code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def get_object(self, queryset=None): <NEW_LINE> <INDENT> if "username" in self.kwargs: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return Profile.objects.get(username=self.kwargs["username"]) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if hasattr(self.request, "user"): <NEW_LINE> <INDENT> return self.request.user <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pass | There are two ways to be called `profile/` or `profile/{username}` | 625941b51f037a2d8b945ff3 |
def root_style(font=132): <NEW_LINE> <INDENT> hipStyle = ROOT.TStyle("clearRetro", "HIP plots style for publications") <NEW_LINE> hipStyle.SetFrameBorderMode(0) <NEW_LINE> hipStyle.SetCanvasBorderMode(0) <NEW_LINE> hipStyle.SetPadBorderMode(0) <NEW_LINE> hipStyle.SetPadBorderSize(0) <NEW_LINE> hipStyle.SetPadColor(0) <NEW_LINE> hipStyle.SetCanvasColor(0) <NEW_LINE> hipStyle.SetTitleColor(0) <NEW_LINE> hipStyle.SetStatColor(0) <NEW_LINE> hipStyle.SetHistLineWidth(2) <NEW_LINE> hipStyle.SetLineWidth(2) <NEW_LINE> hipStyle.SetOptTitle(0) <NEW_LINE> hipStyle.SetOptStat(0) <NEW_LINE> hipStyle.SetOptFit(0) <NEW_LINE> hipStyle.SetLineStyleString(2, "[12 12]") <NEW_LINE> hipStyle.SetTextFont(font) <NEW_LINE> hipStyle.SetTextSize(0.24) <NEW_LINE> hipStyle.SetLabelFont(font, "x") <NEW_LINE> hipStyle.SetLabelFont(font, "y") <NEW_LINE> hipStyle.SetLabelFont(font, "z") <NEW_LINE> hipStyle.SetTitleFont(font, "x") <NEW_LINE> hipStyle.SetTitleFont(font, "y") <NEW_LINE> hipStyle.SetTitleFont(font, "z") <NEW_LINE> hipStyle.SetLegendFont(font) <NEW_LINE> hipStyle.SetLabelSize(0.04, "x") <NEW_LINE> hipStyle.SetTitleSize(0.05, "x") <NEW_LINE> hipStyle.SetTitleColor(1, "x") <NEW_LINE> hipStyle.SetLabelSize(0.04, "y") <NEW_LINE> hipStyle.SetTitleSize(0.05, "y") <NEW_LINE> hipStyle.SetTitleColor(1, "y") <NEW_LINE> hipStyle.SetLabelSize(0.04, "z") <NEW_LINE> hipStyle.SetTitleSize(0.05, "z") <NEW_LINE> hipStyle.SetTitleColor(1, "z") <NEW_LINE> hipStyle.SetTitleOffset(0.8, "x") <NEW_LINE> hipStyle.SetTitleOffset(0.8, "y") <NEW_LINE> hipStyle.SetTitleOffset(0.8, "z") <NEW_LINE> hipStyle.SetLegendBorderSize(1) <NEW_LINE> hipStyle.SetMarkerStyle(2) <NEW_LINE> NRGBs = 5 <NEW_LINE> NCont = 255 <NEW_LINE> stops = array.array('d', [0.00, 0.34, 0.61, 0.84, 1.00]) <NEW_LINE> red = array.array('d', [0.00, 0.00, 0.87, 1.00, 0.51]) <NEW_LINE> green = array.array('d', [0.00, 0.81, 1.00, 0.20, 0.00]) <NEW_LINE> blue = array.array('d', [0.51, 1.00, 0.12, 0.00, 0.00]) <NEW_LINE> ROOT.TColor.CreateGradientColorTable(NRGBs, stops, red, green, blue, NCont) <NEW_LINE> hipStyle.SetNumberContours(NCont) <NEW_LINE> ROOT.gROOT.SetStyle("clearRetro") | Sets the style for ROOT plots. The SNO+ standard style is adapted
from a .C sent to collaboration.
Args:
font (int): Integer denoting the font style for plots. Default is 132.
See https://root.cern.ch/root/html/TAttText.html for details. | 625941b5ff9c53063f47bff3 |
def get_position(self): <NEW_LINE> <INDENT> img = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'geetest_canvas_img'))) <NEW_LINE> time.sleep(2) <NEW_LINE> location = img.location <NEW_LINE> size = img.size <NEW_LINE> top, bottom, left, right = location['y'], location['y'] + size['height'], location['x'], location['x'] + size[ 'width'] <NEW_LINE> return top, bottom, left, right | 获取验证码的位置
:return: 验证码位置元祖 | 625941b5a8370b7717052696 |
def get_varience(self, sample=True) -> List: <NEW_LINE> <INDENT> fi_sum = ( (sum(self.simple_frequency()) - 1) if sample else sum(self.simple_frequency()) ) <NEW_LINE> v2_sum = sum(self.deviation_v2()) <NEW_LINE> variance = round((v2_sum / fi_sum), self.decimal_places) <NEW_LINE> self._table["Variância"] = [variance] <NEW_LINE> return variance | Método para geração da variancia.
