ValueError, TypeError) as err: raise TypeError( f"DataFrame constructor called with incompatible data and dtype: {err}" ) from err if arr.ndim != 0: raise ValueError("DataFrame constructor not properly called!") shape = (length, width) return np.full(shape, arr) def construct_1d_arraylike_from_scalar( value: Scalar, length: int, dtype: Optional[DtypeObj] ) -> ArrayLike: """ create a np.ndarray / pandas type of specified shape and dtype filled with values Parameters ---------- value : scalar value length : int dtype : pandas_dtype or np.dtype Returns ------- np.ndarray / pandas type of length, filled with value """ if dtype is None: try: dtype, value = infer_dtype_from_scalar(value, pandas_dtype=True) except OutOfBoundsDatetime: dtype = np.dtype(object) if is_extension_array_dtype(dtype): cls = dtype.construct_array_type() subarr = cls._from_sequence([value] * length, dtype=dtype) else: if length and is_integer_dtype(dtype) and isna(value): # coerce if we have nan for an integer dtype dtype = np.dtype("float64") elif isinstance(dtype, np.dtype) and dtype.kind in ("U", "S"): # we need to coerce to object dtype to avoid # to allow numpy to take our string as a scalar value dtype = np.dtype("object") if not isna(value): value = ensure_str(value) elif dtype.kind in ["M", "m"]: value = maybe_unbox_datetimelike(value, dtype) subarr = np.empty(length, dtype=dtype) subarr.fill(value) return subarr def construct_1d_object_array_from_listlike(values: Sized) -> np.ndarray: """ Transform any list-like object in a 1-dimensional numpy array of object dtype. Parameters ---------- values : any iterable which has a len() Raises ------ TypeError * If `values` does not have a len() Returns ------- 1-dimensional numpy array of dtype object """ # numpy will try to interpret nested lists as further dimensions, hence # making a 1D array that contains list-likes is a bit tricky: result = np.empty(len(values), dtype="object") result[:] = values return result def construct_1d_ndarray_preserving_na( values: Sequence, dtype: Optional[DtypeObj] = None, copy: bool = False ) -> np.ndarray: """ Construct a new ndarray, coercing `values` to `dtype`, preserving NA. Parameters ---------- values : Sequence dtype : numpy.dtype, optional copy : bool, default False Note that copies may still be made with ``copy=False`` if casting is required. Returns ------- arr : ndarray[dtype] Examples -------- >>> np.array([1.0, 2.0, None], dtype='str') array(['1.0', '2.0', 'None'], dtype='<U4') >>> construct_1d_ndarray_preserving_na([1.0, 2.0, None], dtype=np.dtype('str')) array(['1.0', '2.0', None], dtype=object) """ if dtype is not None and dtype.kind == "U": subarr = lib.ensure_string_array(values, convert_na_value=False, copy=copy) else: if dtype is not None: _disallow_mismatched_datetimelike(values, dtype) subarr = np.array(values, dtype=dtype, copy=copy) return subarr def maybe_cast_to_integer_array(arr, dtype: Dtype, copy: bool = False): """ Takes any dtype and returns the casted version, raising for when data is incompatible with integer/unsigned integer dtypes. .. versionadded:: 0.24.0 Parameters ---------- arr : array-like The array to cast. dtype : str, np.dtype The integer dtype to cast the array to. copy: bool, default False Whether to make a copy of the array before returning. Returns ------- ndarray Array of integer or unsigned integer dtype. Raises ------ OverflowError : the dtype is incompatible with the data ValueError : loss of precision has occurred during casting Examples -------- If you try to coerce negative values to unsigned integers, it raises: >>> pd.Series([-1], dtype="uint64") Traceback (most recent call last): ... OverflowError: Trying to coerce negative values to unsigned integers Also, if you try to coerce float values to integers, it raises: >>> pd.Series([1, 2, 3.5], dtype="int64") Traceback (most recent call last): ... ValueError: Trying to coerce float values to integers """ assert is_integer_dtype(dtype) try: if not hasattr(arr, "astype"): casted = np.array(arr, dtype=dtype, copy=copy) else: casted = arr.astype(dtype, copy=copy) except OverflowError as err: raise OverflowError( "The elements provided in the data cannot all be " f"casted to the dtype {dtype}" ) from err if np.array_equal(arr, casted): return casted # We do this casting to allow for proper # data and dtype checking. # # We didn't do this earlier because NumPy # doesn't handle `uint64` correctly. arr = np.asarray(arr) if is_unsigned_integer_dtype(dtype) and (arr < 0).any(): raise OverflowError("Trying to coerce negative values to unsigned integers") if is_float_dtype(arr) or is_object_dtype(arr): raise ValueError("Trying to coerce float values to integers") def convert_scalar_for_putitemlike(scalar: Scalar, dtype: np.dtype) -> Scalar: """ Convert datetimelike scalar if we are setting into a datetime64 or timedelta64 ndarray. Parameters ---------- scalar : scalar dtype : np.dtype Returns ------- scalar """ if dtype.kind in ["m", "M"]: scalar = maybe_box_datetimelike(scalar, dtype) return maybe_unbox_datetimelike(scalar, dtype) else: validate_numeric_casting(dtype, scalar) return scalar def validate_numeric_casting(dtype: np.dtype, value: Scalar) -> None: """ Check that we can losslessly insert the given value into an array with the given dtype. Parameters ---------- dtype : np.dtype value : scalar Raises ------ ValueError """ if ( issubclass(dtype.type, (np.integer, np.bool_)) and is_float(value) and np.isnan(value) ): raise ValueError("Cannot assign nan to integer series") if ( issubclass(dtype.type, (np.integer, np.floating, complex)) and not issubclass(dtype.type, np.bool_) and is_bool(value) ): raise ValueError("Cannot assign bool to float/integer series")
bsd-3-clause
codefordc/ERDA
python/buildcsv.py
1
3223
#! /usr/bin/env python # encoding: utf-8 ''' Converts and merges multiple .xlsx Excel files containing DC emergency response data into a single .csv file. ''' import sys import glob from collections import defaultdict, OrderedDict import pandas as pd import csv def address_quadrant(address): '''Parses out the quadrant from an address string, if it contains one.''' quad = address.strip().split(' ') if 'NW' in quad: return 'NW' elif 'NE' in quad: return "NE" elif 'SW' in quad: return 'SW' elif 'SE' in quad: return 'SE' else: return 'NA' def normalize_address(address): return address.strip().upper() def print_summary(num_valid, errors): num_no_address = sum(e[0] == 'no address' for e in errors) num_blank_address = sum(e[0] == 'blank address' for e in errors) print(num_valid, 'valid incident(s) processed.') print(len(errors), 'incident(s) were excluded:') print(num_no_address, 'incident(s) had an empty address field.') print(num_blank_address, 'incident(s) had an address of "BLANK".') def convert_to_csv(data_path, incidents): csv_rows = [['Date', 'Dispatch Time', 'Address', 'Quadrant', 'Response Time', 'Unit']] errors = [] addresses = defaultdict(int) i = 0 for index, incident in incidents.iterrows(): i += 1 date = incident['Date'].date() time = incident['Dispatch Time (HH:MM:SS)'] address = incident['Location'] if (not isinstance(address, str)): errors.append(('no address', incident)) continue address = normalize_address(address) if (address == "BLANK"): errors.append(('blank address', incident)) continue addresses[address] += 1 quadrant = address_quadrant(address) response_time = incident['Response Time (HH:MM:SS)'] unit = incident['Unit'] csv_rows.append([date, time, address, quadrant, response_time, unit]) csv_path = data_path + '/incidents.csv' addresses_path = data_path + '/addresses.csv' with open(csv_path, 'w') as csv_file: writer = csv.writer(csv_file) for row in csv_rows: writer.writerow(row) sorted_addresses = OrderedDict(sorted(addresses.items(), key=lambda t: t[0])) with open(addresses_path, 'w') as addresses_file: writer = csv.writer(addresses_file) for address, count in sorted_addresses.items(): writer.writerow([address]) if (len(errors) > 0): print_summary(len(csv_rows) - 1, errors) def import_incident(row): incident = [] for col in row: incident.append(col.value) return incident def import_erda_file(file_name): '''Imports an Excel file with the specified name.''' print(file_name) xl_file = pd.ExcelFile(file_name) data_frame = xl_file.parse('DATA') print(data_frame.shape[0], 'incident(s)') return data_frame def import_erda_files(data_path): '''Imports all Excel files in the specified directory.''' file_names = glob.glob(data_path + "/*.xlsx") data_frames = [] for file_name in file_names: data_frames.append(import_erda_file(file_name)) incidents = pd.concat(data_frames) print(incidents.shape[0], 'incident(s) loaded.') convert_to_csv(data_path, incidents) def usage(): '''Prints a help string.''' print("usage: buildcsv.py <dirname>") if __name__ == "__main__": if (len(sys.argv) == 2): import_erda_files(sys.argv[1]) else: usage()
bsd-3-clause
GuessWhoSamFoo/pandas
pandas/core/arrays/sparse.py
2
66808
""" SparseArray data structure """ from __future__ import division import numbers import operator import re import warnings import numpy as np from pandas._libs import index as libindex, lib import pandas._libs.sparse as splib from pandas._libs.sparse import BlockIndex, IntIndex from pandas._libs.tslibs import NaT import pandas.compat as compat from pandas.compat.numpy import function as nv from pandas.errors import PerformanceWarning from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.cast import ( astype_nansafe, construct_1d_arraylike_from_scalar, find_common_type, infer_dtype_from_scalar, maybe_convert_platform) from pandas.core.dtypes.common import ( is_array_like, is_bool_dtype, is_datetime64_any_dtype, is_dtype_equal, is_integer, is_list_like, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype) from pandas.core.dtypes.dtypes import register_extension_dtype from pandas.core.dtypes.generic import ( ABCIndexClass, ABCSeries, ABCSparseSeries) from pandas.core.dtypes.missing import isna, na_value_for_dtype, notna from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray, ExtensionOpsMixin from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.missing import interpolate_2d import pandas.io.formats.printing as printing # ---------------------------------------------------------------------------- # Dtype @register_extension_dtype class SparseDtype(ExtensionDtype): """ Dtype for data stored in :class:`SparseArray`. This dtype implements the pandas ExtensionDtype interface. .. versionadded:: 0.24.0 Parameters ---------- dtype : str, ExtensionDtype, numpy.dtype, type, default numpy.float64 The dtype of the underlying array storing the non-fill value values. fill_value : scalar, optional The scalar value not stored in the SparseArray. By default, this depends on `dtype`. =========== ========== dtype na_value =========== ========== float ``np.nan`` int ``0`` bool ``False`` datetime64 ``pd.NaT`` timedelta64 ``pd.NaT`` =========== ========== The default value may be overridden by specifying a `fill_value`. """ # We include `_is_na_fill_value` in the metadata to avoid hash collisions # between SparseDtype(float, 0.0) and SparseDtype(float, nan). # Without is_na_fill_value in the comparison, those would be equal since # hash(nan) is (sometimes?) 0. _metadata = ('_dtype', '_fill_value', '_is_na_fill_value') def __init__(self, dtype=np.float64, fill_value=None): # type: (Union[str, np.dtype, 'ExtensionDtype', type], Any) -> None from pandas.core.dtypes.missing import na_value_for_dtype from pandas.core.dtypes.common import ( pandas_dtype, is_string_dtype, is_scalar ) if isinstance(dtype, type(self)): if fill_value is None: fill_value = dtype.fill_value dtype = dtype.subtype dtype = pandas_dtype(dtype) if is_string_dtype(dtype): dtype = np.dtype('object') if fill_value is None: fill_value = na_value_for_dtype(dtype) if not is_scalar(fill_value): raise ValueError("fill_value must be a scalar. Got {} " "instead".format(fill_value)) self._dtype = dtype self._fill_value = fill_value def __hash__(self): # Python3 doesn't inherit __hash__ when a base class overrides # __eq__, so we explicitly do it here. return super(SparseDtype, self).__hash__() def __eq__(self, other): # We have to override __eq__ to handle NA values in _metadata. # The base class does simple == checks, which fail for NA. if isinstance(other, compat.string_types): try: other = self.construct_from_string(other) except TypeError: return False if isinstance(other, type(self)): subtype = self.subtype == other.subtype if self._is_na_fill_value: # this case is complicated by two things: # SparseDtype(float, float(nan)) == SparseDtype(float, np.nan) # SparseDtype(float, np.nan) != SparseDtype(float, pd.NaT) # i.e. we want to treat any floating-point NaN as equal, but # not a floating-point NaN and a datetime NaT. fill_value = ( other._is_na_fill_value and isinstance(self.fill_value, type(other.fill_value)) or isinstance(other.fill_value, type(self.fill_value)) ) else: fill_value = self.fill_value == other.fill_value return subtype and fill_value return False @property def fill_value(self): """ The fill value of the array. Converting the SparseArray to a dense ndarray will fill the array with this value. .. warning:: It's possible to end up with a SparseArray that has ``fill_value`` values in ``sp_values``. This can occur, for example, when setting ``SparseArray.fill_value`` directly. """ return self._fill_value @property def _is_na_fill_value(self): from pandas.core.dtypes.missing import isna return isna(self.fill_value) @property def _is_numeric(self): from pandas.core.dtypes.common import is_object_dtype return not is_object_dtype(self.subtype) @property def _is_boolean(self): from pandas.core.dtypes.common import is_bool_dtype return is_bool_dtype(self.subtype) @property def kind(self): """ The sparse kind. Either 'integer', or 'block'. """ return self.subtype.kind @property def type(self): return self.subtype.type @property def subtype(self): return self._dtype @property def name(self): return 'Sparse[{}, {}]'.format(self.subtype.name, self.fill_value) def __repr__(self): return self.name @classmethod def construct_array_type(cls): return SparseArray @classmethod def construct_from_string(cls, string): """ Construct a SparseDtype from a string form. Parameters ---------- string : str Can take the following forms. string dtype ================ ============================ 'int' SparseDtype[np.int64, 0] 'Sparse' SparseDtype[np.float64, nan] 'Sparse[int]' SparseDtype[np.int64, 0] 'Sparse[int, 0]' SparseDtype[np.int64, 0] ================ ============================ It is not possible to specify non-default fill values with a string. An argument like ``'Sparse[int, 1]'`` will raise a ``TypeError`` because the default fill value for integers is 0. Returns ------- SparseDtype """ msg = "Could not construct SparseDtype from '{}'".format(string) if string.startswith("Sparse"): try: sub_type, has_fill_value = cls._parse_subtype(string) result = SparseDtype(sub_type) except Exception: raise TypeError(msg) else: msg = ("Could not construct SparseDtype from '{}'.\n\nIt " "looks like the fill_value in the string is not " "the default for the dtype. Non-default fill_values " "are not supported. Use the 'SparseDtype()' " "constructor instead.") if has_fill_value and str(result) != string: raise TypeError(msg.format(string)) return result else: raise TypeError(msg) @staticmethod def _parse_subtype(dtype): """ Parse a string to get the subtype Parameters ---------- dtype : str A string like * Sparse[subtype] * Sparse[subtype, fill_value] Returns ------- subtype : str Raises ------ ValueError When the subtype cannot be extracted. """ xpr = re.compile( r"Sparse\[(?P<subtype>[^,]*)(, )?(?P<fill_value>.*?)?\]$" ) m = xpr.match(dtype) has_fill_value = False if m: subtype = m.groupdict()['subtype'] has_fill_value = m.groupdict()['fill_value'] or has_fill_value elif dtype == "Sparse": subtype = 'float64' else: raise ValueError("Cannot parse {}".format(dtype)) return subtype, has_fill_value @classmethod def is_dtype(cls, dtype): dtype = getattr(dtype, 'dtype', dtype) if (isinstance(dtype, compat.string_types) and dtype.startswith("Sparse")): sub_type, _ = cls._parse_subtype(dtype) dtype = np.dtype(sub_type) elif isinstance(dtype, cls): return True return isinstance(dtype, np.dtype) or dtype == 'Sparse' def update_dtype(self, dtype): """ Convert the SparseDtype to a new dtype. This takes care of converting the ``fill_value``. Parameters ---------- dtype : Union[str, numpy.dtype, SparseDtype] The new dtype to use. * For a SparseDtype, it is simply returned * For a NumPy dtype (or str), the current fill value is converted to the new dtype, and a SparseDtype with `dtype` and the new fill value is returned. Returns ------- SparseDtype A new SparseDtype with the corret `dtype` and fill value for that `dtype`. Raises ------ ValueError When the current fill value cannot be converted to the new `dtype` (e.g. trying to convert ``np.nan`` to an integer dtype). Examples -------- >>> SparseDtype(int, 0).update_dtype(float) Sparse[float64, 0.0] >>> SparseDtype(int, 1).update_dtype(SparseDtype(float, np.nan)) Sparse[float64, nan] """ cls = type(self) dtype = pandas_dtype(dtype) if not isinstance(dtype, cls): fill_value = astype_nansafe(np.array(self.fill_value), dtype).item() dtype = cls(dtype, fill_value=fill_value) return dtype @property def _subtype_with_str(self): """ Whether the SparseDtype's subtype should be considered ``str``. Typically, pandas will store string data in an object-dtype array. When converting values to a dtype, e.g. in ``.astype``, we need to be more specific, we need the actual underlying type. Returns ------- >>> SparseDtype(int, 1)._subtype_with_str dtype('int64') >>> SparseDtype(object, 1)._subtype_with_str dtype('O') >>> dtype = SparseDtype(str, '') >>> dtype.subtype dtype('O') >>> dtype._subtype_with_str str """ if isinstance(self.fill_value, compat.string_types): return type(self.fill_value) return self.subtype # ---------------------------------------------------------------------------- # Array _sparray_doc_kwargs = dict(klass='SparseArray') def _get_fill(arr): # type: (SparseArray) -> ndarray """ Create a 0-dim ndarray containing the fill value Parameters ---------- arr : SparseArray Returns ------- fill_value : ndarray 0-dim ndarray with just the fill value. Notes ----- coerce fill_value to arr dtype if possible int64 SparseArray can have NaN as fill_value if there is no missing """ try: return np.asarray(arr.fill_value, dtype=arr.dtype.subtype) except ValueError: return np.asarray(arr.fill_value) def _sparse_array_op(left, right, op, name): """ Perform a binary operation between two arrays. Parameters ---------- left : Union[SparseArray, ndarray] right : Union[SparseArray, ndarray] op : Callable The binary operation to perform name str Name of the callable. Returns ------- SparseArray """ # type: (SparseArray, SparseArray, Callable, str) -> Any if name.startswith('__'): # For lookups in _libs.sparse we need non-dunder op name name = name[2:-2] # dtype used to find corresponding sparse method ltype = left.dtype.subtype rtype = right.dtype.subtype if not is_dtype_equal(ltype, rtype): subtype = find_common_type([ltype, rtype]) ltype = SparseDtype(subtype, left.fill_value) rtype = SparseDtype(subtype, right.fill_value) # TODO(GH-23092): pass copy=False. Need to fix astype_nansafe left = left.astype(ltype) right = right.astype(rtype) dtype = ltype.subtype else: dtype = ltype # dtype the result must have result_dtype = None if left.sp_index.ngaps == 0 or right.sp_index.ngaps == 0: with np.errstate(all='ignore'): result = op(left.get_values(), right.get_values()) fill = op(_get_fill(left), _get_fill(right)) if left.sp_index.ngaps == 0: index = left.sp_index else: index = right.sp_index elif left.sp_index.equals(right.sp_index): with np.errstate(all='ignore'): result = op(left.sp_values, right.sp_values) fill = op(_get_fill(left), _get_fill(right)) index = left.sp_index else: if name[0] == 'r': left, right = right, left name = name[1:] if name in ('and', 'or') and dtype == 'bool': opname = 'sparse_{name}_uint8'.format(name=name) # to make template simple, cast here left_sp_values = left.sp_values.view(np.uint8) right_sp_values = right.sp_values.view(np.uint8) result_dtype = np.bool else: opname = 'sparse_{name}_{dtype}'.format(name=name, dtype=dtype) left_sp_values = left.sp_values right_sp_values = right.sp_values sparse_op = getattr(splib, opname) with np.errstate(all='ignore'): result, index, fill = sparse_op( left_sp_values, left.sp_index, left.fill_value, right_sp_values, right.sp_index, right.fill_value) if result_dtype is None: result_dtype = result.dtype return _wrap_result(name, result, index, fill, dtype=result_dtype) def _wrap_result(name, data, sparse_index, fill_value, dtype=None): """ wrap op result to have correct dtype """ if name.startswith('__'): # e.g. __eq__ --> eq name = name[2:-2] if name in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'): dtype = np.bool fill_value = lib.item_from_zerodim(fill_value) if is_bool_dtype(dtype): # fill_value may be np.bool_ fill_value = bool(fill_value) return SparseArray(data, sparse_index=sparse_index, fill_value=fill_value, dtype=dtype) class SparseArray(PandasObject, ExtensionArray, ExtensionOpsMixin): """ An ExtensionArray for storing sparse data. .. versionchanged:: 0.24.0 Implements the ExtensionArray interface. Parameters ---------- data : array-like A dense array of values to store in the SparseArray. This may contain `fill_value`. sparse_index : SparseIndex, optional index : Index fill_value : scalar, optional Elements in `data` that are `fill_value` are not stored in the SparseArray. For memory savings, this should be the most common value in `data`. By default, `fill_value` depends on the dtype of `data`: =========== ========== data.dtype na_value =========== ========== float ``np.nan`` int ``0`` bool False datetime64 ``pd.NaT`` timedelta64 ``pd.NaT`` =========== ========== The fill value is potentiall specified in three ways. In order of precedence, these are 1. The `fill_value` argument 2. ``dtype.fill_value`` if `fill_value` is None and `dtype` is a ``SparseDtype`` 3. ``data.dtype.fill_value`` if `fill_value` is None and `dtype` is not a ``SparseDtype`` and `data` is a ``SparseArray``. kind : {'integer', 'block'}, default 'integer' The type of storage for sparse locations. * 'block': Stores a `block` and `block_length` for each contiguous *span* of sparse values. This is best when sparse data tends to be clumped together, with large regsions of ``fill-value`` values between sparse values. * 'integer': uses an integer to store the location of each sparse value. dtype : np.dtype or SparseDtype, optional The dtype to use for the SparseArray. For numpy dtypes, this determines the dtype of ``self.sp_values``. For SparseDtype, this determines ``self.sp_values`` and ``self.fill_value``. copy : bool, default False Whether to explicitly copy the incoming `data` array. """ __array_priority__ = 15 _pandas_ftype = 'sparse' _subtyp = 'sparse_array' # register ABCSparseArray def __init__(self, data, sparse_index=None, index=None, fill_value=None, kind='integer', dtype=None, copy=False): from pandas.core.internals import SingleBlockManager if isinstance(data, SingleBlockManager): data = data.internal_values() if fill_value is None and isinstance(dtype, SparseDtype): fill_value = dtype.fill_value if isinstance(data, (type(self), ABCSparseSeries)): # disable normal inference on dtype, sparse_index, & fill_value if sparse_index is None: sparse_index = data.sp_index if fill_value is None: fill_value = data.fill_value if dtype is None: dtype = data.dtype # TODO: make kind=None, and use data.kind? data = data.sp_values # Handle use-provided dtype if isinstance(dtype, compat.string_types): # Two options: dtype='int', regular numpy dtype # or dtype='Sparse[int]', a sparse dtype try: dtype = SparseDtype.construct_from_string(dtype) except TypeError: dtype = pandas_dtype(dtype) if isinstance(dtype, SparseDtype): if fill_value is None: fill_value = dtype.fill_value dtype = dtype.subtype if index is not None and not is_scalar(data): raise Exception("must only pass scalars with an index ") if is_scalar(data): if index is not None: if data is None: data = np.nan if index is not None: npoints = len(index) elif sparse_index is None: npoints = 1 else: npoints = sparse_index.length dtype = infer_dtype_from_scalar(data)[0] data = construct_1d_arraylike_from_scalar( data, npoints, dtype ) if dtype is not None: dtype = pandas_dtype(dtype) # TODO: disentangle the fill_value dtype inference from # dtype inference if data is None: # XXX: What should the empty dtype be? Object or float? data = np.array([], dtype=dtype) if not is_array_like(data): try: # probably shared code in sanitize_series from pandas.core.internals.construction import sanitize_array data = sanitize_array(data, index=None) except ValueError: # NumPy may raise a ValueError on data like [1, []] # we retry with object dtype here. if dtype is None: dtype = object data = np.atleast_1d(np.asarray(data, dtype=dtype)) else: raise if copy: # TODO: avoid double copy when dtype forces cast. data = data.copy() if fill_value is None: fill_value_dtype = data.dtype if dtype is None else dtype if fill_value_dtype is None: fill_value = np.nan else: fill_value = na_value_for_dtype(fill_value_dtype) if isinstance(data, type(self)) and sparse_index is None: sparse_index = data._sparse_index sparse_values = np.asarray(data.sp_values, dtype=dtype) elif sparse_index is None: sparse_values, sparse_index, fill_value = make_sparse( data, kind=kind, fill_value=fill_value, dtype=dtype ) else: sparse_values = np.asarray(data, dtype=dtype) if len(sparse_values) != sparse_index.npoints: raise AssertionError("Non array-like type {type} must " "have the same length as the index" .format(type=type(sparse_values))) self._sparse_index = sparse_index self._sparse_values = sparse_values self._dtype = SparseDtype(sparse_values.dtype, fill_value) @classmethod def _simple_new(cls, sparse_array, sparse_index, dtype): # type: (np.ndarray, SparseIndex, SparseDtype) -> 'SparseArray' new = cls([]) new._sparse_index = sparse_index new._sparse_values = sparse_array new._dtype = dtype return new def __array__(self, dtype=None, copy=True): fill_value = self.fill_value if self.sp_index.ngaps == 0: # Compat for na dtype and int values. return self.sp_values if dtype is None: # Can NumPy represent this type? # If not, `np.result_type` will raise. We catch that # and return object. if is_datetime64_any_dtype(self.sp_values.dtype): # However, we *do* special-case the common case of # a datetime64 with pandas NaT. if fill_value is NaT: # Can't put pd.NaT in a datetime64[ns] fill_value = np.datetime64('NaT') try: dtype = np.result_type(self.sp_values.dtype, type(fill_value)) except TypeError: dtype = object out = np.full(self.shape, fill_value, dtype=dtype) out[self.sp_index.to_int_index().indices] = self.sp_values return out def __setitem__(self, key, value): # I suppose we could allow setting of non-fill_value elements. # TODO(SparseArray.__setitem__): remove special cases in # ExtensionBlock.where msg = "SparseArray does not support item assignment via setitem" raise TypeError(msg) @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return cls(scalars, dtype=dtype) @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) # ------------------------------------------------------------------------ # Data # ------------------------------------------------------------------------ @property def sp_index(self): """ The SparseIndex containing the location of non- ``fill_value`` points. """ return self._sparse_index @property def sp_values(self): """ An ndarray containing the non- ``fill_value`` values. Examples -------- >>> s = SparseArray([0, 0, 1, 0, 2], fill_value=0) >>> s.sp_values array([1, 2]) """ return self._sparse_values @property def dtype(self): return self._dtype @property def fill_value(self): """ Elements in `data` that are `fill_value` are not stored. For memory savings, this should be the most common value in the array. """ return self.dtype.fill_value @fill_value.setter def fill_value(self, value): self._dtype = SparseDtype(self.dtype.subtype, value) @property def kind(self): """ The kind of sparse index for this array. One of {'integer', 'block'}. """ if isinstance(self.sp_index, IntIndex): return 'integer' else: return 'block' @property def _valid_sp_values(self): sp_vals = self.sp_values mask = notna(sp_vals) return sp_vals[mask] def __len__(self): return self.sp_index.length @property def _null_fill_value(self): return self._dtype._is_na_fill_value def _fill_value_matches(self, fill_value): if self._null_fill_value: return isna(fill_value) else: return self.fill_value == fill_value @property def nbytes(self): return self.sp_values.nbytes + self.sp_index.nbytes @property def density(self): """ The percent of non- ``fill_value`` points, as decimal. Examples -------- >>> s = SparseArray([0, 0, 1, 1, 1], fill_value=0) >>> s.density 0.6 """ r = float(self.sp_index.npoints) / float(self.sp_index.length) return r @property def npoints(self): """ The number of non- ``fill_value`` points. Examples -------- >>> s = SparseArray([0, 0, 1, 1, 1], fill_value=0) >>> s.npoints 3 """ return self.sp_index.npoints @property def values(self): """ Dense values """ return self.to_dense() def isna(self): from pandas import isna # If null fill value, we want SparseDtype[bool, true] # to preserve the same memory usage. dtype = SparseDtype(bool, self._null_fill_value) return type(self)._simple_new(isna(self.sp_values), self.sp_index, dtype) def fillna(self, value=None, method=None, limit=None): """ Fill missing values with `value`. Parameters ---------- value : scalar, optional method : str, optional .. warning:: Using 'method' will result in high memory use, as all `fill_value` methods will be converted to an in-memory ndarray limit : int, optional Returns ------- SparseArray Notes ----- When `value` is specified, the result's ``fill_value`` depends on ``self.fill_value``. The goal is to maintain low-memory use. If ``self.fill_value`` is NA, the result dtype will be ``SparseDtype(self.dtype, fill_value=value)``. This will preserve amount of memory used before and after filling. When ``self.fill_value`` is not NA, the result dtype will be ``self.dtype``. Again, this preserves the amount of memory used. """ if ((method is None and value is None) or (method is not None and value is not None)): raise ValueError("Must specify one of 'method' or 'value'.") elif method is not None: msg = "fillna with 'method' requires high memory usage." warnings.warn(msg, PerformanceWarning) filled = interpolate_2d(np.asarray(self), method=method, limit=limit) return type(self)(filled, fill_value=self.fill_value) else: new_values = np.where(isna(self.sp_values), value, self.sp_values) if self._null_fill_value: # This is essentially just updating the dtype. new_dtype = SparseDtype(self.dtype.subtype, fill_value=value) else: new_dtype = self.dtype return self._simple_new(new_values, self._sparse_index, new_dtype) def shift(self, periods=1, fill_value=None): if not len(self) or periods == 0: return self.copy() if isna(fill_value): fill_value = self.dtype.na_value subtype = np.result_type(fill_value, self.dtype.subtype) if subtype != self.dtype.subtype: # just coerce up front arr = self.astype(SparseDtype(subtype, self.fill_value)) else: arr = self empty = self._from_sequence( [fill_value] * min(abs(periods), len(self)), dtype=arr.dtype ) if periods > 0: a = empty b = arr[:-periods] else: a = arr[abs(periods):] b = empty return arr._concat_same_type([a, b]) def _first_fill_value_loc(self): """ Get the location of the first missing value. Returns ------- int """ if len(self) == 0 or self.sp_index.npoints == len(self): return -1 indices = self.sp_index.to_int_index().indices if not len(indices) or indices[0] > 0: return 0 diff = indices[1:] - indices[:-1] return np.searchsorted(diff, 2) + 1 def unique(self): uniques = list(algos.unique(self.sp_values)) fill_loc = self._first_fill_value_loc() if fill_loc >= 0: uniques.insert(fill_loc, self.fill_value) return type(self)._from_sequence(uniques, dtype=self.dtype) def _values_for_factorize(self): # Still override this for hash_pandas_object return np.asarray(self), self.fill_value def factorize(self, na_sentinel=-1): # Currently, ExtensionArray.factorize -> Tuple[ndarray, EA] # The sparsity on this is backwards from what Sparse would want. Want # ExtensionArray.factorize -> Tuple[EA, EA] # Given that we have to return a dense array of labels, why bother # implementing an efficient factorize? labels, uniques = algos.factorize(np.asarray(self), na_sentinel=na_sentinel) uniques = SparseArray(uniques, dtype=self.dtype) return labels, uniques def value_counts(self, dropna=True): """ Returns a Series containing counts of unique values. Parameters ---------- dropna : boolean, default True Don't include counts of NaN, even if NaN is in sp_values. Returns ------- counts : Series """ from pandas import Index, Series keys, counts = algos._value_counts_arraylike(self.sp_values, dropna=dropna) fcounts = self.sp_index.ngaps if fcounts > 0: if self._null_fill_value and dropna: pass else: if self._null_fill_value: mask = isna(keys) else: mask = keys == self.fill_value if mask.any(): counts[mask] += fcounts else: keys = np.insert(keys, 0, self.fill_value) counts = np.insert(counts, 0, fcounts) if not isinstance(keys, ABCIndexClass): keys = Index(keys) result = Series(counts, index=keys) return result # -------- # Indexing # -------- def __getitem__(self, key): if isinstance(key, tuple): if len(key) > 1: raise IndexError("too many indices for array.") key = key[0] if is_integer(key): return self._get_val_at(key) elif isinstance(key, tuple): data_slice = self.values[key] elif isinstance(key, slice): # special case to preserve dtypes if key == slice(None): return self.copy() # TODO: this logic is surely elsewhere # TODO: this could be more efficient indices = np.arange(len(self), dtype=np.int32)[key] return self.take(indices) else: # TODO: I think we can avoid densifying when masking a # boolean SparseArray with another. Need to look at the # key's fill_value for True / False, and then do an intersection # on the indicies of the sp_values. if isinstance(key, SparseArray): if is_bool_dtype(key): key = key.to_dense() else: key = np.asarray(key) if com.is_bool_indexer(key) and len(self) == len(key): return self.take(np.arange(len(key), dtype=np.int32)[key]) elif hasattr(key, '__len__'): return self.take(key) else: raise ValueError("Cannot slice with '{}'".format(key)) return type(self)(data_slice, kind=self.kind) def _get_val_at(self, loc): n = len(self) if loc < 0: loc += n if loc >= n or loc < 0: raise IndexError('Out of bounds access') sp_loc = self.sp_index.lookup(loc) if sp_loc == -1: return self.fill_value else: return libindex.get_value_at(self.sp_values, sp_loc) def take(self, indices, allow_fill=False, fill_value=None): if is_scalar(indices): raise ValueError("'indices' must be an array, not a " "scalar '{}'.".format(indices)) indices = np.asarray(indices, dtype=np.int32) if indices.size == 0: result = [] kwargs = {'dtype': self.dtype} elif allow_fill: result = self._take_with_fill(indices, fill_value=fill_value) kwargs = {} else: result = self._take_without_fill(indices) kwargs = {'dtype': self.dtype} return type(self)(result, fill_value=self.fill_value, kind=self.kind, **kwargs) def _take_with_fill(self, indices, fill_value=None): if fill_value is None: fill_value = self.dtype.na_value if indices.min() < -1: raise ValueError("Invalid value in 'indices'. Must be between -1 " "and the length of the array.") if indices.max() >= len(self): raise IndexError("out of bounds value in 'indices'.") if len(self) == 0: # Empty... Allow taking only if all empty if (indices == -1).all(): dtype = np.result_type(self.sp_values, type(fill_value)) taken = np.empty_like(indices, dtype=dtype) taken.fill(fill_value) return taken else: raise IndexError('cannot do a non-empty take from an empty ' 'axes.') sp_indexer = self.sp_index.lookup_array(indices) if self.sp_index.npoints == 0: # Avoid taking from the empty self.sp_values taken = np.full(sp_indexer.shape, fill_value=fill_value, dtype=np.result_type(type(fill_value))) else: taken = self.sp_values.take(sp_indexer) # sp_indexer may be -1 for two reasons # 1.) we took for an index of -1 (new) # 2.) we took a value that was self.fill_value (old) new_fill_indices = indices == -1 old_fill_indices = (sp_indexer == -1) & ~new_fill_indices # Fill in two steps. # Old fill values # New fill values # potentially coercing to a new dtype at each stage. m0 = sp_indexer[old_fill_indices] < 0 m1 = sp_indexer[new_fill_indices] < 0 result_type = taken.dtype if m0.any(): result_type = np.result_type(result_type, type(self.fill_value)) taken = taken.astype(result_type) taken[old_fill_indices] = self.fill_value if m1.any(): result_type = np.result_type(result_type, type(fill_value)) taken = taken.astype(result_type) taken[new_fill_indices] = fill_value return taken def _take_without_fill(self, indices): to_shift = indices < 0 indices = indices.copy() n = len(self) if (indices.max() >= n) or (indices.min() < -n): if n == 0: raise IndexError("cannot do a non-empty take from an " "empty axes.") else: raise IndexError("out of bounds value in 'indices'.") if to_shift.any(): indices[to_shift] += n if self.sp_index.npoints == 0: # edge case in take... # I think just return out = np.full(indices.shape, self.fill_value, dtype=np.result_type(type(self.fill_value))) arr, sp_index, fill_value = make_sparse(out, fill_value=self.fill_value) return type(self)(arr, sparse_index=sp_index, fill_value=fill_value) sp_indexer = self.sp_index.lookup_array(indices) taken = self.sp_values.take(sp_indexer) fillable = (sp_indexer < 0) if fillable.any(): # TODO: may need to coerce array to fill value result_type = np.result_type(taken, type(self.fill_value)) taken = taken.astype(result_type) taken[fillable] = self.fill_value return taken def searchsorted(self, v, side="left", sorter=None): msg = "searchsorted requires high memory usage." warnings.warn(msg, PerformanceWarning, stacklevel=2) if not is_scalar(v): v = np.asarray(v) v = np.asarray(v) return np.asarray(self, dtype=self.dtype.subtype).searchsorted( v, side, sorter ) def copy(self, deep=False): if deep: values = self.sp_values.copy() else: values = self.sp_values return self._simple_new(values, self.sp_index, self.dtype) @classmethod def _concat_same_type(cls, to_concat): fill_values = [x.fill_value for x in to_concat] fill_value = fill_values[0] # np.nan isn't a singleton, so we may end up with multiple # NaNs here, so we ignore tha all NA case too. if not (len(set(fill_values)) == 1 or isna(fill_values).all()): warnings.warn("Concatenating sparse arrays with multiple fill " "values: '{}'. Picking the first and " "converting the rest.".format(fill_values), PerformanceWarning, stacklevel=6) keep = to_concat[0] to_concat2 = [keep] for arr in to_concat[1:]: to_concat2.append(cls(np.asarray(arr), fill_value=fill_value)) to_concat = to_concat2 values = [] length = 0 if to_concat: sp_kind = to_concat[0].kind else: sp_kind = 'integer' if sp_kind == 'integer': indices = [] for arr in to_concat: idx = arr.sp_index.to_int_index().indices.copy() idx += length # TODO: wraparound length += arr.sp_index.length values.append(arr.sp_values) indices.append(idx) data = np.concatenate(values) indices = np.concatenate(indices) sp_index = IntIndex(length, indices) else: # when concatentating block indices, we don't claim that you'll # get an identical index as concating the values and then # creating a new index. We don't want to spend the time trying # to merge blocks across arrays in `to_concat`, so the resulting # BlockIndex may have more blocs. blengths = [] blocs = [] for arr in to_concat: idx = arr.sp_index.to_block_index() values.append(arr.sp_values) blocs.append(idx.blocs.copy() + length) blengths.append(idx.blengths) length += arr.sp_index.length data = np.concatenate(values) blocs = np.concatenate(blocs) blengths = np.concatenate(blengths) sp_index = BlockIndex(length, blocs, blengths) return cls(data, sparse_index=sp_index, fill_value=fill_value) def astype(self, dtype=None, copy=True): """ Change the dtype of a SparseArray. The output will always be a SparseArray. To convert to a dense ndarray with a certain dtype, use :meth:`numpy.asarray`. Parameters ---------- dtype : np.dtype or ExtensionDtype For SparseDtype, this changes the dtype of ``self.sp_values`` and the ``self.fill_value``. For other dtypes, this only changes the dtype of ``self.sp_values``. copy : bool, default True Whether to ensure a copy is made, even if not necessary. Returns ------- SparseArray Examples -------- >>> arr = SparseArray([0, 0, 1, 2]) >>> arr [0, 0, 1, 2] Fill: 0 IntIndex Indices: array([2, 3], dtype=int32) >>> arr.astype(np.dtype('int32')) [0, 0, 1, 2] Fill: 0 IntIndex Indices: array([2, 3], dtype=int32) Using a NumPy dtype with a different kind (e.g. float) will coerce just ``self.sp_values``. >>> arr.astype(np.dtype('float64')) ... # doctest: +NORMALIZE_WHITESPACE [0, 0, 1.0, 2.0] Fill: 0 IntIndex Indices: array([2, 3], dtype=int32) Use a SparseDtype if you wish to be change the fill value as well. >>> arr.astype(SparseDtype("float64", fill_value=np.nan)) ... # doctest: +NORMALIZE_WHITESPACE [nan, nan, 1.0, 2.0] Fill: nan IntIndex Indices: array([2, 3], dtype=int32) """ dtype = self.dtype.update_dtype(dtype) subtype = dtype._subtype_with_str sp_values = astype_nansafe(self.sp_values, subtype, copy=copy) if sp_values is self.sp_values and copy: sp_values = sp_values.copy() return self._simple_new(sp_values, self.sp_index, dtype) def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Parameters ---------- mapper : dict, Series, callable The correspondence from old values to new. Returns ------- SparseArray The output array will have the same density as the input. The output fill value will be the result of applying the mapping to ``self.fill_value`` Examples -------- >>> arr = pd.SparseArray([0, 1, 2]) >>> arr.apply(lambda x: x + 10) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32) >>> arr.apply({0: 10, 1: 11, 2: 12}) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32) >>> arr.apply(pd.Series([10, 11, 12], index=[0, 1, 2])) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32) """ # this is used in apply. # We get hit since we're an "is_extension_type" but regular extension # types are not hit. This may be worth adding to the interface. if isinstance(mapper, ABCSeries): mapper = mapper.to_dict() if isinstance(mapper, compat.Mapping): fill_value = mapper.get(self.fill_value, self.fill_value) sp_values = [mapper.get(x, None) for x in self.sp_values] else: fill_value = mapper(self.fill_value) sp_values = [mapper(x) for x in self.sp_values] return type(self)(sp_values, sparse_index=self.sp_index, fill_value=fill_value) def to_dense(self): """ Convert SparseArray to a NumPy array. Returns ------- arr : NumPy array """ return np.asarray(self, dtype=self.sp_values.dtype) # TODO: Look into deprecating this in favor of `to_dense`. get_values = to_dense # ------------------------------------------------------------------------ # IO # ------------------------------------------------------------------------ def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, tuple): # Compat for pandas < 0.24.0 nd_state, (fill_value, sp_index) = state sparse_values = np.array([]) sparse_values.__setstate__(nd_state) self._sparse_values = sparse_values self._sparse_index = sp_index self._dtype = SparseDtype(sparse_values.dtype, fill_value) else: self.__dict__.update(state) def nonzero(self): if self.fill_value == 0: return self.sp_index.to_int_index().indices, else: return self.sp_index.to_int_index().indices[self.sp_values != 0], # ------------------------------------------------------------------------ # Reductions # ------------------------------------------------------------------------ def _reduce(self, name, skipna=True, **kwargs): method = getattr(self, name, None) if method is None: raise TypeError("cannot perform {name} with type {dtype}".format( name=name, dtype=self.dtype)) if skipna: arr = self else: arr = self.dropna() # we don't support these kwargs. # They should only be present when called via pandas, so do it here. # instead of in `any` / `all` (which will raise if they're present, # thanks to nv.validate kwargs.pop('filter_type', None) kwargs.pop('numeric_only', None) kwargs.pop('op', None) return getattr(arr, name)(**kwargs) def all(self, axis=None, *args, **kwargs): """ Tests whether all elements evaluate True Returns ------- all : bool See Also -------- numpy.all """ nv.validate_all(args, kwargs) values = self.sp_values if len(values) != len(self) and not np.all(self.fill_value): return False return values.all() def any(self, axis=0, *args, **kwargs): """ Tests whether at least one of elements evaluate True Returns ------- any : bool See Also -------- numpy.any """ nv.validate_any(args, kwargs) values = self.sp_values if len(values) != len(self) and np.any(self.fill_value): return True return values.any().item() def sum(self, axis=0, *args, **kwargs): """ Sum of non-NA/null values Returns ------- sum : float """ nv.validate_sum(args, kwargs) valid_vals = self._valid_sp_values sp_sum = valid_vals.sum() if self._null_fill_value: return sp_sum else: nsparse = self.sp_index.ngaps return sp_sum + self.fill_value * nsparse def cumsum(self, axis=0, *args, **kwargs): """ Cumulative sum of non-NA/null values. When performing the cumulative summation, any non-NA/null values will be skipped. The resulting SparseArray will preserve the locations of NaN values, but the fill value will be `np.nan` regardless. Parameters ---------- axis : int or None Axis over which to perform the cumulative summation. If None, perform cumulative summation over flattened array. Returns ------- cumsum : SparseArray """ nv.validate_cumsum(args, kwargs) if axis is not None and axis >= self.ndim: # Mimic ndarray behaviour. raise ValueError("axis(={axis}) out of bounds".format(axis=axis)) if not self._null_fill_value: return SparseArray(self.to_dense()).cumsum() return SparseArray(self.sp_values.cumsum(), sparse_index=self.sp_index, fill_value=self.fill_value) def mean(self, axis=0, *args, **kwargs): """ Mean of non-NA/null values Returns ------- mean : float """ nv.validate_mean(args, kwargs) valid_vals = self._valid_sp_values sp_sum = valid_vals.sum() ct = len(valid_vals) if self._null_fill_value: return sp_sum / ct else: nsparse = self.sp_index.ngaps return (sp_sum + self.fill_value * nsparse) / (ct + nsparse) def transpose(self, *axes): """ Returns the SparseArray. """ return self @property def T(self): """ Returns the SparseArray. """ return self # ------------------------------------------------------------------------ # Ufuncs # ------------------------------------------------------------------------ def __array_wrap__(self, array, context=None): from pandas.core.dtypes.generic import ABCSparseSeries ufunc, inputs, _ = context inputs = tuple(x.values if isinstance(x, ABCSparseSeries) else x for x in inputs) return self.__array_ufunc__(ufunc, '__call__', *inputs) _HANDLED_TYPES = (np.ndarray, numbers.Number) def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): out = kwargs.get('out', ()) for x in inputs + out: if not isinstance(x, self._HANDLED_TYPES + (SparseArray,)): return NotImplemented special = {'add', 'sub', 'mul', 'pow', 'mod', 'floordiv', 'truediv', 'divmod', 'eq', 'ne', 'lt', 'gt', 'le', 'ge', 'remainder'} if compat.PY2: special.add('div') aliases = { 'subtract': 'sub', 'multiply': 'mul', 'floor_divide': 'floordiv', 'true_divide': 'truediv', 'power': 'pow', 'remainder': 'mod', 'divide': 'div', 'equal': 'eq', 'not_equal': 'ne', 'less': 'lt', 'less_equal': 'le', 'greater': 'gt', 'greater_equal': 'ge', } flipped = { 'lt': '__gt__', 'le': '__ge__', 'gt': '__lt__', 'ge': '__le__', 'eq': '__eq__', 'ne': '__ne__', } op_name = ufunc.__name__ op_name = aliases.get(op_name, op_name) if op_name in special and kwargs.get('out') is None: if isinstance(inputs[0], type(self)): return getattr(self, '__{}__'.format(op_name))(inputs[1]) else: name = flipped.get(op_name, '__r{}__'.format(op_name)) return getattr(self, name)(inputs[0]) if len(inputs) == 1: # No alignment necessary. sp_values = getattr(ufunc, method)(self.sp_values, **kwargs) fill_value = getattr(ufunc, method)(self.fill_value, **kwargs) return self._simple_new(sp_values, self.sp_index, SparseDtype(sp_values.dtype, fill_value)) result = getattr(ufunc, method)(*[np.asarray(x) for x in inputs], **kwargs) if out: if len(out) == 1: out = out[0] return out if type(result) is tuple: return tuple(type(self)(x) for x in result) elif method == 'at': # no return value return None else: return type(self)(result) def __abs__(self): return np.abs(self) # ------------------------------------------------------------------------ # Ops # ------------------------------------------------------------------------ @classmethod def _create_unary_method(cls, op): def sparse_unary_method(self): fill_value = op(np.array(self.fill_value)).item() values = op(self.sp_values) dtype = SparseDtype(values.dtype, fill_value) return cls._simple_new(values, self.sp_index, dtype) name = '__{name}__'.format(name=op.__name__) return compat.set_function_name(sparse_unary_method, name, cls) @classmethod def _create_arithmetic_method(cls, op): def sparse_arithmetic_method(self, other): op_name = op.__name__ if isinstance(other, (ABCSeries, ABCIndexClass)): # Rely on pandas to dispatch to us. return NotImplemented if isinstance(other, SparseArray): return _sparse_array_op(self, other, op, op_name) elif is_scalar(other): with np.errstate(all='ignore'): fill = op(_get_fill(self), np.asarray(other)) result = op(self.sp_values, other) if op_name == 'divmod': left, right = result lfill, rfill = fill return (_wrap_result(op_name, left, self.sp_index, lfill), _wrap_result(op_name, right, self.sp_index, rfill)) return _wrap_result(op_name, result, self.sp_index, fill) else: other = np.asarray(other) with np.errstate(all='ignore'): # TODO: delete sparse stuff in core/ops.py # TODO: look into _wrap_result if len(self) != len(other): raise AssertionError( ("length mismatch: {self} vs. {other}".format( self=len(self), other=len(other)))) if not isinstance(other, SparseArray): dtype = getattr(other, 'dtype', None) other = SparseArray(other, fill_value=self.fill_value, dtype=dtype) return _sparse_array_op(self, other, op, op_name) name = '__{name}__'.format(name=op.__name__) return compat.set_function_name(sparse_arithmetic_method, name, cls) @classmethod def _create_comparison_method(cls, op): def cmp_method(self, other): op_name = op.__name__ if op_name in {'and_', 'or_'}: op_name = op_name[:-1] if isinstance(other, (ABCSeries, ABCIndexClass)): # Rely on pandas to unbox and dispatch to us. return NotImplemented if not is_scalar(other) and not isinstance(other, type(self)): # convert list-like to ndarray other = np.asarray(other) if isinstance(other, np.ndarray): # TODO: make this more flexible than just ndarray... if len(self) != len(other): raise AssertionError("length mismatch: {self} vs. {other}" .format(self=len(self), other=len(other))) other = SparseArray(other, fill_value=self.fill_value) if isinstance(other, SparseArray): return _sparse_array_op(self, other, op, op_name) else: with np.errstate(all='ignore'): fill_value = op(self.fill_value, other) result = op(self.sp_values, other) return type(self)(result, sparse_index=self.sp_index, fill_value=fill_value, dtype=np.bool_) name = '__{name}__'.format(name=op.__name__) return compat.set_function_name(cmp_method, name, cls) @classmethod def _add_unary_ops(cls): cls.__pos__ = cls._create_unary_method(operator.pos) cls.__neg__ = cls._create_unary_method(operator.neg) cls.__invert__ = cls._create_unary_method(operator.invert) @classmethod def _add_comparison_ops(cls): cls.__and__ = cls._create_comparison_method(operator.and_) cls.__or__ = cls._create_comparison_method(operator.or_) super(SparseArray, cls)._add_comparison_ops() # ---------- # Formatting # ----------- def __unicode__(self): return '{self}\nFill: {fill}\n{index}'.format( self=printing.pprint_thing(self), fill=printing.pprint_thing(self.fill_value), index=printing.pprint_thing(self.sp_index)) def _formatter(self, boxed=False): # Defer to the formatter from the GenericArrayFormatter calling us. # This will infer the correct formatter from the dtype of the values. return None SparseArray._add_arithmetic_ops() SparseArray._add_comparison_ops() SparseArray._add_unary_ops() def _maybe_to_dense(obj): """ try to convert to dense """ if hasattr(obj, 'to_dense'): return obj.to_dense() return obj def _maybe_to_sparse(array): """ array must be SparseSeries or SparseArray """ if isinstance(array, ABCSparseSeries): array = array.values.copy() return array def _sanitize_values(arr): """ return an ndarray for our input, in a platform independent manner """ if hasattr(arr, 'values'): arr = arr.values else: # scalar if is_scalar(arr): arr = [arr] # ndarray if isinstance(arr, np.ndarray): pass elif is_list_like(arr) and len(arr) > 0: arr = maybe_convert_platform(arr) else: arr = np.asarray(arr) return arr def make_sparse(arr, kind='block', fill_value=None, dtype=None, copy=False): """ Convert ndarray to sparse format Parameters ---------- arr : ndarray kind : {'block', 'integer'} fill_value : NaN or another value dtype : np.dtype, optional copy : bool, default False Returns ------- (sparse_values, index, fill_value) : (ndarray, SparseIndex, Scalar) """ arr = _sanitize_values(arr) if arr.ndim > 1: raise TypeError("expected dimension <= 1 data") if fill_value is None: fill_value = na_value_for_dtype(arr.dtype) if isna(fill_value): mask = notna(arr) else: # For str arrays in NumPy 1.12.0, operator!= below isn't # element-wise but just returns False if fill_value is not str, # so cast to object comparison to be safe if is_string_dtype(arr): arr = arr.astype(object) if is_object_dtype(arr.dtype): # element-wise equality check method in numpy doesn't treat # each element type, eg. 0, 0.0, and False are treated as # same. So we have to check the both of its type and value. mask = splib.make_mask_object_ndarray(arr, fill_value) else: mask = arr != fill_value length = len(arr) if length != len(mask): # the arr is a SparseArray indices = mask.sp_index.indices else: indices = mask.nonzero()[0].astype(np.int32) index = _make_index(length, indices, kind) sparsified_values = arr[mask] if dtype is not None: sparsified_values = astype_nansafe(sparsified_values, dtype=dtype) # TODO: copy return sparsified_values, index, fill_value def _make_index(length, indices, kind): if kind == 'block' or isinstance(kind, BlockIndex): locs, lens = splib.get_blocks(indices) index = BlockIndex(length, locs, lens) elif kind == 'integer' or isinstance(kind, IntIndex): index = IntIndex(length, indices) else: # pragma: no cover raise ValueError('must be block or integer type') return index # ---------------------------------------------------------------------------- # Accessor @delegate_names(SparseArray, ['npoints', 'density', 'fill_value', 'sp_values'], typ='property') class SparseAccessor(PandasDelegate): """ Accessor for SparseSparse from other sparse matrix data types. """ def __init__(self, data=None): self._validate(data) # Store the Series since we need that for to_coo self._parent = data @staticmethod def _validate(data): if not isinstance(data.dtype, SparseDtype): msg = "Can only use the '.sparse' accessor with Sparse data." raise AttributeError(msg) def _delegate_property_get(self, name, *args, **kwargs): return getattr(self._parent.values, name) def _delegate_method(self, name, *args, **kwargs): if name == 'from_coo': return self.from_coo(*args, **kwargs) elif name == 'to_coo': return self.to_coo(*args, **kwargs) else: raise ValueError @classmethod def from_coo(cls, A, dense_index=False): """ Create a SparseSeries from a scipy.sparse.coo_matrix. Parameters ---------- A : scipy.sparse.coo_matrix dense_index : bool, default False If False (default), the SparseSeries index consists of only the coords of the non-null entries of the original coo_matrix. If True, the SparseSeries index consists of the full sorted (row, col) coordinates of the coo_matrix. Returns ------- s : SparseSeries Examples --------- >>> from scipy import sparse >>> A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) >>> A <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> >>> A.todense() matrix([[ 0., 0., 1., 2.], [ 3., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> ss = pd.SparseSeries.from_coo(A) >>> ss 0 2 1 3 2 1 0 3 dtype: float64 BlockIndex Block locations: array([0], dtype=int32) Block lengths: array([3], dtype=int32) """ from pandas.core.sparse.scipy_sparse import _coo_to_sparse_series from pandas import Series result = _coo_to_sparse_series(A, dense_index=dense_index) # SparseSeries -> Series[sparse] result = Series(result.values, index=result.index, copy=False) return result def to_coo(self, row_levels=(0, ), column_levels=(1, ), sort_labels=False): """ Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. Use row_levels and column_levels to determine the row and column coordinates respectively. row_levels and column_levels are the names (labels) or numbers of the levels. {row_levels, column_levels} must be a partition of the MultiIndex level names (or numbers). Parameters ---------- row_levels : tuple/list column_levels : tuple/list sort_labels : bool, default False Sort the row and column labels before forming the sparse matrix. Returns ------- y : scipy.sparse.coo_matrix rows : list (row labels) columns : list (column labels) Examples -------- >>> s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) >>> s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0), (1, 2, 'a', 1), (1, 1, 'b', 0), (1, 1, 'b', 1), (2, 1, 'b', 0), (2, 1, 'b', 1)], names=['A', 'B', 'C', 'D']) >>> ss = s.to_sparse() >>> A, rows, columns = ss.to_coo(row_levels=['A', 'B'], column_levels=['C', 'D'], sort_labels=True) >>> A <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> >>> A.todense() matrix([[ 0., 0., 1., 3.], [ 3., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> rows [(1, 1), (1, 2), (2, 1)] >>> columns [('a', 0), ('a', 1), ('b', 0), ('b', 1)] """ from pandas.core.sparse.scipy_sparse import _sparse_series_to_coo A, rows, columns = _sparse_series_to_coo(self._parent, row_levels, column_levels, sort_labels=sort_labels) return A, rows, columns
bsd-3-clause
simpeg/simpeg
examples/02-mesh/plot_poisson.py
1
1736
""" Mesh: Basic Forward 2D DC Resistivity ===================================== 2D DC forward modeling example with Tensor and Curvilinear Meshes """ from SimPEG import Mesh, Utils, SolverLU import numpy as np import matplotlib.pyplot as plt def run(plotIt=True): # Step1: Generate Tensor and Curvilinear Mesh sz = [40, 40] tM = Mesh.TensorMesh(sz) rM = Mesh.CurvilinearMesh(Utils.meshutils.exampleLrmGrid(sz, 'rotate')) # Step2: Direct Current (DC) operator def DCfun(mesh, pts): D = mesh.faceDiv sigma = 1e-2*np.ones(mesh.nC) MsigI = mesh.getFaceInnerProduct(sigma, invProp=True, invMat=True) A = -D*MsigI*D.T A[-1, -1] /= mesh.vol[-1] # Remove null space rhs = np.zeros(mesh.nC) txind = Utils.meshutils.closestPoints(mesh, pts) rhs[txind] = np.r_[1, -1] return A, rhs pts = np.vstack((np.r_[0.25, 0.5], np.r_[0.75, 0.5])) # Step3: Solve DC problem (LU solver) AtM, rhstM = DCfun(tM, pts) AinvtM = SolverLU(AtM) phitM = AinvtM*rhstM ArM, rhsrM = DCfun(rM, pts) AinvrM = SolverLU(ArM) phirM = AinvrM*rhsrM if not plotIt: return # Step4: Making Figure fig, axes = plt.subplots(1, 2, figsize=(12*1.2, 4*1.2)) vmin, vmax = phitM.min(), phitM.max() dat = tM.plotImage(phitM, ax=axes[0], clim=(vmin, vmax), grid=True) dat = rM.plotImage(phirM, ax=axes[1], clim=(vmin, vmax), grid=True) cb0 = plt.colorbar(dat[0], ax=axes[0]) cb1 = plt.colorbar(dat[0], ax=axes[1]) cb0.set_label("Voltage (V)") cb1.set_label("Voltage (V)") axes[0].set_title('TensorMesh') axes[1].set_title('CurvilinearMesh') if __name__ == '__main__': run() plt.show()
mit
TheArbiter/Networks
lab4/lab4exercise2/helper.py
8
3406
''' Helper module for the plot scripts. ''' import re import itertools import matplotlib as m import os if os.uname()[0] == "Darwin": m.use("MacOSX") else: m.use("Agg") import matplotlib.pyplot as plt import argparse import math #import termcolor as T def read_list(fname, delim=','): lines = open(fname).xreadlines() ret = [] for l in lines: ls = l.strip().split(delim) ls = map(lambda e: '0' if e.strip() == '' or e.strip() == 'ms' or e.strip() == 's' else e, ls) ret.append(ls) return ret def ewma(alpha, values): if alpha == 0: return values ret = [] prev = 0 for v in values: prev = alpha * prev + (1 - alpha) * v ret.append(prev) return ret def col(n, obj = None, clean = lambda e: e): """A versatile column extractor. col(n, [1,2,3]) => returns the nth value in the list col(n, [ [...], [...], ... ] => returns the nth column in this matrix col('blah', { ... }) => returns the blah-th value in the dict col(n) => partial function, useful in maps """ if obj == None: def f(item): return clean(item[n]) return f if type(obj) == type([]): if len(obj) > 0 and (type(obj[0]) == type([]) or type(obj[0]) == type({})): return map(col(n, clean=clean), obj) if type(obj) == type([]) or type(obj) == type({}): try: return clean(obj[n]) except: #print T.colored('col(...): column "%s" not found!' % (n), 'red') return None # We wouldn't know what to do here, so just return None #print T.colored('col(...): column "%s" not found!' % (n), 'red') return None def transpose(l): return zip(*l) def avg(lst): return sum(map(float, lst)) / len(lst) def stdev(lst): mean = avg(lst) var = avg(map(lambda e: (e - mean)**2, lst)) return math.sqrt(var) def xaxis(values, limit): l = len(values) return zip(*map(lambda (x,y): (x*1.0*limit/l, y), enumerate(values))) def grouper(n, iterable, fillvalue=None): "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return itertools.izip_longest(fillvalue=fillvalue, *args) def cdf(values): values.sort() prob = 0 l = len(values) x, y = [], [] for v in values: prob += 1.0 / l x.append(v) y.append(prob) return (x, y) def parse_cpu_usage(fname, nprocessors=8): """Returns (user,system,nice,iowait,hirq,sirq,steal) tuples aggregated over all processors. DOES NOT RETURN IDLE times.""" data = grouper(nprocessors, open(fname).readlines()) """Typical line looks like: Cpu0 : 0.0%us, 1.0%sy, 0.0%ni, 97.0%id, 0.0%wa, 0.0%hi, 2.0%si, 0.0%st """ ret = [] for collection in data: total = [0]*8 for cpu in collection: usages = cpu.split(':')[1] usages = map(lambda e: e.split('%')[0], usages.split(',')) for i in xrange(len(usages)): total[i] += float(usages[i]) total = map(lambda t: t/nprocessors, total) # Skip idle time ret.append(total[0:3] + total[4:]) return ret def pc95(lst): l = len(lst) return sorted(lst)[ int(0.95 * l) ] def pc99(lst): l = len(lst) return sorted(lst)[ int(0.99 * l) ] def coeff_variation(lst): return stdev(lst) / avg(lst)
gpl-3.0
fegonda/icon_demo
code/model/unet/unet.py
1
23919
import cPickle import gzip import os import sys import time import numpy import numpy as np import multiprocessing from keras.models import Model, Sequential, model_from_json from keras.layers import Dense, Activation, Flatten, Input from keras.layers import Convolution2D, MaxPooling2D, UpSampling2D, merge, ZeroPadding2D, Dropout, Lambda from keras.layers.normalization import BatchNormalization from keras.callbacks import EarlyStopping from keras import backend as K from keras.optimizers import SGD from keras.regularizers import l2 from generate_data import * #import multiprocessing import sys import matplotlib import matplotlib.pyplot as plt # loosing independence of backend for # custom loss function import theano import theano.tensor as T from evaluation import Rand_membrane_prob from theano.tensor.shared_randomstreams import RandomStreams base_path = os.path.dirname(__file__) #sys.path.insert(1,os.path.join(base_path, '..')) sys.path.insert(1,os.path.join(base_path, '../mlp')) sys.path.insert(2,os.path.join(base_path, '../../common')) sys.path.insert(3,os.path.join(base_path, '../../database')) sys.path.insert(4,os.path.join(base_path, '../')) from db import DB from paths import Paths from utility import Utility from data import Data srng = RandomStreams(1234) class UNET(object): srng = RandomStreams(1234) def __init__(self, project): self.done = False self.project = project self.offline = False self.model = None self.best_val_loss_so_far = 0 self.patience_counter = 0 self.patience = 100 self.patience_reset = 100 self.doBatchNormAll = False self.doFineTune = False self.patchSize = 572 self.patchSize_out = 388 self.n_samples_training = 30 self.n_samples_validation = 20 self.initialization = 'glorot_uniform' def initialize(self): pass def train(self, offline=False, mean=None, std=None): self.offline = offline print 'Unet.train' patchSize = self.patchSize patchSize_out = self.patchSize_out learning_rate = self.project.learningRate momentum = self.project.momentum # input data should be large patches as prediction is also over large patches print print "=== building network ===" print "== BLOCK 1 ==" input = Input(shape=(1, patchSize, patchSize)) print "input ", input._keras_shape block1_act, block1_pool = UNET.unet_block_down(input=input, nb_filter=64, doBatchNorm=self.doBatchNormAll) print "block1 act ", block1_act._keras_shape print "block1 ", block1_pool._keras_shape #sys.stdout.flush() print "== BLOCK 2 ==" block2_act, block2_pool = UNET.unet_block_down(input=block1_pool, nb_filter=128, doBatchNorm=self.doBatchNormAll) print "block2 ", block2_pool._keras_shape #sys.stdout.flush() print "== BLOCK 3 ==" block3_act, block3_pool = UNET.unet_block_down(input=block2_pool, nb_filter=256, doBatchNorm=self.doBatchNormAll) print "block3 ", block3_pool._keras_shape #sys.stdout.flush() print "== BLOCK 4 ==" block4_act, block4_pool = UNET.unet_block_down(input=block3_pool, nb_filter=512, doDropout=True, doBatchNorm=self.doBatchNormAll) print "block4 ", block4_pool._keras_shape #sys.stdout.flush() print "== BLOCK 5 ==" print "no pooling" block5_act, block5_pool = UNET.unet_block_down(input=block4_pool, nb_filter=1024, doDropout=True, doPooling=False, doBatchNorm=self.doBatchNormAll) print "block5 ", block5_pool._keras_shape #sys.stdout.flush() print "==============" print print "== BLOCK 4 UP ==" block4_up = UNET.unet_block_up(input=block5_act, nb_filter=512, down_block_out=block4_act, doBatchNorm=self.doBatchNormAll) print "block4 up", block4_up._keras_shape print #sys.stdout.flush() print "== BLOCK 3 UP ==" block3_up = UNET.unet_block_up(input=block4_up, nb_filter=256, down_block_out=block3_act, doBatchNorm=self.doBatchNormAll) print "block3 up", block3_up._keras_shape print #sys.stdout.flush() print "== BLOCK 2 UP ==" block2_up = UNET.unet_block_up(input=block3_up, nb_filter=128, down_block_out=block2_act, doBatchNorm=self.doBatchNormAll) print "block2 up", block2_up._keras_shape #sys.stdout.flush() print print "== BLOCK 1 UP ==" block1_up = UNET.unet_block_up(input=block2_up, nb_filter=64, down_block_out=block1_act, doBatchNorm=self.doBatchNormAll) print "block1 up", block1_up._keras_shape sys.stdout.flush() print "== 1x1 convolution ==" output = Convolution2D(nb_filter=1, nb_row=1, nb_col=1, subsample=(1,1), init=self.initialization, activation='sigmoid', border_mode="valid")(block1_up) print "output ", output._keras_shape output_flat = Flatten()(output) print "output flat ", output_flat._keras_shape print 'Unet.train' #self.load() if not self.load(): self.model = Model(input=input, output=output_flat) sgd = SGD(lr=learning_rate, decay=0, momentum=momentum, nesterov=False) self.model.compile(loss=UNET.unet_crossentropy_loss_sampled, optimizer=sgd) #self.model.compile(loss=UNET.unet_crossentropy_loss, optimizer=sgd) #self.model.compile(loss="categorical_crossentropy", optimizer=sgd) data = gen_data(self.project, 'validation', self.n_samples_validation, patchSize, patchSize_out) data_x_val = data[0].astype(np.float32) data_x_val = np.reshape(data_x_val, [-1, 1, patchSize, patchSize]) data_y_val = data[1].astype(np.float32) print 'val x:', data_x_val.shape print 'val y:', data_y_val.shape #exit(1) #data = gen_data(project, 'train', train_samples, patchSize, patchSize_out) #data = generate_experiment_data_patch_prediction(purpose,train_samples,patchSize, patchSize_out) #exit(1) ''' data_x = data[0].astype(np.float32) data_x = np.reshape(data_x, [-1, 1, patchSize, patchSize]) data_y = data[1].astype(np.float32) print 'x:', data_x.shape print 'y:', data_y.shape data_val = gen_validation_data(project, train_samples, patchSize, patchSize_out) data_x_val = data_val[0].astype(np.float32) data_x_val = np.reshape(data_x_val, [-1, 1, patchSize, patchSize]) data_y_val = data_val[1].astype(np.float32) data_label_val = data_val[2] print 'val x:', data_x_val.shape print 'val y:', data_y_val.shape print 'val labels:', data_label_val.shape ''' # start pool for data print "Starting worker." pool = multiprocessing.Pool(processes=1) purpose = 'train' futureData = pool.apply_async(stupid_map_wrapper, [[gen_data,self.project,purpose, self.n_samples_training, patchSize, patchSize_out]]) best_val_loss_so_far = 0 patience_counter = 0 for epoch in xrange(10000000): if self.done: print 'stopping training...' break print "Waiting for data." data = futureData.get() #data = gen_data(self.project, 'train', self.n_samples_training, patchSize, patchSize_out) data_x = data[0].astype(np.float32) data_x = np.reshape(data_x, [-1, 1, patchSize, patchSize]) data_y = data[1].astype(np.float32) print "got new data" print 'x:', data_x.shape print 'y:', data_y.shape futureData = pool.apply_async(stupid_map_wrapper, [[gen_data,self.project,purpose, self.n_samples_training, patchSize, patchSize_out]]) #print "current learning rate: ", self.model.optimizer.lr.get_value() self.model.fit(data_x, data_y, batch_size=1, nb_epoch=1) im_pred = 1-self.model.predict(x=data_x_val, batch_size = 1) #print im_pred.shape #print np.unique( im_pred ) self.save() if True: continue mean_val_rand = 0.0 val_samples = data_x_val.shape[0] for val_ind in xrange(val_samples): im_pred_single = np.reshape(im_pred[val_ind,:], (patchSize_out,patchSize_out)) im_gt = np.reshape(data_label_val[val_ind], (patchSize_out,patchSize_out)) validation_rand = Rand_membrane_prob(im_pred_single, im_gt) mean_val_rand += validation_rand #print 'val:', val_ind, 'rand:', validation_rand, 'mrand:', mean_val_rand mean_val_rand /= np.double(val_samples) #print "validation RAND ", mean_val_rand print mean_val_rand, " > ", self.best_val_loss_so_far print mean_val_rand - self.best_val_loss_so_far if mean_val_rand > self.best_val_loss_so_far: self.best_val_loss_so_far = mean_val_rand print "NEW BEST MODEL" self.save_best() self.patience_counter=0 else: self.patience_counter +=1 # no progress anymore, need to decrease learning rate if self.patience_counter == self.patience: print "DECREASING LEARNING RATE" print "before: ", learning_rate learning_rate *= 0.1 print "now: ", learning_rate self.model.optimizer.lr.set_value(learning_rate) self.patience = self.patience_reset self.patience_counter = 0 # reload best state seen so far self.model = self.load() def predict(self, image, mean=None, std=None, threshold=0.5): print 'UNET.predict' patchSize = self.patchSize patchSize_out = self.patchSize_out start_time = time.clock() j_path, w_path, rev = self.get_paths( forSaving=False, forBest=True) if not os.path.exists( j_path ): j_path, w_path, rev = self.get_paths( forSaving=False, forBest=False) model = model_from_json(open( j_path ).read()) model.load_weights( w_path ) sgd = SGD(lr=0.01, decay=0, momentum=0.0, nesterov=False) model.compile(loss='categorical_crossentropy', optimizer=sgd) image = image - 0.5 probImage = np.zeros(image.shape) # count compilation time to init row = 0 col = 0 patch = image[row:row+patchSize,col:col+patchSize] data = np.reshape(patch, (1,1,patchSize,patchSize)) probs = model.predict(x=data, batch_size=1) init_time = time.clock() #print "Initialization took: ", init_time - start_time image_orig = image.copy() for rotation in range(1): image = np.rot90(image_orig, rotation) # pad the image padding_ul = int(np.ceil((patchSize - patchSize_out)/2.0)) # need large padding for lower right corner paddedImage = np.pad(image, patchSize, mode='reflect') needed_ul_padding = patchSize - padding_ul paddedImage = paddedImage[needed_ul_padding:, needed_ul_padding:] probImage_tmp = np.zeros(image.shape) for row in xrange(0,image.shape[0],patchSize_out): for col in xrange(0,image.shape[1],patchSize_out): patch = paddedImage[row:row+patchSize,col:col+patchSize] data = np.reshape(patch, (1,1,patchSize,patchSize)) probs = 1-model.predict(x=data, batch_size = 1) probs = np.reshape(probs, (patchSize_out,patchSize_out)) row_end = patchSize_out if row+patchSize_out > probImage.shape[0]: row_end = probImage.shape[0]-row col_end = patchSize_out if col+patchSize_out > probImage.shape[1]: col_end = probImage.shape[1]-col probImage_tmp[row:row+row_end,col:col+col_end] = probs[:row_end,:col_end] probImage += np.rot90(probImage_tmp, 4-rotation) probImage = probImage / 1.0 prob = self.threshold( probImage, factor=threshold ) prob = prob.astype(dtype=int) prob = prob.flatten() end_time = time.clock() print "Prediction took: ", end_time - init_time print "Speed: ", 1./(end_time - init_time) print "Time total: ", end_time-start_time print 'results :', np.bincount( prob ) print prob.shape print prob return prob def threshold(self, prob, factor=0.5): prob[ prob >= factor ] = 9 prob[ prob < factor ] = 1 prob[ prob == 9 ] = 0 return prob # need to define a custom loss, because all pre-implementations # seem to assume that scores over patch add up to one which # they clearly don't and shouldn't @staticmethod def unet_crossentropy_loss(y_true, y_pred): weight_class_1 = 1. epsilon = 1.0e-4 y_pred_clipped = T.clip(y_pred, epsilon, 1.0-epsilon) loss_vector = -T.mean(weight_class_1*y_true * T.log(y_pred_clipped) + (1-y_true) * T.log(1-y_pred_clipped), axis=1) average_loss = T.mean(loss_vector) return average_loss @staticmethod def aaunet_crossentropy_loss_sampled(y_true, y_pred): epsilon = 1.0e-4 y_pred_clipped = T.flatten(T.clip(y_pred, epsilon, 1.0-epsilon)) y_true = T.flatten(y_true) # this seems to work # it is super ugly though and I am sure there is a better way to do it # but I am struggling with theano to cooperate # filter the right indices classPos = 1 classNeg = 0 indPos = T.eq(y_true, classPos).nonzero()[0] indNeg = T.eq(y_true, classNeg).nonzero()[0] pos = y_true[ indPos ] neg = y_true[ indNeg ] # shuffle n = indPos.shape[0] indPos = indPos[UNET.srng.permutation(n=n)] n = indNeg.shape[0] indNeg = indNeg[UNET.srng.permutation(n=n)] # take equal number of samples depending on which class has less # n_samples = T.cast(T.min([T.sum(y_true), T.sum(1-y_true)]), dtype='int64') #n_samples = T.cast(T.min([T.sum(pos), T.sum(neg)]), dtype='int64') n_samples = T.cast(T.min([ indPos.shape[0], indNeg.shape[0]]), dtype='int64') #n_samples = T.cast(T.max(n_samples, 1), dtype='int64') indPos = indPos[:n_samples] indNeg = indNeg[:n_samples] loss_vector = -T.mean(T.log(y_pred_clipped[indPos])) - T.mean(T.log(y_pred_clipped[indNeg])).eval() #loss_vector = T.clip(loss_vector, epsilon, 1.0-epsilon) #loss_vector.set_value( np.array([0.99]) ) average_loss = T.mean(loss_vector) return average_loss @staticmethod def unet_crossentropy_lossipp(y_true, y_pred): classPos = 1 classNeg = 0 #weight_class_1 = 1. epsilon = 1.0e-4 y_pred_clipped = T.clip(y_pred, epsilon, 1.0-epsilon) loss_vector = -T.mean(weight_class_1*y_true * T.log(y_pred_clipped) + (1-y_true) * T.log(1-y_pred_clipped), axis=1) average_loss = T.mean(loss_vector) return average_loss @staticmethod def unet_crossentropy_loss_sampled(y_true, y_pred): epsilon = 1.0e-4 y_pred_clipped = T.flatten(T.clip(y_pred, epsilon, 1.0-epsilon)) y_true = T.flatten(y_true) # this seems to work # it is super ugly though and I am sure there is a better way to do it # but I am struggling with theano to cooperate # filter the right indices classPos = 1 classNeg = 0 indPos = T.eq(y_true, classPos).nonzero()[0] indNeg = T.eq(y_true, classNeg).nonzero()[0] #pos = y_true[ indPos ] #neg = y_true[ indNeg ] # shuffle n = indPos.shape[0] indPos = indPos[UNET.srng.permutation(n=n)] n = indNeg.shape[0] indNeg = indNeg[UNET.srng.permutation(n=n)] # take equal number of samples depending on which class has less n_samples = T.cast(T.min([ indPos.shape[0], indNeg.shape[0]]), dtype='int64') #n_samples = T.cast(T.min([T.sum(y_true), T.sum(1-y_true)]), dtype='int64') indPos = indPos[:n_samples] indNeg = indNeg[:n_samples] #loss_vector = -T.mean(T.log(y_pred_clipped[indPos])) - T.mean(T.log(1-y_pred_clipped[indNeg])) loss_vector = -T.mean(T.log(y_pred_clipped[indPos])) - T.mean(T.log(y_pred_clipped[indNeg])) loss_vector = T.clip(loss_vector, epsilon, 1.0-epsilon) average_loss = T.mean(loss_vector) if T.isnan(average_loss): average_loss = T.mean( y_pred_clipped[indPos]) return average_loss @staticmethod def unet_block_down(input, nb_filter, doPooling=True, doDropout=False, doBatchNorm=False, initialization = 'glorot_uniform', weight_decay = 0.): # first convolutional block consisting of 2 conv layers plus activation, then maxpool. # All are valid area, not same act1 = Convolution2D(nb_filter=nb_filter, nb_row=3, nb_col=3, subsample=(1,1), init=initialization, activation='relu', border_mode="valid", W_regularizer=l2(weight_decay))(input) if doBatchNorm: act1 = BatchNormalization(mode=0, axis=1)(act1) act2 = Convolution2D(nb_filter=nb_filter, nb_row=3, nb_col=3, subsample=(1,1), init=initialization, activation='relu', border_mode="valid", W_regularizer=l2(weight_decay))(act1) if doBatchNorm: act2 = BatchNormalization(mode=0, axis=1)(act2) if doDropout: act2 = Dropout(0.5)(act2) if doPooling: # now downsamplig with maxpool pool1 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode="valid")(act2) else: pool1 = act2 return (act2, pool1) # need to define lambda layer to implement cropping # input is a tensor of size (batchsize, channels, width, height) @staticmethod def crop_layer( x, cs): cropSize = cs return x[:,:,cropSize:-cropSize, cropSize:-cropSize] @staticmethod def unet_block_up(input, nb_filter, down_block_out, doBatchNorm=False, initialization = 'glorot_uniform', weight_decay = 0.): print "This is unet_block_up" print "input ", input._keras_shape # upsampling up_sampled = UpSampling2D(size=(2,2))(input) print "upsampled ", up_sampled._keras_shape # up-convolution conv_up = Convolution2D(nb_filter=nb_filter, nb_row=2, nb_col=2, subsample=(1,1), init=initialization, activation='relu', border_mode="same", W_regularizer=l2(weight_decay))(up_sampled) print "up-convolution ", conv_up._keras_shape # concatenation with cropped high res output # this is too large and needs to be cropped print "to be merged with ", down_block_out._keras_shape #padding_1 = int((down_block_out._keras_shape[2] - conv_up._keras_shape[2])/2) #padding_2 = int((down_block_out._keras_shape[3] - conv_up._keras_shape[3])/2) #print "padding: ", (padding_1, padding_2) #conv_up_padded = ZeroPadding2D(padding=(padding_1, padding_2))(conv_up) #merged = merge([conv_up_padded, down_block_out], mode='concat', concat_axis=1) cropSize = int((down_block_out._keras_shape[2] - conv_up._keras_shape[2])/2) down_block_out_cropped = Lambda(UNET.crop_layer, output_shape=conv_up._keras_shape[1:], arguments={"cs":cropSize})(down_block_out) print "cropped layer size: ", down_block_out_cropped._keras_shape merged = merge([conv_up, down_block_out_cropped], mode='concat', concat_axis=1) print "merged ", merged._keras_shape # two 3x3 convolutions with ReLU # first one halves the feature channels act1 = Convolution2D(nb_filter=nb_filter, nb_row=3, nb_col=3, subsample=(1,1), init=initialization, activation='relu', border_mode="valid", W_regularizer=l2(weight_decay))(merged) if doBatchNorm: act1 = BatchNormalization(mode=0, axis=1)(act1) print "conv1 ", act1._keras_shape act2 = Convolution2D(nb_filter=nb_filter, nb_row=3, nb_col=3, subsample=(1,1), init=initialization, activation='relu', border_mode="valid", W_regularizer=l2(weight_decay))(act1) if doBatchNorm: act2 = BatchNormalization(mode=0, axis=1)(act2) print "conv2 ", act2._keras_shape return act2 def save(self, best=False): print 'Model.save()' if self.model == None: return False j_path, w_path, rev = self.get_paths(forSaving=True, forBest=best) print 'saving model...' json_string = self.model.to_json() open(j_path, 'w').write(json_string) self.model.save_weights(w_path, overwrite=True) if not self.offline: DB.finishSaveModel( self.project.id, rev ) return True def load(self, best=False): print 'Model.load()' j_path, w_path, rev = self.get_paths(forSaving=False, forBest=best) if not os.path.exists( j_path ) or not os.path.exists( w_path ): return False print 'loading model...' self.model = model_from_json(open( j_path ).read()) self.model.load_weights( w_path ) return True def threshold(self, prob, factor=0.5): prob[ prob >= factor ] = 9 prob[ prob < factor ] = 1 prob[ prob == 9 ] = 0 return prob def report_stats(self, elapsedTime, batchIndex, valLoss, trainCost): if not self.offline: DB.storeTrainingStats( self.project.id, valLoss, trainCost, mode=0) msg = '(%0.1f) %i %f%%'%\ ( elapsedTime, batchIndex, valLoss ) status = '[%f]'%(trainCost) Utility.report_status( msg, status ) @staticmethod def shared_dataset(data_xy, borrow=True, doCastLabels=True): data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=borrow) if not doCastLabels: shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=borrow) else: shared_y = theano.shared(np.asarray(data_y, dtype=np.int32), borrow=borrow) return shared_x, shared_y def get_paths(self, forSaving=False, forBest=False): name = '%s_%s'%(self.project.id, self.project.type) prefix = 'best' if forBest else 'latest' posfix = '' revision = 0 if not self.offline: revision = DB.getRevision( self.project.id ) revision = (revision+1)%10 posfix = '_%d'%(revision) if forBest else '' else: name = '%s_offline'%(name) # construct the path to the network and weights path = '%s/%s_%s%s'%(Paths.Models, prefix, name, posfix) j_path = '%s.json'%(path) w_path = '%s_weights.h5'%(path) return j_path.lower(), w_path.lower(), revision
mit
joshloyal/scikit-learn
sklearn/datasets/tests/test_lfw.py
42
7253
"""This test for the LFW require medium-size data downloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
carltoews/tennis
data/tennis_atp-master/examples/examples.py
1
117401
''' File name: examples.py Description: all sorts of tennis-stats examples based on Jeff's tennis data (see: https://github.com/JeffSackmann/tennis_atp) Comment: the approach to do the calculations may not always be the most pythonic way. please forgive :) Author: Beta2k Python Version: 3 ''' import csv import pprint import datetime import glob import sys import operator import itertools import collections from operator import itemgetter from collections import OrderedDict import json import numpy as np import pandas as pd import math from pandas.core.categorical import Categorical from spyderlib.widgets.externalshell import namespacebrowser #util functions def parse(t): ret = [] for ts in t: try: string = str(ts) tsdt = datetime.date(int(string[:4]), int(string[4:6]), int(string[6:])) except TypeError: tsdt = datetime.date(1900,1,1) ret.append(tsdt) return ret def readATPMatches(dirname): """Reads ATP matches but does not parse time into datetime object""" allFiles = glob.glob(dirname + "/atp_matches_" + "????.csv") matches = pd.DataFrame() container = list() for filen in allFiles: df = pd.read_csv(filen, index_col=None, header=0) container.append(df) matches = pd.concat(container) return matches def readATPMatchesParseTime(dirname): """Reads ATP matches and parses time into datetime object""" allFiles = glob.glob(dirname + "/atp_matches_" + "????.csv") matches = pd.DataFrame() container = list() for filen in allFiles: df = pd.read_csv(filen, index_col=None, header=0, parse_dates=[5], encoding = "ISO-8859-1", date_parser=lambda t:parse(t)) container.append(df) matches = pd.concat(container) return matches def readFMatches(dirname): """Reads ITF future matches but does not parse time into datetime object""" allFiles = glob.glob(dirname + "/atp_matches_futures_" + "????.csv") matches = pd.DataFrame() container = list() for filen in allFiles: df = pd.read_csv(filen, index_col=None, header=0) container.append(df) matches = pd.concat(container) return matches def readFMatchesParseTime(dirname): """Reads ITF future matches but does not parse time into datetime object""" allFiles = glob.glob(dirname + "/atp_matches_futures_" + "????.csv") matches = pd.DataFrame() container = list() for filen in allFiles: df = pd.read_csv(filen, index_col=None, header=0, parse_dates=[5], encoding = "ISO-8859-1", date_parser=lambda t:parse(t)) container.append(df) matches = pd.concat(container) return matches def readChall_QATPMatchesParseTime(dirname): """reads Challenger level + ATP Q matches and parses time into datetime objects""" allFiles = glob.glob(dirname + "/atp_matches_qual_chall_" + "????.csv") matches = pd.DataFrame() container = list() for filen in allFiles: df = pd.read_csv(filen, index_col=None, header=0, parse_dates=[5], encoding = "ISO-8859-1", date_parser=lambda t:parse(t)) container.append(df) matches = pd.concat(container) return matches def readChall_QATPMatches(dirname): """reads Challenger level + ATP Q matches but does not parse time into datetime objects""" allFiles = glob.glob(dirname + "/atp_matches_qual_chall_" + "????.csv") matches = pd.DataFrame() container = list() for filen in allFiles: df = pd.read_csv(filen, index_col=None, header=0) container.append(df) matches = pd.concat(container) return matches def readAllRankings(dirname): """reads all ranking files""" allFiles = glob.glob(dirname + "/atp_rankings_" + "*.csv") #allFiles = ['..\\atp_rankings_00s.csv', '..\\atp_rankings_10s.csv'] ranks = pd.DataFrame() container = list() for filen in allFiles: df = pd.read_csv(filen, index_col=None, header=None, parse_dates=[0], encoding = "ISO-8859-1", date_parser=lambda t:parse(t)) container.append(df) ranks = pd.concat(container) return ranks def parse_date(td): """helper function to parse time""" resYear = float(td.days)/364.0 # get the number of years including the the numbers after the dot resMonth = int((resYear - int(resYear))*364/30) # get the number of months, by multiply the number after the dot by 364 and divide by 30. resYear = int(resYear) return str(resYear) + "y" + str(resMonth) + "m" def yearmonthdiff(row): s = row['ranking_date'] e = row['dob'] return relativedelta.relativedelta(s,e) def get_date_wins(in_group): temp = atpmatches[(atpmatches['winner_name'] == in_group.name) & (atpmatches['round'] == 'F')] in_group["tournament_wins"] = in_group.apply(lambda x: len(temp[temp['tourney_date'] < x['ranking_date']]), axis=1) return in_group def getRankForPreviousMonday(tdate,playername): """utility function to calculate the rank of a player from the previous week""" global joinedrankingsdf print(tdate) print(playername) #some tournaments start on a sunday, so we change this to a monday in order to get the correct ranking later on (we only have rankings for mondays obviously) if (tdate.weekday() != 0): diff = 7 - tdate.weekday() tdate = tdate + datetime.timedelta(days = diff) for x in range(1, 3): prevmon = tdate - datetime.timedelta(days = 7*x) if (len(joinedrankingsdf[(joinedrankingsdf['date'] == prevmon)]) > 0): rank = joinedrankingsdf[((joinedrankingsdf['fullname'] == playername) & (joinedrankingsdf['date'] == prevmon))].iloc[[0]]['rank'].values[0] return rank break else: continue #calculations def matchesPerCountryAndRound(matches): """find single matches based on country and round""" matches = matches[(matches['round']=='F') & (matches['winner_ioc'] == 'AUT') & (matches['loser_ioc'] == 'AUT')] matches = matches.sort(['tourney_date'], ascending=False) #print matches.to_string(columns=['tourney_name','tourney_date','winner_name', 'loser_name']) print(matches[['tourney_name','tourney_date','winner_name', 'loser_name']].to_csv(sys.stdout,index=False)) def bestLLinGrandSlams(matches): """looking for LLs who got deepes int grand slam draws starting from R32""" matches = matches[((matches['round']=='R32') | (matches['round']=='R16') | (matches['round']=='QF') | (matches['round']=='SF') | (matches['round']=='F')) & (matches['tourney_level'] == 'G') & (matches['loser_entry'] == 'LL')] matches = matches.sort(['tourney_date'], ascending=False) print(matches[['tourney_name','tourney_date','round','winner_name','winner_entry', 'loser_name', 'loser_entry']].to_csv(sys.stdout,index=False)) def numberOfSetsLongerThan(matches,sets,minutes): """find matches longer than 'minutes' with 'sets' number of played sets""" matches['score'].astype('str') matches = matches[(matches['minutes'] > minutes) & (matches['score'].str.count('-') == sets)] matches = matches.sort(['minutes'], ascending=False) print(matches[['minutes','score','tourney_name','tourney_date','round','winner_name', 'loser_name']].to_csv(sys.stdout,index=False)) def geth2hforplayer(matches,name): """get all head-to-heads of the player""" matches = matches[(matches['winner_name'] == name) | (matches['loser_name'] == name)] h2hs = {} for index, match in matches.iterrows(): if (match['winner_name'] == name): if (match['loser_name'] not in h2hs): h2hs[match['loser_name']] = {} h2hs[match['loser_name']]['l'] = 0 h2hs[match['loser_name']]['w'] = 1 else: h2hs[match['loser_name']]['w'] = h2hs[match['loser_name']]['w']+1 elif (match['loser_name'] == name): if (match['winner_name'] not in h2hs): h2hs[match['winner_name']] = {} h2hs[match['winner_name']]['w'] = 0 h2hs[match['winner_name']]['l'] = 1 else: h2hs[match['winner_name']]['l'] = h2hs[match['winner_name']]['l']+1 #create list h2hlist = [] for k, v in h2hs.items(): h2hlist.append([k, v['w'],v['l']]) #sort by wins and then by losses + print #filter by h2hs with more than 6 wins: #h2hlist = [i for i in h2hlist if i[1] > 6] if (len(h2hlist) == 0): return '' else: return sorted(h2hlist, key=itemgetter(1,2)) #for h2h in h2hlist: # print(name+';'+h2h[0]+';'+str(h2h[1])+';'+str(h2h[2])) def getWinLossByPlayer(qmatches, activeplayers, active): """returns w/l by player - change tourney level here (S=futures, C=challenger, etc.). of course matches of the queries tourney level need to be in the matches provided as an argument to this function""" retmatches = qmatches[qmatches['score'].str.contains('RET').fillna(False)] retmatches_group = retmatches.groupby('loser_name').size().order(ascending=False) matches = qmatches[(qmatches['tourney_level'] == 'S')] finals = qmatches[(qmatches['round'] == 'F')] semifinals = qmatches[(qmatches['round'] == 'SF')] titles_group = finals.groupby('winner_name').size() finals_group = semifinals.groupby('winner_name').size() w_group = matches.groupby('winner_name').size() l_group = matches.groupby('loser_name').size() scores = pd.DataFrame({'wins' : w_group, 'losses' : l_group}).fillna(0) scores[['wins', 'losses']] = scores[['wins', 'losses']].astype(int) scores = scores.reindex_axis(['wins','losses'], axis=1) if (active): MAX_RANK = 20 activeplayerslist = [row[0] for row in activeplayers] scores = scores[(scores.index.isin(activeplayerslist[:MAX_RANK]))] scores.index = pd.CategoricalIndex(scores.index, categories=activeplayerslist, ordered=True) #toggle sorting by ranking in next line scores = scores.sort_index() #todo: add titles and finals scores["matches"] = scores["wins"] + scores["losses"] scores["percentage"] = np.round(scores["wins"]*100/scores["matches"],2) #to see a column name when printig results scores.index.name = 'pname' scores = scores.join(pd.DataFrame(finals_group, columns = ['finals'],)).fillna(0) scores = scores.join(pd.DataFrame(titles_group, columns = ['titles'],)).fillna(0) scores = scores.join(pd.DataFrame(retmatches_group, columns = ['rets'],)).fillna(0) #changing datatype to int because it automatically is changed to float because of NaN values added for players which have 0 titles. #even though the NaNs are immediately replaced by 0 values, the dtype of the column is changed from int to float. #this is the reason why i need to change it back to int in the next line scores['titles'] = scores['titles'].astype('int') scores['finals'] = scores['finals'].astype('int') scores['rets'] = scores['rets'].astype('int') #sort by wins scores = scores.sort(['titles'], ascending=False) print(scores.to_csv(sys.stdout,index=True)) def getRets(matches): matches = matches[matches['score'].str.contains('RET').fillna(False)] l_group = matches.groupby('loser_name').size().order(ascending=False) print(l_group.to_csv(sys.stdout,index=True)) def findLLQmultipleMatchesAtSameTournament(atpmatches,qmatches): """find if LL had to play same player in Q3/Q2 and MD of same tournament""" resultlist = list() tourney_group = atpmatches.groupby('tourney_id') for tname, tdf in tourney_group: found1=False found2=False #first_case finds where a LL won against a Q in a main draw (MD) first_case = tdf[(tdf['winner_entry'] == 'LL') & (tdf['loser_entry'] == 'Q')] #iterating over first_case matches for index, match in first_case.iterrows(): #looking for Q-finals where the loser matches the name of a winner of first_case matches first_case_results = qmatches[(qmatches['tourney_name'] == match['tourney_name']+ ' Q') & ((qmatches['round'] =='Q2') | (qmatches['round'] =='Q3')) & (match['winner_name'] == qmatches['loser_name']) & (match['loser_name'] == qmatches['winner_name'])] if (len(first_case_results.index) > 0): #if results were found, add the MD match to the result list resultlist.append(first_case[((first_case['winner_name'] == first_case_results['loser_name']))]) #second_case finds where a LL lost against a Q in a main draw (MD) second_case = tdf[(tdf['winner_entry'] == 'Q') & (tdf['loser_entry'] == 'LL')] for index, match in second_case.iterrows(): #looking for Q-finals where the loser matches the name of a loser of second_case matches second_case_results = qmatches[(qmatches['tourney_name'] == match['tourney_name']+ ' Q') & ((qmatches['round'] =='Q2') | (qmatches['round'] =='Q3')) & (match['winner_name'] == qmatches['winner_name']) & (match['loser_name'] == qmatches['loser_name'])] if (len(second_case_results.index) > 0): #if results were found, add the MD match to the result list resultlist.append(second_case[(second_case['loser_name'] == second_case_results['loser_name'])]) result = pd.concat(resultlist).sort(['tourney_date'], ascending=False) print(result[['tourney_name','tourney_date','round','winner_name','winner_entry', 'loser_name','loser_entry']].to_csv(sys.stdout,index=False)) def getActivePlayers(dirname): """finds active players, i.e. players who are in the current ranking""" currentRanking = dirname + "/atp_rankings_current.csv" playersDB = dirname + "/atp_players.csv" rankingdf = pd.DataFrame() playersdf = pd.DataFrame() rankingdf = pd.read_csv(currentRanking,index_col=None,header=None) rankingdf.columns = ['date', 'rank', 'id','points'] playersdf = pd.read_csv(playersDB,index_col=None,header=None, encoding = "ISO-8859-1") playersdf.columns = ['id', 'fname', 'lname','hand','dob','country'] maxdate = rankingdf['date'].max() rankingdf = rankingdf[(rankingdf['date'] == maxdate)] join = pd.merge(rankingdf,playersdf, on='id') join["fullname"] = join["fname"] + ' ' + join["lname"] join = join[['fullname','rank']] namelist = join.values.tolist() return namelist def seedRanking(matches): """finds rankings of seeds""" #todo: create new DF to merge when seed won/lost into one column. #also take into account that in old draws the seeds did not have byes in R32. this also needs to be filtered. wmatches = matches[((matches['round'] == 'R16') & (matches['winner_seed'] == 3) & (matches['winner_rank'] > 40))] print(wmatches[['tourney_name','tourney_date','winner_name', 'winner_rank', 'winner_seed']].to_csv(sys.stdout,index=False)) lmatches = matches[(matches['round'] == 'R16') & (matches['loser_seed'] == 3) & (matches['loser_rank'] > 40)] print(lmatches[['tourney_name','tourney_date','loser_name', 'loser_rank', 'loser_seed']].to_csv(sys.stdout,index=False)) def qualifierSeeded(atpmatches): """finds qualifiers, which were seeded""" lmatches = atpmatches[((atpmatches['loser_entry'] == 'Q') & (atpmatches['loser_seed'] < 9))] lmatches = lmatches.rename(columns={'loser_entry': 'entry', 'loser_seed': 'seed', 'loser_name': 'name'}) wmatches = atpmatches[((atpmatches['winner_entry'] == 'Q') & (atpmatches['winner_seed'] < 9) & (atpmatches['round'] == 'F'))] wmatches = wmatches.rename(columns={'winner_entry': 'entry', 'winner_seed': 'seed', 'winner_name': 'name'}) frames = [lmatches, wmatches] result = pd.concat(frames) result['seed'] = result['seed'].astype('int') result = result.sort(['tourney_date','tourney_name'], ascending=[True,True]) print(result[['tourney_date','tourney_name','name','entry','seed','round']].to_csv(sys.stdout,index=False)) def getDictEightSeedRankperTourney(matches): """util function which returns a dictionary containing ranks of 8 seeds per tournament""" #max_seed for ATP = 32 + buffer #max_seed for CH = 8 + buffer MAX_SEED = 32 tgroup = matches.groupby('tourney_id') rankdict = {} rankdict['id'] = {} rankdict['altid'] = {} for tid, t in tgroup: #print t found = False for n in range(MAX_SEED,6,-1): if (len(t[(t['loser_seed'] == n)]) > 0): tr = t[(t['loser_seed'] == n)] eightrank = tr.iloc[[0]]['loser_rank'] eightrank = eightrank.values[0] found = True elif (len(t[(t['winner_seed'] == n)]) > 0): tr = t[(t['winner_seed'] == n)] eightrank = tr.iloc[[0]]['winner_seed'] eightrank = eightrank.values[0] found = True if (found): #print 'added ' + str(tid) rankdict[tid] = eightrank tname = tr.iloc[[0]]['tourney_name'].values[0] tyear = tr.iloc[[0]]['tourney_date'].values[0] rankdict['id'][tid] = eightrank altid = str(tname)+str(tyear)[:4] #print 'added ' + str(altid) rankdict['altid'][altid] = eightrank break return rankdict def highRankedQLosers(qmatches,atpmatches): """finds high ranked losers of qualification draws""" amatches = atpmatches[((atpmatches['tourney_level'] == 'A') & (atpmatches['tourney_date'] > 20000000))] qmatches = qmatches[((qmatches['tourney_level'] == 'Q') & (qmatches['tourney_date'] > 20000000))] rankdict = getDictEightSeedRankperTourney(amatches) rankdict = rankdict['altid'] rankdf = pd.DataFrame(list(rankdict.items()),columns=['id','8seedrank']) rankdf['year'] = rankdf.id.str[-4:] rankdf['year'] = rankdf['year'].astype(int) rankdf['tourney_name'] = rankdf.id.str[:-4] + ' Q' qmatches['date4'] = (qmatches['tourney_date']/10000).astype(int) merged = rankdf.merge(qmatches, left_on=['year', 'tourney_name'], right_on=['date4', 'tourney_name']) merged = merged[(merged['loser_rank'] < merged['8seedrank'])] print(merged[['tourney_id','tourney_date','tourney_name','loser_name','loser_rank', '8seedrank']].sort(['tourney_date'], ascending=[True]).to_csv(sys.stdout,index=False)) def fedR4WimbiTime(atpmatches): """shows the time federer spent on court until 4th rounds in wimbledon""" atpmatches = atpmatches[(atpmatches['tourney_name'] == 'Wimbledon')] atpmatches = atpmatches[(atpmatches['winner_name'] == 'Roger Federer')] atpmatches = atpmatches[(atpmatches['round'] == 'R128') | (atpmatches['round'] == 'R64') | (atpmatches['round'] == 'R32') | (atpmatches['round'] == 'R16')] matchesgroup = atpmatches.groupby('tourney_id') print(matchesgroup['minutes'].sum()) def youngFutures(matches): """finds young futures players set round and age parameter in next line""" matches = matches[(matches['round'] == 'QF') & (matches['winner_age'] < 16)] matches = matches.sort(['winner_age'], ascending=True) print(matches[['tourney_name','tourney_date','winner_name', 'winner_age', 'loser_name']].to_csv(sys.stdout,index=False)) def rankofQhigherthanlastSeed(matches): """find players and tournaments where the rank of the 1-seeded player in the qualies-draw was higher than the last seed of the main draw""" #if input is challenger use next line #matches = matches[((matches['tourney_level'] == 'C') & (matches['tourney_date'] > 20000000))] #if input is atp tour use next line matches = matches[((matches['tourney_level'] == 'A') & (matches['tourney_date'] > 20100000))] rankdict = getDictEightSeedRankperTourney(matches) rankdict = rankdict['id'] results = {} matches = matches[((matches['winner_entry'] == 'Q') | (matches['loser_entry'] == 'Q'))] qgroup = matches.groupby('tourney_id') for tid, t in qgroup: #winner = q for index, match in t[(t['winner_entry'] == 'Q')].iterrows(): try: if (match['winner_rank'] < rankdict[tid]): if (tid in results): if (match['winner_name'] not in results[tid]['players']): results[tid]['players'].append(match['winner_name']) else: results[tid] = {} results[tid]['id'] = match['tourney_id'] results[tid]['name'] = match['tourney_name'] results[tid]['date'] = match['tourney_date'] results[tid]['players'] = [] results[tid]['players'].append(match['winner_name']) except KeyError: continue #loser = q for index, match in t[(t['loser_entry'] == 'Q')].iterrows(): try: if (match['loser_rank'] < rankdict[tid]): if (tid in results): if (match['loser_name'] not in results[tid]['players']): results[tid]['players'].append(match['loser_name']) else: results[tid] = {} results[tid]['id'] = match['tourney_id'] results[tid]['name'] = match['tourney_name'] results[tid]['date'] = match['tourney_date'] results[tid]['players'] = [] results[tid]['players'].append(match['loser_name']) except KeyError: continue orderedRes = (OrderedDict(sorted(results.items(), key=lambda x: x[1]['date']))) for t in orderedRes: playerstring = ','.join(orderedRes[t]['players']) yearid = t.split('-') year = yearid[0] id = yearid[1] md = 'http://www.atpworldtour.com/posting/'+str(year)+'/'+str(id)+'/mds.pdf' qd = 'http://www.atpworldtour.com/posting/'+str(year)+'/'+str(id)+'/qs.pdf' print(str(orderedRes[t]['date'])+','+orderedRes[t]['name']+',' + playerstring + ','+md+','+qd) def avglastseedrank(matches): """calculates the average of the last seed rank per tournament category""" #only matches from 2013 and 2014 matches = matches[(matches['tourney_date'] > datetime.date(2012,12,29)) & (matches['tourney_date'] < datetime.date(2015,1,1))] #atp 500 #if draw size = 32, then 8 seeds #if draw size = 48, then 16 seeds #if draw size = 56, then 16 seeds tourney500names = ['Rotterdam', 'Rio de Janeiro', 'Acapulco', 'Dubai', 'Barcelona', 'Hamburg', 'Washington', 'Beijing', 'Tokyo', 'Valencia', 'Basel', 'Memphis'] matches500 = matches[matches['tourney_name'].isin(tourney500names)] #remove 2014-402 (= memphis) because in 2014 it was a 250 matches500 = matches500[(matches500['tourney_id'] != '2014-402')] matches500group = matches500.groupby('tourney_id') print("500============") getLastSeedRankForGroupedTourneys(matches500group) #atp 1000 #if draw size = 48, then 16 seeds #if draw size = 56, then 16 seeds #if draw size = 96, then 32 seeds matches1000 = matches[(matches['tourney_level'] == 'M')] matches1000group = matches1000.groupby('tourney_id') print("1000============") getLastSeedRankForGroupedTourneys(matches1000group) #atp 250 #if draw size = 28, then 8 seeds #if draw size = 32, then 8 seeds #if draw size = 48, then 16 seeds memphis2014 = matches[(matches['tourney_id'] == '2014-402')] matches250 = matches[(matches['tourney_level'] == 'A')] matches250 = matches250[~matches250['tourney_name'].isin(tourney500names)] #add memphis for 2014, because it became a 250 matches250 = pd.concat([matches250, memphis2014]) matches250group = matches250.groupby('tourney_id') print("250============") getLastSeedRankForGroupedTourneys(matches250group) #Grand Slam #if draw size = 128, then 32 seeds matchesG = matches[(matches['tourney_level'] == 'G')] matchesGgroup = matchesG.groupby('tourney_id') print("GS============") getLastSeedRankForGroupedTourneys(matchesGgroup) def rankingPointsOfYoungsters(players,ranks): """calculates ranking points of young players to answer questions like "how many ranking points did players younger than 16y have?""" players.columns = ['id', 'fname', 'lname', 'hand', 'dob', 'country'] players['full_name'] = players['fname'] + ' ' + players['lname'] ranks.columns = ['ranking_date', 'rank', 'player_id', 'points'] join = pd.merge(ranks,players, left_on='player_id', right_on='id') join['age'] = join['ranking_date'] - join['dob'] join = join[join['age'] > datetime.timedelta(days = 0)] join = join[(join['age'] < datetime.timedelta(days = 5875))] #join['readAge'] = [parse_date(ranking_date - dob) for ranking_date, dob in zip(join["ranking_date"], join["dob"])] join['readAge'] = join.apply(yearmonthdiff, axis=1) join['points'] = join['points'].astype('int') join = join[(join['points'] > 5)] join = join.groupby('full_name', as_index=False).apply(lambda g: g.loc[g.age.idxmin()]) join = join.sort(['age'], ascending=False) print(join[['ranking_date','dob', 'points','rank','readAge', 'full_name', 'country']].to_csv(sys.stdout,index=False)) def getLastSeedRankForGroupedTourneysDeprecated(groupedmatches): """DEPRECATED: returns the rank of the last seed for a give tournament""" resultlist = [] resultlist8 = [] resultlist16 = [] resultlist32 = [] for tid, tmatches in groupedmatches: print(tid + ' - ' + str(len(tmatches)) + ' - ' + tmatches.iloc[[0]]['tourney_name'].values[0]) if ((len(tmatches) == 55) | (len(tmatches) == 47)): maxseed = 16 #look for ranking of 16 seed elif ((len(tmatches) == 31) | (len(tmatches) == 27)): #look for ranking of 8 seed maxseed = 8 elif ((len(tmatches) == 95) | (len(tmatches) == 127)) : #look for ranking of 32 seed maxseed = 32 try: tempmatches = tmatches[(tmatches['loser_seed'] == maxseed)] if (len(tempmatches) == 1): rank = tempmatches.iloc[[0]]['loser_rank'].values[0] elif (len(tempmatches) < 1): tempmatches = tmatches[(tmatches['winner_seed'] == maxseed)] rank = tempmatches.iloc[[0]]['winner_rank'].values[0] print(rank) resultlist.append(rank) if (maxseed == 8): resultlist8.append(rank) elif (maxseed == 16): resultlist16.append(rank) elif (maxseed == 32): resultlist32.append(rank) except: continue print("Overall:") print(resultlist) resultlist = np.asarray(resultlist) print("Mean : {0:8.2f}".format(resultlist.mean())) print("Minimum : {0:8.0f}".format(resultlist.min())) print("Maximum : {0:8.0f}".format(resultlist.max())) print("Std. deviation : {0:8.2f}".format(resultlist.std())) if (len(resultlist8) > 0): print("8 Seeds:") print(resultlist8) resultlist8 = np.asarray(resultlist8) print("Mean : {0:8.2f}".format(resultlist8.mean())) print("Minimum : {0:8.0f}".format(resultlist8.min())) print("Maximum : {0:8.0f}".format(resultlist8.max())) print("Std. deviation : {0:8.2f}".format(resultlist8.std())) if (len(resultlist16) > 0): print(resultlist16) resultlist16 = np.asarray(resultlist16) print("16 Seeds:") print("Mean : {0:8.2f}".format(resultlist16.mean())) print("Minimum : {0:8.0f}".format(resultlist16.min())) print("Maximum : {0:8.0f}".format(resultlist16.max())) print("Std. deviation : {0:8.2f}".format(resultlist16.std())) if (len(resultlist32) > 0): print("32 Seeds:") print(resultlist32) resultlist32 = np.asarray(resultlist32) print("Mean : {0:8.2f}".format(resultlist32.mean())) print("Minimum : {0:8.0f}".format(resultlist32.min())) print("Maximum : {0:8.0f}".format(resultlist32.max())) print("Std. deviation : {0:8.2f}".format(resultlist32.std())) def getLastSeedRankForGroupedTourneys(groupedmatches): """returns the rank of the last seed for a give tournament""" global joinedrankingsdf #read rankings dirname = ".." ranking10s = dirname + "/atp_rankings_10s.csv" playersDB = dirname + "/atp_players.csv" rankingdf = pd.DataFrame() playersdf = pd.DataFrame() rankingdf = pd.read_csv(ranking10s,index_col=None,header=None, parse_dates=[0], date_parser=lambda t:parse(t)) rankingdf.columns = ['date', 'rank', 'id','points'] playersdf = pd.read_csv(playersDB,index_col=None,header=None) playersdf.columns = ['id', 'fname', 'lname','hand','dob','country'] joinedrankingsdf = pd.merge(rankingdf,playersdf, on='id') joinedrankingsdf["fullname"] = joinedrankingsdf["fname"] + ' ' + joinedrankingsdf["lname"] resultlist = [] resultlist8 = [] resultlist16 = [] resultlist32 = [] for tid, tmatches in groupedmatches: #if (tid == '2013-404'): print(tid + ' - ' + str(len(tmatches)) + ' - ' + tmatches.iloc[[0]]['tourney_name'].values[0]) if ((len(tmatches) == 55) | (len(tmatches) == 47)): maxseed = 16 #look for ranking of 16 seed elif ((len(tmatches) == 31) | (len(tmatches) == 27)): #look for ranking of 8 seed maxseed = 8 elif ((len(tmatches) == 95) | (len(tmatches) == 127)) : #look for ranking of 32 seed maxseed = 32 try: tempmatches = tmatches[(tmatches['loser_seed'] == maxseed)] if (len(tempmatches) == 1): #rank = tempmatches.iloc[[0]]['loser_rank'].values[0] playername = tempmatches.iloc[[0]]['loser_name'].values[0] tdate = tempmatches.iloc[[0]]['tourney_date'].values[0] #try previous mondays and if found we are fine. rank = getRankForPreviousMonday(tdate,playername) elif (len(tempmatches) < 1): tempmatches = tmatches[(tmatches['winner_seed'] == maxseed)] #rank = tempmatches.iloc[[0]]['winner_rank'].values[0] playername = tempmatches.iloc[[0]]['winner_name'].values[0] tdate = tempmatches.iloc[[0]]['tourney_date'].values[0] #try previous mondays rank = getRankForPreviousMonday(tdate,playername) print(rank) resultlist.append(rank) if (maxseed == 8): resultlist8.append(rank) elif (maxseed == 16): resultlist16.append(rank) elif (maxseed == 32): resultlist32.append(rank) except Exception as e: s = str(e) print(e) print("Exception likely due to last seed having withdrawn. So we ignore this and it's fine!") continue print("Overall:") print(resultlist) resultlist = np.asarray(resultlist) print("Mean : {0:8.2f}".format(resultlist.mean())) print("Minimum : {0:8.0f}".format(resultlist.min())) print("Maximum : {0:8.0f}".format(resultlist.max())) print("Std. deviation : {0:8.2f}".format(resultlist.std())) if (len(resultlist8) > 0): print("8 Seeds:") print(resultlist8) resultlist8 = np.asarray(resultlist8) print("Mean : {0:8.2f}".format(resultlist8.mean())) print("Minimum : {0:8.0f}".format(resultlist8.min())) print("Maximum : {0:8.0f}".format(resultlist8.max())) print("Std. deviation : {0:8.2f}".format(resultlist8.std())) if (len(resultlist16) > 0): print(resultlist16) resultlist16 = np.asarray(resultlist16) print("16 Seeds:") print("Mean : {0:8.2f}".format(resultlist16.mean())) print("Minimum : {0:8.0f}".format(resultlist16.min())) print("Maximum : {0:8.0f}".format(resultlist16.max())) print("Std. deviation : {0:8.2f}".format(resultlist16.std())) if (len(resultlist32) > 0): print("32 Seeds:") print(resultlist32) resultlist32 = np.asarray(resultlist32) print("Mean : {0:8.2f}".format(resultlist32.mean())) print("Minimum : {0:8.0f}".format(resultlist32.min())) print("Maximum : {0:8.0f}".format(resultlist32.max())) print("Std. deviation : {0:8.2f}".format(resultlist32.std())) def getBestQGrandSlamPlayer(qmatches,rankings): """returns highgest ranked players in grand slame quali-draws in order to find out the best cutoff for grand slam qualies""" global joinedrankingsdf #join rankings with playernames dirname = ".." playersDB = dirname + "/atp_players.csv" rankings.columns = ['date', 'rank', 'id','points'] playersdf = pd.read_csv(playersDB,index_col=None,header=None) playersdf.columns = ['id', 'fname', 'lname','hand','dob','country'] joinedrankingsdf = pd.merge(rankings,playersdf, on='id') joinedrankingsdf["fullname"] = joinedrankingsdf["fname"] + ' ' + joinedrankingsdf["lname"] qmatches = qmatches[(qmatches['tourney_name'] == 'Australian Open Q') | (qmatches['tourney_name'] == 'Roland Garros Q') | (qmatches['tourney_name'] == 'US Open Q') | (qmatches['tourney_name'] == 'Wimbledon Q')] matchesgroup = qmatches.groupby('tourney_id') res = {} for tid, tmatches in matchesgroup: name = tid[:4] + '-' + tmatches.iloc[[0]]['tourney_name'].values[0] print(name) #get all players into a set w_set = set(tmatches['winner_name']) l_set = set(tmatches['loser_name']) #u_set contains all names of participating players u_set = w_set.union(l_set) #get ranking date tdate = tmatches.iloc[[0]]['tourney_date'].values[0] #q deadline is 4 weeks earlier #deadline_date = tdate - datetime.timedelta(days = 28) #alternatively take 6 weeks earlier deadline (= md deadline) deadline_date = tdate - datetime.timedelta(days = 42) if (deadline_date.weekday() == 6): deadline_date = deadline_date + datetime.timedelta(days = 1) #get rankings for each player in the set for deadline_date player_list = list(u_set) plist_df = pd.DataFrame(player_list) plist_df.columns = ['fullname'] plist_df['entry_date'] = deadline_date merged = plist_df.merge(joinedrankingsdf, left_on=['fullname', 'entry_date'], right_on=['fullname', 'date']) merged = merged.sort(['rank'], ascending=True) #print(merged[['fullname', 'rank']].head(1)) print(merged[['fullname', 'rank']].head(1).to_csv(sys.stdout, header=False, index=False)) fullname = merged.head(1).iloc[[0]]['fullname'].values[0] rank = merged.head(1).iloc[[0]]['rank'].values[0] res[name] = [fullname , rank] for key, value in sorted(res.items(), key=lambda e: e[1][1]): print(key+','+value[0]+','+str(value[1])) def getAces(matches): """find matches where a player hit many aces. define the threshold in the next line""" matches = matches[((matches['w_ace'] > 45) | (matches['l_ace'] > 45))] print(matches[['tourney_date','tourney_name','winner_name','loser_name','w_ace','l_ace', 'score']].to_csv(sys.stdout,index=False)) def getShortestFiveSetter(matches): """finds short 5 set matches. define your own thresholds by changing the values in the line after the next.""" matches['score'].astype('str') matches = matches[(matches['minutes'] < 150) & (matches['score'].str.count('-') == 5)] matches = matches.sort(['minutes'], ascending=True) print(matches[['minutes','score','tourney_name','tourney_date','round','winner_name', 'loser_name']].to_csv(sys.stdout,index=False)) def getworstlda(matches): """find the worst tournaments in terms of 'last direct acceptance'""" global joinedrankingsdf #join rankings with playernames dirname = ".." playersDB = dirname + "/atp_players.csv" rankings.columns = ['date', 'rank', 'id','points'] playersdf = pd.read_csv(playersDB,index_col=None,header=None) playersdf.columns = ['id', 'fname', 'lname','hand','dob','country'] joinedrankingsdf = pd.merge(rankings,playersdf, on='id') joinedrankingsdf["fullname"] = joinedrankingsdf["fname"] + ' ' + joinedrankingsdf["lname"] matches = matches[((matches['tourney_level'] == 'A') & (matches['tourney_date'] > datetime.date(2007,1,1)) & ((matches['draw_size'] == 32) | (matches['draw_size'] == 28)))] tgroup = matches.groupby('tourney_id') res = {} for tid, tmatches in tgroup: name = tid + '-' + tmatches.iloc[[0]]['tourney_name'].values[0] print(name) #get all players into a set w_set = set(tmatches[(tmatches['winner_entry'] != 'Q') & (tmatches['winner_entry'] != 'WC') & (tmatches['winner_entry'] != 'LL')]['winner_name']) l_set = set(tmatches[(tmatches['loser_entry'] != 'Q') & (tmatches['loser_entry'] != 'WC') & (tmatches['loser_entry'] != 'LL')]['loser_name']) #u_set contains all names of participating players u_set = w_set.union(l_set) #get ranking date tdate = tmatches.iloc[[0]]['tourney_date'].values[0] deadline_date = tdate - datetime.timedelta(days = 42) #print(deadline_date.weekday()) if (deadline_date.weekday() == 6): deadline_date = deadline_date + datetime.timedelta(days = 1) print(deadline_date) for x in range(0, 3): deadline_date = deadline_date - datetime.timedelta(days = 7*x) if (len(joinedrankingsdf[(joinedrankingsdf['date'] == deadline_date)]) > 0): print("gefunden") print(deadline_date) break else: continue #get rankings for each player in the set for deadline_date player_list = list(u_set) plist_df = pd.DataFrame(player_list) plist_df.columns = ['fullname'] plist_df['entry_date'] = deadline_date merged = plist_df.merge(joinedrankingsdf, left_on=['fullname', 'entry_date'], right_on=['fullname', 'date']) merged = merged.sort(['rank'], ascending=False) print(merged[['fullname', 'rank']].head(1).to_csv(sys.stdout, header=False, index=False)) try: fullname = merged.head(1).iloc[[0]]['fullname'].values[0] rank = merged.head(1).iloc[[0]]['rank'].values[0] res[name] = [fullname , rank] except IndexError: continue for key, value in sorted(res.items(), key=lambda e: e[1][1]): print(key+','+value[0]+','+str(value[1])) def getCountriesPerTournament(matches): """returns tournaments where many players of the same country participated. currently the function operates on challenger matches. parameters in the next line may be changed to do the same for ATP tour level matches (no guarantee that it works without any further modifications)""" matches = matches[(matches['tourney_level'] == 'C') & (matches['round'] == 'R32')] tgroup = matches.groupby('tourney_id') res = {} for tid, tmatches in tgroup: name = tid + '-' + tmatches.iloc[[0]]['tourney_name'].values[0] #print(name) #get all winner countries into a set w_list = list(tmatches['winner_ioc']) l_list = list(tmatches['loser_ioc']) u_list = w_list + l_list top = collections.Counter(u_list).most_common(1) res[name] = [top[0][0], top[0][1]] #print(res) #u_set contains all names of participating players #u_set = w_set.union(l_set) for key, value in sorted(res.items(), key=lambda e: e[1][1], reverse=True): print(key+','+value[0]+','+str(value[1])) def getRetsPerPlayer(atpmatches,qmatches,fmatches, activeplayers, active): """returns the retirements per player over his career""" allmatcheslist = [] allmatcheslist.append(atpmatches) allmatcheslist.append(qmatches) allmatcheslist.append(fmatches) allmatches = pd.concat(allmatcheslist) allmatchesret_group = allmatches[allmatches['score'].str.contains('RET').fillna(False)].groupby('loser_name').size().order(ascending=False) allmatcheslost_group = allmatches.groupby('loser_name').size().order(ascending=False) allmatcheslost_group = allmatcheslost_group[allmatcheslost_group > 49] merged = pd.concat([allmatcheslost_group,allmatchesret_group], axis=1, join = 'inner').reset_index().fillna(0) merged.columns = ['name', 'losses' , 'ret'] merged['percentage'] = (merged['ret'] * 100 / merged['losses']).round(2) merged = merged.sort(['percentage','losses'], ascending=False) if (active): activeplayerslist = [row[0] for row in activeplayers] merged = merged[(merged['name'].isin(activeplayerslist))] print(merged.to_csv(sys.stdout,index=False)) def youngestChallengerWinners(matches): """returns youngest challenger match winners""" matches = matches[(matches['tourney_level'] == 'C') & (matches['round'] == "R32") & (matches['winner_age'] < 17)] matches_grouped = matches.groupby('winner_name', as_index=False).apply(lambda g: g.loc[g.winner_age.idxmin()]) matches_grouped['winner_age'] = matches_grouped['winner_age'].round(1) print(type(matches_grouped['winner_rank'][0])) matches_grouped['loser_rank'] = matches_grouped['loser_rank'].fillna(0.0).astype('int') matches_grouped['winner_rank'] = matches_grouped['winner_rank'].fillna(0.0).astype('int') print(matches_grouped[['tourney_date','tourney_name','winner_name','winner_age', 'winner_rank', 'loser_name', 'loser_rank', 'loser_entry']].sort(['winner_age'], ascending=[True]).to_csv(sys.stdout,index=False, sep='\t')) def getStreaks(atpmatches): """detects streaks in players' careers. in the next lines some parameters can be changed.""" #how many wins allowed during the streak? only tested for 0 and 1. #GAPS_ALLOWED=1 GAPS_ALLOWED=0 #max rank of player when the streak was started #MAX_RANK=20 MAX_RANK=2000 #define streak length MIN_STREAK_LENGTH = 20 #winning streak or losing streak? #WINS = False WINS = True if (WINS): NAME_COLUMN = 'winner_name' RANK_COLUMN = 'winner_rank' else: NAME_COLUMN = 'loser_name' RANK_COLUMN = 'loser_rank' #change tourney_level in next line! #atpmatches = atpmatches[(atpmatches['tourney_date'] >= 19900000) & (atpmatches['tourney_level'] != 'D')] atpmatches = atpmatches[(atpmatches['tourney_date'] >= 19900000) & (atpmatches['tourney_level'] == 'S')] #counting wins and losses (and adding as a column) for each player (for filter later to increase speed of algorithm) atpmatches['wfreq'] = atpmatches.groupby('winner_name')['winner_name'].transform('count') atpmatches['lfreq'] = atpmatches.groupby('loser_name')['loser_name'].transform('count') #only include players with more than 30 wins and 10 losses (to increase algorithm speed by reducing number of players) wplayers = atpmatches[atpmatches['wfreq'] > 30]['winner_name'].tolist() lplayers = atpmatches[atpmatches['lfreq'] > 10]['loser_name'].tolist() players = set(wplayers+lplayers) streaks = [] for player in players: playerFullName = player matches = atpmatches[((atpmatches['winner_name'] == playerFullName) | (atpmatches['loser_name'] == playerFullName))] matches['round'] = pd.Categorical(matches['round'], categories = ["RR", "R128", "R64", "R32", "R16", "QF", "SF", "F", "W"]) matches = matches.sort(['tourney_date', 'round']) wins_cnt=0 streak = 0 for i in range(len(matches)): #get losing streak if (matches.iloc[i][NAME_COLUMN] == playerFullName): if (streak == 0): startdate = matches.iloc[i]['tourney_date'] startrank = matches.iloc[i][RANK_COLUMN] streak = streak+1 else: #win wins_cnt=wins_cnt+1 if (wins_cnt==1): win_pos = i+1 if (wins_cnt > GAPS_ALLOWED): if (streak > MIN_STREAK_LENGTH): streaks.append([playerFullName,startdate,startrank,streak,GAPS_ALLOWED]) streak = 0 wins_cnt=0 i = win_pos+1 #old version of the function # for index, match in matches.iterrows(): # #get losing streak # if (match['loser_name'] == playerFullName): # if (streak == 0): # startdate = match['tourney_date'] # startrank = match['loser_rank'] # streak = streak+1 # tempmatch = match # continue # else: # #save streak because of win # if (streak > 6): # streaks.append([playerFullName,startdate,startrank,streak]) # streak = 0 # continue #to get ongoing streaks or players who ended career with a losing streak if (streak > MIN_STREAK_LENGTH): streaks.append([playerFullName,startdate,startrank,streak,GAPS_ALLOWED]) streak = 0 #do some styling (for streak-starts where we dont have a ranking (possibly due to WC awarded) we enter 9999 as a streak-ranking-start #so in order to include them MAX_RANK needs to be set accordingly streaks = [[row[0],row[1],9999 if math.isnan(row[2]) else int(row[2]),row[3],row[4]] for row in streaks] #sort by date first because it's secondary sort index streaks.sort(key=itemgetter(1),reverse=True) #sort by streak length streaks.sort(key=itemgetter(3),reverse=True) streaks = [y for y in streaks if int(y[2]) <= MAX_RANK] for streak in streaks: print(streak[0]+','+str(streak[1])+','+str(streak[2])+','+str(streak[3])+','+str(streak[4])) def get1seedWinners(matches): """calculates how often the first seed won an ATP tournament""" fmatches = matches[(matches['tourney_level'] == 'A') & (matches['round'] == 'F') & (matches['tourney_date'] >= 19910000)] wseed1matches = fmatches[(fmatches['winner_seed'] == 1)] print(len(fmatches)) print(len(wseed1matches)) matches = matches[(matches['tourney_level'] == 'A') & (matches['tourney_date'] >= 19910000)] cntfirstseedstten = 0 firstseedsttenwinner = 0 cntfirstseedgtten = 0 firstseedgttenwinner = 0 cntfirstseedgttwenty = 0 firstseedgttwentywinner = 0 tourney_group = matches.groupby('tourney_id') for tname, tdf in tourney_group: #print(tname) if (len(tdf[(tdf['winner_seed'] == 1)] > 0)): firstseedrank = tdf[(tdf['winner_seed'] == 1)].iloc[0]['winner_rank'] elif (len(tdf[(tdf['loser_seed'] == 1)] > 0)): firstseedrank = tdf[(tdf['loser_seed'] == 1)].iloc[0]['loser_rank'] if not (math.isnan(firstseedrank)): if (firstseedrank < 11): cntfirstseedstten+=1 if (len(tdf[(tdf['winner_seed'] == 1) & (tdf['round'] == 'F')] > 0)): firstseedsttenwinner+=1 if (firstseedrank > 10): cntfirstseedgtten+=1 if (len(tdf[(tdf['winner_seed'] == 1) & (tdf['round'] == 'F')] > 0)): firstseedgttenwinner+=1 if (firstseedrank > 20): cntfirstseedgttwenty +=1 if (len(tdf[(tdf['winner_seed'] == 1) & (tdf['round'] == 'F')] > 0)): firstseedgttwentywinner+=1 print('cntfirstseedstten: ' + str(cntfirstseedstten)) print('firstseedsttenwinner: ' + str(firstseedsttenwinner)) print('cntfirstseedgtten: ' + str(cntfirstseedgtten)) print('firstseedgttenwinner: ' + str(firstseedgttenwinner)) print('cntfirstseedgttwenty: ' + str(cntfirstseedgttwenty)) print('firstseedgttwentywinner: ' + str(firstseedgttwentywinner)) def getseedWinners(matches): """calculates how often the seeds won an ATP tournament""" groundmatches = matches[(matches['tourney_level'] == 'A') & (matches['round'] == 'F') & (matches['tourney_date'] >= 19910000) & ((matches['draw_size'] == 32) | (matches['draw_size'] == 28))] wseed1matches = groundmatches[(groundmatches['winner_seed'] == 1)] wseed2matches = groundmatches[(groundmatches['winner_seed'] == 2)] wseed3matches = groundmatches[(groundmatches['winner_seed'] == 3)] wseed4matches = groundmatches[(groundmatches['winner_seed'] == 4)] wseed5matches = groundmatches[(groundmatches['winner_seed'] == 5)] wseed6matches = groundmatches[(groundmatches['winner_seed'] == 6)] wseed7matches = groundmatches[(groundmatches['winner_seed'] == 7)] wseed8matches = groundmatches[(groundmatches['winner_seed'] == 8)] wunseedseedmatches = groundmatches[(groundmatches['winner_seed'].isnull())] print(len(groundmatches)) print('{} - {}{}'.format('1 seed', np.round(len(wseed1matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('2 seed', np.round(len(wseed2matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('3 seed', np.round(len(wseed3matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('4 seed', np.round(len(wseed4matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('5 seed', np.round(len(wseed5matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('6 seed', np.round(len(wseed6matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('7 seed', np.round(len(wseed7matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('8 seed', np.round(len(wseed8matches)*100/len(groundmatches), decimals=2),'%')) print('{} - {}{}'.format('unseeded', np.round(len(wunseedseedmatches)*100/len(groundmatches), decimals=2),'%')) print('------') def highestRankedAustriansInR16(matches): """returns the highest ranked austrians in an R16 of an ATP tournament. parameters in the next lines can be changed to make it work for different rounds and countries.""" smatches = matches[(matches['tourney_level'] == 'A') & (matches['round'] =='R32') & (matches['winner_ioc'] =='AUT') & (matches['winner_rank'] > 300) & ((matches['draw_size'] == 28) | (matches['draw_size'] == 32))] bmatches = matches[(matches['tourney_level'] == 'A') & (matches['round'] =='R64') & (matches['winner_ioc'] =='AUT') & (matches['winner_rank'] > 300) & ((matches['draw_size'] == 56) | (matches['draw_size'] == 48) | (matches['draw_size'] == 64))] mergelist = [smatches, bmatches] matches = pd.concat(mergelist) matches = matches.sort(['winner_rank'], ascending=False) print(matches[['tourney_name','tourney_date','winner_name', 'winner_rank', 'loser_name', 'loser_rank', 'loser_entry']].to_csv(sys.stdout,index=False)) def mostRetsInTourneyPerPlayer(matches): """returns tournaments where a player benefitted of a RET or W.O. more than once""" matches = matches[(matches['tourney_level'] == 'A') | (matches['tourney_level'] == 'M') | (matches['tourney_level'] == 'G')] matches['score'].astype('str') matches['count'] = matches.groupby(['tourney_id', 'winner_name'])['score'].transform(lambda x: x[(x.str.contains('RET|W').fillna(False))].count()) matches = matches[(matches['count'] > 1)] print(matches[['tourney_name','tourney_date','winner_name', 'count']].drop_duplicates().to_csv(sys.stdout,index=False)) def mostWCs(matches): """finds players with most WCs""" matches = matches[(matches['tourney_date'] > 20140000)] matches = matches[(matches['tourney_level'] == 'A') | (matches['tourney_level'] == 'M')| (matches['tourney_level'] == 'G')] matches = matches[(matches['winner_entry'] == 'WC') | (matches['loser_entry'] == 'WC')] wcw_group = matches.groupby(['tourney_id', 'winner_name']).apply(lambda x: (x['winner_entry'] == 'WC').sum()) wcl_group = matches.groupby(['tourney_id', 'loser_name']).apply(lambda x: (x['loser_entry'] == 'WC').sum()) scores = pd.DataFrame({'wcw' : wcw_group, 'wcl': wcl_group}).fillna(0) scores[['wcw', 'wcl']] = scores[['wcw', 'wcl']].astype(int) scores.index.names = ['tourney','pname'] scores['wcs'] = scores['wcw'] + scores['wcl'] scores = scores[(scores['wcs'] > 0)] scores = scores.groupby('pname') # scores[['wins', 'losses', 'rets']] = scores[['wins', 'losses', 'rets']].astype(int) # scores.index.names = ['year','pname'] # scores = scores[(scores['rets'] > 3)] # scores['matches'] = scores['wins']+scores['losses'] # scores['percentage'] = np.round((scores['rets'] * 100 / scores['wins']).astype(np.double), decimals=2) # scores = scores.reindex_axis(['matches', 'wins','losses','rets','percentage'], axis=1) # scores = scores.sort(['rets'], ascending=False) print(scores.to_csv(sys.stdout,index=True)) def mostRetsPerYear(matches): """finds players with most RETs received per year""" matches = matches[(matches['tourney_level'] == 'A') | (matches['tourney_level'] == 'M')| (matches['tourney_level'] == 'G')] matches['score'].astype('str') matches['tourney_date'].apply(str) matches['year'] = matches['tourney_date'].astype(str) matches['year'] = matches['year'].str[:4] w_group = matches.groupby(['year', 'winner_name']).size() l_group = matches.groupby(['year', 'loser_name']).size() #ret_group = matches.groupby(['year', 'winner_name']).apply(lambda x: (x['score'].str.contains('RET|W').fillna(False)).sum()) ret_group = matches.groupby(['year', 'winner_name']).apply(lambda x: (x['score'].str.contains('RET').fillna(False)).sum()) scores = pd.DataFrame({'wins' : w_group, 'losses' : l_group, 'rets' : ret_group}).fillna(0) scores[['wins', 'losses', 'rets']] = scores[['wins', 'losses', 'rets']].astype(int) scores.index.names = ['year','pname'] scores = scores[(scores['rets'] > 3)] scores['matches'] = scores['wins']+scores['losses'] scores['percentage'] = np.round((scores['rets'] * 100 / scores['wins']).astype(np.double), decimals=2) scores = scores.reindex_axis(['matches', 'wins','losses','rets','percentage'], axis=1) scores = scores.sort(['rets'], ascending=False) print(scores.to_csv(sys.stdout,index=True)) def oldestWinnerATP(atpmatches,qmatches): """returns tournaments with old match winners""" mergelist = [atpmatches, qmatches] matches = pd.concat(mergelist) matches = matches[(matches['tourney_level'] == 'A') | (matches['tourney_level'] == 'Q') | (matches['tourney_level'] == 'M') | (matches['tourney_level'] == 'G')] matches = matches[(matches['winner_age']) > 38] #matches = matches[(matches['tourney_date']) > 19903000] matches = matches.sort(['winner_age'], ascending=False) print(matches[['tourney_name', 'tourney_date', 'round', 'winner_name', 'winner_age', 'loser_name', 'score']].drop_duplicates().to_csv(sys.stdout,index=False)) def bestNonChampion(players,ranks): """finds highest ranked players without a title""" players.columns = ['id', 'fname', 'lname', 'hand', 'dob', 'country'] players['full_name'] = players['fname'] + ' ' + players['lname'] ranks.columns = ['ranking_date', 'rank', 'player_id', 'points'] ranks = ranks[(ranks['rank'] < 41)] join = pd.merge(ranks,players, left_on='player_id', right_on='id') join["fullname"] = join["fname"] + ' ' + join["lname"] join = join[(join['ranking_date'] > datetime.date(1991, 1, 1))] #join['tournament_wins'] = join.apply(lambda x: len(matches[(matches['tourney_date'] < x['ranking_date']) & (matches['winner_name'] == x['fullname'])]), axis=1) join = join.groupby('fullname').apply(get_date_wins) #groupby to increase speed compared to previous line join = join[(join['tournament_wins'] == 0)].sort(['rank'], ascending=True) print(join[['fullname', 'ranking_date', 'rank', 'tournament_wins']].to_csv(sys.stdout,index=False)) def getZeroBreakPointChampions(atpmatches): """finds tournament winners who faces zero break points over the course of a tournament""" matches = atpmatches[((atpmatches['tourney_level'] == 'A') | (atpmatches['tourney_level'] == 'G') | (atpmatches['tourney_level'] == 'M')) & (atpmatches['tourney_date'] >= 19910000)] #matches = matches[(matches['tourney_id'] == '2015-891') | (matches['tourney_id'] == '2015-407')] matches['w_broken'] = matches['w_bpFaced'] - matches['w_bpSaved'] matches = matches.reset_index().groupby('tourney_id').apply(get_winner_name) matches = matches[(matches['winner_name'] == matches['twname'])] matches['sum_broken'] = matches.groupby('tourney_id')['w_broken'].transform(np.sum) matches = matches.sort(['sum_broken','tourney_date'], ascending=[True,False]) print(matches[['tourney_id', 'tourney_name', 'tourney_level', 'winner_name', 'sum_broken']].drop_duplicates().to_csv(sys.stdout,index=False)) def get_winner_name(in_group): """helper function""" try: wname = in_group[(in_group['round'] == 'F')].iloc[[0]]['winner_name'].values[0] in_group['twname'] = wname except IndexError: in_group['twname'] = 'none' return in_group def easiestOpponents(atpmatches): """finds players who had the highest ranked opponents over a complete tournament""" matches = atpmatches[(atpmatches['tourney_level'] == 'G')] matches = matches[(matches['round'] == 'R128') | (matches['round'] == 'R64') | (matches['round'] == 'R32') | (matches['round'] == 'R16')] #filter players who played against Q or WC (who potentially have high rankings #matches = matches[(matches['loser_entry'] != 'WC') & (matches['loser_entry'] != 'Q') & (matches['loser_entry'] != 'LL')] matches = matches.groupby(['tourney_date','winner_name']).filter(lambda x: len(x) > 3) matches['ranksum'] = matches.groupby(['tourney_date','winner_name'])['loser_rank'].transform(lambda x: x.sum()) matches = matches[(matches['ranksum'] > 450)] matches = matches.sort(['tourney_date','winner_name'], ascending=True) print(matches[['tourney_name','tourney_date','winner_name', 'round', 'loser_name', 'loser_rank', 'loser_entry', 'ranksum']].drop_duplicates().to_csv(sys.stdout,index=False)) def wcwinner(qmatches): """finds Q winners who were WCs""" matches = qmatches[(qmatches['round'] == 'F') & (qmatches['winner_entry'] == 'WC')] #filter out seeded WCs matches = matches[(matches['winner_seed'].isnull())] print(matches[['tourney_name','tourney_date','winner_name', 'winner_entry', 'winner_rank']].to_csv(sys.stdout,index=False)) def titlesataage(atpmatches): """calculates how many titles a player had at a certain age""" matches = atpmatches[(atpmatches['round'] == 'F') & (atpmatches['winner_age'] < 22.5)] matches['titles'] = matches.groupby('winner_name')['winner_name'].transform('count') matches = matches[(matches['titles'] > 3)] print(matches[['winner_name', 'titles']].drop_duplicates().to_csv(sys.stdout,index=False)) def get_streaks(x): """helper function""" #x['streak'] = x.groupby( (x['l_breaks'] != 0).cumsum()).cumcount() + ( (x['l_breaks'] != 0).cumsum() == 0).astype(int) x=x.reset_index() for i, row in x.iterrows(): #print(i) if i != 0: if row['l_breaks'] == 0: x.ix[i, 'streak'] = x.ix[i-1, 'streak'] + 1 else: if row['l_breaks'] == 0: x.ix[i, 'streak'] = 1 return x def get_streaks2(df): """helper function""" df=df.reset_index() df['streak2'] = (df['l_breaks'] == 0).cumsum() df['cumsum'] = np.nan df.loc[df['l_breaks'] != 0, 'cumsum'] = df['streak2'] df['cumsum'] = df['cumsum'].fillna(method='ffill') df['cumsum'] = df['cumsum'].fillna(0) df['streak'] = df['streak2'] - df['cumsum'] df.drop(['streak2', 'cumsum'], axis=1, inplace=True) return df def consecutivlosseswithoutbreaks(atpmatches): """finds matches where players had consecutive losses without getting broken""" #atpmatches = atpmatches[(atpmatches['loser_name'] == 'John Isner')] atpmatches = atpmatches.sort('tourney_date') atpmatches['l_breaks'] = atpmatches['l_bpFaced']-atpmatches['l_bpSaved'] atpmatches['streak'] = 0 atpmatches = atpmatches.groupby('loser_name').apply(get_streaks2) atpmatches = atpmatches[(atpmatches['streak'] >1)] atpmatches = atpmatches.sort('tourney_date') print(atpmatches[['tourney_date', 'tourney_name','winner_name', 'loser_name', 'score', 'l_bpSaved', 'l_bpFaced', 'streak']].to_csv(sys.stdout,index=False)) def curse(row): """helper function""" if row['previous_loser'] == 'Rafael Nadal': if row['previous_winner'] == row['winner_name']: val = 0 elif row['previous_winner'] != row['winner_name']: val = 1 else: val = -1 return val def findnadals(group): """helper function""" #print(group.iloc[[0]]['tourney_date'].values[0]) group = group.sort('rank') group['previous_loser'] = group['loser_name'].shift(1) group['previous_winner'] = group['winner_name'].shift(1) group = group[(group['winner_name'] == 'Rafael Nadal') | (group['loser_name'] == 'Rafael Nadal') | (group['previous_loser'] == 'Rafael Nadal')] group.loc[group['previous_loser'] != 'Rafael Nadal', 'previous_loser'] = '' group = group[(group['previous_loser'] == 'Rafael Nadal') | ((group['loser_name'] == 'Rafael Nadal') & (group['round'] != 'F'))] if (len(group) > 0): group['curse'] = group.apply(curse, axis=1) #print(group[['tourney_date', 'tourney_name', 'round', 'winner_name', 'loser_name', 'previous_loser', 'curse', 'score']].to_csv(sys.stdout,index=False)) #print('in group type: ' + str(type(group))) return group def losetonadalafterwin(atpmatches): """finds matches of players who lost to nadal after they beat him (nadal curse)""" round_dict = { "R16": 9, "W": 13, "F": 12, "RR": 8, "R64": 6, "R128": 5, "QF": 10, "SF": 11, "R32": 7 }; atpmatches = atpmatches[(atpmatches['tourney_date'] > datetime.date(1995,1,1))] w_set = set(atpmatches['winner_name']) l_set = set(atpmatches['loser_name']) namelist = w_set.union(l_set) namelist = sorted(namelist) namelist.remove('Novak Djokovic') namelist.remove('Andy Murray') namelist.remove('Roger Federer') namelist.remove('Rafael Nadal') #namelist = namelist.remove('Novak Djokovic'), 'Roger Federer', 'Andy Murray']) #namelist = ['Borna Coric', 'Steve Darcis'] atpmatches['rank'] = atpmatches['round'].map(round_dict) atpmatches = atpmatches.sort('tourney_date') #get list of nadal tournaments nadal_tourneys = atpmatches[(atpmatches['winner_name'] == 'Rafael Nadal') | (atpmatches['loser_name'] == 'Rafael Nadal')]['tourney_id'] nadal_tourneys = nadal_tourneys.tolist() resultmatches = pd.DataFrame() for name in namelist: print(name) matches = atpmatches[((atpmatches['winner_name'] == name) | (atpmatches['loser_name'] == name)) & atpmatches['tourney_id'].isin(nadal_tourneys)] matches = matches.groupby(['tourney_id']).apply(findnadals) resultmatches = resultmatches.append(matches) resultmatches['curse'] = resultmatches['curse'].astype(int) resultmatches = resultmatches.sort(['tourney_date', 'rank'], ascending=[True,True]) print(resultmatches[['tourney_date', 'tourney_name', 'round', 'winner_name', 'loser_name', 'previous_loser', 'curse', 'score']].drop_duplicates().to_csv(sys.stdout,index=False)) print(resultmatches[['tourney_date', 'tourney_name', 'round', 'winner_name', 'loser_name', 'curse', 'score']].drop_duplicates().to_csv(sys.stdout,index=False)) def countseeds(group): """helper function""" group['cnt'] = len(group[(group['loser_seed'] < 6) | (group['winner_seed'] < 6)]) #print(len(group[(group['loser_seed'] < 6) | (group['winner_seed'] < 6)])) #print('--') return group def fouroffiveseedsgone(atpmatches): """finds tournaments where four of five seeds lost until R16""" matches = atpmatches[(atpmatches['tourney_level'] == 'M') & (atpmatches['round'] == 'R16')] matches = matches.reset_index().groupby(['tourney_id']).apply(countseeds) matches = matches[(matches['cnt'] < 2)] matches['url'] = 'http://www.protennislive.com/posting/' +matches['tourney_date'].dt.strftime('%Y') + '/' + matches['tourney_id'].str[-3:] + '/mds.pdf' print(matches[['tourney_date', 'tourney_name', 'cnt', 'url']].drop_duplicates().to_csv(sys.stdout,index=False)) def createOpponentCol(x,name): """helper function""" if (x['winner_name'] == name): return x['loser_name'] else: return x['winner_name'] def createOpponent2Col(x,name): """helper function""" if (x['winner_name'] == name): return 1 else: return 0 def lossStreaks(group): """helper function""" group = group.sort('tourney_date') group['streak2'] = (group['opponent_loss'] == 0).cumsum() group['cumsum'] = np.nan group.loc[group['opponent_loss'] == 1, 'cumsum'] = group['streak2'] group['cumsum'] = group['cumsum'].fillna(method='ffill') group['cumsum'] = group['cumsum'].fillna(0) group['streak'] = group['streak2'] - group['cumsum'] group['streak'] = group['streak'].astype('int') group = group[group['streak'] != 0] #group.drop(['streak2', 'cumsum'], axis=1, inplace=True) group = group.groupby('cumsum').filter(lambda x: len(x) > 1) if (len(group) > 1): print(group[['tourney_date', 'tourney_name', 'winner_name', 'loser_name', 'score', 'streak']].to_csv(sys.stdout,index=False)) return group def backtobacklosses(atpmatches,name): """finds back to back losses""" matches=atpmatches[(atpmatches['winner_name'] == name) | (atpmatches['loser_name'] == name)] matches['opponent_name'] = matches.apply(lambda x: createOpponentCol(x, name), axis=1) matches['opponent_loss'] = matches.apply(lambda x: createOpponent2Col(x, name), axis=1) #matches = matches[matches['opponent_name'] == 'Novak Djokovic'] matches = matches.reset_index().groupby('opponent_name').apply(lossStreaks) def titlesdefended(atpmatches): """calculates how often titles were successfully defended""" matches = atpmatches[(atpmatches['tourney_level'] == 'A')] matches['rawid'] = matches['tourney_id'].str[5:] matches1415 = matches[((matches['tourney_date'] < 20140000) & (matches['tourney_date'] > 20111200))] matches1415['tourney_date'] = matches1415['tourney_date'].astype('str') #TODO: check if winner of 2014 is also playing in 2015. if yes: keep tournament, if not, drop it! matches1415 = matches1415.groupby(matches1415['rawid'])#.filter(lambda x: len(x['tourney_name']) == 2) #print(len(matches1415)) defender_tourneys = matches1415.apply(tryingtodefend) print(len(defender_tourneys)) defender_tourneys = defender_tourneys[defender_tourneys['del'] == 0] print(len(defender_tourneys)) defender_tourneys = defender_tourneys[['rawid','triedtodefend','successfullydefended','madeituntil']] print(len(defender_tourneys)) defender_tourneys = defender_tourneys.drop_duplicates() print('{} {}'.format('tournaments:', len(defender_tourneys))) print('{} {}'.format('triedtodefend:', len(defender_tourneys[defender_tourneys['triedtodefend'] == 1]))) print('{} {}'.format('successfullydefended:', len(defender_tourneys[defender_tourneys['successfullydefended'] == 1]))) print('{} {}'.format('% triedtodefend:', np.round(len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])*100/len(defender_tourneys)),2)) print('{} {}'.format('% successfullydefended of all tournaments:', np.round(len(defender_tourneys[defender_tourneys['successfullydefended'] == 1])*100/len(defender_tourneys)),2)) print('{} {}'.format('% successfullydefended of tries:', np.round(len(defender_tourneys[defender_tourneys['successfullydefended'] == 1])*100/len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])),2)) print('{} {}'.format('until F:', np.round(len(defender_tourneys[defender_tourneys['madeituntil'] == 'F'])*100/len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])),2)) print('{} {}'.format('until SF:', np.round(len(defender_tourneys[defender_tourneys['madeituntil'] == 'SF'])*100/len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])),2)) print('{} {}'.format('until QF:', np.round(len(defender_tourneys[defender_tourneys['madeituntil'] == 'QF'])*100/len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])),2)) print('{} {}'.format('until R16:', np.round(len(defender_tourneys[defender_tourneys['madeituntil'] == 'R16'])*100/len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])),2)) print('{} {}'.format('until R32:', np.round(len(defender_tourneys[defender_tourneys['madeituntil'] == 'R32'])*100/len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])),2)) print('{} {}'.format('until R64:', np.round(len(defender_tourneys[defender_tourneys['madeituntil'] == 'R64'])*100/len(defender_tourneys[defender_tourneys['triedtodefend'] == 1])),2)) #defender_tourneys.groupby['rawid'] #print(defender_tourneys[['rawid','tourney_id','triedtodefend','successfullydefended','madeituntil']].to_csv(sys.stdout,index=False)) #matches1415 = matches1415.groupby(matches1415['rawid']).apply(defending) def tryingtodefend(group): """helper function""" try: #print(group.name) #print(group.iloc[[0]]['tourney_name']) #print(len(group)) #print('----') group = group.sort('tourney_date', ascending=True) group_copy = group[(group['round'] == 'F')] #get new/old year newer_year = str(group_copy.iloc[[len(group_copy)-1]]['tourney_date'].values[0])[:4] older_year = str(group_copy.iloc[[0]]['tourney_date'].values[0])[:4] oldwinnername = group_copy.iloc[[0]]['winner_name'].values[0] tourneyname = group_copy.iloc[[0]]['tourney_name'].values[0] # print(oldwinnername) # print(older_year) # print(newer_year) # print(tourneyname) # print(len(group_copy)) #del because tournament was only held in one year if (len(group_copy) == 1): group['del'] = 1 else: group['del'] = 0 #delete big four if ((oldwinnername == 'Rafael Nadal') | (oldwinnername == 'Andy Murray') | (oldwinnername == 'Novak Djokovic') | (oldwinnername == 'Roger Federer')): group['del'] = 1 #does oldwinner play in new year? newmatches = group[group['tourney_date'].str.startswith(newer_year) & ((group['loser_name'] == oldwinnername) | (group['winner_name'] == oldwinnername))] if (len(newmatches) == 0): group['triedtodefend'] = 0 group['successfullydefended'] = 0 group['madeituntil'] = 0 else: group['triedtodefend'] = 1 #successfully defended? if (len(newmatches[(newmatches['round'] == 'F') & (newmatches['winner_name'] == oldwinnername)]) > 0): group['successfullydefended'] = 1 group['madeituntil'] = 'W' else: group['successfullydefended'] = 0 if (len(newmatches[(newmatches['round'] == 'F') & (newmatches['loser_name'] == oldwinnername)]) > 0): group['madeituntil'] = 'F' elif (len(newmatches[(newmatches['round'] == 'SF') & (newmatches['loser_name'] == oldwinnername)]) > 0): group['madeituntil'] = 'SF' elif (len(newmatches[(newmatches['round'] == 'QF') & (newmatches['loser_name'] == oldwinnername)]) > 0): group['madeituntil'] = 'QF' elif (len(newmatches[(newmatches['round'] == 'R16') & (newmatches['loser_name'] == oldwinnername)]) > 0): group['madeituntil'] = 'R16' elif (len(newmatches[(newmatches['round'] == 'R32') & (newmatches['loser_name'] == oldwinnername)]) > 0): group['madeituntil'] = 'R32' elif (len(newmatches[(newmatches['round'] == 'R64') & (newmatches['loser_name'] == oldwinnername)]) > 0): group['madeituntil'] = 'R64' #print(group[['tourney_id','tourney_name','triedtodefend','successfullydefended','madeituntil']].drop_duplicates().to_csv(sys.stdout,index=False)) #newwinnername = group_copy.iloc[[1]]['winner_name'].values[0] #print(newwinnername) #get list of all new players #print(group[['tourney_date', 'round', 'winner_name', 'prev_winner_winner','prev_winner_runnerup', 'deftitle', 'defrunnerup']].to_csv(sys.stdout,index=False)) #print(group[['tourney_date', 'round', 'winner_name']].to_csv(sys.stdout,index=False)) return group except IndexError: group['include'] = False return group def defending(group): """helper function""" #print(group.name) #print(group.iloc[[0]]['tourney_name']) #print(len(group)) print('----') group = group.sort('tourney_date', ascending=True) group['prev_winner_winner'] = group['winner_name'].shift() group['prev_winner_runnerup'] = group['loser_name'].shift() group['deftitle'] = group.apply(f, axis=1) group['defrunnerup'] = group.apply(g, axis=1) print(group[['rawid', 'winner_name', 'prev_winner_winner','prev_winner_runnerup', 'deftitle', 'defrunnerup']].to_csv(sys.stdout,index=False)) return group def f(row): """helper function""" if row['prev_winner_winner'] == row['winner_name']: val = 1 else: val = 0 return val def g(row): """helper function""" if row['prev_winner_runnerup'] == row['winner_name']: val = 1 else: val = 0 return val def titlessurface(atpmatches): """calculates titles per surface""" matches = atpmatches[atpmatches['round'] == 'F'] matches['year'] = matches.tourney_id.str[:4] matches['tourney_date'] =matches['tourney_date'].astype('str') matches['month'] = matches.tourney_date.str[4:6] matches['month'] = matches['month'].astype('int') matches = matches[matches['month'] < 7] matches = matches.reset_index().groupby(['year','winner_name']) surface_winners = matches.apply(calcsurfaces) def calcsurfaces(group): """helper function""" #print(group.iloc[[0]]['year'].values[0]) #print(group.iloc[[0]]['winner_name'].values[0]) #print(len(group[group['surface'] == "Clay"])) #print(len(group[group['surface'] == "Grass"])) #print(len(group[group['surface'] == "Hard"])) if ((len(group[group['surface'] == "Clay"])) > 0) & ((len(group[group['surface'] == "Hard"])) > 0) & ((len(group[group['surface'] == "Grass"])) > 0): print(group[['year','winner_name', 'surface','tourney_name', 'tourney_date']].to_csv(sys.stdout,index=False)) def matchesPerLastNameAndRound(matches): """finds matches of brothers""" matches = matches[(matches['round']=='F') & (matches['tourney_date'] > 19900000)] matches['winner_lastname'] = matches['winner_name'].str.split(' ').str[-1] + matches['winner_ioc'] matches['loser_lastname'] = matches['loser_name'].str.split(' ').str[-1] + matches['loser_ioc'] matches = matches.reset_index().groupby('tourney_id') result = matches.apply(playernames) result = result[(result['winner_brother'] == 1) | (result['loser_brother'] == 1)] result2 = [] for index, row in result.iterrows(): output1='' output2='' if (row['winner_brother'] == 1) & (row['loser_brother'] == 1): output1+=row['winner_name'] output2+=row['loser_name'] result2.append([row['tourney_name'], row['tourney_date'], output1,1]) result2.append([row['tourney_name'], row['tourney_date'], output2,1]) else: if (row['winner_brother'] == 1): output1+=row['winner_name'] if (row['loser_brother'] == 1): output1+=row['loser_name'] result2.append([row['tourney_name'], row['tourney_date'], output1,0]) resultdf = pd.DataFrame(result2) resultdf[4] = resultdf[2].shift(1) resultdf = resultdf[1:] resultdf = resultdf.iloc[::2] resultdf = resultdf[[0,1,2,4,3]] #print matches.to_string(columns=['tourney_name','tourney_date','winner_name', 'loser_name']) print(resultdf.to_csv(sys.stdout,index=False)) def playernames(group): """helper function""" group['unique_sum'] = len(group['winner_lastname'].unique()) + len(group['loser_lastname'].unique()) temp = [group['winner_lastname'], group['loser_lastname']] mergelist = pd.concat(temp) mergelist = mergelist[(mergelist != 'LopezESP') & (mergelist != 'JohanssonSWE') & (mergelist != 'CostaESP') & (mergelist != 'FerreiraRSA') ] dups = mergelist.duplicated(keep=False) dups2 = mergelist[mergelist.duplicated(keep=False)] dups3 = dups2.str[0:-3] group['winner_lastname'] = group['winner_lastname'].str[0:-3] group['loser_lastname'] = group['loser_lastname'].str[0:-3] group['winner_brother'] = np.where(group['winner_lastname'].isin(dups3), 1, 0) group['loser_brother'] = np.where(group['loser_lastname'].isin(dups3), 1, 0) return group def bestNeverQFWin(matches, rankings,activeplayers): """finds players who never won a QF (+ streaks)""" #matches = matches[matches['tourney_date'] > datetime.date(2012,12,29)] qfmatches = matches[(matches['round']=='QF')] qfmatches = qfmatches.sort_values(by='tourney_date') qfgmatches = qfmatches.groupby('winner_name').first().reset_index() #print(len(matches)) #print(matches[[ 'round', 'tourney_date','tourney_name']].head(1000)) #reused code start (would be better to make a function out of this) global joinedrankingsdf #join rankings with playernames dirname = ".." playersDB = dirname + "/atp_players.csv" rankings.columns = ['date', 'rank', 'id','points'] rankings = rankings[rankings['rank'] < 100] playersdf = pd.read_csv(playersDB,index_col=None,header=None,encoding = "ISO-8859-1") playersdf.columns = ['id', 'fname', 'lname','hand','dob','country'] playersdf["fullname"] = playersdf["fname"] + ' ' + playersdf["lname"] playersdf = playersdf.sort_values(by='fullname') qfstreaks = pd.DataFrame() #filter players to increase speed of following iteration r16matches = matches[(matches['round']=='R16')] r16players = set(r16matches['winner_name']) filtered_players = playersdf[playersdf['fullname'].isin(r16players)] print(len(playersdf)) print(len(filtered_players)) #calc initial losing streaks for index, player in filtered_players.iterrows(): name = player['fullname'] print(name) qfmatchesplayer = qfmatches[(qfmatches['winner_name'] == name) | (qfmatches['loser_name'] == name)] qfmatchesplayer['player'] = name #print(len(qfmatchesplayer)) if (len(qfmatchesplayer)) > 0: streak = 1 for index, row in qfmatchesplayer.iterrows(): if (row['winner_name'] == row['player']): streak=0 qfmatchesplayer.set_value(index,'streak',streak) elif (row['loser_name'] == row['player']) & (streak==1): qfmatchesplayer.set_value(index,'streak',streak) else: streak=0 qfmatchesplayer.set_value(index,'streak',streak) qfmatchesplayer=qfmatchesplayer[qfmatchesplayer['streak']==1] qfstreaks = qfstreaks.append(qfmatchesplayer) #print(qfmatchesplayer[['player','winner_name', 'loser_name','streak']].to_csv(sys.stdout,index=False)) counts_df = pd.DataFrame(qfstreaks.groupby('player').size().sort_values().rename('counts')) print(counts_df) joinedrankingsdf = pd.merge(rankings,playersdf, on='id') joinedrankingsdf["fullname"] = joinedrankingsdf["fname"] + ' ' + joinedrankingsdf["lname"] #reused code end res = [] #get all rankings for each player row for index, match in qfgmatches.iterrows(): name = match['winner_name'] date = match['tourney_date'] print(name) try: counts = counts_df[counts_df.index == name]['counts'].values[0] except: counts = 0 playerres = joinedrankingsdf[(joinedrankingsdf['fullname'] == name) & (joinedrankingsdf['date'] <= date)] try: minrank = playerres.loc[playerres['rank'].idxmin()] #print(minrank[['fullname','date', 'rank']]) res.append([minrank['fullname'], minrank['rank'], minrank['date'].strftime('%Y.%m.%d'),1,counts]) except: continue #add players who still did not win a QF qfmatches = matches[(matches['round']=='QF')] qfwinners = set(qfmatches['winner_name']) qfmatches = qfmatches.groupby('loser_name').filter(lambda g: (len(g[(~g['loser_name'].isin(qfwinners))]) > 0)) counts_df = pd.DataFrame(qfmatches.groupby('loser_name').size().sort_values().rename('counts')) for index, match in counts_df.iterrows(): name = match.name counts = match['counts'] playerres = joinedrankingsdf[(joinedrankingsdf['fullname'] == name)] try: minrank = playerres.loc[playerres['rank'].idxmin()] res.append([minrank['fullname'], minrank['rank'], minrank['date'].strftime('%Y.%m.%d'),0,counts]) except: continue res = sorted(res, key=itemgetter(1)) pprint.pprint(res) activeplayerslist = [row[0] for row in activeplayers] for r in res: if (r[0] in activeplayerslist): print("{: >20} {: >20} {: >20} {: >20} {: >20}".format(*r)) def listAllTimeNoQFWins(matches): """lists players who never won a QF""" qfmatches = matches[(matches['round']=='QF')] qfwinners = set(qfmatches['winner_name']) qfmatches = qfmatches.groupby('loser_name').filter(lambda g: (len(g[(~g['loser_name'].isin(qfwinners))]) > 0)) counts = qfmatches.groupby('loser_name').size().sort_values() print(counts) def setstats(atpmatches): """for a player calculates specific set statistics""" name='Gael Monfils' matches=atpmatches[(atpmatches['winner_name'] == name) | (atpmatches['loser_name'] == name)] matches=matches[matches['tourney_date'] > datetime.date(2014,12,28)] #setfilter matches = matches[(matches['score'].str.count('-') == 3) | (matches['score'].str.count('-') == 2)] #norets matches = matches[~matches['score'].str.contains('RET|W').fillna(False)] matches['sets_analysis'] = matches.apply(analyzeSets, axis=1) matches['sets_won'], matches['sets_lost'], matches['first'], matches['res'] = zip(*matches['sets_analysis'].map(lambda x: x.split(','))) matches['sets_won'] = matches['sets_won'].astype('int') matches['sets_lost'] = matches['sets_lost'].astype('int') matches['first'] = matches['first'].astype('int') print('sets won: ' + str(matches['sets_won'].sum())) print('sets lost: ' + str(matches['sets_lost'].sum())) print('first sets won: ' + str(matches['first'].sum())) print('cb analysis:\n' + str(matches['res'].value_counts(sort=False))) print('# of matches: ' + str(len(matches))) #print(matches[['score','sets_won', 'sets_lost', 'first','winner_name', 'loser_name']].to_csv(sys.stdout,index=False)) def analyzeSets(row): """helper function""" sets = row['score'].split(' ') won=0 lost=0 first=0 res=0 print(sets) for idx,set in enumerate(sets): setscore = set.split('-') if (len(setscore)>1): #clean tb scores if( '(' in setscore[0]): setscore[0]=setscore[0][0] if( '(' in setscore[1]): setscore[1]=setscore[1][0] if(row['winner_name'] == 'Gael Monfils'): print('player winner') if((int(setscore[0])>int(setscore[1])) & (int(setscore[0]) > 5)): won=won+1 if(idx==0): first=1 elif(int(setscore[0])<int(setscore[1])): lost=lost+1 else: print('player loser') if((int(setscore[0])<int(setscore[1])) & (int(setscore[1]) > 5)): won=won+1 if(idx==0): first=1 elif((int(setscore[0])>int(setscore[1]))): lost=lost+1 print(setscore) #ersten gewonnen und gewonnen = 0 if ((first==1) & (won>lost)): res=0 #ersten verloren und gewonnen = 1 if ((first==0) & (won>lost)): res=1 #ersten gewonnen und verloren = 2 if ((first==1) & (won<lost)): res=2 #ersten verloren und verloren = 3 if ((first==0) & (won<lost)): res=3 print(str(won)+','+str(lost)+','+str(first)+','+str(res)) return(str(won)+','+str(lost)+','+str(first)+','+str(res)) def geth2hforplayerswrapper(atpmatches,qmatches): """helper function""" #geth2hforplayer(atpmatches,"Roger Federer") atpmatches = atpmatches.append(qmatches) names = atpmatches[atpmatches['winner_rank'] < 100] names = names.winner_name.unique() for name in names: geth2hforplayer(atpmatches,name) def getwnonh2hs(atpmatches,qmatches,rankings): """calculates head to heads""" #todo: could be extended to older players and also show career-overlap (e.g. were 10y together on tour)s #make full matches df atpmatches = atpmatches.append(qmatches) global joinedrankingsdf #join rankings with playernames dirname = ".." playersDB = dirname + "/atp_players.csv" rankings.columns = ['date', 'rank', 'id','points'] playersdf = pd.read_csv(playersDB,index_col=None,header=None,encoding = 'iso-8859-1') playersdf.columns = ['id', 'fname', 'lname','hand','dob','country'] joinedrankingsdf = pd.merge(rankings,playersdf, on='id') joinedrankingsdf["fullname"] = joinedrankingsdf["fname"] + ' ' + joinedrankingsdf["lname"] #get newest top-n rankings joinedrankingsdf = joinedrankingsdf[(joinedrankingsdf.date == joinedrankingsdf.date.max()) & (joinedrankingsdf['rank'] < 51)] #for each player in the rankings calculate the h2hs and then compare players in the h2h list with top-n players... playernames = joinedrankingsdf['fullname'] playernameslist = playernames.tolist() #dfs for calculating match-number of players wins = atpmatches.groupby('winner_name').count() losses = atpmatches.groupby('loser_name').count() for player in playernames: h2hlist = geth2hforplayer(atpmatches,player) h2hnames = [row[0] for row in h2hlist] noh2hs = [x for x in playernameslist if x not in h2hnames] player1WL = losses[losses.index == player]['score'].values[0]+wins[wins.index == player]['score'].values[0] #show rank for player in iteration and show string for noh2h in noh2hs: player2WL = losses[losses.index == noh2h]['score'].values[0]+wins[wins.index == noh2h]['score'].values[0] if (noh2h != player): print(player + ';' + str(joinedrankingsdf[(joinedrankingsdf['fullname'] == player)]['rank'].values[0]) + ';' + str(player1WL) + ';' + noh2h + ';' + str(joinedrankingsdf[(joinedrankingsdf['fullname'] == noh2h)]['rank'].values[0]) + ';' + str(player2WL)) def getTop100ChallengerPlayersPerWeek(qmatches): """finds top 100 challenger players per week""" matches = qmatches[(qmatches['tourney_level'] == 'C') & (qmatches['round'] == 'R32') & (qmatches['tourney_date'] > datetime.date(2000,1,1))] matches['top100'] = matches.apply(top100, axis=1) matches['count'] = matches.groupby(['tourney_date'])['top100'].transform(lambda x: x.sum()) matches['tcount'] = matches.groupby(['tourney_date'])['tourney_name'].transform(lambda x: x.nunique()) matches = matches.sort(['count'], ascending=False) print(matches[['tourney_date', 'count','tcount']].drop_duplicates().to_csv(sys.stdout,index=False)) #print(matches['top100'].head()) def top100(row): """helper function""" if ((row['winner_rank'] < 101) & (row['loser_rank'] < 101)): val = 2 elif ((row['loser_rank'] < 101) | (row['winner_rank'] < 101)): val = 1 else: val = 0 #print(val) return val def showTourneysOfDate(qmatches,year,month,day): """for a date shows the tournaments which were played at this date""" matches = qmatches[(qmatches['tourney_level'] == 'S') & (qmatches['round'] == 'R32') & (qmatches['tourney_date'] == datetime.date(year,month,day))] matches = matches[(matches['loser_rank'] < 151) | (matches['winner_rank'] < 151)] print(matches[['tourney_id', 'winner_name', 'winner_rank','loser_name','loser_rank']].drop_duplicates().to_csv(sys.stdout,index=False)) print(matches[['tourney_date', 'tourney_name','tourney_id']].drop_duplicates().to_csv(sys.stdout,index=False)) def titles(matches): """calculates titles per player""" matches = matches[(matches['round'] == 'F')] matches['titles'] = matches.groupby('winner_name')['winner_name'].transform('count') matches = matches[(matches['titles'] > 15)] matches = matches.sort(['titles'], ascending=False) print(matches[['winner_name', 'titles']].drop_duplicates().to_csv(sys.stdout,index=False)) def lowestRankedTitlists(matches): """finds the lowest ranked titlists""" matches = matches[(matches['tourney_level'] == 'C') & (matches['round'] == 'F') & (matches['winner_rank'] > 600)] matches = matches.sort(['tourney_date'], ascending=False) matches['winner_rank'] = matches['winner_rank'].astype('int') matches['winner_age'] = matches['winner_age'].round(2) print(matches[['tourney_date', 'tourney_name', 'winner_name', 'winner_rank', 'winner_age']].to_csv(sys.stdout,index=False)) def gamesconcededpertitle(matches): """calculates how many games a player lost per title""" matches=matches[matches['tourney_date'] > datetime.date(2000,1,1)] matches = matches[(matches['tourney_level'] == 'S')] matches['wcnt'] = matches.groupby(['tourney_id','winner_name'])['winner_name'].transform('count') matches = matches[matches['wcnt'] == 5] matches['sets_analysis'] = matches.apply(analyzeSetsFutures, axis=1) matches['games_won'], matches['games_lost'], matches['rets'] = zip(*matches['sets_analysis'].map(lambda x: x.split(','))) #convert columns to int for summing up matches['games_won'] = matches['games_won'].astype('int') matches['games_lost'] = matches['games_lost'].astype('int') matches['rets'] = matches['rets'].astype('int') #calculate the sum over each matches games matches['games_won_t'] = matches.groupby(['tourney_id'])['games_won'].transform('sum') matches['games_lost_t'] = matches.groupby(['tourney_id'])['games_lost'].transform('sum') matches['rets_t'] = matches.groupby(['tourney_id'])['rets'].transform('sum') #convert columns to int for summing up matches['games_won_t'] = matches['games_won_t'].astype('int') matches['games_lost_t'] = matches['games_lost_t'].astype('int') matches['rets_t'] = matches['rets_t'].astype('int') matches = matches.sort(['games_lost_t'], ascending=True) print(matches[['tourney_id', 'winner_name', 'wcnt','games_won_t','games_lost_t','rets_t']].drop_duplicates().to_csv(sys.stdout,index=False)) def analyzeSetsFutures(row): """helper function""" #6-4 6-7(5) 6-4 #setscore[0] sind die vom sieger, setscore[1] sind die vom verlierer try: sets = row['score'].split(' ') gameswonwinner=0 gameslostwinner=0 retcount=0 if 'RET' in row['score']: retcount=1 if 'W' in row['score']: retcount=1 #print(sets) for idx,set in enumerate(sets): setscore = set.split('-') if (len(setscore)>1): #clean tb scores if( '(' in setscore[0]): setscore[0]=setscore[0][0] if( '(' in setscore[1]): setscore[1]=setscore[1][0] gameswonwinner=gameswonwinner+int(setscore[0]) gameslostwinner=gameslostwinner+int(setscore[1]) #print(str(gameswonwinner)+','+str(gameslostwinner)+','+str(retcount)) return(str(gameswonwinner)+','+str(gameslostwinner)+','+str(retcount)) except: return(str(0)+','+str(0)+','+str(0)) def lastTimeGrandSlamCountry(atpmatches): """grand slam results per country""" matches=atpmatches[(atpmatches['tourney_level'] == 'G') & ((atpmatches['winner_ioc'] == 'NOR') | (atpmatches['loser_ioc'] == 'NOR'))] matches = matches.sort(['tourney_date'], ascending=True) print(matches[['tourney_date','tourney_name', 'round', 'winner_name', 'loser_name']].to_csv(sys.stdout,index=False)) def countunder21grandslam(atpmatches): """calculates how many players under 21 were in a grand slam main draw""" matches=atpmatches[(atpmatches['tourney_level'] == 'G') & (atpmatches['round'] == 'R128')] matches['w_under_21'] = matches.groupby(['tourney_id'])['winner_age'].transform(lambda x: x[x < 21].count()) matches['l_under_21'] = matches.groupby(['tourney_id'])['loser_age'].transform(lambda x: x[x < 21].count()) matches = matches.reset_index().groupby(['tourney_id']).apply(concat) matches['players_under_21'] = matches['w_under_21']+matches['l_under_21'] matches['players_under_21'] = matches['players_under_21'].astype('int') matches['player_names'] = matches['w_under_21_names'] + ',' + matches['l_under_21_names'] #matches = matches.sort(['players_under_21'], ascending=True) print(matches[['tourney_id','tourney_name', 'player_names','players_under_21']].drop_duplicates().to_csv(sys.stdout,index=False)) #print(matches[['tourney_date','tourney_name','players_under_21']].drop_duplicates().to_csv(sys.stdout,index=False)) def concat(group): """helper function""" group['l_under_21_names'] = "%s" % ', '.join(group['loser_name'][group['loser_age'] < 21]) group['w_under_21_names'] = "%s" % ', '.join(group['winner_name'][group['winner_age'] < 21]) return group def countryTitle(atpmatches): """calculates titles per country""" matches=atpmatches[(atpmatches['round'] == 'F') & ((atpmatches['winner_ioc'] == 'LUX') | (atpmatches['loser_ioc'] == 'LUX'))] print(matches[['tourney_date','tourney_name','winner_name','loser_name']].to_csv(sys.stdout,index=False)) def youngGsmatchwinners(atpmatches): """calculates young grand slam match winners""" matches=atpmatches[(atpmatches['tourney_level'] == 'G') & (atpmatches['winner_age'] < 18)] print(matches[['tourney_date','tourney_name','winner_name', 'winner_age', 'loser_name','loser_age']].to_csv(sys.stdout,index=False)) def mostPlayersInTop100OfCountry(rankings): """calculates how many players of a country are in the top1000""" global joinedrankingsdf #join rankings with playernames #note: working with the rankings: make sure iso8859-1 is set to encoding when parsing and that file is without BOM dirname = ".." playersDB = dirname + "/atp_players.csv" rankings.columns = ['date', 'rank', 'id','points'] playersdf = pd.read_csv(playersDB,index_col=None,header=None,encoding = "ISO-8859-1") playersdf.columns = ['id', 'fname', 'lname','hand','dob','country'] joinedrankingsdf = pd.merge(rankings,playersdf, on='id') joinedrankingsdf=joinedrankingsdf[(joinedrankingsdf['date'] > datetime.date(2005,1,1)) & (joinedrankingsdf['rank'] < 101)] joinedrankingsdf["fullname"] = joinedrankingsdf["fname"] + ' ' + joinedrankingsdf["lname"] joinedrankingsdf['namerank'] = joinedrankingsdf['fullname']+ "," + joinedrankingsdf['rank'].map(str) #joinedrankingsdf["namerank"] = str(joinedrankingsdf["fullname"]) + ',' + str(joinedrankingsdf["rank"]) joinedrankingsdf['auts'] = joinedrankingsdf.groupby(['date'])['country'].transform(lambda x: x[(x.str.contains('AUT').fillna(False))].count()) joinedrankingsdf=joinedrankingsdf[(joinedrankingsdf['auts'] > 3) & (joinedrankingsdf['country'] == 'AUT')] joinedrankingsdf = joinedrankingsdf.reset_index().groupby(['date']).apply(concatranknames) joinedrankingsdf = joinedrankingsdf.sort(['date'], ascending=True) print(joinedrankingsdf[['date', 'country','autnames']].to_csv(sys.stdout,index=False)) def concatranknames(group): """helper function""" group['autnames'] = "%s" % ', '.join(group['namerank'][group['country'] == 'AUT']) return group def topSeedsGS(atpmatches): """calculates performance of top seeds at grand slams""" matches=atpmatches[(atpmatches['tourney_level'] == 'G')] resmatches = matches.reset_index().groupby(['tourney_id']).apply(calcSeeds) resmatches = resmatches[resmatches['topseeds'] == 0] print(resmatches[['tourney_date', 'tourney_name','topseeds']].drop_duplicates().to_csv(sys.stdout,index=False)) res2matches = resmatches[((resmatches['round'] == 'R16') | (resmatches['round'] == 'R32') | (resmatches['round'] == 'R128') | (resmatches['round'] == 'R64')) & (resmatches['loser_seed'] < 3) & (resmatches['topseeds'] == 0)] print(res2matches[['tourney_date', 'tourney_name','round','winner_name','loser_name','loser_seed','loser_rank','score']].to_csv(sys.stdout,index=False)) def calcSeeds(group): """helper function""" group['topseeds'] = len(group[(group['round'] == 'QF') & ((group['winner_seed'] < 3) | (group['loser_seed'] < 3))]) return group def top10winstitlist(atpmatches): """calculates how many top 10 wins a titlist had in the tournament he won""" #matches = atpmatches[(atpmatches['tourney_date'] > 20000101) & (atpmatches['tourney_level'] != 'D') & (atpmatches['round'] != 'RR') & (atpmatches['tourney_id'] != '2008-438')] matches = atpmatches[(atpmatches['tourney_date'] > 19900101) & (atpmatches['tourney_level'] == 'A') & (atpmatches['round'] != 'RR') & (atpmatches['tourney_id'] != '2008-438')] matches = matches.reset_index().groupby(['tourney_id']).apply(calcTop10WinsForTitlist) matches = matches[(matches['titlistrank'] > 10) & (matches['titlistname'] == matches['winner_name']) & (matches['titlisttop10wins'] > 2)] print(matches[['tourney_date', 'tourney_name','tourney_level','titlisttop10wins','round','winner_name','winner_rank','loser_name','loser_rank','score']].to_csv(sys.stdout,index=False)) def calcTop10WinsForTitlist(group): """helper function""" #print(group['tourney_id']) titlistname = group[(group['round'] == 'F')].iloc[[0]]['winner_name'].values[0] titlistrank = group[(group['round'] == 'F')].iloc[[0]]['winner_rank'].values[0] group['titlistname'] = titlistname group['titlistrank'] = titlistrank group['titlisttop10wins'] = len(group[(group['winner_name'] == titlistname) & (group['loser_rank'] < 11)]) return group def findLLwhoWOdinQ(atpmatches,qmatches): """find if LL wo'd in FQR""" resultlist = list() tourney_group = atpmatches.groupby('tourney_id') for tname, tdf in tourney_group: found1=False found2=False #first_case finds where a LL won against a Q in a main draw (MD) first_case = tdf[(tdf['winner_entry'] == 'LL')] #iterating over first_case matches for index, match in first_case.iterrows(): first_case_results = qmatches[(qmatches['tourney_name'] == match['tourney_name']+ ' Q') & ((qmatches['round'] =='Q2') | (qmatches['round'] =='Q3')) & (match['winner_name'] == qmatches['loser_name'])] if (len(first_case_results.index) > 0): #if results were found, add the MD match to the result list resultlist.append(first_case_results) #second_case finds where a LL lost against a Q in a main draw (MD) second_case = tdf[(tdf['loser_entry'] == 'LL')] for index, match in second_case.iterrows(): second_case_results = qmatches[(qmatches['tourney_name'] == match['tourney_name']+ ' Q') & ((qmatches['round'] =='Q2') | (qmatches['round'] =='Q3')) & (match['loser_name'] == qmatches['loser_name'])] if (len(second_case_results.index) > 0): #if results were found, add the MD match to the result list resultlist.append(second_case_results) result = pd.concat(resultlist).sort(['tourney_date'], ascending=False) print(result[['tourney_name','tourney_date','round','winner_name','winner_entry', 'loser_name','loser_entry','score']].to_csv(sys.stdout,index=False)) def highestRanked500finalist(atpmatches): """finds highest ranked ATP 500 finalists""" matches = atpmatches[(atpmatches['tourney_date'] > datetime.date(2008,12,20))] #atp 500 #if draw size = 32, then 8 seeds #if draw size = 48, then 16 seeds #if draw size = 56, then 16 seeds tourney500names = ['Rotterdam', 'Rio de Janeiro', 'Acapulco', 'Dubai', 'Barcelona', 'Hamburg', 'Washington', 'Beijing', 'Tokyo', 'Valencia', 'Basel', 'Memphis'] matches500 = matches[matches['tourney_name'].isin(tourney500names)] #remove 2014-402 (= memphis) because in 2014 it was a 250 matches500 = matches500[(matches500['tourney_id'] != '2014-402')] matches500 = matches500[(matches500['round'] == 'F')] matches500w = matches500[['tourney_date', 'tourney_name','round','winner_name','winner_rank']] matches500w['result'] = 'W' matches500w.columns = ['tourney_date', 'tourney_name','round','player_name','player_rank','result'] matches500l = matches500[['tourney_date', 'tourney_name','round','loser_name','loser_rank']] matches500l['result'] = 'L' matches500l.columns = ['tourney_date', 'tourney_name','round','player_name','player_rank','result'] final_dfs = [matches500w, matches500l] final = pd.concat(final_dfs).sort(['player_rank'], ascending=False) final['player_rank'] = final['player_rank'].astype(int) print(final[['tourney_date', 'tourney_name','player_name','player_rank','result']].to_csv(sys.stdout,index=False,sep= '-')) def ageBetweenPlayers(atpmatches,qmatches,fmatches): """finds age between players""" LIMIT = 40 allmatcheslist = [] allmatcheslist.append(atpmatches) allmatcheslist.append(qmatches) allmatcheslist.append(fmatches) allmatches = pd.concat(allmatcheslist) allmatches['agediff'] = allmatches['winner_age'] - allmatches['loser_age'] allmatches = allmatches[(allmatches['agediff'] < LIMIT*-1) | (allmatches['agediff'] > LIMIT)] allmatches['agediff'] = allmatches['agediff'].apply(lambda x: x*-1 if x < 0 else x) allmatches['winner_age'] = allmatches['winner_age'].round(1) allmatches['loser_age'] = allmatches['loser_age'].round(1) allmatches['agediff'] = allmatches['agediff'].round(1) print(allmatches[['tourney_id', 'tourney_name','winner_name', 'winner_age', 'loser_name', 'loser_age' , 'agediff']].to_csv(sys.stdout,index=False)) def percentageOfSeedWinnersinQ(qmatches): """finds percentage of seeded winners in Q""" #i only want atp 250 qualies here, so i need to filter the 4 grand slams #i dont have to filter 500 and 1000 qualies because later they dont have a Q3 matches = qmatches[(qmatches['tourney_level'] == 'Q') & (qmatches['round'] == 'Q3') & (qmatches['tourney_name'] != 'US Open Q') & (qmatches['tourney_name'] != 'Wimbledon Q') & (qmatches['tourney_name'] != 'Roland Garros Q') & (qmatches['tourney_name'] != 'Australian Open Q')] matches['seedw'] = matches.groupby('tourney_id')['winner_seed'].transform(lambda x: x[(x > 0)].count()) matches = matches[['tourney_id', 'tourney_name','seedw']].drop_duplicates() counts = matches['seedw'].value_counts() dfcnt = pd.DataFrame(counts, columns=['cnt']) dfcnt['sum'] = dfcnt['cnt'].sum() dfcnt['percentage'] = dfcnt['cnt']*100/dfcnt['sum'].round(1) #print(matches[['tourney_id', 'tourney_name','seedw']].to_csv(sys.stdout,index=False)) print(dfcnt) def getRankedDict(dict): """helper function""" rank, count, previous, result = 0, 0, None, {} for key, num in dict: count += 1 if num != previous: rank += count previous = num count = 0 result[key] = rank return result def percentagOfQWinners(qmatches): """finds the percentage of Q winners""" mydict = collections.defaultdict(dict) #i only want atp 250 qualies here, so i need to filter the 4 grand slams #i dont have to filter 500 and 1000 qualies because later they dont have a Q3 matches = qmatches[(qmatches['tourney_level'] == 'Q') & (qmatches['round'] == 'Q3') & (qmatches['tourney_name'] != 'US Open Q') & (qmatches['tourney_name'] != 'Wimbledon Q') & (qmatches['tourney_name'] != 'Roland Garros Q') & (qmatches['tourney_name'] != 'Australian Open Q')] #so matches right now only contains atp250er qualies (because of Q3 filter) #i now want all these tourney_ids tourneyids = matches['tourney_id'].unique() matches_group = qmatches[qmatches['tourney_id'].isin(tourneyids)].groupby('tourney_id') for tname, tdf in matches_group: for index, match in tdf.iterrows(): mydict[match.tourney_id][match.winner_name] = 9999.0 if math.isnan(match.winner_rank) else match.winner_rank mydict[match.tourney_id][match.loser_name] = 9999.0 if math.isnan(match.loser_rank) else match.loser_rank for key, value in mydict.items(): s_data = sorted(value.items(), key=lambda item: item[1]) result = getRankedDict(s_data) rankdict[key] = result for key,value in rankdict.items(): for key1, value1 in value.items(): if (value1 < 9): value[key1] = 1 if ((value1 < 17) & (value1 > 8)): value[key1] = 2 if (value1 > 16): value[key1] = 3 matches['group'] = matches.apply(getGroup, axis=1) #matches = matches[matches['tourney_id'] == '2015-867'] tournamentcnt = len(matches['tourney_id'].unique()) print("250q tournaments: " + str(tournamentcnt)) matches['groupc'] = matches.groupby('tourney_id')['group'].transform(lambda x: x[(x == 3)].count()) #print(matches[['tourney_id', 'groupc', 'groupb','groupu']].to_csv(sys.stdout,index=False)) groupcmatches = matches[matches['groupc'] > 0 ] groupctournamentcnt = len(groupcmatches['tourney_id'].unique()) print("250q tournaments with at least one groupc q: " + str(groupctournamentcnt)) print("percentage of tournaments with at least one groupc q: " + str(groupctournamentcnt*100/tournamentcnt)) cntdf = pd.DataFrame([['groupa', len(matches[matches['group'] == 1]),len(matches)],['groupb', len(matches[matches['group'] == 2]),len(matches)],['groupc', len(matches[matches['group'] == 3]),len(matches)]]) cntdf.columns = ['groupname', 'quantity','sum'] cntdf['percentage'] = (cntdf['quantity']*100/cntdf['sum']).round(1) print(cntdf) ############ print('now for full ATP qs:') #same as above but only take full q draws fullqmatches = qmatches[(qmatches['tourney_level'] == 'Q') & (qmatches['round'] == 'Q1') & (qmatches['tourney_name'] != 'US Open Q') & (qmatches['tourney_name'] != 'Wimbledon Q') & (qmatches['tourney_name'] != 'Roland Garros Q') & (qmatches['tourney_name'] != 'Australian Open Q')] fullqmatches['winners'] = fullqmatches.groupby('tourney_id')['winner_name'].transform(lambda x: x[(x.str.contains('').fillna(False))].count()) fullqmatches = fullqmatches[fullqmatches['winners'] == 16] fullqmatcheslist = fullqmatches['tourney_id'].unique() fullqmatchesfinals = qmatches[(qmatches['tourney_id'].isin(fullqmatcheslist)) & (qmatches['tourney_level'] == 'Q') & (qmatches['round'] == 'Q3') & (qmatches['tourney_name'] != 'US Open Q') & (qmatches['tourney_name'] != 'Wimbledon Q') & (qmatches['tourney_name'] != 'Roland Garros Q') & (qmatches['tourney_name'] != 'Australian Open Q')] tournamentcnt = len(fullqmatchesfinals['tourney_id'].unique()) print("250q tournaments with full q: " + str(tournamentcnt)) fullqmatchesfinals['group'] = fullqmatchesfinals.apply(getGroup, axis=1) fullqmatchesfinals['groupc'] = fullqmatchesfinals.groupby('tourney_id')['group'].transform(lambda x: x[(x == 3)].count()) groupcmatches = fullqmatchesfinals[fullqmatchesfinals['groupc'] > 0 ] groupctournamentcnt = len(groupcmatches['tourney_id'].unique()) print("250q tournaments with at least one groupc q: " + str(groupctournamentcnt)) print("percentage of tournaments with at least one groupc q: " + str(groupctournamentcnt*100/tournamentcnt)) cntdf = pd.DataFrame([['groupa', len(fullqmatchesfinals[fullqmatchesfinals['group'] == 1]),len(fullqmatchesfinals)],['groupb', len(fullqmatchesfinals[fullqmatchesfinals['group'] == 2]),len(fullqmatchesfinals)],['groupc', len(fullqmatchesfinals[fullqmatchesfinals['group'] == 3]),len(fullqmatchesfinals)]]) cntdf.columns = ['groupname', 'quantity','sum'] cntdf['percentage'] = (cntdf['quantity']*100/cntdf['sum']).round(1) print(cntdf) ################ def getGroup(row): """helper function""" tid = row['tourney_id'] name = row['winner_name'] group = rankdict[tid][name] return group def findSmallestQDraws(qmatches): """finds the smallest Q draws""" matches = qmatches[(qmatches['tourney_level'] == 'Q') & (qmatches['round'] == 'Q3') & (qmatches['tourney_name'] != 'US Open Q') & (qmatches['tourney_name'] != 'Wimbledon Q') & (qmatches['tourney_name'] != 'Roland Garros Q') & (qmatches['tourney_name'] != 'Australian Open Q')] tourneyids = matches['tourney_id'].unique() matches = qmatches[(qmatches['tourney_id'].isin(tourneyids))] matches = matches.reset_index().groupby('tourney_id').apply(myfunc) matches = matches.sort('player_sums', ascending=True) print(matches[['tourney_id', 'tourney_name','player_sums']].drop_duplicates().to_csv(sys.stdout,index=False)) def myfunc(group): """helper function""" #get all players into a set w_set = set(group['winner_name']) l_set = set(group['loser_name']) #u_set contains all names of participating players group['player_sums'] = len(w_set.union(l_set)) return group def youngestCombinedAge(atpmatches,qmatches,fmatches): """finds youngest combined age""" LIMIT = 40 allmatcheslist = [] allmatcheslist.append(atpmatches) allmatcheslist.append(qmatches) allmatcheslist.append(fmatches) allmatches = pd.concat(allmatcheslist) allmatches['agecombined'] = allmatches['winner_age'] + allmatches['loser_age'] allmatches = allmatches[(allmatches['agecombined'] < 37)] allmatches['winner_age'] = allmatches['winner_age'].round(1) allmatches['loser_age'] = allmatches['loser_age'].round(1) allmatches['agecombined'] = allmatches['agecombined'].round(1) allmatches = allmatches.sort('agecombined', ascending=True) print(allmatches[['tourney_id', 'tourney_name','winner_name', 'winner_age', 'loser_name', 'loser_age' , 'agecombined']].to_csv(sys.stdout,index=False)) #this needs to be global for percentagOfQWinners() to work rankdict = collections.defaultdict(dict) joinedrankingsdf = pd.DataFrame() #reading ATP level matches. The argument defines the path to the match files. #since the match files are in the parent directory we provide ".." as an argument #atpmatches = readATPMatches("..") atpmatches = readATPMatchesParseTime("..") #reading Challenger + ATP Q matches #qmatches = readChall_QATPMatches("..") #qmatches = readChall_QATPMatchesParseTime("..") #fmatches = readFMatches("..") #fmatches = readFMatchesParseTime("..") #rankings = readAllRankings("..") #the following lines make use of methods defined above this file. just remove the hash to uncomment the line and use the method. #matchesPerCountryAndRound(matches) #findLLQmultipleMatchesAtSameTournament(atpmatches,qmatches) #bestLLinGrandSlams(atpmatches) #numberOfSetsLongerThan(atpmatches,2,130) #geth2hforplayerswrapper(atpmatches,qmatches) #getwnonh2hs(atpmatches,qmatches,rankings) #getTop100ChallengerPlayersPerWeek(qmatches) #getTop100ChallengerPlayersPerWeek(fmatches) #showTourneysOfDate(fmatches,2011,10,3) #geth2hforplayer(atpmatches,"Roger Federer") #getStreaks(fmatches) #activeplayers = getActivePlayers("..") #getWinLossByPlayer(fmatches,activeplayers,False) #seedRanking(atpmatches) #qualifierSeeded(fmatches) #rankofQhigherthanlastSeed(atpmatches) #highRankedQLosers(qmatches,atpmatches) #avglastseedrank(atpmatches) #getBestQGrandSlamPlayer(qmatches,rankings) #getShortestFiveSetter(atpmatches) #getworstlda(atpmatches) #getCountriesPerTournament(qmatches) #getRetsPerPlayer(atpmatches,qmatches,fmatches,activeplayers,False) #youngestChallengerWinners(qmatches) #bestNonChampion(players,ranks) #fedR4WimbiTime(atpmatches) #youngFutures(fmatches) #rankingPointsOfYoungsters(players,ranks) #highestRankedAustriansInR16(atpmatches) #mostRetsInTourneyPerPlayer(atpmatches) #mostRetsPerYear(atpmatches) #mostWCs(atpmatches) #oldestWinnerATP(atpmatches,qmatches) #getAces(qmatches) #getRets(fmatches) #get1seedWinners(atpmatches) #getseedWinners(atpmatches) #getZeroBreakPointChampions(atpmatches) #easiestOpponents(atpmatches) #wcwinner(atpmatches) #titlesataage(atpmatches) #consecutivlosseswithoutbreaks(atpmatches) #losetonadalafterwin(atpmatches) #fouroffiveseedsgone(atpmatches) #backtobacklosses(atpmatches,'Rafael Nadal') #titlesdefended(atpmatches) #titlessurface(atpmatches) #matchesPerLastNameAndRound(atpmatches) #bestNeverQFWin(atpmatches,rankings,activeplayers) #listAllTimeNoQFWins(atpmatches) #setstats(atpmatches) #titles(fmatches) #lowestRankedTitlists(qmatches) #gamesconcededpertitle(fmatches) #lastTimeGrandSlamCountry(atpmatches) #countunder21grandslam(atpmatches) #countryTitle(fmatches) #youngGsmatchwinners(atpmatches) #mostPlayersInTop100OfCountry(rankings) #topSeedsGS(atpmatches) #top10winstitlist(atpmatches) #findLLwhoWOdinQ(atpmatches,qmatches) #ageBetweenPlayers(atpmatches,qmatches,fmatches) #percentageOfSeedWinnersinQ(qmatches) #percentagOfQWinners(qmatches) #findSmallestQDraws(qmatches) #youngestCombinedAge(atpmatches,fmatches,qmatches) highestRanked500finalist(atpmatches)
gpl-3.0
datascienceguide/datascienceguide.github.io
tutorials/document_clustering.py
230
8356
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent sematic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
mit
shakamunyi/tensorflow
tensorflow/contrib/learn/python/learn/tests/test_saver.py
3
3455
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import tensorflow as tf from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score class SaverTest(tf.test.TestCase): def testIris(self): path = tf.test.get_temp_dir() + '/tmp.saver' random.seed(42) iris = datasets.load_iris() classifier = learn.TensorFlowLinearClassifier(n_classes=3) classifier.fit(iris.data, iris.target) classifier.save(path) # new_classifier = learn.TensorFlowEstimator.restore(path) # self.assertEqual(type(new_classifier), type(classifier)) # score = accuracy_score(iris.target, new_classifier.predict(iris.data)) # self.assertGreater(score, 0.5, 'Failed with score = {0}'.format(score)) def testCustomModel(self): path = tf.test.get_temp_dir() + '/tmp.saver2' random.seed(42) iris = datasets.load_iris() def custom_model(X, y): return learn.models.logistic_regression(X, y) classifier = learn.TensorFlowEstimator(model_fn=custom_model, n_classes=3) classifier.fit(iris.data, iris.target) classifier.save(path) # new_classifier = learn.TensorFlowEstimator.restore(path) # self.assertEqual(type(new_classifier), type(classifier)) # score = accuracy_score(iris.target, new_classifier.predict(iris.data)) # self.assertGreater(score, 0.5, 'Failed with score = {0}'.format(score)) def testDNN(self): path = tf.test.get_temp_dir() + '/tmp_saver3' random.seed(42) iris = datasets.load_iris() classifier = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3) classifier.fit(iris.data, iris.target) classifier.save(path) # new_classifier = learn.TensorFlowEstimator.restore(path) # self.assertEqual(type(new_classifier), type(classifier)) # score = accuracy_score(iris.target, new_classifier.predict(iris.data)) # self.assertGreater(score, 0.5, 'Failed with score = {0}'.format(score)) def testNoFolder(self): with self.assertRaises(ValueError): learn.TensorFlowEstimator.restore('no_model_path') def testNoCheckpoints(self): path = tf.test.get_temp_dir() + '/tmp/tmp.saver4' random.seed(42) iris = datasets.load_iris() classifier = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3) classifier.fit(iris.data, iris.target) classifier.save(path) os.remove(os.path.join(path, 'checkpoint')) with self.assertRaises(NotImplementedError): learn.TensorFlowEstimator.restore(path) if __name__ == '__main__': tf.test.main()
apache-2.0
shnizzedy/SM_openSMILE
openSMILE_preprocessing/noise_replacement/openSMILE_output_summary.py
1
1836
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ openSMILE_output_summary.py Functions to combine and plot emobase and ComParE_2016 summary outputs. Author: – Jon Clucas, 2017 ([email protected]) © 2017, Child Mind Institute, Apache v2.0 License """ from urllib.request import urlretrieve import nr_box_plots as nbp, os, pandas as pd def get_df(config_summary_url): """ Function to get a summary table from a web-accessible URL. Parameters ---------- config_summary_url : string url of table to import Returns ------- config_summary_df : pandas dataframe table from url """ return pd.read_csv(urlretrieve(config_summary_url)[0]) def main(): compare_url = 'https://osf.io/pgevr/?action=download&version=1' emobase_url = 'https://osf.io/rdn82/?action=download&version=1' dfs = [] for url in [compare_url, emobase_url]: dfs.append(get_df(url)) summary = pd.merge(pd.concat((dfs[0], dfs[1])).groupby('method').sum( ).filter(regex='sum*'), pd.concat((dfs[0], dfs[1])).groupby( 'method').mean().filter(regex='mean*'), left_index=True, right_index=True) summary['method'] = summary.index summary = summary[['method', 'sum(MAD)', 'mean(MAD)', 'rank(sum(MAD))', 'rank(mean(MAD))']] summary.sort_values('rank(mean(MAD))', inplace=True) out = os.path.join('.', 'replacement_test_outputs', 'adults_replaced_summary') if not os.path.exists(out): os.makedirs(out) summary.to_csv(os.path.join(out, 'mad_rank_summary.csv'), index=False) for y in ["sum(MAD)", "mean(MAD)"]: nbp.plot(summary, out, y) # ============================================================================ if __name__ == '__main__': main()
apache-2.0
ggstuart/compost
tests.py
1
9844
import unittest from datetime import timedelta, datetime, timezone from random import randint, random from pandas import DataFrame, date_range#, Index from numpy import nan from compost import Dataset, ShortDatasetError, SubMinuteTimestepError from compost import SavingCalculation, DailyAverageModel class TestDatasetCreation(unittest.TestCase): """tests for error states in constructor""" def setUp(self): index = date_range('1/1/2015', periods=365) self.df = DataFrame(list(range(len(index))), index=index, columns=['value']) def test_sub_minute(self): self.assertRaises(SubMinuteTimestepError, Dataset, self.df, 30, cumulative=False) def test_sub_minute_edge(self): self.assertRaises(SubMinuteTimestepError, Dataset, self.df, 59, cumulative=False) def test_sub_minute_negative(self): self.assertRaises(SubMinuteTimestepError, Dataset, self.df, -4, cumulative=False) def test_sub_minute_one_and_a_bit(self): self.assertRaises(SubMinuteTimestepError, Dataset, self.df, 64, cumulative=False) def test_minute_ok(self): try: Dataset(self.df, 60, cumulative=False) except SubMinuteTimestepError: self.fail("Dataset(df, 60) raised SubMinuteTimestepError!") class TestPerfectData(unittest.TestCase): """what happens with nice data""" def setUp(self): index = date_range('1/1/2015', periods=365) self.df = DataFrame(list(range(len(index))), index=index, columns=['value']) self.dataset = Dataset(self.df, 60*60*24, cumulative=False) def test_validates(self): self.assertTrue(self.dataset.validate()) def test_partial_validates(self): """cut the data up and it still works""" d = Dataset(self.df.head(100), 60*60*24, cumulative=False) self.assertTrue(d.validate()) def test_short_raises(self): """single value datasets raise an error""" d = Dataset(self.df.head(1), 60*60*24, cumulative=False) self.assertRaises(ShortDatasetError, d.validate) def test_interpolate_skipped(self): d2 = self.dataset.interpolate() self.assertEqual(self.dataset, d2) class InterpolatedDataTests(object): """common tests for data that needs work""" def test_validation_fails(self): self.assertFalse(self.dataset.validate()) def test_interpolate_validates(self): d1 = self.dataset.interpolate() self.assertTrue(d1.validate()) def test_interpolate_maintains_total(self): d1 = self.dataset.interpolate() self.assertEqual(self.dataset.total(), d1.total()) class TestLowResData(InterpolatedDataTests, unittest.TestCase): """what happens with e.g. weekly data""" def setUp(self): index = date_range('1/1/2015', periods=5, freq="7D") df = DataFrame(list(range(len(index))), index=index, columns=['value']) self.dataset = Dataset(df, 60*60*24, cumulative=False) super(TestLowResData, self).setUp() class TestCumulativeLowResData(InterpolatedDataTests, unittest.TestCase): """what happens with e.g. weekly cumulative data""" def setUp(self): index = date_range('1/1/2015', periods=5, freq="7D") df = DataFrame(list(range(len(index))), index=index, columns=['value']) self.dataset = Dataset(df, 60*60*24, cumulative=True) super(TestCumulativeLowResData, self).setUp() class TestMissingLowResData(InterpolatedDataTests, unittest.TestCase): """what happens when weekly data has missing values?""" def setUp(self): index = date_range('1/1/2015', periods=52, freq="7D") df = DataFrame(list(range(len(index))), index=index, columns=['value'])[index.month != 5] self.dataset = Dataset(df, 60*60*24, cumulative=False) super(TestMissingLowResData, self).setUp() class TestMissingCumulativeLowResData(InterpolatedDataTests, unittest.TestCase): """what happens when cumulative weekly data has missing values?""" def setUp(self): index = date_range('1/1/2015', periods=52, freq="7D") df = DataFrame(list(range(len(index))), index=index, columns=['value'])[index.month != 5] self.dataset = Dataset(df, 60*60*24, cumulative=True) super(TestMissingCumulativeLowResData, self).setUp() class TestHighResData(InterpolatedDataTests, unittest.TestCase): """what happens with e.g. 15-minutely data""" def setUp(self): index = date_range('1/1/2015', periods=4*24*365, freq="15Min") df = DataFrame(list(range(len(index))), index=index, columns=['value']) self.dataset = Dataset(df, 60*60*24, cumulative=False) super(TestHighResData, self).setUp() class TestCumulativeHighResData(InterpolatedDataTests, unittest.TestCase): """what happens with e.g. 15-minutely cumulative data""" def setUp(self): index = date_range('1/1/2015', periods=4*24*365, freq="15Min") df = DataFrame(list(range(len(index))), index=index, columns=['value']) self.dataset = Dataset(df, 60*60*24, cumulative=True) super(TestCumulativeHighResData, self).setUp() class TestMissingHighResData(InterpolatedDataTests, unittest.TestCase): """what happens when 15-minutely data has missing values?""" def setUp(self): index = date_range('1/1/2015', periods=4*24*365, freq="15Min") df = DataFrame(list(range(len(index))), index=index, columns=['value'])[index.day != 5] self.dataset = Dataset(df, 60*60*24, cumulative=False) super(TestMissingHighResData, self).setUp() class TestMissingCumulativeHighResData(InterpolatedDataTests, unittest.TestCase): """what happens when cumulative 15-minutely data has missing values?""" def setUp(self): index = date_range('1/1/2015', periods=4*24*365, freq="15Min") df = DataFrame(list(range(len(index))), index=index, columns=['value'])[index.day != 5] self.dataset = Dataset(df, 60*60*24, cumulative=True) super(TestMissingCumulativeHighResData, self).setUp() # class TestHighResWithMissingData(unittest.TestCase): # """what happens when 15-minutely data has missing values?""" # # def setUp(self): # index = date_range('1/1/2015', periods=4*24*365, freq="15Min") # self.df = DataFrame(list(range(len(index))), index=index, columns=['value'])[index.day >= 3] # self.dataset1 = Dataset(self.df, 60*60*24) # self.dataset2 = Dataset(self.df, 60*60*24, cumulative=True) # def test_validation_fails(self): # self.assertFalse(self.dataset1.validate()) # # def test_interpolate_validates(self): # d1 = self.dataset1.interpolate() # d2 = self.dataset2.interpolate() # self.assertTrue(d1.validate()) # self.assertTrue(d2.validate()) # # def test_interpolate_maintains_total(self): # # print(self.dataset1.measurements.head(5)) # d1 = self.dataset1.interpolate() # # print(d1.measurements.head(5)) # d2 = self.dataset2.interpolate() # self.assertEqual(self.dataset1.measurements.value.sum(), d1.measurements.value.sum()) # self.assertEqual(self.dataset2.measurements.diff().value.sum(), d2.measurements.diff().value.sum()) # class TestDatasetValidation(unittest.TestCase): # # def setUp(self): # index = date_range('1/1/2015', periods=365) # self.df = DataFrame(list(range(365)), index=index, columns=['value']) # # def test_missing(self): # d = Dataset(self.df[self.df.index.day != 1], 60*60*24) # self.assertFalse(d.validate()) # # def test_bad_resolution(self): # d = Dataset(self.df[self.df.index.day != 1], 60*60*12) # self.assertFalse(d.validate()) # # # class TestDatasetInterpolation(unittest.TestCase): # # def setUp(self): # index = date_range('1/1/2015', periods=366) # self.df = DataFrame(list(range(366)), index=index, columns=['value']) # # # def test_low_resolution(self): # d1 = Dataset(self.df, 60*60*12) # d2 = d1.interpolate() # self.assertTrue(d2.validate()) # # def test_high_resolution(self): # d1 = Dataset(self.df, 60*60*48) # d2 = d1.interpolate() # self.assertTrue(d2.validate()) # # def test_high_resolution_cumulative(self): # d1 = Dataset(self.df, 60*60*48, cumulative=True) # d2 = d1.interpolate() # self.assertTrue(d2.validate()) # # def test_missing_data(self): # df = self.df[self.df.index.day != 5] #cut out some data # d1 = Dataset(df, 60*60*48) # d2 = d1.interpolate() # self.assertTrue(d2.validate()) # # def test_randomised_index(self): # index = Index([i + timedelta(seconds=randint(-100,100)) for i in self.df.index]) # self.df.index = index # d1 = Dataset(self.df, 60*60*48) # d2 = d1.normalise() # self.assertTrue(d2.validate()) # class TestSavingCalculation(unittest.TestCase): def setUp(self): index = date_range('1/1/2015', periods=4*24*365, freq="15Min") self.df = DataFrame([random() for i in range(len(index))], index=index, columns=['value'])[index.day != 5] def test_something(self): class DateRange(object): def __init__(self, start, end): self.start_date = start.replace(tzinfo=timezone.utc) self.end_date = end.replace(tzinfo=timezone.utc) baseline = DateRange(datetime(2015,1,1), datetime(2015,4,30)) competition = DateRange(datetime(2015,5,1), datetime(2015,8,31)) sc = SavingCalculation(self.df, DailyAverageModel, competition, baseline, cumulative=False) savings = sc.savings() if __name__ == "__main__": from pandas import __version__ print(f"pandas v{__version__}") unittest.main()
gpl-3.0
gon1213/SDC
behavioral_cloning/CarND-Transfer-Learning-lab/run_bottleneck.py
6
3807
from keras.applications.resnet50 import ResNet50, preprocess_input from keras.applications.inception_v3 import InceptionV3 from keras.applications.vgg16 import VGG16 from keras.layers import Input, AveragePooling2D from sklearn.model_selection import train_test_split from keras.models import Model from keras.datasets import cifar10 import pickle import tensorflow as tf import keras.backend as K flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string('dataset', 'cifar10', "Make bottleneck features this for dataset, one of 'cifar10', or 'traffic'") flags.DEFINE_string('network', 'resnet', "The model to bottleneck, one of 'vgg', 'inception', or 'resnet'") flags.DEFINE_integer('batch_size', 16, 'The batch size for the generator') batch_size = FLAGS.batch_size h, w, ch = 224, 224, 3 if FLAGS.network == 'inception': h, w, ch = 299, 299, 3 from keras.applications.inception_v3 import preprocess_input img_placeholder = tf.placeholder("uint8", (None, 32, 32, 3)) resize_op = tf.image.resize_images(img_placeholder, (h, w), method=0) def gen(session, data, labels, batch_size): def _f(): start = 0 end = start + batch_size n = data.shape[0] while True: X_batch = session.run(resize_op, {img_placeholder: data[start:end]}) X_batch = preprocess_input(X_batch) y_batch = labels[start:end] start += batch_size end += batch_size if start >= n: start = 0 end = batch_size print(start, end) yield (X_batch, y_batch) return _f def create_model(): input_tensor = Input(shape=(h, w, ch)) if FLAGS.network == 'vgg': model = VGG16(input_tensor=input_tensor, include_top=False) x = model.output x = AveragePooling2D((7, 7))(x) model = Model(model.input, x) elif FLAGS.network == 'inception': model = InceptionV3(input_tensor=input_tensor, include_top=False) x = model.output x = AveragePooling2D((8, 8), strides=(8, 8))(x) model = Model(model.input, x) else: model = ResNet50(input_tensor=input_tensor, include_top=False) return model def main(_): if FLAGS.dataset == 'cifar10': (X_train, y_train), (_, _) = cifar10.load_data() X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=0) else: with open('data/train.p', mode='rb') as f: train = pickle.load(f) X_train, X_val, y_train, y_val = train_test_split(train['features'], train['labels'], test_size=0.33, random_state=0) train_output_file = "{}_{}_{}.p".format(FLAGS.network, FLAGS.dataset, 'bottleneck_features_train') validation_output_file = "{}_{}_{}.p".format(FLAGS.network, FLAGS.dataset, 'bottleneck_features_validation') print("Resizing to", (w, h, ch)) print("Saving to ...") print(train_output_file) print(validation_output_file) with tf.Session() as sess: K.set_session(sess) K.set_learning_phase(1) model = create_model() print('Bottleneck training') train_gen = gen(sess, X_train, y_train, batch_size) bottleneck_features_train = model.predict_generator(train_gen(), X_train.shape[0]) data = {'features': bottleneck_features_train, 'labels': y_train} pickle.dump(data, open(train_output_file, 'wb')) print('Bottleneck validation') val_gen = gen(sess, X_val, y_val, batch_size) bottleneck_features_validation = model.predict_generator(val_gen(), X_val.shape[0]) data = {'features': bottleneck_features_validation, 'labels': y_val} pickle.dump(data, open(validation_output_file, 'wb')) if __name__ == '__main__': tf.app.run()
gpl-3.0
ibmsoe/tensorflow
tensorflow/python/estimator/inputs/pandas_io_test.py
89
8340
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_NonBoolShuffle(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaisesRegexp(TypeError, 'shuffle must be explicitly set as boolean'): # Default shuffle is None pandas_io.pandas_input_fn(x, y_noindex) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 102) a = np.arange(2) b = np.arange(32, 34) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -30), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=128, shuffle=False, num_epochs=2) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1, 0, 1]) self.assertAllEqual(features['b'], [32, 33, 32, 33]) self.assertAllEqual(target, [-32, -31, -32, -31]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 105) a = np.arange(5) b = np.arange(32, 37) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -27), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) features, target = session.run(results) self.assertAllEqual(features['a'], [2, 3]) self.assertAllEqual(features['b'], [34, 35]) self.assertAllEqual(target, [-30, -29]) features, target = session.run(results) self.assertAllEqual(features['a'], [4]) self.assertAllEqual(features['b'], [36]) self.assertAllEqual(target, [-28]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.test_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.test_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
apache-2.0
pratapvardhan/scikit-learn
sklearn/neighbors/tests/test_approximate.py
55
19053
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slightly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consistent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
tedmeeds/tcga_encoder
tcga_encoder/analyses/old/input_cluster_from_z_space.py
1
19405
from tcga_encoder.utils.helpers import * from tcga_encoder.data.data import * from tcga_encoder.data.pathway_data import Pathways from tcga_encoder.definitions.tcga import * #from tcga_encoder.definitions.nn import * from tcga_encoder.definitions.locations import * #from tcga_encoder.algorithms import * import seaborn as sns from sklearn.manifold import TSNE, locally_linear_embedding from scipy import stats def auc_standard_error( theta, nA, nN ): # from: Hanley and McNeil (1982), The Meaning and Use of the Area under the ROC Curve # theta: estimated AUC, can be 0.5 for a random test # nA size of population A # nN size of population N Q1=theta/(2.0-theta); Q2=2*theta*theta/(1+theta) SE = np.sqrt( (theta*(1-theta)+(nA-1)*(Q1-theta*theta) + (nN-1)*(Q2-theta*theta) )/(nA*nN) ) return SE def auc_test( true_y, est_y ): n = len(true_y) n_1 = true_y.sum() n_0 = n - n_1 if n_1 == 0 or n_1 == n: return 0.5, 0.0, 0.0, 1.0 auc = roc_auc_score( true_y, est_y ) difference = auc - 0.5 if difference < 0: # switch labels se = auc_standard_error( auc, n_0, n_1 ) se_null = auc_standard_error( 0.5, n_0, n_1 ) else: se = auc_standard_error( 1-auc, n_1, n_0 ) se_null = auc_standard_error( 0.5, n_1, n_0 ) se_combined = np.sqrt( se**2 + se_null**2 ) z_value = np.abs(difference) / se_combined p_value = 1.0 - stats.norm.cdf( np.abs(z_value) ) return auc, se, z_value, p_value def find_keepers_over_groups( z, groups, name, nbr2keep, stats2use ): inners = []; p_inners=[] mx_inner = 0.0 norm_z = np.linalg.norm(z) for X, stat in zip( groups, stats2use ): pearsons = np.zeros( X.shape[1] ) pvalues = np.zeros( X.shape[1] ) for x,x_idx in zip( X.values.T, range(X.shape[1])): if stat == "pearson": pearsons[x_idx], pvalues[x_idx] = stats.pearsonr( z, x ) elif stat == "spearman": pearsons[x_idx], pvalues[x_idx] = stats.spearmanr( z, x ) elif stat == "auc": true_y = (x>0).astype(int) auc, se, zvalue, pvalue = auc_test( true_y, z ) #np.sqrt( ses_tissue**2 + se_r_tissue**2 ) pearsons[x_idx] = auc-0.5 pvalues[x_idx] = pvalue #pdb.set_trace() #norms = norm_z*np.linalg.norm( X, axis=0 ) #inner = pd.Series( np.dot( z, X )/norms, index = X.columns, name=name ) inner = pd.Series( pearsons, index = X.columns, name=name ) p_inner = pd.Series( pvalues, index = X.columns, name=name ) inners.append(inner) p_inners.append(p_inner) this_mx = np.max(np.abs(inner)) if this_mx > mx_inner: mx_inner = this_mx all_keepers = [] #all_pvalues = [] for inner,p_inner in zip(inners,p_inners): #inner.sort_values(inplace=True) #inner = inner / mx_inner #abs_inner = np.abs( inner ) #ordered = np.argsort( -inner.values ) ordered = np.argsort( p_inner.values ) ordered = pd.DataFrame( np.vstack( (inner.values[ordered],p_inner.values[ordered] ) ).T, index =inner.index[ordered],columns=["r","p"] ) #pdb.set_trace() #keepers = pd.concat( [ordered[:nbr2keep], ordered[-nbr2keep:]], axis=0 ) keepers = ordered[:nbr2keep] #pdb.set_trace() #keepers = keepers.sort_values() all_keepers.append(keepers) return all_keepers def find_keepers(z, X, name, nbr2keep): inner = pd.Series( np.dot( z, X ), index = X.columns, name=name ) inner.sort_values(inplace=True) inner = inner / np.max(np.abs(inner)) #signed = np.sign( inner ) abs_inner = np.abs( inner ) ordered = np.argsort( -abs_inner.values ) ordered = pd.Series( inner.values[ordered], index =inner.index[ordered],name=name ) keepers = ordered[:nbr2keep] keepers = keepers.sort_values() return keepers def main( data_location, results_location ): pathway_info = Pathways() data_path = os.path.join( HOME_DIR ,data_location ) #, "data.h5" ) results_path = os.path.join( HOME_DIR, results_location ) data_filename = os.path.join( data_path, "data.h5") fill_filename = os.path.join( results_path, "full_vae_fill.h5" ) save_dir = os.path.join( results_path, "input_clustering2" ) check_and_mkdir(save_dir) z_dir = os.path.join( save_dir, "z_pics" ) check_and_mkdir(z_dir) print "HOME_DIR: ", HOME_DIR print "data_filename: ", data_filename print "fill_filename: ", fill_filename print "LOADING stores" data_store = pd.HDFStore( data_filename, "r" ) fill_store = pd.HDFStore( fill_filename, "r" ) Z_train = fill_store["/Z/TRAIN/Z/mu"] Z_val = fill_store["/Z/VAL/Z/mu"] Z = np.vstack( (Z_train.values, Z_val.values) ) n_z = Z.shape[1] #pdb.set_trace() z_names = ["z_%d"%z_idx for z_idx in range(Z.shape[1])] Z = pd.DataFrame( Z, index = np.hstack( (Z_train.index.values, Z_val.index.values)), columns = z_names ) barcodes = np.union1d( Z_train.index.values, Z_val.index.values ) barcodes = data_store["/CLINICAL/observed"][ data_store["/CLINICAL/observed"][["RNA","miRNA","METH","DNA"]].sum(1)==4 ].index.values Z=Z.loc[barcodes] Z_values = Z.values tissues = data_store["/CLINICAL/TISSUE"].loc[barcodes] rna = np.log(1+data_store["/RNA/RSEM"].loc[ barcodes ]) mirna = np.log(1+data_store["/miRNA/RSEM"].loc[ barcodes ]) meth = np.log(0.1+data_store["/METH/METH"].loc[ barcodes ]) dna = data_store["/DNA/channel/0"].loc[ barcodes ] tissue_names = tissues.columns tissue_idx = np.argmax( tissues.values, 1 ) n = len(Z) n_tissues = len(tissue_names) rna_normed = rna; mirna_normed = mirna; meth_normed = meth; dna_normed=2*dna-1 for t_idx in range(n_tissues): t_query = tissue_idx == t_idx X = rna[t_query] X -= X.mean(0) X /= X.std(0) rna_normed[t_query] = X X = mirna[t_query] X -= X.mean(0) X /= X.std(0) mirna_normed[t_query] = X X = meth[t_query] X -= X.mean(0) X /= X.std(0) meth_normed[t_query] = X nbr = 15 Z_keep_rna=[] Z_keep_mirna=[] Z_keep_meth=[] Z_keep_dna = [] for z_idx in range(n_z): z_values = Z_values[:,z_idx] order_z = np.argsort(z_values) rna_sorted = pd.DataFrame( rna_normed.values[order_z,:], index = barcodes[order_z], columns = rna.columns ) mirna_sorted = pd.DataFrame( mirna_normed.values[order_z,:], index = barcodes[order_z], columns = mirna.columns ) meth_sorted = pd.DataFrame( meth_normed.values[order_z,:], index = barcodes[order_z], columns = meth.columns ) dna_sorted = pd.DataFrame( dna_normed.values[order_z,:], index = barcodes[order_z], columns = dna.columns ) # # inner_rna = pd.Series( np.dot( z_values, rna_normed ), index = rna_normed.columns, name="rna" ) # inner_rna.sort_values(inplace=True) # inner_rna = inner_rna / np.max(np.abs(inner_rna)) # sign_rna = np.sign( inner_rna ) # abs_rna = np.abs( inner_rna ) # ordered_rna = np.argsort( -abs_rna.values ) # ordered_rna = pd.Series( inner_rna.values[ordered_rna], index =inner_rna.index[ordered_rna],name="rna" ) # # keep_rna = ordered_rna[:nbr] # keep_rna = keep_rna.sort_values() keep_rna,keep_mirna,keep_meth,keep_dna = find_keepers_over_groups( z_values, [rna_normed,mirna_normed,meth_normed,dna_normed], "z_%d"%(z_idx), nbr, stats2use=["spearman","spearman","spearman","auc"]) # keep_rna = find_keepers( z_values, rna_normed, "z_%d"%(z_idx), nbr ) # keep_mirna = find_keepers( z_values, mirna_normed, "z_%d"%(z_idx), nbr ) # keep_meth = find_keepers( z_values, meth_normed, "z_%d"%(z_idx), nbr ) keep_rna_big,keep_mirna_big,keep_meth_big,keep_dna_big = find_keepers_over_groups( z_values, [rna_normed,mirna_normed,meth_normed,dna_normed], "z_%d"%(z_idx), 2*nbr, stats2use=["spearman","spearman","spearman","auc"]) # keep_rna_big = find_keepers( z_values, rna_normed, "z_%d"%(z_idx), 3*nbr ) # keep_mirna_big = find_keepers( z_values, mirna_normed, "z_%d"%(z_idx), 3*nbr ) # keep_meth_big = find_keepers( z_values, meth_normed, "z_%d"%(z_idx), 3*nbr ) Z_keep_rna.append( keep_rna ) Z_keep_mirna.append( keep_mirna ) Z_keep_meth.append( keep_meth ) Z_keep_dna.append( keep_dna ) f = pp.figure( figsize = (12,8)) ax1 = f.add_subplot(421);ax2 = f.add_subplot(423);ax3 = f.add_subplot(425);ax4 = f.add_subplot(427) #ax_pie1 = f.add_subplot(422); ax_pie3 = f.add_subplot(424); ax_pie4 = f.add_subplot(426) ax_pie1 = f.add_subplot(222); #ax_pie3 = f.add_subplot(424); ax_pie4 = f.add_subplot(426) h1=keep_rna[["r"]].plot(kind='barh',ax=ax1,color="red",legend=False,title=None,fontsize=8); h1.set_xlim(-0.5,0.5); ax1.set_title(""); h1.set_xticklabels([]); ax1.legend(["RNA"]) h2=keep_mirna[["r"]].plot(kind='barh',ax=ax4,color="black",legend=False,title=None,fontsize=8);h2.set_xlim(-0.5,0.5);ax4.set_title(""); ax4.legend(["miRNA"]) h3=keep_meth[["r"]].plot(kind='barh',ax=ax3,color="blue",legend=False,title=None,fontsize=8);h3.set_xlim(-0.5,0.5);ax3.set_title(""); h3.set_xticklabels([]); ax3.legend(["METH"]) h4=keep_dna[["r"]].plot(kind='barh',ax=ax2,color="green",legend=False,title=None,fontsize=8);h4.set_xlim(-0.5,0.5);ax2.set_title(""); h4.set_xticklabels([]); ax2.legend(["DNA"]) neg_dna = pp.find( keep_dna_big.values[:,0]<0) ; pos_dna = pp.find( keep_dna_big.values[:,0]>0) neg_rna = pp.find( keep_rna_big.values[:,0]<0) ; pos_rna = pp.find( keep_rna_big.values[:,0]>0) neg_meth = pp.find( keep_meth_big.values[:,0]<0) ; pos_meth = pp.find( keep_meth_big.values[:,0]>0) #dna_kegg,dna_readable = pathway_info.CancerEnrichment(keep_dna_big.index, np.abs( np.log2(keep_dna_big.values[:,1]) ) ) #rna_kegg,rna_readable = pathway_info.CancerEnrichment(keep_rna_big.index, np.abs( np.log2(keep_rna_big.values[:,1]) ) ) #meth_kegg,meth_readable = pathway_info.CancerEnrichment(keep_meth_big.index, np.abs( np.log2(keep_meth_big.values[:,1]) ) ) dna_kegg,dna_readable = pathway_info.CancerEnrichment(keep_dna_big.index, np.abs(keep_dna_big.values[:,0]) ) rna_kegg,rna_readable = pathway_info.CancerEnrichment(keep_rna_big.index, np.abs( keep_rna_big.values[:,0]) ) meth_kegg,meth_readable = pathway_info.CancerEnrichment(keep_meth_big.index, np.abs( keep_meth_big.values[:,0] ) ) # dna_kegg_p,dna_readable_p = pathway_info.CancerEnrichment(keep_dna_big.index[pos_dna], (np.abs( np.log2(keep_dna_big.values[pos_dna,1]) )>-np.log2(0.01)).astype(float) ) # rna_kegg_p,rna_readable_p = pathway_info.CancerEnrichment(keep_rna_big.index[pos_rna], (np.abs( np.log2(keep_rna_big.values[pos_rna,1]) )>-np.log2(0.01)).astype(float) ) # meth_kegg_p,meth_readable_p = pathway_info.CancerEnrichment(keep_meth_big.index[pos_meth], (np.abs( np.log2(keep_meth_big.values[pos_meth,1]) )>-np.log2(0.01)).astype(float) ) # # dna_kegg_n,dna_readable_n = pathway_info.CancerEnrichment(keep_dna_big.index[neg_dna], (np.abs( np.log2(keep_dna_big.values[neg_dna,1]) )>-np.log2(0.01)).astype(float) ) # rna_kegg_n,rna_readable_n = pathway_info.CancerEnrichment(keep_rna_big.index[neg_rna], (np.abs( np.log2(keep_rna_big.values[neg_rna,1]) )>-np.log2(0.01)).astype(float) ) # meth_kegg_n,meth_readable_n = pathway_info.CancerEnrichment(keep_meth_big.index[neg_meth], (np.abs( np.log2(keep_meth_big.values[neg_meth,1]) )>-np.log2(0.01)).astype(float) ) # dna_kegg_p,dna_readable_p = pathway_info.CancerEnrichment(keep_dna_big.index[pos_dna], 1.0-keep_dna_big.values[pos_dna,1] ) # rna_kegg_p,rna_readable_p = pathway_info.CancerEnrichment(keep_rna_big.index[pos_rna], 1.0-keep_rna_big.values[pos_rna,1] ) # meth_kegg_p,meth_readable_p = pathway_info.CancerEnrichment(keep_meth_big.index[pos_meth], 1.0-keep_meth_big.values[pos_meth,1]) # # dna_kegg_n,dna_readable_n = pathway_info.CancerEnrichment(keep_dna_big.index[neg_dna], 1.0-keep_dna_big.values[neg_dna,1] ) # rna_kegg_n,rna_readable_n = pathway_info.CancerEnrichment(keep_rna_big.index[neg_rna], 1.0-keep_rna_big.values[neg_rna,1] ) # meth_kegg_n,meth_readable_n = pathway_info.CancerEnrichment(keep_meth_big.index[neg_meth], 1.0-keep_meth_big.values[neg_meth,1] ) dna_kegg_p,dna_readable_p = pathway_info.CancerEnrichment(keep_dna_big.index[pos_dna], np.abs( keep_dna_big.values[pos_dna,0] ) ) rna_kegg_p,rna_readable_p = pathway_info.CancerEnrichment(keep_rna_big.index[pos_rna], np.abs( keep_rna_big.values[pos_rna,0]) ) meth_kegg_p,meth_readable_p = pathway_info.CancerEnrichment(keep_meth_big.index[pos_meth], np.abs( keep_meth_big.values[pos_meth,0])) dna_kegg_n,dna_readable_n = pathway_info.CancerEnrichment(keep_dna_big.index[neg_dna], np.abs( keep_dna_big.values[neg_dna,0] ) ) rna_kegg_n,rna_readable_n = pathway_info.CancerEnrichment(keep_rna_big.index[neg_rna], np.abs( keep_rna_big.values[neg_rna,0] ) ) meth_kegg_n,meth_readable_n = pathway_info.CancerEnrichment(keep_meth_big.index[neg_meth], np.abs( keep_meth_big.values[neg_meth,0]) ) # dna_readable_n=-dna_readable_n # rna_readable_n=-rna_readable_n # meth_readable_n=-meth_readable_n rna_readable.name="rna" meth_readable.name="meth" dna_readable.name="dna" rna_readable_p.name="rna_p" meth_readable_p.name="meth_p" dna_readable_p.name="dna_p" rna_readable_n.name="rna_n" meth_readable_n.name="meth_n" dna_readable_n.name="dna_n" # joined = pd.concat( [rna_readable_p[:20],rna_readable_n[:20],\ # dna_readable_p[:20],dna_readable_n[:20],\ # meth_readable_n[:20],meth_readable_p[:20]], axis=1 ) joined = pd.concat( [rna_readable[:20],\ dna_readable[:20],\ meth_readable[:20]], axis=1 ) maxvalues = joined.index[ np.argsort( -np.abs(joined.fillna(0)).sum(1).values ) ] #pdb.set_trace() joined=joined.loc[maxvalues] joined = joined[:25] #pathways = joined.index.values #pathways = pathways[ np.argsort(pathways)] #joined=joined.loc[pathways] #br = joined[["rna_p","rna_n"]].plot(kind="bar",ax=ax_pie1,color=["blue","red"],legend=False,stacked=True); br.set_xticklabels([]); ax_pie1.set_ylabel("RNA") #br = joined[["meth_p","meth_n"]].plot(kind="bar",ax=ax_pie4,color=["blue","red"],legend=False,stacked=True); ax_pie4.set_ylabel("METH") #br = joined[["dna_p","dna_n"]].plot(kind="bar",ax=ax_pie3,color=["blue","red"],legend=False,stacked=True); br.set_xticklabels([]); ax_pie3.set_ylabel("DNA") #pdb.set_trace() br = joined.plot(kind="bar",ax=ax_pie1,color=["red","green","blue"],legend=True,stacked=True, sort_columns=False); # ax_pie1.legend(["RNA","DNA","METH"]) #br = joined[["meth_p","meth_n"]].plot(kind="bar",ax=ax_pie4,color=["blue","red"],legend=False,stacked=True); ax_pie4.set_ylabel("METH") #br = joined[["dna_p","dna_n"]].plot(kind="bar",ax=ax_pie3,color=["blue","red"],legend=False,stacked=True); br.set_xticklabels([]); ax_pie3.set_ylabel("DNA") #joined[["rna_n","meth_n","dna_n"]].plot(kind="bar",ax=ax_pie1,color="red") # if len(rna_readable_p)>0: # rna_readable_p[:12].plot( kind="barh",ax=ax_pie1, fontsize=8, color="green" ) # if len(rna_readable_n)>0: # rna_readable_n[:12].plot( kind="barh",ax=ax_pie1, fontsize=8, color="red" ) # # if len(meth_readable_p)>0: # meth_readable_p[:12].plot( kind="barh",ax=ax_pie1, fontsize=8, color="blue" ) # if len(meth_readable_n)>0: # meth_readable_n[:12].plot( kind="barh",ax=ax_pie1, fontsize=8, color="purple" ) # # if len(dna_readable_p)>0: # dna_readable_p[:12].plot( kind="barh",ax=ax_pie1, fontsize=8, color="yellow" ) # if len(dna_readable_n)>0: # dna_readable_n[:12].plot( kind="barh",ax=ax_pie1, fontsize=8, color="black" ) # # #rna_readable[:12].plot.pie( ax=ax_pie1, fontsize=8 ) # if len(meth_readable)>0: # #meth_readable[:12].plot.pie( ax=ax_pie3, fontsize =8 ) # if len(dna_readable)>0: # 3dna_readable[:12].plot.pie( ax=ax_pie4, fontsize=8 ) #pp.show() #pdb.set_trace() #assert False #print "normaize over meth and rna anr mirna" #print "include dna" #print "up and down pie charts" #print "add other pathways if not in cancer" #print "put counts in pies" print "survival: best per cohort, also double sided on third, go to fifth if enough events" #pp.show() #pdb.set_trace() #f.suptitle( "z %d"%(z_idx) ); #f.subplots_adjust(bottom=0.25); pp.savefig( z_dir + "/z%d.png"%(z_idx), format="png", dpi=300 ) #print h pp.close('all') #pdb.set_trace() #kept_rna = pd.DataFrame( rna_sorted[keep_rna.index], index=rna_sorted.index, columns = keep_rna.index ) #kept_mirna = pd.DataFrame( mirna_sorted[keep_mirna.index], index=mirna_sorted.index, columns = keep_mirna.index ) #kept_meth = pd.DataFrame( meth_sorted[keep_meth.index], index=meth_sorted.index, columns = keep_meth.index ) merged_rna = pd.concat(Z_keep_rna,axis=1) merged_mirna = pd.concat(Z_keep_mirna,axis=1) merged_meth = pd.concat(Z_keep_meth,axis=1) merged_rna.to_csv( save_dir + "/z_to_rna.csv" ) merged_mirna.to_csv( save_dir + "/z_to_mirna.csv" ) merged_meth.to_csv( save_dir + "/z_to_meth.csv" ) f = sns.clustermap(merged_rna.fillna(0), figsize=(8,6)) pp.setp(f.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) pp.setp(f.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) pp.setp(f.ax_heatmap.yaxis.get_majorticklabels(), fontsize=8) pp.setp(f.ax_heatmap.xaxis.get_majorticklabels(), fontsize=8) pp.savefig( save_dir + "/clustermap_z_to_rna.png", format="png", dpi=300 ) f = sns.clustermap(merged_mirna.fillna(0), figsize=(8,6)) pp.setp(f.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) pp.setp(f.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) pp.setp(f.ax_heatmap.yaxis.get_majorticklabels(), fontsize=8) pp.setp(f.ax_heatmap.xaxis.get_majorticklabels(), fontsize=8) pp.savefig( save_dir + "/clustermap_z_to_mirna.png", format="png", dpi=300 ) f = sns.clustermap(merged_meth.fillna(0), figsize=(8,6)) pp.setp(f.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) pp.setp(f.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) pp.setp(f.ax_heatmap.yaxis.get_majorticklabels(), fontsize=8) pp.setp(f.ax_heatmap.xaxis.get_majorticklabels(), fontsize=8) pp.savefig( save_dir + "/clustermap_z_to_meth.png", format="png", dpi=300 ) #pdb.set_trace() #pdb.set_trace() # # binses = [20,50,100,500] # for bins in binses: # pp.figure() # pp.hist( aucs_true.values.flatten(), bins, range=(0,1), normed=True, histtype="step", lw=3, label="True" ) # pp.hist( aucs_random.values.flatten(), bins, color="red",range=(0,1), normed=True, histtype="step", lw=3, label="Random" ) # #pp.plot( [0,1.0],[0.5,0.5], 'r-', lw=3) # pp.legend() # pp.xlabel("Area Under the ROC") # pp.ylabel("Pr(AUC)") # pp.title("Comparison between AUC using latent space and random") # pp.savefig( tissue_dir + "/auc_comparison_%dbins.png"%(bins), format='png', dpi=300 ) # # pp.close('all') #pdb.set_trace() if __name__ == "__main__": data_location = sys.argv[1] results_location = sys.argv[2] main( data_location, results_location )
mit
jniediek/mne-python
mne/surface.py
5
45614
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # Denis A. Engemann <[email protected]> # # License: BSD (3-clause) import os from os import path as op import sys from struct import pack from glob import glob from distutils.version import LooseVersion import numpy as np from scipy.sparse import coo_matrix, csr_matrix, eye as speye from .bem import read_bem_surfaces from .io.constants import FIFF from .io.open import fiff_open from .io.tree import dir_tree_find from .io.tag import find_tag from .io.write import (write_int, start_file, end_block, start_block, end_file, write_string, write_float_sparse_rcs) from .channels.channels import _get_meg_system from .transforms import transform_surface_to from .utils import logger, verbose, get_subjects_dir, warn from .externals.six import string_types from .fixes import _read_volume_info, _serialize_volume_info ############################################################################### # AUTOMATED SURFACE FINDING @verbose def get_head_surf(subject, source=('bem', 'head'), subjects_dir=None, verbose=None): """Load the subject head surface Parameters ---------- subject : str Subject name. source : str | list of str Type to load. Common choices would be `'bem'` or `'head'`. We first try loading `'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'`, and then look for `'$SUBJECT*$SOURCE.fif'` in the same directory by going through all files matching the pattern. The head surface will be read from the first file containing a head surface. Can also be a list to try multiple strings. subjects_dir : str, or None Path to the SUBJECTS_DIR. If None, the path is obtained by using the environment variable SUBJECTS_DIR. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- surf : dict The head surface. """ # Load the head surface from the BEM subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) if not isinstance(subject, string_types): raise TypeError('subject must be a string, not %s' % (type(subject,))) # use realpath to allow for linked surfaces (c.f. MNE manual 196-197) if isinstance(source, string_types): source = [source] surf = None for this_source in source: this_head = op.realpath(op.join(subjects_dir, subject, 'bem', '%s-%s.fif' % (subject, this_source))) if op.exists(this_head): surf = read_bem_surfaces(this_head, True, FIFF.FIFFV_BEM_SURF_ID_HEAD, verbose=False) else: # let's do a more sophisticated search path = op.join(subjects_dir, subject, 'bem') if not op.isdir(path): raise IOError('Subject bem directory "%s" does not exist' % path) files = sorted(glob(op.join(path, '%s*%s.fif' % (subject, this_source)))) for this_head in files: try: surf = read_bem_surfaces(this_head, True, FIFF.FIFFV_BEM_SURF_ID_HEAD, verbose=False) except ValueError: pass else: break if surf is not None: break if surf is None: raise IOError('No file matching "%s*%s" and containing a head ' 'surface found' % (subject, this_source)) logger.info('Using surface from %s' % this_head) return surf @verbose def get_meg_helmet_surf(info, trans=None, verbose=None): """Load the MEG helmet associated with the MEG sensors Parameters ---------- info : instance of Info Measurement info. trans : dict The head<->MRI transformation, usually obtained using read_trans(). Can be None, in which case the surface will be in head coordinates instead of MRI coordinates. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- surf : dict The MEG helmet as a surface. """ system = _get_meg_system(info) logger.info('Getting helmet for system %s' % system) fname = op.join(op.split(__file__)[0], 'data', 'helmets', system + '.fif.gz') surf = read_bem_surfaces(fname, False, FIFF.FIFFV_MNE_SURF_MEG_HELMET, verbose=False) # Ignore what the file says, it's in device coords and we want MRI coords surf['coord_frame'] = FIFF.FIFFV_COORD_DEVICE transform_surface_to(surf, 'head', info['dev_head_t']) if trans is not None: transform_surface_to(surf, 'mri', trans) return surf ############################################################################### # EFFICIENCY UTILITIES def fast_cross_3d(x, y): """Compute cross product between list of 3D vectors Much faster than np.cross() when the number of cross products becomes large (>500). This is because np.cross() methods become less memory efficient at this stage. Parameters ---------- x : array Input array 1. y : array Input array 2. Returns ------- z : array Cross product of x and y. Notes ----- x and y must both be 2D row vectors. One must have length 1, or both lengths must match. """ assert x.ndim == 2 assert y.ndim == 2 assert x.shape[1] == 3 assert y.shape[1] == 3 assert (x.shape[0] == 1 or y.shape[0] == 1) or x.shape[0] == y.shape[0] if max([x.shape[0], y.shape[0]]) >= 500: return np.c_[x[:, 1] * y[:, 2] - x[:, 2] * y[:, 1], x[:, 2] * y[:, 0] - x[:, 0] * y[:, 2], x[:, 0] * y[:, 1] - x[:, 1] * y[:, 0]] else: return np.cross(x, y) def _fast_cross_nd_sum(a, b, c): """Fast cross and sum""" return ((a[..., 1] * b[..., 2] - a[..., 2] * b[..., 1]) * c[..., 0] + (a[..., 2] * b[..., 0] - a[..., 0] * b[..., 2]) * c[..., 1] + (a[..., 0] * b[..., 1] - a[..., 1] * b[..., 0]) * c[..., 2]) def _accumulate_normals(tris, tri_nn, npts): """Efficiently accumulate triangle normals""" # this code replaces the following, but is faster (vectorized): # # this['nn'] = np.zeros((this['np'], 3)) # for p in xrange(this['ntri']): # verts = this['tris'][p] # this['nn'][verts, :] += this['tri_nn'][p, :] # nn = np.zeros((npts, 3)) for verts in tris.T: # note this only loops 3x (number of verts per tri) for idx in range(3): # x, y, z nn[:, idx] += np.bincount(verts, weights=tri_nn[:, idx], minlength=npts) return nn def _triangle_neighbors(tris, npts): """Efficiently compute vertex neighboring triangles""" # this code replaces the following, but is faster (vectorized): # # this['neighbor_tri'] = [list() for _ in xrange(this['np'])] # for p in xrange(this['ntri']): # verts = this['tris'][p] # this['neighbor_tri'][verts[0]].append(p) # this['neighbor_tri'][verts[1]].append(p) # this['neighbor_tri'][verts[2]].append(p) # this['neighbor_tri'] = [np.array(nb, int) for nb in this['neighbor_tri']] # verts = tris.ravel() counts = np.bincount(verts, minlength=npts) reord = np.argsort(verts) tri_idx = np.unravel_index(reord, (len(tris), 3))[0] idx = np.cumsum(np.r_[0, counts]) # the sort below slows it down a bit, but is needed for equivalence neighbor_tri = [np.sort(tri_idx[v1:v2]) for v1, v2 in zip(idx[:-1], idx[1:])] return neighbor_tri def _triangle_coords(r, geom, best): """Get coordinates of a vertex projected to a triangle""" r1 = geom['r1'][best] tri_nn = geom['nn'][best] r12 = geom['r12'][best] r13 = geom['r13'][best] a = geom['a'][best] b = geom['b'][best] c = geom['c'][best] rr = r - r1 z = np.sum(rr * tri_nn) v1 = np.sum(rr * r12) v2 = np.sum(rr * r13) det = a * b - c * c x = (b * v1 - c * v2) / det y = (a * v2 - c * v1) / det return x, y, z @verbose def _complete_surface_info(this, do_neighbor_vert=False, verbose=None): """Complete surface info""" # based on mne_source_space_add_geometry_info() in mne_add_geometry_info.c # Main triangulation [mne_add_triangle_data()] this['tri_area'] = np.zeros(this['ntri']) r1 = this['rr'][this['tris'][:, 0], :] r2 = this['rr'][this['tris'][:, 1], :] r3 = this['rr'][this['tris'][:, 2], :] this['tri_cent'] = (r1 + r2 + r3) / 3.0 this['tri_nn'] = fast_cross_3d((r2 - r1), (r3 - r1)) # Triangle normals and areas size = np.sqrt(np.sum(this['tri_nn'] ** 2, axis=1)) this['tri_area'] = size / 2.0 zidx = np.where(size == 0)[0] for idx in zidx: logger.info(' Warning: zero size triangle # %s' % idx) size[zidx] = 1.0 # prevent ugly divide-by-zero this['tri_nn'] /= size[:, None] # Find neighboring triangles, accumulate vertex normals, normalize logger.info(' Triangle neighbors and vertex normals...') this['neighbor_tri'] = _triangle_neighbors(this['tris'], this['np']) this['nn'] = _accumulate_normals(this['tris'], this['tri_nn'], this['np']) _normalize_vectors(this['nn']) # Check for topological defects idx = np.where([len(n) == 0 for n in this['neighbor_tri']])[0] if len(idx) > 0: logger.info(' Vertices [%s] do not have any neighboring' 'triangles!' % ','.join([str(ii) for ii in idx])) idx = np.where([len(n) < 3 for n in this['neighbor_tri']])[0] if len(idx) > 0: logger.info(' Vertices [%s] have fewer than three neighboring ' 'tris, omitted' % ','.join([str(ii) for ii in idx])) for k in idx: this['neighbor_tri'] = np.array([], int) # Determine the neighboring vertices and fix errors if do_neighbor_vert is True: logger.info(' Vertex neighbors...') this['neighbor_vert'] = [_get_surf_neighbors(this, k) for k in range(this['np'])] return this def _get_surf_neighbors(surf, k): """Calculate the surface neighbors based on triangulation""" verts = surf['tris'][surf['neighbor_tri'][k]] verts = np.setdiff1d(verts, [k], assume_unique=False) assert np.all(verts < surf['np']) nneighbors = len(verts) nneigh_max = len(surf['neighbor_tri'][k]) if nneighbors > nneigh_max: raise RuntimeError('Too many neighbors for vertex %d' % k) elif nneighbors != nneigh_max: logger.info(' Incorrect number of distinct neighbors for vertex' ' %d (%d instead of %d) [fixed].' % (k, nneighbors, nneigh_max)) return verts def _normalize_vectors(rr): """Normalize surface vertices""" size = np.sqrt(np.sum(rr * rr, axis=1)) size[size == 0] = 1.0 # avoid divide-by-zero rr /= size[:, np.newaxis] # operate in-place def _compute_nearest(xhs, rr, use_balltree=True, return_dists=False): """Find nearest neighbors Note: The rows in xhs and rr must all be unit-length vectors, otherwise the result will be incorrect. Parameters ---------- xhs : array, shape=(n_samples, n_dim) Points of data set. rr : array, shape=(n_query, n_dim) Points to find nearest neighbors for. use_balltree : bool Use fast BallTree based search from scikit-learn. If scikit-learn is not installed it will fall back to the slow brute force search. return_dists : bool If True, return associated distances. Returns ------- nearest : array, shape=(n_query,) Index of nearest neighbor in xhs for every point in rr. distances : array, shape=(n_query,) The distances. Only returned if return_dists is True. """ if use_balltree: try: from sklearn.neighbors import BallTree except ImportError: logger.info('Nearest-neighbor searches will be significantly ' 'faster if scikit-learn is installed.') use_balltree = False if xhs.size == 0 or rr.size == 0: if return_dists: return np.array([], int), np.array([]) return np.array([], int) if use_balltree is True: ball_tree = BallTree(xhs) if return_dists: out = ball_tree.query(rr, k=1, return_distance=True) return out[1][:, 0], out[0][:, 0] else: nearest = ball_tree.query(rr, k=1, return_distance=False)[:, 0] return nearest else: from scipy.spatial.distance import cdist if return_dists: nearest = list() dists = list() for r in rr: d = cdist(r[np.newaxis, :], xhs) idx = np.argmin(d) nearest.append(idx) dists.append(d[0, idx]) return (np.array(nearest), np.array(dists)) else: nearest = np.array([np.argmin(cdist(r[np.newaxis, :], xhs)) for r in rr]) return nearest ############################################################################### # Handle freesurfer def _fread3(fobj): """Docstring""" b1, b2, b3 = np.fromfile(fobj, ">u1", 3) return (b1 << 16) + (b2 << 8) + b3 def _fread3_many(fobj, n): """Read 3-byte ints from an open binary file object.""" b1, b2, b3 = np.fromfile(fobj, ">u1", 3 * n).reshape(-1, 3).astype(np.int).T return (b1 << 16) + (b2 << 8) + b3 def read_curvature(filepath): """Load in curavature values from the ?h.curv file.""" with open(filepath, "rb") as fobj: magic = _fread3(fobj) if magic == 16777215: vnum = np.fromfile(fobj, ">i4", 3)[0] curv = np.fromfile(fobj, ">f4", vnum) else: vnum = magic _fread3(fobj) curv = np.fromfile(fobj, ">i2", vnum) / 100 bin_curv = 1 - np.array(curv != 0, np.int) return bin_curv @verbose def read_surface(fname, read_metadata=False, verbose=None): """Load a Freesurfer surface mesh in triangular format Parameters ---------- fname : str The name of the file containing the surface. read_metadata : bool Read metadata as key-value pairs. Valid keys: * 'head' : array of int * 'valid' : str * 'filename' : str * 'volume' : array of int, shape (3,) * 'voxelsize' : array of float, shape (3,) * 'xras' : array of float, shape (3,) * 'yras' : array of float, shape (3,) * 'zras' : array of float, shape (3,) * 'cras' : array of float, shape (3,) .. versionadded:: 0.13.0 verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- rr : array, shape=(n_vertices, 3) Coordinate points. tris : int array, shape=(n_faces, 3) Triangulation (each line contains indices for three points which together form a face). volume_info : dict-like If read_metadata is true, key-value pairs found in the geometry file. See Also -------- write_surface read_tri """ try: import nibabel as nib has_nibabel = True except ImportError: has_nibabel = False if has_nibabel and LooseVersion(nib.__version__) > LooseVersion('2.1.0'): return nib.freesurfer.read_geometry(fname, read_metadata=read_metadata) volume_info = dict() TRIANGLE_MAGIC = 16777214 QUAD_MAGIC = 16777215 NEW_QUAD_MAGIC = 16777213 with open(fname, "rb", buffering=0) as fobj: # buffering=0 for np bug magic = _fread3(fobj) # Quad file or new quad if magic in (QUAD_MAGIC, NEW_QUAD_MAGIC): create_stamp = '' nvert = _fread3(fobj) nquad = _fread3(fobj) (fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.) coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float) / div coords = coords.reshape(-1, 3) quads = _fread3_many(fobj, nquad * 4) quads = quads.reshape(nquad, 4) # Face splitting follows faces = np.zeros((2 * nquad, 3), dtype=np.int) nface = 0 for quad in quads: if (quad[0] % 2) == 0: faces[nface:nface + 2] = [[quad[0], quad[1], quad[3]], [quad[2], quad[3], quad[1]]] else: faces[nface:nface + 2] = [[quad[0], quad[1], quad[2]], [quad[0], quad[2], quad[3]]] nface += 2 elif magic == TRIANGLE_MAGIC: # Triangle file create_stamp = fobj.readline() fobj.readline() vnum = np.fromfile(fobj, ">i4", 1)[0] fnum = np.fromfile(fobj, ">i4", 1)[0] coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3) faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3) if read_metadata: volume_info = _read_volume_info(fobj) else: raise ValueError("%s does not appear to be a Freesurfer surface" % fname) logger.info('Triangle file: %s nvert = %s ntri = %s' % (create_stamp.strip(), len(coords), len(faces))) coords = coords.astype(np.float) # XXX: due to mayavi bug on mac 32bits ret = (coords, faces) if read_metadata: if len(volume_info) == 0: warn('No volume information contained in the file') ret += (volume_info,) return ret @verbose def _read_surface_geom(fname, patch_stats=True, norm_rr=False, read_metadata=False, verbose=None): """Load the surface as dict, optionally add the geometry information""" # based on mne_load_surface_geom() in mne_surface_io.c if isinstance(fname, string_types): ret = read_surface(fname, read_metadata=read_metadata) nvert = len(ret[0]) ntri = len(ret[1]) s = dict(rr=ret[0], tris=ret[1], use_tris=ret[1], ntri=ntri, np=nvert) elif isinstance(fname, dict): s = fname else: raise RuntimeError('fname cannot be understood as str or dict') if patch_stats is True: s = _complete_surface_info(s) if norm_rr is True: _normalize_vectors(s['rr']) if read_metadata: return s, ret[2] return s ############################################################################## # SURFACE CREATION def _get_ico_surface(grade, patch_stats=False): """Return an icosahedral surface of the desired grade""" # always use verbose=False since users don't need to know we're pulling # these from a file ico_file_name = op.join(op.dirname(__file__), 'data', 'icos.fif.gz') ico = read_bem_surfaces(ico_file_name, patch_stats, s_id=9000 + grade, verbose=False) return ico def _tessellate_sphere_surf(level, rad=1.0): """Return a surface structure instead of the details""" rr, tris = _tessellate_sphere(level) npt = len(rr) # called "npt" instead of "np" because of numpy... ntri = len(tris) nn = rr.copy() rr *= rad s = dict(rr=rr, np=npt, tris=tris, use_tris=tris, ntri=ntri, nuse=np, nn=nn, inuse=np.ones(npt, int)) return s def _norm_midpt(ai, bi, rr): a = np.array([rr[aii] for aii in ai]) b = np.array([rr[bii] for bii in bi]) c = (a + b) / 2. return c / np.sqrt(np.sum(c ** 2, 1))[:, np.newaxis] def _tessellate_sphere(mylevel): """Create a tessellation of a unit sphere""" # Vertices of a unit octahedron rr = np.array([[1, 0, 0], [-1, 0, 0], # xplus, xminus [0, 1, 0], [0, -1, 0], # yplus, yminus [0, 0, 1], [0, 0, -1]], float) # zplus, zminus tris = np.array([[0, 4, 2], [2, 4, 1], [1, 4, 3], [3, 4, 0], [0, 2, 5], [2, 1, 5], [1, 3, 5], [3, 0, 5]], int) # A unit octahedron if mylevel < 1: raise ValueError('# of levels must be >= 1') # Reverse order of points in each triangle # for counter-clockwise ordering tris = tris[:, [2, 1, 0]] # Subdivide each starting triangle (mylevel - 1) times for _ in range(1, mylevel): """ Subdivide each triangle in the old approximation and normalize the new points thus generated to lie on the surface of the unit sphere. Each input triangle with vertices labelled [0,1,2] as shown below will be turned into four new triangles: Make new points a = (0+2)/2 b = (0+1)/2 c = (1+2)/2 1 /\ Normalize a, b, c / \ b/____\c Construct new triangles /\ /\ [0,b,a] / \ / \ [b,1,c] /____\/____\ [a,b,c] 0 a 2 [a,c,2] """ # use new method: first make new points (rr) a = _norm_midpt(tris[:, 0], tris[:, 2], rr) b = _norm_midpt(tris[:, 0], tris[:, 1], rr) c = _norm_midpt(tris[:, 1], tris[:, 2], rr) lims = np.cumsum([len(rr), len(a), len(b), len(c)]) aidx = np.arange(lims[0], lims[1]) bidx = np.arange(lims[1], lims[2]) cidx = np.arange(lims[2], lims[3]) rr = np.concatenate((rr, a, b, c)) # now that we have our points, make new triangle definitions tris = np.array((np.c_[tris[:, 0], bidx, aidx], np.c_[bidx, tris[:, 1], cidx], np.c_[aidx, bidx, cidx], np.c_[aidx, cidx, tris[:, 2]]), int).swapaxes(0, 1) tris = np.reshape(tris, (np.prod(tris.shape[:2]), 3)) # Copy the resulting approximation into standard table rr_orig = rr rr = np.empty_like(rr) nnode = 0 for k, tri in enumerate(tris): for j in range(3): coord = rr_orig[tri[j]] # this is faster than cdist (no need for sqrt) similarity = np.dot(rr[:nnode], coord) idx = np.where(similarity > 0.99999)[0] if len(idx) > 0: tris[k, j] = idx[0] else: rr[nnode] = coord tris[k, j] = nnode nnode += 1 rr = rr[:nnode].copy() return rr, tris def _create_surf_spacing(surf, hemi, subject, stype, sval, ico_surf, subjects_dir): """Load a surf and use the subdivided icosahedron to get points""" # Based on load_source_space_surf_spacing() in load_source_space.c surf = _read_surface_geom(surf) if stype in ['ico', 'oct']: # ## from mne_ico_downsample.c ## # surf_name = op.join(subjects_dir, subject, 'surf', hemi + '.sphere') logger.info('Loading geometry from %s...' % surf_name) from_surf = _read_surface_geom(surf_name, norm_rr=True, patch_stats=False) if not len(from_surf['rr']) == surf['np']: raise RuntimeError('Mismatch between number of surface vertices, ' 'possible parcellation error?') _normalize_vectors(ico_surf['rr']) # Make the maps logger.info('Mapping %s %s -> %s (%d) ...' % (hemi, subject, stype, sval)) mmap = _compute_nearest(from_surf['rr'], ico_surf['rr']) nmap = len(mmap) surf['inuse'] = np.zeros(surf['np'], int) for k in range(nmap): if surf['inuse'][mmap[k]]: # Try the nearest neighbors neigh = _get_surf_neighbors(surf, mmap[k]) was = mmap[k] inds = np.where(np.logical_not(surf['inuse'][neigh]))[0] if len(inds) == 0: raise RuntimeError('Could not find neighbor for vertex ' '%d / %d' % (k, nmap)) else: mmap[k] = neigh[inds[-1]] logger.info(' Source space vertex moved from %d to %d ' 'because of double occupation', was, mmap[k]) elif mmap[k] < 0 or mmap[k] > surf['np']: raise RuntimeError('Map number out of range (%d), this is ' 'probably due to inconsistent surfaces. ' 'Parts of the FreeSurfer reconstruction ' 'need to be redone.' % mmap[k]) surf['inuse'][mmap[k]] = True logger.info('Setting up the triangulation for the decimated ' 'surface...') surf['use_tris'] = np.array([mmap[ist] for ist in ico_surf['tris']], np.int32) else: # use_all is True surf['inuse'] = np.ones(surf['np'], int) surf['use_tris'] = None if surf['use_tris'] is not None: surf['nuse_tri'] = len(surf['use_tris']) else: surf['nuse_tri'] = 0 surf['nuse'] = np.sum(surf['inuse']) surf['vertno'] = np.where(surf['inuse'])[0] # set some final params inds = np.arange(surf['np']) sizes = np.sqrt(np.sum(surf['nn'] ** 2, axis=1)) surf['nn'][inds] = surf['nn'][inds] / sizes[:, np.newaxis] surf['inuse'][sizes <= 0] = False surf['nuse'] = np.sum(surf['inuse']) surf['subject_his_id'] = subject return surf def write_surface(fname, coords, faces, create_stamp='', volume_info=None): """Write a triangular Freesurfer surface mesh Accepts the same data format as is returned by read_surface(). Parameters ---------- fname : str File to write. coords : array, shape=(n_vertices, 3) Coordinate points. faces : int array, shape=(n_faces, 3) Triangulation (each line contains indices for three points which together form a face). create_stamp : str Comment that is written to the beginning of the file. Can not contain line breaks. volume_info : dict-like or None Key-value pairs to encode at the end of the file. Valid keys: * 'head' : array of int * 'valid' : str * 'filename' : str * 'volume' : array of int, shape (3,) * 'voxelsize' : array of float, shape (3,) * 'xras' : array of float, shape (3,) * 'yras' : array of float, shape (3,) * 'zras' : array of float, shape (3,) * 'cras' : array of float, shape (3,) .. versionadded:: 0.13.0 See Also -------- read_surface read_tri """ try: import nibabel as nib has_nibabel = True except ImportError: has_nibabel = False if has_nibabel and LooseVersion(nib.__version__) > LooseVersion('2.1.0'): nib.freesurfer.io.write_geometry(fname, coords, faces, create_stamp=create_stamp, volume_info=volume_info) return if len(create_stamp.splitlines()) > 1: raise ValueError("create_stamp can only contain one line") with open(fname, 'wb') as fid: fid.write(pack('>3B', 255, 255, 254)) strs = ['%s\n' % create_stamp, '\n'] strs = [s.encode('utf-8') for s in strs] fid.writelines(strs) vnum = len(coords) fnum = len(faces) fid.write(pack('>2i', vnum, fnum)) fid.write(np.array(coords, dtype='>f4').tostring()) fid.write(np.array(faces, dtype='>i4').tostring()) # Add volume info, if given if volume_info is not None and len(volume_info) > 0: fid.write(_serialize_volume_info(volume_info)) ############################################################################### # Decimation def _decimate_surface(points, triangles, reduction): """Aux function""" if 'DISPLAY' not in os.environ and sys.platform != 'win32': os.environ['ETS_TOOLKIT'] = 'null' try: from tvtk.api import tvtk from tvtk.common import configure_input except ImportError: raise ValueError('This function requires the TVTK package to be ' 'installed') if triangles.max() > len(points) - 1: raise ValueError('The triangles refer to undefined points. ' 'Please check your mesh.') src = tvtk.PolyData(points=points, polys=triangles) decimate = tvtk.QuadricDecimation(target_reduction=reduction) configure_input(decimate, src) decimate.update() out = decimate.output tris = out.polys.to_array() # n-tuples + interleaved n-next -- reshape trick return out.points.to_array(), tris.reshape(tris.size / 4, 4)[:, 1:] def decimate_surface(points, triangles, n_triangles): """ Decimate surface data Note. Requires TVTK to be installed for this to function. Note. If an if an odd target number was requested, the ``quadric decimation`` algorithm used results in the next even number of triangles. For example a reduction request to 30001 triangles will result in 30000 triangles. Parameters ---------- points : ndarray The surface to be decimated, a 3 x number of points array. triangles : ndarray The surface to be decimated, a 3 x number of triangles array. n_triangles : int The desired number of triangles. Returns ------- points : ndarray The decimated points. triangles : ndarray The decimated triangles. """ reduction = 1 - (float(n_triangles) / len(triangles)) return _decimate_surface(points, triangles, reduction) ############################################################################### # Morph maps @verbose def read_morph_map(subject_from, subject_to, subjects_dir=None, verbose=None): """Read morph map Morph maps can be generated with mne_make_morph_maps. If one isn't available, it will be generated automatically and saved to the ``subjects_dir/morph_maps`` directory. Parameters ---------- subject_from : string Name of the original subject as named in the SUBJECTS_DIR. subject_to : string Name of the subject on which to morph as named in the SUBJECTS_DIR. subjects_dir : string Path to SUBJECTS_DIR is not set in the environment. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- left_map, right_map : sparse matrix The morph maps for the 2 hemispheres. """ subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) # First check for morph-map dir existence mmap_dir = op.join(subjects_dir, 'morph-maps') if not op.isdir(mmap_dir): try: os.mkdir(mmap_dir) except Exception: warn('Could not find or make morph map directory "%s"' % mmap_dir) # Does the file exist fname = op.join(mmap_dir, '%s-%s-morph.fif' % (subject_from, subject_to)) if not op.exists(fname): fname = op.join(mmap_dir, '%s-%s-morph.fif' % (subject_to, subject_from)) if not op.exists(fname): warn('Morph map "%s" does not exist, creating it and saving it to ' 'disk (this may take a few minutes)' % fname) logger.info('Creating morph map %s -> %s' % (subject_from, subject_to)) mmap_1 = _make_morph_map(subject_from, subject_to, subjects_dir) logger.info('Creating morph map %s -> %s' % (subject_to, subject_from)) mmap_2 = _make_morph_map(subject_to, subject_from, subjects_dir) try: _write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2) except Exception as exp: warn('Could not write morph-map file "%s" (error: %s)' % (fname, exp)) return mmap_1 f, tree, _ = fiff_open(fname) with f as fid: # Locate all maps maps = dir_tree_find(tree, FIFF.FIFFB_MNE_MORPH_MAP) if len(maps) == 0: raise ValueError('Morphing map data not found') # Find the correct ones left_map = None right_map = None for m in maps: tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_FROM) if tag.data == subject_from: tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_TO) if tag.data == subject_to: # Names match: which hemishere is this? tag = find_tag(fid, m, FIFF.FIFF_MNE_HEMI) if tag.data == FIFF.FIFFV_MNE_SURF_LEFT_HEMI: tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP) left_map = tag.data logger.info(' Left-hemisphere map read.') elif tag.data == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI: tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP) right_map = tag.data logger.info(' Right-hemisphere map read.') if left_map is None or right_map is None: raise ValueError('Could not find both hemispheres in %s' % fname) return left_map, right_map def _write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2): """Write a morph map to disk""" fid = start_file(fname) assert len(mmap_1) == 2 assert len(mmap_2) == 2 hemis = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI] for m, hemi in zip(mmap_1, hemis): start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP) write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_from) write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_to) write_int(fid, FIFF.FIFF_MNE_HEMI, hemi) write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m) end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP) for m, hemi in zip(mmap_2, hemis): start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP) write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_to) write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_from) write_int(fid, FIFF.FIFF_MNE_HEMI, hemi) write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m) end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP) end_file(fid) def _get_tri_dist(p, q, p0, q0, a, b, c, dist): """Auxiliary function for getting the distance to a triangle edge""" return np.sqrt((p - p0) * (p - p0) * a + (q - q0) * (q - q0) * b + (p - p0) * (q - q0) * c + dist * dist) def _get_tri_supp_geom(tris, rr): """Create supplementary geometry information using tris and rrs""" r1 = rr[tris[:, 0], :] r12 = rr[tris[:, 1], :] - r1 r13 = rr[tris[:, 2], :] - r1 r1213 = np.array([r12, r13]).swapaxes(0, 1) a = np.sum(r12 * r12, axis=1) b = np.sum(r13 * r13, axis=1) c = np.sum(r12 * r13, axis=1) mat = np.rollaxis(np.array([[b, -c], [-c, a]]), 2) mat /= (a * b - c * c)[:, np.newaxis, np.newaxis] nn = fast_cross_3d(r12, r13) _normalize_vectors(nn) return dict(r1=r1, r12=r12, r13=r13, r1213=r1213, a=a, b=b, c=c, mat=mat, nn=nn) @verbose def _make_morph_map(subject_from, subject_to, subjects_dir=None): """Construct morph map from one subject to another Note that this is close, but not exactly like the C version. For example, parts are more accurate due to double precision, so expect some small morph-map differences! Note: This seems easily parallelizable, but the overhead of pickling all the data structures makes it less efficient than just running on a single core :( """ subjects_dir = get_subjects_dir(subjects_dir) morph_maps = list() # add speedy short-circuit for self-maps if subject_from == subject_to: for hemi in ['lh', 'rh']: fname = op.join(subjects_dir, subject_from, 'surf', '%s.sphere.reg' % hemi) from_pts = read_surface(fname, verbose=False)[0] n_pts = len(from_pts) morph_maps.append(speye(n_pts, n_pts, format='csr')) return morph_maps for hemi in ['lh', 'rh']: # load surfaces and normalize points to be on unit sphere fname = op.join(subjects_dir, subject_from, 'surf', '%s.sphere.reg' % hemi) from_pts, from_tris = read_surface(fname, verbose=False) n_from_pts = len(from_pts) _normalize_vectors(from_pts) tri_geom = _get_tri_supp_geom(from_tris, from_pts) fname = op.join(subjects_dir, subject_to, 'surf', '%s.sphere.reg' % hemi) to_pts = read_surface(fname, verbose=False)[0] n_to_pts = len(to_pts) _normalize_vectors(to_pts) # from surface: get nearest neighbors, find triangles for each vertex nn_pts_idx = _compute_nearest(from_pts, to_pts) from_pt_tris = _triangle_neighbors(from_tris, len(from_pts)) from_pt_tris = [from_pt_tris[pt_idx] for pt_idx in nn_pts_idx] # find triangle in which point lies and assoc. weights nn_tri_inds = [] nn_tris_weights = [] for pt_tris, to_pt in zip(from_pt_tris, to_pts): p, q, idx, dist = _find_nearest_tri_pt(pt_tris, to_pt, tri_geom) nn_tri_inds.append(idx) nn_tris_weights.extend([1. - (p + q), p, q]) nn_tris = from_tris[nn_tri_inds] row_ind = np.repeat(np.arange(n_to_pts), 3) this_map = csr_matrix((nn_tris_weights, (row_ind, nn_tris.ravel())), shape=(n_to_pts, n_from_pts)) morph_maps.append(this_map) return morph_maps def _find_nearest_tri_pt(pt_tris, to_pt, tri_geom, run_all=False): """Find nearest point mapping to a set of triangles If run_all is False, if the point lies within a triangle, it stops. If run_all is True, edges of other triangles are checked in case those (somehow) are closer. """ # The following dense code is equivalent to the following: # rr = r1[pt_tris] - to_pts[ii] # v1s = np.sum(rr * r12[pt_tris], axis=1) # v2s = np.sum(rr * r13[pt_tris], axis=1) # aas = a[pt_tris] # bbs = b[pt_tris] # ccs = c[pt_tris] # dets = aas * bbs - ccs * ccs # pp = (bbs * v1s - ccs * v2s) / dets # qq = (aas * v2s - ccs * v1s) / dets # pqs = np.array(pp, qq) # This einsum is equivalent to doing: # pqs = np.array([np.dot(x, y) for x, y in zip(r1213, r1-to_pt)]) r1 = tri_geom['r1'][pt_tris] rrs = to_pt - r1 tri_nn = tri_geom['nn'][pt_tris] vect = np.einsum('ijk,ik->ij', tri_geom['r1213'][pt_tris], rrs) mats = tri_geom['mat'][pt_tris] # This einsum is equivalent to doing: # pqs = np.array([np.dot(m, v) for m, v in zip(mats, vect)]).T pqs = np.einsum('ijk,ik->ji', mats, vect) found = False dists = np.sum(rrs * tri_nn, axis=1) # There can be multiple (sadness), find closest idx = np.where(np.all(pqs >= 0., axis=0))[0] idx = idx[np.where(np.all(pqs[:, idx] <= 1., axis=0))[0]] idx = idx[np.where(np.sum(pqs[:, idx], axis=0) < 1.)[0]] dist = np.inf if len(idx) > 0: found = True pt = idx[np.argmin(np.abs(dists[idx]))] p, q = pqs[:, pt] dist = dists[pt] # re-reference back to original numbers pt = pt_tris[pt] if found is False or run_all is True: # don't include ones that we might have found before s = np.setdiff1d(np.arange(len(pt_tris)), idx) # ones to check sides # Tough: must investigate the sides pp, qq, ptt, distt = _nearest_tri_edge(pt_tris[s], to_pt, pqs[:, s], dists[s], tri_geom) if np.abs(distt) < np.abs(dist): p, q, pt, dist = pp, qq, ptt, distt return p, q, pt, dist def _nearest_tri_edge(pt_tris, to_pt, pqs, dist, tri_geom): """Get nearest location from a point to the edge of a set of triangles""" # We might do something intelligent here. However, for now # it is ok to do it in the hard way aa = tri_geom['a'][pt_tris] bb = tri_geom['b'][pt_tris] cc = tri_geom['c'][pt_tris] pp = pqs[0] qq = pqs[1] # Find the nearest point from a triangle: # Side 1 -> 2 p0 = np.minimum(np.maximum(pp + 0.5 * (qq * cc) / aa, 0.0), 1.0) q0 = np.zeros_like(p0) # Side 2 -> 3 t1 = (0.5 * ((2.0 * aa - cc) * (1.0 - pp) + (2.0 * bb - cc) * qq) / (aa + bb - cc)) t1 = np.minimum(np.maximum(t1, 0.0), 1.0) p1 = 1.0 - t1 q1 = t1 # Side 1 -> 3 q2 = np.minimum(np.maximum(qq + 0.5 * (pp * cc) / bb, 0.0), 1.0) p2 = np.zeros_like(q2) # figure out which one had the lowest distance dist0 = _get_tri_dist(pp, qq, p0, q0, aa, bb, cc, dist) dist1 = _get_tri_dist(pp, qq, p1, q1, aa, bb, cc, dist) dist2 = _get_tri_dist(pp, qq, p2, q2, aa, bb, cc, dist) pp = np.r_[p0, p1, p2] qq = np.r_[q0, q1, q2] dists = np.r_[dist0, dist1, dist2] ii = np.argmin(np.abs(dists)) p, q, pt, dist = pp[ii], qq[ii], pt_tris[ii % len(pt_tris)], dists[ii] return p, q, pt, dist def mesh_edges(tris): """Returns sparse matrix with edges as an adjacency matrix Parameters ---------- tris : array of shape [n_triangles x 3] The triangles. Returns ------- edges : sparse matrix The adjacency matrix. """ if np.max(tris) > len(np.unique(tris)): raise ValueError('Cannot compute connectivity on a selection of ' 'triangles.') npoints = np.max(tris) + 1 ones_ntris = np.ones(3 * len(tris)) a, b, c = tris.T x = np.concatenate((a, b, c)) y = np.concatenate((b, c, a)) edges = coo_matrix((ones_ntris, (x, y)), shape=(npoints, npoints)) edges = edges.tocsr() edges = edges + edges.T return edges def mesh_dist(tris, vert): """Compute adjacency matrix weighted by distances It generates an adjacency matrix where the entries are the distances between neighboring vertices. Parameters ---------- tris : array (n_tris x 3) Mesh triangulation vert : array (n_vert x 3) Vertex locations Returns ------- dist_matrix : scipy.sparse.csr_matrix Sparse matrix with distances between adjacent vertices """ edges = mesh_edges(tris).tocoo() # Euclidean distances between neighboring vertices dist = np.sqrt(np.sum((vert[edges.row, :] - vert[edges.col, :]) ** 2, axis=1)) dist_matrix = csr_matrix((dist, (edges.row, edges.col)), shape=edges.shape) return dist_matrix @verbose def read_tri(fname_in, swap=False, verbose=None): """Function for reading triangle definitions from an ascii file. Parameters ---------- fname_in : str Path to surface ASCII file (ending with '.tri'). swap : bool Assume the ASCII file vertex ordering is clockwise instead of counterclockwise. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- rr : array, shape=(n_vertices, 3) Coordinate points. tris : int array, shape=(n_faces, 3) Triangulation (each line contains indices for three points which together form a face). Notes ----- .. versionadded:: 0.13.0 See Also -------- read_surface write_surface """ with open(fname_in, "r") as fid: lines = fid.readlines() n_nodes = int(lines[0]) n_tris = int(lines[n_nodes + 1]) n_items = len(lines[1].split()) if n_items in [3, 6, 14, 17]: inds = range(3) elif n_items in [4, 7]: inds = range(1, 4) else: raise IOError('Unrecognized format of data.') rr = np.array([np.array([float(v) for v in l.split()])[inds] for l in lines[1:n_nodes + 1]]) tris = np.array([np.array([int(v) for v in l.split()])[inds] for l in lines[n_nodes + 2:n_nodes + 2 + n_tris]]) if swap: tris[:, [2, 1]] = tris[:, [1, 2]] tris -= 1 logger.info('Loaded surface from %s with %s nodes and %s triangles.' % (fname_in, n_nodes, n_tris)) if n_items in [3, 4]: logger.info('Node normals were not included in the source file.') else: warn('Node normals were not read.') return (rr, tris)
bsd-3-clause
lioritan/Thesis
problems/parse_ents.py
1
1666
# -*- coding: utf-8 -*- """ Created on Thu Dec 01 22:04:44 2016 @author: Lior """ import cPickle import os from matplotlib.cbook import flatten with open('../yago2s_tsv/yago_relations.pkl', 'rb') as fptr: relations= cPickle.load(fptr) print 'yago loaded' entities=set() for path,dirnames, filenames in os.walk('./techtc_entities/'): for filename in filenames: fptr=open(path+'/'+filename, 'rb') ((trn_ents,_),(tst_ents,_))=cPickle.load(fptr) entities.update(flatten(trn_ents)) entities.update(flatten(tst_ents)) fptr.close() less_relations = {} target_entities = set() print len(entities) for i,ent in enumerate(entities): #print i for rel in relations.keys(): if relations[rel].has_key(ent): val = relations[rel][ent] if rel!='YAGO:types' and rel!='types': target_entities.add(val) if not less_relations.has_key(rel): less_relations[rel]={ent:val} else: less_relations[rel][ent]=val #with open('tmp_rels.pkl','wb') as fptr: # cPickle.dump((less_relations,target_entities), fptr, -1) del entities print len(target_entities) for i,ent in enumerate(target_entities): #print i for rel in relations.keys(): if relations[rel].has_key(ent): val = relations[rel][ent] if not less_relations.has_key(rel): less_relations[rel]={ent:val} else: less_relations[rel][ent]=val del target_entities with open('yago_rels_new.pkl','wb') as fptr: cPickle.dump(less_relations, fptr, -1)
gpl-2.0
huoyao/epcc-openacc-benchmarks
plot.py
4
5869
# Copyright (c) 2013 The University of Edinburgh. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python # Plotter for OpenACC Benchmarks benchmarks import numpy as np import matplotlib.pyplot as plt import sys import argparse class Globs: """Class for storing objects such as the session dictionary and a counter.""" def __init__(self): self.colour = False self.inputfile = 'data.txt' self.debug = False self.eps = False def chomp(s): return s[:-1] if s.endswith('\n') else s def setAxLinesBW(ax): """ Take each Line2D in the axes, ax, and convert the line style to be suitable for black and white viewing. """ MARKERSIZE = 3 COLORMAP = { 'b': {'marker': None, 'dash': (None,None)}, 'g': {'marker': None, 'dash': [5,5]}, 'r': {'marker': None, 'dash': [5,3,1,3]}, 'c': {'marker': None, 'dash': [1,3]}, 'm': {'marker': None, 'dash': [5,2,5,2,5,10]}, 'y': {'marker': None, 'dash': [5,3,1,2,1,10]}, 'k': {'marker': 'o', 'dash': (None,None)} #[1,2,1,10]} } for line in ax.get_lines(): origColor = line.get_color() line.set_color('black') line.set_dashes(COLORMAP[origColor]['dash']) line.set_marker(COLORMAP[origColor]['marker']) line.set_markersize(MARKERSIZE) def setFigLinesBW(fig): """ Take each axes in the figure, and for each line in the axes, make the line viewable in black and white. """ for ax in fig.get_axes(): setAxLinesBW(ax) def main(): # Make a singular global instance for holding odd global values global GL GL = Globs() # Parse the input arguements in a nice manner parser = argparse.ArgumentParser() parser.add_argument("-d", "--debug", help="Enable debug outputs.", action="store_true") parser.add_argument("-i", "--input", help="Input file to read (default: ./data.txt).") parser.add_argument("-c", "--colour", help="Colour graphs. (default: Black + White).", action="store_true") parser.add_argument("-e", "--eps", help="Output graphs in Enhanced Postscript Format (.eps) rather than JPEG.", action="store_true") args = parser.parse_args() if args.debug: GL.debug = True if args.colour: GL.colour = True if args.input: GL.inputfile = args.input if args.eps: GL.eps = True # Open input file, consume file, close. inp = open(GL.inputfile, 'r') data_array = [] for l in inp: data_array.append(chomp(l).split()) inp.close() names = [] compilers = [] datasizes = [] for line in data_array: names.append(line[1]) compilers.append(line[0]) datasizes.append(int(line[2])) # Unique-ify these lists names = list(set(names)) compilers = list(set(compilers)) datasizes = list(set(datasizes)) ds = np.zeros( (len(datasizes),1) ) datasizes = sorted(datasizes) for i in range(0,len(datasizes)): ds[i][0] = int(datasizes[i]) # Loop over the tests # Create and array of times for each one and add data as necessary # Then plot for each test if GL.debug: print names print datasizes print compilers for i in names: times = np.zeros( (len(datasizes),len(compilers)) ) for c in compilers: for r in range(0, len(data_array)): if (data_array[r][0] == c and data_array[r][1] == i): times[datasizes.index(int(data_array[r][2]))][compilers.index(c)] = abs(float(data_array[r][3])) ds2 = np.log(ds)/np.log(2) unit = r'$\mu s$' if np.amax(times) > 1000: times = times / 1000 unit = r'$ms$' if np.amax(times) > 1000000: times = times / 1000000 unit = r'$s$' fig = plt.figure() plt.semilogy(ds2,times,'-', linewidth=3) plt.xlabel('Datasize (M Bytes)', size='large') if i=='Kernels_combined' or i=='Kernels_If' or i=='Parallel_If' or i=='Parallel_private' or i=='Parallel_firstprivate' or i=='Parallel_reduction' or i=='Kernels_reduction' or i=='Update_Host' or i=='Kernels_Invocation': plt.ylabel('Difference (' + unit + ')', size='large') else: plt.ylabel('Run time (' + unit + ')', size='large') locs, labs = plt.xticks() lmax = max(locs)+1 lmin = min(locs) plt.xticks(np.arange(lmin,lmax), ('1','2','4','8','16','32','64','128','256','512','1024'),size='large') xmin,xmax = plt.xlim() plt.xlim(xmin*0.99,xmax*1.01) plt.yticks(size='large') i = i.replace('_',' ') plt.title(i, size='large') if GL.colour == False: setFigLinesBW(fig) comp_normalized = [] for c in compilers: c = c.replace('_', ' ') comp_normalized.append(c) plt.legend(comp_normalized, loc='best') if GL.eps == True: plt.savefig(i+'.eps', dpi=660, bbox_inches='tight') else: plt.savefig(i+'.jpg', bbox_inches='tight') plt.close() if __name__ == "__main__": sys.exit(main())
apache-2.0
spnow/grr
gui/plugins/flow_management.py
1
29906
#!/usr/bin/env python # Copyright 2011 Google Inc. All Rights Reserved. """GUI elements allowing launching and management of flows.""" import os import StringIO import urllib import matplotlib.pyplot as plt from grr.gui import renderers from grr.gui.plugins import crash_view from grr.gui.plugins import fileview from grr.gui.plugins import forms from grr.gui.plugins import semantic from grr.lib import aff4 from grr.lib import data_store from grr.lib import flow from grr.lib import queue_manager from grr.lib import rdfvalue from grr.lib import utils class LaunchFlows(renderers.Splitter): """Launches a new flow.""" description = "Start new flows" behaviours = frozenset(["Host"]) order = 10 left_renderer = "FlowTree" top_right_renderer = "SemanticProtoFlowForm" bottom_right_renderer = "FlowManagementTabs" class FlowTree(renderers.TreeRenderer): """Show all flows in a tree. Generated Javascript Events: - flow_select(flow_path) - The full path for the flow name (category + name). """ publish_select_queue = "flow_select" # Only show flows in the tree that specify all of these behaviours in their # behaviours attribute. flow_behaviors_to_render = flow.FlowBehaviour("Client Flow") def EnumerateCategories(self, path, request, flow_behaviors_to_render): """Search through all flows for categories starting with path.""" categories = set() flows = set() # Use an object for path manipulations. path = rdfvalue.RDFURN(path) for name, cls in flow.GRRFlow.classes.items(): # Flows without a category do not show up in the GUI. if not getattr(cls, "category", None): continue # If a flow is tagged as AUTHORIZED_LABELS, the user must have the correct # label to see it. if cls.AUTHORIZED_LABELS: if not data_store.DB.security_manager.CheckUserLabels( request.token.username, cls.AUTHORIZED_LABELS, token=request.token): continue # Skip if there are behaviours that are not supported by the class. if not flow_behaviors_to_render.IsSupported(cls.behaviours): continue category = rdfvalue.RDFURN(cls.category) if category == path: flows.add((name, cls.friendly_name)) else: relative_path = category.RelativeName(path) # This category starts with this path if relative_path is not None: categories.add(relative_path.split("/")[0]) return categories, flows def RenderBranch(self, path, request): """Renders tree leafs for flows.""" # Retrieve the user's GUI mode preferences. self.user = request.user try: user_record = aff4.FACTORY.Open( aff4.ROOT_URN.Add("users").Add(self.user), "GRRUser", token=request.token) user_preferences = user_record.Get(user_record.Schema.GUI_SETTINGS) except IOError: user_preferences = aff4.GRRUser.SchemaCls.GUI_SETTINGS() flow_behaviors_to_render = (self.flow_behaviors_to_render + user_preferences.mode) categories, flows = self.EnumerateCategories(path, request, flow_behaviors_to_render) for category in sorted(categories): self.AddElement(category) for name, friendly_name in sorted(flows): self.AddElement(name, behaviour="leaf", friendly_name=friendly_name) class FlowManagementTabs(renderers.TabLayout): """Show information about the flows. Listening Javascript Events: - flow_select(flow_path) - A selection event on the tree informing us of the flow path. The basename of flow_path is the name of the flow. Internal State: - flow_path - The category and name of the flow we display. """ names = ["Flow Information", "Current Running Flows"] delegated_renderers = ["FlowInformation", "ListFlowsTable"] tab_hash = "ft" layout_template = renderers.TabLayout.layout_template + """ <script> grr.subscribe('flow_select', function (path) { $("#{{unique|escapejs}}").data().state.flow_path = path; $("#{{unique|escapejs}} li.active a").click(); }, "{{unique|escapejs}}"); </script>""" def Layout(self, request, response): self.state = dict(flow_path=request.REQ.get("flow_path"), client_id=request.REQ.get("client_id")) return super(FlowManagementTabs, self).Layout(request, response) class FlowInformation(renderers.TemplateRenderer): """Displays information about the flow. Post Parameters: - flow_path: The category + flow name for use to display. """ layout_template = renderers.Template(""" <h3>{{ this.flow_name|escape }}</h3> <p>{{ this.flow_doc|linebreaks }}</p> <pre> Prototype: {{ this.prototype|escape }} {{ this.prototype_doc|escape }} </pre> <table class="table table-condensed table-bordered full-width fixed-columns"> <colgroup> <col style="width: 20%" /> <col style="width: 60%" /> <col style="width: 20%" /> </colgroup> <thead> <tr> <th class="ui-state-default">State</th> <th class="ui-state-default">Description</th> <th class="ui-state-default">Next States</th></tr> </thead> <tbody> {% for state, doc, next in this.states %} <tr><td class='state'>{{ state|escape }}</td> <td class='description'>{{ doc|escape }}</td> <td class='text'>{{ next|escape }}</td></tr> {% endfor %} </tbody> </table> """) # This is prepended to flow args to eliminate clashes with other parameters. arg_prefix = "v_" def Layout(self, request, response): """Update the progress bar based on the progress reported.""" self.flow_name = request.REQ.get("flow_path", "").split("/")[-1] try: flow_class = flow.GRRFlow.classes[self.flow_name] if not aff4.issubclass(flow_class, flow.GRRFlow): return response except KeyError: return response self.states = [] # Fill in information about each state for state_method in flow_class.__dict__.values(): try: next_states = state_method.next_states # Only show the first line of the doc string. try: func_doc = state_method.func_doc.split("\n")[0].strip() except AttributeError: func_doc = "" self.states.append((state_method.func_name, func_doc, ", ".join(next_states))) except AttributeError: pass # Now fill in information about each arg to this flow. prototypes = [] for type_descriptor in flow_class.args_type.type_infos: if not type_descriptor.hidden: prototypes.append("%s" % (type_descriptor.name)) self.prototype = "%s(%s)" % (flow_class.__name__, ", ".join(prototypes)) self.flow_doc = flow_class.__doc__ return super(FlowInformation, self).Layout(request, response) class SemanticProtoFlowForm(renderers.TemplateRenderer): """Render a flow based on its semantic information.""" layout_template = renderers.Template(""" <div class="FormBody" id="{{unique|escape}}"> {% if this.flow_found %} <form id='form_{{unique|escape}}' class="form-horizontal FormData" data-flow_path='{{this.flow_name|escape}}' data-dom_node='{{id|escape}}' > {{this.form|safe}} <hr/> {{this.runner_form|safe}} <div class="control-group"> <div class="controls"> <button id='submit_{{unique|escape}}' class="btn btn-success Launch" > Launch </button> </div> </div> </form> {% else %} Please Select a flow to launch from the tree on the left. {% endif %} </div> <div id="contents_{{unique}}"></div> <script> $("#submit_{{unique|escapejs}}").click(function () { var state = {}; $.extend(state, $('#form_{{unique|escapejs}}').data(), grr.state); grr.update('{{renderer}}', 'contents_{{unique|escapejs}}', state); return false; }); grr.subscribe('flow_select', function(path) { grr.layout("{{renderer|escapejs}}", "{{id|escapejs}}", { flow_path: path, client_id: grr.state.client_id, reason: grr.state.reason }); }, '{{unique|escapejs}}'); </script> """) + renderers.TemplateRenderer.help_template ajax_template = renderers.Template(""" <pre> {{this.args}} </pre> <pre> {{this.runner_args}} </pre> Launched Flow {{this.flow_name}}. <script> $("#{{this.dom_node|escapejs}} .FormBody").html(""); grr.subscribe('flow_select', function(path) { grr.layout("{{renderer|escapejs}}", "{{id|escapejs}}", { flow_path: path, client_id: grr.state.client_id, reason: grr.state.reason }); }, '{{unique|escapejs}}'); </script> """) ajax_error_template = renderers.Template(""" <script> grr.publish("grr_messages", "{{error|escapejs}}"); grr.publish("grr_traceback", "{{error|escapejs}}"); </script> """) context_help_url = "user_manual.html#_flows" def Layout(self, request, response): """Render the form for creating the flow args.""" self.flow_name = os.path.basename(request.REQ.get("flow_path", "")) self.flow_cls = flow.GRRFlow.classes.get(self.flow_name) if aff4.issubclass(self.flow_cls, flow.GRRFlow): self.flow_found = True self.form = forms.SemanticProtoFormRenderer( self.flow_cls.GetDefaultArgs(token=request.token), prefix="args").RawHTML(request) self.runner_form = forms.SemanticProtoFormRenderer( flow.FlowRunnerArgs(flow_name=self.flow_name), prefix="runner").RawHTML(request) return super(SemanticProtoFlowForm, self).Layout(request, response) def RenderAjax(self, request, response): """Parse the flow args from the form and launch the flow.""" self.flow_name = request.REQ.get("flow_path", "").split("/")[-1] self.client_id = request.REQ.get("client_id", None) self.dom_node = request.REQ.get("dom_node") flow_cls = flow.GRRFlow.classes.get(self.flow_name) if flow_cls is not None: self.args = forms.SemanticProtoFormRenderer( flow_cls.args_type(), prefix="args").ParseArgs(request) try: self.args.Validate() except ValueError as e: return self.RenderFromTemplate(self.ajax_error_template, response, error=e) self.runner_args = forms.SemanticProtoFormRenderer( flow.FlowRunnerArgs(), prefix="runner_").ParseArgs(request) self.runner_args.Validate() self.flow_id = flow.GRRFlow.StartFlow(client_id=self.client_id, flow_name=self.flow_name, token=request.token, args=self.args, runner_args=self.runner_args) return renderers.TemplateRenderer.Layout( self, request, response, apply_template=self.ajax_template) class FlowFormCancelAction(renderers.TemplateRenderer): """Handle submission of a Cancel Flow button press. Post Parameters: - flow_id: The flow to cancel. """ layout_template = renderers.Template("") def Layout(self, request, response): # We can't terminate flow directly through flow.GRRFlow.TerminateFlow as # it requires writing to the datastore. We're not allowed to do it from # the GUI. Therefore we use dedicated TerminateFlow flow. flow.GRRFlow.StartFlow( flow_name="TerminateFlow", flow_urn=rdfvalue.RDFURN(request.REQ.get("flow_id")), reason="Cancelled in GUI", token=request.token) super(FlowFormCancelAction, self).Layout(request, response) class FlowStateIcon(semantic.RDFValueRenderer): """Render the flow state by using an icon.""" layout_template = renderers.Template(""" <div class="centered"> <img class='grr-icon grr-flow-icon' src='/static/images/{{this.icon|escape}}' title='{{this.title|escape}}' /> </div>""") # Maps the flow states to icons we can show state_map = {"TERMINATED": ("stock_yes.png", "Flow finished normally."), "RUNNING": ("clock.png", "Flow is still running."), "ERROR": ("nuke.png", "Flow terminated with an error."), "CLIENT_CRASHED": ( "skull-icon.png", "The client crashed while executing this flow.")} icon = "question-red.png" def Layout(self, request, response): try: self.icon, self.title = self.state_map[str(self.proxy)] except (KeyError, ValueError): pass super(FlowStateIcon, self).Layout(request, response) class ManageFlows(renderers.Splitter2Way): """View launched flows in a tree.""" description = "Manage launched flows" behaviours = frozenset(["Host"]) order = 20 top_renderer = "ListFlowsTable" bottom_renderer = "FlowTabView" class FlowTabView(renderers.TabLayout): """Show various flow information in a Tab view. Listening Javascript Events: - flow_table_select(flow_aff4_path) - A selection event on the tree informing us of the flow aff4 path. The basename of flow_path is the name of the flow. Internal State: - flow_path - The category and name of the flow we display. """ names = ["Flow Information", "Requests"] delegated_renderers = ["ShowFlowInformation", "FlowRequestView"] tab_hash = "ftv" layout_template = renderers.TabLayout.layout_template + """ <script> grr.subscribe('flow_table_select', function (path) { grr.layout("{{renderer|escapejs}}", "{{id|escapejs}}", {flow: path, client_id: grr.state.client_id}); }, "tab_contents_{{unique|escapejs}}"); </script>""" def Layout(self, request, response): req_flow = request.REQ.get("flow") if req_flow: self.state["flow"] = req_flow client_id = request.REQ.get("client_id") if client_id: self.state["client_id"] = client_id return super(FlowTabView, self).Layout(request, response) class FlowRequestView(renderers.TableRenderer): """View outstanding requests for a flow. Post Parameters: - client_id: The client to show the flows for. - flow: The flow to show. """ post_parameters = ["flow", "client_id"] def __init__(self, **kwargs): super(FlowRequestView, self).__init__(**kwargs) self.AddColumn(semantic.RDFValueColumn("ID")) self.AddColumn(semantic.RDFValueColumn("Request", width="100%")) self.AddColumn(semantic.RDFValueColumn("Last Response", width="100%")) def BuildTable(self, start_row, end_row, request): session_id = request.REQ.get("flow", "") if not session_id: return manager = queue_manager.QueueManager(token=request.token) for i, (request, responses) in enumerate( manager.FetchRequestsAndResponses( rdfvalue.RDFURN(session_id))): if request.id == 0: continue if i < start_row: continue if i > end_row: break # Tie up the request to each response to make it easier to render. self.AddCell(i, "ID", manager.FLOW_REQUEST_TEMPLATE % request.id) self.AddCell(i, "Request", request) if responses: self.AddCell(i, "Last Response", responses[-1]) class TreeColumn(semantic.RDFValueColumn, renderers.TemplateRenderer): """A specialized column which adds tree controls.""" template = renderers.Template(""" {% if this.branch %} <span depth='{{this.depth|escape}}' onclick='grr.table.toggleChildRows(this, "{{this.value|escapejs}}");' style='margin-left: {{this.depth|escape}}em;' class='tree_closed tree_branch'/> {% else %} <span depth='{{this.depth|escape}}' class='tree_leaf' style='margin-left: {{this.depth|escape}}em;' /> {% endif %} """) def AddElement(self, index, element, depth, row_type): self.rows[index] = (element, depth, row_type == "branch") def RenderRow(self, index, request, row_options): """Renders the cell with additional tree controls.""" self.value, self.depth, self.branch = self.rows.get(index, ("", 0, "leaf")) self.index = index row_options["row_id"] = index renderer = self.renderer if renderer is None: # What is the RDFValueRenderer for this attribute? renderer = semantic.RDFValueRenderer.RendererForRDFValue( self.value.__class__.__name__) # Intantiate the renderer and return the HTML if renderer: result = renderer(self.value).RawHTML(request) else: result = utils.SmartStr(self.value) return self.FormatFromTemplate(self.template, value=result, index=index, this=self) class FlowColumn(TreeColumn): """A specialized tree/column for sessions.""" template = """ <div id='cancel_{{this.index|escape}}' flow_id="{{this.value|escape}}" style='float: left'> </div>""" + TreeColumn.template + """ {{this.row_name|safe}} """ def __init__(self, *args, **kwargs): super(FlowColumn, self).__init__(*args, **kwargs) self.rows_names = {} def AddElement(self, index, element, depth, row_type, row_name): self.rows_names[index] = row_name super(FlowColumn, self).AddElement(index, element, depth, row_type) def RenderRow(self, index, request, row_options): self.row_name = self.rows_names.get(index, "") return super(FlowColumn, self).RenderRow(index, request, row_options) class ListFlowsTable(renderers.TableRenderer): """List all flows for a client in a table. Generated Javascript Events: - flow_table_select(flow): The flow id that the user has selected. Post Parameters: - client_id: The client to show the flows for. """ selection_publish_queue = "flow_table_select" with_toolbar = True layout_template = """ {% if this.with_toolbar %} <div id="toolbar_{{unique|escape}}" class="breadcrumb"> <li> <button id="cancel_flow_{{unique|escape}}" title="Cancel Selected Flows" class="btn" name="cancel_flow"> <img src="/static/images/editdelete.png" class="toolbar_icon"> </button> </li> </div> {% endif %} """ + renderers.TableRenderer.layout_template + """ <script> $("#cancel_flow_{{unique|escapejs}}").click(function () { /* Find all selected rows and cancel them. */ $("#table_{{id|escape}}") .find("tr.row_selected div[flow_id]") .each(function () { var flow_id = $(this).attr('flow_id'); var id = $(this).attr('id'); /* Cancel the flow, and then reset the icon. */ grr.layout("FlowFormCancelAction", id, {flow_id: flow_id}, function () { $('#table_{{id|escapejs}}').trigger('refresh'); }); }); }); //Receive the selection event and emit a session_id grr.subscribe("select_table_{{ id|escapejs }}", function(node) { if (node) { flow = node.find("div[flow_id]").attr('flow_id'); if (flow) { grr.publish("{{ this.selection_publish_queue|escapejs }}", flow); }; }; }, '{{ unique|escapejs }}'); /* Update the flow view from the hash. */ if(grr.hash.flow) { // NOTE(mbushkov): delay is needed for cases when flow list and flow // information are rendered as parts of the same renderer. In that // case the ShowFlowInformation renderer won't be able to react on the // click because it subscribes for the flow_table_select event after // the code below is executed. window.setTimeout(function () { $('div[flow_id="' + grr.hash.flow +'"]').parents('tr').click(); }, 1); } </script> """ def _GetCreationTime(self, obj): try: return obj.state.context.get("create_time") except AttributeError: return obj.Get(obj.Schema.LAST, 0) def __init__(self, **kwargs): super(ListFlowsTable, self).__init__(**kwargs) self.AddColumn(semantic.RDFValueColumn( "State", renderer=FlowStateIcon, width="40px")) self.AddColumn(FlowColumn("Path", renderer=semantic.SubjectRenderer, width="20%")) self.AddColumn(semantic.RDFValueColumn("Flow Name", width="20%")) self.AddColumn(semantic.RDFValueColumn("Creation Time", width="20%")) self.AddColumn(semantic.RDFValueColumn("Last Active", width="20%")) self.AddColumn(semantic.RDFValueColumn("Creator", width="20%")) def BuildTable(self, start_row, end_row, request): """Renders the table.""" depth = request.REQ.get("depth", 0) flow_urn = self.state.get("value", request.REQ.get("value")) if flow_urn is None: client_id = request.REQ.get("client_id") if not client_id: return flow_urn = rdfvalue.RDFURN(client_id).Add("flows") flow_root = aff4.FACTORY.Open(flow_urn, mode="r", token=request.token) root_children = list(flow_root.OpenChildren()) root_children = sorted(root_children, key=self._GetCreationTime, reverse=True) self.size = len(root_children) if not depth: root_children = root_children[start_row:end_row] level2_children = dict(aff4.FACTORY.MultiListChildren( [f.urn for f in root_children], token=request.token)) row_index = start_row for flow_obj in root_children: if level2_children.get(flow_obj.urn, None): row_type = "branch" else: row_type = "leaf" row = {} last = flow_obj.Get(flow_obj.Schema.LAST) if last: row["Last Active"] = last if isinstance(flow_obj, aff4.AFF4Object.GRRFlow): row_name = flow_obj.urn.Basename() try: if flow_obj.Get(flow_obj.Schema.CLIENT_CRASH): row["State"] = "CLIENT_CRASHED" else: row["State"] = flow_obj.state.context.state row["Flow Name"] = flow_obj.state.context.args.flow_name row["Creation Time"] = flow_obj.state.context.create_time row["Creator"] = flow_obj.state.context.creator except AttributeError: row["Flow Name"] = "Failed to open flow." else: # We're dealing with a hunt here. row_name = flow_obj.urn.Dirname() row["Flow Name"] = "Hunt" self.columns[1].AddElement(row_index, flow_obj.urn, depth, row_type, row_name) self.AddRow(row, row_index) row_index += 1 # The last row we wrote. return row_index class ShowFlowInformation(fileview.AFF4Stats): """Display information about the flow. Post Parameters: - flow: The flow id we will display. Internal State: - client_id, flow """ selection_publish_queue = "flow_table_select" historical_renderer = "HistoricalFlowView" # Embed the regular AFF4Stats inside a container to allow scrolling layout_template = renderers.Template(""" <div id="container_{{unique|escapejs}}" class="FormBody"> {% if this.path %} """ + str(fileview.AFF4Stats.layout_template) + """ <br/> {% else %} Please select a flow to manage from the above table. {% endif %} </div> """) def Layout(self, request, response): """Introspect the Schema for flow objects.""" try: self.state["flow"] = session_id = request.REQ["flow"] self.fd = aff4.FACTORY.Open(session_id, token=request.token, age=aff4.ALL_TIMES) self.classes = self.RenderAFF4Attributes(self.fd, request) self.path = self.fd.urn except (KeyError, IOError): self.path = None # Skip our parent's Layout method. return super(fileview.AFF4Stats, self).Layout(request, response) class HistoricalFlowView(fileview.HistoricalView): """View historical attributes for the flow.""" def Layout(self, request, response): self.state = dict(flow=request.REQ.get("flow"), attribute=request.REQ.get("attribute")) self.AddColumn(semantic.RDFValueColumn(self.state["attribute"])) return renderers.TableRenderer.Layout(self, request, response) def BuildTable(self, start_row, end_row, request): """Populate the table with attribute values.""" flow_name = request.REQ.get("flow") attribute_name = request.REQ.get("attribute") if attribute_name is None: return self.AddColumn(semantic.RDFValueColumn(attribute_name)) fd = aff4.FACTORY.Open(flow_name, token=request.token, age=aff4.ALL_TIMES) self.BuildTableFromAttribute(attribute_name, fd, start_row, end_row) class FlowPBRenderer(semantic.RDFProtoRenderer): """Format the FlowPB protobuf.""" classname = "Flow" name = "Flow Protobuf" backtrace_template = renderers.Template(""" <div id='hidden_pre_{{name|escape}}'> <ins class='fg-button ui-icon ui-icon-minus'/> {{error_msg|escape}} <div class='contents'> <pre>{{value|escape}}</pre> </div> </div> <script> $('#hidden_pre_{{name|escape}}').click(function () { $(this).find('ins').toggleClass('ui-icon-plus ui-icon-minus'); $(this).find('.contents').toggle(); }).click(); </script> """) def RenderBacktrace(self, descriptor, value): error_msg = value.rstrip().split("\n")[-1] return self.FormatFromTemplate(self.backtrace_template, value=value, name=descriptor.name, error_msg=error_msg) # Pretty print these special fields. translator = dict( backtrace=RenderBacktrace, pickle=semantic.RDFProtoRenderer.Ignore, children=semantic.RDFProtoRenderer.Ignore, network_bytes_sent=semantic.RDFProtoRenderer.HumanReadableBytes) class FlowNotificationRenderer(semantic.RDFValueRenderer): """Renders notifications inside the FlowRenderer.""" classname = "Notification" # Note here that following href e.g. right click new tab will give a fresh URL # but clicking will maintain state of other tabs. layout_template = renderers.Template(""" {% if this.proxy.type == "ViewObject" %} <a id="{{unique}}" href="/#{{this.BuildHash|escape}}" target_hash="{{this.BuildHash|escape}}"> {{this.proxy.subject|escape}}</a> {% endif %} {{this.proxy.message|escape}} <script> $("#{{unique|escape}}").click(function(){ grr.loadFromHash($(this).attr("target_hash")); }); </script> """) def BuildHash(self): """Build hash string to navigate to the appropriate location.""" h = {} path = rdfvalue.RDFURN(self.proxy.subject) components = path.Path().split("/")[1:] h["c"] = components[0] h["path"] = "/".join(components[1:]) h["t"] = renderers.DeriveIDFromPath("/".join(components[1:-1])) h["main"] = "VirtualFileSystemView" return urllib.urlencode( sorted([(x, utils.SmartStr(y)) for x, y in h.items()])) class ClientCrashesRenderer(crash_view.ClientCrashCollectionRenderer): """View launched flows in a tree.""" description = "Crashes" behaviours = frozenset(["HostAdvanced"]) order = 50 def Layout(self, request, response): client_id = request.REQ.get("client_id") self.crashes_urn = aff4.ROOT_URN.Add(client_id).Add("crashes") super(ClientCrashesRenderer, self).Layout(request, response) class ProgressGraphRenderer(renderers.ImageDownloadRenderer): def Content(self, request, _): """Generates the actual image to display.""" flow_id = request.REQ.get("flow_id") flow_obj = aff4.FACTORY.Open(flow_id, age=aff4.ALL_TIMES) log = list(flow_obj.GetValuesForAttribute(flow_obj.Schema.LOG)) create_time = flow_obj.state.context.create_time / 1000000 plot_data = [(int(x.age) / 1000000, int(str(x).split(" ")[1])) for x in log if "bytes" in str(x)] plot_data.append((create_time, 0)) plot_data = sorted([(x - create_time, y) for (x, y) in plot_data]) x = [a for (a, b) in plot_data] y = [b for (a, b) in plot_data] params = {"backend": "png"} plt.rcParams.update(params) plt.figure(1) plt.clf() plt.plot(x, y) plt.title("Progress for flow %s" % flow_id) plt.xlabel("Time (s)") plt.ylabel("Bytes downloaded") plt.grid(True) buf = StringIO.StringIO() plt.savefig(buf) buf.seek(0) return buf.read() class GlobalLaunchFlows(renderers.Splitter): """Launches flows that apply across clients.""" description = "Start Global Flows" behaviours = frozenset(["General"]) order = 10 left_renderer = "GlobalFlowTree" top_right_renderer = "SemanticProtoFlowForm" bottom_right_renderer = "FlowManagementTabs" class GlobalFlowTree(FlowTree): """Show flows that work across clients.""" publish_select_queue = "flow_select" flow_behaviors_to_render = flow.FlowBehaviour("Global Flow") class GlobExpressionFormRenderer(forms.StringTypeFormRenderer): """A renderer for glob expressions with autocomplete.""" type = rdfvalue.GlobExpression layout_template = ("""<div class="control-group"> """ + forms.TypeDescriptorFormRenderer.default_description_view + """ <div class="controls"> <input id='{{this.prefix}}' type=text {% if this.default %} value='{{ this.default|escape }}' {% endif %} onchange="grr.forms.inputOnChange(this)" class="unset input-xxlarge"/> </div> </div> <script> grr.glob_completer.Completer("{{this.prefix}}", {{this.completions|safe}}); </script> """) def AddProtoFields(self, name, attribute_type): for type_info in attribute_type.type_infos: self.completions.append("%s.%s" % (name, type_info.name)) def _HandleType(self, name, attribute_type): # Skip these types. if attribute_type in (rdfvalue.Dict,): return # RDFValueArray contain a specific type. elif issubclass(attribute_type, rdfvalue.RDFValueArray): self._HandleType(name, attribute_type.rdf_type) # Semantic Protobufs just contain their own fields. elif issubclass(attribute_type, rdfvalue.RDFProtoStruct): self.AddProtoFields(name, attribute_type) else: self.completions.append(name) def Layout(self, request, response): self.completions = [] for attribute in aff4.AFF4Object.VFSGRRClient.SchemaCls.ListAttributes(): if attribute.name: self._HandleType(attribute.name, attribute.attribute_type) return super(GlobExpressionFormRenderer, self).Layout(request, response)
apache-2.0
bjodah/chemreac
examples/equilibrium.py
2
10358
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Equilibrium ----------- :download:`examples/equilibrium.py` demonstrates how scaling can be used together with tolerances to achieve desired accuracy from the numerical integration. We will consider the transient towards an equilibrium for a dimerization: .. math :: A + &B &\\overset{k_f}{\\underset{k_b}{\\rightleftharpoons}} C The analytic solution is (its derivation is left as an exercise): .. math:: A(t) &= A_0 - x(t) \\\\ B(t) &= B_0 - x(t) \\\\ C(t) &= C_0 + x(t) \\\\ x(t) &= \\frac{(U-b)(U+b)(e^{Ut}-1)}{2k_f(Ue^{Ut} + U - qe^{Ut} + q)} \\\\ where .. math:: U &= \\sqrt{A^2k_f^2 + 2ABk_f^2 - 2Ak_bk_f + B^2k_f^2 - 2Bk_bk_f + 4Ck_bk_f + k_b^2} \\\\ q &= Ak_f + Bk_f - k_b :: $ python equilibrium.py --help .. exec:: echo "::\\\\n\\\\n" python examples/examples/equilibrium.py --help | sed "s/^/ /" Here is an example generated by: :: $ python equilibrium.py --plot --savefig equilibrium.png .. image:: ../_generated/equilibrium.png If concentrations are far from 1 (and below abstol) the accuracy of the numerical solution will be very poor: :: $ python equilibrium.py --A0 1.0 --B0 1e-10 --C0 1e-30 --kf 10 --kb 1 --t0 0\ --tend 5 --plot --plotlogy --plotlogt --savefig equilibrium_unscaled.png .. image:: ../_generated/equilibrium_unscaled.png But by scaling the concentrations so that the smallest is well above the absolute tolerance we can get accurate results: :: $ python equilibrium.py --scaling 1e10 --A0 1.0 --B0 1e-10 --C0 1e-30 --kf 10\ --kb 1 --t0 0 --tend 5 --plot --plotlogy --plotlogt --savefig\ equilibrium_scaled.png .. image:: ../_generated/equilibrium_scaled.png """ from __future__ import absolute_import, division, print_function import argh import numpy as np from chemreac import ReactionDiffusion from chemreac.integrate import Integration from chemreac.units import ( SI_base_registry, second, molar, to_unitless, get_derived_unit ) from chemreac.util.plotting import ( save_and_or_show_plot, plot_solver_linear_error, plot_solver_linear_excess_error ) def _algebraic_sigmoid(x, power, limit): # Avoid overflow in exp() return x/((x/limit)**power+1)**(-1/power) def analytic_x(t, A, B, C, kf, kb, _exp=np.exp): """ Analytic solution to the dimeriztion reaction: A + B <=> C; (K = kf/kb) """ q = -A*kf - B*kf - kb U = (A**2*kf**2 - 2*A*B*kf**2 + 2*A*kb*kf + B**2*kf**2 + 2*B*kb*kf + 4*C*kb*kf + kb**2)**0.5 expUt = _exp(U*t) return -(U - q)*(U + q)*(1 - 1/expUt)/(2*kf*(U + U/expUt - q + q/expUt)) def _get_Cref(t, y0, k, use_mpmath=True): """ convenience function for generating reference trajectory """ if use_mpmath: import mpmath as mp mp.mp.dps = 30 # number of significant figures y0 = [mp.mpf(_) for _ in y0] k = [mp.mpf(_) for _ in k] _exp = np.vectorize(mp.exp) else: def _exp(x): return np.exp(_algebraic_sigmoid(np.asarray(x), 8, 350)) A, B, C = y0 kf, kb = k x = analytic_x(t, A, B, C, kf, kb, _exp).reshape((t.size, 1)) dy = np.hstack((-x, -x, x)) res = y0 + dy if use_mpmath: res = np.array(res, dtype=np.float64) return res def integrate_rd( tend=1.9, A0=4.2, B0=3.1, C0=1.4, nt=100, t0=0.0, kf=0.9, kb=0.23, atol='1e-7,1e-6,1e-5', rtol='1e-6', integrator='scipy', method='bdf', logy=False, logt=False, num_jac=False, plot=False, savefig='None', splitplots=False, plotlogy=False, plotsymlogy=False, plotlogt=False, scale_err=1.0, scaling=1.0, verbose=False): """ Runs the integration and (optionally) plots: - Individual concentrations as function of time - Reaction Quotient vs. time (with equilibrium constant as reference) - Numerical error commited (with tolerance span plotted) - Excess error committed (deviation outside tolerance span) Concentrations (A0, B0, C0) are taken to be in "M" (molar), kf in "M**-1 s**-1" and kb in "s**-1", t0 and tend in "s" """ rtol = float(rtol) atol = list(map(float, atol.split(','))) if len(atol) == 1: atol = atol[0] registry = SI_base_registry.copy() registry['amount'] = 1.0/scaling*registry['amount'] registry['length'] = registry['length']/10 # decimetre kf = kf/molar/second kb = kb/second rd = ReactionDiffusion.nondimensionalisation( 3, [[0, 1], [2]], [[2], [0, 1]], [kf, kb], logy=logy, logt=logt, unit_registry=registry) C0 = np.array([A0, B0, C0])*molar if plotlogt: eps = 1e-16 tout = np.logspace(np.log10(t0+eps), np.log10(tend+eps), nt)*second else: tout = np.linspace(t0, tend, nt)*second integr = Integration( rd, C0, tout, integrator=integrator, atol=atol, rtol=rtol, with_jacobian=not num_jac, method=method) Cout = integr.with_units('Cout') yout, info = integr.yout, integr.info try: import mpmath assert mpmath # silence pyflakes except ImportError: use_mpmath = False else: use_mpmath = True time_unit = get_derived_unit(registry, 'time') conc_unit = get_derived_unit(registry, 'concentration') Cref = _get_Cref( to_unitless(tout - tout[0], time_unit), to_unitless(C0, conc_unit), [to_unitless(kf, 1/time_unit/conc_unit), to_unitless(kb, 1/time_unit)], use_mpmath ).reshape((nt, 1, 3))*conc_unit if verbose: print(info) if plot: npltcols = 3 if splitplots else 1 import matplotlib.pyplot as plt plt.figure(figsize=(18 if splitplots else 6, 10)) def subplot(row=0, idx=0, adapt_yscale=True, adapt_xscale=True, span_all_x=False): offset = idx if splitplots else 0 ax = plt.subplot(4, 1 if span_all_x else npltcols, 1 + row*npltcols + offset) if adapt_yscale: if plotlogy: ax.set_yscale('log') elif plotsymlogy: ax.set_yscale('symlog') if adapt_xscale and plotlogt: ax.set_xscale('log') return ax tout_unitless = to_unitless(tout, second) c = 'rgb' for i, l in enumerate('ABC'): # Plot solution trajectory for i:th species ax_sol = subplot(0, i) ax_sol.plot(tout_unitless, to_unitless(Cout[:, 0, i], molar), label=l, color=c[i]) if splitplots: # Plot relative error ax_relerr = subplot(1, 1) ax_relerr.plot( tout_unitless, Cout[:, 0, i]/Cref[:, 0, i] - 1.0, label=l, color=c[i]) ax_relerr.set_title("Relative error") ax_relerr.legend(loc='best', prop={'size': 11}) # Plot absolute error ax_abserr = subplot(1, 2) ax_abserr.plot(tout_unitless, Cout[:, 0, i]-Cref[:, 0, i], label=l, color=c[i]) ax_abserr.set_title("Absolute error") ax_abserr.legend(loc='best', prop={'size': 11}) # Plot absolute error linE = Cout[:, 0, i] - Cref[:, 0, i] try: atol_i = atol[i] except: atol_i = atol wtol_i = (atol_i + rtol*yout[:, 0, i])*get_derived_unit( rd.unit_registry, 'concentration') if np.any(np.abs(linE/wtol_i) > 1000): # Plot true curve in first plot when deviation is large enough # to be seen visually ax_sol.plot(tout_unitless, to_unitless(Cref[:, 0, i], molar), label='true '+l, color=c[i], ls='--') ax_err = subplot(2, i) plot_solver_linear_error(integr, Cref, ax_err, si=i, scale_err=1/wtol_i, color=c[i], label=l) ax_excess = subplot(3, i, adapt_yscale=False) plot_solver_linear_excess_error(integr, Cref, ax_excess, si=i, color=c[i], label=l) # Plot Reaction Quotient vs time ax_q = subplot(1, span_all_x=False, adapt_yscale=False, adapt_xscale=False) Qnum = Cout[:, 0, 2]/(Cout[:, 0, 0]*Cout[:, 0, 1]) Qref = Cref[:, 0, 2]/(Cref[:, 0, 0]*Cref[:, 0, 1]) ax_q.plot(tout_unitless, to_unitless(Qnum, molar**-1), label='Q', color=c[i]) if np.any(np.abs(Qnum/Qref-1) > 0.01): # If more than 1% error in Q, plot the reference curve too ax_q.plot(tout_unitless, to_unitless(Qref, molar**-1), '--', label='Qref', color=c[i]) # Plot the ax_q.plot((tout_unitless[0], tout_unitless[-1]), [to_unitless(kf/kb, molar**-1)]*2, '--k', label='K') ax_q.set_xlabel('t') ax_q.set_ylabel('[C]/([A][B]) / M**-1') ax_q.set_title("Transient towards equilibrium") ax_q.legend(loc='best', prop={'size': 11}) for i in range(npltcols): subplot(0, i, adapt_yscale=False) plt.title('Concentration vs. time') plt.legend(loc='best', prop={'size': 11}) plt.xlabel('t') plt.ylabel('[X]') subplot(2, i, adapt_yscale=False) plt.title('Absolute error in [{}](t) / wtol'.format('ABC'[i])) plt.legend(loc='best') plt.xlabel('t') ttl = '|E_i[{0}]|/(atol_i + rtol*(y0_i+yf_i)/2' plt.ylabel(ttl.format('ABC'[i])) plt.tight_layout() subplot(3, i, adapt_yscale=False) ttl = 'Excess error in [{}](t) / integrator linear error span' plt.title(ttl.format( 'ABC'[i])) plt.legend(loc='best') plt.xlabel('t') plt.ylabel('|E_excess[{0}]| / e_span'.format('ABC'[i])) plt.tight_layout() save_and_or_show_plot(savefig=savefig) return yout, to_unitless(Cref, conc_unit), rd, info if __name__ == '__main__': argh.dispatch_command(integrate_rd, output_file=None)
bsd-2-clause
edgarcosta92/ns3-dev
scripts/thomas/parse_rtt.py
1
1147
import csv import numpy as np import matplotlib.pyplot as plt file_format = {"src":0, "dst": 1, "src_port": 2, "dst_port":3, "rtt":6} class ParseRTT(object): def __init__(self,file_name, file_format = file_format, delimiter = " "): self._delimiter = delimiter self._file_format = file_format self.load_file(file_name) def load_file(self, file_name): file = open(file_name, 'rb') self._raw = csv.reader(file, delimiter=self._delimiter) def run(self): rtts = [] for x in self._raw: try: rtts.append(float(x[self._file_format["rtt"]])) except: continue return rtts def get_cdf(self, data): sorted_data = sorted(data) y = 1. * np.arange(len(data)) y = [x / (len(data) - 1) for x in y] ##y = comulative_prob[:] color = ["r--", "g--", "b--", "y--", "k--"] plt.plot(sorted_data, y, color[0]) plt.xscale('log') #plt.savefig("fct_" + test_name.replace("/", "")) plt.show() A = ParseRTT("rtt.txt", delimiter="\t") A.get_cdf(A.run())
gpl-2.0
lionelliang/PairTradingSpark
checkpairtradingSimultneously.py
1
12571
#coding:utf-8 import os import time import csv import numpy as np import pandas as pd import statsmodels.api as sm import statsmodels.tsa.stattools as sts TABLE_STOCKS_BASIC = 'stock_basic_list' DownloadDir = './stockdata/' DATA_TIME = 'running-time' #date example 2011/10/13 tudateparser = lambda dates: pd.datetime.strptime(dates, '%Y-%m-%d') weightdict = {} #previous weight dict # 功能:从csv文件中读取一个字典 # 输入:文件名称,keyIndex,valueIndex def readDictCSV(fileName="", dataDict = {}): if not os.path.exists(fileName) : return with open(fileName, "r") as csvFile: reader = csv.reader(csvFile) for row in reader: dataDict[str(row[0])] = [float(row[1]), float(row[2])] csvFile.close() return dataDict # 功能:将一字典写入到csv文件中 # 输入:文件名称,数据字典 def writeDictCSV(fileName="", dataDict={}): with open(fileName, "wb") as csvFile: csvWriter = csv.writer(csvFile) for k,v in dataDict.iteritems(): csvWriter.writerow([str(k), v[0], v[1]]) csvFile.close() ''' linear regression with Stochastic Gradient Decent mothod ''' def linregSGD(x, y, a, b): # -------------------------------------------随机梯度下降算法---------------------------------------------------------- # 两种终止条件 loop_max = 10000 # 最大迭代次数(防止死循环) epsilon = 1e-6 alpha = 0.001 # 步长(注意取值过大会导致振荡,过小收敛速度变慢) diff = 0. errorA = a errorB = b count = 0 # 循环次数 finish = False # 终止标志 m = len(x) # 训练数据点数目 while count < loop_max: #count += 1 # 遍历训练数据集,不断更新权值 for i in range(m): count += 1 diff = a + b * x[i] - y[i] # 训练集代入,计算误差值 # 采用随机梯度下降算法,更新一次权值只使用一组训练数据 a = a - alpha * diff b = b - alpha * diff * x[i] if ((a-errorA)*(a-errorA) + (b-errorB)*(b-errorB)) < epsilon: # 终止条件:前后两次计算出的权向量的绝对误差充分小 finish = 1 break else: errorA = a errorB = b if finish == True: # 跳出循环 break #print 'loop count = %d' % count, '\tweight:[%f, %f]' % (a, b) return finish, a, b def adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b): if len(closeprice_of_1) != 0 and len(closeprice_of_2) != 0: finish, alpha, beta = linregSGD(x=closeprice_of_1, y=closeprice_of_2, a=a, b=b) if not finish: return False, a, b spread = closeprice_of_2 - closeprice_of_1*beta - alpha spread.dropna() adfstat, pvalue, usedlag, nobs, critvalues, icbest = sts.adfuller(x=spread) return adfstat < critvalues['5%'], alpha, beta else: return False, 0, 0 ''' print adfstat for(k, v) in critvalues.items(): print k, v ''' def adfuller_check_smols(closeprice_of_1, closeprice_of_2): if len(closeprice_of_1) != 0 and len(closeprice_of_2) != 0: X = sm.add_constant(closeprice_of_1) model = sm.OLS(endog=closeprice_of_2, exog=X) result = model.fit() #print result.summary() print result.params spread = result.resid adfstat, pvalue, usedlag, nobs, critvalues, icbest = sts.adfuller(x=spread) return adfstat < critvalues['5%'] ''' print adfstat for(k, v) in critvalues.items(): print k, v ''' ''' spread2 = closeprice_of_2 - closeprice_of_1*result.params.closel sta2 = sts.adfuller(spread, 1) print sta2 ''' def compare_algorithm(code1, code2, start_date = '2013-10-10', end_date = '2014-09-30'): closeprice_of_1, closeprice_of_2 = load_process(code1, code2, start_date, end_date) print "trading days:", len(closeprice_of_1) if len(closeprice_of_1)<=1 or len(closeprice_of_1)<=1: return time1 = time.time() result = adfuller_check_smols(closeprice_of_1, closeprice_of_2) time2 = time.time() print "smols running time(s): ", time2-time1 time3 = time.time() a = -1 b = -1 result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) time4 = time.time() print "sgd running time(s): ", time4-time3 time7 = time.time() #a = 0 #b = 0 np.random.seed(2) a, b = np.random.randn(2) result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) time8 = time.time() print "sgd00 running time(s): ", time8-time7 time5 = time.time() #a = 0.189965 #b = 0.4243 if weightdict.has_key(code1+code2): # get previous weight a = weightdict[code1+code2][0] b = weightdict[code1+code2][1] #print weightdict[code1+code2] else: #print "not find w" np.random.seed(2) a, b = np.random.randn(2) result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) weightdict[code1+code2] = [result[1], result[2]] time6 = time.time() print "sgdmiddle running time(s): ", time6-time5 time9 = time.time() if weightdict.has_key(code1+code2): a = weightdict[code1+code2][0] b = weightdict[code1+code2][1] else: print "not find w" np.random.seed(2) a, b = np.random.randn(2) result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) weightdict[code1+code2] = [result[1], result[2]] time10 = time.time() print "sgdsavedvalue running time(s): ", time10-time9 def adfuller_check_price_sgd(code1, code2, linrreg="SMOLS", start_date = '2013-10-10', end_date = '2014-09-30'): closeprice_of_1, closeprice_of_2 = load_process(code1, code2, start_date, end_date) if linrreg == "SMOLS" : result = adfuller_check_smols(closeprice_of_1, closeprice_of_2) elif linrreg == "SGD" : a = 0 b = 0 result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) elif linrreg == "SGDMiddle" : if weightdict.has_key(code1+code2): a = weightdict[code1+code2][0] b = weightdict[code1+code2][1] else: print "not find w" np.random.seed(2) a, b = np.random.randn(2) result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) weightdict[code1+code2] = [result[1], result[2]] else : result = "" return result def load_process(code1, code2, start_date, end_date): m = str(code1) n = str(code2) file1 = DownloadDir + "h_kline_" + m + ".csv" file2 = DownloadDir + "h_kline_" + n + ".csv" if not os.path.exists(file1) or not os.path.exists(file1): return {}, {} kline1 = pd.read_csv(file1, parse_dates=['date'], index_col='date', date_parser=tudateparser) kline2 = pd.read_csv(file2, parse_dates=['date'], index_col='date', date_parser=tudateparser) #print kline1.head() price_of_1 = kline1[end_date:start_date] price_of_2 = kline2[end_date:start_date] # regroup quotation according to date index combination = price_of_1.join(price_of_2, how='inner', lsuffix='l', rsuffix='r') combination.dropna() closeprice_of_1 = combination['closel'].reset_index(drop=True) closeprice_of_2 = combination['closer'].reset_index(drop=True) return closeprice_of_1, closeprice_of_2 def adfuller_check_general(closeprice_of_1, closeprice_of_2, code1, code2, linrreg="SMOLS"): if linrreg == "SMOLS" : result = adfuller_check_smols(closeprice_of_1, closeprice_of_2) elif linrreg == "SGD" : a = 0 b = 0 result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) elif linrreg == "SGDMiddle" : if weightdict.has_key(code1+code2): a = weightdict[code1+code2][0] b = weightdict[code1+code2][1] else: print "not find w" np.random.seed(2) a, b = np.random.randn(2) result = adfuller_check_sgd(closeprice_of_1, closeprice_of_2, a, b) weightdict[code1+code2] = [result[1], result[2]] elif linrreg == "SGDRegress" : a = 0 b = 0 result = linregSGD(x=closeprice_of_1, y=closeprice_of_2, a=a, b=b) elif linrreg == "SGDRegressMiddle" : if weightdict.has_key(code1+code2): a = weightdict[code1+code2][0] b = weightdict[code1+code2][1] else: print "not find w" np.random.seed(2) a, b = np.random.randn(2) result = linregSGD(x=closeprice_of_1, y=closeprice_of_2, a=a, b=b) weightdict[code1+code2] = [result[1], result[2]] else : result = "" return result def simulate_check_5days(close1, close2, code1, code2): # check every 5days # period = 250 working days in a year jump = 5 period = 250 if close1.count() < period: return time1 = time.time() timerowlist = [] index_start = 0 index_end = index_start + period while index_end < close1.count(): #index_start = index_end - jump -10 # 非优化版本注释掉 part_close1 = close1[index_start:index_end].reset_index(drop=True) part_close2 = close2[index_start:index_end].reset_index(drop=True) bRet = adfuller_check_general(part_close1, part_close2, code1, code2, "SGDRegress") #SGDMiddle, SGD, SGDRegressMiddle, SGDRegress timerowlist.append(time.time()-time1) index_end += jump print index_end/jump timeDF = pd.DataFrame(timerowlist) timeDF.to_csv(DATA_TIME + '.csv', header=False, index=False) def adfuller_check_price(code1, code2, start_date = '2013-10-10', end_date = '2014-09-30'): m = str(code1) n = str(code2) file1 = DownloadDir + "h_kline_" + m + ".csv" file2 = DownloadDir + "h_kline_" + n + ".csv" if not os.path.exists(file1) or not os.path.exists(file1): return kline1 = pd.read_csv(file1, parse_dates=['date'], index_col='date', date_parser=tudateparser) kline2 = pd.read_csv(file2, parse_dates=['date'], index_col='date', date_parser=tudateparser) #print kline1.head() price_of_1 = kline1[end_date:] price_of_2 = kline2[end_date:] # regroup quotation according to date index combination = price_of_1.join(price_of_2, how='inner', lsuffix='l', rsuffix='r') combination.dropna() closeprice_of_1 = combination['closel'].reset_index(drop=True)[0:1500] closeprice_of_2 = combination['closer'].reset_index(drop=True)[0:1500] return simulate_check_5days(closeprice_of_1, closeprice_of_2, code1, code2) def adfuller_check2(df): adfuller_check_price(df[0], df[1]) def check_all_dir(): print 'starting adf checking' stock_list = pd.read_csv(TABLE_STOCKS_BASIC + '.csv', dtype=str) code = stock_list['code'] reindexed_code = code.reset_index(drop=True) reindexed_code = reindexed_code[100:200] reindexed_code = reindexed_code.reset_index(drop=True) stockPool = pd.DataFrame(columns=['code1','code2']) print len(reindexed_code) for i in range(len(reindexed_code)): for j in range(i+1, len(reindexed_code)): stockPool = stockPool.append({'code1':str(reindexed_code[i]), \ 'code2':str(reindexed_code[j])}, ignore_index=True) stockPool.apply(adfuller_check2, axis=1) ## Main functionality def main(): time1 = time.time() #adfuller_check_price("601002", "600815") # chedk all stock pairing in list book #check_all_dir() #adfuller_check_price_sgd("601002", "600815", linrreg="SMOLS", start_date = '2013-10-10', end_date = '2014-09-30') #"SGD") readDictCSV("Linrgre.csv", weightdict) #compare_algorithm("601002", "600815",start_date = '2013-10-10', end_date = '2014-09-30') #2014-07-30 trading days: 192; 2014-09-30 trading days: 233 #compare_algorithm("601002", "600815", start_date = '2013-10-10', end_date = '2014-09-30') #2014-07-30 trading days: 192; 2014-09-30 trading days: 233 adfuller_check_price("601002", "600815", start_date = '2013-10-10', end_date = '2016-05-30') writeDictCSV("Linrgre.csv", weightdict) time2 = time.time() print "running time(s): ", time2-time1 if __name__ == "__main__": # Execute Main functionality main()
gpl-2.0
mprhode/malware-prediction-rnn
experiments/Experiments.py
1
33646
from copy import deepcopy import numpy as np import random import operator from itertools import combinations import csv import time import os import gc import sys import inspect from keras.callbacks import EarlyStopping from sklearn.metrics import f1_score, accuracy_score, confusion_matrix from .RNN import generate_model from .useful import * random.seed(12) np.random.seed(12) class Experiment(): """docstring for Experiment""" def __init__(self, parameters, search_algorithm="grid", x_test=None, y_test=None, x_train=None, y_train=None, data=None, folds=10, folder_name=str(time.time()), thresholding=False, threshold=0.5, model_type="rnn"): assert (type(folds) is int) or (data == None), "folds must be an integer if data tuple is provided" assert (search_algorithm.lower() == "grid") or (search_algorithm.lower() == "random"), "Only 'grid' and 'random' permissible values for search_algorithm" self.headers = [ 'memory', 'tx_packets', 'rx_bytes', 'swap', 'rx_packets', 'cpu_sys', 'total_pro', 'cpu_user', 'max_pid', 'tx_bytes'] #hyperparameters self.original_h_params = parameters self.h_params = parameters # set up parameter search space depending on algorithm self.search_algorithm = search_algorithm self.current_params = {} if self.search_algorithm == "grid": self.h_params = dict([(key, list(self.h_params[key])) for key in self.h_params]) self.original_h_params = deepcopy(self.h_params) self.current_params = dict([(key, self.h_params[key][0]) for key in self.h_params]) if self.search_algorithm == "random": self.__list_to_dict_params() # list instances to even probability dictionary instances self.__map_to_0_1() # re-adjust any instances in which sum(probabilities) > 1 # metrics and writer objects, to be assigned when first experiment written up self.folder_name = check_filename(folder_name) self.experiment_id = 0 self.metrics_headers = None self.metrics_writer = None #Model type self.model_type = model_type # Thresholding set up self.thresholding = thresholding if self.thresholding: self.min_threshold = threshold + K.epsilon() self.temp_min_threshold = threshold + K.epsilon() # test-train experiment if (data == None) or (folds == None): self.folds = None self.X_TRAIN = x_train self.Y_TRAIN = y_train self.X_TEST = x_test self.Y_TEST = y_test print("Test-train experiment") # k-fold cross-validation experiment else: assert folds != None, "Supply number of folds for k-fold cross validation or supplt x_train, y_train, x_test, y_test" self.folds = folds self.x = data[0] self.y = data[1] print(self.folds, "- fold cross validation experiment") def __list_to_dict_params(self): for key in self.h_params: if type(self.h_params[key]) is list: self.h_params[key] = dict([(x, 1/(len(self.h_params[key]) + K.epsilon() )) for x in self.h_params[key]]) def __map_to_0_1(self): """maps input probabilities to values between 0 and 1, preserving scalar relationships""" for key in self.h_params: running_total = 0 scalar = 1/(sum(self.h_params[key].values())) for possible_value in self.h_params[key]: if self.h_params[key][possible_value] < 0: raise ValueError("Negative hyperparameter probabilities are not allowed ({} for {})").format(self.h_params[key][possible_value], possible_value) new_value = self.h_params[key][possible_value] * scalar self.h_params[key][possible_value] = new_value + running_total running_total += new_value def __random_config(self): """randomly generate a configuration of hyperparameters from dictionary self.h_params""" for key in self.h_params: choice = random.random() sorted_options = sorted(self.h_params[key].items(), key=operator.itemgetter(1)) for option in sorted_options: if choice < option[1]: self.current_params[key] = option[0] break if self.current_params["optimiser"] == "adam": self.current_params["learning_rate"] = 0.001 print() def run_one_experiment(self): print("run one experiment - orig") #Get new configuration if random search if self.search_algorithm == "random": self.__random_config() self.experiment_id += 1 print("running expt", self.experiment_id, "of", self.num_experiments) print(self.current_params) self.metrics = {} self.current_fold = 1 self.accuracy_scores = [] # k-fold cross-validation if self.folds != None: y = deepcopy(self.y) x = deepcopy(self.x) #remove short seqeunces and store indicies of kept items x, y, identifiers = remove_short_idx(x, y, list(range(len(y))), self.current_params["sequence_length"]) labels = {} temp_y = deepcopy(y).flatten() # get labels as flat array to find stratified folds for i, class_label in zip(identifiers, temp_y): if class_label in labels: labels[class_label].append(i) else: labels[class_label] = [i] #split into number of folds fold_indicies = [[] for x in range(self.folds)] # Want to represent class distribution in each set (stratified split) # Divide indicies list in chunks of size folds for key in labels: labels[key] = to_chunks(labels[key], self.folds) for i, fold_ids in enumerate(labels[key]): fold_indicies[i] += fold_ids fold_indicies = np.array([[int(x) for x in index_set] for index_set in fold_indicies]) #take new copies of the original to use indicies from the original sets x, y = deepcopy(self.x), deepcopy(self.y) for i in list(range(self.folds)): test = np.array([(i) % self.folds]) # one fold is test set train = np.array([i for i in range(self.folds) if i not in [test]]) # remaining folds are training set ( not in [test, val]) test_idxs = np.concatenate(tuple([fold_indicies[i] for i in test])) train_idxs = np.concatenate(tuple([fold_indicies[i] for i in train])) self.x_train, self.y_train = truncate_and_tensor(x[train_idxs], y[train_idxs], self.current_params["sequence_length"]) self.x_test, self.y_test = truncate_and_tensor(x[test_idxs], y[test_idxs], self.current_params["sequence_length"]) self.test_idxs = test_idxs stop = self.set_up_model() if stop: return self.current_fold += 1 # test-train else: self.x_train = deepcopy(self.X_TRAIN) self.y_train = deepcopy(self.Y_TRAIN) self.x_test = deepcopy(self.X_TEST) self.y_test = deepcopy(self.Y_TEST) self.test_idxs = np.array(range(1, len(self.y_test) + 1)) / 10 #divide by 10 to distinguish from training/10-fold data # remove short sequences - store indicies for test data self.x_train, self.y_train = remove_short(self.x_train, self.y_train, self.current_params["sequence_length"]) self.x_test, self.y_test, self.test_idxs = remove_short_idx(self.x_test, self.y_test, self.test_idxs, self.current_params["sequence_length"]) self.set_up_model() def set_up_model(self): # Leave out feature if specified in dictionary if "leave_out_feature" in self.current_params: print("Omitting feature:", self.headers[self.current_params["leave_out_feature"]]) self.x_train = np.delete(self.x_train, self.current_params["leave_out_feature"], 2) self.x_test = np.delete(self.x_test, self.current_params["leave_out_feature"], 2) #Shuffle data self.x_train, self.y_train = unison_shuffled_copies([self.x_train, self.y_train]) self.x_test, self.y_test, self.test_idxs = unison_shuffled_copies([self.x_test, self.y_test, self.test_idxs]) #scale data by test data mean and variance means, stdvs = get_mean_and_stdv(self.x_train) self.x_train = scale_array(self.x_train, means, stdvs) self.x_test = scale_array(self.x_test, means, stdvs) #Output size - in future delete any cols for categorical which are all zero print("train, test set size (x):", self.x_train.shape, self.x_test.shape) model = generate_model(self.x_train, self.y_train, self.current_params, model_type=self.model_type) #if self.current_fold == 1: # print(model.summary()) return self.train_model(model) #Returns TRUE if accuracy below threshold def train_model(self, model): """run one fold and write up results""" print(" fold ", self.current_fold, "of", self.folds) metrics = self.metrics reset_states = ResetStatesCallback() early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=8, verbose=0, mode='auto') start_train = time.time() h = model.fit( self.x_train, self.y_train, batch_size=self.current_params["batch_size"], epochs=self.current_params["epochs"], shuffle=True, verbose=0, callbacks=[reset_states]) end_train = time.time() metrics["train_acc"] = h.history["acc"] start_test = time.time() pred_Y = model.predict(self.x_test, batch_size=self.current_params["batch_size"]) metrics["preds"] = [x[0] for x in pred_Y] end_test = time.time() metrics["truth"] = self.y_test.flatten().tolist() metrics["categorical_preds"] = [np.round(x) for x in metrics["preds"]] metrics["fscore"] = f1_score(metrics["truth"], metrics["categorical_preds"]) metrics["accuracy"] = accuracy_score(metrics["truth"], metrics["categorical_preds"]) metrics["experiment_id"] = self.experiment_id metrics["training_size"] = len(self.y_train) metrics["test_size"] = len(self.y_test) metrics["train_time"] = end_train - start_train metrics["test_time"] = end_test - start_test metrics["fold_id"] = self.current_fold metrics["test_idxs"] = self.test_idxs tn, fp, fn, tp = confusion_matrix(metrics["truth"], metrics["categorical_preds"]).ravel() self.metrics["tp"] = tp/metrics["truth"].count(1) self.metrics["tn"] = tn/metrics["truth"].count(0) self.metrics["fp"] = fp/metrics["truth"].count(0) self.metrics["fn"] = fn/metrics["truth"].count(1) if not self.metrics_headers: #Create files and Write file headers os.mkdir(self.folder_name) self.metrics_headers = list(metrics.keys()) + list(self.current_params.keys()) self.metrics_file = open("{}/results.csv".format(self.folder_name), "w") self.metrics_writer = csv.DictWriter(self.metrics_file, fieldnames=self.metrics_headers) self.metrics_writer.writeheader() #Write up metric results self.metrics_writer.writerow(merge_two_dicts(self.current_params, self.metrics)) #Search type changes print("acc:", metrics["accuracy"], "fscore:", metrics["fscore"]) for x in ['tn', 'fp', 'fn', 'tp']: print("{}: {}".format(x, self.metrics[x]), end=" ") print() """, "mal%:", np.round( metrics["truth"].count(1)/len(metrics["truth"]), decimals=2) ,"tp", tp/metrics["truth"].count(1), "tn", tn/metrics["truth"].count(0) ) """ #make space in memory del model gc.collect() self.accuracy_scores.append(metrics["accuracy"]) if self.current_fold == self.folds: average_acc = sum(self.accuracy_scores) / len(self.accuracy_scores) print("average acc:", average_acc) if self.thresholding: if metrics["accuracy"] < self.temp_min_threshold: return True #On last fold check if average accuracy > current threshold, update temporary minimum to smallest from folds accuracy elif (self.current_fold == self.folds) and (average_acc > self.min_threshold): self.temp_min_threshold = min(self.accuracy_scores) self.min_threshold = average_acc print("* * * NEW RECORD avg acc:", average_acc, "min acc:", self.temp_min_threshold) return False # Only return true to stop models running def run_experiments(self, num_experiments=100): # GRID SEARCH #Find total possible configurations from options self.total = 1 for key in self.original_h_params: self.total *= len(self.original_h_params[key]) if self.search_algorithm == "grid": header_list = list(self.h_params.keys()) #Fixed keys list to loop in order countdown = len(self.h_params) - 1 self.num_experiments = self.total print("grid search of ", self.total, "configurations...") self.loop_values(header_list, countdown) # RANDOM SEARCH elif self.search_algorithm == "random": self.num_experiments = num_experiments print("random search of ", self.num_experiments, "configurations of a possible", self.total, "configurations") while(self.experiment_id <= self.num_experiments): self.run_one_experiment() # Experiments run - close data files print(self.experiment_id, " models run.") self.metrics_file.close() def loop_values(self, header_list, countdown): # loop through all possible configurations in original parameter dictionary # http://stackoverflow.com/questions/7186518/function-with-varying-number-of-for-loops-python if (countdown > 0): for i in self.original_h_params[header_list[countdown]]: self.current_params[header_list[countdown]] = i self.loop_values(header_list, countdown - 1) else: for i in self.original_h_params[header_list[countdown]]: self.current_params[header_list[countdown]] = i self.run_one_experiment() class Increase_Snaphot_Experiment(Experiment): """Experiment to look at change in data snapshot intervals""" def __init__(self, parameters, search_algorithm="grid", x_test=None, y_test=None, x_train=None, y_train=None, data=None, folds=10, folder_name=str(time.time()), thresholding=False, threshold=0.5, run_on_factors=True, model_type="rnn"): super(Increase_Snaphot_Experiment, self).__init__(parameters, search_algorithm="grid", x_test=x_test, y_test=y_test, x_train=x_train, y_train=y_train, data=data, folds=folds, folder_name=folder_name, thresholding=thresholding, threshold=threshold) self.run_on_factors = run_on_factors def set_up_model(self): # Keep only every step-th data snapshot, do not run unless new data involved if (self.run_on_factors and ((self.current_params["sequence_length"] - 1) % self.current_params["step"] == 0)) or (self.run_on_factors == False): self.x_train = self.x_train[:,::self.current_params["step"]] self.x_test = self.x_test[:,::self.current_params["step"]] # Shuffle data self.x_train, self.y_train = unison_shuffled_copies([self.x_train, self.y_train]) self.x_test, self.y_test, self.test_idxs = unison_shuffled_copies([self.x_test, self.y_test, self.test_idxs]) # scale data by test data mean and variance means, stdvs = get_mean_and_stdv(self.x_train) self.x_train = scale_array(self.x_train, means, stdvs) self.x_test = scale_array(self.x_test, means, stdvs) # Output size - in future delete any cols for categorical which are all zero model = generate_model(self.x_train, self.y_train, self.current_params, model_type=self.model_type) if self.current_fold == 1: print(model.summary()) #UNINDENT line BELOW return self.train_model(model) #Returns TRUE if accuracy below threshold class Ensemble(Experiment): def write_up_models(self, models, preds): self.metrics["truth"] = self.y_test.flatten() self.metrics["preds"] = np.array(preds).max(axis=0) self.metrics["categorical_preds"] = [np.round(x) for x in self.metrics["preds"]] self.metrics["fscore"] = f1_score(self.metrics["truth"], self.metrics["categorical_preds"]) self.metrics["accuracy"] = accuracy_score(self.metrics["truth"], self.metrics["categorical_preds"]) writeable = merge_two_dicts(self.current_params, self.metrics) if not self.metrics_headers: #Create files and Write file headers os.mkdir(self.folder_name) self.metrics_headers = writeable.keys() self.metrics_file = open("{}/results.csv".format(self.folder_name), "w") self.metrics_writer = csv.DictWriter(self.metrics_file, fieldnames=self.metrics_headers) self.metrics_writer.writeheader() self.metrics_writer.writerow(merge_two_dicts(self.current_params, self.metrics)) #Search type changes print("acc:", self.metrics["accuracy"]) #make space in memory for model in models: del model gc.collect() class Ensemble_configurations(Ensemble): """Average the predictions of multiple models passed as a list as configurations""" def __init__(self, parameters, search_algorithm="grid", x_test=None, y_test=None, x_train=None, y_train=None, data=None, folds=10, folder_name=str(time.time()), thresholding=False, threshold=0.5, run_on_factors=True, model_type="rnn", batch_size=64): super(Ensemble_configurations, self).__init__(parameters[0], search_algorithm="grid", x_test=x_test, y_test=y_test, x_train=x_train, y_train=y_train, data=data, folds=folds, folder_name=folder_name, thresholding=thresholding, threshold=threshold, model_type=model_type) self.search_algorithm = None # Sequence length is the only shared variable - get distinct values self.sequence_lengths = set([s for seq_lens in [config["sequence_length"] for config in parameters] for s in seq_lens]) #Only one parameter considered from each config, not a search experiment if not(all([all([len(config[key]) == 1 for key in config]) for config in parameters])): "not a search experiment, only one parameter will be used from each configuration" # dictionary values to list self.configurations = [] for config in parameters: config = dict([(key, list(config[key])[0]) for key in config]) self.configurations.append(config) #Can set all batch sizes the same if specified if batch_size: config["batch_size"] = batch_size def set_up_model(self): # Shuffle data #self.x_train, self.y_train, self.x_val, self.y_val = extract_val_set_binary(self.x_train, self.y_train, 0.1) self.x_train, self.y_train = unison_shuffled_copies([self.x_train, self.y_train]) self.x_test, self.y_test, self.test_idxs = unison_shuffled_copies([self.x_test, self.y_test, self.test_idxs]) #self.x_val, self.y_val = unison_shuffled_copies([self.x_val, self.y_val]) # scale data by test data mean and variance means, stdvs = get_mean_and_stdv(self.x_train) self.x_train = scale_array(self.x_train, means, stdvs) self.x_test = scale_array(self.x_test, means, stdvs) #self.x_val = scale_array(self.x_val, means, stdvs) # Output size - in future delete any cols for categorical which are all zero models = [generate_model( self.x_train, self.y_train, config, model_type=self.model_type ) for config in self.configurations] reset_states = ResetStatesCallback() preds = [] #early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.01, patience=, verbose=0, mode='auto') print("train, test set size (x):", self.x_train.shape, self.x_test.shape) print("train mal:",self.y_train.flatten().tolist().count(1) , "ben:",self.y_train.flatten().tolist().count(0) , "test mal:", self.y_test.flatten().tolist().count(1), "ben:", self.y_test.flatten().tolist().count(0)) for model, config in zip(models, self.configurations): h = model.fit( self.x_train, self.y_train, batch_size=config["batch_size"], epochs=config["epochs"], shuffle=True, verbose=0, callbacks=[reset_states] ) d = config["description"] self.metrics["train_acc_{}".format(d)] = h.history["acc".format(d)] pred_Y = model.predict(self.x_test, batch_size=config["batch_size"]) preds.append(pred_Y) #self.metrics["val_preds_{}"] = model.predict(self.x_val, batch_size=config["batch_size"]).flatten().tolist() #self.metrics["val_truth"] = self.y_val.flatten().tolist() self.metrics["test_idxs"] = self.test_idxs self.metrics["preds_{}".format(d)] = pred_Y.flatten() self.metrics["acc_{}".format(d)] = accuracy_score( self.y_test.flatten().round(), self.metrics["preds_{}".format(d)].round() ) print(d, "acc :", self.metrics["acc_{}".format(d)], "f1", f1_score(self.y_test.flatten().round(), self.metrics["preds_{}".format(d)].round())) self.write_up_models(models, preds) return False def run_experiments(self): # Only changeable parameter is sequence length self.num_experiments = len(self.sequence_lengths) for s in self.sequence_lengths: self.current_params = {"sequence_length": s} self.run_one_experiment() # Experiments run - close data files print(self.experiment_id, " models run.") self.metrics_file.close() class Ensemble_sub_sequences(Ensemble): """Ensemble models for sub-seqeunces of data""" def __init__(self, parameters, search_algorithm="grid", x_test=None, y_test=None, x_train=None, y_train=None, data=None, folds=10, folder_name=str(time.time()), thresholding=False, threshold=0.5): super(Ensemble_sub_sequences, self).__init__(parameters, search_algorithm="grid", x_test=x_test, y_test=y_test, x_train=x_train, y_train=y_train, data=data, folds=folds, folder_name=folder_name, thresholding=thresholding, threshold=threshold) self.search_algorithm = None # Sequence length is the only shared variable - get distinct values self.sequence_lengths = self.h_params["sequence_length"] def set_up_model(self): # Shuffle data self.x_train, self.y_train = unison_shuffled_copies([self.x_train, self.y_train]) self.x_test, self.y_test, self.test_idxs = unison_shuffled_copies([self.x_test, self.y_test, self.test_idxs]) # scale data by test data mean and variance means, stdvs = get_mean_and_stdv(self.x_train) self.x_train = scale_array(self.x_train, means, stdvs) self.x_test = scale_array(self.x_test, means, stdvs) # Output size - in future delete any cols for categorical which are all zero models = [] reset_states = ResetStatesCallback() metrics = self.metrics preds = [] training_sets = [] testing_sets = [] idx_len_tuples = [] #Create multiple training sets for length in list(range(1, self.current_params["sequence_length"])): mini_train_X, b = into_sliding_chunk_arrays(self.x_train, length) mini_test_X, b = into_sliding_chunk_arrays(self.x_test, length) idx_len_tuples += b training_sets += mini_train_X #append for merge2 testing_sets += mini_test_X #Finally add whole sets training_sets.append(self.x_train) testing_sets.append(self.x_test) idx_len_tuples.append((0, self.current_params["sequence_length"])) for i, train_set in enumerate(training_sets): d = idx_len_tuples[i] self.x_train = train_set self.x_test = testing_sets[i] #Output size - in future delete any cols for categorical which are all zero model = generate_model(self.x_train, self.y_train, self.current_params) h = model.fit(self.x_train, self.y_train, batch_size=self.current_params["batch_size"], epochs=self.current_params["epochs"], verbose=0, shuffle=True, callbacks=[reset_states]) self.metrics["train_acc_{}".format(d)] = h.history["acc"] pred_Y = model.predict(self.x_test, batch_size=self.current_params["batch_size"]) preds.append(pred_Y) self.metrics["preds_{}".format(d)] = [x[0] for x in pred_Y] self.metrics["acc_{}".format(d)] = accuracy_score(self.y_test.flatten(), [np.round(x) for x in self.metrics["preds_{}".format(d)]]) print(d, "acc :", self.metrics["acc_{}".format(d)]) self.write_up_models(models, preds) return False def run_experiments(self): # Only changeable parameter is sequence length self.num_experiments = len(self.sequence_lengths) for s in self.sequence_lengths: self.run_one_experiment() # Experiments run - close data files print(self.experiment_id, " models run.") self.metrics_file.close() class SlidingWindow(Experiment): """Ensemble models for sub-seqeunces of data""" def __init__(self, parameters, search_algorithm="grid", x_test=None, y_test=None, x_train=None, y_train=None, data=None, folds=10, folder_name=str(time.time()), thresholding=False, threshold=0.5): super(SlidingWindow, self).__init__(parameters, search_algorithm="grid", x_test=x_test, y_test=y_test, x_train=x_train, y_train=y_train, data=data, folds=folds, folder_name=folder_name, thresholding=thresholding, threshold=threshold) def run_one_experiment(self): print("run one experiment - sliding window") #Get new configuration if random search if self.search_algorithm == "random": self.__random_config() self.experiment_id += 1 print("running expt", self.experiment_id, "of", self.num_experiments) print(self.current_params) self.metrics = {} self.current_fold = 1 self.accuracy_scores = [] # k-fold cross-validation if self.folds != None: raise NotImplementedError("Sliding Window has not been implemented for k-fold validation") # test-train else: self.x_train = deepcopy(self.X_TRAIN) self.y_train = deepcopy(self.Y_TRAIN) self.x_test = deepcopy(self.X_TEST) self.y_test = deepcopy(self.Y_TEST) print("1---", self.x_train.shape) self.test_idxs = np.array(range(1, len(self.y_test) + 1)) / 10 #divide by 10 to distinguish from training/10-fold data self.set_up_model() def set_up_model(self): print("---", self.x_train.shape) # Output size - in future delete any cols for categorical which are all zero models = [] reset_states = ResetStatesCallback() metrics = self.metrics preds = [] all_x_train = [] all_y_train = [] testing_x = [] testing_y = [] test_idxs = [] #Get sliding window data seq_len = self.current_params["sequence_length"] for i in list(range(max([len(x) for x in self.x_train]) - seq_len)): for x, y, store_x, store_y in zip( [self.x_train, self.x_test], [self.y_train, self.y_test], [all_x_train, testing_x], [all_y_train, testing_y], ): temp_x = [] temp_y = [] idxs = [] for n in range(len(x)): if len(x[n][i:seq_len+i]) == seq_len: new = np.array(x[n][i:seq_len+i]) print(new.shape, np.array([range(i, seq_len+i)]).T.shape) temp_x.append( np.concatenate((new, np.array([range(i, seq_len+i)]).T), axis=1) ) temp_y.append(np.array(y[n])) if store_x is testing_x: idxs.append(self.test_idxs[n]) if len(temp_y): store_x.append(np.array(temp_x)) store_y.append(np.array(temp_y)) if len(idxs): test_idxs.append(idxs) # Concatenate training data self.x_train = np.concatenate(all_x_train) self.y_train = np.concatenate(all_y_train) self.x_test = testing_x self.y_test = testing_y self.test_idxs = test_idxs # scale data by test data mean and variance means, stdvs = get_mean_and_stdv(self.x_train) self.x_train = scale_array(self.x_train, means, stdvs) self.x_test = [scale_array(x, means, stdvs) for x in self.x_test] print(2, self.x_train.shape, self.y_train.shape) # Shuffle trainig data self.x_train, self.y_train = unison_shuffled_copies([self.x_train, self.y_train]) #Output size - in future delete any cols for categorical which are all zero print("train, test set size (x):", self.x_train.shape, [x.shape for x in self.x_test]) model = generate_model(self.x_train, self.y_train, self.current_params, model_type=self.model_type) #if self.current_fold == 1: # print(model.summary()) return self.train_model(model) #Returns TRUE if accuracy below threshold def train_model(self, model): # Train model model = generate_model(self.x_train, self.y_train, self.current_params) reset_states = ResetStatesCallback() start_train = time.time() h = model.fit( self.x_train, self.y_train, batch_size=self.current_params["batch_size"], epochs=self.current_params["epochs"], shuffle=True, verbose=1, callbacks=[reset_states]) end_train = time.time() # test model for i, test_set in enumerate(self.x_test): self.metrics["train_acc"] = h.history["acc"] self.metrics["slide_start"] = i pred_Y = model.predict(test_set, batch_size=self.current_params["batch_size"]) self.metrics["preds"] = [x[0] for x in pred_Y] metrics = self.metrics metrics["train_acc"] = h.history["acc"] metrics["truth"] = self.y_test[i].flatten().tolist() metrics["categorical_preds"] = [np.round(x) for x in metrics["preds"]] metrics["fscore"] = f1_score(metrics["truth"], metrics["categorical_preds"]) metrics["accuracy"] = accuracy_score(metrics["truth"], metrics["categorical_preds"]) metrics["experiment_id"] = self.experiment_id metrics["training_size"] = len(self.y_train) metrics["test_size"] = len(self.y_test[i]) metrics["train_time"] = end_train - start_train metrics["test_idxs"] = self.test_idxs if not self.metrics_headers: #Create files and Write file headers os.mkdir(self.folder_name) self.metrics_headers = list(metrics.keys()) + list(self.current_params.keys()) self.metrics_file = open("{}/results.csv".format(self.folder_name), "w") self.metrics_writer = csv.DictWriter(self.metrics_file, fieldnames=self.metrics_headers) self.metrics_writer.writeheader() #Write up metric results self.metrics_writer.writerow(merge_two_dicts(self.current_params, self.metrics)) print("acc:", metrics["accuracy"], "fscore:", metrics["fscore"], "start", i, test_set.shape) del model gc.collect() return False class SlidingWindow_Support(SlidingWindow): def __init__(self, parameters, search_algorithm="grid", x_test=None, y_test=None, x_train=None, y_train=None, data=None, folds=10, folder_name=str(time.time()), thresholding=False, threshold=0.5): super(SlidingWindow, self).__init__(parameters, search_algorithm="grid", x_test=x_test, y_test=y_test, x_train=x_train, y_train=y_train, data=data, folds=folds, folder_name=folder_name, thresholding=thresholding, threshold=threshold) def set_up_model(self): print("---", self.x_train.shape) # Output size - in future delete any cols for categorical which are all zero models = [] reset_states = ResetStatesCallback() metrics = self.metrics preds = [] testing_x = [] testing_y = [] test_idxs = [] #Get sliding window data seq_len = self.current_params["sequence_length"] for i in list(range(max([len(x) for x in self.x_train]) - seq_len)): for x, y, store_x, store_y in zip( [self.x_test], [self.y_test], [testing_x], [testing_y], ): temp_x = [] temp_y = [] idxs = [] for n in range(len(x)): if len(x[n][i:seq_len+i]) == seq_len: temp_x.append(np.array(x[n][i:seq_len+i])) temp_y.append(np.array(y[n])) idxs.append(self.test_idxs[n]) if len(temp_y): store_x.append(np.array(temp_x)) store_y.append(np.array(temp_y)) test_idxs.append(idxs) # Concatenate training data self.x_train, self.y_train = remove_short(self.x_train, self.y_train, self.current_params["sequence_length"]) self.x_test = testing_x self.y_test = testing_y self.test_idxs = test_idxs # scale data by test data mean and variance means, stdvs = get_mean_and_stdv(self.x_train) self.x_train = scale_array(self.x_train, means, stdvs) self.x_test = [scale_array(x, means, stdvs) for x in self.x_test] print(2, self.x_train.shape, self.y_train.shape) # Shuffle trainig data self.x_train, self.y_train = unison_shuffled_copies([self.x_train, self.y_train]) #Output size - in future delete any cols for categorical which are all zero print("train, test set size (x):", self.x_train.shape, [x.shape for x in self.x_test]) model = generate_model(self.x_train, self.y_train, self.current_params, model_type=self.model_type) #if self.current_fold == 1: # print(model.summary()) return self.train_model(model) #Returns TRUE if accuracy below threshold class Omit_test_data(Experiment): def train_model(self, model): """run one fold and write up results""" print(" fold ", self.current_fold, "of", self.folds) metrics = self.metrics reset_states = ResetStatesCallback() if not len(self.y_test): return model.fit( self.x_train, self.y_train, batch_size=self.current_params["batch_size"], epochs=self.current_params["epochs"], verbose=0, shuffle=True, callbacks=[reset_states]) headers = [x + "_ON" for x in self.headers[:len(self.x_test[0][0])]] indicies = list(range(len(headers))) for num_missing in range(1, len(indicies)+1): for subset in combinations(indicies, num_missing): temp_test_X = deepcopy(self.x_test) states = [1 for x in range(len(indicies))] for feature_index in subset: states[feature_index] = 0 temp_test_X[:,:,feature_index] = 0 # because 0 is the mean of the training data print(states) pred_Y = model.predict(temp_test_X, batch_size=self.current_params["batch_size"]) #Predicted value of Y pred_Y = [x[0] for x in pred_Y] Y_classes = [np.round(x) for x in pred_Y] #Choose a class metrics["preds"] = pred_Y metrics["categorical_preds"] = Y_classes metrics["truths"] = [int(x[0]) for x in self.y_test] metrics["variance"] = np.var(pred_Y) metrics["accuracy"] = accuracy_score(self.metrics["truths"], self.metrics["categorical_preds"]) metrics["fmeasure"] = accuracy_score(self.metrics["truths"], self.metrics["categorical_preds"]) for h in range(len(headers)): metrics[headers[h]] = states[h] if not self.metrics_headers: #Create files and Write file headers os.mkdir(self.folder_name) self.metrics_headers = list(metrics.keys()) + list(self.current_params.keys()) self.metrics_file = open("{}/results.csv".format(self.folder_name), "w") self.metrics_writer = csv.DictWriter(self.metrics_file, fieldnames=self.metrics_headers) self.metrics_writer.writeheader() #Write up metric results self.metrics_writer.writerow(merge_two_dicts(self.current_params, self.metrics)) #Search type changes print("acc:", metrics["accuracy"], "features on:", str(states)) #make space in memory del model gc.collect()
apache-2.0
soodoku/text-as-data
tdm/tdm.py
1
8426
#!/usr/bin/env python # -*- coding: utf-8 -*- __version__ = 'r1 (2014/08/16)' import os import sys import csv csv.field_size_limit(sys.maxint) import optparse import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer def TDMReport(vec, X, opts): """ # TDMReport(tdm) - Report most frequent, sparse """ freq_df = pd.DataFrame({'term': vec.get_feature_names(), 'sum': np.asarray(X.sum(axis=0)).ravel().tolist()}) freq_df['ratio'] = freq_df['sum']/np.sum(freq_df['sum']) print("Total terms: {0:d}".format(len(vec.vocabulary_))) print("Most frequent {0:d} terms: ".format(opts.n_freq)) print freq_df.sort('sum', ascending=False).head(opts.n_freq) print("Most sparse {0:d} terms: ".format(opts.n_sparse)) print freq_df.sort('sum', ascending=True).head(opts.n_sparse) return freq_df def CreateTDM(df, opts): """ # Document Term Matrix # CreateTDM(Traindata, labelColumn(s), textColumn, unigrams/bigrams/other?) - outputs a tdm - calls TDMReport(tdm) """ vec = CountVectorizer(ngram_range=(opts.min_ngram, opts.max_ngram), max_features=opts.max_features, stop_words=opts.remove_terms) X = vec.fit_transform(df[opts.textColumn]) return vec, X def TFIDFReport(vec, X, opts): freq_df = pd.DataFrame({'term': vec.get_feature_names(), 'sum': np.asarray(X.sum(axis=0)).ravel().tolist()}) freq_df['ratio'] = freq_df['sum']/np.sum(freq_df['sum']) print("Total terms: {0:d}".format(len(vec.vocabulary_))) print("Most frequent {0:d} terms: ".format(opts.n_freq)) print freq_df.sort('sum', ascending=False).head(opts.n_freq) print("Most sparse {0:d} terms: ".format(opts.n_sparse)) print freq_df.sort('sum', ascending=True).head(opts.n_sparse) return freq_df def CreateTFIDF(X, opts): """ # CreateTFIDF(Traindata, labelColumn, textColumns) - outputs a tf-idf - calls tdidfReport(tfidf) """ tfidf = TfidfTransformer(norm="l2") X = tfidf.fit_transform(X) return X def RemoveSparse(freq, opts): """ # RemoveSparse(tdm, Y) # Remove sparse terms (terms which are very rare etc.) - Y is a way to subset tdm - automatically implement the default Y that is suggested """ if opts.remove_n_sparse: head = freq.sort('sum', ascending=True).head(opts.remove_n_sparse) n_sparses = head['term'].tolist() else: n_sparses = [] return n_sparses def RemoveFrequent(freq, opts): """ # RemoveFrequent(tdm, X) - Removes frequent terms - X is a way to subset tdm - automatically implement the default X that is suggested """ if opts.remove_n_freq: head = freq.sort('sum', ascending=False).head(opts.remove_n_freq) n_frequents = head['term'].tolist() else: n_frequents = [] return n_frequents def parse_command_line(argv): """Command line options parser for the script """ usage = "Usage: %prog [options] <CSV input file>" parser = optparse.OptionParser(usage=usage) parser.add_option("-t", "--text", action="store", type="string", dest="textColumn", default="Body", help="Text column name (default: 'Body')") parser.add_option("-l", "--labels", action="store", type="string", dest="labelColumns", default="Online Section", help="Label column(s) name (default: 'Online Section')") parser.add_option("-d", "--delimiter", action="store", type="string", dest="delimiter", default=";", help="Delimeter use to split option's value if multiple" " values (default: ';')") parser.add_option("--min-ngram", action="store", type="int", dest="min_ngram", default=1, help="Minimum ngram(s) (default: 1)") parser.add_option("--max-ngram", action="store", type="int", dest="max_ngram", default=2, help="Maximum ngram(s) (default: 2)") parser.add_option("--max-features", action="store", type="int", dest="max_features", default=2**16, help="Maximum features (default: 2**16)") parser.add_option("--n-freq", action="store", type="int", dest="n_freq", default=20, help="Report most frequent terms (default: 20)") parser.add_option("--n-sparse", action="store", type="int", dest="n_sparse", default=20, help="Report most sparse terms (default: 20)") parser.add_option("-r", "--remove-terms-file", action="store", type="string", dest="remove_terms_file", default=None, help="File name contains terms to be removed" " (default: None)") parser.add_option("--remove-n-freq", action="store", type="int", dest="remove_n_freq", default=0, help="Top most of frequent term(s) to be removed" " (default: 0)") parser.add_option("--remove-n-sparse", action="store", type="int", dest="remove_n_sparse", default=0, help="Top most of sparse term(s) to be removed" " (default: 0)") parser.add_option("--out-tdm-file", action="store", type="string", dest="out_tdm_file", default=None, help="Save output TDM to CSV filename (default: None)") parser.add_option("--use-tfidf", action="store_true", dest="use_tfidf", default=False, help="Use TF-IDF (default: False)") parser.add_option("--out-tfidf-file", action="store", type="string", dest="out_tfidf_file", default=None, help="Save output TF-IDF to CSV filename (default: None)") return parser.parse_args(argv) if __name__ == "__main__": print("{0!s} - {1!s}\n".format(os.path.basename(sys.argv[0]), __version__)) (opts, args) = parse_command_line(sys.argv) if len(args) < 2: print("Usage: {0!s} [options] <CSV input file>".format( os.path.basename(sys.argv[0]))) sys.exit(-1) print("Options: {0!s}".format(opts)) opts.remove_terms = [] if opts.remove_terms_file: try: opts.remove_terms = pd.read_csv(opts.remove_terms_file, header=None)[0].tolist() except: print("WARN: Cannot read remove terms file ({0!s})".format( opts.remove_terms_file)) print("Reading input file...({0!s})".format(args[1])) cols = [opts.textColumn] + opts.labelColumns.split(opts.delimiter) df = pd.read_csv(args[1], usecols=cols) print("Creating Term Document Matrix...") vec, X = CreateTDM(df, opts) freq = TDMReport(vec, X, opts) n_sparses = RemoveSparse(freq, opts) n_frequents = RemoveFrequent(freq, opts) out_df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names()) cols = out_df.columns - n_sparses - n_frequents ext_cols = opts.labelColumns.split(opts.delimiter) out_df = out_df[cols].join(pd.DataFrame(df[ext_cols])) if opts.out_tdm_file: print("Saving TDM output to CSV file... ({0!s})".format(opts.out_tdm_file)) out_df.to_csv(opts.out_tdm_file, index_label='index') if opts.use_tfidf: print("Creating TF-IDF Matrix...") X = CreateTFIDF(X, opts) freq = TFIDFReport(vec, X, opts) n_sparses = RemoveSparse(freq, opts) n_frequents = RemoveFrequent(freq, opts) out_df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names()) cols = out_df.columns - n_sparses - n_frequents out_df = out_df[cols].join(pd.DataFrame(df[ext_cols])) if opts.out_tfidf_file: print("Saving TF-IDF output to CSV file... ({0!s})".format( opts.out_tfidf_file)) out_df.to_csv(opts.out_tfidf_file, index_label='index') print("Done!!!")