:param sample: default true para calcular a variancia amostral
:return: list | 625941b5377c676e91271f9f |
def func(self,func_name): <NEW_LINE> <INDENT> return self._eval(su2func,func_name) | Evaluates SU2 Design Functions by Name | 625941b5236d856c2ad445d4 |
def test_two_excluded_named_namespaces(self): <NEW_LINE> <INDENT> gf = pagegenerators.GeneratorFactory(site=self.get_site()) <NEW_LINE> gf.handle_arg('-ns:not:Talk,File') <NEW_LINE> ns = set(range(16)) <NEW_LINE> ns.remove(1) <NEW_LINE> ns.remove(6) <NEW_LINE> self.assertTrue(ns.issubset(gf.namespaces)) | Test two excluded named namespaces. | 625941b58a43f66fc4b53e5f |
def get_plugin_version(hpi_filename): <NEW_LINE> <INDENT> with zipfile.ZipFile(hpi_filename) as z: <NEW_LINE> <INDENT> return LooseVersion(re_plugin_version.sub(r"\1", z.read('META-INF/MANIFEST.MF'))) | Extract the plugin version from the MANIFEST.MF
:param hpi_filename: string hpi file name
:return: distutils.version.StrictVersion | 625941b5099cdd3c635f0a51 |
def _copytree(self, src, dst, symlinks=False, ignore=None): <NEW_LINE> <INDENT> if not os.path.exists(dst): <NEW_LINE> <INDENT> os.makedirs(dst) <NEW_LINE> <DEDENT> names = os.listdir(src) <NEW_LINE> if ignore is not None: <NEW_LINE> <INDENT> ignored_names = ignore(src, names) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> ignored_names = set() <NEW_LINE> <DEDENT> errors = [] <NEW_LINE> for name in names: <NEW_LINE> <INDENT> if name in ignored_names: <NEW_LINE> <INDENT> self._logger.info("Ignored: " + str(name)) <NEW_LINE> continue <NEW_LINE> <DEDENT> srcname = os.path.join(src, name) <NEW_LINE> dstname = os.path.join(dst, name) <NEW_LINE> try: <NEW_LINE> <INDENT> if symlinks and os.path.islink(srcname): <NEW_LINE> <INDENT> linkto = os.readlink(srcname) <NEW_LINE> os.symlink(linkto, dstname) <NEW_LINE> <DEDENT> elif os.path.isdir(srcname): <NEW_LINE> <INDENT> self._copytree(srcname, dstname, symlinks, ignore) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> shutil.copy2(srcname, dstname) <NEW_LINE> <DEDENT> <DEDENT> except IOError as why: <NEW_LINE> <INDENT> errors.append((srcname, dstname, str(why))) <NEW_LINE> <DEDENT> except Error as err: <NEW_LINE> <INDENT> errors.extend(err.args[0]) <NEW_LINE> <DEDENT> <DEDENT> try: <NEW_LINE> <INDENT> shutil.copystat(src, dst) <NEW_LINE> <DEDENT> except OSError as why: <NEW_LINE> <INDENT> if WindowsError is not None and isinstance(why, WindowsError): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> errors.extend((src, dst, str(why))) <NEW_LINE> <DEDENT> <DEDENT> if errors: <NEW_LINE> <INDENT> raise Error(errors) | Used to copy into current folder (tweak without folder creation)
| 625941b57b180e01f3dc45fc |
def p_item(self,p): <NEW_LINE> <INDENT> mif=MIFObject() <NEW_LINE> if p[1]=='PPOINT': <NEW_LINE> <INDENT> mif.type='POINT' <NEW_LINE> mif.points=tuple(self.numbers) <NEW_LINE> <DEDENT> elif p[1]=='PPLINE': <NEW_LINE> <INDENT> mif.type='PLINE' <NEW_LINE> mif.pline=int(self.pline) <NEW_LINE> mif.pen=tuple(self.pen) <NEW_LINE> mif.smooth=self.smooth <NEW_LINE> mif.points=tuple(self.numbers) <NEW_LINE> <DEDENT> elif p[1]=='PLINE': <NEW_LINE> <INDENT> mif.type='LINE' <NEW_LINE> mif.pline=int(self.pline) <NEW_LINE> mif.pen=tuple(self.pen) <NEW_LINE> mif.points=tuple(self.numbers) <NEW_LINE> <DEDENT> elif p[1]=='PREGION': <NEW_LINE> <INDENT> mif.type='REGION' <NEW_LINE> mif.region=int(self.region) <NEW_LINE> mif.pen=tuple(self.pen) <NEW_LINE> mif.brush=tuple(self.brush) <NEW_LINE> mif.center=tuple(self.center) <NEW_LINE> mif.points=tuple(self.numbers) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> mif.type='NONE' <NEW_LINE> <DEDENT> for col in range(len(self.mid._cols)): <NEW_LINE> <INDENT> mif.setMid(self.mid._cols[col],self.mid._data[self.lineno][col]) <NEW_LINE> <DEDENT> logging.info(mif) <NEW_LINE> self.mifobj.append(mif) | item : NONE
| point
| pline
| line
| region | 625941b55510c4643540f1ee |
def readFromCSVHandle(self, f): <NEW_LINE> <INDENT> csvreader = csv.reader(f, delimiter=";", quotechar='"') <NEW_LINE> reactions = set() <NEW_LINE> line_no = 0 <NEW_LINE> for line in csvreader: <NEW_LINE> <INDENT> line_no += 1 <NEW_LINE> if line[0] == "NAME": <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> self.fluxDict[line[0]] = float(line[1]) <NEW_LINE> self.boundsDict[line[0]] = line[2], line[3] <NEW_LINE> <DEDENT> except IndexError: <NEW_LINE> <INDENT> raise SyntaxError("Syntax error in line %u:\nLine must " "contain exactly four values (name, flux, " "lb, ub)." % line_no) <NEW_LINE> <DEDENT> except ValueError: <NEW_LINE> <INDENT> raise SyntaxError("Syntax error in line %u: Invalid " "floating point value." % line_no) | parse the file given by file handle f (must be open for reading)
| 625941b5ac7a0e7691ed3ecf |
def drag_createitems(self): <NEW_LINE> <INDENT> if self.drag is not None and self.drag['state'] == 'inprogress': <NEW_LINE> <INDENT> if self.drag['gap'] is not None: <NEW_LINE> <INDENT> x = self.drag['gap'] * self.tabwidth <NEW_LINE> self.c.create_rectangle(x-self.gapwidth, 0, x+self.gapwidth, self.height, fill=self.holecolor, outline=self.holecolor) <NEW_LINE> <DEDENT> label = self.info[self.drag['tabid']]['tablabel'] <NEW_LINE> self.drag['textitem'] = self.c.create_text(self.drag['x'], self.drag['y'], text=label, font=self.titlefont, fill=self.textcolor, anchor='s') | Called by rebuild to create canvas items for drag in progress | 625941b50c0af96317bb7fde |
def load(self, addr): <NEW_LINE> <INDENT> code = CodeGen() <NEW_LINE> code.comment('load_addr_' + str(addr)) <NEW_LINE> code.widen_stack() <NEW_LINE> code.switch_lane(SP, MEM) <NEW_LINE> code.decrement_to_zero() <NEW_LINE> code.switch_lane(MEM, WLK) <NEW_LINE> code.search_zero_left() <NEW_LINE> code.switch_lane(WLK, MEM) <NEW_LINE> code.decrement_to_zero() <NEW_LINE> for _ in xrange(addr): <NEW_LINE> <INDENT> code.big_right() <NEW_LINE> <DEDENT> code.start_loop() <NEW_LINE> code.switch_lane(MEM, WLK) <NEW_LINE> code.search_zero_left() <NEW_LINE> code.switch_lane(WLK, SP) <NEW_LINE> code.search_zero_right() <NEW_LINE> code.switch_lane(SP, MEM) <NEW_LINE> code.increment() <NEW_LINE> code.switch_lane(MEM, WLK) <NEW_LINE> code.search_zero_left() <NEW_LINE> code.switch_lane(WLK, MEM) <NEW_LINE> code.increment() <NEW_LINE> for _ in xrange(addr): <NEW_LINE> <INDENT> code.big_right() <NEW_LINE> <DEDENT> code.decrement() <NEW_LINE> code.end_loop() <NEW_LINE> code.switch_lane(MEM, WLK) <NEW_LINE> code.search_zero_left() <NEW_LINE> code.switch_lane(WLK, MEM) <NEW_LINE> code.start_loop() <NEW_LINE> for _ in xrange(addr): <NEW_LINE> <INDENT> code.big_right() <NEW_LINE> <DEDENT> code.increment() <NEW_LINE> code.switch_lane(MEM, WLK) <NEW_LINE> code.search_zero_left() <NEW_LINE> code.switch_lane(WLK, MEM) <NEW_LINE> code.decrement() <NEW_LINE> code.end_loop() <NEW_LINE> code.switch_lane(MEM, SP) <NEW_LINE> code.search_zero_right() <NEW_LINE> code.newline() <NEW_LINE> return code.to_string() | Copies a value from the specified memory address and
pushes it on the stack. The memory is preserved.