mit
costypetrisor/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
chengsoonong/acton
tests/test_integration.py
1
18921
#!/usr/bin/env python3 """ test_integration ---------------------------------- Integration tests. """ import sys sys.path.append("..") import os.path import struct import unittest import unittest.mock import acton.cli import acton.database import acton.proto.io import acton.proto.wrappers import acton.proto.acton_pb2 from click.testing import CliRunner import numpy class TestIntegration(unittest.TestCase): def setUp(self): self.runner = CliRunner() def tearDown(self): pass def test_classification_passive_txt(self): """Acton handles a passive classification task with an ASCII file.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification.txt')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'passive.pb', '--recommender', 'RandomRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'col20']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('passive.pb')) reader = acton.proto.io.read_protos( 'passive.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_ascii_non_integer_labels(self): """Acton handles non-integer labels in an ASCII table.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_str.txt')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'str.pb', '--recommender', 'RandomRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'label']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('str.pb')) reader = acton.proto.io.read_protos( 'str.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_gpc_non_integer_labels(self): """Acton handles non-integer labels with a GPClassifier.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_str.txt')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'str.pb', '--recommender', 'RandomRecommender', '--predictor', 'GPC', '--epochs', '2', '--label', 'label']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('str.pb')) reader = acton.proto.io.read_protos( 'str.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_uncrt_non_integer_labels(self): """Acton handles non-integer labels with uncertainty sampling.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_str.txt')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'str.pb', '--recommender', 'UncertaintyRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'label']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('str.pb')) reader = acton.proto.io.read_protos( 'str.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_pandas_non_integer_labels(self): """Acton handles non-integer labels in a pandas table.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_pandas_str.h5')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'str.pb', '--recommender', 'RandomRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'label', '--pandas-key', 'classification']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('str.pb')) reader = acton.proto.io.read_protos( 'str.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_h5_non_integer_labels(self): """Acton handles non-integer labels in an HDF5 table.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_str.h5')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'str.pb', '--recommender', 'RandomRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'labels', '--feature', 'features']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('str.pb')) reader = acton.proto.io.read_protos( 'str.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_passive_pandas(self): """Acton handles a passive classification task with a pandas table.""" pandas_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_pandas.h5')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', pandas_path, '-o', 'passive.pb', '--recommender', 'RandomRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'col20', '--pandas-key', 'classification']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('passive.pb')) reader = acton.proto.io.read_protos( 'passive.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_passive_fits(self): """Acton handles a passive classification task with a FITS table.""" fits_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification.fits')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', fits_path, '-o', 'passive.pb', '--recommender', 'RandomRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'col20']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('passive.pb')) reader = acton.proto.io.read_protos( 'passive.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_uncertainty(self): """Acton handles a classification task with uncertainty sampling.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification.txt')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'uncertainty.pb', '--recommender', 'UncertaintyRecommender', '--predictor', 'LogisticRegression', '--epochs', '2', '--label', 'col20']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('uncertainty.pb')) reader = acton.proto.io.read_protos( 'uncertainty.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) def test_classification_qbc(self): """Acton handles a classification task with QBC and a LR committee.""" txt_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification.txt')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.main, ['--data', txt_path, '-o', 'qbc.pb', '--recommender', 'QBCRecommender', '--predictor', 'LogisticRegressionCommittee', '--epochs', '2', '--label', 'col20']) if result.exit_code != 0: raise result.exception self.assertEqual('', result.output) self.assertTrue(os.path.exists('qbc.pb')) reader = acton.proto.io.read_protos( 'qbc.pb', acton.proto.acton_pb2.Predictions) protos = list(reader) self.assertEqual( 2, len(protos), msg='Expected 2 protobufs; found {}'.format(len(protos))) class TestComponentCLI(unittest.TestCase): """Tests the CLI to the label/predict/recommend components.""" def setUp(self): self.runner = CliRunner() def test_label_args(self): """acton-label takes arguments and outputs a protobuf.""" db_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_pandas.h5')) with self.runner.isolated_filesystem(): result = self.runner.invoke( acton.cli.label, ['--data', db_path, '--label', 'col20', '--feature', 'col10', '--feature', 'col11', '--pandas-key', 'classification'], input='1\n2\n3\n\n') if result.exit_code != 0: raise result.exception output = result.output_bytes length, = struct.unpack('<Q', output[:8]) proto = output[8:] self.assertEqual(len(proto), length) labels = acton.proto.wrappers.LabelPool.deserialise(proto) self.assertEqual([1, 2, 3], labels.ids) self.assertTrue(labels.proto.db.path.endswith('_pandas.h5')) self.assertEqual({ 'feature_cols': ['col10', 'col11'], 'label_col': 'col20', 'key': 'classification', 'encode_labels': True, }, labels.db_kwargs) def test_label_protobuf(self): """acton-label takes and outputs a protobuf.""" db_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_pandas.h5')) with self.runner.isolated_filesystem(): db_kwargs = { 'feature_cols': ['col10', 'col11'], 'label_col': 'col20', 'key': 'classification', 'encode_labels': True, } with acton.database.PandasReader(db_path, **db_kwargs) as db: proto = acton.proto.wrappers.Recommendations.make( labelled_ids=[1, 2, 3], recommended_ids=[4], recommender='UncertaintyRecommender', db=db).proto.SerializeToString() assert isinstance(proto, bytes) length = struct.pack('<Q', len(proto)) result = self.runner.invoke( acton.cli.label, input=length + proto) if result.exit_code != 0: raise result.exception output = result.output_bytes length, = struct.unpack('<Q', output[:8]) proto = output[8:] self.assertEqual(len(proto), length) labels = acton.proto.wrappers.LabelPool.deserialise(proto) self.assertEqual([1, 2, 3, 4], labels.ids) self.assertTrue(labels.proto.db.path.endswith('_pandas.h5')) self.assertEqual({ 'feature_cols': ['col10', 'col11'], 'label_col': 'col20', 'key': 'classification', 'encode_labels': True, }, labels.db_kwargs) def test_predict(self): """acton-predict takes and outputs a protobuf.""" db_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_pandas.h5')) with self.runner.isolated_filesystem(): db_kwargs = { 'feature_cols': ['col10', 'col11'], 'label_col': 'col20', 'key': 'classification', 'encode_labels': True, } with acton.database.PandasReader(db_path, **db_kwargs) as db: proto = acton.proto.wrappers.LabelPool.make( ids=[1, 2, 3], db=db) proto = proto.proto.SerializeToString() assert isinstance(proto, bytes) length = struct.pack('<Q', len(proto)) result = self.runner.invoke( acton.cli.predict, input=length + proto) if result.exit_code != 0: raise result.exception output = result.output_bytes length, = struct.unpack('<Q', output[:8]) proto = output[8:] self.assertEqual(len(proto), length) predictions = acton.proto.wrappers.Predictions.deserialise(proto) self.assertEqual([1, 2, 3], predictions.labelled_ids) self.assertTrue(predictions.proto.db.path.endswith('_pandas.h5')) output_db_kwargs = predictions.db_kwargs del output_db_kwargs['label_encoder'] self.assertEqual({ 'feature_cols': ['col10', 'col11'], 'label_col': 'col20', 'key': 'classification', 'encode_labels': True, }, output_db_kwargs) def test_recommend(self): """acton-recommend takes and outputs a protobuf.""" db_path = os.path.realpath( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'classification_pandas.h5')) with self.runner.isolated_filesystem(): predictions = numpy.random.random(size=(1, 2, 1)) db_kwargs = { 'feature_cols': ['col10', 'col11'], 'label_col': 'col20', 'key': 'classification', 'encode_labels': True, } with acton.database.PandasReader(db_path, **db_kwargs) as db: proto = acton.proto.wrappers.Predictions.make( labelled_ids=[1, 2, 3], predicted_ids=[4, 5], predictions=predictions, predictor='LogisticRegression', db=db) proto = proto.proto.SerializeToString() assert isinstance(proto, bytes) length = struct.pack('<Q', len(proto)) result = self.runner.invoke( acton.cli.recommend, input=length + proto) if result.exit_code != 0: raise result.exception output = result.output_bytes length, = struct.unpack('<Q', output[:8]) proto = output[8:] self.assertEqual(len(proto), length) recs = acton.proto.wrappers.Recommendations.deserialise(proto) self.assertEqual([1, 2, 3], recs.labelled_ids) self.assertTrue(recs.proto.db.path.endswith('_pandas.h5')) self.assertEqual({ 'feature_cols': ['col10', 'col11'], 'label_col': 'col20', 'key': 'classification', 'encode_labels': True, }, recs.db_kwargs)
bsd-3-clause
sauloal/cnidaria
scripts/venv/lib/python2.7/site-packages/matplotlib/dviread.py
11
33923
""" An experimental module for reading dvi files output by TeX. Several limitations make this not (currently) useful as a general-purpose dvi preprocessor, but it is currently used by the pdf backend for processing usetex text. Interface:: dvi = Dvi(filename, 72) # iterate over pages (but only one page is supported for now): for page in dvi: w, h, d = page.width, page.height, page.descent for x,y,font,glyph,width in page.text: fontname = font.texname pointsize = font.size ... for x,y,height,width in page.boxes: ... """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import errno import matplotlib import matplotlib.cbook as mpl_cbook from matplotlib.compat import subprocess from matplotlib import rcParams import numpy as np import struct import sys import os if six.PY3: def ord(x): return x _dvistate = mpl_cbook.Bunch(pre=0, outer=1, inpage=2, post_post=3, finale=4) class Dvi(object): """ A dvi ("device-independent") file, as produced by TeX. The current implementation only reads the first page and does not even attempt to verify the postamble. """ def __init__(self, filename, dpi): """ Initialize the object. This takes the filename as input and opens the file; actually reading the file happens when iterating through the pages of the file. """ matplotlib.verbose.report('Dvi: ' + filename, 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre self.baseline = self._get_baseline(filename) def _get_baseline(self, filename): if rcParams['text.latex.preview']: base, ext = os.path.splitext(filename) baseline_filename = base + ".baseline" if os.path.exists(baseline_filename): with open(baseline_filename, 'rb') as fd: l = fd.read().split() height, depth, width = l return float(depth) return None def __iter__(self): """ Iterate through the pages of the file. Returns (text, boxes) pairs, where: text is a list of (x, y, fontnum, glyphnum, width) tuples boxes is a list of (x, y, height, width) tuples The coordinates are transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers. """ while True: have_page = self._read() if have_page: yield self._output() else: break def close(self): """ Close the underlying file if it is open. """ if not self.file.closed: self.file.close() def _output(self): """ Output the text and boxes belonging to the most recent page. page = dvi._output() """ minx, miny, maxx, maxy = np.inf, np.inf, -np.inf, -np.inf maxy_pure = -np.inf for elt in self.text + self.boxes: if len(elt) == 4: # box x,y,h,w = elt e = 0 # zero depth else: # glyph x,y,font,g,w = elt h,e = font._height_depth_of(g) minx = min(minx, x) miny = min(miny, y - h) maxx = max(maxx, x + w) maxy = max(maxy, y + e) maxy_pure = max(maxy_pure, y) if self.dpi is None: # special case for ease of debugging: output raw dvi coordinates return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=maxx-minx, height=maxy_pure-miny, descent=descent) d = self.dpi / (72.27 * 2**16) # from TeX's "scaled points" to dpi units if self.baseline is None: descent = (maxy - maxy_pure) * d else: descent = self.baseline text = [ ((x-minx)*d, (maxy-y)*d - descent, f, g, w*d) for (x,y,f,g,w) in self.text ] boxes = [ ((x-minx)*d, (maxy-y)*d - descent, h*d, w*d) for (x,y,h,w) in self.boxes ] return mpl_cbook.Bunch(text=text, boxes=boxes, width=(maxx-minx)*d, height=(maxy_pure-miny)*d, descent=descent) def _read(self): """ Read one page from the file. Return True if successful, False if there were no more pages. """ while True: byte = ord(self.file.read(1)[0]) self._dispatch(byte) # if self.state == _dvistate.inpage: # matplotlib.verbose.report( # 'Dvi._read: after %d at %f,%f' % # (byte, self.h, self.v), # 'debug-annoying') if byte == 140: # end of page return True if self.state == _dvistate.post_post: # end of file self.close() return False def _arg(self, nbytes, signed=False): """ Read and return an integer argument *nbytes* long. Signedness is determined by the *signed* keyword. """ str = self.file.read(nbytes) value = ord(str[0]) if signed and value >= 0x80: value = value - 0x100 for i in range(1, nbytes): value = 0x100*value + ord(str[i]) return value def _dispatch(self, byte): """ Based on the opcode *byte*, read the correct kinds of arguments from the dvi file and call the method implementing that opcode with those arguments. """ if 0 <= byte <= 127: self._set_char(byte) elif byte == 128: self._set_char(self._arg(1)) elif byte == 129: self._set_char(self._arg(2)) elif byte == 130: self._set_char(self._arg(3)) elif byte == 131: self._set_char(self._arg(4, True)) elif byte == 132: self._set_rule(self._arg(4, True), self._arg(4, True)) elif byte == 133: self._put_char(self._arg(1)) elif byte == 134: self._put_char(self._arg(2)) elif byte == 135: self._put_char(self._arg(3)) elif byte == 136: self._put_char(self._arg(4, True)) elif byte == 137: self._put_rule(self._arg(4, True), self._arg(4, True)) elif byte == 138: self._nop() elif byte == 139: self._bop(*[self._arg(4, True) for i in range(11)]) elif byte == 140: self._eop() elif byte == 141: self._push() elif byte == 142: self._pop() elif byte == 143: self._right(self._arg(1, True)) elif byte == 144: self._right(self._arg(2, True)) elif byte == 145: self._right(self._arg(3, True)) elif byte == 146: self._right(self._arg(4, True)) elif byte == 147: self._right_w(None) elif byte == 148: self._right_w(self._arg(1, True)) elif byte == 149: self._right_w(self._arg(2, True)) elif byte == 150: self._right_w(self._arg(3, True)) elif byte == 151: self._right_w(self._arg(4, True)) elif byte == 152: self._right_x(None) elif byte == 153: self._right_x(self._arg(1, True)) elif byte == 154: self._right_x(self._arg(2, True)) elif byte == 155: self._right_x(self._arg(3, True)) elif byte == 156: self._right_x(self._arg(4, True)) elif byte == 157: self._down(self._arg(1, True)) elif byte == 158: self._down(self._arg(2, True)) elif byte == 159: self._down(self._arg(3, True)) elif byte == 160: self._down(self._arg(4, True)) elif byte == 161: self._down_y(None) elif byte == 162: self._down_y(self._arg(1, True)) elif byte == 163: self._down_y(self._arg(2, True)) elif byte == 164: self._down_y(self._arg(3, True)) elif byte == 165: self._down_y(self._arg(4, True)) elif byte == 166: self._down_z(None) elif byte == 167: self._down_z(self._arg(1, True)) elif byte == 168: self._down_z(self._arg(2, True)) elif byte == 169: self._down_z(self._arg(3, True)) elif byte == 170: self._down_z(self._arg(4, True)) elif 171 <= byte <= 234: self._fnt_num(byte-171) elif byte == 235: self._fnt_num(self._arg(1)) elif byte == 236: self._fnt_num(self._arg(2)) elif byte == 237: self._fnt_num(self._arg(3)) elif byte == 238: self._fnt_num(self._arg(4, True)) elif 239 <= byte <= 242: len = self._arg(byte-238) special = self.file.read(len) self._xxx(special) elif 243 <= byte <= 246: k = self._arg(byte-242, byte==246) c, s, d, a, l = [ self._arg(x) for x in (4, 4, 4, 1, 1) ] n = self.file.read(a+l) self._fnt_def(k, c, s, d, a, l, n) elif byte == 247: i, num, den, mag, k = [ self._arg(x) for x in (1, 4, 4, 4, 1) ] x = self.file.read(k) self._pre(i, num, den, mag, x) elif byte == 248: self._post() elif byte == 249: self._post_post() else: raise ValueError("unknown command: byte %d"%byte) def _pre(self, i, num, den, mag, comment): if self.state != _dvistate.pre: raise ValueError("pre command in middle of dvi file") if i != 2: raise ValueError("Unknown dvi format %d"%i) if num != 25400000 or den != 7227 * 2**16: raise ValueError("nonstandard units in dvi file") # meaning: TeX always uses those exact values, so it # should be enough for us to support those # (There are 72.27 pt to an inch so 7227 pt = # 7227 * 2**16 sp to 100 in. The numerator is multiplied # by 10^5 to get units of 10**-7 meters.) if mag != 1000: raise ValueError("nonstandard magnification in dvi file") # meaning: LaTeX seems to frown on setting \mag, so # I think we can assume this is constant self.state = _dvistate.outer def _set_char(self, char): if self.state != _dvistate.inpage: raise ValueError("misplaced set_char in dvi file") self._put_char(char) self.h += self.fonts[self.f]._width_of(char) def _set_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError("misplaced set_rule in dvi file") self._put_rule(a, b) self.h += b def _put_char(self, char): if self.state != _dvistate.inpage: raise ValueError("misplaced put_char in dvi file") font = self.fonts[self.f] if font._vf is None: self.text.append((self.h, self.v, font, char, font._width_of(char))) # matplotlib.verbose.report( # 'Dvi._put_char: %d,%d %d' %(self.h, self.v, char), # 'debug-annoying') else: scale = font._scale for x, y, f, g, w in font._vf[char].text: newf = DviFont(scale=_mul2012(scale, f._scale), tfm=f._tfm, texname=f.texname, vf=f._vf) self.text.append((self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), newf, g, newf._width_of(g))) self.boxes.extend([(self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), _mul2012(a, scale), _mul2012(b, scale)) for x, y, a, b in font._vf[char].boxes]) def _put_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError("misplaced put_rule in dvi file") if a > 0 and b > 0: self.boxes.append((self.h, self.v, a, b)) # matplotlib.verbose.report( # 'Dvi._put_rule: %d,%d %d,%d' % (self.h, self.v, a, b), # 'debug-annoying') def _nop(self): pass def _bop(self, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, p): if self.state != _dvistate.outer: raise ValueError("misplaced bop in dvi file (state %d)" % self.state) self.state = _dvistate.inpage self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack = [] self.text = [] # list of (x,y,fontnum,glyphnum) self.boxes = [] # list of (x,y,width,height) def _eop(self): if self.state != _dvistate.inpage: raise ValueError("misplaced eop in dvi file") self.state = _dvistate.outer del self.h, self.v, self.w, self.x, self.y, self.z, self.stack def _push(self): if self.state != _dvistate.inpage: raise ValueError("misplaced push in dvi file") self.stack.append((self.h, self.v, self.w, self.x, self.y, self.z)) def _pop(self): if self.state != _dvistate.inpage: raise ValueError("misplaced pop in dvi file") self.h, self.v, self.w, self.x, self.y, self.z = self.stack.pop() def _right(self, b): if self.state != _dvistate.inpage: raise ValueError("misplaced right in dvi file") self.h += b def _right_w(self, new_w): if self.state != _dvistate.inpage: raise ValueError("misplaced w in dvi file") if new_w is not None: self.w = new_w self.h += self.w def _right_x(self, new_x): if self.state != _dvistate.inpage: raise ValueError("misplaced x in dvi file") if new_x is not None: self.x = new_x self.h += self.x def _down(self, a): if self.state != _dvistate.inpage: raise ValueError("misplaced down in dvi file") self.v += a def _down_y(self, new_y): if self.state != _dvistate.inpage: raise ValueError("misplaced y in dvi file") if new_y is not None: self.y = new_y self.v += self.y def _down_z(self, new_z): if self.state != _dvistate.inpage: raise ValueError("misplaced z in dvi file") if new_z is not None: self.z = new_z self.v += self.z def _fnt_num(self, k): if self.state != _dvistate.inpage: raise ValueError("misplaced fnt_num in dvi file") self.f = k def _xxx(self, special): if six.PY3: matplotlib.verbose.report( 'Dvi._xxx: encountered special: %s' % ''.join([(32 <= ord(ch) < 127) and chr(ch) or '<%02x>' % ord(ch) for ch in special]), 'debug') else: matplotlib.verbose.report( 'Dvi._xxx: encountered special: %s' % ''.join([(32 <= ord(ch) < 127) and ch or '<%02x>' % ord(ch) for ch in special]), 'debug') def _fnt_def(self, k, c, s, d, a, l, n): tfm = _tfmfile(n[-l:].decode('ascii')) if c != 0 and tfm.checksum != 0 and c != tfm.checksum: raise ValueError('tfm checksum mismatch: %s'%n) # It seems that the assumption behind the following check is incorrect: #if d != tfm.design_size: # raise ValueError, 'tfm design size mismatch: %d in dvi, %d in %s'%\ # (d, tfm.design_size, n) vf = _vffile(n[-l:].decode('ascii')) self.fonts[k] = DviFont(scale=s, tfm=tfm, texname=n, vf=vf) def _post(self): if self.state != _dvistate.outer: raise ValueError("misplaced post in dvi file") self.state = _dvistate.post_post # TODO: actually read the postamble and finale? # currently post_post just triggers closing the file def _post_post(self): raise NotImplementedError class DviFont(object): """ Object that holds a font's texname and size, supports comparison, and knows the widths of glyphs in the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are *not* used for comparison. The size is in Adobe points (converted from TeX points). .. attribute:: texname Name of the font as used internally by TeX and friends. This is usually very different from any external font names, and :class:`dviread.PsfontsMap` can be used to find the external name of the font. .. attribute:: size Size of the font in Adobe points, converted from the slightly smaller TeX points. .. attribute:: widths Widths of glyphs in glyph-space units, typically 1/1000ths of the point size. """ __slots__ = ('texname', 'size', 'widths', '_scale', '_vf', '_tfm') def __init__(self, scale, tfm, texname, vf): if six.PY3 and isinstance(texname, bytes): texname = texname.decode('ascii') self._scale, self._tfm, self.texname, self._vf = \ scale, tfm, texname, vf self.size = scale * (72.0 / (72.27 * 2**16)) try: nchars = max(six.iterkeys(tfm.width)) + 1 except ValueError: nchars = 0 self.widths = [ (1000*tfm.width.get(char, 0)) >> 20 for char in xrange(nchars) ] def __eq__(self, other): return self.__class__ == other.__class__ and \ self.texname == other.texname and self.size == other.size def __ne__(self, other): return not self.__eq__(other) def _width_of(self, char): """ Width of char in dvi units. For internal use by dviread.py. """ width = self._tfm.width.get(char, None) if width is not None: return _mul2012(width, self._scale) matplotlib.verbose.report( 'No width for char %d in font %s' % (char, self.texname), 'debug') return 0 def _height_depth_of(self, char): """ Height and depth of char in dvi units. For internal use by dviread.py. """ result = [] for metric,name in ((self._tfm.height, "height"), (self._tfm.depth, "depth")): value = metric.get(char, None) if value is None: matplotlib.verbose.report( 'No %s for char %d in font %s' % (name, char, self.texname), 'debug') result.append(0) else: result.append(_mul2012(value, self._scale)) return result class Vf(Dvi): """ A virtual font (\*.vf file) containing subroutines for dvi files. Usage:: vf = Vf(filename) glyph = vf[code] glyph.text, glyph.boxes, glyph.width """ def __init__(self, filename): Dvi.__init__(self, filename, 0) try: self._first_font = None self._chars = {} self._packet_ends = None self._read() finally: self.close() def __getitem__(self, code): return self._chars[code] def _dispatch(self, byte): # If we are in a packet, execute the dvi instructions if self.state == _dvistate.inpage: byte_at = self.file.tell()-1 if byte_at == self._packet_ends: self._finalize_packet() # fall through elif byte_at > self._packet_ends: raise ValueError("Packet length mismatch in vf file") else: if byte in (139, 140) or byte >= 243: raise ValueError("Inappropriate opcode %d in vf file" % byte) Dvi._dispatch(self, byte) return # We are outside a packet if byte < 242: # a short packet (length given by byte) cc, tfm = self._arg(1), self._arg(3) self._init_packet(byte, cc, tfm) elif byte == 242: # a long packet pl, cc, tfm = [ self._arg(x) for x in (4, 4, 4) ] self._init_packet(pl, cc, tfm) elif 243 <= byte <= 246: Dvi._dispatch(self, byte) elif byte == 247: # preamble i, k = self._arg(1), self._arg(1) x = self.file.read(k) cs, ds = self._arg(4), self._arg(4) self._pre(i, x, cs, ds) elif byte == 248: # postamble (just some number of 248s) self.state = _dvistate.post_post else: raise ValueError("unknown vf opcode %d" % byte) def _init_packet(self, pl, cc, tfm): if self.state != _dvistate.outer: raise ValueError("Misplaced packet in vf file") self.state = _dvistate.inpage self._packet_ends = self.file.tell() + pl self._packet_char = cc self._packet_width = tfm self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack, self.text, self.boxes = [], [], [] self.f = self._first_font def _finalize_packet(self): self._chars[self._packet_char] = mpl_cbook.Bunch( text=self.text, boxes=self.boxes, width = self._packet_width) self.state = _dvistate.outer def _pre(self, i, x, cs, ds): if self.state != _dvistate.pre: raise ValueError("pre command in middle of vf file") if i != 202: raise ValueError("Unknown vf format %d" % i) if len(x): matplotlib.verbose.report('vf file comment: ' + x, 'debug') self.state = _dvistate.outer # cs = checksum, ds = design size def _fnt_def(self, k, *args): Dvi._fnt_def(self, k, *args) if self._first_font is None: self._first_font = k def _fix2comp(num): """ Convert from two's complement to negative. """ assert 0 <= num < 2**32 if num & 2**31: return num - 2**32 else: return num def _mul2012(num1, num2): """ Multiply two numbers in 20.12 fixed point format. """ # Separated into a function because >> has surprising precedence return (num1*num2) >> 20 class Tfm(object): """ A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class. .. attribute:: checksum Used for verifying against the dvi file. .. attribute:: design_size Design size of the font (in what units?) .. attribute:: width Width of each character, needs to be scaled by the factor specified in the dvi file. This is a dict because indexing may not start from 0. .. attribute:: height Height of each character. .. attribute:: depth Depth of each character. """ __slots__ = ('checksum', 'design_size', 'width', 'height', 'depth') def __init__(self, filename): matplotlib.verbose.report('opening tfm file ' + filename, 'debug') with open(filename, 'rb') as file: header1 = file.read(24) lh, bc, ec, nw, nh, nd = \ struct.unpack(str('!6H'), header1[2:14]) matplotlib.verbose.report( 'lh=%d, bc=%d, ec=%d, nw=%d, nh=%d, nd=%d' % ( lh, bc, ec, nw, nh, nd), 'debug') header2 = file.read(4*lh) self.checksum, self.design_size = \ struct.unpack(str('!2I'), header2[:8]) # there is also encoding information etc. char_info = file.read(4*(ec-bc+1)) widths = file.read(4*nw) heights = file.read(4*nh) depths = file.read(4*nd) self.width, self.height, self.depth = {}, {}, {} widths, heights, depths = \ [ struct.unpack(str('!%dI') % (len(x)/4), x) for x in (widths, heights, depths) ] for idx, char in enumerate(xrange(bc, ec+1)): self.width[char] = _fix2comp(widths[ord(char_info[4*idx])]) self.height[char] = _fix2comp(heights[ord(char_info[4*idx+1]) >> 4]) self.depth[char] = _fix2comp(depths[ord(char_info[4*idx+1]) & 0xf]) class PsfontsMap(object): """ A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage:: >>> map = PsfontsMap(find_tex_file('pdftex.map')) >>> entry = map['ptmbo8r'] >>> entry.texname 'ptmbo8r' >>> entry.psname 'Times-Bold' >>> entry.encoding '/usr/local/texlive/2008/texmf-dist/fonts/enc/dvips/base/8r.enc' >>> entry.effects {'slant': 0.16700000000000001} >>> entry.filename For historical reasons, TeX knows many Type-1 fonts by different names than the outside world. (For one thing, the names have to fit in eight characters.) Also, TeX's native fonts are not Type-1 but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed from internal font names to font file names. A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, dvipdfm.map. psfonts.map is used by dvips, pdftex.map by pdfTeX, and dvipdfm.map by dvipdfm. psfonts.map might avoid embedding the 35 PostScript fonts (i.e., have no filename for them, as in the Times-Bold example above), while the pdf-related files perhaps only avoid the "Base 14" pdf fonts. But the user may have configured these files differently. """ __slots__ = ('_font',) def __init__(self, filename): self._font = {} with open(filename, 'rt') as file: self._parse(file) def __getitem__(self, texname): try: result = self._font[texname] except KeyError: result = self._font[texname.decode('ascii')] fn, enc = result.filename, result.encoding if fn is not None and not fn.startswith('/'): result.filename = find_tex_file(fn) if enc is not None and not enc.startswith('/'): result.encoding = find_tex_file(result.encoding) return result def _parse(self, file): """Parse each line into words.""" for line in file: line = line.strip() if line == '' or line.startswith('%'): continue words, pos = [], 0 while pos < len(line): if line[pos] == '"': # double quoted word pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = end + 1 else: # ordinary word end = line.find(' ', pos+1) if end == -1: end = len(line) words.append(line[pos:end]) pos = end while pos < len(line) and line[pos] == ' ': pos += 1 self._register(words) def _register(self, words): """Register a font described by "words". The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation. """ # If the map file specifies multiple encodings for a font, we # follow pdfTeX in choosing the last one specified. Such # entries are probably mistakes but they have occurred. # http://tex.stackexchange.com/questions/10826/ # http://article.gmane.org/gmane.comp.tex.pdftex/4914 texname, psname = words[:2] effects, encoding, filename = '', None, None for word in words[2:]: if not word.startswith('<'): effects = word else: word = word.lstrip('<') if word.startswith('[') or word.endswith('.enc'): if encoding is not None: matplotlib.verbose.report( 'Multiple encodings for %s = %s' % (texname, psname), 'debug') if word.startswith('['): encoding = word[1:] else: encoding = word else: assert filename is None filename = word eff = effects.split() effects = {} try: effects['slant'] = float(eff[eff.index('SlantFont')-1]) except ValueError: pass try: effects['extend'] = float(eff[eff.index('ExtendFont')-1]) except ValueError: pass self._font[texname] = mpl_cbook.Bunch( texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename) class Encoding(object): """ Parses a \*.enc file referenced from a psfonts.map style file. The format this class understands is a very limited subset of PostScript. Usage (subject to change):: for name in Encoding(filename): whatever(name) """ __slots__ = ('encoding',) def __init__(self, filename): with open(filename, 'rt') as file: matplotlib.verbose.report('Parsing TeX encoding ' + filename, 'debug-annoying') self.encoding = self._parse(file) matplotlib.verbose.report('Result: ' + repr(self.encoding), 'debug-annoying') def __iter__(self): for name in self.encoding: yield name def _parse(self, file): result = [] state = 0 for line in file: comment_start = line.find('%') if comment_start > -1: line = line[:comment_start] line = line.strip() if state == 0: # Expecting something like /FooEncoding [ if '[' in line: state = 1 line = line[line.index('[')+1:].strip() if state == 1: if ']' in line: # ] def line = line[:line.index(']')] state = 2 words = line.split() for w in words: if w.startswith('/'): # Allow for /abc/def/ghi subwords = w.split('/') result.extend(subwords[1:]) else: raise ValueError("Broken name in encoding file: " + w) return result def find_tex_file(filename, format=None): """ Call :program:`kpsewhich` to find a file in the texmf tree. If *format* is not None, it is used as the value for the :option:`--format` option. Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a popular distribution on Windows) doesn't use kpathsea, so what do we do? (TODO) .. seealso:: `Kpathsea documentation <http://www.tug.org/kpathsea/>`_ The library that :program:`kpsewhich` is part of. """ cmd = ['kpsewhich'] if format is not None: cmd += ['--format=' + format] cmd += [filename] matplotlib.verbose.report('find_tex_file(%s): %s' \ % (filename,cmd), 'debug') # stderr is unused, but reading it avoids a subprocess optimization # that breaks EINTR handling in some Python versions: # http://bugs.python.org/issue12493 # https://github.com/matplotlib/matplotlib/issues/633 pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result = pipe.communicate()[0].rstrip() matplotlib.verbose.report('find_tex_file result: %s' % result, 'debug') return result.decode('ascii') # With multiple text objects per figure (e.g., tick labels) we may end # up reading the same tfm and vf files many times, so we implement a # simple cache. TODO: is this worth making persistent? _tfmcache = {} _vfcache = {} def _fontfile(texname, class_, suffix, cache): try: return cache[texname] except KeyError: pass filename = find_tex_file(texname + suffix) if filename: result = class_(filename) else: result = None cache[texname] = result return result def _tfmfile(texname): return _fontfile(texname, Tfm, '.tfm', _tfmcache) def _vffile(texname): return _fontfile(texname, Vf, '.vf', _vfcache) if __name__ == '__main__': import sys matplotlib.verbose.set_level('debug-annoying') fname = sys.argv[1] try: dpi = float(sys.argv[2]) except IndexError: dpi = None dvi = Dvi(fname, dpi) fontmap = PsfontsMap(find_tex_file('pdftex.map')) for page in dvi: print('=== new page ===') fPrev = None for x,y,f,c,w in page.text: if f != fPrev: print('font', f.texname, 'scaled', f._scale/pow(2.0,20)) fPrev = f print(x,y,c, 32 <= c < 128 and chr(c) or '.', w) for x,y,w,h in page.boxes: print(x,y,'BOX',w,h)
mit
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/matplotlib/markers.py
6
32364
""" This module contains functions to handle markers. Used by both the marker functionality of `~matplotlib.axes.Axes.plot` and `~matplotlib.axes.Axes.scatter`. All possible markers are defined here: ============================== =============================================== marker description ============================== =============================================== `"."` point `","` pixel `"o"` circle `"v"` triangle_down `"^"` triangle_up `"<"` triangle_left `">"` triangle_right `"1"` tri_down `"2"` tri_up `"3"` tri_left `"4"` tri_right `"8"` octagon `"s"` square `"p"` pentagon `"P"` plus (filled) `"*"` star `"h"` hexagon1 `"H"` hexagon2 `"+"` plus `"x"` x `"X"` x (filled) `"D"` diamond `"d"` thin_diamond `"|"` vline `"_"` hline TICKLEFT tickleft TICKRIGHT tickright TICKUP tickup TICKDOWN tickdown CARETLEFT caretleft (centered at tip) CARETRIGHT caretright (centered at tip) CARETUP caretup (centered at tip) CARETDOWN caretdown (centered at tip) CARETLEFTBASE caretleft (centered at base) CARETRIGHTBASE caretright (centered at base) CARETUPBASE caretup (centered at base) `"None"`, `" "` or `""` nothing ``'$...$'`` render the string using mathtext. `verts` a list of (x, y) pairs used for Path vertices. The center of the marker is located at (0,0) and the size is normalized. path a `~matplotlib.path.Path` instance. (`numsides`, `style`, `angle`) The marker can also be a tuple (`numsides`, `style`, `angle`), which will create a custom, regular symbol. `numsides`: the number of sides `style`: the style of the regular symbol: 0 a regular polygon 1 a star-like symbol 2 an asterisk 3 a circle (`numsides` and `angle` is ignored) `angle`: the angle of rotation of the symbol ============================== =============================================== For backward compatibility, the form (`verts`, 0) is also accepted, but it is equivalent to just `verts` for giving a raw set of vertices that define the shape. `None` is the default which means 'nothing', however this table is referred to from other docs for the valid inputs from marker inputs and in those cases `None` still means 'default'. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import numpy as np from .cbook import is_math_text, is_string_like, is_numlike, iterable from matplotlib import rcParams from .path import Path from .transforms import IdentityTransform, Affine2D # special-purpose marker identifiers: (TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN, CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN, CARETLEFTBASE, CARETRIGHTBASE, CARETUPBASE, CARETDOWNBASE) = list(xrange(12)) class MarkerStyle(object): markers = { '.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right', '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star', 'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '_': 'hline', 'P': 'plus_filled', 'X': 'x_filled', TICKLEFT: 'tickleft', TICKRIGHT: 'tickright', TICKUP: 'tickup', TICKDOWN: 'tickdown', CARETLEFT: 'caretleft', CARETRIGHT: 'caretright', CARETUP: 'caretup', CARETDOWN: 'caretdown', CARETLEFTBASE: 'caretleftbase', CARETRIGHTBASE: 'caretrightbase', CARETUPBASE: 'caretupbase', CARETDOWNBASE: 'caretdownbase', "None": 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing' } # Just used for informational purposes. is_filled() # is calculated in the _set_* functions. filled_markers = ( 'o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd', 'P', 'X') fillstyles = ('full', 'left', 'right', 'bottom', 'top', 'none') _half_fillstyles = ('left', 'right', 'bottom', 'top') # TODO: Is this ever used as a non-constant? _point_size_reduction = 0.5 def __init__(self, marker=None, fillstyle=None): """ MarkerStyle Attributes ---------- markers : list of known markes fillstyles : list of known fillstyles filled_markers : list of known filled markers. Parameters ---------- marker : string or array_like, optional, default: None See the descriptions of possible markers in the module docstring. fillstyle : string, optional, default: 'full' 'full', 'left", 'right', 'bottom', 'top', 'none' """ # The fillstyle has to be set here as it might be accessed by calls to # _recache() in set_marker. self._fillstyle = fillstyle self.set_marker(marker) self.set_fillstyle(fillstyle) def __getstate__(self): d = self.__dict__.copy() d.pop('_marker_function') return d def __setstate__(self, statedict): self.__dict__ = statedict self.set_marker(self._marker) self._recache() def _recache(self): self._path = Path(np.empty((0, 2))) self._transform = IdentityTransform() self._alt_path = None self._alt_transform = None self._snap_threshold = None self._joinstyle = 'round' self._capstyle = 'butt' self._filled = True self._marker_function() if six.PY3: def __bool__(self): return bool(len(self._path.vertices)) else: def __nonzero__(self): return bool(len(self._path.vertices)) def is_filled(self): return self._filled def get_fillstyle(self): return self._fillstyle def set_fillstyle(self, fillstyle): """ Sets fillstyle Parameters ---------- fillstyle : string amongst known fillstyles """ if fillstyle is None: fillstyle = rcParams['markers.fillstyle'] if fillstyle not in self.fillstyles: raise ValueError("Unrecognized fillstyle %s" % ' '.join(self.fillstyles)) self._fillstyle = fillstyle self._recache() def get_joinstyle(self): return self._joinstyle def get_capstyle(self): return self._capstyle def get_marker(self): return self._marker def set_marker(self, marker): if (iterable(marker) and len(marker) in (2, 3) and marker[1] in (0, 1, 2, 3)): self._marker_function = self._set_tuple_marker elif isinstance(marker, np.ndarray): self._marker_function = self._set_vertices elif not isinstance(marker, list) and marker in self.markers: self._marker_function = getattr( self, '_set_' + self.markers[marker]) elif is_string_like(marker) and is_math_text(marker): self._marker_function = self._set_mathtext_path elif isinstance(marker, Path): self._marker_function = self._set_path_marker else: try: Path(marker) self._marker_function = self._set_vertices except ValueError: raise ValueError('Unrecognized marker style' ' {0}'.format(marker)) self._marker = marker self._recache() def get_path(self): return self._path def get_transform(self): return self._transform.frozen() def get_alt_path(self): return self._alt_path def get_alt_transform(self): return self._alt_transform.frozen() def get_snap_threshold(self): return self._snap_threshold def _set_nothing(self): self._filled = False def _set_custom_marker(self, path): verts = path.vertices rescale = max(np.max(np.abs(verts[:, 0])), np.max(np.abs(verts[:, 1]))) self._transform = Affine2D().scale(0.5 / rescale) self._path = path def _set_path_marker(self): self._set_custom_marker(self._marker) def _set_vertices(self): verts = self._marker marker = Path(verts) self._set_custom_marker(marker) def _set_tuple_marker(self): marker = self._marker if is_numlike(marker[0]): if len(marker) == 2: numsides, rotation = marker[0], 0.0 elif len(marker) == 3: numsides, rotation = marker[0], marker[2] symstyle = marker[1] if symstyle == 0: self._path = Path.unit_regular_polygon(numsides) self._joinstyle = 'miter' elif symstyle == 1: self._path = Path.unit_regular_star(numsides) self._joinstyle = 'bevel' elif symstyle == 2: self._path = Path.unit_regular_asterisk(numsides) self._filled = False self._joinstyle = 'bevel' elif symstyle == 3: self._path = Path.unit_circle() self._transform = Affine2D().scale(0.5).rotate_deg(rotation) else: verts = np.asarray(marker[0]) path = Path(verts) self._set_custom_marker(path) def _set_mathtext_path(self): """ Draws mathtext markers '$...$' using TextPath object. Submitted by tcb """ from matplotlib.text import TextPath from matplotlib.font_manager import FontProperties # again, the properties could be initialised just once outside # this function # Font size is irrelevant here, it will be rescaled based on # the drawn size later props = FontProperties(size=1.0) text = TextPath(xy=(0, 0), s=self.get_marker(), fontproperties=props, usetex=rcParams['text.usetex']) if len(text.vertices) == 0: return xmin, ymin = text.vertices.min(axis=0) xmax, ymax = text.vertices.max(axis=0) width = xmax - xmin height = ymax - ymin max_dim = max(width, height) self._transform = Affine2D() \ .translate(-xmin + 0.5 * -width, -ymin + 0.5 * -height) \ .scale(1.0 / max_dim) self._path = text self._snap = False def _half_fill(self): fs = self.get_fillstyle() result = fs in self._half_fillstyles return result def _set_circle(self, reduction=1.0): self._transform = Affine2D().scale(0.5 * reduction) self._snap_threshold = np.inf fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_circle() else: # build a right-half circle if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._path = self._alt_path = Path.unit_circle_righthalf() self._transform.rotate_deg(rotate) self._alt_transform = self._transform.frozen().rotate_deg(180.) def _set_pixel(self): self._path = Path.unit_rectangle() # Ideally, you'd want -0.5, -0.5 here, but then the snapping # algorithm in the Agg backend will round this to a 2x2 # rectangle from (-1, -1) to (1, 1). By offsetting it # slightly, we can force it to be (0, 0) to (1, 1), which both # makes it only be a single pixel and places it correctly # aligned to 1-width stroking (i.e. the ticks). This hack is # the best of a number of bad alternatives, mainly because the # backends are not aware of what marker is actually being used # beyond just its path data. self._transform = Affine2D().translate(-0.49999, -0.49999) self._snap_threshold = None def _set_point(self): self._set_circle(reduction=self._point_size_reduction) _triangle_path = Path( [[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) # Going down halfway looks to small. Golden ratio is too far. _triangle_path_u = Path( [[0.0, 1.0], [-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_d = Path( [[-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [1.0, -1.0], [-1.0, -1.0], [-3 / 5., -1 / 5.]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_l = Path( [[0.0, 1.0], [0.0, -1.0], [-1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_r = Path( [[0.0, 1.0], [0.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_triangle(self, rot, skip): self._transform = Affine2D().scale(0.5, 0.5).rotate_deg(rot) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = self._triangle_path else: mpaths = [self._triangle_path_u, self._triangle_path_l, self._triangle_path_d, self._triangle_path_r] if fs == 'top': self._path = mpaths[(0 + skip) % 4] self._alt_path = mpaths[(2 + skip) % 4] elif fs == 'bottom': self._path = mpaths[(2 + skip) % 4] self._alt_path = mpaths[(0 + skip) % 4] elif fs == 'left': self._path = mpaths[(1 + skip) % 4] self._alt_path = mpaths[(3 + skip) % 4] else: self._path = mpaths[(3 + skip) % 4] self._alt_path = mpaths[(1 + skip) % 4] self._alt_transform = self._transform self._joinstyle = 'miter' def _set_triangle_up(self): return self._set_triangle(0.0, 0) def _set_triangle_down(self): return self._set_triangle(180.0, 2) def _set_triangle_left(self): return self._set_triangle(90.0, 3) def _set_triangle_right(self): return self._set_triangle(270.0, 1) def _set_square(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 2.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: # build a bottom filled square out of two rectangles, one # filled. Use the rotation to support left, right, bottom # or top if fs == 'bottom': rotate = 0. elif fs == 'top': rotate = 180. elif fs == 'left': rotate = 270. else: rotate = 90. self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 0.5], [0.0, 0.5], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.5], [1.0, 0.5], [1.0, 1.0], [0.0, 1.0], [0.0, 0.5]]) self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_diamond(self): self._transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.0, 0.0]]) if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_thin_diamond(self): self._set_diamond() self._transform.scale(0.6, 1.0) def _set_pentagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 polypath = Path.unit_regular_polygon(5) fs = self.get_fillstyle() if not self._half_fill(): self._path = polypath else: verts = polypath.vertices y = (1 + np.sqrt(5)) / 4. top = Path([verts[0], verts[1], verts[4], verts[0]]) bottom = Path([verts[1], verts[2], verts[3], verts[4], verts[1]]) left = Path([verts[0], verts[1], verts[2], [0, -y], verts[0]]) right = Path([verts[0], verts[4], verts[3], [0, -y], verts[0]]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_star(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_star(5, innerCircle=0.381966) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices top = Path(np.vstack((verts[0:4, :], verts[7:10, :], verts[0]))) bottom = Path(np.vstack((verts[3:8, :], verts[3]))) left = Path(np.vstack((verts[0:6, :], verts[0]))) right = Path(np.vstack((verts[0], verts[5:10, :], verts[0]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'bevel' def _set_hexagon1(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x = np.abs(np.cos(5 * np.pi / 6.)) top = Path(np.vstack(([-x, 0], verts[(1, 0, 5), :], [x, 0]))) bottom = Path(np.vstack(([-x, 0], verts[2:5, :], [x, 0]))) left = Path(verts[(0, 1, 2, 3), :]) right = Path(verts[(0, 5, 4, 3), :]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_hexagon2(self): self._transform = Affine2D().scale(0.5).rotate_deg(30) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x, y = np.sqrt(3) / 4, 3 / 4. top = Path(verts[(1, 0, 5, 4, 1), :]) bottom = Path(verts[(1, 2, 3, 4), :]) left = Path(np.vstack(([x, y], verts[(0, 1, 2), :], [-x, -y], [x, y]))) right = Path(np.vstack(([x, y], verts[(5, 4, 3), :], [-x, -y]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_octagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(8) if not self._half_fill(): self._transform.rotate_deg(22.5) self._path = polypath else: x = np.sqrt(2.) / 4. half = Path([[0, -1], [0, 1], [-x, 1], [-1, x], [-1, -x], [-x, -1], [0, -1]]) if fs == 'bottom': rotate = 90. elif fs == 'top': rotate = 270. elif fs == 'right': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._path = self._alt_path = half self._alt_transform = self._transform.frozen().rotate_deg(180.0) self._joinstyle = 'miter' _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]]) def _set_vline(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._line_marker_path def _set_hline(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 1.0 self._filled = False self._path = self._line_marker_path _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]]) def _set_tickleft(self): self._transform = Affine2D().scale(-1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path def _set_tickright(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]]) def _set_tickup(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path def _set_tickdown(self): self._transform = Affine2D().scale(1.0, -1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_plus(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._plus_path _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_tri_down(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_up(self): self._transform = Affine2D().scale(0.5).rotate_deg(180) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_left(self): self._transform = Affine2D().scale(0.5).rotate_deg(270) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_right(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]]) def _set_caretdown(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretup(self): self._transform = Affine2D().scale(0.5).rotate_deg(180) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretleft(self): self._transform = Affine2D().scale(0.5).rotate_deg(270) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretright(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' _caret_path_base = Path([[-1.0, 0.0], [0.0, -1.5], [1.0, 0]]) def _set_caretdownbase(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path_base self._joinstyle = 'miter' def _set_caretupbase(self): self._transform = Affine2D().scale(0.5).rotate_deg(180) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path_base self._joinstyle = 'miter' def _set_caretleftbase(self): self._transform = Affine2D().scale(0.5).rotate_deg(270) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path_base self._joinstyle = 'miter' def _set_caretrightbase(self): self._transform = Affine2D().scale(0.5).rotate_deg(90) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path_base self._joinstyle = 'miter' _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_x(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._x_path _plus_filled_path = Path([(1/3, 0), (2/3, 0), (2/3, 1/3), (1, 1/3), (1, 2/3), (2/3, 2/3), (2/3, 1), (1/3, 1), (1/3, 2/3), (0, 2/3), (0, 1/3), (1/3, 1/3), (1/3, 0)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _plus_filled_path_t = Path([(1, 1/2), (1, 2/3), (2/3, 2/3), (2/3, 1), (1/3, 1), (1/3, 2/3), (0, 2/3), (0, 1/2), (1, 1/2)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_plus_filled(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 5.0 self._joinstyle = 'miter' fs = self.get_fillstyle() if not self._half_fill(): self._path = self._plus_filled_path else: # Rotate top half path to support all partitions if fs == 'top': rotate, rotate_alt = 0, 180 elif fs == 'bottom': rotate, rotate_alt = 180, 0 elif fs == 'left': rotate, rotate_alt = 90, 270 else: rotate, rotate_alt = 270, 90 self._path = self._plus_filled_path_t self._alt_path = self._plus_filled_path_t self._alt_transform = Affine2D().translate(-0.5, -0.5) self._transform.rotate_deg(rotate) self._alt_transform.rotate_deg(rotate_alt) _x_filled_path = Path([(0.25, 0), (0.5, 0.25), (0.75, 0), (1, 0.25), (0.75, 0.5), (1, 0.75), (0.75, 1), (0.5, 0.75), (0.25, 1), (0, 0.75), (0.25, 0.5), (0, 0.25), (0.25, 0)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _x_filled_path_t = Path([(0.75, 0.5), (1, 0.75), (0.75, 1), (0.5, 0.75), (0.25, 1), (0, 0.75), (0.25, 0.5), (0.75, 0.5)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_x_filled(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 5.0 self._joinstyle = 'miter' fs = self.get_fillstyle() if not self._half_fill(): self._path = self._x_filled_path else: # Rotate top half path to support all partitions if fs == 'top': rotate, rotate_alt = 0, 180 elif fs == 'bottom': rotate, rotate_alt = 180, 0 elif fs == 'left': rotate, rotate_alt = 90, 270 else: rotate, rotate_alt = 270, 90 self._path = self._x_filled_path_t self._alt_path = self._x_filled_path_t self._alt_transform = Affine2D().translate(-0.5, -0.5) self._transform.rotate_deg(rotate) self._alt_transform.rotate_deg(rotate_alt)
gpl-3.0
daphne-yu/aubio
python/demos/demo_waveform_plot.py
4
2074
#! /usr/bin/env python import sys from aubio import pvoc, source from numpy import zeros, hstack def get_waveform_plot(filename, samplerate = 0, block_size = 4096, ax = None): import matplotlib.pyplot as plt if not ax: fig = plt.figure() ax = fig.add_subplot(111) hop_s = block_size allsamples_max = zeros(0,) downsample = 2**4 # to plot n samples / hop_s a = source(filename, samplerate, hop_s) # source file if samplerate == 0: samplerate = a.samplerate total_frames = 0 while True: samples, read = a() # keep some data to plot it later new_maxes = (abs(samples.reshape(hop_s/downsample, downsample))).max(axis=0) allsamples_max = hstack([allsamples_max, new_maxes]) total_frames += read if read < hop_s: break allsamples_max = (allsamples_max > 0) * allsamples_max allsamples_max_times = [ ( float (t) / downsample ) * hop_s for t in range(len(allsamples_max)) ] ax.plot(allsamples_max_times, allsamples_max, '-b') ax.plot(allsamples_max_times, -allsamples_max, '-b') ax.axis(xmin = allsamples_max_times[0], xmax = allsamples_max_times[-1]) set_xlabels_sample2time(ax, allsamples_max_times[-1], samplerate) return ax def set_xlabels_sample2time(ax, latest_sample, samplerate): ax.axis(xmin = 0, xmax = latest_sample) if latest_sample / float(samplerate) > 60: ax.set_xlabel('time (mm:ss)') ax.set_xticklabels([ "%02d:%02d" % (t/float(samplerate)/60, (t/float(samplerate))%60) for t in ax.get_xticks()[:-1]], rotation = 50) else: ax.set_xlabel('time (ss.mm)') ax.set_xticklabels([ "%02d.%02d" % (t/float(samplerate), 100*((t/float(samplerate))%1) ) for t in ax.get_xticks()[:-1]], rotation = 50) if __name__ == '__main__': import matplotlib.pyplot as plt if len(sys.argv) < 2: print "Usage: %s <filename>" % sys.argv[0] else: for soundfile in sys.argv[1:]: get_waveform_plot(soundfile) # display graph plt.show()
gpl-3.0
mdeff/ntds_2017
projects/reports/graphlang/graph.py
1
7730
""" Various methods related to graph construction and analysis """ from preprocess import * import numpy as np import networkx as nx import community from matplotlib import pyplot as plt def build_link_exp_decay(adj, weight, words_map, words, from_index, to_index, max_dist, stopwords, links_to_stopwords=True, self_links=False): """ Builds a link from a given word in the graph to another word at a defined index. The farther the other word, the smaller the edge between them. In this variant, the weight of the edges decays exponentially with the distance """ words_len = len(words) links_made = 0 while to_index < words_len and (words[to_index] in string.punctuation or (not links_to_stopwords and words[to_index] in stopwords) or (not self_links and words[to_index] == words[from_index])): to_index += 1 weight /= 2 if (to_index - from_index) <= max_dist and to_index < len(words): links_made = 1 adj[words_map[words[from_index]], words_map[words[to_index]]] = adj[words_map[words[from_index]], words_map[words[to_index]]] + weight weight /= 2 return weight, to_index + 1, links_made def build_link(adj, weight, words_map, words, from_index, to_index, max_dist, stopwords, links_to_stopwords=True, self_links=False): """ Builds a link from a given word in the graph to another word at a defined index. The farther the other word, the smaller the edge between them. """ links_made = 0 if(weight <= 0): weight, to_index + 1, links_made words_len = len(words) while to_index < words_len and (words[to_index] in string.punctuation or (not links_to_stopwords and words[to_index] in stopwords) or (not self_links and words[to_index] == words[from_index])): to_index += 1 weight -= 1 if (to_index - from_index) <= max_dist and to_index < len(words): links_made = 1 adj[words_map[words[from_index]], words_map[words[to_index]]] = adj[words_map[words[from_index]], words_map[words[to_index]]] + weight weight -= 1 return weight, to_index + 1, links_made def build_graph(lemmas, lemmas_map, max_dist=20, nlinks=4, max_weight=16, lang=None, links_from_stopwords=True, links_to_stopwords=True, self_links=False): len_dist_lemmas = len(lemmas_map) len_lemmas = len(lemmas) adj = np.zeros((len_dist_lemmas, len_dist_lemmas)) if(lang != None and (not links_from_stopwords or not links_to_stopwords)): stopwords = nltk.corpus.stopwords.words(lang) for index, lemma in enumerate(lemmas): if lemma in string.punctuation or (not links_from_stopwords and lemma in stopwords): continue weight = max_dist next_index = index + 1 total_links_made = 0 for i in range(0, max_dist): weight, next_index, links_made = build_link(adj, weight, lemmas_map, lemmas, index, next_index, max_dist, stopwords, links_to_stopwords, self_links) total_links_made += links_made if(total_links_made >= nlinks or weight <= 0): break return adj def text_to_graph(text, undirected=False, subsample=1., normalization="lem", lang="english", words_lower=True, no_punct_nodes=True, nlinks=4, max_dist=20, max_weight=16, ignore_punct=True, ignore_stopwords=False, links_from_stopwords=True, links_to_stopwords=True, self_links=False, return_words_map=False): if(ignore_stopwords): links_from_stopwords = False links_to_stopwords = False if normalization == "lem": words = words_lems(text, lower=words_lower, ignore_punct=ignore_punct) elif normalization == "stem": words = words_stems(text, lang=lang, lower=words_lower) if(subsample < 1. and subsample > 0): sub_len = subsample * len(words) words = words[:int(sub_len)] words_map = words_to_int(words, lang=lang, ignore_punct=no_punct_nodes, ignore_stopwords=ignore_stopwords) graph = build_graph(words, words_map, lang=lang, max_dist=max_dist, max_weight=max_weight, links_from_stopwords=links_from_stopwords, links_to_stopwords=links_to_stopwords) if(undirected): graph += graph.T if(return_words_map): return (graph, words_map) else: return graph def get_n_closest_words(graph, word_map, word, n_words=10): index = word_map[word] word_map_inversed = {i[1]:i[0] for i in word_map.items()} return [word_map_inversed[np.argsort(graph[index])[::-1][i]] for i in range(n_words)] def sparsity(m): return 1 - np.count_nonzero(m) / m.size def np_to_nx(M, words_map=None): G = nx.from_numpy_matrix(M) if(words_map != None): words_map_inv = {e[1]:e[0] for e in words_map.items()} for n in G: G.nodes[n]["word"] = words_map_inv[n] return G def compute_betweenness(G, weight="weight"): betweenness = nx.betweenness_centrality(G, weight=weight) for n in G: G.nodes[n]["betweenness"] = betweenness[n] return betweenness def scale_betweenness(betweenness, min_=10, max_=120): """ Scales the values of the betweenness dictionary to a certain range of values """ max_el = max(betweenness.items(), key=lambda el: el[1])[1] mult = max_ / (max_el + min_) betweenness_scaled = {k: mult*v + min_ for k,v in betweenness.items()} return betweenness_scaled def community_partition(G, weight="weight"): if(weight == "betweenness" and G.nodes()[0].get("betweenness") == None): compute_betweenness(G) return community.best_partition(G, weight=weight) def communities(G, draw=True, cmap=None, pos=None, partition=None, betweenness_scaled=None): """ Computes the communities using the Louvain heuristics """ if(partition == None): partition = community_partition(G, weight="betweenness") if(betweenness_scaled == None): if(G.nodes()[0].get("betweenness") == None): betweenness = compute_betweenness(G, "betweenness") else: betweenness = nx.get_node_attributes(G, "betweenness") betweenness_scaled = scale_betweenness(betweenness) if(pos == None): pos = nx.spring_layout(G) if(draw and cmap): count = 0. for com in set(partition.values()): count = count + 1. list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == com] sizes = [betweenness_scaled[node] for node in list_nodes] nx.draw_networkx_nodes(G, pos, list_nodes, node_size=sizes, node_color=cmap[com]) nx.draw_networkx_edges(G, pos, alpha=0.05) return pos, partition, betweenness_scaled def induced_graph(original_graph, partition, induced_graph=None, rescale_node_size=1., draw=True, cmap=None, words_map_inv=None, pos=None, betweenness_scaled=None): """ Returns the graph induced from the community partition of the graph """ if(induced_graph == None): induced_graph = community.induced_graph(partition, original_graph, weight="weight") if(draw and cmap): if(pos == None): pos = nx.spring_layout(induced_graph) w = induced_graph.degree(weight="weight") sizes = [w[node]*rescale_node_size for node in induced_graph.nodes()] nx.draw(induced_graph, pos=pos, node_size=sizes, node_color=[cmap[n] for n in induced_graph.nodes()]) labels = {} for com in induced_graph.nodes(): rep = max([nodes for nodes in partition.keys() if partition[nodes] == com], key=lambda n: original_graph.degree(n, weight="weight")) labels[com] = words_map_inv[rep] nx.draw_networkx_labels(induced_graph, pos, labels, font_size=16) return induced_graph
mit
Myasuka/scikit-learn
sklearn/metrics/ranking.py
79
25426
"""Metrics to assess performance on classification task given scores Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import csr_matrix from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.fixes import isclose from ..utils.fixes import bincount from ..utils.stats import rankdata from ..utils.sparsefuncs import count_nonzero from .base import _average_binary_score from .base import UndefinedMetricWarning def auc(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 See also -------- roc_auc_score : Computes the area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 if reorder: # reorder the data points according to the x axis and using y to # break ties order = np.lexsort((y, x)) x, y = x[order], y[order] else: dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) area = direction * np.trapz(y, x) return area def average_precision_score(y_true, y_score, average="macro", sample_weight=None): """Compute average precision (AP) from prediction scores This score corresponds to the area under the precision-recall curve. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average_precision : float References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ See also -------- roc_auc_score : Area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS 0.79... """ def _binary_average_precision(y_true, y_score, sample_weight=None): precision, recall, thresholds = precision_recall_curve( y_true, y_score, sample_weight=sample_weight) return auc(recall, precision) return _average_binary_score(_binary_average_precision, y_true, y_score, average, sample_weight=sample_weight) def roc_auc_score(y_true, y_score, average="macro", sample_weight=None): """Compute Area Under the Curve (AUC) from prediction scores Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ See also -------- average_precision_score : Area under the precision-recall curve roc_curve : Compute Receiver operating characteristic (ROC) Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 """ def _binary_roc_auc_score(y_true, y_score, sample_weight=None): if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, tresholds = roc_curve(y_true, y_score, sample_weight=sample_weight) return auc(fpr, tpr, reorder=True) return _average_binary_score( _binary_roc_auc_score, y_true, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fps : array, shape = [n_thresholds] A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : array, shape = [n_thresholds <= len(np.unique(y_score))] An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : array, shape = [n_thresholds] Decreasing score values. """ check_consistent_length(y_true, y_score) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (np.all(classes == [0, 1]) or np.all(classes == [-1, 1]) or np.all(classes == [0]) or np.all(classes == [-1]) or np.all(classes == [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # We need to use isclose to avoid spurious repeated thresholds # stemming from floating point roundoff errors. distinct_value_indices = np.where(np.logical_not(isclose( np.diff(y_score), 0)))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = (y_true * weight).cumsum()[threshold_idxs] if sample_weight is not None: fps = weight.cumsum()[threshold_idxs] - tps else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] def precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. probas_pred : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds <= len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def roc_curve(y_true, y_score, pos_label=None, sample_weight=None): """Compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class or confidence values. pos_label : int Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See also -------- roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) if tps.size == 0 or fps[0] != 0: # Add an extra threshold position if necessary tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds def label_ranking_average_precision_score(y_true, y_score): """Compute ranking-based average precision Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) \ # doctest: +ELLIPSIS 0.416... """ check_consistent_length(y_true, y_score) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formated array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. out += 1. continue scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') out += (L / rank).mean() return out / n_samples def coverage_error(y_true, y_score, sample_weight=None): """Coverage error measure Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : array, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) def label_ranking_loss(y_true, y_score, sample_weight=None): """Compute Ranking loss measure Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight)
bsd-3-clause
neuropoly/spinalcordtoolbox
spinalcordtoolbox/scripts/sct_compute_ernst_angle.py
1
6091
#!/usr/bin/env python ######################################################################################### # # All sort of utilities for labels. # # --------------------------------------------------------------------------------------- # Copyright (c) 2015 Polytechnique Montreal <www.neuro.polymtl.ca> # Author: Sara Dupont # Modified: 2015-02-17 # # About the license: see the file LICENSE.TXT ######################################################################################### import sys import os from spinalcordtoolbox.utils.shell import SCTArgumentParser, Metavar from spinalcordtoolbox.utils.sys import init_sct, printv, set_global_loglevel # DEFAULT PARAMETERS class Param: # The constructor def __init__(self): self.debug = 0 self.verbose = 1 self.t1 = 0 class ErnstAngle: # The constructor def __init__(self, t1, tr=None, fname_output=None): self.t1 = t1 self.tr = tr self.fname_output = fname_output # compute and return the Ernst Angle def getErnstAngle(self, tr): from numpy import arccos from numpy import exp from math import pi angle_rad = arccos(exp(-tr / self.t1)) angle_deg = angle_rad * 180 / pi return angle_deg # draw the graph def draw(self, tr_min, tr_max): import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from numpy import arange step = (tr_max - tr_min) / 50 tr_range = arange(tr_min, tr_max, step) theta_E = self.getErnstAngle(tr_range) printv("\nDrawing", type='info') plt.plot(tr_range, theta_E, linewidth=1.0) plt.xlabel("TR (in $ms$)") plt.ylabel("$\Theta_E$ (in degree)") plt.ylim(min(theta_E), max(theta_E) + 2) plt.title("Ernst Angle with T1=" + str(self.t1) + "ms") plt.grid(True) if self.tr is not None: plt.plot(self.tr, self.getErnstAngle(self.tr), 'ro') if self.fname_output is not None : printv("\nSaving figure", type='info') plt.savefig(self.fname_output, format='png') plt.show() def get_parser(): parser = SCTArgumentParser( description='Function to compute the Ernst Angle. For examples of T1 values in the brain, see Wansapura et al. ' 'NMR relaxation times in the human brain at 3.0 tesla. Journal of magnetic resonance imaging : ' 'JMRI (1999) vol. 9 (4) pp. 531-8. \nT1 in WM: 832ms\nT1 in GM: 1331ms' ) mandatoryArguments = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatoryArguments.add_argument( "-tr", type=float, required=True, help='Value of TR (in ms) to get the Ernst Angle. Example: 2000', metavar=Metavar.float, ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( "-h", "--help", action="help", help="Show this help message and exit") optional.add_argument( "-t1", type=float, help='T1 value (in ms). Example: 832.3', required=False, metavar=Metavar.float, default=832.0) optional.add_argument( "-b", type=float, nargs='*', metavar=Metavar.float, help='Min/Max range of TR (in ms) separated with space. Only use with -v 2. Example: 500 3500', required=False) optional.add_argument( "-o", help="Name of the output file containing Ernst angle result.", required=False, metavar=Metavar.str, default="ernst_angle.txt") optional.add_argument( "-ofig", help="Name of the output graph. Only use with -v 2.", required=False, metavar=Metavar.str, default="ernst_angle.png") optional.add_argument( '-v', metavar=Metavar.int, type=int, choices=[0, 1, 2], default=1, # Values [0, 1, 2] map to logging levels [WARNING, INFO, DEBUG], but are also used as "if verbose == #" in API help="Verbosity. 0: Display only errors/warnings, 1: Errors/warnings + info messages, 2: Debug mode") return parser # main #======================================================================================================================= def main(argv=None): parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_global_loglevel(verbose=verbose) # Initialization param = Param() input_t1 = arguments.t1 input_fname_output = None input_tr_min = 500 input_tr_max = 3500 input_tr = None fname_output_file = arguments.o if arguments.ofig is not None: input_fname_output = arguments.ofig if arguments.b is not None: input_tr_min = arguments.b[0] input_tr_max = arguments.b[1] if arguments.tr is not None: input_tr = arguments.tr graph = ErnstAngle(input_t1, tr=input_tr, fname_output=input_fname_output) if input_tr is not None: printv("\nValue of the Ernst Angle with T1=" + str(graph.t1) + "ms and TR=" + str(input_tr) + "ms :", verbose=verbose, type='info') printv(str(graph.getErnstAngle(input_tr))) if input_tr > input_tr_max: input_tr_max = input_tr + 500 elif input_tr < input_tr_min: input_tr_min = input_tr - 500 # save text file try: f = open(fname_output_file, 'w') f.write(str(graph.getErnstAngle(input_tr))) f.close() except: printv('\nERROR: Cannot open file'+fname_output_file, '1', 'error') if verbose == 2: graph.draw(input_tr_min, input_tr_max) #======================================================================================================================= # Start program #======================================================================================================================= if __name__ == "__main__": init_sct() main(sys.argv[1:])
mit
henrikalmer/genre-recognition
knn.py
1
1181
import json import numpy as np import pylab as pl from sklearn import neighbors from data import load_features, load_mfccs # Load and divide data ##songs, prop_dict = load_mfccs() songs, prop_dict = load_features() training_set = dict([e for e in prop_dict.items()[0:30]]) testing_set = dict([e for e in prop_dict.items()[30:]]) # Train k-NN fo = open('data/drums.genres.json', 'r') genres = json.loads(fo.read()) cmap = {'pop': 0, 'rock': 1, 'reggae': 2, 'jazz': 3, 'classical': 4} classes = [cmap[genres[k]] for k in training_set.keys()] fo.close() X = np.array([p for k, p in training_set.items()]) Y = np.array(classes) n_neighbors = 9 clf = neighbors.KNeighborsClassifier(n_neighbors, weights='distance').fit(X, Y) # Test k-NN validate = np.array([p for k, p in testing_set.items()]) hits = 0.0 misses = 0.0 for s, p in [(s, p) for (s, p) in testing_set.items()]: s_name = s.split('/')[2].split('.')[0] prediction = clf.predict(prop_dict[s]) answer = cmap[genres[s]] if answer == prediction: hits += 1 else: misses += 1 print s_name, ': ', answer, prediction, answer == prediction print 'Success rate: ', hits/(hits+misses)
gpl-2.0
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/sklearn/cluster/birch.py
207
22706
# Authors: Manoj Kumar <[email protected]> # Alexandre Gramfort <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy import sparse from math import sqrt from ..metrics.pairwise import euclidean_distances from ..base import TransformerMixin, ClusterMixin, BaseEstimator from ..externals.six.moves import xrange from ..utils import check_array from ..utils.extmath import row_norms, safe_sparse_dot from ..utils.validation import NotFittedError, check_is_fitted from .hierarchical import AgglomerativeClustering def _iterate_sparse_X(X): """This little hack returns a densified row when iterating over a sparse matrix, insted of constructing a sparse matrix for every row that is expensive. """ n_samples = X.shape[0] X_indices = X.indices X_data = X.data X_indptr = X.indptr for i in xrange(n_samples): row = np.zeros(X.shape[1]) startptr, endptr = X_indptr[i], X_indptr[i + 1] nonzero_indices = X_indices[startptr:endptr] row[nonzero_indices] = X_data[startptr:endptr] yield row def _split_node(node, threshold, branching_factor): """The node has to be split if there is no place for a new subcluster in the node. 1. Two empty nodes and two empty subclusters are initialized. 2. The pair of distant subclusters are found. 3. The properties of the empty subclusters and nodes are updated according to the nearest distance between the subclusters to the pair of distant subclusters. 4. The two nodes are set as children to the two subclusters. """ new_subcluster1 = _CFSubcluster() new_subcluster2 = _CFSubcluster() new_node1 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_node2 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_subcluster1.child_ = new_node1 new_subcluster2.child_ = new_node2 if node.is_leaf: if node.prev_leaf_ is not None: node.prev_leaf_.next_leaf_ = new_node1 new_node1.prev_leaf_ = node.prev_leaf_ new_node1.next_leaf_ = new_node2 new_node2.prev_leaf_ = new_node1 new_node2.next_leaf_ = node.next_leaf_ if node.next_leaf_ is not None: node.next_leaf_.prev_leaf_ = new_node2 dist = euclidean_distances( node.centroids_, Y_norm_squared=node.squared_norm_, squared=True) n_clusters = dist.shape[0] farthest_idx = np.unravel_index( dist.argmax(), (n_clusters, n_clusters)) node1_dist, node2_dist = dist[[farthest_idx]] node1_closer = node1_dist < node2_dist for idx, subcluster in enumerate(node.subclusters_): if node1_closer[idx]: new_node1.append_subcluster(subcluster) new_subcluster1.update(subcluster) else: new_node2.append_subcluster(subcluster) new_subcluster2.update(subcluster) return new_subcluster1, new_subcluster2 class _CFNode(object): """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : array-like list of subclusters for a particular CFNode. prev_leaf_ : _CFNode prev_leaf. Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray, shape (branching_factor + 1, n_features) manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray, shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray view of ``init_centroids_``. squared_norm_ : ndarray view of ``init_sq_norm_``. """ def __init__(self, threshold, branching_factor, is_leaf, n_features): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features)) self.init_sq_norm_ = np.zeros((branching_factor + 1)) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[:n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[:n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2. dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster( subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = \ self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = \ self.subclusters_[closest_index].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accomodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster( subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = \ closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = \ closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True class _CFSubcluster(object): """Each subcluster in a CFNode is called a CFSubcluster. A CFSubcluster can have a CFNode has its child. Parameters ---------- linear_sum : ndarray, shape (n_features,), optional Sample. This is kept optional to allow initialization of empty subclusters. Attributes ---------- n_samples_ : int Number of samples that belong to each subcluster. linear_sum_ : ndarray Linear sum of all the samples in a subcluster. Prevents holding all sample data in memory. squared_sum_ : float Sum of the squared l2 norms of all samples belonging to a subcluster. centroid_ : ndarray Centroid of the subcluster. Prevent recomputing of centroids when ``CFNode.centroids_`` is called. child_ : _CFNode Child Node of the subcluster. Once a given _CFNode is set as the child of the _CFNode, it is set to ``self.child_``. sq_norm_ : ndarray Squared norm of the subcluster. Used to prevent recomputing when pairwise minimum distances are computed. """ def __init__(self, linear_sum=None): if linear_sum is None: self.n_samples_ = 0 self.squared_sum_ = 0.0 self.linear_sum_ = 0 else: self.n_samples_ = 1 self.centroid_ = self.linear_sum_ = linear_sum self.squared_sum_ = self.sq_norm_ = np.dot( self.linear_sum_, self.linear_sum_) self.child_ = None def update(self, subcluster): self.n_samples_ += subcluster.n_samples_ self.linear_sum_ += subcluster.linear_sum_ self.squared_sum_ += subcluster.squared_sum_ self.centroid_ = self.linear_sum_ / self.n_samples_ self.sq_norm_ = np.dot(self.centroid_, self.centroid_) def merge_subcluster(self, nominee_cluster, threshold): """Check if a cluster is worthy enough to be merged. If yes then merge. """ new_ss = self.squared_sum_ + nominee_cluster.squared_sum_ new_ls = self.linear_sum_ + nominee_cluster.linear_sum_ new_n = self.n_samples_ + nominee_cluster.n_samples_ new_centroid = (1 / new_n) * new_ls new_norm = np.dot(new_centroid, new_centroid) dot_product = (-2 * new_n) * new_norm sq_radius = (new_ss + dot_product) / new_n + new_norm if sq_radius <= threshold ** 2: (self.n_samples_, self.linear_sum_, self.squared_sum_, self.centroid_, self.sq_norm_) = \ new_n, new_ls, new_ss, new_centroid, new_norm return True return False @property def radius(self): """Return radius of the subcluster""" dot_product = -2 * np.dot(self.linear_sum_, self.centroid_) return sqrt( ((self.squared_sum_ + dot_product) / self.n_samples_) + self.sq_norm_) class Birch(BaseEstimator, TransformerMixin, ClusterMixin): """Implements the Birch clustering algorithm. Every new sample is inserted into the root of the Clustering Feature Tree. It is then clubbed together with the subcluster that has the centroid closest to the new sample. This is done recursively till it ends up at the subcluster of the leaf of the tree has the closest centroid. Read more in the :ref:`User Guide <birch>`. Parameters ---------- threshold : float, default 0.5 The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. branching_factor : int, default 50 Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then the node has to be split. The corresponding parent also has to be split and if the number of subclusters in the parent is greater than the branching factor, then it has to be split recursively. n_clusters : int, instance of sklearn.cluster model, default None Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. By default, this final clustering step is not performed and the subclusters are returned as they are. If a model is provided, the model is fit treating the subclusters as new samples and the initial data is mapped to the label of the closest subcluster. If an int is provided, the model fit is AgglomerativeClustering with n_clusters set to the int. compute_labels : bool, default True Whether or not to compute labels for each fit. copy : bool, default True Whether or not to make a copy of the given data. If set to False, the initial data will be overwritten. Attributes ---------- root_ : _CFNode Root of the CFTree. dummy_leaf_ : _CFNode Start pointer to all the leaves. subcluster_centers_ : ndarray, Centroids of all subclusters read directly from the leaves. subcluster_labels_ : ndarray, Labels assigned to the centroids of the subclusters after they are clustered globally. labels_ : ndarray, shape (n_samples,) Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data. Examples -------- >>> from sklearn.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1]) References ---------- * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/p/jbirch/ """ def __init__(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True): self.threshold = threshold self.branching_factor = branching_factor self.n_clusters = n_clusters self.compute_labels = compute_labels self.copy = copy def fit(self, X, y=None): """ Build a CF Tree for the input data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. """ self.fit_, self.partial_fit_ = True, False return self._fit(X) def _fit(self, X): X = check_array(X, accept_sparse='csr', copy=self.copy) threshold = self.threshold branching_factor = self.branching_factor if branching_factor <= 1: raise ValueError("Branching_factor should be greater than one.") n_samples, n_features = X.shape # If partial_fit is called for the first time or fit is called, we # start a new tree. partial_fit = getattr(self, 'partial_fit_') has_root = getattr(self, 'root_', None) if getattr(self, 'fit_') or (partial_fit and not has_root): # The first root is the leaf. Manipulate this object throughout. self.root_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) # To enable getting back subclusters. self.dummy_leaf_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) self.dummy_leaf_.next_leaf_ = self.root_ self.root_.prev_leaf_ = self.dummy_leaf_ # Cannot vectorize. Enough to convince to use cython. if not sparse.issparse(X): iter_func = iter else: iter_func = _iterate_sparse_X for sample in iter_func(X): subcluster = _CFSubcluster(linear_sum=sample) split = self.root_.insert_cf_subcluster(subcluster) if split: new_subcluster1, new_subcluster2 = _split_node( self.root_, threshold, branching_factor) del self.root_ self.root_ = _CFNode(threshold, branching_factor, is_leaf=False, n_features=n_features) self.root_.append_subcluster(new_subcluster1) self.root_.append_subcluster(new_subcluster2) centroids = np.concatenate([ leaf.centroids_ for leaf in self._get_leaves()]) self.subcluster_centers_ = centroids self._global_clustering(X) return self def _get_leaves(self): """ Retrieve the leaves of the CF Node. Returns ------- leaves: array-like List of the leaf nodes. """ leaf_ptr = self.dummy_leaf_.next_leaf_ leaves = [] while leaf_ptr is not None: leaves.append(leaf_ptr) leaf_ptr = leaf_ptr.next_leaf_ return leaves def partial_fit(self, X=None, y=None): """ Online learning. Prevents rebuilding of CFTree from scratch. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features), None Input data. If X is not provided, only the global clustering step is done. """ self.partial_fit_, self.fit_ = True, False if X is None: # Perform just the final global clustering step. self._global_clustering() return self else: self._check_fit(X) return self._fit(X) def _check_fit(self, X): is_fitted = hasattr(self, 'subcluster_centers_') # Called by partial_fit, before fitting. has_partial_fit = hasattr(self, 'partial_fit_') # Should raise an error if one does not fit before predicting. if not (is_fitted or has_partial_fit): raise NotFittedError("Fit training data before predicting") if is_fitted and X.shape[1] != self.subcluster_centers_.shape[1]: raise ValueError( "Training data and predicted data do " "not have same number of features.") def predict(self, X): """ Predict data using the ``centroids_`` of subclusters. Avoid computation of the row norms of X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- labels: ndarray, shape(n_samples) Labelled data. """ X = check_array(X, accept_sparse='csr') self._check_fit(X) reduced_distance = safe_sparse_dot(X, self.subcluster_centers_.T) reduced_distance *= -2 reduced_distance += self._subcluster_norms return self.subcluster_labels_[np.argmin(reduced_distance, axis=1)] def transform(self, X, y=None): """ Transform X into subcluster centroids dimension. Each dimension represents the distance from the sample point to each cluster centroid. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters) Transformed data. """ check_is_fitted(self, 'subcluster_centers_') return euclidean_distances(X, self.subcluster_centers_) def _global_clustering(self, X=None): """ Global clustering for the subclusters obtained after fitting """ clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, int): clusterer = AgglomerativeClustering( n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True elif (clusterer is not None and not hasattr(clusterer, 'fit_predict')): raise ValueError("n_clusters should be an instance of " "ClusterMixin or an int") # To use in predict to avoid recalculation. self._subcluster_norms = row_norms( self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by Birch is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters)) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict( self.subcluster_centers_) if compute_labels: self.labels_ = self.predict(X)
gpl-2.0
cwu2011/scikit-learn
examples/svm/plot_separating_hyperplane.py
62
1274
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machines classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
brandon-rhodes/numpy
numpy/core/function_base.py
16
6408
from __future__ import division, absolute_import, print_function __all__ = ['logspace', 'linspace'] from . import numeric as _nx from .numeric import array, result_type, NaN def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None): """ Return evenly spaced numbers over a specified interval. Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop`]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. dtype : dtype, optional The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. .. versionadded:: 1.9.0 Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether `endpoint` is True or False). step : float Only returned if `retstep` is True Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ num = int(num) div = (num - 1) if endpoint else num # Convert float/complex array scalars to float, gh-3504 start = start * 1. stop = stop * 1. dt = result_type(start, stop, float(num)) if dtype is None: dtype = dt y = _nx.arange(0, num, dtype=dt) if num > 1: delta = stop - start step = delta / div if step == 0: # Special handling for denormal numbers, gh-5437 y /= div y *= delta else: y *= step else: # 0 and 1 item long sequences have an undefined step step = NaN y += start if endpoint and num > 1: y[-1] = stop if retstep: return y.astype(dtype, copy=False), step else: return y.astype(dtype, copy=False) def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None): """ Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Parameters ---------- start : float ``base ** start`` is the starting value of the sequence. stop : float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length ``num``) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. dtype : dtype The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y).astype(dtype) ... # doctest: +SKIP Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ y = linspace(start, stop, num=num, endpoint=endpoint) if dtype is None: return _nx.power(base, y) return _nx.power(base, y).astype(dtype)
bsd-3-clause
eickenberg/scikit-learn
sklearn/utils/setup.py
296
2884
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('sparsefuncs_fast', sources=['sparsefuncs_fast.c'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.c'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension( 'murmurhash', sources=['murmurhash.c', join('src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.c', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.c'], include_dirs=[numpy.get_include()]) config.add_extension('fast_dict', sources=['fast_dict.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('seq_dataset', sources=['seq_dataset.c'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.c'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("_random", sources=["_random.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.c"], include_dirs=[numpy.get_include()], libraries=libraries) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
avoyages/etfa2015
mtf_python3_v1/mtf/utils/dic.py
1
12317
#!/usr/bin/python3 import itertools import pandas as pd ''' #list of smart address for fuzzing --add value 32768 65535 and 10000, 20000,40000, 50000 Common_add_fuz=[0,1,2,3,4,254,255,256,257,511,512,513,1023,1024,1025,2047,2048,2049,4095,4096,4097,8195,8196,8197,16383,16384,16385,32762,32763,32764,32769,65531,65532,65533,65534,65535] #Use to Invalid_quantity, smart value contiguous registers (1 to 123 registers) for 16 (0x10)/ qua_IN_REG_HO_REG=[0,1,2,3,64,123,124,125,126,127,511,512,513,1024,2047,2048,2049,4095,4096,4097,5000,8196,10000,32762,32763,32764,32769,65333,65534,65535] #Quantity 1 to 125 (0x7D) 'qua_COILS_DIS_IN':[0,1,2,3,64,123,124,125,126,127,511,512,513,1000,1998,1999,2000,2001,2002,2047,2048,2049,4095,4096,4097,5000,8196,10000,32762,32763,32764,32769,65333,65534,65535] #Registers 1 to 2000 (0x7D) #23 (0x17) Read/Write Multiple registers/Quantity to Read=125/Quantity to Write =121 "qua_WR_MU_REG_RW_Multiple':[0,1,2,3,63,64,119,120,121,122,123,124,125,126,127,511,512,513,1024,2048,2049,4096,4097,5000,8196,10000,32762,32763,32764,32769,65333,65534,65535] "qua_W_MUL_COILS' :[0,1,2,3,64,123,124,125,126,127,511,512,513,984,1966,1967,1968,1999,2000,2001,2002,2047,2048,4096,4097,5000,8196,10000,32762,32763,32764,32769,65333,65534,65535] #Quantity to Write =121 /fuzze field value 'value_w_fc23': [0,1,2,64,119,120,122,123,121,122,123,124,125,512,513,1024,2048,2049,4096,4097,5000,8196,10000,32762,32763,32764,32769,65533,65534,65535] 'value_w_byte_count':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255] #FC 20 (0x14), FC 21, fc 23 set Configuration interest value for fuzzing field PDU 'value_test_refer_type':[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 249, 250, 251, 252, 253, 254, 255] #Reference Type #Reference Type list 'value_test_Byte_count':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255] # normal x07 to 0xF5 /7-245 /one BYTES 'value_test_file_number':[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 255, 256, 257, 511, 512, 513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193, 16383, 16384, 16385, 32767, 32768, 32769, 65471, 65472, 65473, 65503, 65504, 65505, 65519, 65520, 65521, 65527, 65528, 65529, 65530, 65531, 65532, 65533, 65534, 65535] 'value_test_record_number':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 255, 256, 257, 511, 512, 513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193, 9993, 9994, 9995, 9996, 9997, 9998, 9999, 10000, 10001, 10002, 10003, 10004, 16383, 16384, 16385, 32767, 32768, 32769, 65471, 65472, 65473, 65503, 65504, 65505, 65519, 65520, 65521, 65527, 65528, 65529, 65530, 65531, 65532, 65533, 65534, 65535] 'value_test_record_length':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 255, 256, 257, 511, 512, 513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193, 16383, 16384, 16385, 32767, 32768, 32769, 65471, 65472, 65473, 65503, 65504, 65505, 65519, 65520, 65521, 65527, 65528, 65529, 65530, 65531, 65532, 65533, 65534, 65535] #ADU 1453 +7 = 1460 B MAX ,max packet 260B 'foo_len'= [0, 1,2,3,4,5,6,7,8,9,10,255,256,257,258,259,260,261,262,263,264,511,512,513,1024,2048,2049,1452,1451,1454,1455,1461,1462,1459,1458,2048,2049,4096,4097,5000,8196,10000,32762,32763,32764,32769,65534,65533,65535] FC List Public codes the non-contiguous ranges {1-64, 73-99, 111-127}. User-defined codes in the ranges {65-72, 100-110} flag_i=0 'foo_fct': [0,(7,8,9,11,12,17,43),list(range(65,73)),list(range(100,110)),list(range(111,128)),list(range(73,80)),list(range(1,65))] #List for choise fuzzing field PDU for each FC fp= [ 'repeat','random_pdu','remove','message'] f_mbap=['len' ,'clone','transId', 'protoId', 'unitId', ] payload_pdu=['diagnostics','randByte','randBit','zerobyte','corrupt_bytes','corrupt_bits','little_endian_payload','sendbad', 'sendresponse','exception'] f_reg=['function_code', 'starting_address', 'quantity_of_x'] f_wr=['function_code', 'starting_address', 'output_value'] f_mul_coil_reg=['function_code', 'starting_address','quantity_of_x','byte_count','value'] f_read_file_rec=['function_code','Byte_Count','Reference_Type','File_number','Record_number','Record_length'] f_write_file_rec=['Data_length','Reference_Type','File_number','Record_number','Record_length','Record_data'] f_mask=['function_code', 'and_mask','or_mask'] f_rw_reg=['function_code', 'read_count','write_count','write_byte_count', 'value'] # dictionary of lists of smart address for fuzzing --add value 32768 65535 and 10000, 20000, 40000, 50000 #--Use to Invalid_quantity, smart value contiguous registers (1 to 123 registers) for 16 (0x10)/ #qua_IN_REG_HO_REG and qua_COILS_DIS_IN #--#23 (0x17) Read/Write Multiple registers/Quantity to Read=125/Quantity to Write=121 #--FC 23 Quantity to Write =121 /fuzze field value and byte count #FC 20 (0x14), FC 21, fc 23 set Configuration interest value for fuzzing field PDU #Fuzzing len, ADU 1453 +7 = 1460 B MAX and max packet 260B ''' Dict_lists_of_smart_value = { 'foo_value': [0,65535], 'Common_add_fuz':[0,1,2,3,4,254,255,256,257,511,512,513,1023,1024,1025,2047,2048,2049,4095,4096,4097,8195,8196,8197,16383,\ 16384,16385,32762,32763,32764,32769,65531,65532,65533,65534,65535], 'qua_IN_REG_HO_REG':[0,1,2,3,64,123,124,125,126,127,511,512,513,1024,2047,2048,2049,4095,4096,4097,5000,8196,10000,32762,32763,\ 32764,32769,65333,65534,65535], 'qua_COILS_DIS_IN':[0,1,2,3,64,123,124,125,126,127,511,512,513,1000,1998,1999,2000,2001,2002,2047,2048,2049,4095,4096,4097,\ 5000,8196,10000,32762,32763,32764,32769,65333,65534,65535] , 'qua_WR_MU_REG_RW_Multiple':[0,1,2,3,63,64,119,120,121,122,123,124,125,126,127,511,512,513,1024,2048,2049,4096,4097,5000,8196,\ 10000,32762,32763,32764,32769,65333,65534,65535], 'qua_W_MUL_COILS':[0,1,2,3,64,123,124,125,126,127,511,512,513,984,1966,1967,1968,1999,2000,2001,2002,2047,2048,4096,4097,5000,\ 8196,10000,32762,32763,32764,32769,65333,65534,65535], 'value_w_fc23': [0,1,2,64,119,120,122,123,121,122,123,124,125,512,513,1024,2048,2049,4096,4097,5000,8196,10000,32762,32763,32764,\ 32769,65533,65534,65535], 'value_w_byte_count':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 246, 247, 248, 249, 250, 251, \ 252, 253, 254, 255], 'value_test_refer_type':[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 249, 250, 251, \ 252, 253, 254, 255], #Reference Type list 'value_test_Byte_count':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 246, 247, 248, 249, 250, 251, 252, 253, 254, \ 255], 'value_test_file_number':[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, \ 255, 256, 257, 511, 512, 513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193, 16383, 16384, 16385, 32767,\ 32768, 32769, 65471, 65472, 65473, 65503, 65504, 65505, 65519, 65520, 65521, 65527, 65528, 65529, 65530, 65531, 65532, 65533, 65534, 65535], 'value_test_record_number':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 255, 256, 257, 511, 512, 513, 1023, \ 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193, 9993, 9994, 9995, 9996, 9997, 9998, 9999, 10000, 10001, 10002, 10003, 10004, 16383, 16384, 16385, 32767, 32768, 32769, 65471, 65472, 65473, 65503, 65504, 65505, 65519, 65520, 65521, 65527, 65528, 65529, 65530, 65531, 65532, 65533, 65534, 65535], 'value_test_record_length':[0, 1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 116, 117, 118, 119, 120, 121, 122, 123, 124, \ 125, 126, 127, 128, 129, 255, 256, 257, 511, 512, 513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193, 16383, 16384, \ 16385, 32767, 32768, 32769, 65471, 65472, 65473, 65503, 65504, 65505, 65519, 65520, 65521, 65527, 65528, 65529, 65530, 65531, 65532, 65533, 65534, 65535], 'foo_len': [0, 1,2,3,4,5,6,7,8,9,10,255,256,257,258,259,260,261,262,263,264,511,512,513,1024,2048,2049,1452,1451,1454,1455,1461,\ 1462,1459,1458,2048,2049,4096,4097,5000,8196,10000,32762,32763,32764,32769,65534,65533,65535], } Dict_fuzz_operation = { 'foo_value': [0,65535], 'foo_fct': [0,(7,8,9,11,12,17,43),list(range(65,73)),list(range(100,110)),list(range(111,128)),list(range(73,80)),list(range(1,65))], 'fp': ['repeat','random_pdu','remove','message'], 'f_mbap':['len' ,'clone','transId', 'protoId', 'unitId' ], 'payload_pdu':['diagnostics','randByte','randBit','zerobyte','corrupt_bytes','corrupt_bits','little_endian_payload','sendbad', 'sendresponse','exception'], 'f_reg':['function_code', 'starting_address', 'quantity_of_x'], 'f_wr':['function_code', 'starting_address', 'output_value'], 'f_mul_coil_reg':['function_code', 'starting_address','quantity_of_x','byte_count','value'], 'f_read_file_rec':['function_code','Byte_Count','Reference_Type','File_number','Record_number','Record_length'], 'f_write_file_rec':['Data_length','Reference_Type','File_number','Record_number','Record_length','Record_data'], 'f_mask':['function_code', 'and_mask','or_mask'], 'f_rw_reg':['function_code', 'read_count','write_count','write_byte_count', 'value'], } #df = pd.DataFrame(myDict) #d #print(myDict) #print("The original dictionary is : " + str(myDict)) print(*Dict_fuzz_operation.items(), sep='\n') foo_value=Dict_lists_of_smart_value.get('foo_value') foo_fct=Dict_fuzz_operation.get('foo_fct') #print (*foo_value) #print(*Dict_lists_of_smart_value , sep = ", ") #print('[',end='');print(foo_value, sep=', ', end='');print(']') #print(*Dict_fuzz_operation , sep = ", ") print (foo_fct) #0, (7, 8, 9, 11, 12, 17, 43), [65, 66, 67, 68, 69, 70, 71, 72], [100, 101, 102, 103, 104, 105, 106, 107, 108, 109], \ #[111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127], [73, 74, 75, 76, 77, 78, 79], \ #[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]] print (foo_value) # A list of the keys of dictionary list_keys = [ k for k in Dict_fuzz_operation ] # or a list of the values list_values = [ v for v in Dict_fuzz_operation.values() ] # or just a list of the list of key value pairs list_key_value = [ [k,v] for k, v in Dict_fuzz_operation.items() ] print(sep='\n') print(list_key_value) #df = pd.DataFrame(Dict_fuzz_operation) """Iterate over the dictionary using for loop for key in wordFrequency: value = wordFrequency[key] print(key, " :: ", value) out qua_W_MUL_COILS : [0, 1, 2, 3, 64, 123, 124, 125, 126, 127, 511, 512, 513, 984, 1966, 1967, 1968, 1999, 2000, 2001, 2002, 2047, 2048, 4096, 4097, 5000, 8196, 10000, 32762, 32763, 32764, 32769, 65333, 65534, 65535] """ def iner_loop_key(): for key in Dict_lists_of_smart_value: value = Dict_lists_of_smart_value[key] #key = Dict_lists_of_smart_value[key] # for key and list value #print(fuzz_session.key) print(key, ":", value) print(sep='\n') prob_list = [('payload', 0.3), ('field_ADU', 0.1), ('field pdu', 0.4),('two fields in message', 0.1),('Not_fuzz',0.1)] iner_loop_key() print(prob_list)
gpl-3.0
superbobry/pymc3
pymc3/examples/lasso_block_update.py
14
1676
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # Sometimes, it is very useful to update a set of parameters together. For example, variables that are highly correlated are often good to update together. In PyMC 3 block updating is simple, as example will demonstrate. # # Here we have a LASSO regression model where the two coefficients are strongly correlated. Normally, we would define the coefficient parameters as a single random variable, but here we define them separately to show how to do block updates. # # First we generate some fake data. # <codecell> from matplotlib.pylab import * from pymc3 import * import numpy as np d = np.random.normal(size=(3, 30)) d1 = d[0] + 4 d2 = d[1] + 4 yd = .2 * d1 + .3 * d2 + d[2] # <markdowncell> # Then define the random variables. # <codecell> with Model() as model: s = Exponential('s', 1) m1 = Laplace('m1', 0, 100) m2 = Laplace('m2', 0, 100) p = d1 * m1 + d2 * m2 y = Normal('y', p, s ** -2, observed=yd) # <markdowncell> # For most samplers, including Metropolis and HamiltonianMC, simply pass a # list of variables to sample as a block. This works with both scalar and # array parameters. # <codecell> with model: step1 = Metropolis([m1, m2], blocked=True) step2 = Metropolis([s], proposal_dist=LaplaceProposal) def run(n=5000): if n == "short": n = 300 with model: start = find_MAP() trace = sample(n, [step1, step2], start) dh = fn(hessian_diag(model.logpt)) # <codecell> traceplot(trace) # <codecell> hexbin(trace[m1], trace[m2], gridsize=50) # <codecell> if __name__ == '__main__': run()
apache-2.0
fabioticconi/scikit-learn
sklearn/utils/tests/test_utils.py
16
9120
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from scipy.linalg import eigh from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex, assert_greater_equal) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.arpack import eigsh from sklearn.utils.mocking import MockDataFrame from sklearn.utils.graph import graph_laplacian def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample(): # Border case not worth mentioning in doctests assert_true(resample() is None) # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], replace=False, n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) # Issue:6581, n_samples can be more when replace is True (default). assert_equal(len(resample([1, 2], n_samples=5)), 5) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_arpack_eigsh_initialization(): # Non-regression test that shows null-space computation is better with # initialization of eigsh from [-1,1] instead of [0,1] random_state = check_random_state(42) A = random_state.rand(50, 50) A = np.dot(A.T, A) # create s.p.d. matrix A = graph_laplacian(A) + 1e-7 * np.identity(A.shape[0]) k = 5 # Test if eigsh is working correctly # New initialization [-1,1] (as in original ARPACK) # Was [0,1] before, with which this test could fail v0 = random_state.uniform(-1,1, A.shape[0]) w, _ = eigsh(A, k=k, sigma=0.0, v0=v0) # Eigenvalues of s.p.d. matrix should be nonnegative, w[0] is smallest assert_greater_equal(w[0], 0) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
bsd-3-clause
MartinDelzant/scikit-learn
sklearn/preprocessing/data.py
68
57385
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] DEPRECATION_MSG_1D = ( "Passing 1d arrays as data is deprecated in 0.17 and will " "raise ValueError in 0.19. Reshape your data either using " "X.reshape(-1, 1) if your data has a single feature or " "X.reshape(1, -1) if it contains a single sample." ) def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
sudhanshuptl/python-neural-network
Iris_Data_Backprop/main.py
1
2498
__auther__='Jorgen Grimnes, Sudhanshu Patel' from sklearn import datasets import numpy as np from activation_functions import sigmoid_function, tanh_function, linear_function,\ LReLU_function, ReLU_function, symmetric_elliot_function, elliot_function from neuralnet import NeuralNet class Instance: # This is a simple encapsulation of a `input signal : output signal` # pair in out training set. def __init__(self, features, target): self.features = np.array(features) self.targets = np.array(target) #endclass Instance #------------------------------------------------------------------------------- ##Importing Iris data Set iris = datasets.load_iris() X = iris.data[:,] Y = iris.target inp=[] for i in range(0,len(X)): # preprocessing Iris data, in 4 input and 3 output format inp.append([list(X[i])]) if Y[i]==0: y=[1,0,0] elif Y[i]==1: y=[0,1,0] elif Y[i]==2: y=[0,0,1] inp[i].append(y) #training sets training_one =[] for i in range(len(inp)): training_one.append(Instance(inp[i][0],inp[i][1])) #Encapsulation of a `input signal : output signal #------------------------------------------------------------------------------ n_inputs = 4 # Number of input feature n_outputs = 3 # Number of neuron output n_hiddens = 8 # Number of neuron at each hidden layer n_hidden_layers = 2 # number of hidden layer # here 2 Hidden layer with 8 node each and 1 output layer with 3 node #------------------------DEclaration of activation or Transfer function at each layer --------------------------------------# # specify activation functions per layer eg: [ hidden_layer_1, hidden_layer_2, output_layer ] activation_functions = [symmetric_elliot_function,]*n_hidden_layers + [ sigmoid_function ] # initialize the neural network network = NeuralNet(n_inputs, n_outputs, n_hiddens, n_hidden_layers, activation_functions) # network is Instance of class Neuralnet # start training on test set one network.backpropagation(training_one, ERROR_LIMIT=.05, learning_rate=0.2, momentum_factor=0.2 ) # save the trained network network.save_to_file( "trained_configuration.pkl" ) # load a stored network configuration # network = NeuralNet.load_from_file( "trained_configuration.pkl" ) # print out the result for instance in training_one: print instance.features, network.forwordProp( np.array([instance.features]) ), "\ttarget:", instance.targets
bsd-2-clause
Dekken/tick
tools/benchmark/hawkes_leastsq_weights.py
2
2869
# License: BSD 3 clause import os import matplotlib.pyplot as plt import numpy as np import pandas as pd from tools.benchmark.benchmark_util import ( iter_executables, run_benchmark, extract_build_from_name, default_result_dir, get_last_result_dir) BASE_FILE_NAME = os.path.basename(__file__).replace('.py', '') def run_hawkes_leastsq_weights_benchmark(): result_dir = default_result_dir(base=BASE_FILE_NAME) for executable in iter_executables('hawkes_leastsq_weights'): n_threads = [1, 2, 4, 6, 8] result_dir = run_benchmark(executable, n_threads, result_dir) return result_dir def _load_benchmark_data(result_dir=None): if result_dir is None: result_dir = get_last_result_dir(BASE_FILE_NAME) cols = ["time", "iterations", "n_threads", "coeffs", "exectuable", "build"] df = pd.DataFrame(columns=cols) for result_file in [f for f in os.listdir(result_dir) if f.endswith('tsv')]: result_path = os.path.join(result_dir, result_file) local_df = pd.read_csv(result_path, sep='\t', names=cols[:-1], index_col=False) local_df[cols[-1]] = extract_build_from_name(result_file) df = df.append(local_df) for num_col in [col for col in cols if col not in ['exectuable', 'build']]: df[num_col] = pd.to_numeric(df[num_col]) return df, result_dir def plot_hawkes_leastsq_weights_benchmark(result_dir=None): df, result_dir = _load_benchmark_data(result_dir) fig, axes = plt.subplots(1, 2) ax_time = axes[0] ax_speedup = axes[1] max_threads = df['n_threads'].max() ax_speedup.plot([1, max_threads], [1, max_threads], linestyle='--', lw=1, color='grey') for build, df_build in df.groupby('build'): group_by_threads = df_build.groupby('n_threads') grouped_times = group_by_threads['time'] mean_times = grouped_times.mean() confidence_times = grouped_times.std() / np.sqrt(grouped_times.count()) confidence_times *= 1.96 ax_time.plot(mean_times, label=build) ax_time.fill_between(mean_times.index, mean_times - confidence_times, mean_times + confidence_times, alpha=.3) ax_time.set_title('Time needed') speed_ups = mean_times[1] / mean_times ax_speedup.plot(speed_ups, label=build) ax_speedup.set_title('Speed up') for ax in axes: ax.legend() ax.set_xlabel('Threads') fig.suptitle(BASE_FILE_NAME) plot_file_path = os.path.abspath(os.path.join(result_dir, 'result.png')) plt.savefig(plot_file_path) print('saved figure in {}'.format(plot_file_path)) run_hawkes_leastsq_weights_benchmark() plot_hawkes_leastsq_weights_benchmark()
bsd-3-clause
lakshayg/tensorflow
tensorflow/python/estimator/inputs/pandas_io_test.py
89
8340
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_NonBoolShuffle(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaisesRegexp(TypeError, 'shuffle must be explicitly set as boolean'): # Default shuffle is None pandas_io.pandas_input_fn(x, y_noindex) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 102) a = np.arange(2) b = np.arange(32, 34) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -30), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=128, shuffle=False, num_epochs=2) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1, 0, 1]) self.assertAllEqual(features['b'], [32, 33, 32, 33]) self.assertAllEqual(target, [-32, -31, -32, -31]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self): if not HAS_PANDAS: return with self.test_session() as session: index = np.arange(100, 105) a = np.arange(5) b = np.arange(32, 37) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -27), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) features, target = session.run(results) self.assertAllEqual(features['a'], [2, 3]) self.assertAllEqual(features['b'], [34, 35]) self.assertAllEqual(target, [-30, -29]) features, target = session.run(results) self.assertAllEqual(features['a'], [4]) self.assertAllEqual(features['b'], [36]) self.assertAllEqual(target, [-28]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.test_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.test_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
apache-2.0
vybstat/scikit-learn
sklearn/datasets/__init__.py
176
3671
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
thisch/pydipole
examples/ring.py
1
2643
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import logging LG = logging.getLogger() logging.basicConfig(level=logging.DEBUG) from dipole.field import dipole_e_ff from dipole.field import dipole_radiant_intensity from dipole.helper import gen_r def plot_intens(T=None, P=None, intens=None, title=None, XY=None, ax=None): if ax is None: fig, ax = plt.subplots() if XY is not None: ax.pcolormesh(XY[0], XY[1], intens) ax.set_xlabel('x', fontsize=16) ax.set_ylabel('y', fontsize=16) else: ax.pcolormesh(np.degrees(T*np.cos(P)), np.degrees(T*np.sin(P)), intens) ax.set_xlabel(r'$\Theta_x$', fontsize=16) ax.set_ylabel(r'$\Theta_y$', fontsize=16) tm = 10 ax.set_xlim(-tm, tm) ax.set_ylim(-tm, tm) # ax.set_xticks([-tm, -45, 0, 45, tm]) # ax.set_yticks([-tm, -45, 0, 45, tm]) ax.set_aspect('equal') if title: ax.set_title(title) return ax def main(onsphere=False): thetamax = 10. k = 1. Lam = 2*np.pi/k reval = 1000*Lam ngrid = 128 ndip = 256 reval = 500.*Lam LG.info('#### SETTINGS: k=%g, reval=%g', k, reval) rparams = gen_r(ngrid, reval=reval, onsphere=onsphere, thetamax=thetamax) dipole_phis, dphi = np.linspace(0, 2*np.pi, ndip, retstep=True, endpoint=False) pringfac = 1. pring = np.zeros((ndip, 3)) # dipole moments ringslice = slice(None, None, None) pring[ringslice, 0] = -np.sin(dipole_phis) * pringfac pring[ringslice, 1] = np.cos(dipole_phis) * pringfac rringfac = 15. rfac = rringfac*Lam rring = np.zeros((ndip, 3)) # dipol aufpunkte rring[ringslice, 0] = np.cos(dipole_phis) * rfac rring[ringslice, 1] = np.sin(dipole_phis) * rfac phases = np.zeros(ndip) if onsphere: # radiant intensity intens = dipole_radiant_intensity(rparams[0], rparams[1], pring, rring, phases, k) else: eff = dipole_e_ff(rparams[-1], pring, rring, phases, k, t=0) intens = np.linalg.norm(eff, axis=2)**2 if onsphere: T, P, _ = rparams ax = plot_intens(T, P, intens) else: X, Y, _, = rparams ax = plot_intens(intens=intens, XY=(X, Y)) ax.set_title('k=%g, %s' % (k, ('reval=%g' % reval) if onsphere else ('zeval=%g' % reval))) if __name__ == '__main__': main(onsphere=True) main(onsphere=False) plt.show()
mit
RayMick/scikit-learn
examples/classification/plot_classifier_comparison.py
66
4895
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "Linear Discriminant Analysis", "Quadratic Discriminant Analysis"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
Sapphirine/bestbuy-recommend
src/frequency.py
2
4065
import xml.etree.ElementTree as ET import csv import sys from collections import defaultdict from Parser import * import operator from preprocess import * from sklearn.feature_extraction.text import TfidfVectorizer import numpy from numpy import * from heapq import * import re def getQuerySkuDict(filename): inputFile = open(filename) reader = csv.reader(inputFile) querySkuDict = defaultdict(lambda: defaultdict(int)) queryStat = defaultdict(int) par = Parser() for row in reader: query = row[3] query = preprocessQuery(query, par) sku = row[1] queryStat[query] += 1 querySkuDict[query][sku] += 1 return querySkuDict, queryStat def getProductInfo(): productTree = ET.parse('../data/small_product_data.xml') root = productTree.getroot() productSkus = [] productDescpt = [] for product in root.findall('product'): sku = product.find('sku').text description = product.find('longDescription').text productSkus.append(sku) productDescpt.append(description) return productSkus, productDescpt def getDatumInfo(testFileName): testFile = open(testFileName, 'r') reader = csv.reader(testFile) datum = [] queries = [] for row in reader: datum.append(row) queries.append(row[3]) return datum, queries def getQueryStats(): trainFileName = '../data/psudo_train2.csv' querySkuDict, queryStat = getQuerySkuDict(trainFileName) sortedQuery = sorted(queryStat.items(), key=operator.itemgetter(1), reverse=True) top100 = sortedQuery[0:100] output = open('../data/result/top100query.txt','w') for queryDict in top100: query = queryDict[0] query = re.sub("\s","-",query) count = queryDict[1] query += " " outputStr = query * int(count*1.0 / 10) output.write(outputStr) output.close() if __name__ == "__main__": trainFileName = '../data/psudo_train2.csv' testFileName = '../data/psudo_test2.csv' querySkuDict, queryStat = getQuerySkuDict(trainFileName) productSkus, productDescpt = getProductInfo() datum, queries = getDatumInfo(testFileName) corpus = [] corpus.extend(productDescpt) corpus.extend(queries) vectorizer = TfidfVectorizer(min_df=1) tfidf = vectorizer.fit_transform(corpus) tfidfArray = tfidf.toarray() numProducts = len(productSkus) numQuery = len(datum) """ for each query, I get the top five sku with product(tfidf(product), tfidf(query)) """ contentOutput = open('../data/result/content.csv','w') collabOutput = open('../data/result/frequency.csv','w') writer1 = csv.writer(contentOutput) writer2 = csv.writer(collabOutput) total = 0.0 correct = 0.0 correct1 = 0.0 tmp = 0.0 tmp1 = 0.0 for x in range(0, numQuery): total += 1 trueSku = datum[x][1] query = queries[x] #first do content-based filtering queryArray = tfidfArray[x+numProducts,:] scoreDict = {} for j in range(0, numProducts): prodArray = tfidfArray[j,:] score = numpy.dot(queryArray, prodArray) if score > 0: scoreDict[productSkus[j]] = score skusItems = nlargest(5, scoreDict.items(), key=operator.itemgetter(1)) skus1 = [] for sku in skusItems: skus1.append(sku[0]) #then do collaborative filtering skus2 = [] if query in querySkuDict: for sku in sorted( querySkuDict[query], key=querySkuDict[query].get, reverse = True ): skus2.append(sku) skus2 = skus2[0:5] writer1.writerow(skus1) writer2.writerow(skus2) if trueSku in skus1: correct1 += 1.0 / (skus1.index(trueSku) + 1) tmp1 += 1 if trueSku in skus2: correct += 1.0 / (skus2.index(trueSku) + 1) tmp += 1 print "frequence precision " + str(tmp/total) print "frequence score: " + str(correct / total)
mit
tapomayukh/projects_in_python
classification/Classification_with_kNN/Single_Contact_Classification/Scaled_Features/best_kNN_PCA/2_categories/test11_cross_validate_categories_mov_fixed_1200ms_scaled_method_iii.py
1
5012
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_kNN/Scaled') from data_method_III import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) ###### Sanity Check ###### i=0 n=0 while i < 123: j=0 while j < 140: if X[i,j] != X[i,j]: print X[i,j] print i,j n=n+1 j = j+1 i=i+1 print n ########################## print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov def my_mvpa(Y,num2): #Using PYMVPA PCA_data = np.array(Y) PCA_label_1 = ['Fixed']*35 + ['Movable']*35 + ['Fixed']*35 + ['Movable']*35 PCA_chunk_1 = ['Styrofoam-Fixed']*5 + ['Books-Fixed']*5 + ['Bucket-Fixed']*5 + ['Bowl-Fixed']*5 + ['Can-Fixed']*5 + ['Box-Fixed']*5 + ['Pipe-Fixed']*5 + ['Styrofoam-Movable']*5 + ['Container-Movable']*5 + ['Books-Movable']*5 + ['Cloth-Roll-Movable']*5 + ['Black-Rubber-Movable']*5 + ['Can-Movable']*5 + ['Box-Movable']*5 + ['Rug-Fixed']*5 + ['Bubble-Wrap-1-Fixed']*5 + ['Pillow-1-Fixed']*5 + ['Bubble-Wrap-2-Fixed']*5 + ['Sponge-Fixed']*5 + ['Foliage-Fixed']*5 + ['Pillow-2-Fixed']*5 + ['Rug-Movable']*5 + ['Bubble-Wrap-1-Movable']*5 + ['Pillow-1-Movable']*5 + ['Bubble-Wrap-2-Movable']*5 + ['Pillow-2-Movable']*5 + ['Cushion-Movable']*5 + ['Sponge-Movable']*5 clf = kNN(k=num2) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_1,chunks=PCA_chunk_1) cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) return (1-error)*100 def result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC): # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:num_PC] m_W, n_W = np.shape(W) # Normalizes the data set with respect to its variance (Not an Integral part of PCA, but useful) length = len(eigval_total) s = np.matrix(np.zeros(length)).T i = 0 while i < length: s[i] = sqrt(C[i,i]) i = i+1 Z = np.divide(B,s) m_Z, n_Z = np.shape(Z) #Projected Data: Y = (W.T)*B # 'B' for my Laptop: otherwise 'Z' instead of 'B' m_Y, n_Y = np.shape(Y.T) return Y.T if __name__ == '__main__': Fmat = Fmat_original # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) num_PC=1 while num_PC <=20: Proj = np.zeros((140,num_PC)) Proj = result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC) # PYMVPA: num=0 cv_acc = np.zeros(21) while num <=20: cv_acc[num] = my_mvpa(Proj,num) num = num+1 plot(np.arange(21),cv_acc,'-s') grid('True') hold('True') num_PC = num_PC+1 legend(('1-PC', '2-PCs', '3-PCs', '4-PCs', '5-PCs', '6-PCs', '7-PCs', '8-PCs', '9-PCs', '10-PCs', '11-PC', '12-PCs', '13-PCs', '14-PCs', '15-PCs', '16-PCs', '17-PCs', '18-PCs', '19-PCs', '20-PCs')) ylabel('Cross-Validation Accuracy') xlabel('k in k-NN Classifier') show()
mit
gfyoung/pandas
pandas/tests/extension/arrow/arrays.py
2
5349
""" Rudimentary Apache Arrow-backed ExtensionArray. At the moment, just a boolean array / type is implemented. Eventually, we'll want to parametrize the type and support multiple dtypes. Not all methods are implemented yet, and the current implementation is not efficient. """ from __future__ import annotations import copy import itertools import operator from typing import Type import numpy as np import pyarrow as pa import pandas as pd from pandas.api.extensions import ( ExtensionArray, ExtensionDtype, register_extension_dtype, take, ) from pandas.api.types import is_scalar from pandas.core.arraylike import OpsMixin @register_extension_dtype class ArrowBoolDtype(ExtensionDtype): type = np.bool_ kind = "b" name = "arrow_bool" na_value = pa.NULL @classmethod def construct_array_type(cls) -> Type[ArrowBoolArray]: """ Return the array type associated with this dtype. Returns ------- type """ return ArrowBoolArray @property def _is_boolean(self) -> bool: return True @register_extension_dtype class ArrowStringDtype(ExtensionDtype): type = str kind = "U" name = "arrow_string" na_value = pa.NULL @classmethod def construct_array_type(cls) -> Type[ArrowStringArray]: """ Return the array type associated with this dtype. Returns ------- type """ return ArrowStringArray class ArrowExtensionArray(OpsMixin, ExtensionArray): _data: pa.ChunkedArray @classmethod def from_scalars(cls, values): arr = pa.chunked_array([pa.array(np.asarray(values))]) return cls(arr) @classmethod def from_array(cls, arr): assert isinstance(arr, pa.Array) return cls(pa.chunked_array([arr])) @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return cls.from_scalars(scalars) def __repr__(self): return f"{type(self).__name__}({repr(self._data)})" def __getitem__(self, item): if is_scalar(item): return self._data.to_pandas()[item] else: vals = self._data.to_pandas()[item] return type(self).from_scalars(vals) def __len__(self): return len(self._data) def astype(self, dtype, copy=True): # needed to fix this astype for the Series constructor. if isinstance(dtype, type(self.dtype)) and dtype == self.dtype: if copy: return self.copy() return self return super().astype(dtype, copy) @property def dtype(self): return self._dtype def _logical_method(self, other, op): if not isinstance(other, type(self)): raise NotImplementedError() result = op(np.array(self._data), np.array(other._data)) return ArrowBoolArray( pa.chunked_array([pa.array(result, mask=pd.isna(self._data.to_pandas()))]) ) def __eq__(self, other): if not isinstance(other, type(self)): return False return self._logical_method(other, operator.eq) @property def nbytes(self) -> int: return sum( x.size for chunk in self._data.chunks for x in chunk.buffers() if x is not None ) def isna(self): nas = pd.isna(self._data.to_pandas()) return type(self).from_scalars(nas) def take(self, indices, allow_fill=False, fill_value=None): data = self._data.to_pandas() if allow_fill and fill_value is None: fill_value = self.dtype.na_value result = take(data, indices, fill_value=fill_value, allow_fill=allow_fill) return self._from_sequence(result, dtype=self.dtype) def copy(self): return type(self)(copy.copy(self._data)) @classmethod def _concat_same_type(cls, to_concat): chunks = list(itertools.chain.from_iterable(x._data.chunks for x in to_concat)) arr = pa.chunked_array(chunks) return cls(arr) def __invert__(self): return type(self).from_scalars(~self._data.to_pandas()) def _reduce(self, name: str, *, skipna: bool = True, **kwargs): if skipna: arr = self[~self.isna()] else: arr = self try: op = getattr(arr, name) except AttributeError as err: raise TypeError from err return op(**kwargs) def any(self, axis=0, out=None): # Explicitly return a plain bool to reproduce GH-34660 return bool(self._data.to_pandas().any()) def all(self, axis=0, out=None): # Explicitly return a plain bool to reproduce GH-34660 return bool(self._data.to_pandas().all()) class ArrowBoolArray(ArrowExtensionArray): def __init__(self, values): if not isinstance(values, pa.ChunkedArray): raise ValueError assert values.type == pa.bool_() self._data = values self._dtype = ArrowBoolDtype() class ArrowStringArray(ArrowExtensionArray): def __init__(self, values): if not isinstance(values, pa.ChunkedArray): raise ValueError assert values.type == pa.string() self._data = values self._dtype = ArrowStringDtype()
bsd-3-clause
mrkm4ntr/incubator-airflow
airflow/providers/google/cloud/hooks/bigquery.py
1
123031
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ import hashlib import json import logging import time import warnings from copy import deepcopy from datetime import datetime, timedelta from typing import Any, Dict, Iterable, List, Mapping, NoReturn, Optional, Sequence, Tuple, Type, Union from google.api_core.retry import Retry from google.cloud.bigquery import ( DEFAULT_RETRY, Client, CopyJob, ExternalConfig, ExtractJob, LoadJob, QueryJob, SchemaField, ) from google.cloud.bigquery.dataset import AccessEntry, Dataset, DatasetListItem, DatasetReference from google.cloud.bigquery.table import EncryptionConfiguration, Row, Table, TableReference from google.cloud.exceptions import NotFound from googleapiclient.discovery import Resource, build from pandas import DataFrame from pandas_gbq import read_gbq from pandas_gbq.gbq import ( GbqConnector, _check_google_client_version as gbq_check_google_client_version, _test_google_api_imports as gbq_test_google_api_imports, ) from airflow.exceptions import AirflowException from airflow.hooks.dbapi_hook import DbApiHook from airflow.providers.google.common.hooks.base_google import GoogleBaseHook from airflow.utils.helpers import convert_camel_to_snake from airflow.utils.log.logging_mixin import LoggingMixin log = logging.getLogger(__name__) BigQueryJob = Union[CopyJob, QueryJob, LoadJob, ExtractJob] # pylint: disable=too-many-public-methods class BigQueryHook(GoogleBaseHook, DbApiHook): """Interact with BigQuery. This hook uses the Google Cloud connection.""" conn_name_attr = 'gcp_conn_id' # type: str def __init__( self, gcp_conn_id: str = 'google_cloud_default', delegate_to: Optional[str] = None, use_legacy_sql: bool = True, location: Optional[str] = None, bigquery_conn_id: Optional[str] = None, api_resource_configs: Optional[Dict] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, ) -> None: # To preserve backward compatibility # TODO: remove one day if bigquery_conn_id: warnings.warn( "The bigquery_conn_id parameter has been deprecated. You should pass " "the gcp_conn_id parameter.", DeprecationWarning, stacklevel=2, ) gcp_conn_id = bigquery_conn_id super().__init__( gcp_conn_id=gcp_conn_id, delegate_to=delegate_to, impersonation_chain=impersonation_chain, ) self.use_legacy_sql = use_legacy_sql self.location = location self.running_job_id = None # type: Optional[str] self.api_resource_configs = api_resource_configs if api_resource_configs else {} # type Dict def get_conn(self) -> "BigQueryConnection": """Returns a BigQuery PEP 249 connection object.""" service = self.get_service() return BigQueryConnection( service=service, project_id=self.project_id, use_legacy_sql=self.use_legacy_sql, location=self.location, num_retries=self.num_retries, hook=self, ) def get_service(self) -> Resource: """Returns a BigQuery service object.""" warnings.warn( "This method will be deprecated. Please use `BigQueryHook.get_client` method", DeprecationWarning ) http_authorized = self._authorize() return build('bigquery', 'v2', http=http_authorized, cache_discovery=False) def get_client(self, project_id: Optional[str] = None, location: Optional[str] = None) -> Client: """ Returns authenticated BigQuery Client. :param project_id: Project ID for the project which the client acts on behalf of. :type project_id: str :param location: Default location for jobs / datasets / tables. :type location: str :return: """ return Client( client_info=self.client_info, project=project_id, location=location, credentials=self._get_credentials(), ) @staticmethod def _resolve_table_reference( table_resource: Dict[str, Any], project_id: Optional[str] = None, dataset_id: Optional[str] = None, table_id: Optional[str] = None, ) -> Dict[str, Any]: try: # Check if tableReference is present and is valid TableReference.from_api_repr(table_resource["tableReference"]) except KeyError: # Something is wrong so we try to build the reference table_resource["tableReference"] = table_resource.get("tableReference", {}) values = [("projectId", project_id), ("tableId", table_id), ("datasetId", dataset_id)] for key, value in values: # Check if value is already present if no use the provided one resolved_value = table_resource["tableReference"].get(key, value) if not resolved_value: # If there's no value in tableReference and provided one is None raise error raise AirflowException( f"Table resource is missing proper `tableReference` and `{key}` is None" ) table_resource["tableReference"][key] = resolved_value return table_resource def insert_rows( self, table: Any, rows: Any, target_fields: Any = None, commit_every: Any = 1000, replace: Any = False, **kwargs, ) -> None: """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df( self, sql: str, parameters: Optional[Union[Iterable, Mapping]] = None, dialect: Optional[str] = None, **kwargs, ) -> DataFrame: """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param sql: The BigQuery SQL to execute. :type sql: str :param parameters: The parameters to render the SQL query with (not used, leave to override superclass method) :type parameters: mapping or iterable :param dialect: Dialect of BigQuery SQL – legacy SQL or standard SQL defaults to use `self.use_legacy_sql` if not specified :type dialect: str in {'legacy', 'standard'} :param kwargs: (optional) passed into pandas_gbq.read_gbq method :type kwargs: dict """ if dialect is None: dialect = 'legacy' if self.use_legacy_sql else 'standard' credentials, project_id = self._get_credentials_and_project_id() return read_gbq( sql, project_id=project_id, dialect=dialect, verbose=False, credentials=credentials, **kwargs ) @GoogleBaseHook.fallback_to_default_project_id def table_exists(self, dataset_id: str, table_id: str, project_id: str) -> bool: """ Checks for the existence of a table in Google BigQuery. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. :type project_id: str :param dataset_id: The name of the dataset in which to look for the table. :type dataset_id: str :param table_id: The name of the table to check the existence of. :type table_id: str """ table_reference = TableReference(DatasetReference(project_id, dataset_id), table_id) try: self.get_client(project_id=project_id).get_table(table_reference) return True except NotFound: return False @GoogleBaseHook.fallback_to_default_project_id def table_partition_exists( self, dataset_id: str, table_id: str, partition_id: str, project_id: str ) -> bool: """ Checks for the existence of a partition in a table in Google BigQuery. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. :type project_id: str :param dataset_id: The name of the dataset in which to look for the table. :type dataset_id: str :param table_id: The name of the table to check the existence of. :type table_id: str :param partition_id: The name of the partition to check the existence of. :type partition_id: str """ table_reference = TableReference(DatasetReference(project_id, dataset_id), table_id) try: return partition_id in self.get_client(project_id=project_id).list_partitions(table_reference) except NotFound: return False @GoogleBaseHook.fallback_to_default_project_id def create_empty_table( # pylint: disable=too-many-arguments self, project_id: Optional[str] = None, dataset_id: Optional[str] = None, table_id: Optional[str] = None, table_resource: Optional[Dict[str, Any]] = None, schema_fields: Optional[List] = None, time_partitioning: Optional[Dict] = None, cluster_fields: Optional[List[str]] = None, labels: Optional[Dict] = None, view: Optional[Dict] = None, encryption_configuration: Optional[Dict] = None, retry: Optional[Retry] = DEFAULT_RETRY, num_retries: Optional[int] = None, location: Optional[str] = None, exists_ok: bool = True, ) -> Table: """ Creates a new, empty table in the dataset. To create a view, which is defined by a SQL query, parse a dictionary to 'view' kwarg :param project_id: The project to create the table into. :type project_id: str :param dataset_id: The dataset to create the table into. :type dataset_id: str :param table_id: The Name of the table to be created. :type table_id: str :param table_resource: Table resource as described in documentation: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table If provided all other parameters are ignored. :type table_resource: Dict[str, Any] :param schema_fields: If set, the schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema :type schema_fields: list :param labels: a dictionary containing labels for the table, passed to BigQuery :type labels: dict :param retry: Optional. How to retry the RPC. :type retry: google.api_core.retry.Retry **Example**: :: schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"}, {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}] :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. .. seealso:: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning :type time_partitioning: dict :param cluster_fields: [Optional] The fields used for clustering. BigQuery supports clustering for both partitioned and non-partitioned tables. https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#clustering.fields :type cluster_fields: list :param view: [Optional] A dictionary containing definition for the view. If set, it will create a view instead of a table: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#ViewDefinition :type view: dict **Example**: :: view = { "query": "SELECT * FROM `test-project-id.test_dataset_id.test_table_prefix*` LIMIT 1000", "useLegacySql": False } :param encryption_configuration: [Optional] Custom encryption configuration (e.g., Cloud KMS keys). **Example**: :: encryption_configuration = { "kmsKeyName": "projects/testp/locations/us/keyRings/test-kr/cryptoKeys/test-key" } :type encryption_configuration: dict :param num_retries: Maximum number of retries in case of connection problems. :type num_retries: int :param exists_ok: If ``True``, ignore "already exists" errors when creating the table. :type exists_ok: bool :return: Created table """ if num_retries: warnings.warn("Parameter `num_retries` is deprecated", DeprecationWarning) _table_resource: Dict[str, Any] = {} if self.location: _table_resource['location'] = self.location if schema_fields: _table_resource['schema'] = {'fields': schema_fields} if time_partitioning: _table_resource['timePartitioning'] = time_partitioning if cluster_fields: _table_resource['clustering'] = {'fields': cluster_fields} if labels: _table_resource['labels'] = labels if view: _table_resource['view'] = view if encryption_configuration: _table_resource["encryptionConfiguration"] = encryption_configuration table_resource = table_resource or _table_resource table_resource = self._resolve_table_reference( table_resource=table_resource, project_id=project_id, dataset_id=dataset_id, table_id=table_id, ) table = Table.from_api_repr(table_resource) return self.get_client(project_id=project_id, location=location).create_table( table=table, exists_ok=exists_ok, retry=retry ) @GoogleBaseHook.fallback_to_default_project_id def create_empty_dataset( self, dataset_id: Optional[str] = None, project_id: Optional[str] = None, location: Optional[str] = None, dataset_reference: Optional[Dict[str, Any]] = None, exists_ok: bool = True, ) -> None: """ Create a new empty dataset: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/insert :param project_id: The name of the project where we want to create an empty a dataset. Don't need to provide, if projectId in dataset_reference. :type project_id: str :param dataset_id: The id of dataset. Don't need to provide, if datasetId in dataset_reference. :type dataset_id: str :param location: (Optional) The geographic location where the dataset should reside. There is no default value but the dataset will be created in US if nothing is provided. :type location: str :param dataset_reference: Dataset reference that could be provided with request body. More info: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource :type dataset_reference: dict :param exists_ok: If ``True``, ignore "already exists" errors when creating the DATASET. :type exists_ok: bool """ dataset_reference = dataset_reference or {"datasetReference": {}} for param, value in zip(["datasetId", "projectId"], [dataset_id, project_id]): specified_param = dataset_reference["datasetReference"].get(param) if specified_param: if value: self.log.info( "`%s` was provided in both `dataset_reference` and as `%s`. " "Using value from `dataset_reference`", param, convert_camel_to_snake(param), ) continue # use specified value if not value: raise ValueError( f"Please specify `{param}` either in `dataset_reference` " f"or by providing `{convert_camel_to_snake(param)}`", ) # dataset_reference has no param but we can fallback to default value self.log.info( "%s was not specified in `dataset_reference`. Will use default value %s.", param, value ) dataset_reference["datasetReference"][param] = value location = location or self.location if location: dataset_reference["location"] = dataset_reference.get("location", location) dataset: Dataset = Dataset.from_api_repr(dataset_reference) self.log.info('Creating dataset: %s in project: %s ', dataset.dataset_id, dataset.project) self.get_client(location=location).create_dataset(dataset=dataset, exists_ok=exists_ok) self.log.info('Dataset created successfully.') @GoogleBaseHook.fallback_to_default_project_id def get_dataset_tables( self, dataset_id: str, project_id: Optional[str] = None, max_results: Optional[int] = None, retry: Retry = DEFAULT_RETRY, ) -> List[Dict[str, Any]]: """ Get the list of tables for a given dataset. For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list :param dataset_id: the dataset ID of the requested dataset. :type dataset_id: str :param project_id: (Optional) the project of the requested dataset. If None, self.project_id will be used. :type project_id: str :param max_results: (Optional) the maximum number of tables to return. :type max_results: int :param retry: How to retry the RPC. :type retry: google.api_core.retry.Retry :return: List of tables associated with the dataset. """ self.log.info('Start getting tables list from dataset: %s.%s', project_id, dataset_id) tables = self.get_client().list_tables( dataset=DatasetReference(project=project_id, dataset_id=dataset_id), max_results=max_results, retry=retry, ) # Convert to a list (consumes all values) return [t.reference.to_api_repr() for t in tables] @GoogleBaseHook.fallback_to_default_project_id def delete_dataset( self, dataset_id: str, project_id: Optional[str] = None, delete_contents: bool = False, retry: Retry = DEFAULT_RETRY, ) -> None: """ Delete a dataset of Big query in your project. :param project_id: The name of the project where we have the dataset. :type project_id: str :param dataset_id: The dataset to be delete. :type dataset_id: str :param delete_contents: If True, delete all the tables in the dataset. If False and the dataset contains tables, the request will fail. :type delete_contents: bool :param retry: How to retry the RPC. :type retry: google.api_core.retry.Retry """ self.log.info('Deleting from project: %s Dataset:%s', project_id, dataset_id) self.get_client(project_id=project_id).delete_dataset( dataset=DatasetReference(project=project_id, dataset_id=dataset_id), delete_contents=delete_contents, retry=retry, not_found_ok=True, ) @GoogleBaseHook.fallback_to_default_project_id def create_external_table( # pylint: disable=too-many-locals,too-many-arguments self, external_project_dataset_table: str, schema_fields: List, source_uris: List, source_format: str = 'CSV', autodetect: bool = False, compression: str = 'NONE', ignore_unknown_values: bool = False, max_bad_records: int = 0, skip_leading_rows: int = 0, field_delimiter: str = ',', quote_character: Optional[str] = None, allow_quoted_newlines: bool = False, allow_jagged_rows: bool = False, encoding: str = "UTF-8", src_fmt_configs: Optional[Dict] = None, labels: Optional[Dict] = None, encryption_configuration: Optional[Dict] = None, location: Optional[str] = None, project_id: Optional[str] = None, ) -> None: """ Creates a new external table in the dataset with the data from Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource for more details about these parameters. :param external_project_dataset_table: The dotted ``(<project>.|<project>:)<dataset>.<table>($<partition>)`` BigQuery table name to create external table. If ``<project>`` is not included, project will be the project defined in the connection json. :type external_project_dataset_table: str :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: str :param autodetect: Try to detect schema and format options automatically. Any option specified explicitly will be honored. :type autodetect: bool :param compression: [Optional] The compression type of the data source. Possible values include GZIP and NONE. The default value is NONE. This setting is ignored for Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats. :type compression: str :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: str :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: str :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: bool :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when source_format is CSV. :type allow_jagged_rows: bool :param encoding: The character encoding of the data. See: .. seealso:: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.csvOptions.encoding :type encoding: str :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict :param labels: a dictionary containing labels for the table, passed to BigQuery :type labels: dict :param encryption_configuration: [Optional] Custom encryption configuration (e.g., Cloud KMS keys). **Example**: :: encryption_configuration = { "kmsKeyName": "projects/testp/locations/us/keyRings/test-kr/cryptoKeys/test-key" } :type encryption_configuration: dict """ warnings.warn( "This method is deprecated. Please use `BigQueryHook.create_empty_table` method with" "pass passing the `table_resource` object. This gives more flexibility than this method.", DeprecationWarning, ) location = location or self.location src_fmt_configs = src_fmt_configs or {} source_format = source_format.upper() compression = compression.upper() external_config_api_repr = { 'autodetect': autodetect, 'sourceFormat': source_format, 'sourceUris': source_uris, 'compression': compression, 'ignoreUnknownValues': ignore_unknown_values, } # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility backward_compatibility_configs = { 'skipLeadingRows': skip_leading_rows, 'fieldDelimiter': field_delimiter, 'quote': quote_character, 'allowQuotedNewlines': allow_quoted_newlines, 'allowJaggedRows': allow_jagged_rows, 'encoding': encoding, } src_fmt_to_param_mapping = {'CSV': 'csvOptions', 'GOOGLE_SHEETS': 'googleSheetsOptions'} src_fmt_to_configs_mapping = { 'csvOptions': [ 'allowJaggedRows', 'allowQuotedNewlines', 'fieldDelimiter', 'skipLeadingRows', 'quote', 'encoding', ], 'googleSheetsOptions': ['skipLeadingRows'], } if source_format in src_fmt_to_param_mapping.keys(): valid_configs = src_fmt_to_configs_mapping[src_fmt_to_param_mapping[source_format]] src_fmt_configs = _validate_src_fmt_configs( source_format, src_fmt_configs, valid_configs, backward_compatibility_configs ) external_config_api_repr[src_fmt_to_param_mapping[source_format]] = src_fmt_configs # build external config external_config = ExternalConfig.from_api_repr(external_config_api_repr) if schema_fields: external_config.schema = [SchemaField.from_api_repr(f) for f in schema_fields] if max_bad_records: external_config.max_bad_records = max_bad_records # build table definition table = Table(table_ref=TableReference.from_string(external_project_dataset_table, project_id)) table.external_data_configuration = external_config if labels: table.labels = labels if encryption_configuration: table.encryption_configuration = EncryptionConfiguration.from_api_repr(encryption_configuration) self.log.info('Creating external table: %s', external_project_dataset_table) self.create_empty_table( table_resource=table.to_api_repr(), project_id=project_id, location=location, exists_ok=True ) self.log.info('External table created successfully: %s', external_project_dataset_table) @GoogleBaseHook.fallback_to_default_project_id def update_table( self, table_resource: Dict[str, Any], fields: Optional[List[str]] = None, dataset_id: Optional[str] = None, table_id: Optional[str] = None, project_id: Optional[str] = None, ) -> Dict[str, Any]: """ Change some fields of a table. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``table``, the field value will be deleted. If ``table.etag`` is not ``None``, the update will only succeed if the table on the server has the same ETag. Thus reading a table with ``get_table``, changing its fields, and then passing it to ``update_table`` will ensure that the changes will only be saved if no modifications to the table occurred since the read. :param project_id: The project to create the table into. :type project_id: str :param dataset_id: The dataset to create the table into. :type dataset_id: str :param table_id: The Name of the table to be created. :type table_id: str :param table_resource: Table resource as described in documentation: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table The table has to contain ``tableReference`` or ``project_id``, ``dataset_id`` and ``table_id`` have to be provided. :type table_resource: Dict[str, Any] :param fields: The fields of ``table`` to change, spelled as the Table properties (e.g. "friendly_name"). :type fields: List[str] """ fields = fields or list(table_resource.keys()) table_resource = self._resolve_table_reference( table_resource=table_resource, project_id=project_id, dataset_id=dataset_id, table_id=table_id ) table = Table.from_api_repr(table_resource) self.log.info('Updating table: %s', table_resource["tableReference"]) table_object = self.get_client().update_table(table=table, fields=fields) self.log.info('Table %s.%s.%s updated successfully', project_id, dataset_id, table_id) return table_object.to_api_repr() @GoogleBaseHook.fallback_to_default_project_id def patch_table( # pylint: disable=too-many-arguments self, dataset_id: str, table_id: str, project_id: Optional[str] = None, description: Optional[str] = None, expiration_time: Optional[int] = None, external_data_configuration: Optional[Dict] = None, friendly_name: Optional[str] = None, labels: Optional[Dict] = None, schema: Optional[List] = None, time_partitioning: Optional[Dict] = None, view: Optional[Dict] = None, require_partition_filter: Optional[bool] = None, encryption_configuration: Optional[Dict] = None, ) -> None: """ Patch information in an existing table. It only updates fields that are provided in the request object. Reference: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/patch :param dataset_id: The dataset containing the table to be patched. :type dataset_id: str :param table_id: The Name of the table to be patched. :type table_id: str :param project_id: The project containing the table to be patched. :type project_id: str :param description: [Optional] A user-friendly description of this table. :type description: str :param expiration_time: [Optional] The time when this table expires, in milliseconds since the epoch. :type expiration_time: int :param external_data_configuration: [Optional] A dictionary containing properties of a table stored outside of BigQuery. :type external_data_configuration: dict :param friendly_name: [Optional] A descriptive name for this table. :type friendly_name: str :param labels: [Optional] A dictionary containing labels associated with this table. :type labels: dict :param schema: [Optional] If set, the schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema The supported schema modifications and unsupported schema modification are listed here: https://cloud.google.com/bigquery/docs/managing-table-schemas **Example**: :: schema=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"}, {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}] :type schema: list :param time_partitioning: [Optional] A dictionary containing time-based partitioning definition for the table. :type time_partitioning: dict :param view: [Optional] A dictionary containing definition for the view. If set, it will patch a view instead of a table: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#ViewDefinition **Example**: :: view = { "query": "SELECT * FROM `test-project-id.test_dataset_id.test_table_prefix*` LIMIT 500", "useLegacySql": False } :type view: dict :param require_partition_filter: [Optional] If true, queries over the this table require a partition filter. If false, queries over the table :type require_partition_filter: bool :param encryption_configuration: [Optional] Custom encryption configuration (e.g., Cloud KMS keys). **Example**: :: encryption_configuration = { "kmsKeyName": "projects/testp/locations/us/keyRings/test-kr/cryptoKeys/test-key" } :type encryption_configuration: dict """ warnings.warn( "This method is deprecated, please use ``BigQueryHook.update_table`` method.", DeprecationWarning, ) table_resource: Dict[str, Any] = {} if description is not None: table_resource['description'] = description if expiration_time is not None: table_resource['expirationTime'] = expiration_time if external_data_configuration: table_resource['externalDataConfiguration'] = external_data_configuration if friendly_name is not None: table_resource['friendlyName'] = friendly_name if labels: table_resource['labels'] = labels if schema: table_resource['schema'] = {'fields': schema} if time_partitioning: table_resource['timePartitioning'] = time_partitioning if view: table_resource['view'] = view if require_partition_filter is not None: table_resource['requirePartitionFilter'] = require_partition_filter if encryption_configuration: table_resource["encryptionConfiguration"] = encryption_configuration self.update_table( table_resource=table_resource, fields=list(table_resource.keys()), project_id=project_id, dataset_id=dataset_id, table_id=table_id, ) @GoogleBaseHook.fallback_to_default_project_id def insert_all( self, project_id: str, dataset_id: str, table_id: str, rows: List, ignore_unknown_values: bool = False, skip_invalid_rows: bool = False, fail_on_error: bool = False, ) -> None: """ Method to stream data into BigQuery one record at a time without needing to run a load job .. seealso:: For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll :param project_id: The name of the project where we have the table :type project_id: str :param dataset_id: The name of the dataset where we have the table :type dataset_id: str :param table_id: The name of the table :type table_id: str :param rows: the rows to insert :type rows: list **Example or rows**: rows=[{"json": {"a_key": "a_value_0"}}, {"json": {"a_key": "a_value_1"}}] :param ignore_unknown_values: [Optional] Accept rows that contain values that do not match the schema. The unknown values are ignored. The default value is false, which treats unknown values as errors. :type ignore_unknown_values: bool :param skip_invalid_rows: [Optional] Insert all valid rows of a request, even if invalid rows exist. The default value is false, which causes the entire request to fail if any invalid rows exist. :type skip_invalid_rows: bool :param fail_on_error: [Optional] Force the task to fail if any errors occur. The default value is false, which indicates the task should not fail even if any insertion errors occur. :type fail_on_error: bool """ self.log.info('Inserting %s row(s) into table %s:%s.%s', len(rows), project_id, dataset_id, table_id) table = self._resolve_table_reference( table_resource={}, project_id=project_id, dataset_id=dataset_id, table_id=table_id ) errors = self.get_client().insert_rows( table=Table.from_api_repr(table), rows=rows, ignore_unknown_values=ignore_unknown_values, skip_invalid_rows=skip_invalid_rows, ) if errors: error_msg = f"{len(errors)} insert error(s) occurred. Details: {errors}" self.log.error(error_msg) if fail_on_error: raise AirflowException(f'BigQuery job failed. Error was: {error_msg}') else: self.log.info('All row(s) inserted successfully: %s:%s.%s', project_id, dataset_id, table_id) @GoogleBaseHook.fallback_to_default_project_id def update_dataset( self, fields: Sequence[str], dataset_resource: Dict[str, Any], dataset_id: Optional[str] = None, project_id: Optional[str] = None, retry: Retry = DEFAULT_RETRY, ) -> Dataset: """ Change some fields of a dataset. Use ``fields`` to specify which fields to update. At least one field must be provided. If a field is listed in ``fields`` and is ``None`` in ``dataset``, it will be deleted. If ``dataset.etag`` is not ``None``, the update will only succeed if the dataset on the server has the same ETag. Thus reading a dataset with ``get_dataset``, changing its fields, and then passing it to ``update_dataset`` will ensure that the changes will only be saved if no modifications to the dataset occurred since the read. :param dataset_resource: Dataset resource that will be provided in request body. https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource :type dataset_resource: dict :param dataset_id: The id of the dataset. :type dataset_id: str :param fields: The properties of ``dataset`` to change (e.g. "friendly_name"). :type fields: Sequence[str] :param project_id: The Google Cloud Project ID :type project_id: str :param retry: How to retry the RPC. :type retry: google.api_core.retry.Retry """ dataset_resource["datasetReference"] = dataset_resource.get("datasetReference", {}) for key, value in zip(["datasetId", "projectId"], [dataset_id, project_id]): spec_value = dataset_resource["datasetReference"].get(key) if value and not spec_value: dataset_resource["datasetReference"][key] = value self.log.info('Start updating dataset') dataset = self.get_client(project_id=project_id).update_dataset( dataset=Dataset.from_api_repr(dataset_resource), fields=fields, retry=retry, ) self.log.info("Dataset successfully updated: %s", dataset) return dataset def patch_dataset( self, dataset_id: str, dataset_resource: Dict, project_id: Optional[str] = None ) -> Dict: """ Patches information in an existing dataset. It only replaces fields that are provided in the submitted dataset resource. More info: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/patch :param dataset_id: The BigQuery Dataset ID :type dataset_id: str :param dataset_resource: Dataset resource that will be provided in request body. https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource :type dataset_resource: dict :param project_id: The Google Cloud Project ID :type project_id: str :rtype: dataset https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource """ warnings.warn("This method is deprecated. Please use ``update_dataset``.", DeprecationWarning) project_id = project_id or self.project_id if not dataset_id or not isinstance(dataset_id, str): raise ValueError( "dataset_id argument must be provided and has " "a type 'str'. You provided: {}".format(dataset_id) ) service = self.get_service() dataset_project_id = project_id or self.project_id self.log.info('Start patching dataset: %s:%s', dataset_project_id, dataset_id) dataset = ( service.datasets() # pylint: disable=no-member .patch( datasetId=dataset_id, projectId=dataset_project_id, body=dataset_resource, ) .execute(num_retries=self.num_retries) ) self.log.info("Dataset successfully patched: %s", dataset) return dataset def get_dataset_tables_list( self, dataset_id: str, project_id: Optional[str] = None, table_prefix: Optional[str] = None, max_results: Optional[int] = None, ) -> List[Dict[str, Any]]: """ Method returns tables list of a BigQuery tables. If table prefix is specified, only tables beginning by it are returned. For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list :param dataset_id: The BigQuery Dataset ID :type dataset_id: str :param project_id: The Google Cloud Project ID :type project_id: str :param table_prefix: Tables must begin by this prefix to be returned (case sensitive) :type table_prefix: str :param max_results: The maximum number of results to return in a single response page. Leverage the page tokens to iterate through the entire collection. :type max_results: int :return: List of tables associated with the dataset """ warnings.warn("This method is deprecated. Please use ``get_dataset_tables``.", DeprecationWarning) project_id = project_id or self.project_id tables = self.get_client().list_tables( dataset=DatasetReference(project=project_id, dataset_id=dataset_id), max_results=max_results, ) if table_prefix: result = [t.reference.to_api_repr() for t in tables if t.table_id.startswith(table_prefix)] else: result = [t.reference.to_api_repr() for t in tables] self.log.info("%s tables found", len(result)) return result @GoogleBaseHook.fallback_to_default_project_id def get_datasets_list( self, project_id: Optional[str] = None, include_all: bool = False, filter_: Optional[str] = None, max_results: Optional[int] = None, page_token: Optional[str] = None, retry: Retry = DEFAULT_RETRY, ) -> List[DatasetListItem]: """ Method returns full list of BigQuery datasets in the current project For more information, see: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list :param project_id: Google Cloud Project for which you try to get all datasets :type project_id: str :param include_all: True if results include hidden datasets. Defaults to False. :param filter_: An expression for filtering the results by label. For syntax, see https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list#filter. :param filter_: str :param max_results: Maximum number of datasets to return. :param max_results: int :param page_token: Token representing a cursor into the datasets. If not passed, the API will return the first page of datasets. The token marks the beginning of the iterator to be returned and the value of the ``page_token`` can be accessed at ``next_page_token`` of the :class:`~google.api_core.page_iterator.HTTPIterator`. :param page_token: str :param retry: How to retry the RPC. :type retry: google.api_core.retry.Retry """ datasets = self.get_client(project_id=project_id).list_datasets( project=project_id, include_all=include_all, filter=filter_, max_results=max_results, page_token=page_token, retry=retry, ) datasets_list = list(datasets) self.log.info("Datasets List: %s", len(datasets_list)) return datasets_list @GoogleBaseHook.fallback_to_default_project_id def get_dataset(self, dataset_id: str, project_id: Optional[str] = None) -> Dataset: """ Fetch the dataset referenced by dataset_id. :param dataset_id: The BigQuery Dataset ID :type dataset_id: str :param project_id: The Google Cloud Project ID :type project_id: str :return: dataset_resource .. seealso:: For more information, see Dataset Resource content: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets#resource """ dataset = self.get_client(project_id=project_id).get_dataset( dataset_ref=DatasetReference(project_id, dataset_id) ) self.log.info("Dataset Resource: %s", dataset) return dataset @GoogleBaseHook.fallback_to_default_project_id def run_grant_dataset_view_access( self, source_dataset: str, view_dataset: str, view_table: str, source_project: Optional[str] = None, view_project: Optional[str] = None, project_id: Optional[str] = None, ) -> Dict[str, Any]: """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param project_id: the project of the source dataset. If None, self.project_id will be used. :type project_id: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ if source_project: project_id = source_project warnings.warn( "Parameter ``source_project`` is deprecated. Use ``project_id``.", DeprecationWarning, ) view_project = view_project or project_id view_access = AccessEntry( role=None, entity_type="view", entity_id={'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table}, ) dataset = self.get_dataset(project_id=project_id, dataset_id=source_dataset) # Check to see if the view we want to add already exists. if view_access not in dataset.access_entries: self.log.info( 'Granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, project_id, source_dataset, ) dataset.access_entries += [view_access] dataset = self.update_dataset( fields=["access"], dataset_resource=dataset.to_api_repr(), project_id=project_id ) else: self.log.info( 'Table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, project_id, source_dataset, ) return dataset.to_api_repr() @GoogleBaseHook.fallback_to_default_project_id def run_table_upsert( self, dataset_id: str, table_resource: Dict[str, Any], project_id: Optional[str] = None ) -> Dict[str, Any]: """ If the table already exists, update the existing table if not create new. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ table_id = table_resource['tableReference']['tableId'] table_resource = self._resolve_table_reference( table_resource=table_resource, project_id=project_id, dataset_id=dataset_id, table_id=table_id ) tables_list_resp = self.get_dataset_tables(dataset_id=dataset_id, project_id=project_id) if any(table['tableId'] == table_id for table in tables_list_resp): self.log.info('Table %s:%s.%s exists, updating.', project_id, dataset_id, table_id) table = self.update_table(table_resource=table_resource) else: self.log.info('Table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id) table = self.create_empty_table( table_resource=table_resource, project_id=project_id ).to_api_repr() return table def run_table_delete(self, deletion_dataset_table: str, ignore_if_missing: bool = False) -> None: """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted ``(<project>.|<project>:)<dataset>.<table>`` that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: bool :return: """ warnings.warn("This method is deprecated. Please use `delete_table`.", DeprecationWarning) return self.delete_table(table_id=deletion_dataset_table, not_found_ok=ignore_if_missing) @GoogleBaseHook.fallback_to_default_project_id def delete_table( self, table_id: str, not_found_ok: bool = True, project_id: Optional[str] = None, ) -> None: """ Delete an existing table from the dataset. If the table does not exist, return an error unless not_found_ok is set to True. :param table_id: A dotted ``(<project>.|<project>:)<dataset>.<table>`` that indicates which table will be deleted. :type table_id: str :param not_found_ok: if True, then return success even if the requested table does not exist. :type not_found_ok: bool :param project_id: the project used to perform the request :type project_id: str """ self.get_client(project_id=project_id).delete_table( table=Table.from_string(table_id), not_found_ok=not_found_ok, ) self.log.info('Deleted table %s', table_id) def get_tabledata( self, dataset_id: str, table_id: str, max_results: Optional[int] = None, selected_fields: Optional[str] = None, page_token: Optional[str] = None, start_index: Optional[int] = None, ) -> List[Dict]: """ Get the data of a given dataset.table and optionally with selected columns. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param selected_fields: List of fields to return (comma-separated). If unspecified, all fields are returned. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: list of rows """ warnings.warn("This method is deprecated. Please use `list_rows`.", DeprecationWarning) rows = self.list_rows(dataset_id, table_id, max_results, selected_fields, page_token, start_index) return [dict(r) for r in rows] @GoogleBaseHook.fallback_to_default_project_id def list_rows( self, dataset_id: str, table_id: str, max_results: Optional[int] = None, selected_fields: Optional[Union[List[str], str]] = None, page_token: Optional[str] = None, start_index: Optional[int] = None, project_id: Optional[str] = None, location: Optional[str] = None, ) -> List[Row]: """ List the rows of the table. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param selected_fields: List of fields to return (comma-separated). If unspecified, all fields are returned. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :param project_id: Project ID for the project which the client acts on behalf of. :param location: Default location for job. :return: list of rows """ location = location or self.location if isinstance(selected_fields, str): selected_fields = selected_fields.split(",") if selected_fields: selected_fields = [SchemaField(n, "") for n in selected_fields] else: selected_fields = None table = self._resolve_table_reference( table_resource={}, project_id=project_id, dataset_id=dataset_id, table_id=table_id, ) result = self.get_client(project_id=project_id, location=location).list_rows( table=Table.from_api_repr(table), selected_fields=selected_fields, max_results=max_results, page_token=page_token, start_index=start_index, ) return list(result) @GoogleBaseHook.fallback_to_default_project_id def get_schema(self, dataset_id: str, table_id: str, project_id: Optional[str] = None) -> dict: """ Get the schema for a given dataset and table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :param project_id: the optional project ID of the requested table. If not provided, the connector's configured project will be used. :return: a table schema """ table_ref = TableReference(dataset_ref=DatasetReference(project_id, dataset_id), table_id=table_id) table = self.get_client(project_id=project_id).get_table(table_ref) return {"fields": [s.to_api_repr for s in table.schema]} @GoogleBaseHook.fallback_to_default_project_id def poll_job_complete( self, job_id: str, project_id: Optional[str] = None, location: Optional[str] = None, retry: Retry = DEFAULT_RETRY, ) -> bool: """ Check if jobs completed. :param job_id: id of the job. :type job_id: str :param project_id: Google Cloud Project where the job is running :type project_id: str :param location: location the job is running :type location: str :param retry: How to retry the RPC. :type retry: google.api_core.retry.Retry :rtype: bool """ location = location or self.location job = self.get_client(project_id=project_id, location=location).get_job(job_id=job_id) return job.done(retry=retry) def cancel_query(self) -> None: """Cancel all started queries that have not yet completed""" warnings.warn( "This method is deprecated. Please use `BigQueryHook.cancel_job`.", DeprecationWarning, ) if self.running_job_id: self.cancel_job(job_id=self.running_job_id) else: self.log.info('No running BigQuery jobs to cancel.') @GoogleBaseHook.fallback_to_default_project_id def cancel_job( self, job_id: str, project_id: Optional[str] = None, location: Optional[str] = None, ) -> None: """ Cancels a job an wait for cancellation to complete :param job_id: id of the job. :type job_id: str :param project_id: Google Cloud Project where the job is running :type project_id: str :param location: location the job is running :type location: str """ location = location or self.location if self.poll_job_complete(job_id=job_id): self.log.info('No running BigQuery jobs to cancel.') return self.log.info('Attempting to cancel job : %s, %s', project_id, job_id) self.get_client(location=location, project_id=project_id).cancel_job(job_id=job_id) # Wait for all the calls to cancel to finish max_polling_attempts = 12 polling_attempts = 0 job_complete = False while polling_attempts < max_polling_attempts and not job_complete: polling_attempts += 1 job_complete = self.poll_job_complete(job_id) if job_complete: self.log.info('Job successfully canceled: %s, %s', project_id, job_id) elif polling_attempts == max_polling_attempts: self.log.info( "Stopping polling due to timeout. Job with id %s " "has not completed cancel and may or may not finish.", job_id, ) else: self.log.info('Waiting for canceled job with id %s to finish.', job_id) time.sleep(5) @GoogleBaseHook.fallback_to_default_project_id def get_job( self, job_id: Optional[str] = None, project_id: Optional[str] = None, location: Optional[str] = None, ) -> Union[CopyJob, QueryJob, LoadJob, ExtractJob]: """ Retrieves a BigQuery job. For more information see: https://cloud.google.com/bigquery/docs/reference/v2/jobs :param job_id: The ID of the job. The ID must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). The maximum length is 1,024 characters. If not provided then uuid will be generated. :type job_id: str :param project_id: Google Cloud Project where the job is running :type project_id: str :param location: location the job is running :type location: str """ client = self.get_client(project_id=project_id, location=location) job = client.get_job(job_id=job_id, project=project_id, location=location) return job @staticmethod def _custom_job_id(configuration: Dict[str, Any]) -> str: hash_base = json.dumps(configuration, sort_keys=True) uniqueness_suffix = hashlib.md5(hash_base.encode()).hexdigest() microseconds_from_epoch = int( (datetime.now() - datetime.fromtimestamp(0)) / timedelta(microseconds=1) ) return f"airflow_{microseconds_from_epoch}_{uniqueness_suffix}" @GoogleBaseHook.fallback_to_default_project_id def insert_job( self, configuration: Dict, job_id: Optional[str] = None, project_id: Optional[str] = None, location: Optional[str] = None, ) -> BigQueryJob: """ Executes a BigQuery job. Waits for the job to complete and returns job id. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. :type configuration: Dict[str, Any] :param job_id: The ID of the job. The ID must contain only letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). The maximum length is 1,024 characters. If not provided then uuid will be generated. :type job_id: str :param project_id: Google Cloud Project where the job is running :type project_id: str :param location: location the job is running :type location: str """ location = location or self.location job_id = job_id or self._custom_job_id(configuration) client = self.get_client(project_id=project_id, location=location) job_data = { "configuration": configuration, "jobReference": {"jobId": job_id, "projectId": project_id, "location": location}, } # pylint: disable=protected-access supported_jobs = { LoadJob._JOB_TYPE: LoadJob, CopyJob._JOB_TYPE: CopyJob, ExtractJob._JOB_TYPE: ExtractJob, QueryJob._JOB_TYPE: QueryJob, } # pylint: enable=protected-access job = None for job_type, job_object in supported_jobs.items(): if job_type in configuration: job = job_object break if not job: raise AirflowException(f"Unknown job type. Supported types: {supported_jobs.keys()}") job = job.from_api_repr(job_data, client) self.log.info("Inserting job %s", job.job_id) # Start the job and wait for it to complete and get the result. job.result() return job def run_with_configuration(self, configuration: dict) -> str: """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ warnings.warn("This method is deprecated. Please use `BigQueryHook.insert_job`", DeprecationWarning) job = self.insert_job(configuration=configuration, project_id=self.project_id) self.running_job_id = job.job_id return job.job_id def run_load( # pylint: disable=too-many-locals,too-many-arguments,invalid-name self, destination_project_dataset_table: str, source_uris: List, schema_fields: Optional[List] = None, source_format: str = 'CSV', create_disposition: str = 'CREATE_IF_NEEDED', skip_leading_rows: int = 0, write_disposition: str = 'WRITE_EMPTY', field_delimiter: str = ',', max_bad_records: int = 0, quote_character: Optional[str] = None, ignore_unknown_values: bool = False, allow_quoted_newlines: bool = False, allow_jagged_rows: bool = False, encoding: str = "UTF-8", schema_update_options: Optional[Iterable] = None, src_fmt_configs: Optional[Dict] = None, time_partitioning: Optional[Dict] = None, cluster_fields: Optional[List] = None, autodetect: bool = False, encryption_configuration: Optional[Dict] = None, ) -> str: """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted ``(<project>.|<project>:)<dataset>.<table>($<partition>)`` BigQuery table to load data into. If ``<project>`` is not included, project will be the project defined in the connection json. If a partition is specified the operator will automatically append the data, create a new partition or create a new DAY partitioned table. :type destination_project_dataset_table: str :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load Required if autodetect=False; optional if autodetect=True. :type schema_fields: list :param autodetect: Attempt to autodetect the schema for CSV and JSON source files. :type autodetect: bool :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: str :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: str :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: str :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: str :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: str :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: bool :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when source_format is CSV. :type allow_jagged_rows: bool :param encoding: The character encoding of the data. .. seealso:: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.csvOptions.encoding :type encoding: str :param schema_update_options: Allows the schema of the destination table to be updated as a side effect of the load job. :type schema_update_options: Union[list, tuple, set] :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. :type time_partitioning: dict :param cluster_fields: Request that the result of this load be stored sorted by one or more columns. BigQuery supports clustering for both partitioned and non-partitioned tables. The order of columns given determines the sort order. :type cluster_fields: list[str] :param encryption_configuration: [Optional] Custom encryption configuration (e.g., Cloud KMS keys). **Example**: :: encryption_configuration = { "kmsKeyName": "projects/testp/locations/us/keyRings/test-kr/cryptoKeys/test-key" } :type encryption_configuration: dict """ warnings.warn( "This method is deprecated. Please use `BigQueryHook.insert_job` method.", DeprecationWarning ) if not self.project_id: raise ValueError("The project_id should be set") # To provide backward compatibility schema_update_options = list(schema_update_options or []) # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.(key).sourceFormat # noqa # pylint: disable=line-too-long if schema_fields is None and not autodetect: raise ValueError('You must either pass a schema or autodetect=True.') if src_fmt_configs is None: src_fmt_configs = {} source_format = source_format.upper() allowed_formats = [ "CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP", "PARQUET", ] if source_format not in allowed_formats: raise ValueError( "{} is not a valid source format. " "Please use one of the following types: {}".format(source_format, allowed_formats) ) # bigquery also allows you to define how you want a table's schema to change # as a side effect of a load # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schemaUpdateOptions allowed_schema_update_options = ['ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION"] if not set(allowed_schema_update_options).issuperset(set(schema_update_options)): raise ValueError( "{} contains invalid schema update options." "Please only use one or more of the following options: {}".format( schema_update_options, allowed_schema_update_options ) ) destination_project, destination_dataset, destination_table = _split_tablename( table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table', ) configuration = { 'load': { 'autodetect': autodetect, 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, 'ignoreUnknownValues': ignore_unknown_values, } } time_partitioning = _cleanse_time_partitioning(destination_project_dataset_table, time_partitioning) if time_partitioning: configuration['load'].update({'timePartitioning': time_partitioning}) if cluster_fields: configuration['load'].update({'clustering': {'fields': cluster_fields}}) if schema_fields: configuration['load']['schema'] = {'fields': schema_fields} if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError( "schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'." ) else: self.log.info("Adding experimental 'schemaUpdateOptions': %s", schema_update_options) configuration['load']['schemaUpdateOptions'] = schema_update_options if max_bad_records: configuration['load']['maxBadRecords'] = max_bad_records if encryption_configuration: configuration["load"]["destinationEncryptionConfiguration"] = encryption_configuration src_fmt_to_configs_mapping = { 'CSV': [ 'allowJaggedRows', 'allowQuotedNewlines', 'autodetect', 'fieldDelimiter', 'skipLeadingRows', 'ignoreUnknownValues', 'nullMarker', 'quote', 'encoding', ], 'DATASTORE_BACKUP': ['projectionFields'], 'NEWLINE_DELIMITED_JSON': ['autodetect', 'ignoreUnknownValues'], 'PARQUET': ['autodetect', 'ignoreUnknownValues'], 'AVRO': ['useAvroLogicalTypes'], } valid_configs = src_fmt_to_configs_mapping[source_format] # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility backward_compatibility_configs = { 'skipLeadingRows': skip_leading_rows, 'fieldDelimiter': field_delimiter, 'ignoreUnknownValues': ignore_unknown_values, 'quote': quote_character, 'allowQuotedNewlines': allow_quoted_newlines, 'encoding': encoding, } src_fmt_configs = _validate_src_fmt_configs( source_format, src_fmt_configs, valid_configs, backward_compatibility_configs ) configuration['load'].update(src_fmt_configs) if allow_jagged_rows: configuration['load']['allowJaggedRows'] = allow_jagged_rows job = self.insert_job(configuration=configuration, project_id=self.project_id) self.running_job_id = job.job_id return job.job_id def run_copy( # pylint: disable=invalid-name self, source_project_dataset_tables: Union[List, str], destination_project_dataset_table: str, write_disposition: str = 'WRITE_EMPTY', create_disposition: str = 'CREATE_IF_NEEDED', labels: Optional[Dict] = None, encryption_configuration: Optional[Dict] = None, ) -> str: """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted ``(project:|project.)<dataset>.<table>`` BigQuery tables to use as the source data. Use a list if there are multiple source tables. If ``<project>`` is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: ``(project:|project.)<dataset>.<table>`` :type destination_project_dataset_table: str :param write_disposition: The write disposition if the table already exists. :type write_disposition: str :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: str :param labels: a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict :param encryption_configuration: [Optional] Custom encryption configuration (e.g., Cloud KMS keys). **Example**: :: encryption_configuration = { "kmsKeyName": "projects/testp/locations/us/keyRings/test-kr/cryptoKeys/test-key" } :type encryption_configuration: dict """ warnings.warn( "This method is deprecated. Please use `BigQueryHook.insert_job` method.", DeprecationWarning ) if not self.project_id: raise ValueError("The project_id should be set") source_project_dataset_tables = ( [source_project_dataset_tables] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables ) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = _split_tablename( table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table', ) source_project_dataset_tables_fixup.append( {'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table} ) destination_project, destination_dataset, destination_table = _split_tablename( table_input=destination_project_dataset_table, default_project_id=self.project_id ) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, } } if labels: configuration['labels'] = labels if encryption_configuration: configuration["copy"]["destinationEncryptionConfiguration"] = encryption_configuration job = self.insert_job(configuration=configuration, project_id=self.project_id) self.running_job_id = job.job_id return job.job_id def run_extract( self, source_project_dataset_table: str, destination_cloud_storage_uris: str, compression: str = 'NONE', export_format: str = 'CSV', field_delimiter: str = ',', print_header: bool = True, labels: Optional[Dict] = None, ) -> str: """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted ``<dataset>.<table>`` BigQuery table to use as the source data. :type source_project_dataset_table: str :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: str :param export_format: File format to export. :type export_format: str :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: str :param print_header: Whether to print a header for a CSV file extract. :type print_header: bool :param labels: a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict """ warnings.warn( "This method is deprecated. Please use `BigQueryHook.insert_job` method.", DeprecationWarning ) if not self.project_id: raise ValueError("The project_id should be set") source_project, source_dataset, source_table = _split_tablename( table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table', ) configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } # type: Dict[str, Any] if labels: configuration['labels'] = labels if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header job = self.insert_job(configuration=configuration, project_id=self.project_id) self.running_job_id = job.job_id return job.job_id # pylint: disable=too-many-locals,too-many-arguments, too-many-branches def run_query( self, sql: str, destination_dataset_table: Optional[str] = None, write_disposition: str = 'WRITE_EMPTY', allow_large_results: bool = False, flatten_results: Optional[bool] = None, udf_config: Optional[List] = None, use_legacy_sql: Optional[bool] = None, maximum_billing_tier: Optional[int] = None, maximum_bytes_billed: Optional[float] = None, create_disposition: str = 'CREATE_IF_NEEDED', query_params: Optional[List] = None, labels: Optional[Dict] = None, schema_update_options: Optional[Iterable] = None, priority: str = 'INTERACTIVE', time_partitioning: Optional[Dict] = None, api_resource_configs: Optional[Dict] = None, cluster_fields: Optional[List[str]] = None, location: Optional[str] = None, encryption_configuration: Optional[Dict] = None, ) -> str: """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param sql: The BigQuery SQL to execute. :type sql: str :param destination_dataset_table: The dotted ``<dataset>.<table>`` BigQuery table to save the query results. :type destination_dataset_table: str :param write_disposition: What to do if the table already exists in BigQuery. :type write_disposition: str :param allow_large_results: Whether to allow large results. :type allow_large_results: bool :param flatten_results: If true and query uses legacy SQL dialect, flattens all nested and repeated fields in the query results. ``allowLargeResults`` must be true if this is set to false. For standard SQL queries, this flag is ignored and results are never flattened. :type flatten_results: bool :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :type udf_config: list :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). If `None`, defaults to `self.use_legacy_sql`. :type use_legacy_sql: bool :param api_resource_configs: a dictionary that contain params 'configuration' applied for Google BigQuery Jobs API: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs for example, {'query': {'useQueryCache': False}}. You could use it if you need to provide some params that are not supported by the BigQueryHook like args. :type api_resource_configs: dict :param maximum_billing_tier: Positive integer that serves as a multiplier of the basic price. :type maximum_billing_tier: int :param maximum_bytes_billed: Limits the bytes billed for this job. Queries that will have bytes billed beyond this limit will fail (without incurring a charge). If unspecified, this will be set to your project default. :type maximum_bytes_billed: float :param create_disposition: Specifies whether the job is allowed to create new tables. :type create_disposition: str :param query_params: a list of dictionary containing query parameter types and values, passed to BigQuery :type query_params: list :param labels: a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict :param schema_update_options: Allows the schema of the destination table to be updated as a side effect of the query job. :type schema_update_options: Union[list, tuple, set] :param priority: Specifies a priority for the query. Possible values include INTERACTIVE and BATCH. The default value is INTERACTIVE. :type priority: str :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. :type time_partitioning: dict :param cluster_fields: Request that the result of this query be stored sorted by one or more columns. BigQuery supports clustering for both partitioned and non-partitioned tables. The order of columns given determines the sort order. :type cluster_fields: list[str] :param location: The geographic location of the job. Required except for US and EU. See details at https://cloud.google.com/bigquery/docs/locations#specifying_your_location :type location: str :param encryption_configuration: [Optional] Custom encryption configuration (e.g., Cloud KMS keys). **Example**: :: encryption_configuration = { "kmsKeyName": "projects/testp/locations/us/keyRings/test-kr/cryptoKeys/test-key" } :type encryption_configuration: dict """ warnings.warn( "This method is deprecated. Please use `BigQueryHook.insert_job` method.", DeprecationWarning ) if not self.project_id: raise ValueError("The project_id should be set") schema_update_options = list(schema_update_options or []) if time_partitioning is None: time_partitioning = {} if location: self.location = location if not api_resource_configs: api_resource_configs = self.api_resource_configs else: _validate_value('api_resource_configs', api_resource_configs, dict) configuration = deepcopy(api_resource_configs) if 'query' not in configuration: configuration['query'] = {} else: _validate_value("api_resource_configs['query']", configuration['query'], dict) if sql is None and not configuration['query'].get('query', None): raise TypeError('`BigQueryBaseCursor.run_query` missing 1 required positional argument: `sql`') # BigQuery also allows you to define how you want a table's schema to change # as a side effect of a query job # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.schemaUpdateOptions # noqa # pylint: disable=line-too-long allowed_schema_update_options = ['ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION"] if not set(allowed_schema_update_options).issuperset(set(schema_update_options)): raise ValueError( "{} contains invalid schema update options. " "Please only use one or more of the following " "options: {}".format(schema_update_options, allowed_schema_update_options) ) if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError( "schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'." ) if destination_dataset_table: destination_project, destination_dataset, destination_table = _split_tablename( table_input=destination_dataset_table, default_project_id=self.project_id ) destination_dataset_table = { # type: ignore 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } if cluster_fields: cluster_fields = {'fields': cluster_fields} # type: ignore query_param_list = [ (sql, 'query', None, (str,)), (priority, 'priority', 'INTERACTIVE', (str,)), (use_legacy_sql, 'useLegacySql', self.use_legacy_sql, bool), (query_params, 'queryParameters', None, list), (udf_config, 'userDefinedFunctionResources', None, list), (maximum_billing_tier, 'maximumBillingTier', None, int), (maximum_bytes_billed, 'maximumBytesBilled', None, float), (time_partitioning, 'timePartitioning', {}, dict), (schema_update_options, 'schemaUpdateOptions', None, list), (destination_dataset_table, 'destinationTable', None, dict), (cluster_fields, 'clustering', None, dict), ] # type: List[Tuple] for param, param_name, param_default, param_type in query_param_list: if param_name not in configuration['query'] and param in [None, {}, ()]: if param_name == 'timePartitioning': param_default = _cleanse_time_partitioning(destination_dataset_table, time_partitioning) param = param_default if param in [None, {}, ()]: continue _api_resource_configs_duplication_check(param_name, param, configuration['query']) configuration['query'][param_name] = param # check valid type of provided param, # it last step because we can get param from 2 sources, # and first of all need to find it _validate_value(param_name, configuration['query'][param_name], param_type) if param_name == 'schemaUpdateOptions' and param: self.log.info("Adding experimental 'schemaUpdateOptions': %s", schema_update_options) if param_name != 'destinationTable': continue for key in ['projectId', 'datasetId', 'tableId']: if key not in configuration['query']['destinationTable']: raise ValueError( "Not correct 'destinationTable' in " "api_resource_configs. 'destinationTable' " "must be a dict with {'projectId':'', " "'datasetId':'', 'tableId':''}" ) configuration['query'].update( { 'allowLargeResults': allow_large_results, 'flattenResults': flatten_results, 'writeDisposition': write_disposition, 'createDisposition': create_disposition, } ) if ( 'useLegacySql' in configuration['query'] and configuration['query']['useLegacySql'] and 'queryParameters' in configuration['query'] ): raise ValueError("Query parameters are not allowed when using legacy SQL") if labels: _api_resource_configs_duplication_check('labels', labels, configuration) configuration['labels'] = labels if encryption_configuration: configuration["query"]["destinationEncryptionConfiguration"] = encryption_configuration job = self.insert_job(configuration=configuration, project_id=self.project_id) self.running_job_id = job.job_id return job.job_id class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__( self, project_id: str, service: str, reauth: bool = False, verbose: bool = False, dialect="legacy" ) -> None: super().__init__(project_id) gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose self.dialect = dialect class BigQueryConnection: """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs) -> None: self._args = args self._kwargs = kwargs def close(self) -> None: # noqa: D403 """BigQueryConnection does not have anything to close""" def commit(self) -> None: # noqa: D403 """BigQueryConnection does not support transactions""" def cursor(self) -> "BigQueryCursor": # noqa: D403 """Return a new :py:class:`Cursor` object using the connection""" return BigQueryCursor(*self._args, **self._kwargs) def rollback(self) -> NoReturn: # noqa: D403 """BigQueryConnection does not have transactions""" raise NotImplementedError("BigQueryConnection does not have transactions") class BigQueryBaseCursor(LoggingMixin): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__( self, service: Any, project_id: str, hook: BigQueryHook, use_legacy_sql: bool = True, api_resource_configs: Optional[Dict] = None, location: Optional[str] = None, num_retries: int = 5, ) -> None: super().__init__() self.service = service self.project_id = project_id self.use_legacy_sql = use_legacy_sql if api_resource_configs: _validate_value("api_resource_configs", api_resource_configs, dict) self.api_resource_configs = api_resource_configs if api_resource_configs else {} # type Dict self.running_job_id = None # type: Optional[str] self.location = location self.num_retries = num_retries self.hook = hook def create_empty_table(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.create_empty_table` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.create_empty_table`", DeprecationWarning, stacklevel=3, ) return self.hook.create_empty_table(*args, **kwargs) def create_empty_dataset(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.create_empty_dataset` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.create_empty_dataset`", DeprecationWarning, stacklevel=3, ) return self.hook.create_empty_dataset(*args, **kwargs) def get_dataset_tables(self, *args, **kwargs) -> List[Dict[str, Any]]: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_dataset_tables` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_dataset_tables`", DeprecationWarning, stacklevel=3, ) return self.hook.get_dataset_tables(*args, **kwargs) def delete_dataset(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.delete_dataset` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.delete_dataset`", DeprecationWarning, stacklevel=3, ) return self.hook.delete_dataset(*args, **kwargs) def create_external_table(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.create_external_table` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.create_external_table`", DeprecationWarning, stacklevel=3, ) return self.hook.create_external_table(*args, **kwargs) def patch_table(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.patch_table` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.patch_table`", DeprecationWarning, stacklevel=3, ) return self.hook.patch_table(*args, **kwargs) def insert_all(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.insert_all` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.insert_all`", DeprecationWarning, stacklevel=3, ) return self.hook.insert_all(*args, **kwargs) def update_dataset(self, *args, **kwargs) -> Dict: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.update_dataset` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.update_dataset`", DeprecationWarning, stacklevel=3, ) return Dataset.to_api_repr(self.hook.update_dataset(*args, **kwargs)) def patch_dataset(self, *args, **kwargs) -> Dict: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.patch_dataset` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.patch_dataset`", DeprecationWarning, stacklevel=3, ) return self.hook.patch_dataset(*args, **kwargs) def get_dataset_tables_list(self, *args, **kwargs) -> List[Dict[str, Any]]: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_dataset_tables_list` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_dataset_tables_list`", DeprecationWarning, stacklevel=3, ) return self.hook.get_dataset_tables_list(*args, **kwargs) def get_datasets_list(self, *args, **kwargs) -> list: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_datasets_list` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_datasets_list`", DeprecationWarning, stacklevel=3, ) return self.hook.get_datasets_list(*args, **kwargs) def get_dataset(self, *args, **kwargs) -> dict: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_dataset` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_dataset`", DeprecationWarning, stacklevel=3, ) return self.hook.get_dataset(*args, **kwargs) def run_grant_dataset_view_access(self, *args, **kwargs) -> dict: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_grant_dataset_view_access` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks" ".bigquery.BigQueryHook.run_grant_dataset_view_access`", DeprecationWarning, stacklevel=3, ) return self.hook.run_grant_dataset_view_access(*args, **kwargs) def run_table_upsert(self, *args, **kwargs) -> dict: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_table_upsert` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_table_upsert`", DeprecationWarning, stacklevel=3, ) return self.hook.run_table_upsert(*args, **kwargs) def run_table_delete(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_table_delete` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_table_delete`", DeprecationWarning, stacklevel=3, ) return self.hook.run_table_delete(*args, **kwargs) def get_tabledata(self, *args, **kwargs) -> List[dict]: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_tabledata` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_tabledata`", DeprecationWarning, stacklevel=3, ) return self.hook.get_tabledata(*args, **kwargs) def get_schema(self, *args, **kwargs) -> dict: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_schema` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.get_schema`", DeprecationWarning, stacklevel=3, ) return self.hook.get_schema(*args, **kwargs) def poll_job_complete(self, *args, **kwargs) -> bool: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.poll_job_complete` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.poll_job_complete`", DeprecationWarning, stacklevel=3, ) return self.hook.poll_job_complete(*args, **kwargs) def cancel_query(self, *args, **kwargs) -> None: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.cancel_query` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.cancel_query`", DeprecationWarning, stacklevel=3, ) return self.hook.cancel_query(*args, **kwargs) # type: ignore # noqa def run_with_configuration(self, *args, **kwargs) -> str: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_with_configuration` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_with_configuration`", DeprecationWarning, stacklevel=3, ) return self.hook.run_with_configuration(*args, **kwargs) def run_load(self, *args, **kwargs) -> str: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_load` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_load`", DeprecationWarning, stacklevel=3, ) return self.hook.run_load(*args, **kwargs) def run_copy(self, *args, **kwargs) -> str: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_copy` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_copy`", DeprecationWarning, stacklevel=3, ) return self.hook.run_copy(*args, **kwargs) def run_extract(self, *args, **kwargs) -> str: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_extract` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_extract`", DeprecationWarning, stacklevel=3, ) return self.hook.run_extract(*args, **kwargs) def run_query(self, *args, **kwargs) -> str: """ This method is deprecated. Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_query` """ warnings.warn( "This method is deprecated. " "Please use `airflow.providers.google.cloud.hooks.bigquery.BigQueryHook.run_query`", DeprecationWarning, stacklevel=3, ) return self.hook.run_query(*args, **kwargs) class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__( self, service: Any, project_id: str, hook: BigQueryHook, use_legacy_sql: bool = True, location: Optional[str] = None, num_retries: int = 5, ) -> None: super().__init__( service=service, project_id=project_id, hook=hook, use_legacy_sql=use_legacy_sql, location=location, num_retries=num_retries, ) self.buffersize = None # type: Optional[int] self.page_token = None # type: Optional[str] self.job_id = None # type: Optional[str] self.buffer = [] # type: list self.all_pages_loaded = False # type: bool @property def description(self) -> None: """The schema description method is not currently implemented""" raise NotImplementedError def close(self) -> None: """By default, do nothing""" @property def rowcount(self) -> int: """By default, return -1 to indicate that this is not supported""" return -1 def execute(self, operation: str, parameters: Optional[dict] = None) -> None: """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: str :param parameters: Parameters to substitute into the query. :type parameters: dict """ sql = _bind_parameters(operation, parameters) if parameters else operation self.flush_results() self.job_id = self.hook.run_query(sql) def executemany(self, operation: str, seq_of_parameters: list) -> None: """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: str :param seq_of_parameters: List of dictionary parameters to substitute into the query. :type seq_of_parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def flush_results(self) -> None: """Flush results related cursor attributes""" self.page_token = None self.job_id = None self.all_pages_loaded = False self.buffer = [] def fetchone(self) -> Union[List, None]: """Fetch the next row of a query result set""" # pylint: disable=not-callable return self.next() def next(self) -> Union[List, None]: """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if not self.buffer: if self.all_pages_loaded: return None query_results = ( self.service.jobs() .getQueryResults( projectId=self.project_id, jobId=self.job_id, location=self.location, pageToken=self.page_token, ) .execute(num_retries=self.num_retries) ) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = [_bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f'])] self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.flush_results() return None return self.buffer.pop(0) def fetchmany(self, size: Optional[int] = None) -> list: """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break result.append(one) return result def fetchall(self) -> List[list]: """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break result.append(one) return result def get_arraysize(self) -> int: """Specifies the number of rows to fetch at a time with .fetchmany()""" return self.buffersize or 1 def set_arraysize(self, arraysize: int) -> None: """Specifies the number of rows to fetch at a time with .fetchmany()""" self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes: Any) -> None: """Does nothing by default""" def setoutputsize(self, size: Any, column: Any = None) -> None: """Does nothing by default""" def _bind_parameters(operation: str, parameters: dict) -> str: """Helper method that binds parameters to a SQL query""" # inspired by MySQL Python Connector (conversion.py) string_parameters = {} # type Dict[str, str] for (name, value) in parameters.items(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, str): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s: str) -> str: """Helper method that escapes parameters to a SQL query""" e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field: str, bq_type: str) -> Union[None, int, float, bool, str]: """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER': return int(string_field) elif bq_type in ('FLOAT', 'TIMESTAMP'): return float(string_field) elif bq_type == 'BOOLEAN': if string_field not in ['true', 'false']: raise ValueError(f"{string_field} must have value 'true' or 'false'") return string_field == 'true' else: return string_field def _split_tablename( table_input: str, default_project_id: str, var_name: Optional[str] = None ) -> Tuple[str, str, str]: if '.' not in table_input: raise ValueError(f'Expected table name in the format of <dataset>.<table>. Got: {table_input}') if not default_project_id: raise ValueError("INTERNAL: No default project is specified") def var_print(var_name): if var_name is None: return "" else: return f"Format exception for {var_name}: " if table_input.count('.') + table_input.count(':') > 3: raise Exception( '{var}Use either : or . to specify project ' 'got {input}'.format(var=var_print(var_name), input=table_input) ) cmpt = table_input.rsplit(':', 1) project_id = None rest = table_input if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2 and cmpt[0].count(':') <= 1: if cmpt[-1].count('.') != 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception( '{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}'.format(var=var_print(var_name), input=table_input) ) cmpt = rest.split('.') if len(cmpt) == 3: if project_id: raise ValueError("{var}Use either : or . to specify project".format(var=var_print(var_name))) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception( '{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}'.format(var=var_print(var_name), input=table_input) ) if project_id is None: if var_name is not None: log.info( 'Project not included in %s: %s; using project "%s"', var_name, table_input, default_project_id, ) project_id = default_project_id return project_id, dataset_id, table_id def _cleanse_time_partitioning( destination_dataset_table: Optional[str], time_partitioning_in: Optional[Dict] ) -> Dict: # if it is a partitioned table ($ is in the table name) add partition load option if time_partitioning_in is None: time_partitioning_in = {} time_partitioning_out = {} if destination_dataset_table and '$' in destination_dataset_table: time_partitioning_out['type'] = 'DAY' time_partitioning_out.update(time_partitioning_in) return time_partitioning_out def _validate_value(key: Any, value: Any, expected_type: Type) -> None: """Function to check expected type and raise error if type is not correct""" if not isinstance(value, expected_type): raise TypeError("{} argument must have a type {} not {}".format(key, expected_type, type(value))) def _api_resource_configs_duplication_check( key: Any, value: Any, config_dict: dict, config_dict_name='api_resource_configs' ) -> None: if key in config_dict and value != config_dict[key]: raise ValueError( "Values of {param_name} param are duplicated. " "{dict_name} contained {param_name} param " "in `query` config and {param_name} was also provided " "with arg to run_query() method. Please remove duplicates.".format( param_name=key, dict_name=config_dict_name ) ) def _validate_src_fmt_configs( source_format: str, src_fmt_configs: dict, valid_configs: List[str], backward_compatibility_configs: Optional[Dict] = None, ) -> Dict: """ Validates the given src_fmt_configs against a valid configuration for the source format. Adds the backward compatibility config to the src_fmt_configs. :param source_format: File format to export. :type source_format: str :param src_fmt_configs: Configure optional fields specific to the source format. :type src_fmt_configs: dict :param valid_configs: Valid configuration specific to the source format :type valid_configs: List[str] :param backward_compatibility_configs: The top-level params for backward-compatibility :type backward_compatibility_configs: dict """ if backward_compatibility_configs is None: backward_compatibility_configs = {} for k, v in backward_compatibility_configs.items(): if k not in src_fmt_configs and k in valid_configs: src_fmt_configs[k] = v for k, v in src_fmt_configs.items(): if k not in valid_configs: raise ValueError(f"{k} is not a valid src_fmt_configs for type {source_format}.") return src_fmt_configs
apache-2.0
jdfr/pyslic3r
slicesViewer.py
1
11508
import sys import iopaths as io debugfile = "cosa.log" scalingFactor = 0.00000001 craw = '#cccccc' #gray raw_fac = 0.7 craw3d = (raw_fac, raw_fac, raw_fac) cmap_raw = 'Greys' cmaps_toolpaths = [ 'Reds', 'Blues', 'Greens', ] cmaps_contours = [ 'Oranges', 'Purples', 'spring', ] cperimeters = [ '#ff0000', #red '#0000ff', #blue '#00ff00', #green '#00ffff', #cyan '#ffff00', #yellow '#ff00ff', #magenta ] cinfillings = [col.replace('ff', '44') for col in cperimeters] csurfaces = [col.replace('ff', 'bb') for col in cperimeters] ccontours = [ '#ffaaaa', #red '#aaaaff', #blue '#aaffaa', #green '#aaffff', #cyan '#ffffaa', #yellow '#ffaaff', #magenta ] cperimeters3d = [ (1,0,0), #red (0,1,0), #blue (0,0,1), #green (0,1,1), #cyan (1,1,0), #yellow (1,0,1), #magenta ] infilling_fac = 0.25 surface_fac = 0.25 cinfillings3d = [tuple(c*infilling_fac for c in col) for col in cperimeters3d] csurfaces3d = [tuple(c*surface_fac for c in col) for col in cperimeters3d] ccontours3d = [ (1, 0.66, 0.66), #red (0.66, 1, 0.66), #blue (0.66, 0.66, 1), #green (0.66, 1, 1), #cyan (1, 1, 0.66), #yellow (1, 0.66, 1), #magenta ] ncols = len(cperimeters) ncmaps = len(cmaps_toolpaths) #index in the list (to be passed to showSlices) of each path type-ntool def showlistidx(typ, ntool): if typ==io.PATHTYPE_RAW_CONTOUR: return 0 else: if typ==io.PATHTYPE_PROCESSED_CONTOUR: return 1+ntool elif typ==io.PATHTYPE_TOOLPATH_PERIMETER: return 1+ntool+contents.numtools elif typ==io.PATHTYPE_TOOLPATH_INFILLING: return 1+ntool+contents.numtools*2 elif typ==io.PATHTYPE_TOOLPATH_SURFACE: return 1+ntool+contents.numtools*3 def type2str(typ): if typ==io.PATHTYPE_RAW_CONTOUR: return 'raw' elif typ==io.PATHTYPE_PROCESSED_CONTOUR: return 'contour' elif typ==io.PATHTYPE_TOOLPATH_PERIMETER: return 'perimeter' elif typ==io.PATHTYPE_TOOLPATH_INFILLING: return 'infilling' elif typ==io.PATHTYPE_TOOLPATH_SURFACE: return 'surface' def show2D(contents, windowname, custom_formatting): nocustom = custom_formatting is None #generate an ordered list of lists of paths according to showlistidx. #The lists of paths are sorted by z, with empty places if needed, #so all lists have the same number of elements, and are Z-ordered nelems = contents.numtools*(len(io.ALL_TYPES)-1)+1 pathsbytype_list = [None]*nelems scalings_list = [None]*nelems usePatches_list = [None]*nelems linestyles_list = [None]*nelems patchestyles_list = [None]*nelems for key in contents.records.keys(): typ, ntool = key if not typ in io.ALL_TYPES: raise Exception('Unrecognized path type %d' % typ) byz = contents.records[key] byzl = [] byzls = [] for z in contents.zs: if z in byz: if byz[z].savemode==io.SAVEMODE_DOUBLE_3D: raise Exception('path with type=%d, ntool=%d, z=%f is 3D, cannot show it in matplotlib!!!!' % (typ, ntool, z)) byzl .append(byz[z].paths) byzls.append(byz[z].scaling) else: byzl .append([]) byzls.append([]) idx = showlistidx(typ, ntool) pathsbytype_list[idx] = byzl scalings_list [idx] = byzls if nocustom: if typ==io.PATHTYPE_RAW_CONTOUR: usePatches_list[idx] = True linestyles_list[idx] = None patchestyles_list[idx] = {'facecolor':craw, 'edgecolor':'none', 'lw': 1} elif typ==io.PATHTYPE_PROCESSED_CONTOUR: usePatches_list[idx] = True linestyles_list[idx] = None patchestyles_list[idx] = {'facecolor':ccontours[ntool%ncols], 'edgecolor':'none', 'lw': 1} elif typ==io.PATHTYPE_TOOLPATH_PERIMETER: usePatches_list[idx] = False linestyles_list[idx] = {'linewidths':2, 'colors': cperimeters[ntool%ncols]} patchestyles_list[idx] = None elif typ==io.PATHTYPE_TOOLPATH_INFILLING: usePatches_list[idx] = False linestyles_list[idx] = {'linewidths':2, 'colors': cinfillings[ntool%ncols]} patchestyles_list[idx] = None elif typ==io.PATHTYPE_TOOLPATH_SURFACE: usePatches_list[idx] = False linestyles_list[idx] = {'linewidths':2, 'colors': csurfaces[ntool%ncols]} patchestyles_list[idx] = None else: typs = type2str(typ) if typ==io.PATHTYPE_RAW_CONTOUR: usePatches_list[idx] = custom_formatting[typs]['usepatches'] linestyles_list[idx] = custom_formatting[typs]['linestyle'] patchestyles_list[idx] = custom_formatting[typs]['patchstyle'] else: length = len(custom_formatting[typs]) usePatches_list[idx] = custom_formatting[typs][ntool%length]['usepatches'] linestyles_list[idx] = custom_formatting[typs][ntool%length]['linestyle'] patchestyles_list[idx] = custom_formatting[typs][ntool%length]['patchstyle'] p2.showSlices(pathsbytype_list, modeN=True, title=windowname, BB=[], zs=contents.zs, linestyle=linestyles_list, patchArgs=patchestyles_list, usePatches=usePatches_list, scalingFactor=scalings_list) def show3D(contents, windowname, custom_formatting): nocustom = custom_formatting is None nelems = contents.numtools*(len(io.ALL_TYPES)-1)+1 paths_list = [None]*nelems mode_list = [None]*nelems args_list = [None]*nelems for key in contents.records.keys(): typ, ntool = key if not typ in io.ALL_TYPES: raise Exception('Unrecognized path type %d' % typ) byz = contents.records[key] byzl = [] for z in contents.zs: if z in byz: byzl.append([z, byz[z].paths, byz[z].scaling]) idx = showlistidx(typ, ntool) paths_list[idx] = byzl if nocustom: if typ==io.PATHTYPE_RAW_CONTOUR: mode_list[idx] = 'contour' args_list[idx] = {'color': craw3d, 'line_width':2} #args_list[idx] = {'colormap':cmap_raw, 'line_width':2} elif typ==io.PATHTYPE_PROCESSED_CONTOUR: mode_list[idx] = 'line' args_list[idx] = {'color': ccontours3d[ntool%ncols], 'line_width':2} #args_list[idx] = {'colormap':cmaps_contours[ntool%ncmaps], 'line_width':2} elif typ==io.PATHTYPE_TOOLPATH_PERIMETER: mode_list[idx] = 'line' args_list[idx] = {'color': cperimeters3d[ntool%ncols], 'line_width':2} #TODO: decimate the lines (maybe implement a Douglas-Peucker?) before adding the tubes!!!!! #mode_list[idx] = 'tube' #args_list[idx] = {'color': cperimeters3d[ntool%ncols], 'line_width':2, 'tube_radius':contents.xradiuses[ntool]} ##args_list[idx] = {'colormap':cmaps_toolpaths[ntool%ncmaps], 'line_width':2} elif typ==io.PATHTYPE_TOOLPATH_INFILLING: mode_list[idx] = 'line' args_list[idx] = {'color': cinfillings3d[ntool%ncols], 'line_width':2} #TODO: decimate the lines (maybe implement a Douglas-Peucker?) before adding the tubes!!!!! #mode_list[idx] = 'tube' #args_list[idx] = {'color': cinfillings3d[ntool%ncols], 'line_width':2, 'tube_radius':contents.xradiuses[ntool]} ##args_list[idx] = {'colormap':cmaps_toolpaths[ntool%ncmaps], 'line_width':2} elif typ==io.PATHTYPE_TOOLPATH_SURFACE: mode_list[idx] = 'line' args_list[idx] = {'color': csurfaces3d[ntool%ncols], 'line_width':2} #TODO: decimate the lines (maybe implement a Douglas-Peucker?) before adding the tubes!!!!! #mode_list[idx] = 'tube' #args_list[idx] = {'color': cinfillings3d[ntool%ncols], 'line_width':2, 'tube_radius':contents.xradiuses[ntool]} ##args_list[idx] = {'colormap':cmaps_toolpaths[ntool%ncmaps], 'line_width':2} else: typs = type2str(typ) if typ==io.PATHTYPE_RAW_CONTOUR: mode_list[idx] = custom_formatting[typs]['mode'] args_list[idx] = custom_formatting[typs]['args'] else: length = len(custom_formatting[typs]) mode_list[idx] = custom_formatting[typs][ntool%length]['mode'] args_list[idx] = custom_formatting[typs][ntool%length]['args'] if mode_list[idx]=='tube': args_list[idx]['tube_radius'] = contents.xradiuses[ntool] p3.showSlices(paths_list, title=windowname, modes=mode_list, argss=args_list) def check_args(cond, errmsg): if cond: USAGE = ("\n\nUSAGE: %s WINDOWNAME (2d|3d) (pipe | file INPUTFILE) [CUSTOMFORMATTING]\n" " WINDOWNAME: name of the window\n" " 2d/3d: will display in 2D (matplotlib) or 3D (mayavi) mode\n" " pipe: will read data from binary stdin\n" " file INPUTFILENAME: will read data from input file\n" " CUSTOMFORMATTING: if present, it is evaluated to a python structure containing formatting info. It is 2d/3d mode dependent, and no check is done, so it is very brittle, please see the code." ) % sys.argv[0] sys.stderr.write(errmsg+USAGE) sys.exit() if __name__ == "__main__": argidx=1 argc = len(sys.argv) check_args(argidx>=argc, 'need to read the window name (first argument), but no more arguments!') windowname = sys.argv[argidx] argidx+=1 check_args(argidx>=argc, 'need to read the display mode (second argument), but no more arguments!') use2d = sys.argv[argidx].lower() check_args(not use2d in ['2d', '3d'], 'second argument must be either "2d" or "3d", but it is %s!!!' % use2d) use2d = use2d=='2d' argidx+=1 check_args(argidx>=argc, 'need to read the input mode argument (third argument), but no more arguments!') usefile = sys.argv[argidx].lower() check_args(not usefile in ['file', 'pipe'], 'third argument must be either "file" or "pipe", but it is %s!!!' % usefile) usefile = usefile == 'file' argidx+=1 if usefile: check_args(argidx>=argc, 'need to read the file name, but no more arguments!') filename = sys.argv[argidx] argidx+=1 else: filename = None if argidx<argc: try: custom_formatting = eval(sys.argv[argidx], None, None) except: check_args(True, 'Could not evaluate the parameter for custom formatting!!!') argidx+=1 else: custom_formatting = None contents = io.FileContents() contents.readFromFile(filename) contents.organizeRecords() if use2d: import pyclipper.plot2d as p2 show2D(contents, windowname, custom_formatting) else: import pyclipper.plot3d as p3 show3D(contents, windowname, custom_formatting)
agpl-3.0
UNR-AERIAL/scikit-learn
sklearn/metrics/setup.py
299
1024
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.c"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
Clyde-fare/scikit-learn
sklearn/tests/test_learning_curve.py
225
10791
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
wijnandhoitinga/nutils
examples/adaptivity.py
1
6208
#! /usr/bin/env python3 # # In this script we solve the Laplace problem on a unit square that has the # bottom-right quadrant removed (a.k.a. an L-shaped domain) with Dirichlet # boundary conditions matching the harmonic function # # .. math:: \sqrt[3]{x^2 + y^2} \cos\left(\tfrac23 \arctan\frac{y+x}{y-x}\right), # # shifted by 0.5 such that the origin coincides with the middle of the unit # square. This variation of a well known benchmark problem is known to converge # suboptimally under uniform refinement due to a singular gradient in the # reentrant corner. This script demonstrates that optimal convergence can be # restored by using adaptive refinement. from nutils import mesh, function, solver, util, export, cli, testing import numpy, treelog def main(etype:str, btype:str, degree:int, nrefine:int): ''' Adaptively refined Laplace problem on an L-shaped domain. .. arguments:: etype [square] Type of elements (square/triangle/mixed). btype [h-std] Type of basis function (h/th-std/spline), with availability depending on the configured element type. degree [2] Polynomial degree nrefine [5] Number of refinement steps to perform. ''' domain, geom = mesh.unitsquare(2, etype) x, y = geom - .5 exact = (x**2 + y**2)**(1/3) * function.cos(function.arctan2(y+x, y-x) * (2/3)) domain = domain.trim(exact-1e-15, maxrefine=0) linreg = util.linear_regressor() with treelog.iter.fraction('level', range(nrefine+1)) as lrange: for irefine in lrange: if irefine: refdom = domain.refined ns.refbasis = refdom.basis(btype, degree=degree) indicator = refdom.integral('refbasis_n,k u_,k d:x' @ ns, degree=degree*2).eval(lhs=lhs) indicator -= refdom.boundary.integral('refbasis_n u_,k n_k d:x' @ ns, degree=degree*2).eval(lhs=lhs) supp = ns.refbasis.get_support(indicator**2 > numpy.mean(indicator**2)) domain = domain.refined_by(ns.refbasis.transforms[supp]) ns = function.Namespace() ns.x = geom ns.basis = domain.basis(btype, degree=degree) ns.u = 'basis_n ?lhs_n' ns.du = ns.u - exact sqr = domain.boundary['trimmed'].integral('u^2 d:x' @ ns, degree=degree*2) cons = solver.optimize('lhs', sqr, droptol=1e-15) sqr = domain.boundary.integral('du^2 d:x' @ ns, degree=7) cons = solver.optimize('lhs', sqr, droptol=1e-15, constrain=cons) res = domain.integral('basis_n,k u_,k d:x' @ ns, degree=degree*2) lhs = solver.solve_linear('lhs', res, constrain=cons) ndofs = len(ns.basis) error = domain.integral('<du^2, du_,k du_,k>_i d:x' @ ns, degree=7).eval(lhs=lhs)**.5 rate, offset = linreg.add(numpy.log(len(ns.basis)), numpy.log(error)) treelog.user('ndofs: {ndofs}, L2 error: {error[0]:.2e} ({rate[0]:.2f}), H1 error: {error[1]:.2e} ({rate[1]:.2f})'.format(ndofs=len(ns.basis), error=error, rate=rate)) bezier = domain.sample('bezier', 9) x, u, du = bezier.eval(['x_i', 'u', 'du'] @ ns, lhs=lhs) export.triplot('sol.png', x, u, tri=bezier.tri, hull=bezier.hull) export.triplot('err.png', x, du, tri=bezier.tri, hull=bezier.hull) return ndofs, error, lhs # If the script is executed (as opposed to imported), :func:`nutils.cli.run` # calls the main function with arguments provided from the command line. For # example, to perform four refinement steps with quadratic basis functions # starting from a triangle mesh run :sh:`python3 adaptivity.py etype=triangle # degree=2 nrefine=4`. if __name__ == '__main__': cli.run(main) # Once a simulation is developed and tested, it is good practice to save a few # strategic return values for regression testing. The :mod:`nutils.testing` # module, which builds on the standard :mod:`unittest` framework, facilitates # this by providing :func:`nutils.testing.TestCase.assertAlmostEqual64` for the # embedding of desired results as compressed base64 data. class test(testing.TestCase): @testing.requires('matplotlib') def test_square_quadratic(self): ndofs, error, lhs = main(nrefine=2, btype='h-std', etype='square', degree=2) with self.subTest('degrees of freedom'): self.assertEqual(ndofs, 149) with self.subTest('L2-error'): self.assertAlmostEqual(error[0], 0.00065, places=5) with self.subTest('H1-error'): self.assertAlmostEqual(error[1], 0.03461, places=5) with self.subTest('left-hand side'): self.assertAlmostEqual64(lhs, ''' eNo1j6FrQmEUxT8RBi4KllVfMsl3z/nK4zEmLC6bhsKCw2gSw5IPFsymGbZiWnr+By8Ii7Yhsk3BMtC4 Z9sJ223ncs85vzvmM9+Yhix8hDIjtnkdHqQSdDDDj1Qajr5qPXN/07MZ2vI4V7UOIvmdO/oEZY45xYDn oR7ikLHAHVpcs2A1TLhChDO+MOeWt5xjYzm6fOQrGxxiZPeoMGaf37hCyU72hB0u6PglPcQcKxRI/KUd 7AYLvMPpsqGkCTPumzWf+qV92kKevjK36ozDP/FSnh1iteWiqWuf+oMaKuyKaC1i52rKPokiF2WLA/20 bya+ZCPbWKRPpvgFaedebw==''') @testing.requires('matplotlib') def test_triangle_quadratic(self): ndofs, error, lhs = main(nrefine=2, btype='h-std', etype='triangle', degree=2) with self.subTest('degrees of freedom'): self.assertEqual(ndofs, 98) with self.subTest('L2-error'): self.assertAlmostEqual(error[0], 0.00138, places=5) with self.subTest('H1-error'): self.assertAlmostEqual(error[1], 0.05324, places=5) with self.subTest('left-hand side'): self.assertAlmostEqual64(lhs, ''' eNprMV1oesqU2VTO1Nbko6myWbhpq+kckwST90avjRgYzptYm+YYMwBBk3GQWavZb1NXs2+mm83um1WY bQbyXYEiQWbKZjNM7wJVzjBlYICoPW8CMiXH+LXRR9NwoPkg82xN5IB2MZu2mGabSBnnAbGscYEJj3GV YQAQg/TVGfaA7RI0BsErRjeNeowDgDQPmF9gkmciaJxtArGjzrAKCGWNpYAQAL0kOBE=''') @testing.requires('matplotlib') def test_mixed_linear(self): ndofs, error, lhs = main(nrefine=2, btype='h-std', etype='mixed', degree=1) with self.subTest('degrees of freedom'): self.assertEqual(ndofs, 34) with self.subTest('L2-error'): self.assertAlmostEqual(error[0], 0.00450, places=5) with self.subTest('H1-error'): self.assertAlmostEqual(error[1], 0.11683, places=5) with self.subTest('left-hand side'): self.assertAlmostEqual64(lhs, ''' eNprMT1u6mQyxUTRzMCUAQhazL6b3jNrMYPxp5iA5FtMD+lcMgDxHa4aXzS+6HDV+fKO85cMnC8zMBzS AQDBThbY''')
mit
arokem/pyAFQ
AFQ/data.py
2
86674