Stack count: +1 | 625941b538b623060ff0abe4 |
def ens_update0_loc(ens, obs_ens, observations, perturbs, obs_err_cov, domains, taper): <NEW_LINE> <INDENT> def local_analysis(ii): <NEW_LINE> <INDENT> oBatch, tapering = taper(ii) <NEW_LINE> oBatch = np.arange(len(observations))[oBatch] <NEW_LINE> if len(oBatch) == 0: <NEW_LINE> <INDENT> return ens[:, ii] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> c = sqrt(tapering) <NEW_LINE> return ens_update0(ens[:, ii], obs_ens[:, oBatch]*c, observations[oBatch]*c, perturbs[:, oBatch]*c, obs_err_cov[np.ix_(oBatch, oBatch)]) <NEW_LINE> <DEDENT> <DEDENT> EE = map(local_analysis, domains) <NEW_LINE> Ea = np.empty_like(ens) <NEW_LINE> for ii, Eii in zip(domains, EE): <NEW_LINE> <INDENT> Ea[:, ii] = Eii <NEW_LINE> <DEDENT> return Ea | Perform local analysis/domain updates using `ens_update0`. | 625941b56aa9bd52df036b97 |
@pytest.mark.parametrize("test_input, expected_result", TEST_DATA) <NEW_LINE> def test_dscp_range(test_input, expected_result): <NEW_LINE> <INDENT> assert dscp_range(test_input) == expected_result | Unit-test the dscp_range function | 625941b5fbf16365ca6f5fb0 |
def test_3_money_loss_short_close(self): <NEW_LINE> <INDENT> self.assertAlmostEqual(sum(self.prestoList.money_loss_short_close), self.mongoList.money_loss_short_close,delta=0.1) | 做空亏损订单收益 | 625941b5460517430c393f85 |
def readNext(self): <NEW_LINE> <INDENT> if self.stream == None: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> data = readDelim(self.stream) <NEW_LINE> if data == None: <NEW_LINE> <INDENT> self.stream.close() <NEW_LINE> self.stream = None <NEW_LINE> return None <NEW_LINE> <DEDENT> self.chrom = data[0] <NEW_LINE> self.pos = int(data[1]) <NEW_LINE> self.storeCurrent(data) <NEW_LINE> return True | Read one line from stream and store it in the `current' attribute. Also sets `chrom'
and `pos' to its first and second elements. | 625941b5d58c6744b4257a56 |
def test_direct_write(self): <NEW_LINE> <INDENT> test_file = os.path.join(self.import_dir, 'test_file') <NEW_LINE> cmd = ['dd', 'if=/dev/zero', 'of=%s' % test_file, 'bs=4k', 'count=8', 'oflag=direct'] <NEW_LINE> rtn = self.common_launch_cmd(cmd) <NEW_LINE> if rtn != 0: <NEW_LINE> <INDENT> self.fail('DD returned error') | Write a large file | 625941b52c8b7c6e89b355b9 |
def PolyArea(points): <NEW_LINE> <INDENT> x= points[:,0] <NEW_LINE> y= points[:,1] <NEW_LINE> return(0.5*np.abs(np.dot(x, np.roll(y, 1))-np.dot(y,np.roll(x, 1)))) | Area of a 2D convex Polygon
:param points:
:return: | 625941b5956e5f7376d70c71 |
def __init__(self, d): <NEW_LINE> <INDENT> if type(d)==int: <NEW_LINE> <INDENT> self._coords = [0] * d <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> self._coords = [0] * len(d) <NEW_LINE> for i in range(len(d)): <NEW_LINE> <INDENT> self._coords[i] = d[i] <NEW_LINE> <DEDENT> <DEDENT> except: <NEW_LINE> <INDENT> raise TypeError("Please enter a sequence of numbers or integer.") | Create n-dimensional vector of zeros. | 625941b585dfad0860c3ac4e |
def column_or_1d(y, warn=False): <NEW_LINE> <INDENT> shape = np.shape(y) <NEW_LINE> if len(shape) == 1: <NEW_LINE> <INDENT> return np.ravel(y) <NEW_LINE> <DEDENT> if len(shape) == 2 and shape[1] == 1: <NEW_LINE> <INDENT> if warn: <NEW_LINE> <INDENT> warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) <NEW_LINE> <DEDENT> return np.ravel(y) <NEW_LINE> <DEDENT> raise ValueError("bad input shape {0}".format(shape)) | Ravel column or 1d numpy array, else raises an error
Parameters
----------
y : array-like
warn : boolean, default False
To control display of warnings.
Returns
-------
y : array | 625941b5e8904600ed9f1d1f |
def fulltexts(self, document): <NEW_LINE> <INDENT> file_id = self._file_id(document.file_code(fullpath=True)) <NEW_LINE> if not file_id: <NEW_LINE> <INDENT> logger.error(u'Fail to parse file_id for %s_%s', document.collection_acronym, document.publisher_id) <NEW_LINE> return None <NEW_LINE> <DEDENT> if not document.journal.languages: <NEW_LINE> <INDENT> logger.info(u'Journal without publication languages defined %s', file_id[0]) <NEW_LINE> return None <NEW_LINE> <DEDENT> data = {'fulltexts.pdf': set(), 'fulltexts.html': set()} <NEW_LINE> data['fulltexts.html'].add(document.original_language()) <NEW_LINE> if document.data_model_version == 'xml': <NEW_LINE> <INDENT> for lang in document.xml_languages() or []: <NEW_LINE> <INDENT> data['fulltexts.html'].add(lang) <NEW_LINE> <DEDENT> <DEDENT> languages = document.journal.languages + document.languages() <NEW_LINE> languages.append(document.original_language()) <NEW_LINE> for language in set(languages): <NEW_LINE> <INDENT> if self.is_file_available(file_id, 'pdf', language, document.original_language()): <NEW_LINE> <INDENT> data['fulltexts.pdf'].add(language) <NEW_LINE> logger.info( u'Fulltext available in pdf %s for %s, %s, %s', language, file_id[0], file_id[1], file_id[2] ) <NEW_LINE> <DEDENT> if self.is_file_available(file_id, 'html', language, document.original_language()): <NEW_LINE> <INDENT> data['fulltexts.html'].add(language) <NEW_LINE> logger.info( u'Fulltext available in html %s for %s, %s, %s', language, file_id[0], file_id[1], file_id[2] ) <NEW_LINE> <DEDENT> <DEDENT> ldata = {} <NEW_LINE> if len(data['fulltexts.pdf']) > 0: <NEW_LINE> <INDENT> for lang in data['fulltexts.pdf']: <NEW_LINE> <INDENT> if lang != document.original_language(): <NEW_LINE> <INDENT> fname = '_'.join([ lang, self._file_name(document.file_code(fullpath=True))] ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> fname = self._file_name(document.file_code(fullpath=True)) <NEW_LINE> <DEDENT> ldata['fulltexts.pdf.%s' % lang] = 'http://%s' % '/'.join([ document.scielo_domain, 'pdf', file_id[0], file_id[1], '%s.pdf' % fname ] ) <NEW_LINE> <DEDENT> <DEDENT> if len(data['fulltexts.html']) > 0: <NEW_LINE> <INDENT> for lang in data['fulltexts.html']: <NEW_LINE> <INDENT> ldata['fulltexts.html.%s' % lang] = 'http://%s/scielo.php?script=sci_arttext&pid=%s&tlng=%s' % ( document.scielo_domain, document.publisher_id, lang ) <NEW_LINE> <DEDENT> <DEDENT> return ldata | This method retrieve a dictionary of the available fulltexts in each
document type ['pdf', 'html', 'xml']
input:
xylose.scielo_document.Article()
ex:
output:
{
'pdf': {
'pt': 'url',
'es': 'url',
'en': 'url'
},
'html': {
'pt': 'url',
'es': 'url',
'en': 'url'
}
} | 625941b550485f2cf553cb8e |