from dipy.align import resample from dipy.segment.clustering import QuickBundles from dipy.segment.metric import (AveragePointwiseEuclideanMetric, ResampleFeature) from dipy.io.streamline import load_tractogram, load_trk from dipy.data.fetcher import _make_fetcher import dipy.data as dpd from io import BytesIO import gzip import os import os.path as op import json from glob import glob import shutil import boto3 import s3fs import numpy as np import pandas as pd import logging import time from bids import BIDSLayout import bids.config as bids_config try: bids_config.set_option('extension_initial_dot', True) except ValueError: pass from botocore import UNSIGNED from botocore.client import Config from dask import compute, delayed from dask.diagnostics import ProgressBar from pathlib import Path from tqdm.auto import tqdm import nibabel as nib # capture templateflow resource warning and log import warnings default_warning_format = warnings.formatwarning try: warnings.formatwarning = lambda msg, *args, **kwargs: f'{msg}' logging.captureWarnings(True) pywarnings_logger = logging.getLogger('py.warnings') console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter(logging.BASIC_FORMAT)) pywarnings_logger.addHandler(console_handler) warnings.filterwarnings( "default", category=ResourceWarning, module="templateflow") from templateflow import api as tflow finally: logging.captureWarnings(False) warnings.formatwarning = default_warning_format __all__ = ["fetch_callosum_templates", "read_callosum_templates", "fetch_templates", "read_templates", "fetch_hcp", "fetch_stanford_hardi_tractography", "read_stanford_hardi_tractography", "organize_stanford_data"] BUNDLE_RECO_2_AFQ = \ { "AF_L": "ARC_L", "AF_R": "ARC_R", "UF_L": "UNC_L", "UF_R": "UNC_R", "IFOF_L": "IFO_L", "IFOF_R": "IFO_R", "CST_L": "CST_L", "CST_R": "CST_R", "ILF_L": "ILF_L", "ILF_R": "ILF_R", "SLF_L": "SLF_L", "SLF_R": "SLF_R" } BUNDLE_MAT_2_PYTHON = \ {'Right Corticospinal': 'CST_R', 'Left Corticospinal': 'CST_L', 'RightCorticospinal': 'CST_R', 'LeftCorticospinal': 'CST_L', 'Right Uncinate': 'UNC_R', 'Left Uncinate': 'UNC_L', 'RightUncinate': 'UNC_R', 'LeftUncinate': 'UNC_L', 'Left IFOF': 'IFO_L', 'Right IFOF': 'IFO_R', 'LeftIFOF': 'IFO_L', 'RightIFOF': 'IFO_R', 'Right Arcuate': 'ARC_R', 'Left Arcuate': 'ARC_L', 'RightArcuate': 'ARC_R', 'LeftArcuate': 'ARC_L', 'Right Thalamic Radiation': 'ATR_R', 'Left Thalamic Radiation': 'ATR_L', 'RightThalamicRadiation': 'ATR_R', 'LeftThalamicRadiation': 'ATR_L', 'Right Cingulum Cingulate': 'CGC_R', 'Left Cingulum Cingulate': 'CGC_L', 'RightCingulumCingulate': 'CGC_R', 'LeftCingulumCingulate': 'CGC_L', 'Right Cingulum Hippocampus': 'HCC_R', 'Left Cingulum Hippocampus': 'HCC_L', 'RightCingulumHippocampus': 'HCC_R', 'LeftCingulumHippocampus': 'HCC_L', 'Callosum Forceps Major': 'FP', 'Callosum Forceps Minor': 'FA', 'CallosumForcepsMajor': 'FP', 'CallosumForcepsMinor': 'FA', 'Right ILF': 'ILF_R', 'Left ILF': 'ILF_L', 'RightILF': 'ILF_R', 'LeftILF': 'ILF_L', 'Right SLF': 'SLF_R', 'Left SLF': 'SLF_L', 'RightSLF': 'SLF_R', 'LeftSLF': 'SLF_L'} afq_home = op.join(op.expanduser('~'), 'AFQ_data') baseurl = "https://ndownloader.figshare.com/files/" callosum_fnames = ["Callosum_midsag.nii.gz", "L_AntFrontal.nii.gz", "L_Motor.nii.gz", "L_Occipital.nii.gz", "L_Orbital.nii.gz", "L_PostParietal.nii.gz", "L_SupFrontal.nii.gz", "L_SupParietal.nii.gz", "L_Temporal.nii.gz", "R_AntFrontal.nii.gz", "R_Motor.nii.gz", "R_Occipital.nii.gz", "R_Orbital.nii.gz", "R_PostParietal.nii.gz", "R_SupFrontal.nii.gz", "R_SupParietal.nii.gz", "R_Temporal.nii.gz"] callosum_remote_fnames = ["5273794", "5273797", "5273800", "5273803", "5273806", "5273809", "5273812", "5273815", "5273821", "5273818", "5273824", "5273827", "5273830", "5273833", "5273836", "5273839", "5273842"] callosum_md5_hashes = ["709fa90baadeacd64f1d62b5049a4125", "987c6169de807c4e93dc2cbd7a25d506", "0da114123d0b0097b96fe450a459550b", "6d845bd10504f67f1dc17f9000076d7e", "e16c7873ef4b08d26b77ef746dab8237", "47193fd4df1ea17367817466de798b90", "7e78bf9671e6945f4b2f5e7c30595a3c", "8adbb947377ff7b484c88d8c0ffc2125", "0fd981a4d0847e0642ff96e84fe44e47", "87c4855efa406d8fb004cffb8259180e", "c7969bcf5f2343fd9ce9c49b336cf14c", "bb4372b88991932150205ffb22aa6cb7", "d198d4e7db18ddc7236cf143ecb8342e", "d0f6edef64b0c710c92e634496085dda", "85eaee44665f244db5adae2e259833f6", "25f24eb22879a05d12bda007c81ea55a", "2664e0b8c2d9c59f13649a89bfcce399"] fetch_callosum_templates = _make_fetcher("fetch_callosum_templates", op.join(afq_home, 'callosum_templates'), baseurl, callosum_remote_fnames, callosum_fnames, md5_list=callosum_md5_hashes, doc="Download AFQ callosum templates") def read_callosum_templates(resample_to=False): """Load AFQ callosum templates from file Returns ------- dict with: keys: names of template ROIs and values: nibabel Nifti1Image objects from each of the ROI nifti files. """ logger = logging.getLogger('AFQ.data') files, folder = fetch_callosum_templates() logger.debug('loading callosum templates') tic = time.perf_counter() template_dict = {} for f in files: img = nib.load(op.join(folder, f)) if resample_to: if isinstance(resample_to, str): resample_to = nib.load(resample_to) img = nib.Nifti1Image(resample(img.get_fdata(), resample_to, img.affine, resample_to.affine).get_fdata(), resample_to.affine) template_dict[f.split('.')[0]] = img toc = time.perf_counter() logger.debug(f'callosum templates loaded in {toc - tic:0.4f} seconds') return template_dict def read_resample_roi(roi, resample_to=None, threshold=False): """ Reads an roi from file-name/img and resamples it to conform with another file-name/img. Parameters ---------- roi : str or nibabel image class instance. Should contain a binary volume with 1s in the region of interest and 0s elsewhere. resample_to : str or nibabel image class instance, optional A template image to resample to. Typically, this should be the template to which individual-level data are registered. Defaults to the MNI template. threshold: bool or float If set to False (default), resampled result is returned. Otherwise, the resampled result is thresholded at this value and binarized. This is not applied if the input ROI is already in the space of the output. Returns ------- nibabel image class instance that contains the binary ROI resampled into the requested space. """ if isinstance(roi, str): roi = nib.load(roi) if resample_to is None: resample_to = read_mni_template() if isinstance(resample_to, str): resample_to = nib.load(resample_to) if np.allclose(resample_to.affine, roi.affine): return roi as_array = resample( roi.get_fdata(), resample_to, roi.affine, resample_to.affine).get_fdata() if threshold: as_array = (as_array > threshold).astype(int) img = nib.Nifti1Image( as_array, resample_to.affine) return img template_fnames = ["ATR_roi1_L.nii.gz", "ATR_roi1_R.nii.gz", "ATR_roi2_L.nii.gz", "ATR_roi2_R.nii.gz", "ATR_L_prob_map.nii.gz", "ATR_R_prob_map.nii.gz", "CGC_roi1_L.nii.gz", "CGC_roi1_R.nii.gz", "CGC_roi2_L.nii.gz", "CGC_roi2_R.nii.gz", "CGC_L_prob_map.nii.gz", "CGC_R_prob_map.nii.gz", "CST_roi1_L.nii.gz", "CST_roi1_R.nii.gz", "CST_roi2_L.nii.gz", "CST_roi2_R.nii.gz", "CST_L_prob_map.nii.gz", "CST_R_prob_map.nii.gz", "FA_L.nii.gz", "FA_R.nii.gz", "FA_prob_map.nii.gz", "FP_L.nii.gz", "FP_R.nii.gz", "FP_prob_map.nii.gz", "HCC_roi1_L.nii.gz", "HCC_roi1_R.nii.gz", "HCC_roi2_L.nii.gz", "HCC_roi2_R.nii.gz", "HCC_L_prob_map.nii.gz", "HCC_R_prob_map.nii.gz", "IFO_roi1_L.nii.gz", "IFO_roi1_R.nii.gz", "IFO_roi2_L.nii.gz", "IFO_roi2_R.nii.gz", "IFO_L_prob_map.nii.gz", "IFO_R_prob_map.nii.gz", "ILF_roi1_L.nii.gz", "ILF_roi1_R.nii.gz", "ILF_roi2_L.nii.gz", "ILF_roi2_R.nii.gz", "ILF_L_prob_map.nii.gz", "ILF_R_prob_map.nii.gz", "SLF_roi1_L.nii.gz", "SLF_roi1_R.nii.gz", "SLF_roi2_L.nii.gz", "SLF_roi2_R.nii.gz", "SLFt_roi2_L.nii.gz", "SLFt_roi2_R.nii.gz", "SLF_L_prob_map.nii.gz", "SLF_R_prob_map.nii.gz", "UNC_roi1_L.nii.gz", "UNC_roi1_R.nii.gz", "UNC_roi2_L.nii.gz", "UNC_roi2_R.nii.gz", "UNC_L_prob_map.nii.gz", "UNC_R_prob_map.nii.gz", "ARC_L_prob_map.nii.gz", "ARC_R_prob_map.nii.gz"] template_remote_fnames = ["5273680", "5273683", "5273686", "5273689", "11458274", "11458277", "5273695", "5273692", "5273698", "5273701", "11458268", "11458271", "5273704", "5273707", "5273710", "5273713", "11458262", "11458265", "5273716", "5273719", "11458220", "5273722", "5273725", "11458226", "5273728", "5273731", "5273734", "5273746", "11458259", "11458256", "5273737", "5273740", "5273743", "5273749", "11458250", "11458253", "5273752", "5273755", "5273758", "5273761", "11458244", "11458247", "5273764", "5273767", "5273770", "5273773", "5273776", "5273791", "11458238", "11458241", "5273779", "5273782", "5273785", "5273788", "11458223", "11458229", "11458232", "11458235"] template_md5_hashes = ["6b7aaed1a2982fd0ea436a223133908b", "fd60d46d4e3cbd906c86e4c9e4fd6e2a", "3aba60b169a35c38640de4ec29d362c8", "12716a5688a1809fbaed1d58d2e68b59", "c5637f471df861d9bbb45604db34770b", "850cc4c04d7241747063fe3cd440b2ce", "8e8973bc7838c8744914d402f52d91ca", "c5fa4e6e685e695c006823b6784d2407", "e1fab77f21d5303ed52285f015e24f0b", "5f89defec3753fd75cd688c7bfb20a36", "a4f3cd65b06fb25f63d5dab7592f00f2", "7e73ab02db30a3ad6bd9e82148c2486e", "f9db3154955a20b67c2dda758800d14c", "73941510c798c1ed1b03e2bd481cd5c7", "660cdc031ee0716d60159c7d933119ea", "660cdc031ee0716d60159c7d933119ea", "fd012bc89f6bed7bd54530195496bac4", "3406906a86e633cc102127cf210a1063", "9040a7953dcbbf131d135c866182d8ef", "a72e17194824fcd838a594a2eb50c72e", "627d7bb2e6d55f8243da815a36d9ff1a", "55adbe9b8279185eedbe342149e1ff90", "5a7412a3cf0fb185eec53d1989df2f7c", "1aa36e83ae7b5555bb19d776ede9c18d", "ba453196ff179b0e31172806e313b52c", "d85c6574526b296935f34bf4f65cd493", "9b81646317f59c7db087f27e2f85679e", "9806e82c250e4604534b96917f87b7e8", "213d3fb1ccd756d878f9b50b765b1c8f", "f1e7e6bc51aa0aa279c54fb3805fb5e3", "0e68a9feaaddcc9b4d667c2f15903368", "d45020a87ee4bb496edd350631d91f6a", "75c2c911826ec4b23159f9bd80e3c039", "55d616ea9e0c646adc1aafa0f5fbe625", "dee83fa6b03cfa5e0f5c965953aa6778", "a13eef7059c98568adfefbab660e434e", "045b7d5c6341997f3f0120c3a4212ad8", "d174b1359ba982b03840436c93b7bbb4", "fff9753f394fc4c73fb2ae40b3b4dde0", "cd278b4dd6ff77481ea9ac16485a5ae2", "7bdf5111265107091c7a2fca9215de30", "7d4a43714504e6e930f922c9bc2a13d5", "af2bcedf47e193686af329b9a8e259da", "9a1122943579d11ba169d3ad87a75625", "627903f7a06627bfd4153dc9245fa390", "1714cd7f989c3435bdd5a2076e6272a0", "1fa2114049707a4e05b53f9d95730375", "b6663067d5ea53c70cb8803948f8adf7", "d3e068997ebc60407bd6e9576e47dede", "27ecfbd1d2f98213e52d73b7d70fe0e7", "fa141bb2d951bec486916acda3652d95", "d391d073e86e28588be9a6d01b2e7a82", "a3e085562e6b8111c7ebc358f9450c8b", "d65c67910807504735e034f7ea92d590", "93cb24a9128db1a6c34a09eaf79fe7f0", "71a7455cb4062dc39b1677c118c7b5a5", "19590c712f1776da1fdba64d4eb7f1f6", "04d5af0feb2c1b5b52a87ccbbf148e4b", "53c277be990d00f7de04f2ea35e74d73"] fetch_templates = _make_fetcher("fetch_templates", op.join(afq_home, 'templates'), baseurl, template_remote_fnames, template_fnames, md5_list=template_md5_hashes, doc="Download AFQ templates") def read_templates(resample_to=False): """Load AFQ templates from file Returns ------- dict with: keys: names of template ROIs and values: nibabel Nifti1Image objects from each of the ROI nifti files. """ logger = logging.getLogger('AFQ.data') files, folder = fetch_templates() logger.debug('loading AFQ templates') tic = time.perf_counter() template_dict = {} for f in files: img = nib.load(op.join(folder, f)) if resample_to: if isinstance(resample_to, str): resample_to = nib.load(resample_to) img = nib.Nifti1Image( resample( img.get_fdata(), resample_to, img.affine, resample_to.affine).get_fdata(), resample_to.affine) template_dict[f.split('.')[0]] = img toc = time.perf_counter() logger.debug(f'AFQ templates loaded in {toc - tic:0.4f} seconds') return template_dict # +----------------------------------------------------+ # | Begin S3BIDSStudy classes and supporting functions | # +----------------------------------------------------+ def get_s3_client(anon=True): """Return a boto3 s3 client Global boto clients are not thread safe so we use this function to return independent session clients for different threads. Parameters ---------- anon : bool Whether to use anonymous connection (public buckets only). If False, uses the key/secret given, or boto’s credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). Default: True Returns ------- s3_client : boto3.client('s3') """ session = boto3.session.Session() if anon: s3_client = session.client( 's3', config=Config(signature_version=UNSIGNED) ) else: s3_client = session.client('s3') return s3_client def _ls_s3fs(s3_prefix, anon=True): """Returns a dict of list of files using s3fs The files are divided between subject directories/files and non-subject directories/files. Parameters ---------- s3_prefix : str AWS S3 key for the study or site "directory" that contains all of the subjects anon : bool Whether to use anonymous connection (public buckets only). If False, uses the key/secret given, or boto’s credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). Default: True Returns ------- subjects : dict """ fs = s3fs.S3FileSystem(anon=anon) site_files = fs.ls(s3_prefix, detail=False) # Just need BIDSLayout for the `parse_file_entities` method # so we can pass dev/null as the argument layout = BIDSLayout(os.devnull, validate=False) entities = [ layout.parse_file_entities(f) for f in site_files ] files = { 'subjects': [ f for f, e in zip(site_files, entities) if e.get('subject') is not None ], 'other': [ f for f, e in zip(site_files, entities) if e.get('subject') is None ] } return files def _get_matching_s3_keys(bucket, prefix='', suffix='', anon=True): """Generate all the matching keys in an S3 bucket. Parameters ---------- bucket : str Name of the S3 bucket prefix : str, optional Only fetch keys that start with this prefix suffix : str, optional Only fetch keys that end with this suffix anon : bool Whether to use anonymous connection (public buckets only). If False, uses the key/secret given, or boto’s credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). Default: True Yields ------ key : list S3 keys that match the prefix and suffix """ s3 = get_s3_client(anon=anon) kwargs = {'Bucket': bucket, 'MaxKeys': 1000} # If the prefix is a single string (not a tuple of strings), we can # do the filtering directly in the S3 API. if isinstance(prefix, str) and prefix: kwargs['Prefix'] = prefix while True: # The S3 API response is a large blob of metadata. # 'Contents' contains information about the listed objects. resp = s3.list_objects_v2(**kwargs) try: contents = resp['Contents'] except KeyError: return for obj in contents: key = obj['Key'] if key.startswith(prefix) and key.endswith(suffix): yield key # The S3 API is paginated, returning up to 1000 keys at a time. # Pass the continuation token into the next response, until we # reach the final page (when this field is missing). try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break def _download_from_s3(fname, bucket, key, overwrite=False, anon=True): """Download object from S3 to local file Parameters ---------- fname : str File path to which to download the object bucket : str S3 bucket name key : str S3 key for the object to download overwrite : bool If True, overwrite file if it already exists. If False, skip download and return. Default: False anon : bool Whether to use anonymous connection (public buckets only). If False, uses the key/secret given, or boto’s credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). Default: True """ # Create the directory and file if necessary fs = s3fs.S3FileSystem(anon=anon) if overwrite or not op.exists(fname): Path(op.dirname(fname)).mkdir(parents=True, exist_ok=True) fs.get("/".join([bucket, key]), fname) class S3BIDSSubject: """A single study subject hosted on AWS S3""" def __init__(self, subject_id, study): """Initialize a Subject instance Parameters ---------- subject_id : str Subject-ID for this subject study : AFQ.data.S3BIDSStudy The S3BIDSStudy for which this subject was a participant """ logging.getLogger("botocore").setLevel(logging.WARNING) if not isinstance(subject_id, str): raise TypeError('subject_id must be a string.') if not isinstance(study, S3BIDSStudy): raise TypeError('study must be an instance of S3BIDSStudy.') self._subject_id = subject_id self._study = study self._get_s3_keys() self._files = {'raw': {}, 'derivatives': {}} @property def subject_id(self): """An identifier string for the subject""" return self._subject_id @property def study(self): """The study in which this subject participated""" return self._study @property def s3_keys(self): """A dict of S3 keys for this subject's data The S3 keys are divided between "raw" data and derivatives """ return self._s3_keys @property def files(self): """Local files for this subject's dMRI data Before the call to subject.download(), this is None. Afterward, the files are stored in a dict with keys for each Amazon S3 key and values corresponding to the local file. """ return self._files def __repr__(self): return (f'{type(self).__name__}(subject_id={self.subject_id}, ' f'study_id={self.study.study_id}') def _get_s3_keys(self): """Get all required S3 keys for this subject Returns ------- s3_keys : dict S3 keys organized into "raw" and "derivatives" lists """ prefixes = { 'raw': '/'.join([self.study.s3_prefix, self.subject_id]).lstrip('/'), 'derivatives': { dt: '/'.join([ *dt.split('/')[1:], # removes bucket name self.subject_id ]).lstrip('/') for dt in self.study.derivative_types }, } s3_keys = { 'raw': list(set(_get_matching_s3_keys( bucket=self.study.bucket, prefix=prefixes['raw'], anon=self.study.anon, ))), 'derivatives': { dt: list(set(_get_matching_s3_keys( bucket=self.study.bucket, prefix=prefixes['derivatives'][dt], anon=self.study.anon, ))) for dt in self.study.derivative_types } } self._s3_keys = s3_keys def download(self, directory, include_derivs=False, overwrite=False, suffix=None, pbar=True, pbar_idx=0): """Download files from S3 Parameters ---------- directory : str Directory to which to download subject files include_derivs : bool or str If True, download all derivatives files. If False, do not. If a string or sequence of strings is passed, this will only download derivatives that match the string(s) (e.g. ['dmriprep', 'afq']). Default: False overwrite : bool If True, overwrite files for each subject. Default: False suffix : str Suffix, including extension, of file(s) to download. Default: None pbar : bool If True, include download progress bar. Default: True pbar_idx : int Progress bar index for multithreaded progress bars. Default: 0 """ if not isinstance(directory, str): raise TypeError('directory must be a string.') if not (isinstance(include_derivs, bool) or isinstance(include_derivs, str) or all(isinstance(s, str) for s in include_derivs)): raise TypeError('include_derivs must be a boolean, a ' 'string, or a sequence of strings.') if not isinstance(overwrite, bool): raise TypeError('overwrite must be a boolean.') if (suffix is not None) and not(isinstance(suffix, str)): raise TypeError('suffix must be a string.') if not isinstance(pbar, bool): raise TypeError('pbar must be a boolean.') if not isinstance(pbar_idx, int): raise TypeError('pbar_idx must be an integer.') def split_key(key): if self.study.s3_prefix: return key.split(self.study.s3_prefix)[-1] else: return key # Filter out keys that do not end with suffix if suffix is not None: s3_keys_raw = [ s3key for s3key in self.s3_keys['raw'] if s3key.endswith(suffix) ] s3_keys_deriv = { dt: [ s3key for s3key in s3keys if s3key.endswith(suffix) ] for dt, s3keys in self.s3_keys['derivatives'].items() } else: s3_keys_raw = self.s3_keys['raw'] s3_keys_deriv = self.s3_keys['derivatives'] files = { 'raw': [ op.abspath(op.join( directory, split_key(key).lstrip('/') )) for key in s3_keys_raw ], 'derivatives': { dt: [ op.abspath(op.join( directory, split_key(s3key).lstrip('/') )) for s3key in s3keys ] for dt, s3keys in s3_keys_deriv.items() } } raw_zip = list(zip(s3_keys_raw, files['raw'])) # Populate files parameter self._files["raw"].update({k: f for k, f in raw_zip}) # Generate list of (key, file) tuples download_pairs = [(k, f) for k, f in raw_zip] deriv_zips = { dt: list(zip( s3keys, files['derivatives'][dt] )) for dt, s3keys in s3_keys_deriv.items() } deriv_pairs = [] for dt in files['derivatives'].keys(): if include_derivs is True: # In this case, include all derivatives files deriv_pairs += [(k, f) for k, f in deriv_zips[dt]] self._files['derivatives'][dt] = { k: f for k, f in deriv_zips[dt] } elif include_derivs is False: pass elif (isinstance(include_derivs, str) # In this case, filter only derivatives S3 keys that # include the `include_derivs` string as a substring and include_derivs in dt): deriv_pairs += [(k, f) for k, f in deriv_zips[dt]] self._files['derivatives'][dt] = { k: f for k, f in deriv_zips[dt] } elif (all(isinstance(s, str) for s in include_derivs) and any([deriv in dt for deriv in include_derivs])): # In this case, filter only derivatives S3 keys that # include any of the `include_derivs` strings as a # substring deriv_pairs += [(k, f) for k, f in deriv_zips[dt]] self._files['derivatives'][dt] = { k: f for k, f in deriv_zips[dt] } if include_derivs is not False: download_pairs += deriv_pairs # Now iterate through the list and download each item if pbar: progress = tqdm(desc=f'Download {self.subject_id}', position=pbar_idx, total=len(download_pairs) + 1) for (key, fname) in download_pairs: _download_from_s3(fname=fname, bucket=self.study.bucket, key=key, overwrite=overwrite, anon=self.study.anon) if pbar: progress.update() if pbar: progress.update() progress.close() class HBNSubject(S3BIDSSubject): """A subject in the HBN study See Also -------- AFQ.data.S3BIDSSubject """ def __init__(self, subject_id, study, site=None): """Initialize a Subject instance Parameters ---------- subject_id : str Subject-ID for this subject study : AFQ.data.S3BIDSStudy The S3BIDSStudy for which this subject was a participant site : str, optional Site-ID for the site from which this subject's data was collected """ if not (site is None or isinstance(site, str)): raise TypeError('site must be a string or None.') self._site = site super().__init__( subject_id=subject_id, study=study ) @property def site(self): """The site at which this subject was a participant""" return self._site def __repr__(self): return (f'{type(self).__name__}(subject_id={self.subject_id}, ' f'study_id={self.study.study_id}, site={self.site}') def _get_s3_keys(self): """Get all required S3 keys for this subject Returns ------- s3_keys : dict S3 keys organized into "raw" and "derivatives" lists """ prefixes = { 'raw': '/'.join([self.study.s3_prefix, self.subject_id]).lstrip('/'), 'derivatives': '/'.join([ self.study.s3_prefix, 'derivatives', self.subject_id ]).lstrip('/') } s3_keys = { datatype: list(set(_get_matching_s3_keys( bucket=self.study.bucket, prefix=prefix, anon=self.study.anon, ))) for datatype, prefix in prefixes.items() } def get_deriv_type(s3_key): after_sub = s3_key.split('/' + self.subject_id + '/')[-1] deriv_type = after_sub.split('/')[0] deriv_keys = { dt: [ s3key for s3key in s3_keys['derivatives'] if dt == get_deriv_type(s3key) ] for dt in self.study.derivative_types } s3_keys['derivatives'] = deriv_keys self._s3_keys = s3_keys class S3BIDSStudy: """A BIDS-compliant study hosted on AWS S3""" def __init__(self, study_id, bucket, s3_prefix, subjects=None, anon=True, use_participants_tsv=False, random_seed=None, _subject_class=S3BIDSSubject): """Initialize an S3BIDSStudy instance Parameters ---------- study_id : str An identifier string for the study bucket : str The S3 bucket that contains the study data s3_prefix : str The S3 prefix common to all of the study objects on S3 subjects : str, sequence(str), int, or None If int, retrieve S3 keys for the first `subjects` subjects. If "all", retrieve all subjects. If str or sequence of strings, retrieve S3 keys for the specified subjects. If sequence of ints, then for each int n retrieve S3 keys for the nth subject. If None, retrieve S3 keys for the first subject. Default: None anon : bool Whether to use anonymous connection (public buckets only). If False, uses the key/secret given, or boto’s credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). Default: True use_participants_tsv : bool If True, use the particpants tsv files to retrieve subject identifiers. This is faster but may not catch all subjects. Sometimes the tsv files are outdated. Default: False random_seed : int or None Random seed for selection of subjects if `subjects` is an integer. Use the same random seed for reproducibility. Default: None _subject_class : object The subject class to be used for this study. This parameter has a leading underscore because you probably don't want to change it. If you do change it, you must provide a class that quacks like AFQ.data.S3BIDSSubject. Default: S3BIDSSubject """ logging.getLogger("botocore").setLevel(logging.WARNING) if not isinstance(study_id, str): raise TypeError('`study_id` must be a string.') if not isinstance(bucket, str): raise TypeError('`bucket` must be a string.') if not isinstance(s3_prefix, str): raise TypeError('`s3_prefix` must be a string.') if not (subjects is None or isinstance(subjects, int) or isinstance(subjects, str) or all(isinstance(s, str) for s in subjects) or all(isinstance(s, int) for s in subjects)): raise TypeError('`subjects` must be an int, string, ' 'sequence of strings, or a sequence of ints.') if not isinstance(anon, bool): raise TypeError('`anon` must be of type bool.') if isinstance(subjects, int) and subjects < 1: raise ValueError('If `subjects` is an int, it must be ' 'greater than 0.') if not isinstance(use_participants_tsv, bool): raise TypeError('`use_participants_tsv` must be boolean.') if not (random_seed is None or isinstance(random_seed, int)): raise TypeError("`random_seed` must be an integer.") self._study_id = study_id self._bucket = bucket self._s3_prefix = s3_prefix self._use_participants_tsv = use_participants_tsv self._random_seed = random_seed self._anon = anon self._subject_class = _subject_class self._local_directories = [] # Get a list of all subjects in the study self._all_subjects = self._list_all_subjects() self._derivative_types = self._get_derivative_types() self._non_subject_s3_keys = self._get_non_subject_s3_keys() # Convert `subjects` into a sequence of subjectID strings if subjects is None or isinstance(subjects, int) \ or (isinstance(subjects, list) and isinstance(subjects[0], int)): # if subjects is an int, get that many random subjects prng = np.random.RandomState(random_seed) randomized_subjects = sorted(self._all_subjects.copy()) prng.shuffle(randomized_subjects) if subjects is None: subjects = randomized_subjects[0] elif isinstance(subjects, int): subjects = randomized_subjects[:subjects] else: subjects = [randomized_subjects[i] for i in subjects] if isinstance(subjects, str): subjects = [subjects] elif subjects == 'all': # if "all," retrieve all subjects subjects = sorted(self._all_subjects) elif isinstance(subjects, str): # if a string, just get that one subject subjects = [subjects] # The last case for subjects is what we want. No transformation needed. if not set(subjects) <= set(self._all_subjects): raise ValueError( f'The following subjects could not be found in the study: ' f'{set(subjects) - set(self._all_subjects)}' ) subs = [ delayed(self._get_subject)(s) for s in set(subjects) ] print('Retrieving subject S3 keys') with ProgressBar(): subjects = list(compute(*subs, scheduler='threads')) self._subjects = subjects @property def study_id(self): """An identifier string for the study""" return self._study_id @property def bucket(self): """The S3 bucket that contains the study data""" return self._bucket @property def s3_prefix(self): """The S3 prefix common to all of the study objects on S3""" return self._s3_prefix @property def subjects(self): """A list of Subject instances for each requested subject""" return self._subjects @property def anon(self): """Is this study using an anonymous S3 connection?""" return self._anon @property def derivative_types(self): """A list of derivative pipelines available in this study""" return self._derivative_types @property def non_sub_s3_keys(self): """A dict of S3 keys that are not in subject directories""" return self._non_subject_s3_keys @property def local_directories(self): """A list of local directories to which this study has been downloaded""" return self._local_directories @property def use_participants_tsv(self): """Did we use a participants.tsv file to populate the list of study subjects.""" return self._use_participants_tsv @property def random_seed(self): """The random seed used to retrieve study subjects""" return self._random_seed def __repr__(self): return (f'{type(self).__name__}(study_id={self.study_id}, ' f'bucket={self.bucket}, s3_prefix={self.s3_prefix})') def _get_subject(self, subject_id): """Return a Subject instance from a subject-ID""" return self._subject_class(subject_id=subject_id, study=self) def _get_derivative_types(self): """Return a list of available derivatives pipelines Returns ------- list list of available derivatives pipelines """ s3_prefix = '/'.join([self.bucket, self.s3_prefix]).rstrip("/") nonsub_keys = _ls_s3fs(s3_prefix=s3_prefix, anon=self.anon)['other'] derivatives_prefix = '/'.join([s3_prefix, 'derivatives']) if derivatives_prefix in nonsub_keys: return _ls_s3fs( s3_prefix=derivatives_prefix, anon=self.anon )['other'] else: return [] def _get_non_subject_s3_keys(self): """Return a list of 'non-subject' files In this context, a 'non-subject' file is any file or directory that is not a subject ID folder Returns ------- dict dict with keys 'raw' and 'derivatives' and whose values are lists of S3 keys for non-subject files """ non_sub_s3_keys = {} s3_prefix = '/'.join([self.bucket, self.s3_prefix]).rstrip("/") nonsub_keys = _ls_s3fs(s3_prefix=s3_prefix, anon=self.anon)['other'] nonsub_keys = [k for k in nonsub_keys if not k.endswith('derivatives')] nonsub_deriv_keys = [] for dt in self.derivative_types: nonsub_deriv_keys.append(_ls_s3fs( s3_prefix=dt, anon=self.anon )['other']) non_sub_s3_keys = { 'raw': nonsub_keys, 'derivatives': nonsub_deriv_keys, } return non_sub_s3_keys def _list_all_subjects(self): """Return list of subjects Returns ------- list list of participant_ids """ if self._use_participants_tsv: tsv_key = "/".join([self.s3_prefix, "participants.tsv"]).lstrip("/") s3 = get_s3_client(anon=self.anon) def get_subs_from_tsv_key(s3_key): response = s3.get_object( Bucket=self.bucket, Key=s3_key ) return set(pd.read_csv( response.get('Body') ).participant_id.values) subject_set = get_subs_from_tsv_key(tsv_key) subjects = list(subject_set) else: s3_prefix = '/'.join([self.bucket, self.s3_prefix]).rstrip("/") sub_keys = _ls_s3fs(s3_prefix=s3_prefix, anon=self.anon)['subjects'] # Just need BIDSLayout for the `parse_file_entities` # method so we can pass dev/null as the argument layout = BIDSLayout(os.devnull, validate=False) subjects = [] for key in sub_keys: entities = layout.parse_file_entities(key) subjects.append('sub-' + entities.get('subject')) return list(set(subjects)) def _download_non_sub_keys(self, directory, select=("dataset_description.json",), filenames=None): fs = s3fs.S3FileSystem(anon=self.anon) if filenames is None: filenames = self.non_sub_s3_keys['raw'] for fn in filenames: if select == "all" or any([s in fn for s in select]): Path(directory).mkdir(parents=True, exist_ok=True) fs.get(fn, op.join(directory, op.basename(fn))) def _download_derivative_descriptions(self, include_derivs, directory): for derivative in self.derivative_types: if include_derivs is True \ or (isinstance(include_derivs, str) and include_derivs == op.basename(derivative)) \ or (isinstance(include_derivs, list) and all(isinstance(s, str) for s in include_derivs) and any([deriv in derivative for deriv in include_derivs])): filenames = \ _ls_s3fs(s3_prefix=derivative, anon=self.anon)['other'] deriv_directory = op.join( directory, *derivative.split('/')[-2:]) self._download_non_sub_keys( deriv_directory, select=("dataset_description.json",), filenames=filenames) def download(self, directory, include_modality_agnostic=("dataset_description.json",), include_derivs=False, include_derivs_dataset_description=True, suffix=None, overwrite=False, pbar=True): """Download files for each subject in the study Parameters ---------- directory : str Directory to which to download subject files include_modality_agnostic : bool, "all" or any subset of ["dataset_description.json", "CHANGES", "README", "LICENSE"] If True or "all", download all keys in self.non_sub_s3_keys also. If a subset of ["dataset_description.json", "CHANGES", "README", "LICENSE"], download only those files. This is useful if the non_sub_s3_keys contain files common to all subjects that should be inherited. Default: ("dataset_description.json",) include_derivs : bool or str If True, download all derivatives files. If False, do not. If a string or sequence of strings is passed, this will only download derivatives that match the string(s) (e.g. ["dmriprep", "afq"]). Default: False include_derivs_dataset_description : bool Used only if include_derivs is not False. If True, dataset_description.json downloaded for each derivative. suffix : str Suffix, including extension, of file(s) to download. Default: None overwrite : bool If True, overwrite files for each subject. Default: False pbar : bool If True, include progress bar. Default: True See Also -------- AFQ.data.S3BIDSSubject.download """ self._local_directories.append(directory) self._local_directories = list(set(self._local_directories)) if include_modality_agnostic is True or include_modality_agnostic == "all": self._download_non_sub_keys(directory, select="all") elif include_modality_agnostic is not False: # Subset selection valid_set = {"dataset_description.json", "CHANGES", "README", "LICENSE"} if not set(include_modality_agnostic) <= valid_set: raise ValueError( "include_modality_agnostic must be either a boolean, 'all', " "or a subset of {valid_set}".format(valid_set=valid_set) ) self._download_non_sub_keys( directory, select=include_modality_agnostic) # download dataset_description.json for derivatives if (include_derivs is not False) \ and include_derivs_dataset_description: self._download_derivative_descriptions( include_derivs, directory) results = [delayed(sub.download)( directory=directory, include_derivs=include_derivs, suffix=suffix, overwrite=overwrite, pbar=pbar, pbar_idx=idx, ) for idx, sub in enumerate(self.subjects)] compute(*results, scheduler='threads') class HBNSite(S3BIDSStudy): """An HBN study site See Also -------- AFQ.data.S3BIDSStudy """ def __init__(self, site, study_id='HBN', bucket='fcp-indi', s3_prefix='data/Projects/HBN/MRI', subjects=None, use_participants_tsv=False, random_seed=None): """Initialize the HBN site Parameters ---------- site : ["Site-SI", "Site-RU", "Site-CBIC", "Site-CUNY"] The HBN site study_id : str An identifier string for the site bucket : str The S3 bucket that contains the study data s3_prefix : str The S3 prefix common to all of the study objects on S3 subjects : str, sequence(str), int, or None If int, retrieve S3 keys for the first `subjects` subjects. If "all", retrieve all subjects. If str or sequence of strings, retrieve S3 keys for the specified subjects. If None, retrieve S3 keys for the first subject. Default: None use_participants_tsv : bool If True, use the particpants tsv files to retrieve subject identifiers. This is faster but may not catch all subjects. Sometimes the tsv files are outdated. Default: False random_seed : int or None Random seed for selection of subjects if `subjects` is an integer. Use the same random seed for reproducibility. Default: None """ valid_sites = ["Site-SI", "Site-RU", "Site-CBIC", "Site-CUNY"] if site not in valid_sites: raise ValueError( "site must be one of {}.".format(valid_sites) ) self._site = site super().__init__( study_id=study_id, bucket=bucket, s3_prefix='/'.join([s3_prefix, site]), subjects=subjects, use_participants_tsv=use_participants_tsv, random_seed=random_seed, _subject_class=HBNSubject ) @property def site(self): """The HBN site""" return self._site def _get_subject(self, subject_id): """Return a Subject instance from a subject-ID""" return self._subject_class(subject_id=subject_id, study=self, site=self.site) def _get_derivative_types(self): """Return a list of available derivatives pipelines The HBN dataset is not BIDS compliant so to go a list of available derivatives, we must peak inside every directory in `derivatives/sub-XXXX/` Returns ------- list list of available derivatives pipelines """ s3_prefix = '/'.join([self.bucket, self.s3_prefix]).rstrip("/") nonsub_keys = _ls_s3fs(s3_prefix=s3_prefix, anon=self.anon)['other'] derivatives_prefix = '/'.join([s3_prefix, 'derivatives']) if any([derivatives_prefix in key for key in nonsub_keys]): deriv_subs = _ls_s3fs( s3_prefix=derivatives_prefix, anon=self.anon )['subjects'] deriv_types = [] for sub_key in deriv_subs: deriv_types += [ s.split(sub_key)[-1].lstrip('/') for s in _ls_s3fs( s3_prefix=sub_key, anon=self.anon )['subjects'] ] return list(set(deriv_types)) else: return [] def _get_non_subject_s3_keys(self): """Return a list of 'non-subject' files In this context, a 'non-subject' file is any file or directory that is not a subject ID folder. This method is different from AFQ.data.S3BIDSStudy because the HBN dataset is not BIDS compliant Returns ------- dict dict with keys 'raw' and 'derivatives' and whose values are lists of S3 keys for non-subject files See Also -------- AFQ.data.S3BIDSStudy._get_non_subject_s3_keys """ non_sub_s3_keys = {} s3_prefix = '/'.join([self.bucket, self.s3_prefix]).rstrip("/") nonsub_keys = _ls_s3fs(s3_prefix=s3_prefix, anon=self.anon)['other'] nonsub_keys = [k for k in nonsub_keys if not k.endswith('derivatives')] nonsub_deriv_keys = _ls_s3fs( s3_prefix='/'.join([ self.bucket, self.s3_prefix, 'derivatives' ]), anon=self.anon )['other'] non_sub_s3_keys = { 'raw': nonsub_keys, 'derivatives': nonsub_deriv_keys, } return non_sub_s3_keys def download(self, directory, include_modality_agnostic=False, include_derivs=False, overwrite=False, pbar=True): """Download files for each subject in the study Parameters ---------- directory : str Directory to which to download subject files include_modality_agnostic : bool, "all" or any subset of ["dataset_description.json", "CHANGES", "README", "LICENSE"] If True or "all", download all keys in self.non_sub_s3_keys also. If a subset of ["dataset_description.json", "CHANGES", "README", "LICENSE"], download only those files. This is useful if the non_sub_s3_keys contain files common to all subjects that should be inherited. Default: False include_derivs : bool or str If True, download all derivatives files. If False, do not. If a string or sequence of strings is passed, this will only download derivatives that match the string(s) (e.g. ["dmriprep", "afq"]). Default: False overwrite : bool If True, overwrite files for each subject. Default: False pbar : bool If True, include progress bar. Default: True See Also -------- AFQ.data.S3BIDSSubject.download """ super().download( directory=directory, include_modality_agnostic=include_modality_agnostic, include_derivs=include_derivs, overwrite=overwrite, pbar=pbar ) to_bids_description( directory, **{"BIDSVersion": "1.0.0", "Name": "HBN Study, " + self.site, "DatasetType": "raw", "Subjects": [s.subject_id for s in self.subjects]}) # +--------------------------------------------------+ # | End S3BIDSStudy classes and supporting functions | # +--------------------------------------------------+ def fetch_hcp(subjects, hcp_bucket='hcp-openaccess', profile_name="hcp", path=None, study='HCP_1200', aws_access_key_id=None, aws_secret_access_key=None): """ Fetch HCP diffusion data and arrange it in a manner that resembles the BIDS [1]_ specification. Parameters ---------- subjects : list Each item is an integer, identifying one of the HCP subjects hcp_bucket : string, optional The name of the HCP S3 bucket. Default: "hcp-openaccess" profile_name : string, optional The name of the AWS profile used for access. Default: "hcp" path : string, optional Path to save files into. Default: '~/AFQ_data' study : string, optional Which HCP study to grab. Default: 'HCP_1200' aws_access_key_id : string, optional AWS credentials to HCP AWS S3. Will only be used if `profile_name` is set to False. aws_secret_access_key : string, optional AWS credentials to HCP AWS S3. Will only be used if `profile_name` is set to False. Returns ------- dict with remote and local names of these files, path to BIDS derivative dataset Notes ----- To use this function with its default setting, you need to have a file '~/.aws/credentials', that includes a section: [hcp] AWS_ACCESS_KEY_ID=XXXXXXXXXXXXXXXX AWS_SECRET_ACCESS_KEY=XXXXXXXXXXXXXXXX The keys are credentials that you can get from HCP (see https://wiki.humanconnectome.org/display/PublicData/How+To+Connect+to+Connectome+Data+via+AWS) # noqa Local filenames are changed to match our expected conventions. .. [1] Gorgolewski et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3::160044. DOI: 10.1038/sdata.2016.44. """ if profile_name: boto3.setup_default_session(profile_name=profile_name) elif aws_access_key_id is not None and aws_secret_access_key is not None: boto3.setup_default_session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) else: raise ValueError("Must provide either a `profile_name` or ", "both `aws_access_key_id` and ", "`aws_secret_access_key` as input to 'fetch_hcp'") s3 = boto3.resource('s3') bucket = s3.Bucket(hcp_bucket) if path is None: if not op.exists(afq_home): os.mkdir(afq_home) my_path = afq_home else: my_path = path base_dir = op.join(my_path, study, 'derivatives', 'dmriprep') if not os.path.exists(base_dir): os.makedirs(base_dir, exist_ok=True) data_files = {} for subject in subjects: # We make a single session folder per subject for this case, because # AFQ api expects session structure: sub_dir = op.join(base_dir, f'sub-{subject}') sess_dir = op.join(sub_dir, "ses-01") if not os.path.exists(sub_dir): os.makedirs(os.path.join(sess_dir, 'dwi'), exist_ok=True) os.makedirs(os.path.join(sess_dir, 'anat'), exist_ok=True) data_files[op.join(sess_dir, 'dwi', f'sub-{subject}_dwi.bval')] =\ f'{study}/{subject}/T1w/Diffusion/bvals' data_files[op.join(sess_dir, 'dwi', f'sub-{subject}_dwi.bvec')] =\ f'{study}/{subject}/T1w/Diffusion/bvecs' data_files[op.join(sess_dir, 'dwi', f'sub-{subject}_dwi.nii.gz')] =\ f'{study}/{subject}/T1w/Diffusion/data.nii.gz' data_files[op.join(sess_dir, 'anat', f'sub-{subject}_T1w.nii.gz')] =\ f'{study}/{subject}/T1w/T1w_acpc_dc.nii.gz' data_files[op.join(sess_dir, 'anat', f'sub-{subject}_aparc+aseg_seg.nii.gz')] =\ f'{study}/{subject}/T1w/aparc+aseg.nii.gz' for k in data_files.keys(): if not op.exists(k): bucket.download_file(data_files[k], k) # Create the BIDS dataset description file text hcp_acknowledgements = """Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.""", # noqa to_bids_description(op.join(my_path, study), **{"Name": study, "Acknowledgements": hcp_acknowledgements, "Subjects": subjects}) # Create the BIDS derivatives description file text to_bids_description(base_dir, **{"Name": study, "Acknowledgements": hcp_acknowledgements, "PipelineDescription": {'Name': 'dmriprep'}}) return data_files, op.join(my_path, study) stanford_hardi_tractography_remote_fnames = ["5325715", "5325718", "25289735"] stanford_hardi_tractography_hashes = ['6f4bdae702031a48d1cd3811e7a42ef9', 'f20854b4f710577c58bd01072cfb4de6', '294bfd1831861e8635eef8834ff18892'] stanford_hardi_tractography_fnames = ['mapping.nii.gz', 'tractography_subsampled.trk', 'full_segmented_cleaned_tractography.trk'] fetch_stanford_hardi_tractography = _make_fetcher( "fetch_stanford_hardi_tractography", op.join(afq_home, 'stanford_hardi_tractography'), baseurl, stanford_hardi_tractography_remote_fnames, stanford_hardi_tractography_fnames, md5_list=stanford_hardi_tractography_hashes, doc="""Download Stanford HARDI tractography and mapping. For testing purposes""") def read_stanford_hardi_tractography(): """ Reads a minimal tractography from the Stanford dataset. """ files, folder = fetch_stanford_hardi_tractography() files_dict = {} files_dict['mapping.nii.gz'] = nib.load( op.join(afq_home, 'stanford_hardi_tractography', 'mapping.nii.gz')) # We need the original data as reference dwi_img, gtab = dpd.read_stanford_hardi() files_dict['tractography_subsampled.trk'] = load_trk( op.join(afq_home, 'stanford_hardi_tractography', 'tractography_subsampled.trk'), dwi_img, bbox_valid_check=False, trk_header_check=False).streamlines files_dict['full_segmented_cleaned_tractography.trk'] = load_trk( op.join( afq_home, 'stanford_hardi_tractography', 'full_segmented_cleaned_tractography.trk'), dwi_img).streamlines return files_dict def to_bids_description(path, fname='dataset_description.json', BIDSVersion="1.4.0", **kwargs): """Dumps a dict into a bids description at the given location""" kwargs.update({"BIDSVersion": BIDSVersion}) desc_file = op.join(path, fname) with open(desc_file, 'w') as outfile: json.dump(kwargs, outfile) def organize_cfin_data(path=None): """ Create the expected file-system structure for the CFIN multi b-value diffusion data-set. """ dpd.fetch_cfin_multib() if path is None: os.makedirs(afq_home, exist_ok=True) path = afq_home bids_path = op.join(path, 'cfin_multib',) derivatives_path = op.join(bids_path, 'derivatives') dmriprep_folder = op.join(derivatives_path, 'dmriprep') if not op.exists(derivatives_path): anat_folder = op.join(dmriprep_folder, 'sub-01', 'ses-01', 'anat') os.makedirs(anat_folder, exist_ok=True) dwi_folder = op.join(dmriprep_folder, 'sub-01', 'ses-01', 'dwi') os.makedirs(dwi_folder, exist_ok=True) t1_img = dpd.read_cfin_t1() nib.save(t1_img, op.join(anat_folder, 'sub-01_ses-01_T1w.nii.gz')) dwi_img, gtab = dpd.read_cfin_dwi() nib.save(dwi_img, op.join(dwi_folder, 'sub-01_ses-01_dwi.nii.gz')) np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bvec'), gtab.bvecs) np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bval'), gtab.bvals) to_bids_description( bids_path, **{"BIDSVersion": "1.0.0", "Name": "CFIN", "Subjects": ["sub-01"]}) to_bids_description( dmriprep_folder, **{"Name": "CFIN", "PipelineDescription": {"Name": "dipy"}}) def organize_stanford_data(path=None, clear_previous_afq=False): """ If necessary, downloads the Stanford HARDI dataset into DIPY directory and creates a BIDS compliant file-system structure in AFQ data directory: ~/AFQ_data/ └── stanford_hardi ├── dataset_description.json └── derivatives ├── freesurfer │ ├── dataset_description.json │ └── sub-01 │ └── ses-01 │ └── anat │ ├── sub-01_ses-01_T1w.nii.gz │ └── sub-01_ses-01_seg.nii.gz └── vistasoft ├── dataset_description.json └── sub-01 └── ses-01 └── dwi ├── sub-01_ses-01_dwi.bval ├── sub-01_ses-01_dwi.bvec └── sub-01_ses-01_dwi.nii.gz If clear_previous_afq is True and there is an afq folder in derivatives, it will be removed. """ logger = logging.getLogger('AFQ.data') # fetches data for first subject and session logger.info('fetching Stanford HARDI data') dpd.fetch_stanford_hardi() if path is None: if not op.exists(afq_home): logger.info(f'creating AFQ home directory: {afq_home}') os.makedirs(afq_home, exist_ok=True) path = afq_home bids_path = op.join(path, 'stanford_hardi',) derivatives_path = op.join(bids_path, 'derivatives') dmriprep_folder = op.join(derivatives_path, 'vistasoft') freesurfer_folder = op.join(derivatives_path, 'freesurfer') if clear_previous_afq: afq_folder = op.join(derivatives_path, 'afq') if op.exists(afq_folder): shutil.rmtree(afq_folder) if not op.exists(derivatives_path): logger.info(f'creating derivatives directory: {derivatives_path}') # anatomical data anat_folder = op.join(freesurfer_folder, 'sub-01', 'ses-01', 'anat') os.makedirs(anat_folder, exist_ok=True) t1_img = dpd.read_stanford_t1() nib.save(t1_img, op.join(anat_folder, 'sub-01_ses-01_T1w.nii.gz')) seg_img = dpd.read_stanford_labels()[-1] nib.save(seg_img, op.join(anat_folder, 'sub-01_ses-01_seg.nii.gz')) # diffusion-weighted imaging data dwi_folder = op.join(dmriprep_folder, 'sub-01', 'ses-01', 'dwi') os.makedirs(dwi_folder, exist_ok=True) dwi_img, gtab = dpd.read_stanford_hardi() nib.save(dwi_img, op.join(dwi_folder, 'sub-01_ses-01_dwi.nii.gz')) np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bvec'), gtab.bvecs) np.savetxt(op.join(dwi_folder, 'sub-01_ses-01_dwi.bval'), gtab.bvals) else: logger.info('Dataset is already in place. If you want to fetch it ' + 'again please first remove the folder ' + derivatives_path) # Dump out the description of the dataset to_bids_description(bids_path, **{"Name": "Stanford HARDI", "Subjects": ["sub-01"]}) # And descriptions of the pipelines in the derivatives: to_bids_description(dmriprep_folder, **{"Name": "Stanford HARDI", "PipelineDescription": {"Name": "vistasoft"}}) to_bids_description(freesurfer_folder, **{"Name": "Stanford HARDI", "PipelineDescription": {"Name": "freesurfer"}}) fetch_hcp_atlas_16_bundles = _make_fetcher( "fetch_hcp_atlas_16_bundles", op.join(afq_home, 'hcp_atlas_16_bundles'), 'https://ndownloader.figshare.com/files/', ["11921522"], ["atlas_16_bundles.zip"], md5_list=["b071f3e851f21ba1749c02fc6beb3118"], doc="Download minimal Recobundles atlas", unzip=True) fetch_hcp_atlas_80_bundles = _make_fetcher( "fetch_hcp_atlas_80_bundles", op.join(afq_home, 'hcp_atlas_80_bundles'), 'https://ndownloader.figshare.com/files/', ["13638644"], ["Atlas_80_Bundles.zip"], md5_list=["78331d527a10ec000d4f33bac472e099"], doc="Download 80-bundle Recobundles atlas", unzip=True) def read_hcp_atlas(n_bundles=16): """ n_bundles : int 16 or 80, which selects among the two different atlases: https://figshare.com/articles/Simple_model_bundle_atlas_for_RecoBundles/6483614 #noqa https://figshare.com/articles/Advanced_Atlas_of_80_Bundles_in_MNI_space/7375883 #noqa """ bundle_dict = {} if n_bundles == 16: _, folder = fetch_hcp_atlas_16_bundles() atlas_folder = "Atlas_in_MNI_Space_16_bundles" elif n_bundles == 80: _, folder = fetch_hcp_atlas_80_bundles() atlas_folder = "Atlas_80_Bundles" whole_brain = load_tractogram( op.join( folder, atlas_folder, 'whole_brain', 'whole_brain_MNI.trk'), 'same', bbox_valid_check=False).streamlines bundle_dict['whole_brain'] = whole_brain bundle_files = glob( op.join( folder, atlas_folder, "bundles", "*.trk")) for bundle_file in bundle_files: bundle = op.splitext(op.split(bundle_file)[-1])[0] bundle_dict[bundle] = {} bundle_dict[bundle]['sl'] = load_tractogram( bundle_file, 'same', bbox_valid_check=False).streamlines feature = ResampleFeature(nb_points=100) metric = AveragePointwiseEuclideanMetric(feature) qb = QuickBundles(np.inf, metric=metric) cluster = qb.cluster(bundle_dict[bundle]['sl']) bundle_dict[bundle]['centroid'] = cluster.centroids[0] # For some reason, this file-name has a 0 in it, instead of an O: bundle_dict["IFOF_R"] = bundle_dict["IF0F_R"] # In the 80-bundle case, there are two files, and both have identical # content, so this is fine: del bundle_dict["IF0F_R"] return bundle_dict fetch_aal_atlas = _make_fetcher( "fetch_aal_atlas", op.join(afq_home, 'aal_atlas'), 'https://ndownloader.figshare.com/files/', ["28416852", "28416855"], ["MNI_AAL_AndMore.nii.gz", "MNI_AAL.txt"], md5_list=["69395b75a16f00294a80eb9428bf7855", "59fd3284b17de2fbe411ca1c7afe8c65"], doc="Download the AAL atlas", unzip=False) def read_aal_atlas(resample_to=None): """ Reads the AAL atlas [1]_. Parameters ---------- template : nib.Nifti1Image class instance, optional If provided, this is the template used and AAL atlas should be registered and aligned to this template .. [1] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15(1):273-89. """ file_dict, folder = fetch_aal_atlas() out_dict = {} for f in file_dict: if f.endswith('.txt'): out_dict['labels'] = pd.read_csv(op.join(folder, f)) else: out_dict['atlas'] = nib.load(op.join(folder, f)) if resample_to is not None: data = out_dict['atlas'].get_fdata() oo = [] for ii in range(data.shape[-1]): oo.append(resample( data[..., ii], resample_to, out_dict['atlas'].affine, resample_to.affine).get_fdata()) out_dict['atlas'] = nib.Nifti1Image(np.stack(oo, -1), resample_to.affine) return out_dict def aal_to_regions(regions, atlas=None): """ Queries for large regions containing multiple AAL ROIs Parameters ---------- regions : string or list of strings The name of the requested region. This can either be an AAL-defined ROI name (e.g, 'Occipital_Sup_L') or one of: {'leftfrontal' | 'leftoccipital' | 'lefttemporal' | 'leftparietal' | 'leftanttemporal' | 'leftparietal' | 'leftanttemporal' | 'leftuncinatefront' | 'leftifoffront' | 'leftinfparietal' | 'cerebellum' | 'leftarcfrontal' | 'leftarctemp' | 'leftcingpost'} each of which there is an equivalent 'right' region for. In addition, there are a few bilateral regions: {'occipital' | 'temporal'}, which encompass both the right and left region of this name, as well as: {'cstinferior' | 'cstsuperior'} atlas : 4D array Contains the AAL atlas in the correct coordinate frame with additional volumes for CST and cingulate ROIs ("AAL and more"). Returns ------ 3D indices to the requested region in the atlas volume Notes ----- Several regions can be referred to by multiple names: 'leftuncinatetemp' = 'leftilftemp'= 'leftanttemporal' 'rightuncinatetemp' = 'rightilftemp' = 'rightanttemporal' 'leftslfpar'] = 'leftinfparietal' 'rightslfpar' = 'rightinfparietal' 'leftslffrontal' = 'leftarcfrontal' 'rightslffrontal' = 'rightarcfrontal' """ if atlas is None: atlas = read_aal_atlas()['atlas'] atlas_vals = {'leftfrontal': np.arange(1, 26, 2), # Occipital regions do not include fusiform: 'leftoccipital': np.arange(43, 54, 2), # Temporal regions include fusiform: 'lefttemporal': np.concatenate([np.arange(37, 42, 2), np.array([55]), np.arange(79, 90, 2)]), 'leftparietal': np.array([57, 67, 2]), 'leftanttemporal': np.array([41, 83, 87]), 'leftuncinatefront': np.array([5, 9, 15, 25]), 'leftifoffront': np.array([3, 5, 7, 9, 13, 15, 25]), 'leftinfparietal': np.array([61, 63, 65]), 'cerebellum': np.arange(91, 117), 'leftarcfrontal': np.array([1, 11, 13]), 'leftarctemp': np.array([79, 81, 85, 89]), } # Right symmetrical is off by one: atlas_vals['rightfrontal'] = atlas_vals['leftfrontal'] + 1 atlas_vals['rightoccipital'] = atlas_vals['leftoccipital'] + 1 atlas_vals['righttemporal'] = atlas_vals['lefttemporal'] + 1 atlas_vals['rightparietal'] = atlas_vals['leftparietal'] + 1 atlas_vals['rightanttemporal'] = atlas_vals['leftanttemporal'] + 1 atlas_vals['rightuncinatefront'] = atlas_vals['leftuncinatefront'] + 1 atlas_vals['rightifoffront'] = atlas_vals['leftifoffront'] + 1 atlas_vals['rightinfparietal'] = atlas_vals['leftinfparietal'] + 1 atlas_vals['rightarcfrontal'] = atlas_vals['leftarcfrontal'] + 1 atlas_vals['rightarctemp'] = atlas_vals['leftarctemp'] + 1 # Multiply named regions: atlas_vals['leftuncinatetemp'] = atlas_vals['leftilftemp'] =\ atlas_vals['leftanttemporal'] atlas_vals['rightuncinatetemp'] = atlas_vals['rightilftemp'] =\ atlas_vals['rightanttemporal'] atlas_vals['leftslfpar'] = atlas_vals['leftinfparietal'] atlas_vals['rightslfpar'] = atlas_vals['rightinfparietal'] atlas_vals['leftslffrontal'] = atlas_vals['leftarcfrontal'] atlas_vals['rightslffrontal'] = atlas_vals['rightarcfrontal'] # Bilateral regions: atlas_vals['occipital'] = np.union1d(atlas_vals['leftoccipital'], atlas_vals['rightoccipital']) atlas_vals['temporal'] = np.union1d(atlas_vals['lefttemporal'], atlas_vals['righttemporal']) if isinstance(regions, str): regions = [regions] idxes = [] for region in regions: region = region.lower() # Just to be sure if region in atlas_vals.keys(): vol_idx = 0 vals = atlas_vals[region] elif region == 'cstinferior': vol_idx = 1 vals = np.array([1]) elif region == 'cstsuperior': vol_idx = 2 vals = np.array([1]) elif region == 'leftcingpost': vol_idx = 3 vals = np.array([1]) elif region == 'rightcingpost': vol_idx = 4 vals = np.array([1]) # Broadcast vals, to test for equality over all three dimensions: is_in = atlas[..., vol_idx] == vals[:, None, None, None] # Then collapse the 4th dimension (each val), to get the 3D array: is_in = np.sum(is_in, 0) idxes.append(np.array(np.where(is_in)).T) return np.concatenate(idxes, axis=0) def bundles_to_aal(bundles, atlas=None): """ Given a sequence of AFQ bundle names, give back a sequence of lists with [target0, target1] being each NX3 arrays of the endpoint indices for the first and last node of the streamlines in this bundle. """ if atlas is None: atlas = read_aal_atlas()['atlas'] endpoint_dict = { "ATR_L": [['leftfrontal'], None], "ATR_R": [['rightfrontal'], None], "CST_L": [['cstinferior'], ['cstsuperior']], "CST_R": [['cstinferior'], ['cstsuperior']], "CGC_L": [['leftcingpost'], None], "CGC_R": [['rightcingpost'], None], "HCC_L": [None, None], "HCC_R": [None, None], "FP": [['rightoccipital'], ['leftoccipital']], "FA": [['rightfrontal'], ['leftfrontal']], "IFO_L": [['leftoccipital'], ['leftifoffront']], "IFO_R": [['rightoccipital'], ['rightifoffront']], "ILF_L": [['leftoccipital'], ['leftilftemp']], "ILF_R": [['rightoccipital'], ['rightilftemp']], "SLF_L": [['leftslffrontal'], ['leftinfparietal']], "SLF_R": [['rightslffrontal'], ['rightinfparietal']], "UNC_L": [['leftanttemporal'], ['leftuncinatefront']], "UNC_R": [['rightanttemporal'], ['rightuncinatefront']], "ARC_L": [['leftfrontal'], ['leftarctemp']], "ARC_R": [['rightfrontal'], ['rightarctemp']], "AntFrontal": [None, None], "Motor": [None, None], "Occipital": [None, None], "Orbital": [None, None], "PostParietal": [None, None], "SupFrontal": [None, None], "SupParietal": [None, None], "Temporal": [None, None]} targets = [] for bundle in bundles: targets.append([]) if (endpoint_dict.get(bundle)): for region in endpoint_dict[bundle]: if region is None: targets[-1].append(None) else: targets[-1].append(aal_to_regions(region, atlas=atlas)) else: logger = logging.getLogger('AFQ.data') logger.warning(f"Segmentation end points undefined for {bundle}," + " continuing without end points") targets[-1] = [None, None] return targets def s3fs_nifti_write(img, fname, fs=None): """ Write a nifti file straight to S3 Paramters --------- img : nib.Nifti1Image class instance The image containing data to be written into S3 fname : string Full path (including bucket name and extension) to the S3 location where the file is to be saved. fs : an s3fs.S3FileSystem class instance, optional A file-system to refer to. Default to create a new file-system """ if fs is None: fs = s3fs.S3FileSystem() bio = BytesIO() file_map = img.make_file_map({'image': bio, 'header': bio}) img.to_file_map(file_map) data = gzip.compress(bio.getvalue()) with fs.open(fname, 'wb') as ff: ff.write(data) def s3fs_nifti_read(fname, fs=None, anon=False): """ Lazily reads a nifti image from S3. Paramters --------- fname : string Full path (including bucket name and extension) to the S3 location of the file to be read. fs : an s3fs.S3FileSystem class instance, optional A file-system to refer to. Default to create a new file-system. anon : bool Whether to use anonymous connection (public buckets only). If False, uses the key/secret given, or boto’s credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). Default: True Returns ------- nib.Nifti1Image class instance Notes ----- Because the image is lazily loaded, data stored in the file is not transferred until `get_fdata` is called. """ if fs is None: fs = s3fs.S3FileSystem(anon=anon) with fs.open(fname) as ff: zz = gzip.open(ff) rr = zz.read() bb = BytesIO(rr) fh = nib.FileHolder(fileobj=bb) img = nib.Nifti1Image.from_file_map({'header': fh, 'image': fh}) return img def write_json(fname, data): """ Write data to JSON file. Parameters ---------- fname : str Full path to the file to write. data : dict A dict containing the data to write. Returns ------- None """ with open(fname, 'w') as ff: json.dump(data, ff, default=lambda obj: "Not Serializable") def read_json(fname): """ Read data from a JSON file. Parameters ---------- fname : str Full path to the data-containing file Returns ------- dict """ with open(fname, 'w') as ff: out = json.load(ff) return out def s3fs_json_read(fname, fs=None, anon=False): """ Reads json directly from S3 Paramters --------- fname : str Full path (including bucket name and extension) to the file on S3. fs : an s3fs.S3FileSystem class instance, optional A file-system to refer to. Default to create a new file-system. anon : bool Whether to use anonymous connection (public buckets only). If False, uses the key/secret given, or boto’s credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). Default: True """ if fs is None: fs = s3fs.S3FileSystem(anon=anon) with fs.open(fname) as ff: data = json.load(ff) return data def s3fs_json_write(data, fname, fs=None): """ Writes json from a dict directly into S3 Parameters ---------- data : dict The json to be written out fname : str Full path (including bucket name and extension) to the file to be written out on S3 fs : an s3fs.S3FileSystem class instance, optional A file-system to refer to. Default to create a new file-system. """ if fs is None: fs = s3fs.S3FileSystem() with fs.open(fname, 'w') as ff: json.dump(data, ff) def _apply_mask(template_img, resolution=1): """ Helper function, gets MNI brain mask and applies it to template_img. Parameters ---------- template_img : nib.Nifti1Image Unmasked template resolution : int, optional Resolution of mask. Default: 1 Returns ------- Masked template as nib.Nifti1Image """ mask_img = nib.load(str(tflow.get('MNI152NLin2009cAsym', resolution=resolution, desc='brain', suffix='mask'))) template_data = template_img.get_fdata() mask_data = mask_img.get_fdata() if mask_data.shape != template_data.shape: mask_img = nib.Nifti1Image( resample( mask_data, template_data, mask_img.affine, template_img.affine).get_fdata(), template_img.affine) mask_data = mask_img.get_fdata() out_data = template_data * mask_data return nib.Nifti1Image(out_data, template_img.affine) def read_mni_template(resolution=1, mask=True, weight="T2w"): """ Reads the MNI T1w or T2w template Parameters ---------- resolution : int, optional. Either 1 or 2, the resolution in mm of the voxels. Default: 1. mask : bool, optional Whether to mask the data with a brain-mask before returning the image. Default : True weight: str, optional Which relaxation technique to use. Should be either "T2w" or "T1w". Default : "T2w" Returns ------- nib.Nifti1Image class instance containing masked or unmasked T1w or template. """ template_img = nib.load(str(tflow.get('MNI152NLin2009cAsym', desc=None, resolution=resolution, suffix=weight, extension='nii.gz'))) if not mask: return template_img else: return _apply_mask(template_img, resolution) fetch_biobank_templates = \ _make_fetcher( "fetch_biobank_templates", op.join(afq_home, 'biobank_templates'), "http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/", ["bmri_group_means.zip"], ["bmri_group_means.zip"], data_size="1.1 GB", doc="Download UK Biobank templates", unzip=True) def read_ukbb_fa_template(mask=True): """ Reads the UK Biobank FA template Parameters ---------- mask : bool, optional Whether to mask the data with a brain-mask before returning the image. Default : True Returns ------- nib.Nifti1Image class instance containing the FA template. """ fa_folder = op.join( afq_home, 'biobank_templates', 'UKBiobank_BrainImaging_GroupMeanTemplates' ) fa_path = op.join( fa_folder, 'dti_FA.nii.gz' ) if not op.exists(fa_path): logger = logging.getLogger('AFQ.data') logger.warning( "Downloading brain MRI group mean statistics from UK Biobank. " + "This download is approximately 1.1 GB. " + "It is currently necessary to access the FA template.") files, folder = fetch_biobank_templates() # remove zip for filename in files: os.remove(op.join(folder, filename)) # remove non-FA related directories for filename in os.listdir(fa_folder): full_path = op.join(fa_folder, filename) if full_path != fa_path: if os.path.isfile(full_path): os.remove(full_path) else: shutil.rmtree(full_path) template_img = nib.load(fa_path) if not mask: return template_img else: return _apply_mask(template_img, 1)
bsd-2-clause
sinhrks/numpy
numpy/core/tests/test_multiarray.py
5
220725
from __future__ import division, absolute_import, print_function import collections import tempfile import sys import shutil import warnings import operator import io import itertools if sys.version_info[0] >= 3: import builtins else: import __builtin__ as builtins from decimal import Decimal import numpy as np from nose import SkipTest from numpy.compat import asbytes, getexception, strchar, unicode, sixu from test_print import in_foreign_locale from numpy.core.multiarray_tests import ( test_neighborhood_iterator, test_neighborhood_iterator_oob, test_pydatamem_seteventhook_start, test_pydatamem_seteventhook_end, test_inplace_increment, get_buffer_info, test_as_c_array ) from numpy.testing import ( TestCase, run_module_suite, assert_, assert_raises, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, assert_array_less, runstring, dec ) # Need to test an object that does not fully implement math interface from datetime import timedelta if sys.version_info[:2] > (3, 2): # In Python 3.3 the representation of empty shape, strides and suboffsets # is an empty tuple instead of None. # http://docs.python.org/dev/whatsnew/3.3.html#api-changes EMPTY = () else: EMPTY = None class TestFlags(TestCase): def setUp(self): self.a = np.arange(10) def test_writeable(self): mydict = locals() self.a.flags.writeable = False self.assertRaises(ValueError, runstring, 'self.a[0] = 3', mydict) self.assertRaises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0 def test_otherflags(self): assert_equal(self.a.flags.carray, True) assert_equal(self.a.flags.farray, False) assert_equal(self.a.flags.behaved, True) assert_equal(self.a.flags.fnc, False) assert_equal(self.a.flags.forc, True) assert_equal(self.a.flags.owndata, True) assert_equal(self.a.flags.writeable, True) assert_equal(self.a.flags.aligned, True) assert_equal(self.a.flags.updateifcopy, False) def test_string_align(self): a = np.zeros(4, dtype=np.dtype('|S4')) assert_(a.flags.aligned) # not power of two are accessed bytewise and thus considered aligned a = np.zeros(5, dtype=np.dtype('|S4')) assert_(a.flags.aligned) def test_void_align(self): a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) assert_(a.flags.aligned) class TestHash(TestCase): # see #3793 def test_int(self): for st, ut, s in [(np.int8, np.uint8, 8), (np.int16, np.uint16, 16), (np.int32, np.uint32, 32), (np.int64, np.uint64, 64)]: for i in range(1, s): assert_equal(hash(st(-2**i)), hash(-2**i), err_msg="%r: -2**%d" % (st, i)) assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (st, i - 1)) assert_equal(hash(st(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (st, i)) i = max(i - 1, 1) assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (ut, i - 1)) assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (ut, i)) class TestAttributes(TestCase): def setUp(self): self.one = np.arange(10) self.two = np.arange(20).reshape(4, 5) self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) def test_attributes(self): assert_equal(self.one.shape, (10,)) assert_equal(self.two.shape, (4, 5)) assert_equal(self.three.shape, (2, 5, 6)) self.three.shape = (10, 3, 2) assert_equal(self.three.shape, (10, 3, 2)) self.three.shape = (2, 5, 6) assert_equal(self.one.strides, (self.one.itemsize,)) num = self.two.itemsize assert_equal(self.two.strides, (5*num, num)) num = self.three.itemsize assert_equal(self.three.strides, (30*num, 6*num, num)) assert_equal(self.one.ndim, 1) assert_equal(self.two.ndim, 2) assert_equal(self.three.ndim, 3) num = self.two.itemsize assert_equal(self.two.size, 20) assert_equal(self.two.nbytes, 20*num) assert_equal(self.two.itemsize, self.two.dtype.itemsize) assert_equal(self.two.base, np.arange(20)) def test_dtypeattr(self): assert_equal(self.one.dtype, np.dtype(np.int_)) assert_equal(self.three.dtype, np.dtype(np.float_)) assert_equal(self.one.dtype.char, 'l') assert_equal(self.three.dtype.char, 'd') self.assertTrue(self.three.dtype.str[0] in '<>') assert_equal(self.one.dtype.str[1], 'i') assert_equal(self.three.dtype.str[1], 'f') def test_int_subclassing(self): # Regression test for https://github.com/numpy/numpy/pull/3526 numpy_int = np.int_(0) if sys.version_info[0] >= 3: # On Py3k int_ should not inherit from int, because it's not fixed-width anymore assert_equal(isinstance(numpy_int, int), False) else: # Otherwise, it should inherit from int... assert_equal(isinstance(numpy_int, int), True) # ... and fast-path checks on C-API level should also work from numpy.core.multiarray_tests import test_int_subclass assert_equal(test_int_subclass(numpy_int), True) def test_stridesattr(self): x = self.one def make_array(size, offset, strides): return np.ndarray(size, buffer=x, dtype=int, offset=offset*x.itemsize, strides=strides*x.itemsize) assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(ValueError, make_array, 8, 3, 1) assert_equal(make_array(8, 3, 0), np.array([3]*8)) # Check behavior reported in gh-2503: self.assertRaises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) make_array(0, 0, 10) def test_set_stridesattr(self): x = self.one def make_array(size, offset, strides): try: r = np.ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize) except: raise RuntimeError(getexception()) r.strides = strides = strides*x.itemsize return r assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(RuntimeError, make_array, 8, 3, 1) # Check that the true extent of the array is used. # Test relies on as_strided base not exposing a buffer. x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) def set_strides(arr, strides): arr.strides = strides self.assertRaises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize)) # Test for offset calculations: x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], shape=(10,), strides=(-1,)) self.assertRaises(ValueError, set_strides, x[::-1], -1) a = x[::-1] a.strides = 1 a[::2].strides = 2 def test_fill(self): for t in "?bhilqpBHILQPfdgFDGO": x = np.empty((3, 2, 1), t) y = np.empty((3, 2, 1), t) x.fill(1) y[...] = 1 assert_equal(x, y) def test_fill_max_uint64(self): x = np.empty((3, 2, 1), dtype=np.uint64) y = np.empty((3, 2, 1), dtype=np.uint64) value = 2**64 - 1 y[...] = value x.fill(value) assert_array_equal(x, y) def test_fill_struct_array(self): # Filling from a scalar x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') x.fill(x[0]) assert_equal(x['f1'][1], x['f1'][0]) # Filling from a tuple that can be converted # to a scalar x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) x.fill((3.5, -2)) assert_array_equal(x['a'], [3.5, 3.5]) assert_array_equal(x['b'], [-2, -2]) class TestArrayConstruction(TestCase): def test_array(self): d = np.ones(6) r = np.array([d, d]) assert_equal(r, np.ones((2, 6))) d = np.ones(6) tgt = np.ones((2, 6)) r = np.array([d, d]) assert_equal(r, tgt) tgt[1] = 2 r = np.array([d, d + 1]) assert_equal(r, tgt) d = np.ones(6) r = np.array([[d, d]]) assert_equal(r, np.ones((1, 2, 6))) d = np.ones(6) r = np.array([[d, d], [d, d]]) assert_equal(r, np.ones((2, 2, 6))) d = np.ones((6, 6)) r = np.array([d, d]) assert_equal(r, np.ones((2, 6, 6))) d = np.ones((6, )) r = np.array([[d, d + 1], d + 2]) assert_equal(len(r), 2) assert_equal(r[0], [d, d + 1]) assert_equal(r[1], d + 2) tgt = np.ones((2, 3), dtype=np.bool) tgt[0, 2] = False tgt[1, 0:2] = False r = np.array([[True, True, False], [False, False, True]]) assert_equal(r, tgt) r = np.array([[True, False], [True, False], [False, True]]) assert_equal(r, tgt.T) def test_array_empty(self): assert_raises(TypeError, np.array) def test_array_copy_false(self): d = np.array([1, 2, 3]) e = np.array(d, copy=False) d[1] = 3 assert_array_equal(e, [1, 3, 3]) e = np.array(d, copy=False, order='F') d[1] = 4 assert_array_equal(e, [1, 4, 3]) e[2] = 7 assert_array_equal(d, [1, 4, 7]) def test_array_copy_true(self): d = np.array([[1,2,3], [1, 2, 3]]) e = np.array(d, copy=True) d[0, 1] = 3 e[0, 2] = -7 assert_array_equal(e, [[1, 2, -7], [1, 2, 3]]) assert_array_equal(d, [[1, 3, 3], [1, 2, 3]]) e = np.array(d, copy=True, order='F') d[0, 1] = 5 e[0, 2] = 7 assert_array_equal(e, [[1, 3, 7], [1, 2, 3]]) assert_array_equal(d, [[1, 5, 3], [1,2,3]]) def test_array_cont(self): d = np.ones(10)[::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.ascontiguousarray(d).flags.f_contiguous) assert_(np.asfortranarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) d = np.ones((10, 10))[::2,::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) class TestAssignment(TestCase): def test_assignment_broadcasting(self): a = np.arange(6).reshape(2, 3) # Broadcasting the input to the output a[...] = np.arange(3) assert_equal(a, [[0, 1, 2], [0, 1, 2]]) a[...] = np.arange(2).reshape(2, 1) assert_equal(a, [[0, 0, 0], [1, 1, 1]]) # For compatibility with <= 1.5, a limited version of broadcasting # the output to the input. # # This behavior is inconsistent with NumPy broadcasting # in general, because it only uses one of the two broadcasting # rules (adding a new "1" dimension to the left of the shape), # applied to the output instead of an input. In NumPy 2.0, this kind # of broadcasting assignment will likely be disallowed. a[...] = np.arange(6)[::-1].reshape(1, 2, 3) assert_equal(a, [[5, 4, 3], [2, 1, 0]]) # The other type of broadcasting would require a reduction operation. def assign(a, b): a[...] = b assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3)) def test_assignment_errors(self): # Address issue #2276 class C: pass a = np.zeros(1) def assign(v): a[0] = v assert_raises((AttributeError, TypeError), assign, C()) assert_raises(ValueError, assign, [1]) class TestDtypedescr(TestCase): def test_construction(self): d1 = np.dtype('i4') assert_equal(d1, np.dtype(np.int32)) d2 = np.dtype('f8') assert_equal(d2, np.dtype(np.float64)) def test_byteorders(self): self.assertNotEqual(np.dtype('<i4'), np.dtype('>i4')) self.assertNotEqual(np.dtype([('a', '<i4')]), np.dtype([('a', '>i4')])) class TestZeroRank(TestCase): def setUp(self): self.d = np.array(0), np.array('x', object) def test_ellipsis_subscript(self): a, b = self.d self.assertEqual(a[...], 0) self.assertEqual(b[...], 'x') self.assertTrue(a[...].base is a) # `a[...] is a` in numpy <1.9. self.assertTrue(b[...].base is b) # `b[...] is b` in numpy <1.9. def test_empty_subscript(self): a, b = self.d self.assertEqual(a[()], 0) self.assertEqual(b[()], 'x') self.assertTrue(type(a[()]) is a.dtype.type) self.assertTrue(type(b[()]) is str) def test_invalid_subscript(self): a, b = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[0], b) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], b) def test_ellipsis_subscript_assignment(self): a, b = self.d a[...] = 42 self.assertEqual(a, 42) b[...] = '' self.assertEqual(b.item(), '') def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 self.assertEqual(a, 42) b[()] = '' self.assertEqual(b.item(), '') def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v self.assertRaises(IndexError, assign, a, 0, 42) self.assertRaises(IndexError, assign, b, 0, '') self.assertRaises(ValueError, assign, a, (), '') def test_newaxis(self): a, b = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_constructor(self): x = np.ndarray(()) x[()] = 5 self.assertEqual(x[()], 5) y = np.ndarray((), buffer=x) y[()] = 6 self.assertEqual(x[()], 6) def test_output(self): x = np.array(2) self.assertRaises(ValueError, np.add, x, [1], x) class TestScalarIndexing(TestCase): def setUp(self): self.d = np.array([0, 1])[0] def test_ellipsis_subscript(self): a = self.d self.assertEqual(a[...], 0) self.assertEqual(a[...].shape, ()) def test_empty_subscript(self): a = self.d self.assertEqual(a[()], 0) self.assertEqual(a[()].shape, ()) def test_invalid_subscript(self): a = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) def test_invalid_subscript_assignment(self): a = self.d def assign(x, i, v): x[i] = v self.assertRaises(TypeError, assign, a, 0, 42) def test_newaxis(self): a = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_overlapping_assignment(self): # With positive strides a = np.arange(4) a[:-1] = a[1:] assert_equal(a, [1, 2, 3, 3]) a = np.arange(4) a[1:] = a[:-1] assert_equal(a, [0, 0, 1, 2]) # With positive and negative strides a = np.arange(4) a[:] = a[::-1] assert_equal(a, [3, 2, 1, 0]) a = np.arange(6).reshape(2, 3) a[::-1,:] = a[:, ::-1] assert_equal(a, [[5, 4, 3], [2, 1, 0]]) a = np.arange(6).reshape(2, 3) a[::-1, ::-1] = a[:, ::-1] assert_equal(a, [[3, 4, 5], [0, 1, 2]]) # With just one element overlapping a = np.arange(5) a[:3] = a[2:] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[2:] = a[:3] assert_equal(a, [0, 1, 0, 1, 2]) a = np.arange(5) a[2::-1] = a[2:] assert_equal(a, [4, 3, 2, 3, 4]) a = np.arange(5) a[2:] = a[2::-1] assert_equal(a, [0, 1, 2, 1, 0]) a = np.arange(5) a[2::-1] = a[:1:-1] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[:1:-1] = a[2::-1] assert_equal(a, [0, 1, 0, 1, 2]) class TestCreation(TestCase): def test_from_attribute(self): class x(object): def __array__(self, dtype=None): pass self.assertRaises(ValueError, np.array, x()) def test_from_string(self): types = np.typecodes['AllInteger'] + np.typecodes['Float'] nstr = ['123', '123'] result = np.array([123, 123], dtype=int) for type in types: msg = 'String conversion for %s' % type assert_equal(np.array(nstr, dtype=type), result, err_msg=msg) def test_void(self): arr = np.array([], dtype='V') assert_equal(arr.dtype.kind, 'V') def test_zeros(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((13,), dtype=dt) assert_equal(np.count_nonzero(d), 0) # true for ieee floats assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='4i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4, (2,4)i4') assert_equal(np.count_nonzero(d), 0) @dec.slow def test_zeros_big(self): # test big array as they might be allocated different by the sytem types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((30 * 1024**2,), dtype=dt) assert_(not d.any()) def test_zeros_obj(self): # test initialization from PyLong(0) d = np.zeros((13,), dtype=object) assert_array_equal(d, [0] * 13) assert_equal(np.count_nonzero(d), 0) def test_zeros_obj_obj(self): d = np.zeros(10, dtype=[('k', object, 2)]) assert_array_equal(d['k'], 0) def test_zeros_like_like_zeros(self): # test zeros_like returns the same as zeros for c in np.typecodes['All']: if c == 'V': continue d = np.zeros((3,3), dtype=c) assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) # explicitly check some special cases d = np.zeros((3,3), dtype='S5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='U5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='f4,f4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) def test_empty_unicode(self): # don't throw decode errors on garbage memory for i in range(5, 100, 5): d = np.empty(i, dtype='U') str(d) def test_sequence_non_homogenous(self): assert_equal(np.array([4, 2**80]).dtype, np.object) assert_equal(np.array([4, 2**80, 4]).dtype, np.object) assert_equal(np.array([2**80, 4]).dtype, np.object) assert_equal(np.array([2**80] * 3).dtype, np.object) assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, np.complex) assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, np.complex) assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, np.complex) @dec.skipif(sys.version_info[0] >= 3) def test_sequence_long(self): assert_equal(np.array([long(4), long(4)]).dtype, np.long) assert_equal(np.array([long(4), 2**80]).dtype, np.object) assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object) assert_equal(np.array([2**80, long(4)]).dtype, np.object) def test_non_sequence_sequence(self): """Should not segfault. Class Fail breaks the sequence protocol for new style classes, i.e., those derived from object. Class Map is a mapping type indicated by raising a ValueError. At some point we may raise a warning instead of an error in the Fail case. """ class Fail(object): def __len__(self): return 1 def __getitem__(self, index): raise ValueError() class Map(object): def __len__(self): return 1 def __getitem__(self, index): raise KeyError() a = np.array([Map()]) assert_(a.shape == (1,)) assert_(a.dtype == np.dtype(object)) assert_raises(ValueError, np.array, [Fail()]) def test_no_len_object_type(self): # gh-5100, want object array from iterable object without len() class Point2: def __init__(self): pass def __getitem__(self, ind): if ind in [0, 1]: return ind else: raise IndexError() d = np.array([Point2(), Point2(), Point2()]) assert_equal(d.dtype, np.dtype(object)) class TestStructured(TestCase): def test_subarray_field_access(self): a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))]) a['a'] = np.arange(60).reshape(3, 5, 2, 2) # Since the subarray is always in C-order, a transpose # does not swap the subarray: assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3)) # In Fortran order, the subarray gets appended # like in all other cases, not prepended as a special case b = a.copy(order='F') assert_equal(a['a'].shape, b['a'].shape) assert_equal(a.T['a'].shape, a.T.copy()['a'].shape) def test_subarray_comparison(self): # Check that comparisons between record arrays with # multi-dimensional field types work properly a = np.rec.fromrecords( [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])], dtype=[('a', ('f4', 3)), ('b', np.object), ('c', ('i4', (2, 2)))]) b = a.copy() assert_equal(a == b, [True, True]) assert_equal(a != b, [False, False]) b[1].b = 'c' assert_equal(a == b, [True, False]) assert_equal(a != b, [False, True]) for i in range(3): b[0].a = a[0].a b[0].a[i] = 5 assert_equal(a == b, [False, False]) assert_equal(a != b, [True, True]) for i in range(2): for j in range(2): b = a.copy() b[0].c[i, j] = 10 assert_equal(a == b, [False, True]) assert_equal(a != b, [True, False]) # Check that broadcasting with a subarray works a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))]) b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that broadcasting Fortran-style arrays with a subarray work a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F') b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that incompatible sub-array shapes don't result to broadcasting x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) # Check that structured arrays that are different only in # byte-order work a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')]) b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')]) assert_equal(a == b, [False, True]) def test_casting(self): # Check that casting a structured array to change its byte order # works a = np.array([(1,)], dtype=[('a', '<i4')]) assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe')) b = a.astype([('a', '>i4')]) assert_equal(b, a.byteswap().newbyteorder()) assert_equal(a['a'][0], b['a'][0]) # Check that equality comparison works on structured arrays if # they are 'equiv'-castable a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')]) b = np.array([(42, 5), (1, 10)], dtype=[('b', '>f8'), ('a', '<i4')]) assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) assert_equal(a == b, [True, True]) # Check that 'equiv' casting can reorder fields and change byte # order assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) c = a.astype(b.dtype, casting='equiv') assert_equal(a == c, [True, True]) # Check that 'safe' casting can change byte order and up-cast # fields t = [('a', '<i8'), ('b', '>f8')] assert_(np.can_cast(a.dtype, t, casting='safe')) c = a.astype(t, casting='safe') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that 'same_kind' casting can change byte order and # change field widths within a "kind" t = [('a', '<i4'), ('b', '>f4')] assert_(np.can_cast(a.dtype, t, casting='same_kind')) c = a.astype(t, casting='same_kind') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that casting fails if the casting rule should fail on # any of the fields t = [('a', '>i8'), ('b', '<f4')] assert_(not np.can_cast(a.dtype, t, casting='safe')) assert_raises(TypeError, a.astype, t, casting='safe') t = [('a', '>i2'), ('b', '<f8')] assert_(not np.can_cast(a.dtype, t, casting='equiv')) assert_raises(TypeError, a.astype, t, casting='equiv') t = [('a', '>i8'), ('b', '<i2')] assert_(not np.can_cast(a.dtype, t, casting='same_kind')) assert_raises(TypeError, a.astype, t, casting='same_kind') assert_(not np.can_cast(a.dtype, b.dtype, casting='no')) assert_raises(TypeError, a.astype, b.dtype, casting='no') # Check that non-'unsafe' casting can't change the set of field names for casting in ['no', 'safe', 'equiv', 'same_kind']: t = [('a', '>i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) def test_objview(self): # https://github.com/numpy/numpy/issues/3286 a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')]) a[['a', 'b']] # TypeError? # https://github.com/numpy/numpy/issues/3253 dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')]) dat2[['B', 'A']] # TypeError? def test_setfield(self): # https://github.com/numpy/numpy/issues/3126 struct_dt = np.dtype([('elem', 'i4', 5),]) dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)]) x = np.zeros(1, dt) x[0]['field'] = np.ones(10, dtype='i4') x[0]['struct'] = np.ones(1, dtype=struct_dt) assert_equal(x[0]['field'], np.ones(10, dtype='i4')) def test_setfield_object(self): # make sure object field assignment with ndarray value # on void scalar mimics setitem behavior b = np.zeros(1, dtype=[('x', 'O')]) # next line should work identically to b['x'][0] = np.arange(3) b[0]['x'] = np.arange(3) assert_equal(b[0]['x'], np.arange(3)) #check that broadcasting check still works c = np.zeros(1, dtype=[('x', 'O', 5)]) def testassign(): c[0]['x'] = np.arange(3) assert_raises(ValueError, testassign) class TestBool(TestCase): def test_test_interning(self): a0 = np.bool_(0) b0 = np.bool_(False) self.assertTrue(a0 is b0) a1 = np.bool_(1) b1 = np.bool_(True) self.assertTrue(a1 is b1) self.assertTrue(np.array([True])[0] is a1) self.assertTrue(np.array(True)[()] is a1) def test_sum(self): d = np.ones(101, dtype=np.bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) d = np.frombuffer(b'\xff\xff' * 100, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) def check_count_nonzero(self, power, length): powers = [2 ** i for i in range(length)] for i in range(2**power): l = [(i & x) != 0 for x in powers] a = np.array(l, dtype=np.bool) c = builtins.sum(l) self.assertEqual(np.count_nonzero(a), c) av = a.view(np.uint8) av *= 3 self.assertEqual(np.count_nonzero(a), c) av *= 4 self.assertEqual(np.count_nonzero(a), c) av[av != 0] = 0xFF self.assertEqual(np.count_nonzero(a), c) def test_count_nonzero(self): # check all 12 bit combinations in a length 17 array # covers most cases of the 16 byte unrolled code self.check_count_nonzero(12, 17) @dec.slow def test_count_nonzero_all(self): # check all combinations in a length 17 array # covers all cases of the 16 byte unrolled code self.check_count_nonzero(17, 17) def test_count_nonzero_unaligned(self): # prevent mistakes as e.g. gh-4060 for o in range(7): a = np.zeros((18,), dtype=np.bool)[o+1:] a[:o] = True self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) a = np.ones((18,), dtype=np.bool)[o+1:] a[:o] = False self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) class TestMethods(TestCase): def test_round(self): def check_round(arr, expected, *round_args): assert_equal(arr.round(*round_args), expected) # With output array out = np.zeros_like(arr) res = arr.round(*round_args, out=out) assert_equal(out, expected) assert_equal(out, res) check_round(np.array([1.2, 1.5]), [1, 2]) check_round(np.array(1.5), 2) check_round(np.array([12.2, 15.5]), [10, 20], -1) check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) # Complex rounding check_round(np.array([4.5 + 1.5j]), [4 + 2j]) check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) def test_transpose(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) self.assertRaises(ValueError, lambda: a.transpose(0)) self.assertRaises(ValueError, lambda: a.transpose(0, 0)) self.assertRaises(ValueError, lambda: a.transpose(0, 1, 2)) def test_sort(self): # test ordering for floats and complex containing nans. It is only # necessary to check the lessthan comparison, so sorts that # only follow the insertion sort path are sufficient. We only # test doubles and complex doubles as the logic is the same. # check doubles msg = "Test real sort order with nans" a = np.array([np.nan, 1, 0]) b = np.sort(a) assert_equal(b, a[::-1], msg) # check complex msg = "Test complex sort order with nans" a = np.zeros(9, dtype=np.complex128) a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0] a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0] b = np.sort(a) assert_equal(b, a[::-1], msg) # all c scalar sorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test complex sorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex sort, real part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex sort, imag part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) # test sorting of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=dt) c = arr.copy() c.sort() msg = 'byte-swapped complex sort, dtype={0}'.format(dt) assert_equal(c, arr, msg) # test string sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "string sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test unicode sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "unicode sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test object array sorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test record array sorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test datetime64 sorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test timedelta64 sorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # check axis handling. This should be the same for all type # specific sorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 0], [3, 2]]) c = np.array([[2, 3], [0, 1]]) d = a.copy() d.sort(axis=0) assert_equal(d, b, "test sort with axis=0") d = a.copy() d.sort(axis=1) assert_equal(d, c, "test sort with axis=1") d = a.copy() d.sort() assert_equal(d, c, "test sort with default axis") # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array sort with axis={0}'.format(axis) assert_equal(np.sort(a, axis=axis), a, msg) msg = 'test empty array sort with axis=None' assert_equal(np.sort(a, axis=None), a.ravel(), msg) def test_copy(self): def assert_fortran(arr): assert_(arr.flags.fortran) assert_(arr.flags.f_contiguous) assert_(not arr.flags.c_contiguous) def assert_c(arr): assert_(not arr.flags.fortran) assert_(not arr.flags.f_contiguous) assert_(arr.flags.c_contiguous) a = np.empty((2, 2), order='F') # Test copying a Fortran array assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_fortran(a.copy('A')) # Now test starting with a C array. a = np.empty((2, 2), order='C') assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_c(a.copy('A')) def test_sort_order(self): # Test sorting an array with fields x1 = np.array([21, 32, 14]) x2 = np.array(['my', 'first', 'name']) x3 = np.array([3.1, 4.5, 6.2]) r = np.rec.fromarrays([x1, x2, x3], names='id,word,number') r.sort(order=['id']) assert_equal(r.id, np.array([14, 21, 32])) assert_equal(r.word, np.array(['name', 'my', 'first'])) assert_equal(r.number, np.array([6.2, 3.1, 4.5])) r.sort(order=['word']) assert_equal(r.id, np.array([32, 21, 14])) assert_equal(r.word, np.array(['first', 'my', 'name'])) assert_equal(r.number, np.array([4.5, 3.1, 6.2])) r.sort(order=['number']) assert_equal(r.id, np.array([21, 32, 14])) assert_equal(r.word, np.array(['my', 'first', 'name'])) assert_equal(r.number, np.array([3.1, 4.5, 6.2])) if sys.byteorder == 'little': strtype = '>i2' else: strtype = '<i2' mydtype = [('name', strchar + '5'), ('col2', strtype)] r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)], dtype=mydtype) r.sort(order='col2') assert_equal(r['col2'], [1, 3, 255, 258]) assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)], dtype=mydtype)) def test_argsort(self): # all c scalar argsorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), a, msg) assert_equal(b.copy().argsort(kind=kind), b, msg) # test complex argsorts. These use the same code as the scalars # but the compare fuction differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) # test argsort of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=dt) msg = 'byte-swapped complex argsort, dtype={0}'.format(dt) assert_equal(arr.argsort(), np.arange(len(arr), dtype=np.intp), msg) # test string argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "string argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test unicode argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "unicode argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test object array argsorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "object argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test structured array argsorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "structured array argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test datetime64 argsorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test timedelta64 argsorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # check axis handling. This should be the same for all type # specific argsorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 1], [0, 0]]) c = np.array([[1, 0], [1, 0]]) assert_equal(a.copy().argsort(axis=0), b) assert_equal(a.copy().argsort(axis=1), c) assert_equal(a.copy().argsort(), c) # using None is known fail at this point #assert_equal(a.copy().argsort(axis=None, c) # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argsort with axis={0}'.format(axis) assert_equal(np.argsort(a, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argsort with axis=None' assert_equal(np.argsort(a, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) # check that stable argsorts are stable r = np.arange(100) # scalars a = np.zeros(100) assert_equal(a.argsort(kind='m'), r) # complex a = np.zeros(100, dtype=np.complex) assert_equal(a.argsort(kind='m'), r) # string a = np.array(['aaaaaaaaa' for i in range(100)]) assert_equal(a.argsort(kind='m'), r) # unicode a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode) assert_equal(a.argsort(kind='m'), r) def test_sort_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.sort, kind=k) assert_raises(ValueError, d.argsort, kind=k) def test_searchsorted(self): # test for floats and complex containing nans. The logic is the # same for all float types so only test double types for now. # The search sorted routines use the compare functions for the # array type, so this checks if that is consistent with the sort # order. # check double a = np.array([0, 1, np.nan]) msg = "Test real searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(3), msg) msg = "Test real searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 4), msg) # check double complex a = np.zeros(9, dtype=np.complex128) a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] msg = "Test complex searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(9), msg) msg = "Test complex searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 10), msg) msg = "Test searchsorted with little endian, side='l'" a = np.array([0, 128], dtype='<i4') b = a.searchsorted(np.array(128, dtype='<i4')) assert_equal(b, 1, msg) msg = "Test searchsorted with big endian, side='l'" a = np.array([0, 128], dtype='>i4') b = a.searchsorted(np.array(128, dtype='>i4')) assert_equal(b, 1, msg) # Check 0 elements a = np.ones(0) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 0]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 0, 0]) a = np.ones(1) # Check 1 element b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 1]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 1, 1]) # Check all elements equal a = np.ones(2) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 2]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 2, 2]) # Test searching unaligned array a = np.arange(10) aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) unaligned[:] = a # Test searching unaligned array b = unaligned.searchsorted(a, 'l') assert_equal(b, a) b = unaligned.searchsorted(a, 'r') assert_equal(b, a + 1) # Test searching for unaligned keys b = a.searchsorted(unaligned, 'l') assert_equal(b, a) b = a.searchsorted(unaligned, 'r') assert_equal(b, a + 1) # Test smart resetting of binsearch indices a = np.arange(5) b = a.searchsorted([6, 5, 4], 'l') assert_equal(b, [5, 5, 4]) b = a.searchsorted([6, 5, 4], 'r') assert_equal(b, [5, 5, 5]) # Test all type specific binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.arange(2, dtype=dt) out = np.arange(2) else: a = np.arange(0, 5, dtype=dt) out = np.arange(5) b = a.searchsorted(a, 'l') assert_equal(b, out) b = a.searchsorted(a, 'r') assert_equal(b, out + 1) def test_searchsorted_unicode(self): # Test searchsorted on unicode strings. # 1.6.1 contained a string length miscalculation in # arraytypes.c.src:UNICODE_compare() which manifested as # incorrect/inconsistent results from searchsorted. a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'], dtype=np.unicode) ind = np.arange(len(a)) assert_equal([a.searchsorted(v, 'left') for v in a], ind) assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1) assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind) assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1) def test_searchsorted_with_sorter(self): a = np.array([5, 2, 1, 3, 4]) s = np.argsort(a) assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3))) assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6]) # bounds check assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3]) a = np.random.rand(300) s = a.argsort() b = np.sort(a) k = np.linspace(0, 1, 20) assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s)) a = np.array([0, 1, 2, 3, 5]*20) s = a.argsort() k = [0, 1, 2, 3, 5] expected = [0, 20, 40, 60, 80] assert_equal(a.searchsorted(k, side='l', sorter=s), expected) expected = [20, 40, 60, 80, 100] assert_equal(a.searchsorted(k, side='r', sorter=s), expected) # Test searching unaligned array keys = np.arange(10) a = keys.copy() np.random.shuffle(s) s = a.argsort() aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) # Test searching unaligned array unaligned[:] = a b = unaligned.searchsorted(keys, 'l', s) assert_equal(b, keys) b = unaligned.searchsorted(keys, 'r', s) assert_equal(b, keys + 1) # Test searching for unaligned keys unaligned[:] = keys b = a.searchsorted(unaligned, 'l', s) assert_equal(b, keys) b = a.searchsorted(unaligned, 'r', s) assert_equal(b, keys + 1) # Test all type specific indirect binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.array([1, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([1, 0], dtype=np.int16) out = np.array([1, 0]) else: a = np.array([3, 4, 1, 2, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([4, 2, 3, 0, 1], dtype=np.int16) out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) # Test non-contiguous sorter array a = np.array([3, 4, 1, 2, 0]) srt = np.empty((10,), dtype=np.intp) srt[1::2] = -1 srt[::2] = [4, 2, 3, 0, 1] s = srt[::2] out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) def test_argpartition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.argpartition, 10) assert_raises(ValueError, d.argpartition, -11) # Test also for generic type argpartition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.argpartition, 10) assert_raises(ValueError, d_obj.argpartition, -11) def test_partition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.partition, 10) assert_raises(ValueError, d.partition, -11) # Test also for generic type partition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.partition, 10) assert_raises(ValueError, d_obj.partition, -11) def test_partition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array partition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), a, msg) msg = 'test empty array partition with axis=None' assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg) def test_argpartition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argpartition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argpartition with axis=None' assert_equal(np.partition(a, 0, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) def test_partition(self): d = np.arange(10) assert_raises(TypeError, np.partition, d, 2, kind=1) assert_raises(ValueError, np.partition, d, 2, kind="nonsense") assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense") assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense") assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense") for k in ("introselect",): d = np.array([]) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(np.argpartition(d, 0, kind=k), d) d = np.ones((1)) assert_array_equal(np.partition(d, 0, kind=k)[0], d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # kth not modified kth = np.array([30, 15, 5]) okth = kth.copy() np.partition(np.arange(40), kth) assert_array_equal(kth, okth) for r in ([2, 1], [1, 2], [1, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) assert_array_equal(d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.ones((50)) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # sorted d = np.arange((49)) self.assertEqual(np.partition(d, 5, kind=k)[5], 5) self.assertEqual(np.partition(d, 15, kind=k)[15], 15) assert_array_equal(d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k)) assert_array_equal(d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k)) # rsorted d = np.arange((47))[::-1] self.assertEqual(np.partition(d, 6, kind=k)[6], 6) self.assertEqual(np.partition(d, 16, kind=k)[16], 16) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k)) assert_array_equal(np.partition(d, -16, kind=k), np.partition(d, 31, kind=k)) assert_array_equal(d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k)) # median of 3 killer, O(n^2) on pure median 3 pivot quickselect # exercises the median of median of 5 code used to keep O(n) d = np.arange(1000000) x = np.roll(d, d.size // 2) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) d = np.arange(1000001) x = np.roll(d, d.size // 2 + 1) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) # max d = np.ones(10) d[1] = 4 assert_equal(np.partition(d, (2, -1))[-1], 4) assert_equal(np.partition(d, (2, -1))[2], 1) assert_equal(d[np.argpartition(d, (2, -1))][-1], 4) assert_equal(d[np.argpartition(d, (2, -1))][2], 1) d[1] = np.nan assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1])) assert_(np.isnan(np.partition(d, (2, -1))[-1])) # equal elements d = np.arange((47)) % 7 tgt = np.sort(np.arange((47)) % 7) np.random.shuffle(d) for i in range(d.size): self.assertEqual(np.partition(d, i, kind=k)[i], tgt[i]) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9]) kth = [0, 3, 19, 20] assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7)) assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7)) d = np.array([2, 1]) d.partition(0, kind=k) assert_raises(ValueError, d.partition, 2) assert_raises(ValueError, d.partition, 3, axis=1) assert_raises(ValueError, np.partition, d, 2) assert_raises(ValueError, np.partition, d, 2, axis=1) assert_raises(ValueError, d.argpartition, 2) assert_raises(ValueError, d.argpartition, 3, axis=1) assert_raises(ValueError, np.argpartition, d, 2) assert_raises(ValueError, np.argpartition, d, 2, axis=1) d = np.arange(10).reshape((2, 5)) d.partition(1, axis=0, kind=k) d.partition(4, axis=1, kind=k) np.partition(d, 1, axis=0, kind=k) np.partition(d, 4, axis=1, kind=k) np.partition(d, 1, axis=None, kind=k) np.partition(d, 9, axis=None, kind=k) d.argpartition(1, axis=0, kind=k) d.argpartition(4, axis=1, kind=k) np.argpartition(d, 1, axis=0, kind=k) np.argpartition(d, 4, axis=1, kind=k) np.argpartition(d, 1, axis=None, kind=k) np.argpartition(d, 9, axis=None, kind=k) assert_raises(ValueError, d.partition, 2, axis=0) assert_raises(ValueError, d.partition, 11, axis=1) assert_raises(TypeError, d.partition, 2, axis=None) assert_raises(ValueError, np.partition, d, 9, axis=1) assert_raises(ValueError, np.partition, d, 11, axis=None) assert_raises(ValueError, d.argpartition, 2, axis=0) assert_raises(ValueError, d.argpartition, 11, axis=1) assert_raises(ValueError, np.argpartition, d, 9, axis=1) assert_raises(ValueError, np.argpartition, d, 11, axis=None) td = [(dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16)] for dt, s in td: aae = assert_array_equal at = self.assertTrue d = np.arange(s, dtype=dt) np.random.shuffle(d) d1 = np.tile(np.arange(s, dtype=dt), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) for i in range(d.size): p = np.partition(d, i, kind=k) self.assertEqual(p[i], i) # all before are smaller assert_array_less(p[:i], p[i]) # all after are larger assert_array_less(p[i], p[i + 1:]) aae(p, d[np.argpartition(d, i, kind=k)]) p = np.partition(d1, i, axis=1, kind=k) aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:, :i].T <= p[:, i]).all(), msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T)) at((p[:, i + 1:].T > p[:, i]).all(), msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T)) aae(p, d1[np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k)]) p = np.partition(d0, i, axis=0, kind=k) aae(p[i,:], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:i,:] <= p[i,:]).all(), msg="%d: %r <= %r" % (i, p[i,:], p[:i,:])) at((p[i + 1:,:] > p[i,:]).all(), msg="%d: %r < %r" % (i, p[i,:], p[:, i + 1:])) aae(p, d0[np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None,:]]) # check inplace dc = d.copy() dc.partition(i, kind=k) assert_equal(dc, np.partition(d, i, kind=k)) dc = d0.copy() dc.partition(i, axis=0, kind=k) assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) dc = d1.copy() dc.partition(i, axis=1, kind=k) assert_equal(dc, np.partition(d1, i, axis=1, kind=k)) def assert_partitioned(self, d, kth): prev = 0 for k in np.sort(kth): assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k) assert_((d[k:] >= d[k]).all(), msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k])) prev = k + 1 def test_partition_iterative(self): d = np.arange(17) kth = (0, 1, 2, 429, 231) assert_raises(ValueError, d.partition, kth) assert_raises(ValueError, d.argpartition, kth) d = np.arange(10).reshape((2, 5)) assert_raises(ValueError, d.partition, kth, axis=0) assert_raises(ValueError, d.partition, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=None) d = np.array([3, 4, 2, 1]) p = np.partition(d, (0, 3)) self.assert_partitioned(p, (0, 3)) self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3)) assert_array_equal(p, np.partition(d, (-3, -1))) assert_array_equal(p, d[np.argpartition(d, (-3, -1))]) d = np.arange(17) np.random.shuffle(d) d.partition(range(d.size)) assert_array_equal(np.arange(17), d) np.random.shuffle(d) assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))]) # test unsorted kth d = np.arange(17) np.random.shuffle(d) keys = np.array([1, 3, 8, -2]) np.random.shuffle(d) p = np.partition(d, keys) self.assert_partitioned(p, keys) p = d[np.argpartition(d, keys)] self.assert_partitioned(p, keys) np.random.shuffle(keys) assert_array_equal(np.partition(d, keys), p) assert_array_equal(d[np.argpartition(d, keys)], p) # equal kth d = np.arange(20)[::-1] self.assert_partitioned(np.partition(d, [5]*4), [5]) self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]), [5]*4 + [6, 13]) self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5]) self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])], [5]*4 + [6, 13]) d = np.arange(12) np.random.shuffle(d) d1 = np.tile(np.arange(12), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) kth = (1, 6, 7, -1) p = np.partition(d1, kth, axis=1) pa = d1[np.arange(d1.shape[0])[:, None], d1.argpartition(kth, axis=1)] assert_array_equal(p, pa) for i in range(d1.shape[0]): self.assert_partitioned(p[i,:], kth) p = np.partition(d0, kth, axis=0) pa = d0[np.argpartition(d0, kth, axis=0), np.arange(d0.shape[1])[None,:]] assert_array_equal(p, pa) for i in range(d0.shape[1]): self.assert_partitioned(p[:, i], kth) def test_partition_cdtype(self): d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k]) def test_partition_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.partition, 2, kind=k) assert_raises(ValueError, d.argpartition, 2, kind=k) def test_partition_fuzz(self): # a few rounds of random data testing for j in range(10, 30): for i in range(1, j - 2): d = np.arange(j) np.random.shuffle(d) d = d % np.random.randint(2, 30) idx = np.random.randint(d.size) kth = [0, idx, i, i + 1] tgt = np.sort(d)[kth] assert_array_equal(np.partition(d, kth)[kth], tgt, err_msg="data: %r\n kth: %r" % (d, kth)) def test_argpartition_gh5524(self): # A test for functionality of argpartition on lists. d = [6,7,3,2,9,0] p = np.argpartition(d,1) self.assert_partitioned(np.array(d)[p],[1]) def test_flatten(self): x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32) x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32) y0 = np.array([1, 2, 3, 4, 5, 6], np.int32) y0f = np.array([1, 4, 2, 5, 3, 6], np.int32) y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32) y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32) assert_equal(x0.flatten(), y0) assert_equal(x0.flatten('F'), y0f) assert_equal(x0.flatten('F'), x0.T.flatten()) assert_equal(x1.flatten(), y1) assert_equal(x1.flatten('F'), y1f) assert_equal(x1.flatten('F'), x1.T.flatten()) def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b)) def test_dot_override(self): class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_diagonal(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.diagonal(), [0, 5, 10]) assert_equal(a.diagonal(0), [0, 5, 10]) assert_equal(a.diagonal(1), [1, 6, 11]) assert_equal(a.diagonal(-1), [4, 9]) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.diagonal(), [[0, 6], [1, 7]]) assert_equal(b.diagonal(0), [[0, 6], [1, 7]]) assert_equal(b.diagonal(1), [[2], [3]]) assert_equal(b.diagonal(-1), [[4], [5]]) assert_raises(ValueError, b.diagonal, axis1=0, axis2=0) assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]]) assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]]) assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]]) # Order of axis argument doesn't matter: assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]]) def test_diagonal_view_notwriteable(self): # this test is only for 1.9, the diagonal view will be # writeable in 1.10. a = np.eye(3).diagonal() assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diagonal(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diag(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) def test_diagonal_memleak(self): # Regression test for a bug that crept in at one point a = np.zeros((100, 100)) assert_(sys.getrefcount(a) < 50) for i in range(100): a.diagonal() assert_(sys.getrefcount(a) < 50) def test_put(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] for dt in icodes + fcodes + 'O': tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt.reshape(2, 3)) for dt in '?': tgt = np.array([False, True, False, True, False, True], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt.reshape(2, 3)) # check must be writeable a = np.zeros(6) a.flags.writeable = False assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5]) def test_ravel(self): a = np.array([[0, 1], [2, 3]]) assert_equal(a.ravel(), [0, 1, 2, 3]) assert_(not a.ravel().flags.owndata) assert_equal(a.ravel('F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='C'), [0, 1, 2, 3]) assert_equal(a.ravel(order='F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='A'), [0, 1, 2, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_equal(a.ravel(order='K'), [0, 1, 2, 3]) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) a = np.array([[0, 1], [2, 3]], order='F') assert_equal(a.ravel(), [0, 1, 2, 3]) assert_equal(a.ravel(order='A'), [0, 2, 1, 3]) assert_equal(a.ravel(order='K'), [0, 2, 1, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) assert_equal(a.ravel(order='A'), a.reshape(-1, order='A')) a = np.array([[0, 1], [2, 3]])[::-1, :] assert_equal(a.ravel(), [2, 3, 0, 1]) assert_equal(a.ravel(order='C'), [2, 3, 0, 1]) assert_equal(a.ravel(order='F'), [2, 0, 3, 1]) assert_equal(a.ravel(order='A'), [2, 3, 0, 1]) # 'K' doesn't reverse the axes of negative strides assert_equal(a.ravel(order='K'), [2, 3, 0, 1]) assert_(a.ravel(order='K').flags.owndata) # Not contiguous and 1-sized axis with non matching stride a = np.arange(2**3 * 2)[::2] a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel('K'), np.arange(0, 15, 2)) # General case of possible ravel that is not contiguous but # works and includes a 1-sized axis with non matching stride a = a.swapaxes(-1, -2) # swap back to C-order assert_(np.may_share_memory(a.ravel(order='C'), a)) assert_(np.may_share_memory(a.ravel(order='K'), a)) a = a.T # swap all to Fortran order assert_(np.may_share_memory(a.ravel(order='F'), a)) assert_(np.may_share_memory(a.ravel(order='K'), a)) # Test negative strides: a = np.arange(4)[::-1].reshape(2, 2) assert_(np.may_share_memory(a.ravel(order='C'), a)) assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel('C'), [3, 2, 1, 0]) assert_equal(a.ravel('K'), [3, 2, 1, 0]) # Test keeporder with weirdly strided 1-sized dims (1-d first stride) a = np.arange(8)[::2].reshape(1, 2, 2, 1) # neither C, nor F order strides = list(a.strides) strides[0] = -12 strides[-1] = 0 a.strides = strides assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel('K'), a.ravel('C')) # 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING): a = np.array([[1]]) a.strides = (123, 432) # If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing # them up on purpose: if np.ones(1).strides == (8,): assert_(np.may_share_memory(a.ravel('K'), a)) assert_equal(a.ravel('K').strides, (a.dtype.itemsize,)) for order in ('C', 'F', 'A', 'K'): # 0-d corner case: a = np.array(0) assert_equal(a.ravel(order), [0]) assert_(np.may_share_memory(a.ravel(order), a)) #Test that certain non-inplace ravels work right (mostly) for 'K': b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2) a = b[..., ::2] assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28]) a = b[::2, ...] assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14]) def test_swapaxes(self): a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy() idx = np.indices(a.shape) assert_(a.flags['OWNDATA']) b = a.copy() # check exceptions assert_raises(ValueError, a.swapaxes, -5, 0) assert_raises(ValueError, a.swapaxes, 4, 0) assert_raises(ValueError, a.swapaxes, 0, -5) assert_raises(ValueError, a.swapaxes, 0, 4) for i in range(-4, 4): for j in range(-4, 4): for k, src in enumerate((a, b)): c = src.swapaxes(i, j) # check shape shape = list(src.shape) shape[i] = src.shape[j] shape[j] = src.shape[i] assert_equal(c.shape, shape, str((i, j, k))) # check array contents i0, i1, i2, i3 = [dim-1 for dim in c.shape] j0, j1, j2, j3 = [dim-1 for dim in src.shape] assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]], c[idx[i0], idx[i1], idx[i2], idx[i3]], str((i, j, k))) # check a view is always returned, gh-5260 assert_(not c.flags['OWNDATA'], str((i, j, k))) # check on non-contiguous input array if k == 1: b = c def test_conjugate(self): a = np.array([1-1j, 1+1j, 23+23.0j]) ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 23+23.0j], 'F') ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1, 2, 3]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1.0, 2.0, 3.0]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 1, 2.0], object) ac = a.conj() assert_equal(ac, [k.conjugate() for k in a]) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1, 2.0, 'f'], object) assert_raises(AttributeError, lambda: a.conj()) assert_raises(AttributeError, lambda: a.conjugate()) class TestBinop(object): def test_inplace(self): # test refcount 1 inplace conversion assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]), [0.5, 1.0]) d = np.array([0.5, 0.5])[::2] assert_array_almost_equal(d * (d * np.array([1.0, 2.0])), [0.25, 0.5]) a = np.array([0.5]) b = np.array([0.5]) c = a + b c = a - b c = a * b c = a / b assert_equal(a, b) assert_almost_equal(c, 1.) c = a + b * 2. / b * a - a / b assert_equal(a, b) assert_equal(c, 0.5) # true divide a = np.array([5]) b = np.array([3]) c = (a * a) / b assert_almost_equal(c, 25 / 3) assert_equal(a, 5) assert_equal(b, 3) def test_extension_incref_elide(self): # test extension (e.g. cython) calling PyNumber_* slots without # increasing the reference counts # # def incref_elide(a): # d = input.copy() # refcount 1 # return d, d + d # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide d = np.ones(5) orig, res = incref_elide(d) # the return original should not be changed to an inplace operation assert_array_equal(orig, d) assert_array_equal(res, d + d) def test_extension_incref_elide_stack(self): # scanning if the refcount == 1 object is on the python stack to check # that we are called directly from python is flawed as object may still # be above the stack pointer and we have no access to the top of it # # def incref_elide_l(d): # return l[4] + l[4] # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide_l # padding with 1 makes sure the object on the stack is not overwriten l = [1, 1, 1, 1, np.ones(5)] res = incref_elide_l(l) # the return original should not be changed to an inplace operation assert_array_equal(l[4], np.ones(5)) assert_array_equal(res, l[4] + l[4]) def test_ufunc_override_rop_precedence(self): # Check that __rmul__ and other right-hand operations have # precedence over __numpy_ufunc__ ops = { '__add__': ('__radd__', np.add, True), '__sub__': ('__rsub__', np.subtract, True), '__mul__': ('__rmul__', np.multiply, True), '__truediv__': ('__rtruediv__', np.true_divide, True), '__floordiv__': ('__rfloordiv__', np.floor_divide, True), '__mod__': ('__rmod__', np.remainder, True), '__divmod__': ('__rdivmod__', None, False), '__pow__': ('__rpow__', np.power, True), '__lshift__': ('__rlshift__', np.left_shift, True), '__rshift__': ('__rrshift__', np.right_shift, True), '__and__': ('__rand__', np.bitwise_and, True), '__xor__': ('__rxor__', np.bitwise_xor, True), '__or__': ('__ror__', np.bitwise_or, True), '__ge__': ('__le__', np.less_equal, False), '__gt__': ('__lt__', np.less, False), '__le__': ('__ge__', np.greater_equal, False), '__lt__': ('__gt__', np.greater, False), '__eq__': ('__eq__', np.equal, False), '__ne__': ('__ne__', np.not_equal, False), } class OtherNdarraySubclass(np.ndarray): pass class OtherNdarraySubclassWithOverride(np.ndarray): def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def check(op_name, ndsubclass): rop_name, np_op, has_iop = ops[op_name] if has_iop: iop_name = '__i' + op_name[2:] iop = getattr(operator, iop_name) if op_name == "__divmod__": op = divmod else: op = getattr(operator, op_name) # Dummy class def __init__(self, *a, **kw): pass def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def __op__(self, *other): return "op" def __rop__(self, *other): return "rop" if ndsubclass: bases = (np.ndarray,) else: bases = (object,) dct = {'__init__': __init__, '__numpy_ufunc__': __numpy_ufunc__, op_name: __op__} if op_name != rop_name: dct[rop_name] = __rop__ cls = type("Rop" + rop_name, bases, dct) # Check behavior against both bare ndarray objects and a # ndarray subclasses with and without their own override obj = cls((1,), buffer=np.ones(1,)) arr_objs = [np.array([1]), np.array([2]).view(OtherNdarraySubclass), np.array([3]).view(OtherNdarraySubclassWithOverride), ] for arr in arr_objs: err_msg = "%r %r" % (op_name, arr,) # Check that ndarray op gives up if it sees a non-subclass if not isinstance(obj, arr.__class__): assert_equal(getattr(arr, op_name)(obj), NotImplemented, err_msg=err_msg) # Check that the Python binops have priority assert_equal(op(obj, arr), "op", err_msg=err_msg) if op_name == rop_name: assert_equal(op(arr, obj), "op", err_msg=err_msg) else: assert_equal(op(arr, obj), "rop", err_msg=err_msg) # Check that Python binops have priority also for in-place ops if has_iop: assert_equal(getattr(arr, iop_name)(obj), NotImplemented, err_msg=err_msg) if op_name != "__pow__": # inplace pow requires the other object to be # integer-like? assert_equal(iop(arr, obj), "rop", err_msg=err_msg) # Check that ufunc call __numpy_ufunc__ normally if np_op is not None: assert_raises(AssertionError, np_op, arr, obj, err_msg=err_msg) assert_raises(AssertionError, np_op, obj, arr, err_msg=err_msg) # Check all binary operations for op_name in sorted(ops.keys()): yield check, op_name, True yield check, op_name, False def test_ufunc_override_rop_simple(self): # Check parts of the binary op overriding behavior in an # explicit test case that is easier to understand. class SomeClass(object): def __numpy_ufunc__(self, *a, **kw): return "ufunc" def __mul__(self, other): return 123 def __rmul__(self, other): return 321 def __rsub__(self, other): return "no subs for me" def __gt__(self, other): return "yep" def __lt__(self, other): return "nope" class SomeClass2(SomeClass, np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if ufunc is np.multiply or ufunc is np.bitwise_and: return "ufunc" else: inputs = list(inputs) inputs[i] = np.asarray(self) func = getattr(ufunc, method) r = func(*inputs, **kw) if 'out' in kw: return r else: x = self.__class__(r.shape, dtype=r.dtype) x[...] = r return x class SomeClass3(SomeClass2): def __rsub__(self, other): return "sub for me" arr = np.array([0]) obj = SomeClass() obj2 = SomeClass2((1,), dtype=np.int_) obj2[0] = 9 obj3 = SomeClass3((1,), dtype=np.int_) obj3[0] = 4 # obj is first, so should get to define outcome. assert_equal(obj * arr, 123) # obj is second, but has __numpy_ufunc__ and defines __rmul__. assert_equal(arr * obj, 321) # obj is second, but has __numpy_ufunc__ and defines __rsub__. assert_equal(arr - obj, "no subs for me") # obj is second, but has __numpy_ufunc__ and defines __lt__. assert_equal(arr > obj, "nope") # obj is second, but has __numpy_ufunc__ and defines __gt__. assert_equal(arr < obj, "yep") # Called as a ufunc, obj.__numpy_ufunc__ is used. assert_equal(np.multiply(arr, obj), "ufunc") # obj is second, but has __numpy_ufunc__ and defines __rmul__. arr *= obj assert_equal(arr, 321) # obj2 is an ndarray subclass, so CPython takes care of the same rules. assert_equal(obj2 * arr, 123) assert_equal(arr * obj2, 321) assert_equal(arr - obj2, "no subs for me") assert_equal(arr > obj2, "nope") assert_equal(arr < obj2, "yep") # Called as a ufunc, obj2.__numpy_ufunc__ is called. assert_equal(np.multiply(arr, obj2), "ufunc") # Also when the method is not overridden. assert_equal(arr & obj2, "ufunc") arr *= obj2 assert_equal(arr, 321) obj2 += 33 assert_equal(obj2[0], 42) assert_equal(obj2.sum(), 42) assert_(isinstance(obj2, SomeClass2)) # Obj3 is subclass that defines __rsub__. CPython calls it. assert_equal(arr - obj3, "sub for me") assert_equal(obj2 - obj3, "sub for me") # obj3 is a subclass that defines __rmul__. CPython calls it. assert_equal(arr * obj3, 321) # But not here, since obj3.__rmul__ is obj2.__rmul__. assert_equal(obj2 * obj3, 123) # And of course, here obj3.__mul__ should be called. assert_equal(obj3 * obj2, 123) # obj3 defines __numpy_ufunc__ but obj3.__radd__ is obj2.__radd__. # (and both are just ndarray.__radd__); see #4815. res = obj2 + obj3 assert_equal(res, 46) assert_(isinstance(res, SomeClass2)) # Since obj3 is a subclass, it should have precedence, like CPython # would give, even though obj2 has __numpy_ufunc__ and __radd__. # See gh-4815 and gh-5747. res = obj3 + obj2 assert_equal(res, 46) assert_(isinstance(res, SomeClass3)) def test_ufunc_override_normalize_signature(self): # gh-5674 class SomeClass(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') class TestCAPI(TestCase): def test_IsPythonScalar(self): from numpy.core.multiarray_tests import IsPythonScalar assert_(IsPythonScalar(b'foobar')) assert_(IsPythonScalar(1)) assert_(IsPythonScalar(2**80)) assert_(IsPythonScalar(2.)) assert_(IsPythonScalar("a")) class TestSubscripting(TestCase): def test_test_zero_rank(self): x = np.array([1, 2, 3]) self.assertTrue(isinstance(x[0], np.int_)) if sys.version_info[0] < 3: self.assertTrue(isinstance(x[0], int)) self.assertTrue(type(x[0, ...]) is np.ndarray) class TestPickling(TestCase): def test_roundtrip(self): import pickle carray = np.array([[2, 9], [7, 0], [3, 8]]) DATA = [ carray, np.transpose(carray), np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int), ('c', float)]) ] for a in DATA: assert_equal(a, pickle.loads(a.dumps()), err_msg="%r" % a) def _loads(self, obj): if sys.version_info[0] >= 3: return np.loads(obj, encoding='latin1') else: return np.loads(obj) # version 0 pickles, using protocol=2 to pickle # version 0 doesn't have a version field def test_version0_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) # version 1 pickles, using protocol=2 to pickle def test_version1_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) def test_subarray_int_shape(self): s = "cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb." a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)]) p = self._loads(asbytes(s)) assert_equal(a, p) class TestFancyIndexing(TestCase): def test_list(self): x = np.ones((1, 1)) x[:, [0]] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, [0]] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_tuple(self): x = np.ones((1, 1)) x[:, (0,)] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, (0,)] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) assert_array_equal(x[m], np.array([2])) def test_mask2(self): x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) assert_array_equal(x[m], np.array([[5, 6, 7, 8]])) assert_array_equal(x[m2], np.array([2, 5])) assert_array_equal(x[m3], np.array([2])) def test_assign_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) x[m] = 5 assert_array_equal(x, np.array([1, 5, 3, 4])) def test_assign_mask2(self): xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) x = xorig.copy() x[m] = 10 assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]])) x = xorig.copy() x[m2] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]])) x = xorig.copy() x[m3] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]])) class TestStringCompare(TestCase): def test_string(self): g1 = np.array(["This", "is", "example"]) g2 = np.array(["This", "was", "example"]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) def test_mixed(self): g1 = np.array(["spam", "spa", "spammer", "and eggs"]) g2 = "spam" assert_array_equal(g1 == g2, [x == g2 for x in g1]) assert_array_equal(g1 != g2, [x != g2 for x in g1]) assert_array_equal(g1 < g2, [x < g2 for x in g1]) assert_array_equal(g1 > g2, [x > g2 for x in g1]) assert_array_equal(g1 <= g2, [x <= g2 for x in g1]) assert_array_equal(g1 >= g2, [x >= g2 for x in g1]) def test_unicode(self): g1 = np.array([sixu("This"), sixu("is"), sixu("example")]) g2 = np.array([sixu("This"), sixu("was"), sixu("example")]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) class TestArgmax(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 1), ([complex(1, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(1, 1)], 2), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 5), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2015-11-20T12:20:59'), np.datetime64('1932-09-23T10:10:13'), np.datetime64('2014-10-10T03:50:30')], 3), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 4), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 0), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 3), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 0), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 1), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 2), ([False, False, False, False, True], 4), ([False, False, False, True, False], 3), ([True, False, False, False, False], 0), ([True, False, True, False, False], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 3), #(['zz', 'a', 'aa', 'a'], 0), #(['aa', 'z', 'zz', 'a'], 2), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amax = a.max(i) aargmax = a.argmax(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmax(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], np.max(arr), err_msg="%r" % arr) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmax(-1, out=out) assert_equal(out, a.argmax(-1)) def test_argmax_unicode(self): d = np.zeros(6031, dtype='<U9') d[5942] = "as" assert_equal(d.argmax(), 5942) def test_np_vs_ndarray(self): # make sure both ndarray.argmax and numpy.argmax support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.zeros(3, dtype=int) assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0)) assert_equal(out1, out2) class TestArgmin(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(0, 1)], 2), ([complex(1, 0), complex(0, 2), complex(1, 1)], 1), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 0), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2014-11-20T12:20:59'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 4), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 1), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 2), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 0), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 1), ([True, True, True, True, False], 4), ([True, True, True, False, True], 3), ([False, True, True, True, True], 0), ([False, True, False, True, True], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 0), #(['zz', 'a', 'aa', 'a'], 1), #(['aa', 'z', 'zz', 'a'], 3), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amin = a.min(i) aargmin = a.argmin(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmin(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmin(arr)], np.min(arr), err_msg="%r" % arr) def test_minimum_signed_integers(self): a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64) assert_equal(np.argmin(a), 1) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmin(-1, out=out) assert_equal(out, a.argmin(-1)) def test_argmin_unicode(self): d = np.ones(6031, dtype='<U9') d[6001] = "0" assert_equal(d.argmin(), 6001) def test_np_vs_ndarray(self): # make sure both ndarray.argmin and numpy.argmin support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.ones(2, dtype=int) assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.ones(3, dtype=int) assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0)) assert_equal(out1, out2) class TestMinMax(TestCase): def test_scalar(self): assert_raises(ValueError, np.amax, 1, 1) assert_raises(ValueError, np.amin, 1, 1) assert_equal(np.amax(1, axis=0), 1) assert_equal(np.amin(1, axis=0), 1) assert_equal(np.amax(1, axis=None), 1) assert_equal(np.amin(1, axis=None), 1) def test_axis(self): assert_raises(ValueError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3) def test_datetime(self): # NaTs are ignored for dtype in ('m8[s]', 'm8[Y]'): a = np.arange(10).astype(dtype) a[3] = 'NaT' assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[9]) a[0] = 'NaT' assert_equal(np.amin(a), a[1]) assert_equal(np.amax(a), a[9]) a.fill('NaT') assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[0]) class TestNewaxis(TestCase): def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250*sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250*sk) class TestClip(TestCase): def _check_range(self, x, cmin, cmax): assert_(np.all(x >= cmin)) assert_(np.all(x <= cmax)) def _clip_type(self, type_group, array_max, clip_min, clip_max, inplace=False, expected_min=None, expected_max=None): if expected_min is None: expected_min = clip_min if expected_max is None: expected_max = clip_max for T in np.sctypes[type_group]: if sys.byteorder == 'little': byte_orders = ['=', '>'] else: byte_orders = ['<', '='] for byteorder in byte_orders: dtype = np.dtype(T).newbyteorder(byteorder) x = (np.random.random(1000) * array_max).astype(dtype) if inplace: x.clip(clip_min, clip_max, x) else: x = x.clip(clip_min, clip_max) byteorder = '=' if x.dtype.byteorder == '|': byteorder = '|' assert_equal(x.dtype.byteorder, byteorder) self._check_range(x, expected_min, expected_max) return x def test_basic(self): for inplace in [False, True]: self._clip_type( 'float', 1024, -12.8, 100.2, inplace=inplace) self._clip_type( 'float', 1024, 0, 0, inplace=inplace) self._clip_type( 'int', 1024, -120, 100.5, inplace=inplace) self._clip_type( 'int', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, -120, 100, inplace=inplace, expected_min=0) def test_record_array(self): rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) y = rec['x'].clip(-0.3, 0.5) self._check_range(y, -0.3, 0.5) def test_max_or_min(self): val = np.array([0, 1, 2, 3, 4, 5, 6, 7]) x = val.clip(3) assert_(np.all(x >= 3)) x = val.clip(min=3) assert_(np.all(x >= 3)) x = val.clip(max=4) assert_(np.all(x <= 4)) class TestPutmask(object): def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_(np.all(x[mask] == T(val))) assert_(x.dtype == T) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(1000)*100 mask = x < 40 for val in [-100, 0, 15]: for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T), T, mask, val def test_mask_size(self): assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) np.putmask(x, [True, False, True], -1) assert_array_equal(x, [-1, 2, -1]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) np.putmask(rec['x'], [True, False], 10) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [2, 4]) assert_array_equal(rec['z'], [3, 3]) np.putmask(rec['y'], [True, False], 11) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [11, 4]) assert_array_equal(rec['z'], [3, 3]) def test_masked_array(self): ## x = np.array([1,2,3]) ## z = np.ma.array(x,mask=[True,False,False]) ## np.putmask(z,[True,True,True],3) pass class TestTake(object): def tst_basic(self, x): ind = list(range(x.shape[0])) assert_array_equal(x.take(ind, axis=0), x) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(24)*100 x.shape = 2, 3, 4 for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T) def test_raise(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_raises(IndexError, x.take, [0, 1, 2], axis=0) assert_raises(IndexError, x.take, [-3], axis=0) assert_array_equal(x.take([-1], axis=0)[0], x[1]) def test_clip(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0]) assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1]) def test_wrap(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1]) assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0]) assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1]) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) assert_array_equal(x.take([0, 2, 1]), [1, 3, 2]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) rec1 = rec.take([1]) assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0) class TestLexsort(TestCase): def test_basic(self): a = [1, 2, 1, 3, 1, 5] b = [0, 4, 5, 6, 2, 3] idx = np.lexsort((b, a)) expected_idx = np.array([0, 4, 2, 1, 3, 5]) assert_array_equal(idx, expected_idx) x = np.vstack((b, a)) idx = np.lexsort(x) assert_array_equal(idx, expected_idx) assert_array_equal(x[1][idx], np.sort(x[1])) def test_datetime(self): a = np.array([0,0,0], dtype='datetime64[D]') b = np.array([2,1,0], dtype='datetime64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) a = np.array([0,0,0], dtype='timedelta64[D]') b = np.array([2,1,0], dtype='timedelta64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) class TestIO(object): """Test tofile, fromfile, tobytes, and fromstring""" def setUp(self): shape = (2, 4, 3) rand = np.random.random self.x = rand(shape) + rand(shape).astype(np.complex)*1j self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan] self.dtype = self.x.dtype self.tempdir = tempfile.mkdtemp() self.filename = tempfile.mktemp(dir=self.tempdir) def tearDown(self): shutil.rmtree(self.tempdir) def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool_) y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_) assert_array_equal(v, y) def test_uint64_fromstring(self): d = np.fromstring("9923372036854775807 104783749223640", dtype=np.uint64, sep=' ') e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e) def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=' ') e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e) def test_empty_files_binary(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename) assert_(y.size == 0, "Array not empty") def test_empty_files_text(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename, sep=" ") assert_(y.size == 0, "Array not empty") def test_roundtrip_file(self): f = open(self.filename, 'wb') self.x.tofile(f) f.close() # NB. doesn't work with flush+seek, due to use of C stdio f = open(self.filename, 'rb') y = np.fromfile(f, dtype=self.dtype) f.close() assert_array_equal(y, self.x.flat) def test_roundtrip_filename(self): self.x.tofile(self.filename) y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_roundtrip_binary_str(self): s = self.x.tobytes() y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flat) s = self.x.tobytes('F') y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flatten('F')) def test_roundtrip_str(self): x = self.x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") # NB. str imbues less precision nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5) def test_roundtrip_repr(self): x = self.x.real.ravel() s = "@".join(map(repr, x)) y = np.fromstring(s, sep="@") assert_array_equal(x, y) def test_file_position_after_fromfile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.close() for mode in ['rb', 'r+b']: err_msg = "%d %s" % (size, mode) f = open(self.filename, mode) f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def test_file_position_after_tofile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: err_msg = "%d" % (size,) f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.seek(10) f.write(b'12') np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) f = open(self.filename, 'r+b') f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def _check_from(self, s, value, **kw): y = np.fromstring(asbytes(s), **kw) assert_array_equal(y, value) f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, **kw) assert_array_equal(y, value) def test_nan(self): self._check_from( "nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], sep=' ') def test_inf(self): self._check_from( "inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], sep=' ') def test_numbers(self): self._check_from("1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ') def test_binary(self): self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', np.array([1, 2, 3, 4]), dtype='<f4') @dec.slow # takes > 1 minute on mechanical hard drive def test_big_binary(self): """Test workarounds for 32-bit limited fwrite, fseek, and ftell calls in windows. These normally would hang doing something like this. See http://projects.scipy.org/numpy/ticket/1660""" if sys.platform != 'win32': return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass def test_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], sep=',') def test_counted_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], count=4, sep=',') self._check_from('1,2,3,4', [1., 2., 3.], count=3, sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',') def test_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ') def test_counted_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3], count=3, dtype=int, sep=' ') def test_ascii(self): self._check_from('1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',') def test_malformed(self): self._check_from('1.234 1,234', [1.234, 1.], sep=' ') def test_long_sep(self): self._check_from('1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_') def test_dtype(self): v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from('1,2,3,4', v, sep=',', dtype=np.int_) def test_dtype_bool(self): # can't use _check_from because fromstring can't handle True/False v = np.array([True, False, True, False], dtype=np.bool_) s = '1,0,-2.3,0' f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, sep=',', dtype=np.bool_) assert_(y.dtype == '?') assert_array_equal(y, v) def test_tofile_sep(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.0,3.51,4.0') def test_tofile_format(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',', format='%.2f') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.00,3.51,4.00') def test_locale(self): in_foreign_locale(self.test_numbers)() in_foreign_locale(self.test_nan)() in_foreign_locale(self.test_inf)() in_foreign_locale(self.test_counted_string)() in_foreign_locale(self.test_ascii)() in_foreign_locale(self.test_malformed)() in_foreign_locale(self.test_tofile_sep)() in_foreign_locale(self.test_tofile_format)() class TestFromBuffer(object): def tst_basic(self, buffer, expected, kwargs): assert_array_equal(np.frombuffer(buffer,**kwargs), expected) def test_ip_basic(self): for byteorder in ['<', '>']: for dtype in [float, int, np.complex]: dt = np.dtype(dtype).newbyteorder(byteorder) x = (np.random.random((4, 7))*5).astype(dt) buf = x.tobytes() yield self.tst_basic, buf, x.flat, {'dtype':dt} def test_empty(self): yield self.tst_basic, asbytes(''), np.array([]), {} class TestFlat(TestCase): def setUp(self): a0 = np.arange(20.0) a = a0.reshape(4, 5) a0.shape = (4, 5) a.flags.writeable = False self.a = a self.b = a[::2, ::2] self.a0 = a0 self.b0 = a0[::2, ::2] def test_contiguous(self): testpassed = False try: self.a.flat[12] = 100.0 except ValueError: testpassed = True assert testpassed assert self.a.flat[12] == 12.0 def test_discontiguous(self): testpassed = False try: self.b.flat[4] = 100.0 except ValueError: testpassed = True assert testpassed assert self.b.flat[4] == 12.0 def test___array__(self): c = self.a.flat.__array__() d = self.b.flat.__array__() e = self.a0.flat.__array__() f = self.b0.flat.__array__() assert c.flags.writeable is False assert d.flags.writeable is False assert e.flags.writeable is True assert f.flags.writeable is True assert c.flags.updateifcopy is False assert d.flags.updateifcopy is False assert e.flags.updateifcopy is False assert f.flags.updateifcopy is True assert f.base is self.b0 class TestResize(TestCase): def test_basic(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) x.resize((5, 5)) assert_array_equal(x.flat[:9], np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat) assert_array_equal(x[9:].flat, 0) def test_check_reference(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) y = x self.assertRaises(ValueError, x.resize, (5, 1)) del y # avoid pyflakes unused variable warning. def test_int_shape(self): x = np.eye(3) x.resize(3) assert_array_equal(x, np.eye(3)[0,:]) def test_none_shape(self): x = np.eye(3) x.resize(None) assert_array_equal(x, np.eye(3)) x.resize() assert_array_equal(x, np.eye(3)) def test_invalid_arguements(self): self.assertRaises(TypeError, np.eye(3).resize, 'hi') self.assertRaises(ValueError, np.eye(3).resize, -1) self.assertRaises(TypeError, np.eye(3).resize, order=1) self.assertRaises(TypeError, np.eye(3).resize, refcheck='hi') def test_freeform_shape(self): x = np.eye(3) x.resize(3, 2, 1) assert_(x.shape == (3, 2, 1)) def test_zeros_appended(self): x = np.eye(3) x.resize(2, 3, 3) assert_array_equal(x[0], np.eye(3)) assert_array_equal(x[1], np.zeros((3, 3))) def test_obj_obj(self): # check memory is initialized on resize, gh-4857 a = np.ones(10, dtype=[('k', object, 2)]) a.resize(15,) assert_equal(a.shape, (15,)) assert_array_equal(a['k'][-5:], 0) assert_array_equal(a['k'][:-5], 1) class TestRecord(TestCase): def test_field_rename(self): dt = np.dtype([('f', float), ('i', int)]) dt.names = ['p', 'q'] assert_equal(dt.names, ['p', 'q']) if sys.version_info[0] >= 3: def test_bytes_fields(self): # Bytes are not allowed in field names and not recognized in titles # on Py3 assert_raises(TypeError, np.dtype, [(asbytes('a'), int)]) assert_raises(TypeError, np.dtype, [(('b', asbytes('a')), int)]) dt = np.dtype([((asbytes('a'), 'b'), int)]) assert_raises(ValueError, dt.__getitem__, asbytes('a')) x = np.array([(1,), (2,), (3,)], dtype=dt) assert_raises(IndexError, x.__getitem__, asbytes('a')) y = x[0] assert_raises(IndexError, y.__getitem__, asbytes('a')) else: def test_unicode_field_titles(self): # Unicode field titles are added to field dict on Py2 title = unicode('b') dt = np.dtype([((title, 'a'), int)]) dt[title] dt['a'] x = np.array([(1,), (2,), (3,)], dtype=dt) x[title] x['a'] y = x[0] y[title] y['a'] def test_unicode_field_names(self): # Unicode field names are not allowed on Py2 title = unicode('b') assert_raises(TypeError, np.dtype, [(title, int)]) assert_raises(TypeError, np.dtype, [(('a', title), int)]) def test_field_names(self): # Test unicode and 8-bit / byte strings can be used a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) is_py3 = sys.version_info[0] >= 3 if is_py3: funcs = (str,) # byte string indexing fails gracefully assert_raises(IndexError, a.__setitem__, asbytes('f1'), 1) assert_raises(IndexError, a.__getitem__, asbytes('f1')) assert_raises(IndexError, a['f1'].__setitem__, asbytes('sf1'), 1) assert_raises(IndexError, a['f1'].__getitem__, asbytes('sf1')) else: funcs = (str, unicode) for func in funcs: b = a.copy() fn1 = func('f1') b[fn1] = 1 assert_equal(b[fn1], 1) fnn = func('not at all') assert_raises(ValueError, b.__setitem__, fnn, 1) assert_raises(ValueError, b.__getitem__, fnn) b[0][fn1] = 2 assert_equal(b[fn1], 2) # Subfield assert_raises(IndexError, b[0].__setitem__, fnn, 1) assert_raises(IndexError, b[0].__getitem__, fnn) # Subfield fn3 = func('f3') sfn1 = func('sf1') b[fn3][sfn1] = 1 assert_equal(b[fn3][sfn1], 1) assert_raises(ValueError, b[fn3].__setitem__, fnn, 1) assert_raises(ValueError, b[fn3].__getitem__, fnn) # multiple Subfields fn2 = func('f2') b[fn2] = 3 assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2)) assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,))) # view of subfield view/copy assert_equal(b[['f1', 'f2']][0].view(('i4', 2)).tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].view(('i4', 2)).tolist(), (3, 2)) view_dtype = [('f1', 'i4'), ('f3', [('', 'i4')])] assert_equal(b[['f1', 'f3']][0].view(view_dtype).tolist(), (2, (1,))) # non-ascii unicode field indexing is well behaved if not is_py3: raise SkipTest('non ascii unicode field indexing skipped; ' 'raises segfault on python 2.x') else: assert_raises(ValueError, a.__setitem__, sixu('\u03e0'), 1) assert_raises(ValueError, a.__getitem__, sixu('\u03e0')) def test_field_names_deprecation(self): def collect_warnings(f, *args, **kwargs): with warnings.catch_warnings(record=True) as log: warnings.simplefilter("always") f(*args, **kwargs) return [w.category for w in log] a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) a['f1'][0] = 1 a['f2'][0] = 2 a['f3'][0] = (3,) b = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) b['f1'][0] = 1 b['f2'][0] = 2 b['f3'][0] = (3,) # All the different functions raise a warning, but not an error, and # 'a' is not modified: assert_equal(collect_warnings(a[['f1', 'f2']].__setitem__, 0, (10, 20)), [FutureWarning]) assert_equal(a, b) # Views also warn subset = a[['f1', 'f2']] subset_view = subset.view() assert_equal(collect_warnings(subset_view['f1'].__setitem__, 0, 10), [FutureWarning]) # But the write goes through: assert_equal(subset['f1'][0], 10) # Only one warning per multiple field indexing, though (even if there # are multiple views involved): assert_equal(collect_warnings(subset['f1'].__setitem__, 0, 10), []) def test_record_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') a.flags.writeable = False b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')]) b.flags.writeable = False c = np.array([(1, 2), (3, 4)], dtype='i1,i2') c.flags.writeable = False self.assertTrue(hash(a[0]) == hash(a[1])) self.assertTrue(hash(a[0]) == hash(b[0])) self.assertTrue(hash(a[0]) != hash(b[1])) self.assertTrue(hash(c[0]) == hash(a[0]) and c[0] == a[0]) def test_record_no_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') self.assertRaises(TypeError, hash, a[0]) def test_empty_structure_creation(self): # make sure these do not raise errors (gh-5631) np.array([()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) class TestView(TestCase): def test_basic(self): x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=[('r', np.int8), ('g', np.int8), ('b', np.int8), ('a', np.int8)]) # We must be specific about the endianness here: y = x.view(dtype='<i4') # ... and again without the keyword. z = x.view('<i4') assert_array_equal(y, z) assert_array_equal(y, [67305985, 134678021]) def _mean(a, **args): return a.mean(**args) def _var(a, **args): return a.var(**args) def _std(a, **args): return a.std(**args) class TestStats(TestCase): funcs = [_mean, _var, _std] def setUp(self): np.random.seed(range(3)) self.rmat = np.random.random((4, 5)) self.cmat = self.rmat + 1j * self.rmat self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat]) self.omat = self.omat.reshape(4, 5) def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1)) def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out) def test_dtype_from_input(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] # object type for f in self.funcs: mat = np.array([[Decimal(1)]*3]*3) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = type(f(mat, axis=None)) assert_(res is Decimal) # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. #for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes['AllFloat']: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt) def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt) def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): A = np.zeros((0, 3)) for f in self.funcs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(A, axis=axis)).all()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(A, axis=axis), np.zeros([])) def test_mean_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt) def test_var_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) def test_std_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: tgt = np.sqrt(_var(mat, axis=axis)) res = _std(mat, axis=axis) assert_almost_equal(res, tgt) def test_subclass(self): class TestArray(np.ndarray): def __new__(cls, data, info): result = np.array(data) result = result.view(cls) result.info = info return result def __array_finalize__(self, obj): self.info = getattr(obj, "info", '') dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') res = dat.mean(1) assert_(res.info == dat.info) res = dat.std(1) assert_(res.info == dat.info) res = dat.var(1) assert_(res.info == dat.info) class TestVdot(TestCase): def test_basic(self): dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger'] dt_complex = np.typecodes['Complex'] # test real a = np.eye(3) for dt in dt_numeric + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test complex a = np.eye(3) * 1j for dt in dt_complex + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test boolean b = np.eye(3, dtype=np.bool) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), True) def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res) class TestDot(TestCase): def setUp(self): np.random.seed(128) self.A = np.random.rand(4, 2) self.b1 = np.random.rand(2, 1) self.b2 = np.random.rand(2) self.b3 = np.random.rand(1, 2) self.b4 = np.random.rand(4) self.N = 7 def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec(self): A, b1 = self.A, self.b1 res = np.dot(A, b1) tgt = np.array([[0.32114320], [0.04889721], [0.15696029], [0.33612621]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec2(self): A, b2 = self.A, self.b2 res = np.dot(A, b2) tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat(self): A, b4 = self.A, self.b4 res = np.dot(b4, A) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat2(self): b3, A = self.b3, self.A res = np.dot(b3, A.transpose()) tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat3(self): A, b4 = self.A, self.b4 res = np.dot(A.transpose(), b4) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecouter(self): b1, b3 = self.b1, self.b3 res = np.dot(b1, b3) tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecinner(self): b1, b3 = self.b1, self.b3 res = np.dot(b3, b1) tgt = np.array([[ 0.23129668]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect1(self): b1 = np.ones((3, 1)) b2 = [5.3] res = np.dot(b1, b2) tgt = np.array([5.3, 5.3, 5.3]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect2(self): b1 = np.ones((3, 1)).transpose() b2 = [6.2] res = np.dot(b2, b1) tgt = np.array([6.2, 6.2, 6.2]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar(self): np.random.seed(100) b1 = np.random.rand(1, 1) b2 = np.random.rand(1, 4) res = np.dot(b1, b2) tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar2(self): np.random.seed(100) b1 = np.random.rand(4, 1) b2 = np.random.rand(1, 1) res = np.dot(b1, b2) tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N) def test_all(self): dims = [(), (1,), (1, 1)] dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): b1 = np.zeros(dim1) b2 = np.zeros(dim2) res = np.dot(b1, b2) tgt = np.zeros(dim) assert_(res.shape == tgt.shape) assert_almost_equal(res, tgt, decimal=self.N) def test_vecobject(self): class Vec(object): def __init__(self, sequence=None): if sequence is None: sequence = [] self.array = np.array(sequence) def __add__(self, other): out = Vec() out.array = self.array + other.array return out def __sub__(self, other): out = Vec() out.array = self.array - other.array return out def __mul__(self, other): # with scalar out = Vec(self.array.copy()) out.array *= other return out def __rmul__(self, other): return self*other U_non_cont = np.transpose([[1., 1.], [1., 2.]]) U_cont = np.ascontiguousarray(U_non_cont) x = np.array([Vec([1., 0.]), Vec([0., 1.])]) zeros = np.array([Vec([0., 0.]), Vec([0., 0.])]) zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x) assert_equal(zeros[0].array, zeros_test[0].array) assert_equal(zeros[1].array, zeros_test[1].array) def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r) def test_dot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.dot(a, a) # integer arrays are exact assert_equal(np.dot(a, b), res) assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) def test_dot_scalar_and_matrix_of_objects(self): # Ticket #2469 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.dot(arr, 3), desired) assert_equal(np.dot(3, arr), desired) def test_dot_override(self): class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_accelerate_framework_sgemv_fix(self): if sys.platform != 'darwin': return def aligned_array(shape, align, dtype, order='C'): d = np.dtype() N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order) def as_aligned(arr, align, dtype, order='C'): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15,32), (10000,), (200,89), ('C','F')) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == 'F': assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired) class MatmulCommon(): """Common tests for '@' operator and numpy.matmul. Do not derive from TestCase to avoid nose running it. """ # Should work with these types. Will want to add # "O" at some point types = "?bhilqBHILQefdgFDG" def test_exceptions(self): dims = [ ((1,), (2,)), # mismatched vector vector ((2, 1,), (2,)), # mismatched matrix vector ((2,), (1, 2)), # mismatched vector matrix ((1, 2), (3, 1)), # mismatched matrix matrix ((1,), ()), # vector scalar ((), (1)), # scalar vector ((1, 1), ()), # matrix scalar ((), (1, 1)), # scalar matrix ((2, 2, 1), (3, 1, 2)), # cannot broadcast ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) assert_raises(ValueError, self.matmul, a, b) def test_shapes(self): dims = [ ((1, 1), (2, 1, 1)), # broadcast first argument ((2, 1, 1), (1, 1)), # broadcast second argument ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) res = self.matmul(a, b) assert_(res.shape == (2, 1, 1)) # vector vector returns scalars. for dt in self.types: a = np.ones((2,), dtype=dt) b = np.ones((2,), dtype=dt) c = self.matmul(a, b) assert_(np.array(c).shape == ()) def test_result_types(self): mat = np.ones((1,1)) vec = np.ones((1,)) for dt in self.types: m = mat.astype(dt) v = vec.astype(dt) for arg in [(m, v), (v, m), (m, m)]: res = self.matmul(*arg) assert_(res.dtype == dt) # vector vector returns scalars res = self.matmul(v, v) assert_(type(res) is np.dtype(dt).type) def test_vector_vector_values(self): vec = np.array([1, 2]) tgt = 5 for dt in self.types[1:]: v1 = vec.astype(dt) res = self.matmul(v1, v1) assert_equal(res, tgt) # boolean type vec = np.array([True, True], dtype='?') res = self.matmul(vec, vec) assert_equal(res, True) def test_vector_matrix_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([7, 10]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(v, m1) assert_equal(res, tgt1) res = self.matmul(v, m2) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_vector_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([5, 11]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(m1, v) assert_equal(res, tgt1) res = self.matmul(m2, v) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_matrix_values(self): mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.array([[1, 0], [1, 1]]) mat12 = np.stack([mat1, mat2], axis=0) mat21 = np.stack([mat2, mat1], axis=0) tgt11 = np.array([[7, 10], [15, 22]]) tgt12 = np.array([[3, 2], [7, 4]]) tgt21 = np.array([[1, 2], [4, 6]]) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) for dt in self.types[1:]: m1 = mat1.astype(dt) m2 = mat2.astype(dt) m12 = mat12.astype(dt) m21 = mat21.astype(dt) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) # boolean type m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_) m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_) m12 = np.stack([m1, m2], axis=0) m21 = np.stack([m2, m1], axis=0) tgt11 = m1 tgt12 = m1 tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) def test_numpy_ufunc_override(self): class A(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A([1, 2]) b = B([1, 2]) c = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") assert_raises(TypeError, self.matmul, b, c) class TestMatmul(MatmulCommon, TestCase): matmul = np.matmul def test_out_arg(self): a = np.ones((2, 2), dtype=np.float) b = np.ones((2, 2), dtype=np.float) tgt = np.full((2,2), 2, dtype=np.float) # test as positional argument msg = "out positional argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out) assert_array_equal(out, tgt, err_msg=msg) # test as keyword argument msg = "out keyword argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out=out) assert_array_equal(out, tgt, err_msg=msg) # test out with not allowed type cast (safe casting) # einsum and cblas raise different error types, so # use Exception. msg = "out argument with illegal cast" out = np.zeros((2, 2), dtype=np.int32) assert_raises(Exception, self.matmul, a, b, out=out) # skip following tests for now, cblas does not allow non-contiguous # outputs and consistency with dot would require same type, # dimensions, subtype, and c_contiguous. # test out with allowed type cast # msg = "out argument with allowed cast" # out = np.zeros((2, 2), dtype=np.complex128) # self.matmul(a, b, out=out) # assert_array_equal(out, tgt, err_msg=msg) # test out non-contiguous # msg = "out argument with non-contiguous layout" # c = np.zeros((2, 2, 2), dtype=np.float) # self.matmul(a, b, out=c[..., 0]) # assert_array_equal(c, tgt, err_msg=msg) if sys.version_info[:2] >= (3, 5): class TestMatmulOperator(MatmulCommon, TestCase): import operator matmul = operator.matmul def test_array_priority_override(self): class A(object): __array_priority__ = 1000 def __matmul__(self, other): return "A" def __rmatmul__(self, other): return "A" a = A() b = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") def test_matmul_inplace(): # It would be nice to support in-place matmul eventually, but for now # we don't have a working implementation, so better just to error out # and nudge people to writing "a = a @ b". a = np.eye(3) b = np.eye(3) assert_raises(TypeError, a.__imatmul__, b) import operator assert_raises(TypeError, operator.imatmul, a, b) # we avoid writing the token `exec` so as not to crash python 2's # parser exec_ = getattr(builtins, "exec") assert_raises(TypeError, exec_, "a @= b", globals(), locals()) class TestInner(TestCase): def test_inner_scalar_and_matrix_of_objects(self): # Ticket #4482 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.inner(arr, 3), desired) assert_equal(np.inner(3, arr), desired) def test_vecself(self): # Ticket 844. # Inner product of a vector with itself segfaults or give # meaningless result a = np.zeros(shape=(1, 80), dtype=np.float64) p = np.inner(a, a) assert_almost_equal(p, 0, decimal=14) class TestSummarization(TestCase): def test_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ..., 998 999 1000]' assert_(str(A) == strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_(repr(A) == reprA) def test_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ..., 498 499 500]\n' \ ' [ 501 502 503 ..., 999 1000 1001]]' assert_(str(A) == strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_(repr(A) == reprA) class TestChoose(TestCase): def setUp(self): self.x = 2*np.ones((3,), dtype=int) self.y = 3*np.ones((3,), dtype=int) self.x2 = 2*np.ones((2, 3), dtype=int) self.y2 = 3*np.ones((2, 3), dtype=int) self.ind = [0, 0, 1] def test_basic(self): A = np.choose(self.ind, (self.x, self.y)) assert_equal(A, [2, 2, 3]) def test_broadcast1(self): A = np.choose(self.ind, (self.x2, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) def test_broadcast2(self): A = np.choose(self.ind, (self.x, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) # TODO: test for multidimensional NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4} class TestNeighborhoodIter(TestCase): # Simple, 2d tests def _test_simple2d(self, dt): # Test zero and one padding for simple data type x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt), np.array([[0, 0, 0], [0, 1, 0]], dtype=dt), np.array([[0, 0, 1], [0, 2, 3]], dtype=dt), np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt), np.array([[1, 1, 1], [0, 1, 1]], dtype=dt), np.array([[1, 0, 1], [1, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt), np.array([[4, 4, 4], [0, 1, 4]], dtype=dt), np.array([[4, 0, 1], [4, 2, 3]], dtype=dt), np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple2d(self): self._test_simple2d(np.float) def test_simple2d_object(self): self._test_simple2d(Decimal) def _test_mirror2d(self, dt): x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt), np.array([[0, 1, 1], [0, 1, 1]], dtype=dt), np.array([[0, 0, 1], [2, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror']) assert_array_equal(l, r) def test_mirror2d(self): self._test_mirror2d(np.float) def test_mirror2d_object(self): self._test_mirror2d(Decimal) # Simple, 1d tests def _test_simple(self, dt): # Test padding with constant values x = np.linspace(1, 5, 5).astype(dt) r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]] l = test_neighborhood_iterator(x, [-1, 1], x[4], NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple_float(self): self._test_simple(np.float) def test_simple_object(self): self._test_simple(Decimal) # Test mirror modes def _test_mirror(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[1], NEIGH_MODE['mirror']) self.assertTrue([i.dtype == dt for i in l]) assert_array_equal(l, r) def test_mirror(self): self._test_mirror(np.float) def test_mirror_object(self): self._test_mirror(Decimal) # Circular mode def _test_circular(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[0], NEIGH_MODE['circular']) assert_array_equal(l, r) def test_circular(self): self._test_circular(np.float) def test_circular_object(self): self._test_circular(Decimal) # Test stacking neighborhood iterators class TestStackedNeighborhoodIter(TestCase): # Simple, 1d test: stacking 2 constant-padded neigh iterators def test_simple_const(self): dt = np.float64 # Test zero and one padding for simple data type x = np.array([1, 2, 3], dtype=dt) r = [np.array([0], dtype=dt), np.array([0], dtype=dt), np.array([1], dtype=dt), np.array([2], dtype=dt), np.array([3], dtype=dt), np.array([0], dtype=dt), np.array([0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([1, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one']) assert_array_equal(l, r) # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # mirror padding def test_simple_mirror(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 1], dtype=dt), np.array([1, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 3], dtype=dt), np.array([3, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # circular padding def test_simple_circular(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 3, 1], dtype=dt), np.array([3, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 1], dtype=dt), np.array([3, 1, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator # being strictly within the array def test_simple_strict_within(self): dt = np.float64 # Stacking zero on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) class TestWarnings(object): def test_complex_warning(self): x = np.array([1, 2]) y = np.array([1-2j, 1+2j]) with warnings.catch_warnings(): warnings.simplefilter("error", np.ComplexWarning) assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y) assert_equal(x, [1, 2]) class TestMinScalarType(object): def test_usigned_shortshort(self): dt = np.min_scalar_type(2**8-1) wanted = np.dtype('uint8') assert_equal(wanted, dt) def test_usigned_short(self): dt = np.min_scalar_type(2**16-1) wanted = np.dtype('uint16') assert_equal(wanted, dt) def test_usigned_int(self): dt = np.min_scalar_type(2**32-1) wanted = np.dtype('uint32') assert_equal(wanted, dt) def test_usigned_longlong(self): dt = np.min_scalar_type(2**63-1) wanted = np.dtype('uint64') assert_equal(wanted, dt) def test_object(self): dt = np.min_scalar_type(2**64) wanted = np.dtype('O') assert_equal(wanted, dt) if sys.version_info[:2] == (2, 6): from numpy.core.multiarray import memorysimpleview as memoryview from numpy.core._internal import _dtype_from_pep3118 class TestPEP3118Dtype(object): def _check(self, spec, wanted): dt = np.dtype(wanted) if isinstance(wanted, list) and isinstance(wanted[-1], tuple): if wanted[-1][0] == '': names = list(dt.names) names[-1] = '' dt.names = tuple(names) assert_equal(_dtype_from_pep3118(spec), dt, err_msg="spec %r != dtype %r" % (spec, wanted)) def test_native_padding(self): align = np.dtype('i').alignment for j in range(8): if j == 0: s = 'bi' else: s = 'b%dxi' % j self._check('@'+s, {'f0': ('i1', 0), 'f1': ('i', align*(1 + j//align))}) self._check('='+s, {'f0': ('i1', 0), 'f1': ('i', 1+j)}) def test_native_padding_2(self): # Native padding should work also for structs and sub-arrays self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)}) self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)}) def test_trailing_padding(self): # Trailing padding should be included, *and*, the item size # should match the alignment if in aligned mode align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('ix', [('f0', 'i'), ('', VV(1))]) self._check('ixx', [('f0', 'i'), ('', VV(2))]) self._check('ixxx', [('f0', 'i'), ('', VV(3))]) self._check('ixxxx', [('f0', 'i'), ('', VV(4))]) self._check('i7x', [('f0', 'i'), ('', VV(7))]) self._check('^ix', [('f0', 'i'), ('', 'V1')]) self._check('^ixx', [('f0', 'i'), ('', 'V2')]) self._check('^ixxx', [('f0', 'i'), ('', 'V3')]) self._check('^ixxxx', [('f0', 'i'), ('', 'V4')]) self._check('^i7x', [('f0', 'i'), ('', 'V7')]) def test_native_padding_3(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt) dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt) def test_padding_with_array_inside_struct(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt) def test_byteorder_inside_struct(self): # The byte order after @T{=i} should be '=', not '@'. # Check this by noting the absence of native alignment. self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0), 'f1': ('i', 5)}) def test_intra_padding(self): # Natively aligned sub-arrays may require some internal padding align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('(3)T{ix}', ({'f0': ('i', 0), '': (VV(1), 4)}, (3,))) class TestNewBufferProtocol(object): def _check_roundtrip(self, obj): obj = np.asarray(obj) x = memoryview(obj) y = np.asarray(x) y2 = np.array(x) assert_(not y.flags.owndata) assert_(y2.flags.owndata) assert_equal(y.dtype, obj.dtype) assert_equal(y.shape, obj.shape) assert_array_equal(obj, y) assert_equal(y2.dtype, obj.dtype) assert_equal(y2.shape, obj.shape) assert_array_equal(obj, y2) def test_roundtrip(self): x = np.array([1, 2, 3, 4, 5], dtype='i4') self._check_roundtrip(x) x = np.array([[1, 2], [3, 4]], dtype=np.float64) self._check_roundtrip(x) x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] self._check_roundtrip(x) dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes('xxx'), True, 1.0)], dtype=dt) self._check_roundtrip(x) x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))]) self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i4') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i4') self._check_roundtrip(x) # check long long can be represented as non-native x = np.array([1, 2, 3], dtype='>q') self._check_roundtrip(x) # Native-only data types can be passed through the buffer interface # only in native byte order if sys.byteorder == 'little': x = np.array([1, 2, 3], dtype='>g') assert_raises(ValueError, self._check_roundtrip, x) x = np.array([1, 2, 3], dtype='<g') self._check_roundtrip(x) else: x = np.array([1, 2, 3], dtype='>g') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<g') assert_raises(ValueError, self._check_roundtrip, x) def test_roundtrip_half(self): half_list = [ 1.0, -2.0, 6.5504 * 10**4, # (max half precision) 2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal) 2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal) 0.0, -0.0, float('+inf'), float('-inf'), 0.333251953125, # ~= 1/3 ] x = np.array(half_list, dtype='>e') self._check_roundtrip(x) x = np.array(half_list, dtype='<e') self._check_roundtrip(x) def test_roundtrip_single_types(self): for typ in np.typeDict.values(): dtype = np.dtype(typ) if dtype.char in 'Mm': # datetimes cannot be used in buffers continue if dtype.char == 'V': # skip void continue x = np.zeros(4, dtype=dtype) self._check_roundtrip(x) if dtype.char not in 'qQgG': dt = dtype.newbyteorder('<') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) dt = dtype.newbyteorder('>') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) def test_roundtrip_scalar(self): # Issue #4015. self._check_roundtrip(0) def test_export_simple_1d(self): x = np.array([1, 2, 3, 4, 5], dtype='i') y = memoryview(x) assert_equal(y.format, 'i') assert_equal(y.shape, (5,)) assert_equal(y.ndim, 1) assert_equal(y.strides, (4,)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_simple_nd(self): x = np.array([[1, 2], [3, 4]], dtype=np.float64) y = memoryview(x) assert_equal(y.format, 'd') assert_equal(y.shape, (2, 2)) assert_equal(y.ndim, 2) assert_equal(y.strides, (16, 8)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 8) def test_export_discontiguous(self): x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] y = memoryview(x) assert_equal(y.format, 'f') assert_equal(y.shape, (3, 3)) assert_equal(y.ndim, 2) assert_equal(y.strides, (36, 4)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_record(self): dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes(' '), True, 1.0)], dtype=dt) y = memoryview(x) assert_equal(y.shape, (1,)) assert_equal(y.ndim, 1) assert_equal(y.suboffsets, EMPTY) sz = sum([np.dtype(b).itemsize for a, b in dt]) if np.dtype('l').itemsize == 4: assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') else: assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') # Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides if not (np.ones(1).strides[0] == np.iinfo(np.intp).max): assert_equal(y.strides, (sz,)) assert_equal(y.itemsize, sz) def test_export_subarray(self): x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))]) y = memoryview(x) assert_equal(y.format, 'T{(2,2)i:a:}') assert_equal(y.shape, EMPTY) assert_equal(y.ndim, 0) assert_equal(y.strides, EMPTY) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 16) def test_export_endian(self): x = np.array([1, 2, 3], dtype='>i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, '>i') else: assert_equal(y.format, 'i') x = np.array([1, 2, 3], dtype='<i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, 'i') else: assert_equal(y.format, '<i') def test_export_flags(self): # Check SIMPLE flag, see also gh-3613 (exception should be BufferError) assert_raises(ValueError, get_buffer_info, np.arange(5)[::2], ('SIMPLE',)) def test_padding(self): for j in range(8): x = np.array([(1,), (2,)], dtype={'f0': (int, j)}) self._check_roundtrip(x) def test_reference_leak(self): count_1 = sys.getrefcount(np.core._internal) a = np.zeros(4) b = memoryview(a) c = np.asarray(b) count_2 = sys.getrefcount(np.core._internal) assert_equal(count_1, count_2) del c # avoid pyflakes unused variable warning. def test_padded_struct_array(self): dt1 = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1) self._check_roundtrip(x1) dt2 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2) self._check_roundtrip(x2) dt3 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3) self._check_roundtrip(x3) def test_relaxed_strides(self): # Test that relaxed strides are converted to non-relaxed c = np.ones((1, 10, 10), dtype='i8') # Check for NPY_RELAXED_STRIDES_CHECKING: if np.ones((10, 1), order="C").flags.f_contiguous: c.strides = (-1, 80, 8) assert memoryview(c).strides == (800, 80, 8) # Writing C-contiguous data to a BytesIO buffer should work fd = io.BytesIO() fd.write(c.data) fortran = c.T assert memoryview(fortran).strides == (8, 80, 800) arr = np.ones((1, 10)) if arr.flags.f_contiguous: shape, strides = get_buffer_info(arr, ['F_CONTIGUOUS']) assert_(strides[0] == 8) arr = np.ones((10, 1), order='F') shape, strides = get_buffer_info(arr, ['C_CONTIGUOUS']) assert_(strides[-1] == 8) class TestArrayAttributeDeletion(object): def test_multiarray_writable_attributes_deletion(self): """ticket #2046, should not seqfault, raise AttributeError""" a = np.ones(2) attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_not_writable_attributes_deletion(self): a = np.ones(2) attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base", "ctypes", "T", "__array_interface__", "__array_struct__", "__array_priority__", "__array_finalize__"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_writable_attribute_deletion(self): a = np.ones(2).flags attr = ['updateifcopy', 'aligned', 'writeable'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_not_writable_attribute_deletion(self): a = np.ones(2).flags attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran", "owndata", "fnc", "forc", "behaved", "carray", "farray", "num"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_array_interface(): # Test scalar coercion within the array interface class Foo(object): def __init__(self, value): self.value = value self.iface = {'typestr': '=f8'} def __float__(self): return float(self.value) @property def __array_interface__(self): return self.iface f = Foo(0.5) assert_equal(np.array(f), 0.5) assert_equal(np.array([f]), [0.5]) assert_equal(np.array([f, f]), [0.5, 0.5]) assert_equal(np.array(f).dtype, np.dtype('=f8')) # Test various shape definitions f.iface['shape'] = () assert_equal(np.array(f), 0.5) f.iface['shape'] = None assert_raises(TypeError, np.array, f) f.iface['shape'] = (1, 1) assert_equal(np.array(f), [[0.5]]) f.iface['shape'] = (2,) assert_raises(ValueError, np.array, f) # test scalar with no shape class ArrayLike(object): array = np.array(1) __array_interface__ = array.__array_interface__ assert_equal(np.array(ArrayLike()), 1) def test_flat_element_deletion(): it = np.ones(3).flat try: del it[1] del it[1:2] except TypeError: pass except: raise AssertionError def test_scalar_element_deletion(): a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')]) assert_raises(ValueError, a[0].__delitem__, 'x') class TestMemEventHook(TestCase): def test_mem_seteventhook(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src test_pydatamem_seteventhook_start() # force an allocation and free of a numpy array # needs to be larger then limit of small memory cacher in ctors.c a = np.zeros(1000) del a test_pydatamem_seteventhook_end() class TestMapIter(TestCase): def test_mapiter(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src a = np.arange(12).reshape((3, 4)).astype(float) index = ([1, 1, 2, 0], [0, 0, 2, 3]) vals = [50, 50, 30, 16] test_inplace_increment(a, index, vals) assert_equal(a, [[0.00, 1., 2.0, 19.], [104., 5., 6.0, 7.0], [8.00, 9., 40., 11.]]) b = np.arange(6).astype(float) index = (np.array([1, 2, 0]),) vals = [50, 4, 100.1] test_inplace_increment(b, index, vals) assert_equal(b, [100.1, 51., 6., 3., 4., 5.]) class TestAsCArray(TestCase): def test_1darray(self): array = np.arange(24, dtype=np.double) from_c = test_as_c_array(array, 3) assert_equal(array[3], from_c) def test_2darray(self): array = np.arange(24, dtype=np.double).reshape(3, 8) from_c = test_as_c_array(array, 2, 4) assert_equal(array[2, 4], from_c) def test_3darray(self): array = np.arange(24, dtype=np.double).reshape(2, 3, 4) from_c = test_as_c_array(array, 1, 2, 3) assert_equal(array[1, 2, 3], from_c) class TestConversion(TestCase): def test_array_scalar_relational_operation(self): #All integer for dt1 in np.typecodes['AllInteger']: assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in np.typecodes['AllInteger']: assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Unsigned integers for dt1 in 'BHILQP': assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,)) #unsigned vs signed for dt2 in 'bhilqp': assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Signed integers and floats for dt1 in 'bhlqp' + np.typecodes['Float']: assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in 'bhlqp' + np.typecodes['Float']: assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) class TestWhere(TestCase): def test_basic(self): dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128, np.longdouble, np.clongdouble] for dt in dts: c = np.ones(53, dtype=np.bool) assert_equal(np.where( c, dt(0), dt(1)), dt(0)) assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) assert_equal(np.where(True, dt(0), dt(1)), dt(0)) assert_equal(np.where(False, dt(0), dt(1)), dt(1)) d = np.ones_like(c).astype(dt) e = np.zeros_like(d) r = d.astype(dt) c[7] = False r[7] = e[7] assert_equal(np.where(c, e, e), e) assert_equal(np.where(c, d, e), r) assert_equal(np.where(c, d, e[0]), r) assert_equal(np.where(c, d[0], e), r) assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) def test_exotic(self): # object assert_array_equal(np.where(True, None, None), np.array(None)) # zero sized m = np.array([], dtype=bool).reshape(0, 3) b = np.array([], dtype=np.float64).reshape(0, 3) assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3)) # object cast d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313, 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013, 1.267, 0.229, -1.39, 0.487]) nan = float('NaN') e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan, 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'], dtype=object) m = np.array([0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0], dtype=bool) r = e[:] r[np.where(m)] = d[np.where(m)] assert_array_equal(np.where(m, d, e), r) r = e[:] r[np.where(~m)] = d[np.where(~m)] assert_array_equal(np.where(m, e, d), r) assert_array_equal(np.where(m, e, e), e) # minimal dtype result with NaN scalar (e.g required by pandas) d = np.array([1., 2.], dtype=np.float32) e = float('NaN') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('-Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) # also check upcast e = float(1e150) assert_equal(np.where(True, d, e).dtype, np.float64) def test_ndim(self): c = [True, False] a = np.zeros((2, 25)) b = np.ones((2, 25)) r = np.where(np.array(c)[:,np.newaxis], a, b) assert_array_equal(r[0], a[0]) assert_array_equal(r[1], b[0]) a = a.T b = b.T r = np.where(c, a, b) assert_array_equal(r[:,0], a[:,0]) assert_array_equal(r[:,1], b[:,0]) def test_dtype_mix(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) a = np.uint32(1) b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) a = a.astype(np.float32) b = b.astype(np.int64) assert_equal(np.where(c, a, b), r) # non bool mask c = c.astype(np.int) c[c != 0] = 34242324 assert_equal(np.where(c, a, b), r) # invert tmpmask = c != 0 c[c == 0] = 41247212 c[tmpmask] = 0 assert_equal(np.where(c, b, a), r) def test_foreign(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) a = np.ones(1, dtype='>i4') b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) b = b.astype('>f8') assert_equal(np.where(c, a, b), r) a = a.astype('<i4') assert_equal(np.where(c, a, b), r) c = c.astype('>i4') assert_equal(np.where(c, a, b), r) def test_error(self): c = [True, True] a = np.ones((4, 5)) b = np.ones((5, 5)) assert_raises(ValueError, np.where, c, a, a) assert_raises(ValueError, np.where, c[0], a, b) def test_string(self): # gh-4778 check strings are properly filled with nulls a = np.array("abc") b = np.array("x" * 753) assert_equal(np.where(True, a, b), "abc") assert_equal(np.where(False, b, a), "abc") # check native datatype sized strings a = np.array("abcd") b = np.array("x" * 8) assert_equal(np.where(True, a, b), "abcd") assert_equal(np.where(False, b, a), "abcd") class TestSizeOf(TestCase): def test_empty_array(self): x = np.array([]) assert_(sys.getsizeof(x) > 0) def check_array(self, dtype): elem_size = dtype(0).itemsize for length in [10, 50, 100, 500]: x = np.arange(length, dtype=dtype) assert_(sys.getsizeof(x) > length * elem_size) def test_array_int32(self): self.check_array(np.int32) def test_array_int64(self): self.check_array(np.int64) def test_array_float32(self): self.check_array(np.float32) def test_array_float64(self): self.check_array(np.float64) def test_view(self): d = np.ones(100) assert_(sys.getsizeof(d[...]) < sys.getsizeof(d)) def test_reshape(self): d = np.ones(100) assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy())) def test_resize(self): d = np.ones(100) old = sys.getsizeof(d) d.resize(50) assert_(old > sys.getsizeof(d)) d.resize(150) assert_(old < sys.getsizeof(d)) def test_error(self): d = np.ones(100) assert_raises(TypeError, d.__sizeof__, "a") class TestHashing(TestCase): def test_collections_hashable(self): x = np.array([]) self.assertFalse(isinstance(x, collections.Hashable)) from numpy.core._internal import _view_is_safe class TestObjViewSafetyFuncs(TestCase): def test_view_safety(self): psize = np.dtype('p').itemsize # creates dtype but with extra character code - for missing 'p' fields def mtype(s): n, offset, fields = 0, 0, [] for c in s.split(','): # subarrays won't work if c != '-': fields.append(('f{0}'.format(n), c, offset)) n += 1 offset += np.dtype(c).itemsize if c != '-' else psize names, formats, offsets = zip(*fields) return np.dtype({'names': names, 'formats': formats, 'offsets': offsets, 'itemsize': offset}) # test nonequal itemsizes with objects: # these should succeed: _view_is_safe(np.dtype('O,p,O,p'), np.dtype('O,p,O,p,O,p')) _view_is_safe(np.dtype('O,O'), np.dtype('O,O,O')) # these should fail: assert_raises(TypeError, _view_is_safe, np.dtype('O,O,p'), np.dtype('O,O')) assert_raises(TypeError, _view_is_safe, np.dtype('O,O,p'), np.dtype('O,p')) assert_raises(TypeError, _view_is_safe, np.dtype('O,O,p'), np.dtype('p,O')) # test nonequal itemsizes with missing fields: # these should succeed: _view_is_safe(mtype('-,p,-,p'), mtype('-,p,-,p,-,p')) _view_is_safe(np.dtype('p,p'), np.dtype('p,p,p')) # these should fail: assert_raises(TypeError, _view_is_safe, mtype('p,p,-'), mtype('p,p')) assert_raises(TypeError, _view_is_safe, mtype('p,p,-'), mtype('p,-')) assert_raises(TypeError, _view_is_safe, mtype('p,p,-'), mtype('-,p')) # scans through positions at which we can view a type def scanView(d1, otype): goodpos = [] for shift in range(d1.itemsize - np.dtype(otype).itemsize+1): d2 = np.dtype({'names': ['f0'], 'formats': [otype], 'offsets': [shift], 'itemsize': d1.itemsize}) try: _view_is_safe(d1, d2) except TypeError: pass else: goodpos.append(shift) return goodpos # test partial overlap with object field assert_equal(scanView(np.dtype('p,O,p,p,O,O'), 'p'), [0] + list(range(2*psize, 3*psize+1))) assert_equal(scanView(np.dtype('p,O,p,p,O,O'), 'O'), [psize, 4*psize, 5*psize]) # test partial overlap with missing field assert_equal(scanView(mtype('p,-,p,p,-,-'), 'p'), [0] + list(range(2*psize, 3*psize+1))) # test nested structures with objects: nestedO = np.dtype([('f0', 'p'), ('f1', 'p,O,p')]) assert_equal(scanView(nestedO, 'p'), list(range(psize+1)) + [3*psize]) assert_equal(scanView(nestedO, 'O'), [2*psize]) # test nested structures with missing fields: nestedM = np.dtype([('f0', 'p'), ('f1', mtype('p,-,p'))]) assert_equal(scanView(nestedM, 'p'), list(range(psize+1)) + [3*psize]) # test subarrays with objects subarrayO = np.dtype('p,(2,3)O,p') assert_equal(scanView(subarrayO, 'p'), [0, 7*psize]) assert_equal(scanView(subarrayO, 'O'), list(range(psize, 6*psize+1, psize))) #test dtype with overlapping fields overlapped = np.dtype({'names': ['f0', 'f1', 'f2', 'f3'], 'formats': ['p', 'p', 'p', 'p'], 'offsets': [0, 1, 3*psize-1, 3*psize], 'itemsize': 4*psize}) assert_equal(scanView(overlapped, 'p'), [0, 1, 3*psize-1, 3*psize]) class TestArrayPriority(TestCase): # This will go away when __array_priority__ is settled, meanwhile # it serves to check unintended changes. op = operator binary_ops = [ op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod, op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt, op.ge, op.lt, op.le, op.ne, op.eq ] if sys.version_info[0] < 3: binary_ops.append(op.div) class Foo(np.ndarray): __array_priority__ = 100. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Bar(np.ndarray): __array_priority__ = 101. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Other(object): __array_priority__ = 1000. def _all(self, other): return self.__class__() __add__ = __radd__ = _all __sub__ = __rsub__ = _all __mul__ = __rmul__ = _all __pow__ = __rpow__ = _all __div__ = __rdiv__ = _all __mod__ = __rmod__ = _all __truediv__ = __rtruediv__ = _all __floordiv__ = __rfloordiv__ = _all __and__ = __rand__ = _all __xor__ = __rxor__ = _all __or__ = __ror__ = _all __lshift__ = __rlshift__ = _all __rshift__ = __rrshift__ = _all __eq__ = _all __ne__ = _all __gt__ = _all __ge__ = _all __lt__ = _all __le__ = _all def test_ndarray_subclass(self): a = np.array([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_ndarray_other(self): a = np.array([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) def test_subclass_subclass(self): a = self.Foo([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_subclass_other(self): a = self.Foo([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) class TestBytestringArrayNonzero(TestCase): def test_empty_bstring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.str)) def test_whitespace_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_bstring_array_is_truthy(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0 \0' self.assertTrue(a) class TestUnicodeArrayNonzero(TestCase): def test_empty_ustring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.unicode)) def test_whitespace_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_ustring_array_is_truthy(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0 \0' self.assertTrue(a) if __name__ == "__main__": run_module_suite()
bsd-3-clause
sniemi/SamPy
sandbox/src1/examples/colours.py
1
1307
#!/usr/bin/env python """ Some simple functions to generate colours. """ import numpy as npy from matplotlib.colors import colorConverter def pastel(colour, weight=2.4): """ Convert colour into a nice pastel shade""" rgb = npy.asarray(colorConverter.to_rgb(colour)) # scale colour maxc = max(rgb) if maxc < 1.0 and maxc > 0: # scale colour scale = 1.0 / maxc rgb = rgb * scale # now decrease saturation total = rgb.sum() slack = 0 for x in rgb: slack += 1.0 - x # want to increase weight from total to weight # pick x s.t. slack * x == weight - total # x = (weight - total) / slack x = (weight - total) / slack rgb = [c + (x * (1.0-c)) for c in rgb] return rgb def get_colours(n): """ Return n pastel colours. """ base = npy.asarray([[1,0,0], [0,1,0], [0,0,1]]) if n <= 3: return base[0:n] # how many new colours to we need to insert between # red and green and between green and blue? needed = (((n - 3) + 1) / 2, (n - 3) / 2) colours = [] for start in (0, 1): for x in npy.linspace(0, 1, needed[start]+2): colours.append((base[start] * (1.0 - x)) + (base[start+1] * x)) return [pastel(c) for c in colours[0:n]]
bsd-2-clause
chipmuenk/A2SRC
A2SRC/ui_bak/guiA2SRC.py
1
10143
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'guiA2SRC.ui' # # Created: Mon Jan 05 18:49:38 2015 # by: PyQt4 UI code generator 4.9.6 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Dialog")) Dialog.resize(733, 779) self.matplotlibwidget = MatplotlibWidget(Dialog) self.matplotlibwidget.setGeometry(QtCore.QRect(320, 40, 400, 300)) self.matplotlibwidget.setObjectName(_fromUtf8("matplotlibwidget")) self.verticalLayoutWidget = QtGui.QWidget(Dialog) self.verticalLayoutWidget.setGeometry(QtCore.QRect(30, 30, 271, 329)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setMargin(0) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.labelModulation = QtGui.QLabel(self.verticalLayoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.labelModulation.sizePolicy().hasHeightForWidth()) self.labelModulation.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(10) font.setBold(True) font.setWeight(75) self.labelModulation.setFont(font) self.labelModulation.setObjectName(_fromUtf8("labelModulation")) self.verticalLayout.addWidget(self.labelModulation) self.comboBoxModulationType = QtGui.QComboBox(self.verticalLayoutWidget) self.comboBoxModulationType.setEditable(False) self.comboBoxModulationType.setObjectName(_fromUtf8("comboBoxModulationType")) self.comboBoxModulationType.addItem(_fromUtf8("")) self.comboBoxModulationType.addItem(_fromUtf8("")) self.comboBoxModulationType.addItem(_fromUtf8("")) self.comboBoxModulationType.addItem(_fromUtf8("")) self.comboBoxModulationType.addItem(_fromUtf8("")) self.verticalLayout.addWidget(self.comboBoxModulationType) self.comboBoxModulationPhase = QtGui.QComboBox(self.verticalLayoutWidget) self.comboBoxModulationPhase.setObjectName(_fromUtf8("comboBoxModulationPhase")) self.comboBoxModulationPhase.addItem(_fromUtf8("")) self.comboBoxModulationPhase.addItem(_fromUtf8("")) self.verticalLayout.addWidget(self.comboBoxModulationPhase) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.lineEditModulationFreq = QtGui.QLineEdit(self.verticalLayoutWidget) self.lineEditModulationFreq.setObjectName(_fromUtf8("lineEditModulationFreq")) self.horizontalLayout.addWidget(self.lineEditModulationFreq) self.labelModulationFreq = QtGui.QLabel(self.verticalLayoutWidget) self.labelModulationFreq.setObjectName(_fromUtf8("labelModulationFreq")) self.horizontalLayout.addWidget(self.labelModulationFreq) self.verticalLayout.addLayout(self.horizontalLayout) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.lineEditModulationAmp = QtGui.QLineEdit(self.verticalLayoutWidget) self.lineEditModulationAmp.setObjectName(_fromUtf8("lineEditModulationAmp")) self.horizontalLayout_2.addWidget(self.lineEditModulationAmp) self.labelModulationAmp = QtGui.QLabel(self.verticalLayoutWidget) self.labelModulationAmp.setObjectName(_fromUtf8("labelModulationAmp")) self.horizontalLayout_2.addWidget(self.labelModulationAmp) self.verticalLayout.addLayout(self.horizontalLayout_2) spacerItem = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.verticalLayout.addItem(spacerItem) self.verticalLayout_2 = QtGui.QVBoxLayout() self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.labelSynth = QtGui.QLabel(self.verticalLayoutWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.labelSynth.sizePolicy().hasHeightForWidth()) self.labelSynth.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(10) font.setBold(True) font.setWeight(75) self.labelSynth.setFont(font) self.labelSynth.setObjectName(_fromUtf8("labelSynth")) self.verticalLayout_2.addWidget(self.labelSynth) self.comboBoxSynthType = QtGui.QComboBox(self.verticalLayoutWidget) self.comboBoxSynthType.setEditable(False) self.comboBoxSynthType.setObjectName(_fromUtf8("comboBoxSynthType")) self.comboBoxSynthType.addItem(_fromUtf8("")) self.comboBoxSynthType.addItem(_fromUtf8("")) self.comboBoxSynthType.addItem(_fromUtf8("")) self.comboBoxSynthType.addItem(_fromUtf8("")) self.comboBoxSynthType.addItem(_fromUtf8("")) self.verticalLayout_2.addWidget(self.comboBoxSynthType) self.horizontalLayout_3 = QtGui.QHBoxLayout() self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) self.lineEditSynthFreq = QtGui.QLineEdit(self.verticalLayoutWidget) self.lineEditSynthFreq.setObjectName(_fromUtf8("lineEditSynthFreq")) self.horizontalLayout_3.addWidget(self.lineEditSynthFreq) self.labelSynthFreq = QtGui.QLabel(self.verticalLayoutWidget) self.labelSynthFreq.setObjectName(_fromUtf8("labelSynthFreq")) self.horizontalLayout_3.addWidget(self.labelSynthFreq) self.verticalLayout_2.addLayout(self.horizontalLayout_3) self.horizontalLayout_4 = QtGui.QHBoxLayout() self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) self.lineEditSynthAmp = QtGui.QLineEdit(self.verticalLayoutWidget) self.lineEditSynthAmp.setObjectName(_fromUtf8("lineEditSynthAmp")) self.horizontalLayout_4.addWidget(self.lineEditSynthAmp) self.labelSynthAmp = QtGui.QLabel(self.verticalLayoutWidget) self.labelSynthAmp.setObjectName(_fromUtf8("labelSynthAmp")) self.horizontalLayout_4.addWidget(self.labelSynthAmp) self.verticalLayout_2.addLayout(self.horizontalLayout_4) spacerItem1 = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.verticalLayout_2.addItem(spacerItem1) self.horizontalLayout_5 = QtGui.QHBoxLayout() self.horizontalLayout_5.setObjectName(_fromUtf8("horizontalLayout_5")) self.pushButton_2 = QtGui.QPushButton(self.verticalLayoutWidget) self.pushButton_2.setObjectName(_fromUtf8("pushButton_2")) self.horizontalLayout_5.addWidget(self.pushButton_2) self.pushButton = QtGui.QPushButton(self.verticalLayoutWidget) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.horizontalLayout_5.addWidget(self.pushButton) self.verticalLayout_2.addLayout(self.horizontalLayout_5) self.verticalLayout.addLayout(self.verticalLayout_2) self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "Dialog", None)) self.labelModulation.setText(_translate("Dialog", "Jitter Modulation", None)) self.comboBoxModulationType.setItemText(0, _translate("Dialog", "None", None)) self.comboBoxModulationType.setItemText(1, _translate("Dialog", "Sinusoidal", None)) self.comboBoxModulationType.setItemText(2, _translate("Dialog", "Triangular", None)) self.comboBoxModulationType.setItemText(3, _translate("Dialog", "Rectangular", None)) self.comboBoxModulationType.setItemText(4, _translate("Dialog", "Random", None)) self.comboBoxModulationPhase.setItemText(0, _translate("Dialog", "R / L In-Phase Mod.", None)) self.comboBoxModulationPhase.setItemText(1, _translate("Dialog", "R / L Counter-Phase Mod.", None)) self.lineEditModulationFreq.setText(_translate("Dialog", "50", None)) self.labelModulationFreq.setText(_translate("Dialog", " Hz", None)) self.lineEditModulationAmp.setText(_translate("Dialog", "1e-3", None)) self.labelModulationAmp.setText(_translate("Dialog", " UI", None)) self.labelSynth.setText(_translate("Dialog", "Synthetic Signal", None)) self.comboBoxSynthType.setItemText(0, _translate("Dialog", "None, use WAV-File", None)) self.comboBoxSynthType.setItemText(1, _translate("Dialog", "Sinusoidal", None)) self.comboBoxSynthType.setItemText(2, _translate("Dialog", "Triangular", None)) self.comboBoxSynthType.setItemText(3, _translate("Dialog", "Rectangular", None)) self.comboBoxSynthType.setItemText(4, _translate("Dialog", "Random", None)) self.lineEditSynthFreq.setText(_translate("Dialog", "1000", None)) self.labelSynthFreq.setText(_translate("Dialog", " Hz", None)) self.lineEditSynthAmp.setText(_translate("Dialog", "50", None)) self.labelSynthAmp.setText(_translate("Dialog", "% FS", None)) self.pushButton_2.setText(_translate("Dialog", "Open File", None)) self.pushButton.setText(_translate("Dialog", "Start / Stop", None)) from matplotlibwidget import MatplotlibWidget
apache-2.0
garaud/ezhc
ezhc/series.py
2
3823
import pandas as pd def series(df, options, *args, **kwargs): idx = df.index col = df.columns data = df.values assert(isinstance(idx, pd.core.index.Index)) series = [] for k, c in enumerate(col): if df[c].dtype.kind in 'fib': v = data[:, k] sec = c in kwargs.get('secondary_y', []) d = { 'name': c if not sec else c + ' (right)', 'yAxis': int(sec), 'data': [[idx[q], v[q]] for q in range(len(v))], } if c in kwargs.get('color', []): d['color'] = kwargs['color'].get(c) if kwargs.get('dashStyle', []): d['dashStyle'] = kwargs['dashStyle'].get(c, 'Solid') series.append(d) return series def series_drilldown(df, options, *args, **kwargs): idx = df.index col = df.columns assert(isinstance(idx, pd.core.index.MultiIndex)) assert(len(idx.levshape)==2) assert(len(col)==1) assert(df[col[0]].dtype.kind in 'if') levone = list(idx.levels[0]) data = [] drilldownSeries = [] for c in levone: dfs = df.xs(c) ii = dfs.index.values.flatten() vv = dfs.values.flatten() d1 = { 'name': c, 'y': dfs.sum().values[0], 'drilldown': c if len(dfs)>1 else None, } data.append(d1) if len(dfs)>1: d2 = { 'name': c, 'data': [[str(ii[q]), vv[q]] for q in range(len(ii))], 'id': c, } drilldownSeries.append(d2) series = [{'name': col[0],'data': data, 'colorByPoint': True}] return series, drilldownSeries def series_scatter(df, options, *args, **kwargs): idx = df.index col = df.columns assert(isinstance(idx, pd.core.index.MultiIndex)) assert(len(idx.levshape)==2) assert(len(col)==1) assert(df[col[0]].dtype.kind in 'iO') data = df.values.flatten() elmt = list(set(data)) color = kwargs.get('color', {}) series = [] for e in elmt: dfs = df[df.iloc[:, 0]==e] idx = dfs.index series.append({'animation': False, 'name': e, 'color': color.get(e, None), 'data': [[idx[k][0], idx[k][1]] for k in range(len(dfs))], }) return series def series_bubble(df, options, *args, **kwargs): idx = df.index col = df.columns assert(isinstance(idx, pd.core.index.MultiIndex)) assert(len(idx.levshape)==3) assert(len(col)==1) assert(df[col[0]].dtype.kind in 'fib') names = list(idx.levels[0]) color = kwargs.get('color', {}) series = [] for s in names: dfs = df.xs(s) v = dfs.values.flatten() idxs = dfs.index d = { 'name': s, 'data': [[idxs[q][0], idxs[q][1], v[q]] for q in range(len(v))], } if s in kwargs.get('color', []): d['color'] = kwargs['color'].get(s) series.append(d) return series def series_treemap(df, options, *args, **kwargs): idx = df.index col = df.columns assert(isinstance(idx, pd.core.index.MultiIndex)) assert(df[col[0]].dtype.kind in 'fi') data = df.values elmt = list(set(data)) color = kwargs.get('color', {}) series = [] for e in elmt: dfs = df[df.iloc[:, 0]==e] idx = dfs.index series.append({'animation': False, 'name': e, 'color': color.get(e, None), 'data': [[idx[k][0], idx[k][1]] for k in range(len(dfs))], }) return series
mit
lin-credible/scikit-learn
examples/plot_johnson_lindenstrauss_bound.py
134
7452
""" ===================================================================== The Johnson-Lindenstrauss bound for embedding with random projections ===================================================================== The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly projected into a lower dimensional Euclidean space while controlling the distortion in the pairwise distances. .. _`Johnson-Lindenstrauss lemma`: http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma Theoretical bounds ================== The distortion introduced by a random projection `p` is asserted by the fact that `p` is defining an eps-embedding with good probability as defined by: (1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantees the eps-embedding is given by: n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3) The first plot shows that with an increasing number of samples ``n_samples``, the minimal number of dimensions ``n_components`` increased logarithmically in order to guarantee an ``eps``-embedding. The second plot shows that an increase of the admissible distortion ``eps`` allows to reduce drastically the minimal number of dimensions ``n_components`` for a given number of samples ``n_samples`` Empirical validation ==================== We validate the above bounds on the the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies) dataset: - for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected to spaces for various larger number of dimensions ``n_components``. - for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions ``n_components``. The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the --twenty-newsgroups command line argument to this script. For each value of ``n_components``, we plot: - 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respectively. - 1D histogram of the ratio of those distances (projected / original). We can see that for low values of ``n_components`` the distribution is wide with many distorted pairs and a skewed distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of n_components the distortion is controlled and the distances are well preserved by the random projection. Remarks ======= According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands dimensions, irrespective of the number of features of the original dataset. Hence using random projections on the digits dataset which only has 64 features in the input space does not make sense: it does not allow for dimensionality reduction in this case. On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while reasonably preserving pairwise distances. """ print(__doc__) import sys from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import SparseRandomProjection from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import load_digits from sklearn.metrics.pairwise import euclidean_distances # Part 1: plot the theoretical dependency between n_components_min and # n_samples # range of admissible distortions eps_range = np.linspace(0.1, 0.99, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range))) # range of number of samples (observation) to embed n_samples_range = np.logspace(1, 9, 9) plt.figure() for eps, color in zip(eps_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps) plt.loglog(n_samples_range, min_n_components, color=color) plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right") plt.xlabel("Number of observations to eps-embed") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components") # range of admissible distortions eps_range = np.linspace(0.01, 0.99, 100) # range of number of samples (observation) to embed n_samples_range = np.logspace(2, 6, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range))) plt.figure() for n_samples, color in zip(n_samples_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range) plt.semilogy(eps_range, min_n_components, color=color) plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right") plt.xlabel("Distortion eps") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps") # Part 2: perform sparse random projection of some digits images which are # quite low dimensional and dense or documents of the 20 newsgroups dataset # which is both high dimensional and sparse if '--twenty-newsgroups' in sys.argv: # Need an internet connection hence not enabled by default data = fetch_20newsgroups_vectorized().data[:500] else: data = load_digits().data[:500] n_samples, n_features = data.shape print("Embedding %d samples with dim %d using various random projections" % (n_samples, n_features)) n_components_range = np.array([300, 1000, 10000]) dists = euclidean_distances(data, squared=True).ravel() # select only non-identical samples pairs nonzero = dists != 0 dists = dists[nonzero] for n_components in n_components_range: t0 = time() rp = SparseRandomProjection(n_components=n_components) projected_data = rp.fit_transform(data) print("Projected %d samples from %d to %d in %0.3fs" % (n_samples, n_features, n_components, time() - t0)) if hasattr(rp, 'components_'): n_bytes = rp.components_.data.nbytes n_bytes += rp.components_.indices.nbytes print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6)) projected_dists = euclidean_distances( projected_data, squared=True).ravel()[nonzero] plt.figure() plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu) plt.xlabel("Pairwise squared distances in original space") plt.ylabel("Pairwise squared distances in projected space") plt.title("Pairwise distances distribution for n_components=%d" % n_components) cb = plt.colorbar() cb.set_label('Sample pairs counts') rates = projected_dists / dists print("Mean distances rate: %0.2f (%0.2f)" % (np.mean(rates), np.std(rates))) plt.figure() plt.hist(rates, bins=50, normed=True, range=(0., 2.)) plt.xlabel("Squared distances rate: projected / original") plt.ylabel("Distribution of samples pairs") plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components) # TODO: compute the expected value of eps and add them to the previous plot # as vertical lines / region plt.show()
bsd-3-clause
ahoyosid/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
RomainBrault/scikit-learn
sklearn/preprocessing/__init__.py
268
1319
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from ._function_transformer import FunctionTransformer from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import MaxAbsScaler from .data import Normalizer from .data import RobustScaler from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import robust_scale from .data import maxabs_scale from .data import minmax_scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .label import MultiLabelBinarizer from .imputation import Imputer __all__ = [ 'Binarizer', 'FunctionTransformer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'label_binarize', ]
bsd-3-clause
procoder317/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
98
20870
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.cross_validation import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.utils import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains # correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-10, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = estimator.decision_function(X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually garantied in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False) def test_lars_path_positive_constraint(): # this is the main test for the positive parameter on the lars_path method # the estimator classes just make use of this function # we do the test on the diabetes dataset # ensure that we get negative coefficients when positive=False # and all positive when positive=True # for method 'lar' (default) and lasso for method in ['lar', 'lasso']: alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=False) assert_true(coefs.min() < 0) alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=True) assert_true(coefs.min() >= 0) # now we gonna test the positive option for all estimator classes default_parameter = {'fit_intercept': False} estimator_parameter_map = {'Lars': {'n_nonzero_coefs': 5}, 'LassoLars': {'alpha': 0.1}, 'LarsCV': {}, 'LassoLarsCV': {}, 'LassoLarsIC': {}} def test_estimatorclasses_positive_constraint(): # testing the transmissibility for the positive option of all estimator # classes in this same function here for estname in estimator_parameter_map: params = default_parameter.copy() params.update(estimator_parameter_map[estname]) estimator = getattr(linear_model, estname)(positive=False, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(estimator.coef_.min() < 0) estimator = getattr(linear_model, estname)(positive=True, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(min(estimator.coef_) >= 0) def test_lasso_lars_vs_lasso_cd_positive(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when using the positive option # This test is basically a copy of the above with additional positive # option. However for the middle part, the comparison of coefficient values # for a range of alphas, we had to make an adaptations. See below. # not normalized data X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8, positive=True) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # The range of alphas chosen for coefficient comparison here is restricted # as compared with the above test without the positive option. This is due # to the circumstance that the Lars-Lasso algorithm does not converge to # the least-squares-solution for small alphas, see 'Least Angle Regression' # by Efron et al 2004. The coefficients are typically in congruence up to # the smallest alpha reached by the Lars-Lasso algorithm and start to # diverge thereafter. See # https://gist.github.com/michigraber/7e7d7c75eca694c7a6ff for alpha in np.linspace(6e-1, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(fit_intercept=False, alpha=alpha, normalize=False, positive=True).fit(X, y) clf2 = linear_model.Lasso(fit_intercept=False, alpha=alpha, tol=1e-8, normalize=False, positive=True).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8, positive=True) for c, a in zip(lasso_path.T[:-1], alphas[:-1]): # don't include alpha=0 lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01)
bsd-3-clause
DrXyzzy/smc
src/smc_sagews/smc_sagews/tests/conftest.py
5
27209
from __future__ import absolute_import import pytest import os import re import socket import json import signal import struct import hashlib import time import six from datetime import datetime # timeout for socket to sage_server in seconds default_timeout = 20 ### # much of the code here is copied from sage_server.py # cut and paste was done because it takes over 30 sec to import sage_server # and requires the script to be run from sage -sh ### def unicode8(s): try: if six.PY3: return str(s, 'utf8') else: return str(s).encode('utf-8') except: try: return str(s) except: return s PID = os.getpid() def log(*args): mesg = "%s (%s): %s\n" % (PID, datetime.utcnow().strftime( '%Y-%m-%d %H:%M:%S.%f')[:-3], ' '.join([unicode8(x) for x in args])) print(mesg) def uuidsha1(data): sha1sum = hashlib.sha1() sha1sum.update(data) s = sha1sum.hexdigest() t = 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx' r = list(t) j = 0 for i in range(len(t)): if t[i] == 'x': r[i] = s[j] j += 1 elif t[i] == 'y': # take 8 + low order 3 bits of hex number. r[i] = hex((int(s[j], 16) & 0x3) | 0x8)[-1] j += 1 return ''.join(r) class ConnectionJSON(object): def __init__(self, conn): # avoid common mistake -- conn is supposed to be from socket.socket... assert not isinstance(conn, ConnectionJSON) self._conn = conn def close(self): self._conn.close() def _send(self, s): if six.PY3 and type(s) == str: s = s.encode('utf8') length_header = struct.pack(">L", len(s)) self._conn.send(length_header + s) def send_json(self, m): m = json.dumps(m) #log(u"sending message '", truncate_text(m, 256), u"'") self._send('j' + m) return len(m) def send_blob(self, blob): s = uuidsha1(blob) if six.PY3 and type(blob) == bytes: # we convert all to bytes first, to avoid unnecessary conversions self._send(('b' + s).encode('utf8') + blob) else: # old sage py2 code self._send('b' + s + blob) return s def send_file(self, filename): #log("sending file '%s'"%filename) f = open(filename, 'rb') data = f.read() f.close() return self.send_blob(data) def _recv(self, n): # see http://stackoverflow.com/questions/3016369/catching-blocking-sigint-during-system-call for i in range(20): try: r = self._conn.recv(n) return r except socket.error as exc: if isinstance(exc, socket.timeout): raise else: (errno, msg) = exc if errno != 4: raise raise EOFError def recv(self): n = self._recv(4) if len(n) < 4: print(("expecting 4 byte header, got", n)) tries = 0 while tries < 5: tries += 1 n2 = self._recv(4 - len(n)) n += n2 if len(n) >= 4: break else: raise EOFError n = struct.unpack('>L', n)[0] # big endian 32 bits #print("test got header, expect message of length %s"%n) s = self._recv(n) while len(s) < n: t = self._recv(n - len(s)) if len(t) == 0: raise EOFError s += t if six.PY3 and type(s) == bytes: s = s.decode('utf8') mtyp = s[0] if mtyp == 'j': try: return 'json', json.loads(s[1:]) except Exception as msg: log("Unable to parse JSON '%s'" % s[1:]) raise elif mtyp == 'b': return 'blob', s[1:] raise ValueError("unknown message type '%s'" % s[0]) def set_timeout(self, timeout): "set socket timeout in seconds" self._conn.settimeout(timeout) def truncate_text(s, max_size): if len(s) > max_size: return s[:max_size] + "[...]", True else: return s, False class Message(object): def _new(self, event, props={}): m = {'event': event} for key, val in list(props.items()): if key != 'self': m[key] = val return m def start_session(self): return self._new('start_session') def session_description(self, pid): return self._new('session_description', {'pid': pid}) def send_signal(self, pid, signal=signal.SIGINT): return self._new('send_signal', locals()) def terminate_session(self, done=True): return self._new('terminate_session', locals()) def execute_code(self, id, code, preparse=True): return self._new('execute_code', locals()) def execute_javascript(self, code, obj=None, coffeescript=False): return self._new('execute_javascript', locals()) def output( self, id, stdout=None, stderr=None, code=None, html=None, javascript=None, coffeescript=None, interact=None, md=None, tex=None, d3=None, file=None, raw_input=None, obj=None, once=None, hide=None, show=None, events=None, clear=None, delete_last=None, done=False # CRITICAL: done must be specified for multi-response; this is assumed by sage_session.coffee; otherwise response assumed single. ): m = self._new('output') m['id'] = id t = truncate_text_warn did_truncate = False import sage_server # we do this so that the user can customize the MAX's below. if code is not None: code['source'], did_truncate, tmsg = t(code['source'], sage_server.MAX_CODE_SIZE, 'MAX_CODE_SIZE') m['code'] = code if stderr is not None and len(stderr) > 0: m['stderr'], did_truncate, tmsg = t(stderr, sage_server.MAX_STDERR_SIZE, 'MAX_STDERR_SIZE') if stdout is not None and len(stdout) > 0: m['stdout'], did_truncate, tmsg = t(stdout, sage_server.MAX_STDOUT_SIZE, 'MAX_STDOUT_SIZE') if html is not None and len(html) > 0: m['html'], did_truncate, tmsg = t(html, sage_server.MAX_HTML_SIZE, 'MAX_HTML_SIZE') if md is not None and len(md) > 0: m['md'], did_truncate, tmsg = t(md, sage_server.MAX_MD_SIZE, 'MAX_MD_SIZE') if tex is not None and len(tex) > 0: tex['tex'], did_truncate, tmsg = t(tex['tex'], sage_server.MAX_TEX_SIZE, 'MAX_TEX_SIZE') m['tex'] = tex if javascript is not None: m['javascript'] = javascript if coffeescript is not None: m['coffeescript'] = coffeescript if interact is not None: m['interact'] = interact if d3 is not None: m['d3'] = d3 if obj is not None: m['obj'] = json.dumps(obj) if file is not None: m['file'] = file # = {'filename':..., 'uuid':...} if raw_input is not None: m['raw_input'] = raw_input if done is not None: m['done'] = done if once is not None: m['once'] = once if hide is not None: m['hide'] = hide if show is not None: m['show'] = show if events is not None: m['events'] = events if clear is not None: m['clear'] = clear if delete_last is not None: m['delete_last'] = delete_last if did_truncate: if 'stderr' in m: m['stderr'] += '\n' + tmsg else: m['stderr'] = '\n' + tmsg return m def introspect_completions(self, id, completions, target): m = self._new('introspect_completions', locals()) m['id'] = id return m def introspect_docstring(self, id, docstring, target): m = self._new('introspect_docstring', locals()) m['id'] = id return m def introspect_source_code(self, id, source_code, target): m = self._new('introspect_source_code', locals()) m['id'] = id return m # NOTE: these functions are NOT in sage_server.py def save_blob(self, sha1): return self._new('save_blob', {'sha1': sha1}) def introspect(self, id, line, top): return self._new('introspect', {'id': id, 'line': line, 'top': top}) message = Message() ### # end of copy region ### def set_salvus_path(self, id): r""" create json message to set path and file at start of virtual worksheet """ m = self._new('execute_code', locals()) # hard code SMC for now so we don't have to run with sage wrapper SMC = os.path.join(os.environ["HOME"], ".smc") default_log_file = os.path.join(SMC, "sage_server", "sage_server.log") default_pid_file = os.path.join(SMC, "sage_server", "sage_server.pid") def get_sage_server_info(log_file=default_log_file): for loop_count in range(3): # log file ~/.smc/sage_server/sage_server.log # sample sage_server startup line in first lines of log: # 3136 (2016-08-18 15:02:49.372): Sage server 127.0.0.1:44483 try: with open(log_file, "r") as inf: for lno in range(5): line = inf.readline().strip() m = re.search( "Sage server (?P<host>[\w.]+):(?P<port>\d+)$", line) if m: host = m.group('host') port = int(m.group('port')) #return host, int(port) break else: raise ValueError('Server info not found in log_file', log_file) break except IOError: print("starting new sage_server") os.system(start_cmd()) time.sleep(5.0) else: pytest.fail( "Unable to open log file %s\nThere is probably no sage server running. You either have to open a sage worksheet or run smc-sage-server start" % log_file) print(("got host %s port %s" % (host, port))) return host, int(port) secret_token = None secret_token_path = os.path.join(os.environ['SMC'], 'secret_token') if 'COCALC_SECRET_TOKEN' in os.environ: secret_token_path = os.environ['COCALC_SECRET_TOKEN'] else: secret_token_path = os.path.join(os.environ['SMC'], 'secret_token') def client_unlock_connection(sock): secret_token = open(secret_token_path).read().strip() sock.sendall(secret_token.encode()) def path_info(): file = __file__ full_path = os.path.abspath(file) head, tail = os.path.split(full_path) #file = head + "/testing.sagews" return head, file def recv_til_done(conn, test_id): r""" Discard json messages from server for current test_id until 'done' is True or limit is reached. Used in finalizer for single cell tests. """ for loop_count in range(5): typ, mesg = conn.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'done' in mesg if mesg['done']: break else: pytest.fail("too many responses for message id %s" % test_id) def my_sage_startup(): """ name of pytest SAGE_STARTUP_FILE used in other test files so we export it """ return "a-init.sage" def start_cmd(action='start'): """ launch sage-server with env setting for startup file - `` action `` -- string "start" | "restart" """ pssf = os.path.join(os.path.dirname(__file__), my_sage_startup()) cmd = "export SAGE_STARTUP_FILE={};smc-sage-server {}".format(pssf, action) return cmd ### # Start of fixtures ### @pytest.fixture(autouse=True, scope="session") def sage_server_setup(pid_file=default_pid_file, log_file=default_log_file): r""" make sure sage_server pid file exists and process running at given pid """ os.system(start_cmd('restart')) for loop_count in range(20): time.sleep(0.5) if not os.path.exists(log_file): continue lmsg = "Starting server listening for connections" if lmsg in open(log_file).read(): break else: pytest.fail("Unable to start sage_server and setup log file") return @pytest.fixture() def test_id(request): r""" Return increasing sequence of integers starting at 1. This number is used as test id as well as message 'id' value so sage_server log can be matched with pytest output. """ test_id.id += 1 return test_id.id test_id.id = 1 # see http://doc.pytest.org/en/latest/tmpdir.html#the-tmpdir-factory-fixture @pytest.fixture(scope='session') def image_file(tmpdir_factory): def make_img(): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt my_circle = plt.Circle((0.5, 0.5), 0.2) fig, ax = plt.subplots() ax.add_artist(my_circle) return fig fn = tmpdir_factory.mktemp('data').join('my_circle.png') make_img().savefig(str(fn)) return fn @pytest.fixture(scope='session') def data_path(tmpdir_factory): path = tmpdir_factory.mktemp("data") path.ensure_dir() return path @pytest.fixture() def execdoc(request, sagews, test_id): r""" Fixture function execdoc. Depends on two other fixtures, sagews and test_id. EXAMPLES: :: def test_assg(execdoc): execdoc("random?") """ def execfn(code, pattern='Docstring'): m = message.execute_code(code=code, id=test_id) sagews.send_json(m) typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'code' in mesg assert 'source' in mesg['code'] assert re.sub('\s+', '', pattern) in re.sub('\s+', '', mesg['code']['source']) def fin(): recv_til_done(sagews, test_id) request.addfinalizer(fin) return execfn @pytest.fixture() def exec2(request, sagews, test_id): r""" Fixture function exec2. Depends on two other fixtures, sagews and test_id. If output & patterns are omitted, the cell is not expected to produce a stdout result. All arguments after 'code' are optional. If argument `timeout` is provided, the default socket timeout for connection to sage_server will be overridden to the value of `timeout` in seconds. - `` code `` -- string of code to run - `` output `` -- string or list of strings of output to be matched up to leading & trailing whitespace - `` pattern `` -- regex to match with expected stdout output - `` html_pattern `` -- regex to match with expected html output - `` timeout `` -- socket timeout in seconds - `` errout `` -- stderr substring to be matched. stderr may come as several messages EXAMPLES: :: def test_assg(exec2): code = "x = 42\nx\n" output = "42\n" exec2(code, output) :: def test_set_file_env(exec2): code = "os.chdir(salvus.data[\'path\']);__file__=salvus.data[\'file\']" exec2(code) :: def test_sh(exec2): exec2("sh('date +%Y-%m-%d')", pattern = '^\d{4}-\d{2}-\d{2}$') .. NOTE:: If `output` is a list of strings, `pattern` and `html_pattern` are ignored """ def execfn(code, output=None, pattern=None, html_pattern=None, timeout=default_timeout, errout=None): m = message.execute_code(code=code, id=test_id) m['preparse'] = True if timeout is not None: print(('overriding socket timeout to {}'.format(timeout))) sagews.set_timeout(timeout) # send block of code to be executed sagews.send_json(m) # check stdout if isinstance(output, list): for o in output: typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'stdout' in mesg assert o.strip() in (mesg['stdout']).strip() elif output or pattern: typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'stdout' in mesg mout = mesg['stdout'] if output is not None: assert output.strip() in mout elif pattern is not None: assert re.search(pattern, mout) is not None elif html_pattern: typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'html' in mesg assert re.search(html_pattern, mesg['html']) is not None elif errout: mout = "" while True: typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'stderr' in mesg mout += mesg['stderr'] if errout.strip() in mout: break def fin(): recv_til_done(sagews, test_id) request.addfinalizer(fin) return execfn @pytest.fixture() def execbuf(request, sagews, test_id): r""" Fixture function execbuf. Inner function will execute code, then append messages received from sage_server. As messages are appended, the result is checked for either an exact match, if `output` string is specified, or pattern match, if `pattern` string is given. Test fails if non-`stdout` message is received before match or receive times out. """ def execfn(code, output=None, pattern=None): m = message.execute_code(code=code, id=test_id) m['preparse'] = True # send block of code to be executed sagews.send_json(m) outbuf = '' while True: typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'stdout' in mesg outbuf += mesg['stdout'] if output is not None: if output in outbuf: break elif pattern is not None: if re.search(pattern, outbuf) is not None: break def fin(): recv_til_done(sagews, test_id) request.addfinalizer(fin) return execfn @pytest.fixture() def execinteract(request, sagews, test_id): def execfn(code): m = message.execute_code(code=code, id=test_id) m['preparse'] = True sagews.send_json(m) typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert 'interact' in mesg def fin(): recv_til_done(sagews, test_id) request.addfinalizer(fin) return execfn @pytest.fixture() def execblob(request, sagews, test_id): def execblobfn(code, want_html=True, want_javascript=False, file_type='png', ignore_stdout=False): r""" fixture when test generates an image INPUT: - ``file_type`` -- string or list of strings, e.g. ["svg", "png"] """ SHA_LEN = 36 # format and send the plot command m = message.execute_code(code=code, id=test_id) sagews.send_json(m) # expect several responses before "done", but order may vary want_blob = True want_name = True while any([want_blob, want_name, want_html, want_javascript]): typ, mesg = sagews.recv() if typ == 'blob': assert want_blob want_blob = False # when a blob is sent, the first 36 bytes are the sha1 uuid print(("blob len %s" % len(mesg))) file_uuid = mesg[:SHA_LEN].decode() assert file_uuid == uuidsha1(mesg[SHA_LEN:]) # sage_server expects an ack with the right uuid m = message.save_blob(sha1=file_uuid) sagews.send_json(m) else: assert typ == 'json' if 'html' in mesg: assert want_html want_html = False print('got html') elif 'javascript' in mesg: assert want_javascript want_javascript = False print('got javascript') elif ignore_stdout and 'stdout' in mesg: pass else: assert want_name want_name = False assert 'file' in mesg print('got file name') if isinstance(file_type, str): assert file_type in mesg['file']['filename'] elif isinstance(file_type, list): assert any([(f0 in mesg['file']['filename']) for f0 in file_type]), \ "missing one of file types {} in response from sage_server".format(file_type) else: assert 0 # final response is json "done" message typ, mesg = sagews.recv() assert typ == 'json' assert mesg['done'] == True return execblobfn @pytest.fixture() def execintrospect(request, sagews, test_id): def execfn(line, completions, target, top=None): if top is None: top = line m = message.introspect(test_id, line=line, top=top) m['preparse'] = True sagews.send_json(m) typ, mesg = sagews.recv() assert typ == 'json' assert mesg['id'] == test_id assert mesg['event'] == "introspect_completions" assert mesg['completions'] == completions assert mesg['target'] == target return execfn @pytest.fixture(scope="class") def sagews(request): r""" Module-scoped fixture for tests that don't leave extra threads running. """ # setup connection to sage_server TCP listener host, port = get_sage_server_info() print(("host %s port %s" % (host, port))) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) sock.settimeout(default_timeout) print("connected to socket") # unlock client_unlock_connection(sock) print("socket unlocked") conn = ConnectionJSON(sock) c_ack = conn._recv(1).decode() assert c_ack == 'y', "expect ack for token, got %s" % c_ack # open connection with sage_server and run tests msg = message.start_session() msg['type'] = 'sage' conn.send_json(msg) print("start_session sent") typ, mesg = conn.recv() assert typ == 'json' pid = mesg['pid'] print(("sage_server PID = %s" % pid)) # teardown needed - terminate session nicely # use yield instead of request.addfinalizer in newer versions of pytest def fin(): print("\nExiting Sage client.") conn.send_json(message.terminate_session()) # wait several seconds for client to die for loop_count in range(8): try: os.kill(pid, 0) except OSError: # client is dead break time.sleep(0.5) else: print(("sending sigterm to %s" % pid)) try: os.kill(pid, signal.SIGTERM) except OSError: pass request.addfinalizer(fin) return conn @pytest.fixture(scope="class") def own_sage_server(request): assert os.geteuid() != 0, "Do not run as root, will kill all sage_servers." print("starting sage_server class fixture") os.system(start_cmd()) time.sleep(0.5) def fin(): print("killing all sage_server processes") os.system("pkill -f sage_server_command_line") request.addfinalizer(fin) @pytest.fixture(scope="class") def test_ro_data_dir(request): """ Return the directory containing the test file. Used for tests which have read-only data files in the test dir. """ return os.path.dirname(request.module.__file__) # # Write machine-readable report files into the $HOME directory # http://doc.pytest.org/en/latest/example/simple.html#post-process-test-reports-failures # import os report_json = os.path.expanduser('~/sagews-test-report.json') report_prom = os.path.expanduser('~/sagews-test-report.prom') results = [] start_time = None @pytest.hookimpl def pytest_configure(config): global start_time start_time = datetime.utcnow() @pytest.hookimpl def pytest_unconfigure(config): global start_time data = { 'name': 'smc_sagews.test', 'version': 1, 'start': str(start_time), 'end': str(datetime.utcnow()), 'fields': ['name', 'outcome', 'duration'], 'results': results, } with open(report_json, 'w') as out: json.dump(data, out, indent=1) # this is a plain text prometheus report # https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details # timestamp milliseconds since epoch ts = int(1000 * time.mktime(start_time.timetuple())) # first write to temp file ... report_prom_tmp = report_prom + '~' with open(report_prom_tmp, 'w') as prom: for (name, outcome, duration) in results: labels = 'name="{name}",outcome="{outcome}"'.format(**locals()) line = 'sagews_test{{{labels}}} {duration} {ts}'.format(**locals()) prom.write(line + '\n') # ... then atomically overwrite the real one os.rename(report_prom_tmp, report_prom) @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_runtest_makereport(item, call): # execute all other hooks to obtain the report object outcome = yield rep = outcome.get_result() if rep.when != "call": return #import pdb; pdb.set_trace() # uncomment to inspect item and rep objects # the following `res` should match the `fields` above # parent: item.parent.name could be interesting, but just () for auto discovery name = item.name test_ = 'test_' if name.startswith(test_): name = name[len(test_):] res = [name, rep.outcome, rep.duration] results.append(res)
agpl-3.0
andipeng/MagnePlane
src/hyperloop/Python/ticket_cost.py
4
8796