def read_environment(config, namespace=ENVSPACE, permissive=True): <NEW_LINE> <INDENT> this_config = config.copy() <NEW_LINE> for level1 in config.keys(): <NEW_LINE> <INDENT> if (config.get(level1) is None) or (type(config.get(level1)) is str): <NEW_LINE> <INDENT> env_var = "_".join([namespace, level1]).upper() <NEW_LINE> if os.environ.get(env_var, None) is not None: <NEW_LINE> <INDENT> this_config[level1] = os.environ.get(env_var) <NEW_LINE> <DEDENT> <DEDENT> elif type(config[level1]) is dict: <NEW_LINE> <INDENT> for level2 in config[level1].keys(): <NEW_LINE> <INDENT> if (config[level1][level2] is None) or (type(config[level1][level2])) is str: <NEW_LINE> <INDENT> env_var = '_'.join([namespace, level1, level2]).upper() <NEW_LINE> if os.environ.get(env_var, None) is not None: <NEW_LINE> <INDENT> this_config[level1][level2] = os.environ.get(env_var) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> return this_config | Read in environment variable overrides
Positional parameters:
config - dict - a shallow copy of the main config object
Keyword parameters:
namespace - str - environment variable namespace. default 'TACC_'
permissive - boolean - ignore loading or parsing errors
Returns:
An AttrDict configuration object | 625941b50c0af96317bb7fdf |
def pc_noutput_items_avg(self): <NEW_LINE> <INDENT> return _noaa_swig.hrpt_deframer_sptr_pc_noutput_items_avg(self) | pc_noutput_items_avg(hrpt_deframer_sptr self) -> float | 625941b5498bea3a759b98a8 |
def create_type_from_user_string(self, typestr): <NEW_LINE> <INDENT> if '.' in typestr: <NEW_LINE> <INDENT> container = self._create_bare_container_type(typestr) <NEW_LINE> if container: <NEW_LINE> <INDENT> typeval = container <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> typeval = self._namespace.type_from_name(typestr) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> typeval = self.create_type_from_ctype_string(typestr) <NEW_LINE> <DEDENT> self.resolve_type(typeval) <NEW_LINE> if typeval.resolved: <NEW_LINE> <INDENT> typeval.ctype = None <NEW_LINE> <DEDENT> return typeval | Parse a C type string (as might be given from an
annotation) and resolve it. For compatibility, we can consume
both GI type string (utf8, Foo.Bar) style, as well as C (char *, FooBar) style.
Note that type resolution may not succeed. | 625941b5507cdc57c6306ac8 |
def output_csv_data(final_result_list_of_replicates, header_row, file_object): <NEW_LINE> <INDENT> f_out = file_object <NEW_LINE> f_out.write("{}\n".format(",".join([""] + header_row))) <NEW_LINE> for final_result_in_each_condition in final_result_list_of_replicates: <NEW_LINE> <INDENT> output_string_list = [final_result_in_each_condition[0]] + [ ",".join(["Replicate {}".format(index + 1)] + [str(flux) for flux in flux_list]) for index, flux_list in enumerate(final_result_in_each_condition[1:])] <NEW_LINE> f_out.write("\n".join(output_string_list + [""])) | Export the all flux values into one sheet to a .csv file. The results calculated from the same
condition will be put together.
:param final_result_list_of_replicates: All flux values results.
:param header_row: Flux name list.
:param file_object: Output file object.
:return: | 625941b58c3a8732951581b3 |
def execute_via_app( self, tool, app, session_id, history_id, user=None, incoming = {}, set_output_hid = False, overwrite = True, history=None, job_params=None ): <NEW_LINE> <INDENT> for name, value in incoming.iteritems(): <NEW_LINE> <INDENT> if isinstance( value, app.model.HistoryDatasetAssociation ): <NEW_LINE> <INDENT> dataset = value <NEW_LINE> dataset_name = name <NEW_LINE> type = 'hda' <NEW_LINE> break <NEW_LINE> <DEDENT> elif isinstance( value, app.model.LibraryDatasetDatasetAssociation ): <NEW_LINE> <INDENT> dataset = value <NEW_LINE> dataset_name = name <NEW_LINE> type = 'ldda' <NEW_LINE> break <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise Exception( 'The dataset to set metadata on could not be determined.' ) <NEW_LINE> <DEDENT> <DEDENT> sa_session = app.model.context <NEW_LINE> job = app.model.Job() <NEW_LINE> job.session_id = session_id <NEW_LINE> job.history_id = history_id <NEW_LINE> job.tool_id = tool.id <NEW_LINE> if user: <NEW_LINE> <INDENT> job.user_id = user.id <NEW_LINE> <DEDENT> if job_params: <NEW_LINE> <INDENT> job.params = dumps( job_params ) <NEW_LINE> <DEDENT> start_job_state = job.state <NEW_LINE> try: <NEW_LINE> <INDENT> job.tool_version = tool.version <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> job.tool_version = "1.0.1" <NEW_LINE> <DEDENT> job.state = job.states.WAITING <NEW_LINE> job.set_handler(tool.get_job_handler( job_params )) <NEW_LINE> sa_session.add( job ) <NEW_LINE> sa_session.flush() <NEW_LINE> incoming[ '__ORIGINAL_DATASET_STATE__' ] = dataset.state <NEW_LINE> input_paths = [DatasetPath( dataset.id, real_path=dataset.file_name, mutable=False )] <NEW_LINE> external_metadata_wrapper = JobExternalOutputMetadataWrapper( job ) <NEW_LINE> cmd_line = external_metadata_wrapper.setup_external_metadata( dataset, sa_session, exec_dir = None, tmp_dir = app.config.new_file_path, dataset_files_path = app.model.Dataset.file_path, output_fnames = input_paths, config_root = app.config.root, config_file = app.config.config_file, datatypes_config = app.datatypes_registry.integrated_datatypes_configs, job_metadata = None, include_command = False, kwds = { 'overwrite' : overwrite } ) <NEW_LINE> incoming[ '__SET_EXTERNAL_METADATA_COMMAND_LINE__' ] = cmd_line <NEW_LINE> for name, value in tool.params_to_strings( incoming, app ).iteritems(): <NEW_LINE> <INDENT> job.add_parameter( name, value ) <NEW_LINE> <DEDENT> if type == 'hda': <NEW_LINE> <INDENT> job.add_input_dataset( dataset_name, dataset ) <NEW_LINE> <DEDENT> elif type == 'ldda': <NEW_LINE> <INDENT> job.add_input_library_dataset( dataset_name, dataset ) <NEW_LINE> <DEDENT> dataset._state = dataset.states.SETTING_METADATA <NEW_LINE> job.state = start_job_state <NEW_LINE> sa_session.flush() <NEW_LINE> app.job_queue.put( job.id, tool.id ) <NEW_LINE> dataset.datatype.before_setting_metadata( dataset ) <NEW_LINE> return job, odict() | Execute using application. | 625941b5f548e778e58cd371 |
def system(command): <NEW_LINE> <INDENT> print('[system] {}'.format(command)) <NEW_LINE> p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) <NEW_LINE> output, err = p.communicate() <NEW_LINE> rc = p.returncode <NEW_LINE> if PY3: <NEW_LINE> <INDENT> output = output.decode("ascii") <NEW_LINE> err = err.decode("ascii") <NEW_LINE> <DEDENT> return rc, output, err | Returns (return-code, stdout, stderr) | 625941b5cc0a2c11143dcc8e |
def test_label_width_not_enough_single_field_rows(self): <NEW_LINE> <INDENT> name, *names = list(self.form.fields.keys()) <NEW_LINE> field_rows = [{name: self.form.fields[name]}] <NEW_LINE> if len(names) > 1: <NEW_LINE> <INDENT> double_row = {name: self.form.fields[name] for name in names[:2]} <NEW_LINE> field_rows.append(double_row) <NEW_LINE> <DEDENT> expected = {} <NEW_LINE> actual = self.form.determine_label_width(field_rows) <NEW_LINE> self.assertEqual(expected, actual) | The determine_label_width method returns empty values if there are not multiple rows of a single field. | 625941b53eb6a72ae02ec2cf |
def upload_queue_dir(base_dir, bucket_name, project_name, new_cov_only=True): <NEW_LINE> <INDENT> queue_dir = os.path.join(base_dir, "queue") <NEW_LINE> queue_files = [] <NEW_LINE> for queue_file in os.listdir(queue_dir): <NEW_LINE> <INDENT> if not queue_file.startswith("id:"): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if new_cov_only and not "+cov" in queue_file: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if ",sync:" in queue_file: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> queue_files.append(queue_file) <NEW_LINE> <DEDENT> cmdline_file = os.path.join(base_dir, "cmdline") <NEW_LINE> conn = S3Connection() <NEW_LINE> bucket = conn.get_bucket(bucket_name) <NEW_LINE> remote_path = "%s/queues/%s/" % (project_name, get_machine_id(base_dir)) <NEW_LINE> remote_files = [key.name.replace(remote_path, "", 1) for key in list(bucket.list(remote_path))] <NEW_LINE> upload_list = [] <NEW_LINE> for queue_file in queue_files: <NEW_LINE> <INDENT> if not queue_file in remote_files: <NEW_LINE> <INDENT> upload_list.append(os.path.join(queue_dir, queue_file)) <NEW_LINE> <DEDENT> <DEDENT> if not "cmdline" in remote_files: <NEW_LINE> <INDENT> upload_list.append(cmdline_file) <NEW_LINE> <DEDENT> for upload_file in upload_list: <NEW_LINE> <INDENT> remote_key = Key(bucket) <NEW_LINE> remote_key.name = remote_path + os.path.basename(upload_file) <NEW_LINE> print("Uploading file %s -> %s" % (upload_file, remote_key.name)) <NEW_LINE> remote_key.set_contents_from_filename(upload_file) | Synchronize the queue directory of the specified AFL base directory
to the specified S3 bucket. This method only uploads files that don't
exist yet on the receiving side.
@type base_dir: String
@param base_dir: AFL base directory
@type bucket_name: String
@param bucket_name: Name of the S3 bucket to use
@type project_name: String
@param project_name: Name of the project folder inside the S3 bucket
@type new_cov_only: Boolean
@param new_cov_only: Only upload files that have new coverage | 625941b526068e7796caeace |
@collect_auth <NEW_LINE> def redirect_unsupported_institution(auth): <NEW_LINE> <INDENT> cas_unsupp_inst_url = cas.get_login_url('', campaign='unsupportedinstitution') <NEW_LINE> if auth.logged_in: <NEW_LINE> <INDENT> return auth_logout(redirect_url=cas_unsupp_inst_url) <NEW_LINE> <DEDENT> return redirect(cas_unsupp_inst_url) | Sends user back to the "Unsupported Institution" page on CAS. Logs user out if they are
already logged in.
HTTP Method: GET
:param auth: the authentication context
:return | 625941b521a7993f00bc7ade |
@blueprint.route('/', methods=['GET']) <NEW_LINE> @require_logged_in_user <NEW_LINE> def view(_user): <NEW_LINE> <INDENT> from pyaspora.diaspora.models import MessageQueue <NEW_LINE> if MessageQueue.has_pending_items(_user): <NEW_LINE> <INDENT> return redirect(url_for('diaspora.run_queue', _external=True)) <NEW_LINE> <DEDENT> limit = int(request.args.get('limit', 10)) <NEW_LINE> friend_ids = [f.id for f in _user.contact.friends()] <NEW_LINE> clauses = [Post.Queries.shared_with_contact(_user.contact)] <NEW_LINE> if friend_ids: <NEW_LINE> <INDENT> clauses.append( Post.Queries.authored_by_contacts_and_public(friend_ids)) <NEW_LINE> <DEDENT> tag_ids = [t.id for t in _user.contact.interests] <NEW_LINE> if tag_ids: <NEW_LINE> <INDENT> clauses.append(Tag.Queries.public_posts_for_tags(tag_ids)) <NEW_LINE> <DEDENT> feed_query = or_(*clauses) <NEW_LINE> my_share = aliased(Share) <NEW_LINE> feed = db.session.query(Share).join(Post). outerjoin( my_share, and_( Post.id == my_share.post_id, my_share.contact == _user.contact ) ). outerjoin(PostTag).outerjoin(Tag). filter(feed_query). filter(or_(my_share.hidden == None, not_(my_share.hidden))). filter(Post.parent == None). order_by(desc(Post.thread_modified_at)). group_by(Post.id). options(contains_eager(Share.post)). options(joinedload(Share.post, Post.diasp)). limit(limit) <NEW_LINE> data = { 'feed': json_posts([(s.post, s) for s in feed], _user, True), 'limit': limit, 'actions': {}, } <NEW_LINE> if len(data['feed']) >= limit: <NEW_LINE> <INDENT> data['actions']['more'] = url_for('feed.view', limit=limit + 10, _external=True) <NEW_LINE> <DEDENT> add_logged_in_user_to_data(data, _user) <NEW_LINE> return render_response('feed.tpl', data) | Show the logged-in user their own feed. | 625941b56fece00bbac2d530 |
def reset(self): <NEW_LINE> <INDENT> self.reward = 0 <NEW_LINE> self.error = 0 <NEW_LINE> self.h = [] <NEW_LINE> for i in range(self.S): <NEW_LINE> <INDENT> self.h = np.append(self.h, 1) <NEW_LINE> <DEDENT> self.SNR_s = [] <NEW_LINE> self.SNR = [] <NEW_LINE> for i in range(self.S): <NEW_LINE> <INDENT> self.SNR_s = np.append(self.SNR_s, self.SNR_avg[i]) <NEW_LINE> <DEDENT> for i in range(self.W): <NEW_LINE> <INDENT> self.SNR = np.concatenate((self.SNR, self.SNR_s), axis=0) <NEW_LINE> <DEDENT> self.SNR = self.SNR.reshape((self.W, self.S)) <NEW_LINE> self.tasks_prev = [] <NEW_LINE> self.tasks_prev_s = [] <NEW_LINE> for i in range(self.S): <NEW_LINE> <INDENT> self.tasks_prev_s = np.append(self.tasks_prev_s, 0) <NEW_LINE> <DEDENT> for i in range(self.W - 1 + self.CSI): <NEW_LINE> <INDENT> self.tasks_prev = np.concatenate((self.tasks_prev, self.tasks_prev_s), axis=0) <NEW_LINE> <DEDENT> self.tasks_prev = self.tasks_prev.reshape((self.W - 1 + self.CSI, self.S)) <NEW_LINE> if self.CSI == 1: <NEW_LINE> <INDENT> self.state = np.log10(self.SNR) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.state = np.concatenate((np.log10(self.SNR[:-1]), self.tasks_prev/(10**9)), axis=0) | resets reward, error variables to zero. Sets SNR and workload back.