from __future__ import print_function import numpy as np from openmdao.api import IndepVarComp, Component, Group, Problem, ExecComp import matplotlib.pylab as plt class TicketCost(Component): ''' Notes ------- This Component takes into account various cost figures from the system model and combines them to estimate tickt cost per passenger. Params ------- length_cost : float Cost of materials per unit length. Default value is 2.437e6 USD/km pod_cost : float Cost per individual pod. Default value is 1.0e6 USD. capital_cost : float Estimate of overhead capital cost. Default value is 1.0e10 USD. energy_cost : float Cost of electricity. Default value is .13 USD/kWh ib : float Bond interest rate. Default value is .04 bm : float Bond maturity. Default value is 20.0 years. operating_time : float operating time per day. Default value is 16.0*3600 s JtokWh : float Convert J to kWh. Default value is J/kWh m_pod : float Pod mass. Default value is 3100 kg n_passengers : float Number of passengers. Default value is 28.0 pod_period : float Time in between pod departures. Default value is 120.0 s avg_speed : float average pod speed. Default value is 286.86 m/s track_length : float length of the track. Default value is 600e3 m pod_power : float Power consumption of the pod. Default value is 1.5e6 W prop_power : float power of an individual propulsion section. Default value is 350e3 W vac_power : float Power of the vacuum pumps. Default value is 71.049e6 W alpha : float percent of vacuum power used in steady state. Default value is .0001 vf : float Pod top speed. Default value is 286.86 m/s g : float Gravity. Default value is 9.81 m/s/s Cd : float Pod drag coefficient. Default value is .2 S : float Pod planform area. Default value is 40.42 m**2 p_tunnel : float Tunnel pressure. Default value is 850.0 Pa T_tunnel : float Tunnel temperature. Default value is 320 K R : float Ideal gas constant. Default value is 287 J/kg/K eta : float Efficiency of propulsion system D_mag : float Magnetic drag. Default value is (9.81*3100.0)/200.0 N thrust_time : float Time spent during a propulsive section. Default value is 1.5 s prop_period : float distance between pripulsion sections. Defualt value is 25.0e3 km Returns ------- ticket_cost : float cost of individual ticket. Default value is 0.0 USD prop_energy_cost : float cost of energy used by propulsion section per year. Default value is 0.0 USD ''' def __init__(self): super(TicketCost, self).__init__() self.add_param('land_cost', val = 2.437e6, desc = 'Cost of materials over land per unit length', units = 'USD/km') self.add_param('water_cost', val = 389.346941e3, desc = 'Cost of materials underwater per unit length', units = 'USD/km') self.add_param('pod_cost', val = 1.0e6, desc = 'Cost of individual pod', units = 'USD') self.add_param('capital_cost', val = 1.0e10, desc = 'Estimate of overhead capital cost', units = 'USD') self.add_param('energy_cost', val = .13, desc = 'Cost of electricity', units = 'USD/kW/h') self.add_param('ib', val = .04, desc = 'Bond interest rate', units = 'unitless') self.add_param('bm', val = 20.0, desc = 'Bond maturity', units = 'yr') self.add_param('operating_time', val = 16.0*3600, desc = 'Operating time per day', units = 's') self.add_param('JtokWh', val = 2.7778e-7, desc = 'Convert Joules to kWh', units = '(kw*h)/J') self.add_param('m_pod', val = 3100.0, desc = 'Pod Mass', units = 'kg') self.add_param('n_passengers', val = 28.0, desc = 'number of passengers', units = 'unitless') self.add_param('pod_period', val = 120.0, desc = 'Time in between departures', units = 's') self.add_param('avg_speed', val = 286.86, desc = 'Average Pod Speed', units = 'm/s') self.add_param('track_length', val = 600.0e3, desc = 'Track Length', units = 'm') self.add_param('land_length', val = 600e3, desc = 'Length traveled over land', units = 'm') self.add_param('water_length', val = 0.0e3, desc = 'Length traveled underwater', units = 'm') self.add_param('pod_power', val = 1.5e6, desc = 'Power required by pod motor', units = 'W') self.add_param('prop_power', val = 350.0e3, desc = 'Power of single propulsive section', units = 'W') self.add_param('vac_power', val = 71.049e6, desc = 'Power of vacuums', units = 'W') self.add_param('steady_vac_power', val = 950.0e3, desc = 'Steady State run power of vacuum pumps', units = 'W') self.add_param('vf', val = 286.86, desc = 'Pod top speed', units = 'm/s') self.add_param('g', val = 9.81, desc = 'Gravity', units = 'm/s/s') self.add_param('Cd', val = .2, desc = 'Pod drag coefficient', units = 'unitless') self.add_param('S', val = 40.42, desc = 'Pod planform area', units = 'm**2') self.add_param('p_tunnel', val = 850.0, desc = 'Tunnel Pressure', units = 'Pa') self.add_param('T_tunnel', val = 320.0, desc = 'Tunnel Temperature', units = 'K') self.add_param('R', val = 287.0, desc = 'Ideal gas constant', units = 'J/kg/K') self.add_param('eta', val = .8, desc = 'Propulsive efficiency', units = 'unitless') self.add_param('D_mag', val = (9.81*3100.0)/200.0, desc = 'Magnetic Drag', units = 'N') self.add_param('thrust_time', val = 1.5, desc = 'Time that pod is over propulsive section', units = 's') self.add_param('prop_period', val = 25.0e3, desc = 'distance between propulsive sections', units = 'm') self.add_param('num_thrust', val = 10.0, desc = 'Number of booster sections along track', units = 'unitless') self.add_output('num_pods', val = 0.0, desc = 'Number of Pods', units = 'unitless') self.add_output('ticket_cost', val = 0.0, desc = 'Ticket cost', units = 'USD') self.add_output('prop_energy_cost', val = 0.0, desc = 'Cost of propulsion energy', units = 'USD') self.add_output('tube_energy_cost', val = 0.0, desc = 'Cost of tube energy', units = 'USD') self.add_output('total_energy_cost', val = 0.0, desc = 'Cost of energy consumpition per year', units = 'USD') def solve_nonlinear(self, p, u,r): land_cost = p['land_cost'] water_cost = p['water_cost'] pod_cost= p['pod_cost'] capital_cost = p['capital_cost'] energy_cost = p['energy_cost'] ib = p['ib'] bm = p['bm'] operating_time = p['operating_time'] JtokWh = p['JtokWh'] m_pod = p['m_pod'] n_passengers = p['n_passengers'] pod_period = p['pod_period'] avg_speed = p['avg_speed'] track_length = p['track_length'] land_length = p['land_length'] water_length = p['water_length'] pod_power = -1.0*p['pod_power'] prop_power = p['prop_power'] vac_power = p['vac_power'] steady_vac_power = -1.0*p['steady_vac_power'] vf = p['vf'] g = p['g'] Cd = p['Cd'] S = p['S'] p_tunnel = p['p_tunnel'] T_tunnel = p['T_tunnel'] R = p['R'] eta = p['eta'] D_mag = p['D_mag'] thrust_time = p['thrust_time'] prop_period = p['prop_period'] num_thrust = p['num_thrust'] length_cost = ((water_length/track_length)*water_cost) + ((land_length/track_length)*land_cost) pod_frequency = 1.0/pod_period num_pods = np.ceil((track_length/avg_speed)*pod_frequency) flights_per_pod = (operating_time*pod_frequency)/num_pods energy_per_flight = pod_power*(track_length/avg_speed)*.9 pod_energy = energy_per_flight*flights_per_pod*num_pods*JtokWh vac_energy = steady_vac_power*operating_time*JtokWh rho = p_tunnel/(R*T_tunnel) start_distance = (vf**2)/(2*g) start_energy = ((m_pod*g+D_mag)*start_distance + (.5*Cd*rho*g*S*(start_distance**2)))/eta prop_energy = (num_thrust*thrust_time*prop_power + start_energy)*flights_per_pod*num_pods*JtokWh tube_energy = prop_energy + vac_energy u['num_pods'] = num_pods u['prop_energy_cost'] = prop_energy*energy_cost*365 u['tube_energy_cost'] = tube_energy*energy_cost*365 u['total_energy_cost'] = (pod_energy+tube_energy)*energy_cost*365 u['ticket_cost'] = cost_ticket = (length_cost*(track_length/1000.0) + pod_cost*num_pods + capital_cost*(1.0+ib) + \ energy_cost*(tube_energy + pod_energy)*365.0)/(n_passengers*pod_frequency*bm*365.0*24.0*3600.0) if __name__ == '__main__': top = Problem() root = top.root = Group() params = (('n_passengers', 28.0), ('track_length', 600.0e3, {'units' : 'm'})) root.add('p', TicketCost()) root.add('des_vars', IndepVarComp(params), promotes = ['n_passengers']) root.connect('n_passengers', 'p.n_passengers') root.connect('des_vars.track_length', 'p.track_length') top.setup() top.run() print(top['p.ticket_cost']) # n_passengers = np.linspace(10,100,num = 90) # ticket_cost = np.zeros((1, len(n_passengers))) # for i in range(len(n_passengers)): # top['n_passengers'] = n_passengers[i] # top.run() # ticket_cost[0, i] = top['p.ticket_cost'] # plt.plot(n_passengers*(175200.0/(1.0e6)), ticket_cost[0,:]) # plt.show()
apache-2.0
Foucl/mymu-psychopy
docs/mymu.py
1
16983
# -*- coding: utf-8 -*- # -- ==mymu_imports== -- #%% mymu-imports import sys sys.dont_write_bytecode = False import numpy.random as rnd import numpy as np import pandas as pd from PyQt5 import QtCore, QtGui, QtWidgets import os import glob from collections import OrderedDict import psychopy reload(psychopy) from psychopy import visual, data, core, event, logging import psychopy_ext reload(psychopy_ext) from psychopy_ext import exp from pyglet import app import scripts.computer as computer #reload(computer) reload(exp) from IPython.core.debugger import Tracer # for testing - psychopy's moviestim doesn't seem to take care of files already opened #import win32file #win32file._setmaxstdio(2048) # -- ==mymu_imports== -- # -- ==mymu_class== -- #%% PATHS = exp.set_paths('mymu', computer) PATHS['vid'] = './vid/' PATHS['img'] = './img/' try: del(thismu) del(MyMu) except: pass class MyMu(exp.Experiment): """ Willkommen zu unserem Experiment ================================ Drücken Sie eine **beliebige Taste**, um zu starten. """ def __init__(self, name='mymu', version='0.9', info=OrderedDict([('subjid', 'mm_'), ('session', 1), ]), rp=OrderedDict([ # these control how the experiment is run ('no_output', False), # do you want output? or just playing around? ('debug', False), # not fullscreen presentation etc ('autorun', 0), # if >0, will autorun at the specified speed ('log_level', 40) ]), actions='run' ): super(MyMu, self).__init__(name=name, info=info, rp=rp, actions=actions, paths=PATHS, computer=computer, version=version)#, blockcol='block') # user-defined parameters self.nvalid = 60 self.ninvalid = 20 self.stimsize = (9, 6) # in deg self.isi = 1.2 ids = {} self.out_movie_frames = [] self.all_stims = [x for x in os.listdir(self.paths["vid"])] male = [x for x in self.all_stims if x[5] == 'm'] female = [x for x in self.all_stims if x[5] == 'w'] happy = [x for x in self.all_stims if x[0:3] == 'fre'] disgusted = [x for x in self.all_stims if x[0:3] == 'ekl'] self.ids = {} self.ids['male'] = list(set([x[5:8] for x in male])) self.ids['female'] = list(set([x[5:8] for x in female])) self.factors = {'expression': ['disgusted', 'happy'], 'validity': ['valid', 'invalid']} self.conditions=[ OrderedDict({'texpr':'ekl', 'validity': 'valid', 'pexpr': 'ekl', 'weight': self.nvalid}), OrderedDict({'texpr':'ekl', 'validity': 'invalid', 'pexpr': 'fre', 'weight': self.ninvalid}), OrderedDict({'texpr':'fre', 'validity': 'valid', 'pexpr': 'fre', 'weight': self.nvalid}), OrderedDict({'texpr':'fre', 'validity': 'invalid', 'pexpr': 'ekl', 'weight': self.ninvalid}) ] def create_stimuli(self): """Define your stimuli here, store them in self.s """ testmov = os.path.join(self.paths["vid"], 'ekl99m03.avi') self.set_logging(level=self.rp['log_level']) self.all_movie_frames = [] self.all_mov = {} for stim in self.all_stims: if self.rp['dict']: mov = visual.MovieStim3(self.win, filename=os.path.join(self.paths["vid"], stim), size=(511, 768), name='PrimeVid', noAudio=True, autoLog=True) else: mov = '' self.all_mov[stim] = mov self.create_fixation() self.s = {} self.s['fix']= self.fixation self.s['mov'] = visual.MovieStim3(self.win, filename=testmov, size=(511, 768), name='PrimeVid', noAudio=True, autoLog=True) self.s['blank'] = visual.ImageStim(self.win, size=(0,0), autoLog=True) self.s['target'] = visual.ImageStim(self.win, size=self.stimsize, name='TargetPic', autoLog=True) self.win.setRecordFrameIntervals(False) #self.win.waitBlanking = False def create_win(self, *args, **kwargs): super(MyMu, self).create_win(units='deg', color=(100,100,100), *args, **kwargs) #app.run() def make_trials(self): self.trial_list = [] ids = self.ids for c in self.conditions: # TODO: make it possible to just set nTrials and propValid!! TDD! idtmp = [] stimftmp = [] if c['validity'] == 'valid': idtmp = ids['male'][:] + list(rnd.choice(ids['male'], 10)) + idtmp + ids['female'][:] + list(rnd.choice(ids['female'], 11)) stimftmp = [c['pexpr'] + '99' + x + '.avi' for x in idtmp] elif c['validity'] == 'invalid': idtmp = list(rnd.choice(ids['male'], 10)) + list(rnd.choice(ids['male'], 10)) stimftmp = [c['pexpr'] + '99' + x + '.avi' for x in idtmp] for stim in stimftmp: self.trial_list.extend([OrderedDict({'texpr': c['texpr'], 'validity': c['validity'], 'pexpr': c['pexpr'], 'stimf': stim, 'mov':self.all_mov[stim], 'sex': stim[3], 'id': stim[4:6]})]) #rnd.shuffle(self.trial_list) not necessary, psychopy_ext takes care of shuffling! #return trial_list def save_frame(self, n_rep=None, buffer='front', name=None): # TODO: only check for save_movie here if not name: name = self.this_event.name if not n_rep: n_rep = int(self.this_event.dur * 30) if n_rep < 1: nrep = 1 im = self.win._getFrame(buffer) self.all_movie_frames.append((n_rep, im, name)) # overwrite at leaste idle_event for movie-creation def before_event(self, *args, **kwargs): super(MyMu, self).before_event(*args, **kwargs) if self.rp['save_mov'] : #self.win.getMovieFrame(buffer='front') self.save_frame() def post_trial(self, *args, **kwargs): super(MyMu, self).post_trial(*args, **kwargs) if self.rp['save_mov'] and self.thisTrialN == 2: #self.win.saveMovieFrames('./exp_run_t1-7.mp4') # TODO: create custom function self.save_movie_frames() #for frame in self.all_movie_frames: # print frame[0], frame[1], frame[2] self.quit(message='movie of first three trials saved, nothing to do anymore') def save_movie_frames(self, filen='./exp_t1-7.mp4'): frames = self.all_movie_frames # seems super easy, copied from psychopy.visual.Window.saveMovieFrames from moviepy.editor import ImageSequenceClip numpyFrames = [] n = 0 i = 0 for n_rep, frame, name in frames: # BUT: now I have to bite the dust and create many frames? can this be done more efficiently? if name == 'prime_rest': n += 1 elif name == 'isi': print "saving prime_rest", n, "times" n = 0 print "saving isi", n_rep, "times" else: print "saving", name, n_rep, "times" for _ in xrange(n_rep): numpyFrames.append(np.array(frame)) clip = ImageSequenceClip(numpyFrames, fps=30) clip.write_videofile(filen, codec='libx264') self.all_movie_frames = [] def play_simple(self, *args, **kwargs): n_rep_first = 22 ut = self.rp['unittest'] if ut: n_rep_first = 2 show_ft = False self.s['mov'].draw() # save a lot of memory by just saving the backbuffer with n_rep = n_rep_first/2! self.save_frame(n_rep=(n_rep_first+2)/2,buffer='back', name='prime_neutral') self.s['mov'].seek(0.0) self.s['mov'].pause() save = self.rp['save_mov'] # TODO: add way to quit using exitkey i = 0 print "\n" while (self.s['mov'].status != visual.FINISHED): if i == n_rep_first: self.s['mov'].play() self.s['mov'].seek((1/30.)) self.s['mov']._videoClock.reset(self.s['mov']._videoClock.getTime()) self.s['mov'].draw() t = self.s['mov'].getCurrentFrameTime() self.win.flip() if save and i > n_rep_first and i%2 == 0: self.save_frame(n_rep=1, buffer='front', name='prime_rest') self.s['mov'].seek(t + (1/30.)) self.s['mov']._videoClock.reset(self.s['mov']._videoClock.getTime()) print "the frametime at flip", i, "was", t #print "=======" i += 1 key = self.last_keypress() print "new supersimple loop flipped", i, "times" return n_neut = 1 for i in xrange(n_rep_first): self.s['mov'].draw() if i == 0: beg = self.trial_clock.getTime() if (i+3)%2==0 and show_ft: ft = self.s['mov'].getCurrentFrameTime() + (1/30.) ft_ms = ft * 1000 frame_no = round(ft * 30) text = "frametime: %6.2fms \nframe: %d\niteration/flip/frame refresh: %d\ntotal iteration: %d\n_nextFrameT=%6.2f, _videoClock=%6.2f" % (ft_ms, frame_no,i+1, n_neut, self.s['mov']._nextFrameT, self.s['mov']._videoClock.getTime()) #ts = visual.TextStim(self.win, text=text, pos=(0,-5.5)) #ts.draw() self.win.flip() if (i+3)%2==0 and show_ft and False: if 'escape' in event.waitKeys(): self.quit() n_neut += 1 self.s['mov'].play() self.s['mov']._videoClock.reset() for i in xrange(2): self.s['mov'].draw() ft = self.s['mov'].getCurrentFrameTime() + (1/30.) ft_ms = ft * 1000 frame_no = round(ft * 30) text = "frametime: %6.2fms \nframe: %d\niteration/flip/frame refresh: %d\ntotal iteration: %d\n_nextFrameT=%6.2f, _videoClock=%6.2f" % (ft_ms, frame_no,i+1, n_neut, self.s['mov']._nextFrameT, self.s['mov']._videoClock.getTime()) #ts = visual.TextStim(self.win, text=text, pos=(0,-5.5)) #ts.draw() self.win.flip() if show_ft and False: if 'escape' in event.waitKeys(): self.quit() n_neut += 1 end_neut = self.trial_clock.getTime() print "neutral phase (21 refreshes, 10 frames) took", end_neut-beg, "s" a = self.s['mov'].getCurrentFrameTime() print "frametime before entering movement-loop is", a self.s['mov'].seek(0.0) i = 0 j = 0 #Tracer()() #self.s['mov']._videoClock.reset() while (self.s['mov'].status != visual.FINISHED): self.s['mov'].draw() if (i+3)%1==0 and show_ft: ft = self.s['mov'].getCurrentFrameTime() + (1/30.) ft_ms = ft * 1000 frame_no = round(ft * 30) text = "frametime: %6.2fms \nframe: %d\niteration/flip/frame refresh: %d\ntotal iteration: %d\n_nextFrameT=%6.2f, _videoClock=%6.2f" % (ft_ms, frame_no,i+1, n_neut, self.s['mov']._nextFrameT, self.s['mov']._videoClock.getTime()) #ts = visual.TextStim(self.win, text=text, pos=(0,-5.5)) #ts.draw() self.win.flip() if (i+3)%1==0 and show_ft: if 'escape' in event.waitKeys(): self.quit() #self.win.flip() if save and (i+2)%2==0: t_pre = self.s['mov']._videoClock.getTime() self.save_frame(n_rep=1, buffer='front', name='prime_rest') self.s['mov'].seek((1/30. * (i/2) + (1/30.))) self.s['mov']._videoClock.reset(self.s['mov']._videoClock.getTime()) t_post = self.s['mov']._videoClock.getTime() print "in iteration", i print "video Clock after seek:", t_post print "frametime after seek", self.s['mov'].getCurrentFrameTime() print "netframet after seek", self.s['mov']._nextFrameT print "=============" # print round((t_post - t_pre)*1000, 3) #print "nextFrameT for i=", i, "should be", round(self.s['mov']._nextFrameT * 1000, 3) #print "time after reset:", self.s['mov']._videoClock.getTime() #Tracer()() if ut and i > 4: self.s['mov'].stop() return i += 1 n_neut += 1 print " last run of loop went for", i, "iterations (was: 20, should be: 40!)" print " total flips: ", n_neut # finished, should I replay the final frame a couple of times to get to 1s? end = self.trial_clock.getTime() print ", duration of movie", end-beg self.s['mov'].stop() # def create_trial(self): """Define trial composition """ self.trial = [exp.Event(self, name='fix', dur=3, # in seconds display=self.s['fix'], func=self.idle_event), #exp.Event(self, #dur=1, #name='prime', #display=self.s['mov'], # just get the 'stimf' from the trialhandler/exp_plan/conditions? #func=self.play_simple), exp.Event(self, name='isi', dur=3, display=self.s['blank'], func=self.idle_event), exp.Event(self, name='target', dur=1.300, display=self.s['target'], #draw_stim=False, func=self.idle_event), exp.Event(self, name='iti', dur=1.5, display=self.s['blank'], func=self.idle_event)] def create_exp_plan(self): """Put together trials DURATION?? check image files here; randomize here """ self.make_trials() trials = self.trial_list exp_plan = [] i = 1 for trl in trials: exp_plan.append(OrderedDict([ ('block', 'emo_fac'), ('trialno', i), ('texpr', trl['texpr']), # is this how that should be done? (trl could be generated by make_trials above) ('validity', trl['validity']), ('pexpr', trl['pexpr']), ('stimf', trl['stimf']), ('mov', trl['mov']), ('sex', trl['sex']), ('id', trl['id']), ('onset', ''), # empty ones will be filled up ('dur', ''), # during runtime ('corr_resp', ''), ('subj_resp', ''), ('accuracy', ''), ('rt', ''), ])) i += 1 self.exp_plan = exp_plan def before_trial(self): """Set up stimuli prior to a trial """ if self.rp['dict']: self.s['mov'] = self.this_trial['mov'] else: vid_fname = os.path.join(self.paths["vid"], self.this_trial['stimf']) self.s['mov'].setMovie(vid_fname) self.s['target'].setImage(os.path.join(self.paths['img'], self.this_trial['validity'] + '_grey.png')) thismu = MyMu(rp={'no_output':True, 'debug':True, 'dict': False, 'autorun': 0, 'log_level': logging.WARNING, 'unittest': False, 'save_mov':False}) #del MyMu # should take care of opened files? # -- ==mymu_class== -- # -- ==mymu_run_thismu== -- # %% thismu.run() # -- ==mymu_run_thismu== --
mit
darioizzo/pykep
pykep/trajopt/_direct.py
2
16870
import pykep as pk import numpy as np class _direct_base(object): """Base class for direct trajectory optimisation problems with one only leg. All inheriting classes will adopt, ``plot_traj``, ``plot_control``, and ``get_traj``. """ def __init__(self, mass=1000., thrust=0.3, isp=3000., nseg=10, mu=pk.MU_SUN, hf=False): # segements if isinstance(nseg, int): self.nseg = nseg else: raise TypeError("nseg must be supplied as int.") # spacecraft self.sc = pk.sims_flanagan.spacecraft(mass, thrust, isp) # leg self.leg = pk.sims_flanagan.leg() self.leg.set_spacecraft(self.sc) self.leg.set_mu(mu) self.leg.high_fidelity = hf def fitness(self, z): """This function will be redefined in the inheriting classes """ pass def _plot_traj(self, z, axis, units): """This function will be redefined in the inheriting classes """ pass @staticmethod def _get_controls(z): """This function will be redefined in the inheriting classes """ pass def _pretty(self, z): """This function will be redefined in the inheriting classes """ pass def get_nobj(self): return 1 def get_nec(self): return 7 def get_nic(self): return self.nseg def plot_traj(self, z, units=pk.AU, N=20, axes=None): """This function plots the 3 dimensional spacecraft trajectory, given a solution chromosome. Args: - z (``list``, ``tuple``, ``numpy.ndarray``): Decision chromosome, e.g. (``pygmo.population.champion_x``). - units (``float``, ``int``): units by which to scale the trajectory dimensions. - N (``int``): Number of points to be plotted along one arc. """ import matplotlib.pyplot as plt # a call to the fitness on the chromosome z will change the class data member leg and set it # to represent the data in the chromosome z self.fitness(z) # creates a figure if needed if axes is None: fig = plt.figure() axes = fig.gca(projection='3d') # plots a small Sun axes.scatter([0], [0], [0], color='y') # plots the leg pk.orbit_plots.plot_sf_leg(self.leg, units=units, N=20, axes=axes) # plots problem specifics self._plot_traj(z, axes, units) return axes def plot_control(self, z, mark="k.-", time=True, axes=None): """Plots the control profile of the trajectory, as a function of time. Args: - z (``list``, ``tuple``, ``numpy.ndarray``): Decision chromosome, e.g. (``pygmo.population.champion_x``). - mark (``string``): matplotlib marker. - time (``bool``): If ``True``, x-axis is time in ``mjd2000``. If ``False``, x-axis is node index. """ import matplotlib.pyplot as plt # data traj = self.get_traj(z) # time t = traj[:, 0] - traj[0, 0] # throttle u = traj[:, 8] # figure if axes is None: plt.figure() axes = plt.gca() # with time if time: axes.plot(t, u, mark) plt.xlabel("Time [days]") # without time elif not time: axes.plot(u, mark) plt.xlabel("Segment number") # no se else: raise RuntimeError("Something is wrong!") # label plt.ylabel("Throttle [ND]") return axes def get_traj(self, z): """Retrieves the trajectory information. The returned np.array contains:: traj = [[t0, x0, y0, z0, vx0, vy0, vz0, m0, u0, ux0, uy0, uz0] ... [tf, xf, yf, zf, vxf, vyf, vzf, mf, uf, uxf, uyf, uzf]] Args: - z (``list``, ``tuple``, ``numpy.ndarray``): Decision chromosome, e.g. (``pygmo.population.champion_x``). Returns: np.array full information on states and controls along the trajectory nodes """ # set leg self.fitness(z) # get states x = list(self.leg.get_states()) # clean states for i in range(len(x)): # remove matchpoint duplicate x[i].pop(self.nseg) # convert to numpy.ndarray x[i] = np.asarray(x[i], np.float64) # time and mass if i in [0, 3]: x[i].reshape((self.nseg * 2 + 1, 1)) # position and velocity elif i in [1, 2]: x[i].reshape((self.nseg * 2 + 1, 3)) else: raise RuntimeError("Something is wrong!") # unpack states t, r, v, m = x # control u = self._get_controls(z) # since controls are only defined at midpoints we need to add the # values at the non midpoint nodes tmp = [0] * len(u) * 2 for i in range(self.nseg): tmp[i * 6] = u[i * 3] tmp[i * 6 + 1] = u[i * 3 + 1] tmp[i * 6 + 2] = u[i * 3 + 2] tmp[i * 6 + 3] = u[i * 3] tmp[i * 6 + 4] = u[i * 3 + 1] tmp[i * 6 + 5] = u[i * 3 + 2] tmp.append(u[-3]) tmp.append(u[-2]) tmp.append(u[-1]) u = np.asarray(tmp, np.float64).reshape((self.nseg * 2 + 1, 3)) # throttle umag = np.linalg.norm(u, axis=1).reshape((self.nseg * 2 + 1, 1)) # full dataset [t, x, y, z, vx, vy, vz, m, u, ux, uy, uz] return np.hstack((t.reshape((self.nseg * 2 + 1, 1)), r, v, m.reshape((self.nseg * 2 + 1, 1)), umag, u)) def pretty(self, z): """ pretty(x) Args: - x (``list``, ``tuple``, ``numpy.ndarray``): Decision chromosome, e.g. (``pygmo.population.champion_x``). Prints human readable information on the trajectory represented by the decision vector x """ data = self.get_traj(z) self._pretty(z) print("\nSpacecraft Initial Position (m) : [{!r}, {!r}, {!r}]".format( data[0, 1], data[0, 2], data[0, 3])) print("Spacecraft Initial Velocity (m/s): [{!r}, {!r}, {!r}]".format( data[0, 4], data[0, 5], data[0, 6])) print("Spacecraft Initial Mass (kg) : {!r}".format(data[0, 7])) print("Spacecraft Final Position (m) : [{!r}, {!r}, {!r}]".format( data[-1, 1], data[-1, 2], data[-1, 3])) print("Spacecraft Final Velocity (m/s): [{!r}, {!r}, {!r}]".format( data[-1, 4], data[-1, 5], data[-1, 6])) print("Spacecraft Final Mass (kg) : {!r}".format(data[-1, 7])) class direct_pl2pl(_direct_base): """Represents a direct transcription transfer between solar system planets. This problem works by manipulating the starting epoch t0, the transfer time T the final mass mf and the controls The decision vector is:: z = [t0, T, mf, Vxi, Vyi, Vzi, Vxf, Vyf, Vzf, controls] """ def __init__(self, p0="earth", pf="mars", mass=1000, thrust=0.3, isp=3000, nseg=20, t0=[500, 1000], tof=[200, 500], vinf_dep=1e-3, vinf_arr=1e-3, hf=False): """Initialises a direct transcription orbit to orbit problem. Args: - p0 (``str``): Departure planet name. (will be used to construct a planet.jpl_lp object) - pf (``str``): Arrival planet name. (will be used to construct a planet.jpl_lp object) - mass (``float``, ``int``): Spacecraft wet mass [kg]. - thrust (``float``, ``int``): Spacecraft maximum thrust [N]. - isp (``float``, ``int``): Spacecraft specific impulse [s]. - nseg (``int``): Number of colocation nodes. - t0 (``list``): Launch epochs bounds [mjd2000]. - tof (``list``): Transfer time bounds [days]. - vinf_dep (``float``): allowed launch DV [km/s] - vinf_arr (``float``): allowed arrival DV [km/s] - hf (``bool``): High-fidelity. Activates a continuous representation for the thrust. """ # initialise base _direct_base.__init__(self, mass, thrust, isp, nseg, pk.MU_SUN, hf) # planets if all([isinstance(pl, str) for pl in [p0, pf]]): self.p0 = pk.planet.jpl_lp(p0) self.pf = pk.planet.jpl_lp(pf) else: raise TypeError("Planet names must be supplied as str.") # bounds TODO check self.t0 = t0 self.tof = tof # boundary conditions on velocity self.vinf_dep = vinf_dep * 1000 # (in m) self.vinf_arr = vinf_arr * 1000 # (in m) # The class is built around solar system plaents hence mu is always the # SUN self.mu = pk.MU_SUN def fitness(self, z): # epochs (mjd2000) t0 = pk.epoch(z[0]) tf = pk.epoch(z[0] + z[1]) # final mass mf = z[2] # controls u = z[9:] # compute Cartesian states of planets r0, v0 = self.p0.eph(t0) rf, vf = self.pf.eph(tf) # add the vinfs from the chromosome v0 = [a + b for a, b in zip(v0, z[3:6])] vf = [a + b for a, b in zip(vf, z[6:9])] # spacecraft states x0 = pk.sims_flanagan.sc_state(r0, v0, self.sc.mass) xf = pk.sims_flanagan.sc_state(rf, vf, mf) # set leg self.leg.set(t0, x0, u, tf, xf) # compute equality constraints ceq = np.asarray(self.leg.mismatch_constraints(), np.float64) # nondimensionalise equality constraints ceq[0:3] /= pk.AU ceq[3:6] /= pk.EARTH_VELOCITY ceq[6] /= self.sc.mass # compute inequality constraints cineq = np.asarray(self.leg.throttles_constraints(), np.float64) # compute inequality constraints on departure and arrival velocities v_dep_con = (z[3] ** 2 + z[4] ** 2 + z[5] ** 2 - self.vinf_dep ** 2) v_arr_con = (z[6] ** 2 + z[7] ** 2 + z[8] ** 2 - self.vinf_arr ** 2) # nondimensionalize inequality constraints v_dep_con /= pk.EARTH_VELOCITY ** 2 v_arr_con /= pk.EARTH_VELOCITY ** 2 return np.hstack(([-mf], ceq, cineq, [v_dep_con, v_arr_con])) def get_nic(self): return super().get_nic() + 2 def get_bounds(self): lb = [self.t0[0], self.tof[0], self.sc.mass * 0.1] + \ [-self.vinf_dep] * 3 + [-self.vinf_arr] * 3 + \ [-1, -1, -1] * self.nseg ub = [self.t0[1], self.tof[1], self.sc.mass] + \ [self.vinf_dep] * 3 + [self.vinf_arr] * 3 + \ [1, 1, 1] * self.nseg return (lb, ub) def _plot_traj(self, z, axis, units): # times t0 = pk.epoch(z[0]) tf = pk.epoch(z[0] + z[1]) # plot Keplerian pk.orbit_plots.plot_planet( self.p0, t0, units=units, color=(0.8, 0.8, 0.8), axes=axis) pk.orbit_plots.plot_planet( self.pf, tf, units=units, color=(0.8, 0.8, 0.8), axes=axis) def _pretty(self, z): print("\nLow-thrust NEP transfer from " + self.p0.name + " to " + self.pf.name) print("\nLaunch epoch: {!r} MJD2000, a.k.a. {!r}".format( z[0], pk.epoch(z[0]))) print("Arrival epoch: {!r} MJD2000, a.k.a. {!r}".format( z[0] + z[1], pk.epoch(z[0] + z[1]))) print("Time of flight (days): {!r} ".format(z[1])) print("\nLaunch DV (km/s) {!r} - [{!r},{!r},{!r}]".format(np.sqrt( z[3]**2 + z[4]**2 + z[5]**2) / 1000, z[3] / 1000, z[4] / 1000, z[5] / 1000)) print("Arrival DV (km/s) {!r} - [{!r},{!r},{!r}]".format(np.sqrt( z[6]**2 + z[7]**2 + z[8]**2) / 1000, z[6] / 1000, z[7] / 1000, z[8] / 1000)) @staticmethod def _get_controls(z): return z[9:] class direct_or2or(_direct_base): """Represents a direct transcription transfer between orbits. This problem works by manipulating the time of flight ``T``, final mass ``mf`` and mean anomolies ``M0, Mf``. :: z = [T, mf, M0, Mf, controls] """ def __init__(self, elem0, elemf, mass, thrust, isp, nseg, Tlb, Tub, E0lb, E0ub, Eflb, Efub, mu=pk.MU_SUN, hf=True): """Initialises a direct transcription orbit to orbit problem. Args: - elem0 (``list``, ``tuple``, ``numpy.ndarray``): Departure Keplerian elements. The eccentric anomlay will be manipulated. - elemf (``list``, ``tuple``, ``numpy.ndarray``): Arrival Keplerian elements. The eccentric anomlay will be manipulated. - mass (``float``, ``int``): Spacecraft wet mass [kg]. - thrust (``float``, ``int``): Spacecraft maximum thrust [N]. - isp (``float``, ``int``): Spacecraft specific impulse [s]. - nseg (``int``): Number of colocation nodes. - Tlb (``float``, ``int``): Minimimum time of flight [mjd2000]. - Tub (``float``, ``int``): Maximum time of flight [mjd2000]. - E0lb (``float``, ``int``): Minimum departure eccentric anomoly [rad]. - E0ub (``float``, ``int``): Maximum departure eccentric anomoly [rad]. - Eflb (``float``, ``int``): Minimum arrival eccentric anomoly [rad]. - E0fb (``float``, ``int``): Maximum arrival eccentric anomoly [rad]. - mu (``float``): Gravitational parameter of primary body [m^3/s^2]. - hf (``bool``): ``True`` for continous thrust, ``False`` for impulsive thrust. """ if all([(isinstance(elem, list) or isinstance(elem, tuple) or isinstance(elem, np.ndarray)) for elem in [elem0, elemf]]): elem0 = np.asarray(elem0, np.float64) elemf = np.asarray(elemf, np.float64) else: raise ValueError( "Both elem0 and elemf must be supplied as instances of list, tuple, or numpy.ndarray.") if all([elem.size == 6 for elem in [elem0, elemf]]): self.elem0 = elem0 self.elemf = elemf else: raise TypeError("Both elem0 and elemf must be 6-dimensional.") if not all([(isinstance(T, float) or isinstance(T, int)) for T in [Tlb, Tub]]): raise TypeError( "Both Tlb and Tub must be supplied as instances of either float or int.") elif not Tlb < Tub: raise ValueError("Tlb must be less than Tub.") else: self.Tlb = float(Tlb) self.Tub = float(Tub) # initialise base _direct_base.__init__(self, mass, thrust, isp, nseg, mu, hf) self.mu = mu self.E0lb = E0lb self.E0ub = E0ub self.Eflb = Eflb self.Efub = Efub def fitness(self, z): # epochs (mjd2000) t0 = pk.epoch(0) tf = pk.epoch(z[0]) # final mass mf = z[1] # eccentric anomolies E0 = z[2] Ef = z[3] # controls u = z[4:] # set Keplerian elements self.elem0[5] = E0 self.elemf[5] = Ef # compute Cartesian states r0, v0 = pk.par2ic(self.elem0, self.mu) rf, vf = pk.par2ic(self.elemf, self.mu) # spacecraft states x0 = pk.sims_flanagan.sc_state(r0, v0, self.sc.mass) xf = pk.sims_flanagan.sc_state(rf, vf, mf) # set leg self.leg.set(t0, x0, u, tf, xf) # compute equality constraints ceq = np.asarray(self.leg.mismatch_constraints(), np.float64) # nondimensionalise equality constraints ceq[0:3] /= pk.AU ceq[3:6] /= pk.EARTH_VELOCITY ceq[6] /= self.sc.mass # compute inequality constraints cineq = np.asarray(self.leg.throttles_constraints(), np.float64) return np.hstack(([-mf], ceq, cineq)) def get_bounds(self): pi = 3.14159265359 lb = [self.Tlb, self.sc.mass / 10, self.E0lb, self.Eflb, *(-1, -1, -1) * self.nseg] ub = [self.Tub, self.sc.mass, self.E0ub, self.Efub, *(1, 1, 1) * self.nseg] return (lb, ub) def _plot_traj(self, z, axis, units): # times t0 = pk.epoch(0) tf = pk.epoch(z[0]) # Keplerian kep0 = pk.planet.keplerian(t0, self.elem0) kepf = pk.planet.keplerian(tf, self.elemf) # plot Keplerian pk.orbit_plots.plot_planet( kep0, t0, units=units, color=(0.8, 0.8, 0.8), axes=axis) pk.orbit_plots.plot_planet( kepf, tf, units=units, color=(0.8, 0.8, 0.8), axes=axis) @staticmethod def _get_controls(z): return z[4:]
gpl-3.0
kjung/scikit-learn
sklearn/decomposition/tests/test_pca.py
12
11809
import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_no_warnings from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() def test_pca(): # PCA on dense arrays pca = PCA(n_components=2) X = iris.data X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], 2) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) pca = PCA() pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: pca.n_components = n_components pca.fit(X) cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) def test_no_empty_slice_warning(): # test if we avoid numpy warnings for computing over empty arrays n_components = 10 n_features = n_components + 2 # anything > n_comps triggered it in 0.16 X = np.random.uniform(-1, 1, size=(n_components, n_features)) pca = PCA(n_components=n_components) assert_no_warnings(pca.fit, X) def test_whitening(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaining 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_almost_equal(X.std(axis=0).std(), 43.9, 1) for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA) for y in (True, False)]: # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = this_PCA(n_components=n_components, whiten=True, copy=copy) if hasattr(pca, 'random_state'): pca.random_state = rng # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components), decimal=4) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = this_PCA(n_components=n_components, whiten=False, copy=copy).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. def test_explained_variance(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2).fit(X) rpca = RandomizedPCA(n_components=2, random_state=rng).fit(X) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 1) # compare to empirical variances X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, axis=0)) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, axis=0), decimal=1) # Same with correlated data X = datasets.make_classification(n_samples, n_features, n_informative=n_features-2, random_state=rng)[0] pca = PCA(n_components=2).fit(X) rpca = RandomizedPCA(n_components=2, random_state=rng).fit(X) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 5) def test_pca_check_projection(): # Test that the projection of data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): # Test that the projection of data can be inverted rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): X = [[0, 1], [1, 0]] for n_components in [-1, 3]: assert_raises(ValueError, PCA(n_components).fit, X) def test_randomized_pca_check_projection(): # Test that the projection by RandomizedPCA on dense data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = RandomizedPCA(n_components=2, random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): # Test that the projection by RandomizedPCA on list data is correct X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = RandomizedPCA(n_components=1, random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): # Test that RandomizedPCA is inversible on dense data rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = RandomizedPCA(n_components=2, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = RandomizedPCA(n_components=2, whiten=True, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_almost_equal(relative_max_delta, 0.11, decimal=2) def test_pca_dim(): # Check automated dimensionality setting rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95) pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01) pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5).fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): # Test that probabilistic PCA scoring yields a reasonable score n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): # Test that probabilistic PCA correctly separated different datasets n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives the same scores if whiten=True pca = PCA(n_components=2, whiten=True) pca.fit(X) ll2 = pca.score(X) assert_almost_equal(ll1, ll2) def test_pca_score3(): # Check that probabilistic PCA selects the right model n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k) pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1)
bsd-3-clause
alkyl1978/gnuradio
gr-analog/examples/fmtest.py
40
7941
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter from gnuradio import analog from gnuradio import channels import sys, math, time try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) class fmtx(gr.hier_block2): def __init__(self, lo_freq, audio_rate, if_rate): gr.hier_block2.__init__(self, "build_fm", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(1, 1, gr.sizeof_gr_complex)) fmtx = analog.nbfm_tx(audio_rate, if_rate, max_dev=5e3, tau=75e-6) # Local oscillator lo = analog.sig_source_c(if_rate, # sample rate analog.GR_SIN_WAVE, # waveform type lo_freq, # frequency 1.0, # amplitude 0) # DC Offset mixer = blocks.multiply_cc() self.connect(self, fmtx, (mixer, 0)) self.connect(lo, (mixer, 1)) self.connect(mixer, self) class fmtest(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._nsamples = 1000000 self._audio_rate = 8000 # Set up N channels with their own baseband and IF frequencies self._N = 5 chspacing = 16000 freq = [10, 20, 30, 40, 50] f_lo = [0, 1*chspacing, -1*chspacing, 2*chspacing, -2*chspacing] self._if_rate = 4*self._N*self._audio_rate # Create a signal source and frequency modulate it self.sum = blocks.add_cc() for n in xrange(self._N): sig = analog.sig_source_f(self._audio_rate, analog.GR_SIN_WAVE, freq[n], 0.5) fm = fmtx(f_lo[n], self._audio_rate, self._if_rate) self.connect(sig, fm) self.connect(fm, (self.sum, n)) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamples) self.snk_tx = blocks.vector_sink_c() self.channel = channels.channel_model(0.1) self.connect(self.sum, self.head, self.channel, self.snk_tx) # Design the channlizer self._M = 10 bw = chspacing/2.0 t_bw = chspacing/10.0 self._chan_rate = self._if_rate / self._M self._taps = filter.firdes.low_pass_2(1, self._if_rate, bw, t_bw, attenuation_dB=100, window=filter.firdes.WIN_BLACKMAN_hARRIS) tpc = math.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) self.connect(self.channel, self.pfb) # Create a file sink for each of M output channels of the filter and connect it self.fmdet = list() self.squelch = list() self.snks = list() for i in xrange(self._M): self.fmdet.append(analog.nbfm_rx(self._audio_rate, self._chan_rate)) self.squelch.append(analog.standard_squelch(self._audio_rate*10)) self.snks.append(blocks.vector_sink_f()) self.connect((self.pfb, i), self.fmdet[i], self.squelch[i], self.snks[i]) def num_tx_channels(self): return self._N def num_rx_channels(self): return self._M def main(): fm = fmtest() tstart = time.time() fm.run() tend = time.time() if 1: fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") Ns = 10000 Ne = 100000 fftlen = 8192 winfunc = scipy.blackman # Plot transmitted signal fs = fm._if_rate d = fm.snk_tx.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = sp1_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), visible=False) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-120.0, 20.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b-o") #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") sp1_t.set_ylim([-5, 5]) # Set up the number of rows and columns for plotting the subfigures Ncols = int(scipy.floor(scipy.sqrt(fm.num_rx_channels()))) Nrows = int(scipy.floor(fm.num_rx_channels() / Ncols)) if(fm.num_rx_channels() % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = fm._audio_rate for i in xrange(len(fm.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = fm.snks[i].data()[Ns:Ne] sp2_f = fig2.add_subplot(Nrows, Ncols, 1+i) X,freq = sp2_f.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), visible=False) #X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) X_o = 10.0*scipy.log10(abs(X)) #f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) f_o = scipy.arange(0, fs_o/2.0, fs_o/2.0/float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+0.1]) sp2_f.set_ylim([-120.0, 20.0]) sp2_f.grid(True) sp2_f.set_title(("Channel %d" % i), weight="bold") sp2_f.set_xlabel("Frequency (kHz)") sp2_f.set_ylabel("Power (dBW)") Ts = 1.0/fs_o Tmax = len(d)*Ts t_o = scipy.arange(0, Tmax, Ts) x_t = scipy.array(d) sp2_t = fig3.add_subplot(Nrows, Ncols, 1+i) p2_t = sp2_t.plot(t_o, x_t.real, "b") p2_t = sp2_t.plot(t_o, x_t.imag, "r") sp2_t.set_xlim([min(t_o), max(t_o)+1]) sp2_t.set_ylim([-1, 1]) sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": main()
gpl-3.0
adammenges/statsmodels
statsmodels/regression/_prediction.py
27
6035
# -*- coding: utf-8 -*- """ Created on Fri Dec 19 11:29:18 2014 Author: Josef Perktold License: BSD-3 """ import numpy as np from scipy import stats # this is similar to ContrastResults after t_test, partially copied and adjusted class PredictionResults(object): def __init__(self, predicted_mean, var_pred_mean, var_resid, df=None, dist=None, row_labels=None): self.predicted_mean = predicted_mean self.var_pred_mean = var_pred_mean self.df = df self.var_resid = var_resid self.row_labels = row_labels if dist is None or dist == 'norm': self.dist = stats.norm self.dist_args = () elif dist == 't': self.dist = stats.t self.dist_args = (self.df,) else: self.dist = dist self.dist_args = () @property def se_obs(self): return np.sqrt(self.var_pred_mean + self.var_resid) @property def se_mean(self): return np.sqrt(self.var_pred_mean) def conf_int(self, obs=False, alpha=0.05): """ Returns the confidence interval of the value, `effect` of the constraint. This is currently only available for t and z tests. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. Returns ------- ci : ndarray, (k_constraints, 2) The array has the lower and the upper limit of the confidence interval in the columns. """ se = self.se_obs if obs else self.se_mean q = self.dist.ppf(1 - alpha / 2., *self.dist_args) lower = self.predicted_mean - q * se upper = self.predicted_mean + q * se return np.column_stack((lower, upper)) def summary_frame(self, what='all', alpha=0.05): # TODO: finish and cleanup import pandas as pd from statsmodels.compat.collections import OrderedDict ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split ci_mean = self.conf_int(alpha=alpha, obs=False) to_include = OrderedDict() to_include['mean'] = self.predicted_mean to_include['mean_se'] = self.se_mean to_include['mean_ci_lower'] = ci_mean[:, 0] to_include['mean_ci_upper'] = ci_mean[:, 1] to_include['obs_ci_lower'] = ci_obs[:, 0] to_include['obs_ci_upper'] = ci_obs[:, 1] self.table = to_include #OrderedDict doesn't work to preserve sequence # pandas dict doesn't handle 2d_array #data = np.column_stack(list(to_include.values())) #names = .... res = pd.DataFrame(to_include, index=self.row_labels, columns=to_include.keys()) return res def get_prediction(self, exog=None, transform=True, weights=None, row_labels=None, pred_kwds=None): """ compute prediction results Parameters ---------- exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. weights : array_like, optional Weights interpreted as in WLS, used for the variance of the predicted residual. args, kwargs : Some models can take additional arguments or keywords, see the predict method of the model for the details. Returns ------- prediction_results : instance The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. """ ### prepare exog and row_labels, based on base Results.predict if transform and hasattr(self.model, 'formula') and exog is not None: from patsy import dmatrix exog = dmatrix(self.model.data.design_info.builder, exog) if exog is not None: if row_labels is None: if hasattr(exog, 'index'): row_labels = exog.index else: row_labels = None exog = np.asarray(exog) if exog.ndim == 1 and (self.model.exog.ndim == 1 or self.model.exog.shape[1] == 1): exog = exog[:, None] exog = np.atleast_2d(exog) # needed in count model shape[1] else: exog = self.model.exog if weights is None: weights = getattr(self.model, 'weights', None) if row_labels is None: row_labels = getattr(self.model.data, 'row_labels', None) # need to handle other arrays, TODO: is delegating to model possible ? if weights is not None: weights = np.asarray(weights) if (weights.size > 1 and (weights.ndim != 1 or weights.shape[0] == exog.shape[1])): raise ValueError('weights has wrong shape') ### end if pred_kwds is None: pred_kwds = {} predicted_mean = self.model.predict(self.params, exog, **pred_kwds) covb = self.cov_params() var_pred_mean = (exog * np.dot(covb, exog.T).T).sum(1) # TODO: check that we have correct scale, Refactor scale #??? var_resid = self.scale / weights # self.mse_resid / weights # special case for now: if self.cov_type == 'fixed scale': var_resid = self.cov_kwds['scale'] / weights dist = ['norm', 't'][self.use_t] return PredictionResults(predicted_mean, var_pred_mean, var_resid, df=self.df_resid, dist=dist, row_labels=row_labels)
bsd-3-clause
MediffRobotics/DeepRobotics
DeepLearnMaterials/tutorials/tensorflowTUT/tf11_build_network/full_code.py
1
1955
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # Youku video tutorial: http://i.youku.com/pythontutorial """ Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly. """ from __future__ import print_function import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs # Make up some real data x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32) y_data = np.square(x_data) - 0.5 + noise ##plt.scatter(x_data, y_data) ##plt.show() # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1]) # add hidden layer l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) # add output layer prediction = add_layer(l1, 10, 1, activation_function=None) # the error between prediciton and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step sess = tf.Session() # tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 sess.run(tf.global_variables_initializer()) for i in range(1000): # training sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: # to see the step improvement print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
gpl-3.0
computational-class/computational-communication-2016
code/tba/DeepLearningMovies/KaggleWord2VecUtility.py
12
2103
#!/usr/bin/env python import re import nltk import pandas as pd import numpy as np from bs4 import BeautifulSoup from nltk.corpus import stopwords class KaggleWord2VecUtility(object): """KaggleWord2VecUtility is a utility class for processing raw HTML text into segments for further learning""" @staticmethod def review_to_wordlist( review, remove_stopwords=False ): # Function to convert a document to a sequence of words, # optionally removing stop words. Returns a list of words. # # 1. Remove HTML review_text = BeautifulSoup(review).get_text() # # 2. Remove non-letters review_text = re.sub("[^a-zA-Z]"," ", review_text) # # 3. Convert words to lower case and split them words = review_text.lower().split() # # 4. Optionally remove stop words (false by default) if remove_stopwords: stops = set(stopwords.words("english")) words = [w for w in words if not w in stops] # # 5. Return a list of words return(words) # Define a function to split a review into parsed sentences @staticmethod def review_to_sentences( review, tokenizer, remove_stopwords=False ): # Function to split a review into parsed sentences. Returns a # list of sentences, where each sentence is a list of words # # 1. Use the NLTK tokenizer to split the paragraph into sentences raw_sentences = tokenizer.tokenize(review.decode('utf8').strip()) # # 2. Loop over each sentence sentences = [] for raw_sentence in raw_sentences: # If a sentence is empty, skip it if len(raw_sentence) > 0: # Otherwise, call review_to_wordlist to get a list of words sentences.append( KaggleWord2VecUtility.review_to_wordlist( raw_sentence, \ remove_stopwords )) # # Return the list of sentences (each sentence is a list of words, # so this returns a list of lists return sentences
mit
r-mart/scikit-learn
sklearn/decomposition/tests/test_online_lda.py
49
13124
import numpy as np from scipy.linalg import block_diag from scipy.sparse import csr_matrix from scipy.special import psi from sklearn.decomposition import LatentDirichletAllocation from sklearn.decomposition._online_lda import (_dirichlet_expectation_1d, _dirichlet_expectation_2d) from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.utils.validation import NotFittedError from sklearn.externals.six.moves import xrange def _build_sparse_mtx(): # Create 3 topics and each topic has 3 disticnt words. # (Each word only belongs to a single topic.) n_topics = 3 block = n_topics * np.ones((3, 3)) blocks = [block] * n_topics X = block_diag(*blocks) X = csr_matrix(X) return (n_topics, X) def test_lda_default_prior_params(): # default prior parameter should be `1 / topics` # and verbose params should not affect result n_topics, X = _build_sparse_mtx() prior = 1. / n_topics lda_1 = LatentDirichletAllocation(n_topics=n_topics, doc_topic_prior=prior, topic_word_prior=prior, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, random_state=0) topic_distr_1 = lda_1.fit_transform(X) topic_distr_2 = lda_2.fit_transform(X) assert_almost_equal(topic_distr_1, topic_distr_2) def test_lda_fit_batch(): # Test LDA batch learning_offset (`fit` method with 'batch' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, evaluate_every=1, learning_method='batch', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_fit_online(): # Test LDA online learning (`fit` method with 'online' learning) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., evaluate_every=1, learning_method='online', random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_partial_fit(): # Test LDA online learning (`partial_fit` method) # (same as test_lda_batch) rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=10., total_samples=100, random_state=rng) for i in xrange(3): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_dense_input(): # Test LDA with dense input. rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, learning_method='batch', random_state=rng) lda.fit(X.toarray()) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for component in lda.components_: # Find top 3 words in each LDA component top_idx = set(component.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_transform(): # Test LDA transform. # Transform result cannot be negative rng = np.random.RandomState(0) X = rng.randint(5, size=(20, 10)) n_topics = 3 lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) X_trans = lda.fit_transform(X) assert_true((X_trans > 0.0).any()) def test_lda_fit_transform(): # Test LDA fit_transform & transform # fit_transform and transform result should be the same for method in ('online', 'batch'): rng = np.random.RandomState(0) X = rng.randint(10, size=(50, 20)) lda = LatentDirichletAllocation(n_topics=5, learning_method=method, random_state=rng) X_fit = lda.fit_transform(X) X_trans = lda.transform(X) assert_array_almost_equal(X_fit, X_trans, 4) def test_lda_partial_fit_dim_mismatch(): # test `n_features` mismatch in `partial_fit` rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_col = rng.randint(6, 10) X_1 = np.random.randint(4, size=(10, n_col)) X_2 = np.random.randint(4, size=(10, n_col + 1)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.partial_fit(X_1) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) def test_invalid_params(): # test `_check_params` method X = np.ones((5, 10)) invalid_models = ( ('n_topics', LatentDirichletAllocation(n_topics=0)), ('learning_method', LatentDirichletAllocation(learning_method='unknown')), ('total_samples', LatentDirichletAllocation(total_samples=0)), ('learning_offset', LatentDirichletAllocation(learning_offset=-1)), ) for param, model in invalid_models: regex = r"^Invalid %r parameter" % param assert_raises_regexp(ValueError, regex, model.fit, X) def test_lda_negative_input(): # test pass dense matrix with sparse negative input. X = -np.ones((5, 10)) lda = LatentDirichletAllocation() regex = r"^Negative values in data passed" assert_raises_regexp(ValueError, regex, lda.fit, X) def test_lda_no_component_error(): # test `transform` and `perplexity` before `fit` rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) lda = LatentDirichletAllocation() regex = r"^no 'components_' attribute" assert_raises_regexp(NotFittedError, regex, lda.transform, X) assert_raises_regexp(NotFittedError, regex, lda.perplexity, X) def test_lda_transform_mismatch(): # test `n_features` mismatch in partial_fit and transform rng = np.random.RandomState(0) X = rng.randint(4, size=(20, 10)) X_2 = rng.randint(4, size=(10, 8)) n_topics = rng.randint(3, 6) lda = LatentDirichletAllocation(n_topics=n_topics, random_state=rng) lda.partial_fit(X) assert_raises_regexp(ValueError, r"^The provided data has", lda.partial_fit, X_2) @if_safe_multiprocessing_with_blas def test_lda_multi_jobs(): n_topics, X = _build_sparse_mtx() # Test LDA batch training with multi CPU for method in ('online', 'batch'): rng = np.random.RandomState(0) lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2, learning_method=method, random_state=rng) lda.fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) @if_safe_multiprocessing_with_blas def test_lda_partial_fit_multi_jobs(): # Test LDA online training with multi CPU rng = np.random.RandomState(0) n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, n_jobs=2, learning_offset=5., total_samples=30, random_state=rng) for i in range(2): lda.partial_fit(X) correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] for c in lda.components_: top_idx = set(c.argsort()[-3:][::-1]) assert_true(tuple(sorted(top_idx)) in correct_idx_grps) def test_lda_preplexity_mismatch(): # test dimension mismatch in `perplexity` method rng = np.random.RandomState(0) n_topics = rng.randint(3, 6) n_samples = rng.randint(6, 10) X = np.random.randint(4, size=(n_samples, 10)) lda = LatentDirichletAllocation(n_topics=n_topics, learning_offset=5., total_samples=20, random_state=rng) lda.fit(X) # invalid samples invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_topics)) assert_raises_regexp(ValueError, r'Number of samples', lda.perplexity, X, invalid_n_samples) # invalid topic number invalid_n_topics = rng.randint(4, size=(n_samples, n_topics + 1)) assert_raises_regexp(ValueError, r'Number of topics', lda.perplexity, X, invalid_n_topics) def test_lda_perplexity(): # Test LDA perplexity for batch training # perplexity should be lower after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) distr_1 = lda_1.fit_transform(X) perp_1 = lda_1.perplexity(X, distr_1, sub_sampling=False) distr_2 = lda_2.fit_transform(X) perp_2 = lda_2.perplexity(X, distr_2, sub_sampling=False) assert_greater_equal(perp_1, perp_2) perp_1_subsampling = lda_1.perplexity(X, distr_1, sub_sampling=True) perp_2_subsampling = lda_2.perplexity(X, distr_2, sub_sampling=True) assert_greater_equal(perp_1_subsampling, perp_2_subsampling) def test_lda_score(): # Test LDA score for batch training # score should be higher after each iteration n_topics, X = _build_sparse_mtx() for method in ('online', 'batch'): lda_1 = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method=method, total_samples=100, random_state=0) lda_2 = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, learning_method=method, total_samples=100, random_state=0) lda_1.fit_transform(X) score_1 = lda_1.score(X) lda_2.fit_transform(X) score_2 = lda_2.score(X) assert_greater_equal(score_2, score_1) def test_perplexity_input_format(): # Test LDA perplexity for sparse and dense input # score should be the same for both dense and sparse input n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=1, learning_method='batch', total_samples=100, random_state=0) distr = lda.fit_transform(X) perp_1 = lda.perplexity(X) perp_2 = lda.perplexity(X, distr) perp_3 = lda.perplexity(X.toarray(), distr) assert_almost_equal(perp_1, perp_2) assert_almost_equal(perp_1, perp_3) def test_lda_score_perplexity(): # Test the relationship between LDA score and perplexity n_topics, X = _build_sparse_mtx() lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=10, random_state=0) distr = lda.fit_transform(X) perplexity_1 = lda.perplexity(X, distr, sub_sampling=False) score = lda.score(X) perplexity_2 = np.exp(-1. * (score / np.sum(X.data))) assert_almost_equal(perplexity_1, perplexity_2) def test_lda_empty_docs(): """Test LDA on empty document (all-zero rows).""" Z = np.zeros((5, 4)) for X in [Z, csr_matrix(Z)]: lda = LatentDirichletAllocation(max_iter=750).fit(X) assert_almost_equal(lda.components_.sum(axis=0), np.ones(lda.components_.shape[1])) def test_dirichlet_expectation(): """Test Cython version of Dirichlet expectation calculation.""" x = np.logspace(-100, 10, 10000) assert_allclose(_dirichlet_expectation_1d(x), np.exp(psi(x) - psi(np.sum(x))), atol=1e-19) x = x.reshape(100, 100) assert_allclose(_dirichlet_expectation_2d(x), psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]), rtol=1e-11, atol=3e-9)
bsd-3-clause
srli/SoftwareSystems
lecture14/thinkplot.py
88
12565
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import math import matplotlib import matplotlib.pyplot as pyplot import numpy as np # customize some matplotlib attributes #matplotlib.rc('figure', figsize=(4, 3)) #matplotlib.rc('font', size=14.0) #matplotlib.rc('axes', labelsize=22.0, titlesize=22.0) #matplotlib.rc('legend', fontsize=20.0) #matplotlib.rc('xtick.major', size=6.0) #matplotlib.rc('xtick.minor', size=3.0) #matplotlib.rc('ytick.major', size=6.0) #matplotlib.rc('ytick.minor', size=3.0) class Brewer(object): """Encapsulates a nice sequence of colors. Shades of blue that look good in color and can be distinguished in grayscale (up to a point). Borrowed from http://colorbrewer2.org/ """ color_iter = None colors = ['#081D58', '#253494', '#225EA8', '#1D91C0', '#41B6C4', '#7FCDBB', '#C7E9B4', '#EDF8B1', '#FFFFD9'] # lists that indicate which colors to use depending on how many are used which_colors = [[], [1], [1, 3], [0, 2, 4], [0, 2, 4, 6], [0, 2, 3, 5, 6], [0, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6], ] @classmethod def Colors(cls): """Returns the list of colors. """ return cls.colors @classmethod def ColorGenerator(cls, n): """Returns an iterator of color strings. n: how many colors will be used """ for i in cls.which_colors[n]: yield cls.colors[i] raise StopIteration('Ran out of colors in Brewer.ColorGenerator') @classmethod def InitializeIter(cls, num): """Initializes the color iterator with the given number of colors.""" cls.color_iter = cls.ColorGenerator(num) @classmethod def ClearIter(cls): """Sets the color iterator to None.""" cls.color_iter = None @classmethod def GetIter(cls): """Gets the color iterator.""" return cls.color_iter def PrePlot(num=None, rows=1, cols=1): """Takes hints about what's coming. num: number of lines that will be plotted """ if num: Brewer.InitializeIter(num) # TODO: get sharey and sharex working. probably means switching # to subplots instead of subplot. # also, get rid of the gray background. if rows > 1 or cols > 1: pyplot.subplots(rows, cols, sharey=True) global SUBPLOT_ROWS, SUBPLOT_COLS SUBPLOT_ROWS = rows SUBPLOT_COLS = cols def SubPlot(rows, cols, plot_number): """Configures the number of subplots and changes the current plot. rows: int cols: int plot_number: int """ pyplot.subplot(rows, cols, plot_number) class InfiniteList(list): """A list that returns the same value for all indices.""" def __init__(self, val): """Initializes the list. val: value to be stored """ list.__init__(self) self.val = val def __getitem__(self, index): """Gets the item with the given index. index: int returns: the stored value """ return self.val def Underride(d, **options): """Add key-value pairs to d only if key is not in d. If d is None, create a new dictionary. d: dictionary options: keyword args to add to d """ if d is None: d = {} for key, val in options.iteritems(): d.setdefault(key, val) return d def Clf(): """Clears the figure and any hints that have been set.""" Brewer.ClearIter() pyplot.clf() def Figure(**options): """Sets options for the current figure.""" Underride(options, figsize=(6, 8)) pyplot.figure(**options) def Plot(xs, ys, style='', **options): """Plots a line. Args: xs: sequence of x values ys: sequence of y values style: style string passed along to pyplot.plot options: keyword args passed to pyplot.plot """ color_iter = Brewer.GetIter() if color_iter: try: options = Underride(options, color=color_iter.next()) except StopIteration: print 'Warning: Brewer ran out of colors.' Brewer.ClearIter() options = Underride(options, linewidth=3, alpha=0.8) pyplot.plot(xs, ys, style, **options) def Scatter(xs, ys, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to pyplot.scatter """ options = Underride(options, color='blue', alpha=0.2, s=30, edgecolors='none') pyplot.scatter(xs, ys, **options) def Pmf(pmf, **options): """Plots a Pmf or Hist as a line. Args: pmf: Hist or Pmf object options: keyword args passed to pyplot.plot """ xs, ps = pmf.Render() if pmf.name: options = Underride(options, label=pmf.name) Plot(xs, ps, **options) def Pmfs(pmfs, **options): """Plots a sequence of PMFs. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: pmfs: sequence of PMF objects options: keyword args passed to pyplot.plot """ for pmf in pmfs: Pmf(pmf, **options) def Hist(hist, **options): """Plots a Pmf or Hist with a bar plot. The default width of the bars is based on the minimum difference between values in the Hist. If that's too small, you can override it by providing a width keyword argument, in the same units as the values. Args: hist: Hist or Pmf object options: keyword args passed to pyplot.bar """ # find the minimum distance between adjacent values xs, fs = hist.Render() width = min(Diff(xs)) if hist.name: options = Underride(options, label=hist.name) options = Underride(options, align='center', linewidth=0, width=width) pyplot.bar(xs, fs, **options) def Hists(hists, **options): """Plots two histograms as interleaved bar plots. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: hists: list of two Hist or Pmf objects options: keyword args passed to pyplot.plot """ for hist in hists: Hist(hist, **options) def Diff(t): """Compute the differences between adjacent elements in a sequence. Args: t: sequence of number Returns: sequence of differences (length one less than t) """ diffs = [t[i+1] - t[i] for i in range(len(t)-1)] return diffs def Cdf(cdf, complement=False, transform=None, **options): """Plots a CDF as a line. Args: cdf: Cdf object complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot Returns: dictionary with the scale options that should be passed to Config, Show or Save. """ xs, ps = cdf.Render() scale = dict(xscale='linear', yscale='linear') for s in ['xscale', 'yscale']: if s in options: scale[s] = options.pop(s) if transform == 'exponential': complement = True scale['yscale'] = 'log' if transform == 'pareto': complement = True scale['yscale'] = 'log' scale['xscale'] = 'log' if complement: ps = [1.0-p for p in ps] if transform == 'weibull': xs.pop() ps.pop() ps = [-math.log(1.0-p) for p in ps] scale['xscale'] = 'log' scale['yscale'] = 'log' if transform == 'gumbel': xs.pop(0) ps.pop(0) ps = [-math.log(p) for p in ps] scale['yscale'] = 'log' if cdf.name: options = Underride(options, label=cdf.name) Plot(xs, ps, **options) return scale def Cdfs(cdfs, complement=False, transform=None, **options): """Plots a sequence of CDFs. cdfs: sequence of CDF objects complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot """ for cdf in cdfs: Cdf(cdf, complement, transform, **options) def Contour(obj, pcolor=False, contour=True, imshow=False, **options): """Makes a contour plot. d: map from (x, y) to z, or object that provides GetDict pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot imshow: boolean, whether to use pyplot.imshow options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ try: d = obj.GetDict() except AttributeError: d = obj Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) xs, ys = zip(*d.iterkeys()) xs = sorted(set(xs)) ys = sorted(set(ys)) X, Y = np.meshgrid(xs, ys) func = lambda x, y: d.get((x, y), 0) func = np.vectorize(func) Z = func(X, Y) x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) if imshow: extent = xs[0], xs[-1], ys[0], ys[-1] pyplot.imshow(Z, extent=extent, **options) def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options): """Makes a pseudocolor plot. xs: ys: zs: pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) X, Y = np.meshgrid(xs, ys) Z = zs x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) def Config(**options): """Configures the plot. Pulls options out of the option dictionary and passes them to the corresponding pyplot functions. """ names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale', 'xticks', 'yticks', 'axis'] for name in names: if name in options: getattr(pyplot, name)(options[name]) loc = options.get('loc', 0) legend = options.get('legend', True) if legend: pyplot.legend(loc=loc) def Show(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various pyplot functions """ # TODO: figure out how to show more than one plot Config(**options) pyplot.show() def Save(root=None, formats=None, **options): """Saves the plot in the given formats. For options, see Config. Args: root: string filename root formats: list of string formats options: keyword args used to invoke various pyplot functions """ Config(**options) if formats is None: formats = ['pdf', 'eps'] if root: for fmt in formats: SaveFormat(root, fmt) Clf() def SaveFormat(root, fmt='eps'): """Writes the current figure to a file in the given format. Args: root: string filename root fmt: string format """ filename = '%s.%s' % (root, fmt) print 'Writing', filename pyplot.savefig(filename, format=fmt, dpi=300) # provide aliases for calling functons with lower-case names preplot = PrePlot subplot = SubPlot clf = Clf figure = Figure plot = Plot scatter = Scatter pmf = Pmf pmfs = Pmfs hist = Hist hists = Hists diff = Diff cdf = Cdf cdfs = Cdfs contour = Contour pcolor = Pcolor config = Config show = Show save = Save def main(): color_iter = Brewer.ColorGenerator(7) for color in color_iter: print color if __name__ == '__main__': main()
gpl-3.0
subodhchhabra/pandashells
pandashells/test/p_regress_tests.py
3
3640
#! /usr/bin/env python import sys import re from mock import patch, MagicMock from unittest import TestCase import numpy as np import pandas as pd from pandashells.bin.p_regress import main class MainTests(TestCase): @patch( 'pandashells.bin.p_regress.sys.argv', 'p.regress -m y~x'.split()) @patch('pandashells.bin.p_regress.io_lib.df_to_output') @patch('pandashells.bin.p_regress.io_lib.df_from_input') def test_cli_stats(self, df_from_input_mock, df_to_output_mock): df_in = pd.DataFrame({ 'x': range(1, 101), 'y': range(1, 101), }) df_from_input_mock.return_value = df_in write_mock = MagicMock() sys.stdout = MagicMock() sys.stdout.write = write_mock main() sys.stdout = sys.__stdout__ out_str = write_mock.call_args_list[0][0][0].replace('\n', ' ') rex = re.compile(r'.*x\s+1\.0+') m = rex.match(out_str) self.assertTrue(True if m else False) @patch( 'pandashells.bin.p_regress.sys.argv', 'p.regress -m y~x --plot'.split()) @patch('pandashells.bin.p_regress.io_lib.df_from_input') @patch('pandashells.bin.p_regress.get_module') def test_cli_plots_osx(self, get_module_mock, df_from_input_mock): backend_mock = MagicMock(lower=MagicMock(return_value='macosx')) mpl_mock = MagicMock(get_backend=MagicMock(return_value=backend_mock)) show_mock = MagicMock() plot_lib_mock = MagicMock(show=show_mock) get_module_mock.side_effect = [ plot_lib_mock, mpl_mock, MagicMock(return_value=MagicMock()), MagicMock(return_value=MagicMock()), ] df_in = pd.DataFrame({ 'x': range(1, 101), 'y': range(1, 101), }) df_from_input_mock.return_value = df_in sys.stdout = MagicMock() main() sys.stdout = sys.__stdout__ self.assertTrue(show_mock.called) @patch( 'pandashells.bin.p_regress.sys.argv', 'p.regress -m y~x --plot'.split()) @patch('pandashells.bin.p_regress.io_lib.df_from_input') @patch('pandashells.bin.p_regress.get_module') def test_cli_plots_tkagg(self, get_module_mock, df_from_input_mock): backend_mock = MagicMock() backend_mock.lower = MagicMock(return_value='tkagg') mpl_mock = MagicMock(get_backend=backend_mock) show_mock = MagicMock() plot_lib_mock = MagicMock(show=show_mock) get_module_mock.side_effect = [ plot_lib_mock, mpl_mock, MagicMock(return_value=MagicMock()), MagicMock(return_value=MagicMock()), ] df_in = pd.DataFrame({ 'x': range(1, 101), 'y': range(1, 101), }) df_from_input_mock.return_value = df_in sys.stdout = MagicMock() main() sys.stdout = sys.__stdout__ self.assertTrue(show_mock.called) @patch( 'pandashells.bin.p_regress.sys.argv', 'p.regress -m y~x --fit'.split()) @patch('pandashells.bin.p_regress.io_lib.df_to_output') @patch('pandashells.bin.p_regress.io_lib.df_from_input') def test_cli_fit(self, df_from_input_mock, df_to_output_mock): df_in = pd.DataFrame({ 'x': range(1, 101), 'y': range(1, 101), }) df_from_input_mock.return_value = df_in main() df_out = df_to_output_mock.call_args_list[0][0][1] self.assertTrue(np.allclose(df_out.y, df_out.fit_)) self.assertTrue(np.allclose(df_out.y * 0, df_out.resid_))
bsd-2-clause
Windy-Ground/scikit-learn
examples/cluster/plot_cluster_iris.py
350
2593
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show()
bsd-3-clause
LohithBlaze/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
alexei-matveev/ase-local
ase/calculators/ase_qmmm_manyqm.py
4
60409
"""QM/MM interface with QM=FHI-aims, MM=gromacs QM could be something else, but you need to read in qm-atom charges from the qm program (in method 'get_qm_charges') One can have many QM regions, each with a different calculator. There can be only one MM calculator, which is calculating the whole system. Non-bonded interactions: ------------------------ Generally: Within the same QM-QM: by qm calculator MM-MM: by MM calculator QM-MM: by MM using MM vdw parameters and QM charges. Different QM different QM: by MM using QM and MM charges and MM-vdw parameters The Hirschfeld charges (or other atomic charges) on QM atoms are calculated by QM in a H terminated cluster in vacuum. The charge of QM atom next to MM atom (edge-QM-atom) and its H neighbors are set as in the classical force field. The extra(missing) charge results from: 1) linkH atoms 2) The edge-QM atoms, and their qm-H neighbors, have their original MM charges. 3) and the fact that the charge of the QM fraction is not usually an integer when using the original MM charges. It is added equally to all QM atoms (not being linkH and not being edge-QM-atom or its H neighbor) so that the total charge of the MM-fragment involving QM atoms will be the same as in the original MM-description. Vdw interactions are calculated by MM-gromacs for MM and MM-QM inteactions. The QM-QM vdw interaction s could be done by the FHI-aims if desired (by modifying the imput for QM-FHI-aims input accordingly. Bonded interactions:: E= E_qm(QM-H) ; qm energy of H terminated QM cluster(s) + E_mm(ALL ATOMS) ; mm energy of all atoms, ; except for terms in which all MM-interacting atoms are ; in the same QM region Forces do not act on link atoms but they are positioned by scaling. Forces on link atoms are given to their QM and MM neighbors by chain rule. (see J. Chem. Theory Comput. 2011, 7, 761-777). The optimal edge-qm-atom-linkH bond length is calculated by QM in 'get_eq_qm_atom_link_h_distances' or they are read from a file. Questions & Comments [email protected] I'm especially interested in cases when we need two or more QM regions. For instance two redox centers in a protein, cathode and anode of a fuel cell ... you name it! Some things to improve: 1) Water topology issue (at the moment water cannot be in QM), Its topology should be put into the main topology file, not in a separate file. 2) point charges and periodicity (if desired) to the QM calculation (now in vacuum) 3) Eichinger type of link atom treatment with fitted force constants for linkH-QMedge (bond strecth) linkH-QMedge-QMnextTOedge (angle terms) 4) file io using unformatted formats (.trr) instead of g96 This is not easily possible without loading extra stuff from ftp://ftp.gromacs.org/pub/contrib/xd...e-1.1.1.tar.gz. 5) Utilize gromacs-python wrapper: (just found this today 31.12.2012...) http://orbeckst.github.com/GromacsWrapper/index.html# """ import sys import numpy as np def get_neighbor_list(system): """ Makes a neighbor list of a system (ase Atoms). See https:\ //wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html#module-calculators """ from ase.calculators.neighborlist import NeighborList from ase.data import covalent_radii import os import pickle NEIGHBOR_FILE = 'neighbor_list_for_ase_qmmm.txt' if os.path.exists(NEIGHBOR_FILE): print('Reading qm/mm neighbor list from file:') print('neighbor_list_for_ase_qmmm.txt') myfile = open(NEIGHBOR_FILE, 'r') neighbor_list = pickle.load(myfile) else: cut = [covalent_radii[atom.number] for atom in system] skin = [0.2 for atom in system] neighbor_list = NeighborList(cut, skin, \ self_interaction=False, bothways=True) neighbor_list.update(system) file = open(NEIGHBOR_FILE, 'w') pickle.dump(neighbor_list, file) file.close() return neighbor_list def get_qm_atoms(indexfilename='index.ndx'): """ Read the indexes of all QM atoms (there may be many QM regions) """ infile = open(indexfilename,'r') lines = infile.readlines() infile.close() qms = [] for iline, line in enumerate(lines): if (('[ QM' in line) or ('[ qm' in line) or ('[ Qm' in line)) \ or (('[QM' in line) or ('[qm' in line) or ('[Qm' in line)): qm = [] for checkline in lines[iline+1:]: if ('[') in checkline: break else: qm = qm + [int(float(s)-1.0) for s in \ checkline.split() if s.isdigit()] qm = list(set(qm)) qms.append(qm) return qms class LinkAtom: """ Class for information about a single link-atom (it terminates a QM cluster) qm_region_index and link_atom_index refer to the following indexing system: [[QM0 link atoms indexes from 0],[QM1 link atoms indexes from 0],...] So above the second link atom in second qm region would have qm_region_index=1, link_atom_index=1 link_atom_index_in_qm tells which index in qm system the link atom has for instance qm_region_index=1, link_atom_index_in_qm=20 means that link atom is 21'st atom in the second qm system """ def __init__(self, atom, qm_region_index, link_atom_index): """ set initial values to a link atom object """ self.atom = atom self.qm_region_index = qm_region_index self.link_atom_index = link_atom_index self.link_atom_index_in_qm = None self.qm_neighbor = None self.mm_neighbor = None self.qm2_neighbors = [] self.qm3_neighbors = [] self.mm2_neighbors = [] self.set_qm2_neighbors = set([]) self.set_qm3_neighbors = set([]) self.set_mm2_neighbors = set([]) self.force_constant = 0.0 self.equilibrium_distance_xh = 0.0 self.equilibrium_distance_xy = 0.0 def set_link_atom(self, atom): """ set an ase-atom to be the link atom """ self.atom = atom def set_link_atom_qm_region_index(self, qm_region_index): """ set to which qm region the link atom belongs to """ self.qm_region_index = qm_region_index def set_link_atom_index_in_qm(self, link_atom_index_in_qm): """ set what is my link atom index in this qm region """ self.link_atom_index_in_qm = link_atom_index_in_qm def set_link_atom_qm_neighbor(self, qm_neighbor): """ set what index does my qm neighbor have""" self.qm_neighbor = qm_neighbor def set_link_atom_mm_neighbor(self, mm_neighbor): """ set what index does my mm neighbor have""" self.mm_neighbor = mm_neighbor def set_link_atom_qm2_neighbors(self, qm2_neighbors): """ set what index does my second qm neighbor have""" self.qm2_neighbors = qm2_neighbors def set_link_atom_qm3_neighbors(self, qm3_neighbors): """ set what index does my third qm neighbor have""" self.qm3_neighbors = qm3_neighbors def set_link_atom_mm2_neighbors(self, mm2_neighbors): """ set what index does my second mm neighbor have""" self.mm2_neighbors = mm2_neighbors def set_force_constant(self, force_constant): """ set the force constant of bond edge-qm -- linkH (not used)""" self.force_constant = force_constant def set_equilibrium_distance_xh(self, equilibrium_distance_xh): """ set the equilibrium edge-qm -- linkH distance """ self.equilibrium_distance_xh = equilibrium_distance_xh def set_equilibrium_distance_xy(self, equilibrium_distance_xy): """set the equilibrium edge-qm -- edge-mm distance (by MM-force field)""" self.equilibrium_distance_xy = equilibrium_distance_xy def get_link_atom(self): """ get an ase-atom to be the link atom """ return self.atom def get_link_atom_qm_region_index(self): """ get to which qm region the link atom belongs to """ return self.qm_region_index def get_link_atom_index_in_qm(self): """ get what is my link atom index in this qm region """ return self.link_atom_index_in_qm def get_link_atom_qm_neighbor(self): """ get what index does my qm neighbor have""" return self.qm_neighbor def get_link_atom_mm_neighbor(self): """ get what index does my mm neighbor have""" return self.mm_neighbor def get_link_atom_qm2_neighbors(self): """ get what index does my second qm neighbor have""" return self.qm2_neighbors def get_link_atom_qm3_neighbors(self): """ get what index does my third qm neighbor have""" return self.qm3_neighbors def get_link_atom_mm2_neighbors(self): """ get what index does my second mm neighbor have""" return self.mm2_neighbors def get_force_constant(self): """ get the force constant of bond edge-qm -- linkH (not used)""" return self.force_constant def get_equilibrium_distance_xh(self): """ get the equilibrium edge-qm -- linkH distance """ return self.equilibrium_distance_xh def get_equilibrium_distance_xy(self): """get the equilibrium edge-qm -- edge-mm distance (by MM-force field)""" return self.equilibrium_distance_xy class AseQmmmManyqm: """ This is a qm/mm interface with qm=FHI-aims, mm=gromacs. We can have many QM regions, each with a different calculator. There can be only one MM calculator, which is calculating the whole system. Numeration of atoms starts from 0. (in qms, mms) In qm calculations link atom(s) come(s) last. For any qm region, the optimal bond lengths for all edge_atom-link_atom pairs are optimized by QM simultaneously at the beginning of the run when the flag link_info='byQM' is used (by method . The positions of other a """ def __init__(self, nqm_regions, \ qm_calculators, mm_calculator, \ link_info='byQM'): """ Set initial values to each qm and mm calculator. Additionally set information for the qm/mm interface. The information about qm and mm indexes is read from a file 'index.ndx' Which can be generated with a gromacs tool 'make_ndx' http://www.gromacs.org/Documentation/Gromacs_Utilities/make_ndx Parameters ========== nqm_regions: int how many qm regions qm_calculators: list members of a Class defining a Calculator ase-qm calculator for each qm region mm_calculator: a member of a Class defining a Calculator ase-mm calculator for mm (the whole system) link_info: str can be either 'byQM': the edge_qm_atom-link_h_atom distances are calculated by QM 'byFile':the edge_qm_atom-link_h_atom distances are read from a file """ from ase.io import read, write import os, glob # clean files = glob.glob('test-*') for file in files: try: os.remove(file) except OSError: pass self.atoms = None self.positions = None self.neighbor_list = None self.link_atoms = [] self.energy = None self.e_delta_stretch = None self.nqm_regions = nqm_regions self.qm_calculators = qm_calculators self.mm_calculator = mm_calculator self.qmatom_types = [] self.mmatom_types = [] #det unique name for each qm region # (the output file of each qm calculation) for i in range(len(self.qm_calculators)): self.qm_calculators[i].set(output_template = 'aims'+str(i)) self.link_systems = None self.equilibrium_distances_xy = [] self.equilibrium_distances_xh = [] self.force_constants = [] # get the sets of qm atoms self.qms = get_qm_atoms() self.set_qms = set(sum(self.qms, [])) print('qmsystem(s), indexing from 0:') print('') for index_out in self.qms: index_str = '' for index in index_out: index_str += str(index) + ' ' print ('%s' % index_str) print('') if ( len(self.qms) != nqm_regions): print ('Number of set of QM atoms does not match with nqm_regions') print ('self.qms %s' % str(self.qms)) print ('nqm_regions %s' % str(nqm_regions)) sys.exit() if ( len(self.qms) != len(qm_calculators)): print ('Number of set of QM atoms does not match with') print ('the number of QM calculators') sys.exit() #read the actual structure to define link atoms and their neighbors system_tmp = mm_calculator.atoms self.positions = system_tmp.get_positions() #get neighbor lists self.neighbor_list = get_neighbor_list(system_tmp) #get the mm-atoms next to link atoms for all qm regions (self.mms_edge, self.qms_edge, self.set_mms_edge, self.set_qms_edge) = \ self.get_edge_qm_and_mm_atoms(self.qms, system_tmp) #get the mm atoms being second neighbors to any qm atom (self.second_mms, self.set_second_mms) = \ self.get_next_neighbors(self.mms_edge, self.set_qms) #get the qm atoms being second neighbors to link atom (self.second_qms, self.set_second_qms) = \ self.get_next_neighbors(self.qms_edge, \ self.set_mms_edge) #get the qm atoms being neighbors to link atom (edge-qm atoms) # and their neighbors which have only single neighbor # (for example edge-QM(C)-H or edge-QM(C)=O; for charge exclusion) self.constant_charge_qms = \ self.get_constant_charge_qms\ (self.set_qms_edge, self.set_second_qms) #get the qm atoms being third neighbors to link atom (self.third_qms, self.set_third_qms) = \ self.get_next_neighbors\ (self.second_qms, self.set_qms_edge) print('self.qms %s' % self.qms) print('QM edge, MM edge %s' \ % str(self.qms_edge)+' '+ str(self.mms_edge)) print('MM second N of Link %s' % str(self.second_mms)) print('QM second N of Link %s' % str(self.second_qms)) print('QM third N of Link %s' % str(self.third_qms)) if link_info == 'byFILE': self.read_eq_distances_from_file() else: #get QM-MM bond lengths self.get_eq_distances_xy(\ topfilename=mm_calculator.topology_filename,\ force_field= mm_calculator.force_field) #get QM-linkH distances by QM for all link atoms self.get_eq_qm_atom_link_h_distances(system_tmp) # write current link-info data to file (it can be later used, # so XH bondconstants are already calculated by QM # Also one can manually change the XY bond lengths self.write_eq_distances_to_file(\ self.qms_edge) #get target charge of each qm-region self.classical_target_charge_sums = \ self.get_classical_target_charge_sums\ (self.mm_calculator.topology_filename, self.qms) #get a list of link H atoms self.link_atoms = self.get_link_atoms(\ self.qms_edge, self.mms_edge,\ self.force_constants,\ self.equilibrium_distances_xh, \ self.equilibrium_distances_xy) self.qmsystems = self.define_QM_clusters_in_vacuum(system_tmp) for iqm, qm in enumerate(self.qmsystems): write('test-qm-'+str(iqm)+'.xyz', qm) #attach calculators to qm regions for iqm, qm in enumerate(self.qmsystems): self.qmsystems[iqm].set_calculator(self.qm_calculators[iqm]) #attach calculators to the mm region (the whole system) self.mm_system = system_tmp self.mm_system.set_calculator(self.mm_calculator) #initialize total energy and forces of qm regions #and the mm energy self.qm_energies = [] self.qm_forces = [] self.qm_charges = [] self.sum_qm_charge = [] for iqm, qm in enumerate(self.qmsystems): self.qm_energies.append(0.0) self.qm_forces.append(None) self.qm_charges.append(None) self.sum_qm_charge.append(None) self.mm_energy = None #set initial zero forces self.forces = np.zeros((len(self.positions), 3)) self.charges = np.zeros((len(self.positions), 1)) try: os.remove(self.mm_calculator.topology_filename+'.orig') except: pass print('%s' % str(self.mm_calculator.topology_filename)) os.system('cp ' + self.mm_calculator.topology_filename + ' ' +\ self.mm_calculator.topology_filename + '.orig') #remove some classical bonded interaction in the topology file # this need to be done only once, because the bond topology # is unchanged during a QM/MM run #(QM charges can be updated in the topology, however) # the original topology is generated when calling Gromacs( # in the main script setting up QM, MM and minimization if (self.mm_calculator.name == 'Gromacs'): self.kill_top_lines_containing_only_qm_atoms\ (self.mm_calculator.topology_filename, self.qms, \ self.mm_calculator.topology_filename) else: print('Only Gromacs MM-calculator implemented in ASE-QM/MM') sys.exit() #exclude qm-qm non-bonded interactions in MM-gromacs self.add_exclusions() #generate input file for gromacs run self.mm_calculator.generate_gromacs_run_file() ######### end of Init ##################################### def get_forces(self, atoms): """get forces acting on all atoms except link atoms """ self.update(atoms) return self.forces def get_potential_energy(self, atoms): """ get the total energy of the MM and QM system(s) """ self.update(atoms) return self.energy def update(self, atoms): """Updates and does a check to see if a calculation is required""" if self.calculation_required(atoms): # performs an update of the atoms and qm systems self.atoms = atoms.copy() self.positions = atoms.get_positions() self.mm_system = atoms.copy() #get the positions of link H atoms self.link_atoms = self.get_link_atoms(\ self.qms_edge, self.mms_edge,\ self.force_constants,\ self.equilibrium_distances_xh, \ self.equilibrium_distances_xy) #get QM systens self.qmsystems = self.define_QM_clusters_in_vacuum(\ self.atoms) self.calculate(atoms) def calculation_required(self, atoms): """Checks if a calculation is required""" if ((self.positions is None) or (self.atoms != atoms) or (self.energy is None)): return True return False def calculate_mm(self): """ Calculating mm energies and forces """ import os mm = self.atoms mm.set_calculator(self.mm_calculator) if (self.mm_calculator.name == 'Gromacs'): try: os.remove(self.mm_calculator.base_filename+'.log') except: pass self.mm_calculator.update(mm) self.mm_energy = 0 self.mm_energy += mm.get_potential_energy() self.forces += mm.get_forces() def calculate_qms(self): """ QM calculations on all qm systems are carried out """ for iqm, qm in enumerate(self.qmsystems): qm.set_calculator(self.qm_calculators[iqm]) self.qm_energies[iqm] = qm.get_potential_energy() self.qm_forces[iqm] = np.zeros((len(qm), 3)) self.qm_forces[iqm] = qm.get_forces() (self.sum_qm_charge[iqm], self.qm_charges[iqm]) = \ self.get_qm_charges(iqm, number_of_link_atoms =\ len(self.qms_edge[iqm])) if (len(self.qms[iqm]) != len(self.qm_charges[iqm])): print('Problem in reading charges') print('len(self.qms[iqm]) %s' % str(len(self.qms[iqm]))) print('len(self.qm_charges[iqm]) %s' \ % str(len(self.qm_charges[iqm]))) print('Check the output of QM program') print('iqm, qm %s' % str(iqm)+ ' '+ str(qm)) print('self.qm_charges[iqm] %s' % str(self.qm_charges[iqm])) sys.exit() def calculate_single_qm(self, myqm, mycalculator): """ Calculate the qm energy of a single qm region (for X-H bond length calculations) """ myqm.set_calculator(mycalculator) return myqm.get_potential_energy() def run(self, atoms): """Runs QMs and MM""" self.forces = np.zeros((len(atoms), 3)) self.calculate_qms() # update QM charges to MM topology file self.set_qm_charges_to_mm_topology() #generate gromacs run file (.tpr) base on new topology self.mm_calculator.generate_gromacs_run_file() self.calculate_mm() def calculate(self, atoms): """gets all energies and forces (qm, mm, qm-mm and corrections)""" self.run(atoms) self.energy = sum(self.qm_energies)+self.mm_energy #map the forces of QM systems to all atoms #loop over qm regions for qm, qm_force in zip(self.qms, self.qm_forces): #loop over qm atoms in a qm region #set forces to the all-atom set (the all atom set does not # have link atoms) for iqm_atom, qm_atom in enumerate(qm): self.forces[qm_atom] = self.forces[qm_atom] + \ qm_force[iqm_atom] self.get_link_atom_forces(action = 'QM') def get_link_atoms(self, qm_links, mm_links, \ force_constants,\ equilibrium_distances_xh, equilibrium_distances_xy): """ QM atoms can be bonded to MM atoms. In this case one sets an extra H atom (a link atom). The positions of the all link H atoms in all qm regions are set along QM-MM and bond with length defined by: J. Chem. Theory Comput 2011, 7, 761-777, Eq 1 r_XH = r_XY_current*(r_XH_from_qm_calculation /r_XY_from_forceField) """ import math from ase import Atom link_hs = [] for i_qm_region, (qm0, mm0) in enumerate (zip( qm_links, mm_links)): for i_link_atom, (qmatom, mmatom) in enumerate (zip(qm0, mm0)): dx = (self.positions[mmatom, 0] - self.positions[qmatom, 0]) dy = (self.positions[mmatom, 1] - self.positions[qmatom, 1]) dz = (self.positions[mmatom, 2] - self.positions[qmatom, 2]) d = math.sqrt(dx* dx+ dy* dy+ dz* dz) unit_x = dx/ d unit_y = dy/ d unit_z = dz/ d xh_bond_length = \ d*\ self.equilibrium_distances_xh[i_qm_region][i_link_atom]/\ self.equilibrium_distances_xy[i_qm_region][i_link_atom] posh_x = self.positions[qmatom, 0] + unit_x* xh_bond_length posh_y = self.positions[qmatom, 1] + unit_y* xh_bond_length posh_z = self.positions[qmatom, 2] + unit_z* xh_bond_length tmp_link_h = (Atom('H', position=(posh_x, posh_y, posh_z))) link_h = LinkAtom(atom=tmp_link_h, \ qm_region_index = i_qm_region,\ link_atom_index = i_link_atom) link_h.set_link_atom_qm_neighbor(qmatom) link_h.set_link_atom_mm_neighbor(mmatom) link_h.set_force_constant(\ force_constants[i_qm_region][i_link_atom]) link_h.set_equilibrium_distance_xh(equilibrium_distances_xh\ [i_qm_region][i_link_atom]) link_h.set_equilibrium_distance_xy(equilibrium_distances_xy\ [i_qm_region][i_link_atom]) link_hs.append(link_h) return (link_hs) def get_link_atom_forces(self, action): """ Add forces due to link atom to QM atom and to MM atom next to each link atom. Top Curr Chem (2007) 268: 173-290 QM/MM Methods for Biological Systems Hans Martin Senn and Walter Thiel Eqs. 10(p192), 12(p193), 16a, 16b(p 194) """ for link_atom in self.link_atoms: i_qm_atom = link_atom.qm_neighbor i_mm_atom = link_atom.mm_neighbor i_qm_region = link_atom.qm_region_index link_atom_index_in_qm = link_atom.get_link_atom_index_in_qm() if (action == 'QM'): force_of_h = self.qm_forces[i_qm_region][link_atom_index_in_qm] elif (action == 'MM'): force_of_h = link_atom.mm_force else: print('not implemented in get_link_atom_forces') sys.exit() g = link_atom.equilibrium_distance_xh/\ link_atom.equilibrium_distance_xy self.forces[i_mm_atom, 0] = self.forces[i_mm_atom, 0] +\ force_of_h[0] * g self.forces[i_mm_atom, 1] = self.forces[i_mm_atom, 1] +\ force_of_h[1] * g self.forces[i_mm_atom, 2] = self.forces[i_mm_atom, 2] +\ force_of_h[2] * g self.forces[i_qm_atom, 0] = self.forces[i_qm_atom, 0] +\ force_of_h[0] * (1.0 - g) self.forces[i_qm_atom, 1] = self.forces[i_qm_atom, 1] +\ force_of_h[1] * (1.0 - g) self.forces[i_qm_atom, 2] = self.forces[i_qm_atom, 2] +\ force_of_h[2] * (1.0 - g) def add_energy_exclusion_group(self, indexfilename='index.ndx'): """ Add energy exclusions for MM calculations. This is the way to block non-bonded MM (coulomb&vdW) interactions within a single QM region. """ infile = open(indexfilename,'r') lines = infile.readlines() infile.close() qm_region_names = [] for line in lines: if (('QM' in line) or ('Qm' in line) or ('qm' in line)): qm_region_names.append(line.split()[1]) infile = open(self.mm_calculator.base_filename+'.mdp','r') lines = infile.readlines() infile.close() outfile = open(self.mm_calculator.base_filename+'.mdp','w') for line1 in lines: outfile.write(line1) outfile.write(';qm regions should not MM-interact with themselves \n') outfile.write(';but separate qm regions MM-interact with each other \n') outfile.write('energygrps = ') for name in qm_region_names: outfile.write(name + ' ') outfile.write('\n') outfile.write('energygrp_excl = ') for name in qm_region_names: outfile.write(name + ' ' + name + ' ') outfile.write('\n') outfile.close() return def add_exclusions(self): """ Add energy exclusions for MM calculations. This is the way to block non-bonded MM (coulomb&vdW) interactions within a single QM region. """ infile = open(self.mm_calculator.topology_filename,'r') lines = infile.readlines() infile.close() outfile = open(self.mm_calculator.topology_filename,'w') for line in lines: if '[ angle' in line: outfile.write('\n') outfile.write('[ exclusions ] \n') outfile.write(\ '; qm regions should not MM-interact with themselves \n') outfile.write(\ '; but separate qm regions MM-interact with each other \n') for qm_region in self.qms: for qm_atom1 in qm_region: outfile.write(str(qm_atom1 + 1) + ' ') for qm_atom2 in qm_region: if qm_atom1 != qm_atom2: outfile.write(str(qm_atom2 + 1) + ' ') outfile.write('\n') outfile.write('\n') outfile.write(line) outfile.close() return def get_qm_charges(self, i_current_qm, calculator='Aims', number_of_link_atoms = 0): """ Get partial charges on QM atoms. The charges at link atoms are not returned. """ if calculator == 'Aims': infile = open('aims'+str(i_current_qm)+'.out','r') lines = infile.readlines() infile.close() qm_charges = [] for line in lines: if ('Hirshfeld charge ' in line): qm_charges.append(float(line.split()[4])) sum_qm_charges = sum(qm_charges) #delete charges of link atoms if (number_of_link_atoms > 0): del qm_charges[-number_of_link_atoms:] return sum_qm_charges, qm_charges def get_topology_lines(self, lines): """ Get lines including charges of atoms (ok_lines) also comments in these lines (comment_lines) and lines before and after these lines (lines_before and lines_after) """ lines_before = [] lines_change = [] lines_after = [] do_lines_before = True do_lines_change = False for line in lines: if (' bonds ') in line: do_lines_change = False if do_lines_before: lines_before.append(line) elif do_lines_change: lines_change.append(line) else: lines_after.append(line) if (' atoms ') in line: do_lines_before = False do_lines_change = True #kill comments and empty lines, #get the charge in the topology file comment_lines = [] lines_ok = [] for iline in range(len(lines_change)): if lines_change[iline].startswith(';'): comment_lines.append(lines_change[iline]) elif not lines_change[iline].strip(): pass else: try: #new charge = float(lines_change[iline].split()[6]) #new charge_orig = charge_orig + charge #top_charge.append(charge) lines_ok.append(lines_change[iline]) except: print('error in reading gromacs topology') print('line is') print('%s' % lines_change[iline]) sys.exit() return lines_before, comment_lines, lines_ok, lines_after def set_qm_charges_to_mm_topology(self): """ Set qm charges to qm atoms of MM topology based on a QM calculation. 1) The charges of link atoms are neglected. 2) The charge of a qm atom next to the link atom is set to be the same value as in the original topology file. (trying to avoid the artificial polarization due to qmAtom-linkH). 3) the total charge of the system (all QM and MM atoms) should be the same as in the original classical system. Therefore, all the QM atoms will gain/loose an equal amount of charge in the MM topology file. """ infile = open(self.mm_calculator.topology_filename,'r') lines = infile.readlines() infile.close() (lines_before, comment_lines, lines_ok, lines_after) = \ self.get_topology_lines(lines) #check that the atom numering is ok for iline in range(len(lines_ok)): atom_nr = iline + 1 if int(lines_ok[iline].split()[0]) != atom_nr: print('2: error in reading gromacs topology') print('line is') print('%s' % lines_ok[iline]) sys.exit() # get the total charge of non-link H atoms in the current qm system # The charges of edge atoms and their H neighbors # are taken from topology # (they are unchanged, it is not from QM calculations) for iqm, qm in enumerate(self.qms): charges = self.qm_charges[iqm] charges_ok = charges qm_charge_no_link_edge_mm = 0.0 n_qm_charge_atoms = 0 for qm_atom, charge in zip(qm, charges): if qm_atom not in self.constant_charge_qms: qm_charge_no_link_edge_mm = \ qm_charge_no_link_edge_mm + charge n_qm_charge_atoms = n_qm_charge_atoms + 1 # correct the total charge to be equal the original one # in the topology file by # adding/ substracting missing/extra charge on # non-edge and non-single neighbor next neib QM atoms change_charge = \ ( self.classical_target_charge_sums[iqm] - \ qm_charge_no_link_edge_mm)/\ float(n_qm_charge_atoms) for iqmatom, qmatom in enumerate(qm): if qmatom not in self.constant_charge_qms: charges_ok[iqmatom] = charges[iqmatom] + change_charge # set qm charges to the lines of gromacs topology file for iqmatom, qmatom in enumerate(qm): if qmatom not in self.constant_charge_qms: lines_ok[qmatom] = \ lines_ok[qmatom][0:45]\ +str(round((charges_ok[iqmatom]),5)).rjust(11)+\ lines_ok[qmatom][56:70] # write out the new topology file sum_charge = 0.0 for iline in range(len(lines_ok)): sum_charge = sum_charge + float(lines_ok[iline][46:56]) comment = '; qtot '+str(round(sum_charge,4))+'\n'.ljust(12) outfile = open(self.mm_calculator.topology_filename, 'w') for line in lines_before: outfile.write(line) for line in comment_lines: outfile.write(line) sum_charge = 0.0 for line in lines_ok: sum_charge = sum_charge + float(line[46:56]) comment = '; qtot '+str(round(sum_charge,4)).ljust(11)+'\n' outfile.write(line[0:70]+comment) outfile.write('\n') for line in lines_after: outfile.write(line) outfile.close() #------------------------------------------------------------------ #------Below the stuff needed for initializing the QM/MM system --- #------Setting up link atoms, defining QM and MM regions ---------- #------------------------------------------------------------------ def get_edge_qm_and_mm_atoms(self, qms, system): """ Get neighbors of QM atoms (MM-link-atoms) that are not in QM (there may be many QM regions) edge-QM atom can NOT be neighbored by H atom(s) also get edge-QM atoms """ masses = system.get_masses() mms1 = [] qms1 = [] setmms1 = set([]) setqms1 = set([]) for qm in qms: link_mm_atoms = [] link_qm_atoms = [] for qm_atom in qm: indices, offsets = self.neighbor_list.get_neighbors(qm_atom) for neib_atom in indices: if neib_atom not in qm: link_mm_atoms.append(neib_atom) #take unique atoms of flattened list link_mm_atoms = list(set(link_mm_atoms)) # Kill MM atoms that are H atoms in the neighborlist oklink_mm_atoms = [] for index in link_mm_atoms: if masses[index] > 1.5: oklink_mm_atoms.append(index) else: print('WARNING:') print('qm system cannot be bond to H atoms') print('problem atom index is (numbering from 1): %s' \ % str(index+1)) print('if this is water H you should consider including it') print('in QM') #sys.exit() #get indexes of QM edge atoms, # one qm atom can be more then one time an edge atom # (then this QM atom will have more than one link atoms) for link_mm_atom in oklink_mm_atoms: indices, offsets = \ self.neighbor_list.get_neighbors(link_mm_atom) for neib_atom in indices: if neib_atom in qm: link_qm_atoms.append(neib_atom) mms1.append(oklink_mm_atoms) qms1.append(link_qm_atoms) setmms1 |= set(oklink_mm_atoms) setqms1 |= set(link_qm_atoms) return mms1, qms1, setmms1, setqms1 def get_next_neighbors(self, atom_indexes, prohibited_set): """ Get neighbors of all atoms in 'atom_indexes' that are not in 'prohibited_set'. 'atom_indexes' is a list of list in which atom indexes belonging of each QM region is a separate list, that is [[QM1 atom_indexes], [QM2 atom_indexes], ...] """ list_neibs = [] set_list_neibs = set([]) for current_atoms in atom_indexes: neibs = [] set_current_atoms = set(current_atoms) for current_atom in current_atoms: indices, offsets = \ self.neighbor_list.get_neighbors(current_atom) setneib = set(indices) neibs += list(setneib - set_current_atoms-prohibited_set) list_neibs.append(neibs) set_list_neibs |= set(neibs) return list_neibs, set_list_neibs def get_constant_charge_qms(self, set_qms_edge, set_second_qms): """ get indices of all qm atoms whose charge in MM calculations is taken from the original MM-topology (not from the QM calculation). These atoms are edge QM atoms and their neighbors in QM which have only one neighbor. At least C(edge-qm)-H(second-edge-qm) and C(edge-qm)=O(second-edge-qm) """ set_charge_exclusion = set_qms_edge for second_qms in set_second_qms: indices, offsets = self.neighbor_list.get_neighbors(second_qms) if len(indices)== 1: set_charge_exclusion.add(second_qms) return set_charge_exclusion def get_eq_distances_xy(\ self, topfilename = 'gromos.top', force_field = 'oplsaa'): """ The link atom is positioned as in J. Chem. Theory Comput 2011, 7, 761-777, Eq 1 For this purpose we need the equilibrium length of each QM-MM covalent bond. Those are obtained here from the files of the force field. """ import os print('in get_eq_distances_xy, topfilename=') print ('%s' % topfilename) for qm in self.qms_edge: equilibrium_distance_xy = [] for iqm in qm: equilibrium_distance_xy.append(0.0) self.equilibrium_distances_xy.append(equilibrium_distance_xy) #get the version of the topology file where one sees the bond # force constants (file is named as gromacs.top.dump) try: os.remove(self.mm_calculator.base_filename+'.tpr.dump') except OSError: pass os.system('gmxdump -s '+ self.mm_calculator.base_filename\ +'.tpr > ' + \ self.mm_calculator.base_filename+ \ '.tpr.dump 2>/dev/null') if 'GMXDATA' in os.environ: gromacs_home = os.environ['GMXDATA'].split(':')[0] else: gromacs_home = '/usr/local/gromacs/share/gromacs/' #read the bonded force constants of this force field in order to #get an estimate for X-Y bond constant linesff = open(gromacs_home+ '/top/'+ force_field+ \ '.ff/ffbonded.itp', 'r').readlines() oklinesff = [] start = False for line in linesff: if 'bondtypes' in line: start = True elif '[' in line: break if start and (line.strip()): oklinesff.append(line) #lines for getting oplsaa atom dual-types if 'opls' in force_field: lines_for_dual_types = open(gromacs_home+ '/top/'+ force_field+ \ '.ff/ffnonbonded.itp', 'r').readlines() #read the types of interaction for bond stretching lines_tpr = open(self.mm_calculator.base_filename+\ '.tpr.dump', 'r').readlines() #read the topology file to get QM atom type lines_top = open(topfilename, 'r').readlines() oklines_top = [] start = False for line in lines_top: if start and ('[' in line): break if start: if (not line.startswith(';')) or (not line.strip()): oklines_top.append(line) if '[ atoms' in line: start = True #get force constant and bond eq distance for all QM-MM bonds # ok_equilibrium_distances_xy = [] ok_qmatom_types = [] ok_mmatom_types = [] for qm0, mm0, eqsxy in zip( self.qms_edge, self.mms_edge, \ self.equilibrium_distances_xy): ok_eqxy = [] ok_qmatom_type = [] ok_mmatom_type = [] for qmatom, mmatom, eqxy in \ zip(qm0, mm0, eqsxy): #find qm-mm bond in topology file (indexes from 0) # get the index for interaction interaction = 'empty' for line in lines_tpr: if (' type' in line) and ('BONDS' in line): if (qmatom == int(line.split()[3])) and \ (mmatom == int(line.split()[4])): interaction = line.split()[1].lstrip('type=') break if (qmatom == int(line.split()[4])) and \ (mmatom == int(line.split()[3])): interaction = line.split()[1].lstrip('type=') break if interaction == 'empty': print('QM-MM bond not found in topology') print('atoms are: QM, MM: (from 1 indexing) %s' \ % str(qmatom+1) + str(mmatom+1)) sys.exit() for line in lines_tpr: if ('functype['+interaction+']=BONDS') in line: r_xy0 = float(line.split()[2].rstrip(',')) #get type of the QM atom qmatom_type = 'empty' for line in oklines_top: if (int(line.split()[0] ) == qmatom+ 1): qmatom_type = line.split()[1] #oplsaa atom type has a double name, #the other one is used in file ffbonded.itp break if (qmatom_type == 'empty'): print('problem in QM atom type') sys.exit() if 'opls' in force_field: found = False for line in lines_for_dual_types: if (qmatom_type == line.split()[0]): qmatom_type = line.split()[1] found = True break if not found: print('problem in QM atom type') print('with OPLSAA force field dual atom types') sys.exit() #get type of the true link-MM atom mmatom_type = 'empty' for line in oklines_top: if (int(line.split()[0] ) == mmatom+ 1): mmatom_type = line.split()[1] #oplsaa atom type has a double name, #the other one is used in file ffbonded.itp break if (mmatom_type == 'empty'): print('problem in MM atom type') sys.exit() if 'opls' in force_field: found = False for line in lines_for_dual_types: if (mmatom_type == line.split()[0]): mmatom_type = line.split()[1] found = True break if not found: print('problem in MM atom type') print('with OPLSAA force field dual atom types') sys.exit() ok_qmatom_type.append(qmatom_type) ok_mmatom_type.append(mmatom_type) if (eqxy != 0.0): #use eq constant given by the user ok_eqxy.append(eqxy) else: ok_eqxy.append(r_xy0) ok_equilibrium_distances_xy.append(ok_eqxy) ok_qmatom_types.append(ok_qmatom_type) ok_mmatom_types.append(ok_mmatom_type) outfile = open('qm-mm-linkAtomsInfo.txt','w') outfile.write(\ '=======================================================\n') outfile.write('Information about QM-MM boundary(ies) \n') outfile.write(\ 'Created using the Atomic Simulation Environment (ASE) \n') outfile.write(\ '=======================================================\n') qmregion_count = 0 # ADD qm-mm-linkAtomsInfo.txt for qm, mm, eqs_xy, eqs_xh, qmtypes, mmtypes in zip\ (self.qms_edge, self.mms_edge, ok_equilibrium_distances_xy,\ self.equilibrium_distances_xh,\ ok_qmatom_types, ok_mmatom_types): outfile.write(\ '=======================================================\n') qmregion_count = qmregion_count+ 1 outfile.write('Parameters related to QM region number '+\ str(qmregion_count)+'\n') for qmatom, mmatom, eq_xy, eq_xh, qmtype, mmtype in zip\ (qm, mm, eqs_xy, eqs_xh,\ qmtypes, mmtypes): outfile.write('qm-link-atom-index (from 1): '+str(qmatom)+'\n') outfile.write('qm-link-atom-type: '+str(qmtype)+'\n') outfile.write('mm-link-atom-index (from 1): '+str(mmatom)+'\n') outfile.write('mm-link-atom-type: '+str(mmtype)+'\n') outfile.write('qm-mm(notH)-equilibrium-distance: '\ +str(eq_xy)+' nm\n') outfile.write('qm-H-equilibrium-distance(calculated by QM): '\ +str(eq_xh)+' nm\n') outfile.close() self.equilibrium_distances_xy = ok_equilibrium_distances_xy self.qmatom_types = ok_qmatom_types self.mmatom_types = ok_mmatom_types return def write_eq_distances_to_file( self, qm_links, filename='linkDATAout.txt'): """ Write classical bond equilibrium lengths for XY (X in QM, Y in MM) Write QM calculated XH(link atom) bond length (X in QM, H link atom) """ outfile = open(filename, 'w') for iqm_region, qmlink in enumerate (qm_links): for ilink, dummy in enumerate (qmlink): data = self.equilibrium_distances_xy[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.equilibrium_distances_xh[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.force_constants[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.qmatom_types[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.mmatom_types[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') outfile.close() return def read_eq_distances_from_file(self, filename='linkDATAin.txt'): """ Read classical bond equilibrium lengths for XY (X in QM, Y in MM) or XH (X in QM, H link atom) """ myfile = open(filename, 'r') self.equilibrium_distances_xy = [] self.equilibrium_distances_xh = [] self.force_constants = [] self.qmatom_types = [] self.mmatom_types = [] print('Reading X-H and other data from file: %s' % filename) for qm in self.qms_edge: equilibrium_distance_xy = [] equilibrium_distance_xh = [] force_constant = [] qmatom_type = [] mmatom_type = [] for iqm, dum in enumerate(qm): line = myfile.readline() equilibrium_distance_xy.append(float(line.split()[0])) line = myfile.readline() equilibrium_distance_xh.append(float(line.split()[0])) line = myfile.readline() force_constant.append(float(line.split()[0])) line = myfile.readline() qmatom_type.append(line.split()[0]) line = myfile.readline() mmatom_type.append(line.split()[0]) self.equilibrium_distances_xy.append(equilibrium_distance_xy) self.equilibrium_distances_xh.append(equilibrium_distance_xh) self.force_constants.append(force_constant) self.qmatom_types.append(qmatom_type) self.mmatom_types.append(mmatom_type) myfile.close() return def get_eq_qm_atom_link_h_distances(self, system_tmp): """ get equilibrium QMatom-linkH distances for all linkH:s by QM """ #import matplotlib #matplotlib.use('Agg') #import matplotlib.pyplot as plt from scipy.optimize import fmin def qm_bond_energy_function(x, system_tmp, i_qm_region): """ get the qm energy of a single qm system with a given edge-qm-atom---link-h-atom distances of that qm region The qm region is i_qm_region, all edge-qm-atom---link-h-atom distance in this qm_region are optimized simultaneously """ BIG_VALUE = 100000000.0 for index_x, current_x in enumerate(x): self.equilibrium_distances_xh\ [i_qm_region][index_x] = current_x print('current X-H bond lengths [nm]') print('%s' % str(x)) self.link_atoms = self.get_link_atoms(\ self.qms_edge, self.mms_edge,\ self.force_constants,\ self.equilibrium_distances_xh, \ self.equilibrium_distances_xy) self.qmsystems = \ self.define_QM_clusters_in_vacuum(system_tmp) #try: single_qm_energy = self.calculate_single_qm(\ self.qmsystems[i_qm_region],\ self.qm_calculators[i_qm_region]) #except RuntimeError: # single_qm_energy = BIG_VALUE return single_qm_energy print('=====================================================') print('Calculating X-H bond lengths and bond force constants') print('by QM in one shot for each QM region.') print('In later calculations you can: ') print('cp linkDATAout.txt linkDATAin.txt') print("and set link_info = 'byFILE'") print('=====================================================') self.equilibrium_distances_xh = [] self.force_constants = [] for qm_edges in self.qms_edge: force_constants = [] equilibrium_distances_xh = [] for qm_edge in qm_edges: force_constants.append(0.0) equilibrium_distances_xh.append(0.11) self.force_constants.append(force_constants) self.equilibrium_distances_xh.append(equilibrium_distances_xh) #loop over qm regions. To get optimal simultaneous # edgeQMatom-linkH distance(s) in [nm] in that qm region for i_qm_region in range(len(self.qms_edge)): print('NOW running : ') print('QM region for optimising edge-linkH distances %s'\ % str(i_qm_region)) x = self.equilibrium_distances_xh[i_qm_region][:] xopt = fmin(qm_bond_energy_function, \ x,\ args=(system_tmp, i_qm_region),\ xtol=0.0001, ftol=0.0001) for index_xopt, current_xopt in enumerate(xopt): self.equilibrium_distances_xh\ [i_qm_region][index_xopt] = current_xopt print('i_qm_region, i_link_atom, optimal X-H bond[nm] %s' \ % (str(i_qm_region) + ' ' + str(index_xopt) \ + ' ' + str(current_xopt))) def define_QM_clusters_in_vacuum(self, system): """ Returns Each QM system as an Atoms object We get a list of these Atoms objects (in case we have many QM regions). """ from ase import Atoms qmsystems = [] for qm0 in self.qms: tmp_system = Atoms() for qmatom in qm0: tmp_system += system[qmatom] qmsystems.append(tmp_system) for link_atom in self.link_atoms: tmp_atom = link_atom.get_link_atom() qm_region = link_atom.get_link_atom_qm_region_index() link_atom_index_in_qm = len(qmsystems[qm_region]) qmsystems[qm_region].append(tmp_atom) link_atom.set_link_atom_index_in_qm(link_atom_index_in_qm) return qmsystems def kill_top_lines_containing_only_qm_atoms(self, \ intopfilename, \ qms, outtopfilename): """ Delete all lines in the topology file that contain only qm atoms in bonded sections (bonds, angles or dihedrals) and in pairs section (1-4 interactions) """ # get an index of all qm atoms in all qm regions qm = set() for qm_tmp in qms: qm = qm.union(set(qm_tmp)) infile = open(intopfilename,'r') lines = infile.readlines() infile.close() outfile = sys.stdout oklines = [] accept = True check = '' for line in lines: if (('[ bonds' in line)): oklines.append(line) accept = False check = 'bond' elif (('[ angles' in line)): oklines.append(line) accept = False check = 'angle' elif (('[ dihedrals' in line)): oklines.append(line) accept = False check = 'dihedral' elif (('[ pairs' in line)): oklines.append(line) accept = False check = 'pair' elif ('[' in line): oklines.append(line) accept = True check = '' elif line in ['\n']: oklines.append(line) accept = True check = '' elif accept: oklines.append(line) else: indexes = [int(float(s)-1.0) \ for s in line.split() if s.isdigit()] indexes1 = [int(s) for s in line.split() if s.isdigit()] if indexes == []:# this takes comment line #after bond, angle, dihedral oklines.append(line) elif check == 'bond': bondedatoms = set(indexes[0:2]) #set empty bond intereaction for qm-qm bonds (type 5) #(this way LJ and electrostatics is not messed up) if (bondedatoms.issubset(qm)): newline = str(indexes1[0]).rjust(8)+\ str(indexes1[1]).rjust(8)+\ ('5').rjust(8) + '\n' oklines.append(newline) else: oklines.append(line) elif check == 'angle': bondedatoms = set(indexes[0:3]) if (bondedatoms.issubset(qm)): pass else: oklines.append(line) elif check == 'dihedral': bondedatoms = set(indexes[0:4]) if (bondedatoms.issubset(qm)): pass else: oklines.append(line) elif check == 'pair': bondedatoms = set(indexes[0:2]) if (bondedatoms.issubset(qm)): pass else: oklines.append(line) outfile = open(outtopfilename,'w') for line in oklines: outfile.write(line) outfile.close() return def get_classical_target_charge_sums(self, intopfilename, qms): """ get sum of MM charges of the charged changed by QM these are qm atoms that are not link-atoms or edge-qm atoms xxx this has a problem: Water is in .itp files, not in topology... """ infile = open(intopfilename,'r') lines = infile.readlines() infile.close() (lines_before, comment_lines, ok_lines, lines_after) = \ self.get_topology_lines(lines) classical_target_charge_sums = [] for iqm, qm in enumerate(qms): classical_target_charge_sum = 0.0 for line in ok_lines: atom_index = int(line.split()[0])-1 if (atom_index in qm) and \ (not(atom_index in self.constant_charge_qms)): classical_target_charge_sum = \ classical_target_charge_sum + \ float(line.split()[6]) classical_target_charge_sums.\ append(classical_target_charge_sum) return classical_target_charge_sums
gpl-2.0