:return: | 625941b5a8ecb033257d2ecc |
def recv(self, tr, host_file): <NEW_LINE> <INDENT> def _recv(): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> fm = FileReciever(host_file) <NEW_LINE> job = self.e_recv.submit(_recv) <NEW_LINE> return job | Search for senders
- cancel if none needed
- wait x seconds for response | 625941b58da39b475bd64d6c |
def test_create_done_several_follows_obliviate(self): <NEW_LINE> <INDENT> for record in self.avatars: <NEW_LINE> <INDENT> record.state = 'present' <NEW_LINE> <DEDENT> Operation = self.registry.Wms.Operation <NEW_LINE> other_reason = Operation.Arrival.insert(physobj_type=self.physobj_type, location=self.loc, state='done', dt_execution=self.dt_test1, quantity=35) <NEW_LINE> self.avatars[0].outcome_of = other_reason <NEW_LINE> agg = self.Agg.create(inputs=self.avatars, state='done', dt_execution=self.dt_test2) <NEW_LINE> self.assertEqual(set(agg.follows), set((self.arrivals[1], other_reason))) <NEW_LINE> agg.obliviate() <NEW_LINE> new_avatars = self.PhysObj.Avatar.query().all() <NEW_LINE> self.assertEqual(len(new_avatars), 2) <NEW_LINE> for avatar in new_avatars: <NEW_LINE> <INDENT> if avatar.obj.quantity == 1: <NEW_LINE> <INDENT> exp_reason = other_reason <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> exp_reason = self.arrivals[1] <NEW_LINE> <DEDENT> self.assertEqual(avatar.outcome_of, exp_reason) <NEW_LINE> <DEDENT> self.assertEqual(Operation.HistoryInput.query().count(), 0) | Test that oblivion doesn't shuffle original reasons.
TODO this test has one chance over 2 to pass by accident.
make a better one, and label it as a MultiplePhysObj mixin test, by
issuing more goods and reasons and pairing them randomly so that
chances of passing by coincidence are really low.
TODO now that ``reason`` has been changed to ``outcome_of`` which isn't
mutated after creation, consider removing this test altogether | 625941b5d10714528d5ffad5 |
def orangesRotting(self, grid): <NEW_LINE> <INDENT> que = [] <NEW_LINE> len_x,len_y = len(grid),len(grid[0]) <NEW_LINE> for i in range(len_x): <NEW_LINE> <INDENT> for j in range(len_y): <NEW_LINE> <INDENT> if grid[i][j]==2: <NEW_LINE> <INDENT> que.append([i,j]) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> count = 0 <NEW_LINE> while(1): <NEW_LINE> <INDENT> sub = [] <NEW_LINE> for n in que: <NEW_LINE> <INDENT> list_my = self.find(n,len_x,len_y) <NEW_LINE> for m in list_my: <NEW_LINE> <INDENT> if grid[m[0]][m[1]]==1: <NEW_LINE> <INDENT> grid[m[0]][m[1]]=2 <NEW_LINE> sub.append(m) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if sub==[]:break <NEW_LINE> que=sub <NEW_LINE> count+=1 <NEW_LINE> <DEDENT> for i in range(len_x): <NEW_LINE> <INDENT> for j in range(len_y): <NEW_LINE> <INDENT> if grid[i][j]==1: <NEW_LINE> <INDENT> return -1 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return count | :type grid: List[List[int]]
:rtype: int | 625941b5baa26c4b54cb0f19 |
def __init__(self): <NEW_LINE> <INDENT> print("creating grid") <NEW_LINE> self.squares = [ [self._get_a_placeholder() for _ in range(GRID_WIDTH)] for _ in range(GRID_HEIGHT - 4) ] + [ [EMPTY for _ in range(GRID_WIDTH)] for _ in range(4) ] <NEW_LINE> self.next_row = [self._get_a_placeholder() for _ in range(GRID_WIDTH)] <NEW_LINE> self._deleted_rows = [] | Constructor for the grid.
The first lines of squares are the upper ones, the last are
the lower ones.
There is a structure for next row, which is separate from the grid | 625941b5adb09d7d5db6c589 |
def move_nanmean(arr, window, axis=-1, method='loop'): <NEW_LINE> <INDENT> arr = np.array(arr, copy=False) <NEW_LINE> if method == 'filter': <NEW_LINE> <INDENT> y = move_nanmean_filter(arr, window, axis=axis) <NEW_LINE> <DEDENT> elif method == 'strides': <NEW_LINE> <INDENT> y = move_func_strides(bn.slow.nanmean, arr, window, axis=axis) <NEW_LINE> <DEDENT> elif method == 'loop': <NEW_LINE> <INDENT> y = move_func_loop(bn.slow.nanmean, arr, window, axis=axis) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> msg = "`method` must be 'filter', 'strides', or 'loop'." <NEW_LINE> raise ValueError(msg) <NEW_LINE> <DEDENT> if y.dtype != arr.dtype: <NEW_LINE> <INDENT> if issubclass(arr.dtype.type, np.inexact): <NEW_LINE> <INDENT> y = y.astype(arr.dtype) <NEW_LINE> <DEDENT> <DEDENT> return y | Slow move_nanmean for unaccelerated ndim/dtype combinations.
Parameters
----------
arr : array_like
Input array.
window : int
The number of elements in the moving window.
axis : int, optional
The axis over which to perform the moving mean. By default the moving
mean is taken over the last axis (-1).
method : str, optional
The following moving window methods are available:
========== =====================================
'filter' scipy.ndimage.convolve1d
'strides' strides tricks
'loop' brute force python loop (default)
========== =====================================
Returns
-------
y : ndarray
The moving mean of the input array along the specified axis, ignoring
NaNs. (A window with all NaNs returns NaN for the window mean.) The
output has the same shape as the input.
Examples
--------
>>> arr = np.array([1, 2, np.nan, 4])
>>> bn.slow.move_nanmean(arr, window=2, axis=0)
array([ NaN, 1.5, 2. , 4. ]) | 625941b50a50d4780f666c85 |
def commentOKPYSubmit(notebook_data, mode="comment"): <NEW_LINE> <INDENT> for cell in notebook_data["cells"]: <NEW_LINE> <INDENT> source = cell["source"] <NEW_LINE> for index, line in enumerate(source): <NEW_LINE> <INDENT> if("ok.submit" in line): <NEW_LINE> <INDENT> if mode == "comment": <NEW_LINE> <INDENT> source[index] = "# Removed by AutoGrader" + line <NEW_LINE> <DEDENT> elif mode == "delete": <NEW_LINE> <INDENT> del source[index] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> return notebook_data | Comments out any lines that contain ok.submit() to prevent automatic resubmission for students
can change mode to 'delete' in order to remove the line instead | 625941b5a79ad161976cbf3b |
def stencil( x=0,y=0,width=-1,height=-1, normalise = 1, flip = 1, ): <NEW_LINE> <INDENT> glPixelStorei(GL_PACK_ALIGNMENT, 1) <NEW_LINE> data = glReadPixels(0, 0, width, height, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE) <NEW_LINE> if flip: <NEW_LINE> <INDENT> data = list(data) <NEW_LINE> data.reverse() <NEW_LINE> <DEDENT> data = ravel(data) <NEW_LINE> if normalise and data: <NEW_LINE> <INDENT> data = data.astype('f') <NEW_LINE> diff = float(max(data)) - float(min(data)) <NEW_LINE> data = (data - min(data)) * (255.0/(diff or 1.0)) <NEW_LINE> <DEDENT> data = data.astype( 'b' ) <NEW_LINE> image = Image.fromstring( "L", (width, height), data ) <NEW_LINE> if flip: <NEW_LINE> <INDENT> image = image.transpose( Image.FLIP_TOP_BOTTOM) <NEW_LINE> <DEDENT> return image | Get the stencil-buffer as a PIL image
x,y -- start position for the captured rectangle
width,height -- size of the captured rectangle
if normalise is true, the image will be
scaled to make the most-positive (deepest)
values white and the most-negative (closest)
values black.
if flip, then the image will be flipped
vertically so that it matches the PIL
conventions instead of the OpenGL conventions. | 625941b563d6d428bbe442e5 |
def set_lcao(self, mode='last'): <NEW_LINE> <INDENT> pdfparam = self._pdfparam <NEW_LINE> entry = self._entry <NEW_LINE> iterations = pdfparam.iterations <NEW_LINE> start_itr = 1 <NEW_LINE> if mode == 'last': <NEW_LINE> <INDENT> start_itr = iterations <NEW_LINE> <DEDENT> m = pdf.Matrix() <NEW_LINE> for itr in range(start_itr, iterations + 1): <NEW_LINE> <INDENT> for runtype in pdfparam.runtypes(): <NEW_LINE> <INDENT> path = pdfparam.get_c_mat_path(runtype, itr) <NEW_LINE> self._logger.debug('load %s' % (path)) <NEW_LINE> if m.is_loadable(path): <NEW_LINE> <INDENT> m.load(path) <NEW_LINE> entry.set_lcao(runtype, itr, m) | LCAO行列をDBに格納する
TODO: modeの実装 | 625941b530c21e258bdfa293 |
def model(self, model): <NEW_LINE> <INDENT> if model is not None: <NEW_LINE> <INDENT> model = weakref.ref(model) <NEW_LINE> <DEDENT> return self.execution_options(model=model) | Shortcut to set execution option ``model`` in a chaining call.
Read :meth:`~gino.engine.GinoConnection.execution_options` for more
information. | 625941b550812a4eaa59c11c |
def get_solutions_results_table(self, fields=False, max_number=None, orderby=False): <NEW_LINE> <INDENT> self.check_if_is_connected() <NEW_LINE> log.info("Getting %s from solutions", fields) <NEW_LINE> f = self.get_fields_string(fields) <NEW_LINE> sql_command = "SELECT %s FROM %s " % (f, self.results_table) <NEW_LINE> if orderby: <NEW_LINE> <INDENT> sql_command += " ORDER BY %s ASC" % orderby <NEW_LINE> <DEDENT> if max_number not in (None, False): <NEW_LINE> <INDENT> sql_command += " LIMIT %d" % (max_number) <NEW_LINE> <DEDENT> log.debug("Using %s", sql_command) <NEW_LINE> data = self.retrieve_data(sql_command) <NEW_LINE> return data | Recovers solutions
@param fields Fields to recover from the table
@param max_number Maximum number of solutions to recover
@param orderby Name of the restraint used for sorting the states | 625941b582261d6c526ab299 |
def run_pipeline(self, **kwargs): <NEW_LINE> <INDENT> df_train = self.generate_random_data() <NEW_LINE> self.write_csv_s3(df_train, "train.csv", **kwargs) | Run the entire data cleansing pipeline
:return: | 625941b5167d2b6e31218994 |
def evolve(self): <NEW_LINE> <INDENT> possibleEvolutions = [] <NEW_LINE> for nodeT in nodeTypes: <NEW_LINE> <INDENT> possibleEvolutions += nodeT.create_basic(self.parent) <NEW_LINE> <DEDENT> return possibleEvolutions | :return: A list of all the nodes this could evolve into | 625941b5baa26c4b54cb0f1a |
def get_dominant_frequency(self, frame_number): <NEW_LINE> <INDENT> samples_per_frame = int(self.sample_rate / self.video.fps) <NEW_LINE> frame_samples = self.audio[frame_number * samples_per_frame : (frame_number + 1) * samples_per_frame] <NEW_LINE> if TESTING: <NEW_LINE> <INDENT> print('Starting FFT processing at time: ' + str(time.time())) <NEW_LINE> <DEDENT> w = np.fft.fft(frame_samples) <NEW_LINE> freqs = np.fft.fftfreq(len(w)) <NEW_LINE> idx = np.argmax(np.abs(w)) <NEW_LINE> freq = freqs[idx] <NEW_LINE> freq_in_hertz = abs(freq * self.sample_rate) <NEW_LINE> if TESTING: <NEW_LINE> <INDENT> print('Finishing FFT processing at time: ' + str(time.time())) <NEW_LINE> <DEDENT> return freq_in_hertz | Returns the dominant audio frequency of a given frame in hertz. | 625941b5925a0f43d2549c69 |
def confd_state_internal_callpoints_authentication_callback_registration_type_range_range_lower(self, **kwargs): <NEW_LINE> <INDENT> config = ET.Element("config") <NEW_LINE> confd_state = ET.SubElement(config, "confd-state", xmlns="http://tail-f.com/yang/confd-monitoring") <NEW_LINE> internal = ET.SubElement(confd_state, "internal") <NEW_LINE> callpoints = ET.SubElement(internal, "callpoints") <NEW_LINE> authentication_callback = ET.SubElement(callpoints, "authentication-callback") <NEW_LINE> registration_type = ET.SubElement(authentication_callback, "registration-type") <NEW_LINE> range = ET.SubElement(registration_type, "range") <NEW_LINE> range = ET.SubElement(range, "range") <NEW_LINE> lower = ET.SubElement(range, "lower") <NEW_LINE> lower.text = kwargs.pop('lower') <NEW_LINE> callback = kwargs.pop('callback', self._callback) <NEW_LINE> return callback(config) | Auto Generated Code
| 625941b5627d3e7fe0d68c44 |
def execRunCmd_multi(proc): <NEW_LINE> <INDENT> if is_stop() is True: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> proc_name = proc["jar"].split("/") <NEW_LINE> id = start_proc_logs(proc_name[len(proc_name) - 1], proc["desc"]) <NEW_LINE> start = int(time.time()) <NEW_LINE> def succ(pid, returncode, outs, errs): <NEW_LINE> <INDENT> LOGGER.info("exec_cmd pid:%s, returncode:%s" % (pid, returncode)) <NEW_LINE> LOGGER.info("exec_cmd outs: %s" % outs) <NEW_LINE> LOGGER.info("exec_cmd errs: %s" % errs) <NEW_LINE> end_proc_logs(id, start, 2) <NEW_LINE> <DEDENT> def fail(pid, returncode, outs, errs): <NEW_LINE> <INDENT> LOGGER.info("exec_cmd pid:%s, returncode:%s" % (pid, returncode)) <NEW_LINE> LOGGER.info("exec_cmd outs: %s" % outs) <NEW_LINE> LOGGER.info("exec_cmd errs: %s" % errs) <NEW_LINE> if returncode == -9: <NEW_LINE> <INDENT> end_proc_logs(id, start, 4) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> end_proc_logs(id, start, 3) <NEW_LINE> <DEDENT> <DEDENT> def before(pid): <NEW_LINE> <INDENT> update_proc_logs(id, pid) <NEW_LINE> <DEDENT> proc["app_name"] = proc["app_name"] + "_" + id <NEW_LINE> update_proc_logs_appname(id, proc["app_name"]) <NEW_LINE> try: <NEW_LINE> <INDENT> returncode = ProcUtil().single_pro(get_cmd(proc), succ, fail, before) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> LOGGER.info("error: %s" % e) <NEW_LINE> returncode = 1 <NEW_LINE> end_proc_logs(id, start, 3) <NEW_LINE> <DEDENT> return returncode | 串行执行主方法 | 625941b5a934411ee3751491 |
def get_density(point, data, bandwidth=0.1): <NEW_LINE> <INDENT> kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(data) <NEW_LINE> return kde.score_samples(np.array([point]))[0] | This function returns the density of the data at the given point, using t-distribution kernel density
:param point: A numpy array vector specifying a point in space to evaluate the density at
:param data: A 2D numpy array of points (rows)
:return: A float representing the density of data-points at the given point | 625941b54d74a7450ccd3fb9 |
def __eq__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, ArrayGetResponse): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return self.__dict__ == other.__dict__ | Returns true if both objects are equal | 625941b54428ac0f6e5ba5f0 |
def namespace_term_counts(): <NEW_LINE> <INDENT> size = 100 <NEW_LINE> search_body = { "aggs": {"namespace_term_counts": {"terms": {"field": "namespace", "size": size}}} } <NEW_LINE> try: <NEW_LINE> <INDENT> results = es.search( index=settings.TERMS_INDEX, doc_type=settings.TERMS_DOCUMENT_TYPE, body=search_body, size=0, ) <NEW_LINE> results = results["aggregations"]["namespace_term_counts"]["buckets"] <NEW_LINE> return [{"namespace": r["key"], "count": r["doc_count"]} for r in results] <NEW_LINE> <DEDENT> except elasticsearch.ConnectionError as e: <NEW_LINE> <INDENT> logger.exception("Elasticsearch connection error", error=str(e)) <NEW_LINE> return None | Generate counts of each namespace in terms index
This function is at least used in the /status endpoint to show how many
terms are in each namespace and what namespaces are available.
Returns:
List[Mapping[str, int]]: array of namespace vs counts | 625941b56fece00bbac2d531 |
def get_backup_databases(cinder_config=False): <NEW_LINE> <INDENT> REGION_LOCAL_DATABASES = ('postgres', 'template1', 'nova', 'sysinv', 'neutron', 'heat', 'nova_api', 'aodh', 'murano', 'magnum', 'panko', 'ironic', 'nova_cell0', 'gnocchi', 'fm', 'barbican') <NEW_LINE> REGION_SHARED_DATABASES = ('glance', 'keystone') <NEW_LINE> if cinder_config: <NEW_LINE> <INDENT> REGION_SHARED_DATABASES += ('cinder', ) <NEW_LINE> <DEDENT> DB_TABLE_SKIP_MAPPING = { 'fm': ('alarm',), 'gnocchi': ('metric', 'resource'), 'dcorch': ('orch_job', 'orch_request', 'resource', 'subcloud_resource'), } <NEW_LINE> if tsconfig.region_config == 'yes': <NEW_LINE> <INDENT> BACKUP_DATABASES = REGION_LOCAL_DATABASES <NEW_LINE> shared_services = sysinv.get_shared_services() <NEW_LINE> for service_type in ["image", "volume"]: <NEW_LINE> <INDENT> if service_type not in shared_services: <NEW_LINE> <INDENT> service = 'glance' if service_type == "image" else 'cinder' <NEW_LINE> BACKUP_DATABASES += (service, ) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> BACKUP_DATABASES = REGION_LOCAL_DATABASES + REGION_SHARED_DATABASES <NEW_LINE> if tsconfig.distributed_cloud_role == sysinv_constants.DISTRIBUTED_CLOUD_ROLE_SYSTEMCONTROLLER: <NEW_LINE> <INDENT> BACKUP_DATABASES += ('dcmanager', 'dcorch') <NEW_LINE> <DEDENT> <DEDENT> BACKUP_DB_SKIP_TABLES = dict( [[x, DB_TABLE_SKIP_MAPPING.get(x, ())] for x in BACKUP_DATABASES]) <NEW_LINE> return BACKUP_DATABASES, BACKUP_DB_SKIP_TABLES | Retrieve database lists for backup.
:return: backup_databases and backup_database_skip_tables | 625941b524f1403a92600960 |
def __repr__(self): <NEW_LINE> <INDENT> return '<Twilio.Preview.Understand.FieldPage>' | Provide a friendly representation
:returns: Machine friendly representation
:rtype: str | 625941b5435de62698dfda4b |
def __reduceTransEffect(self,PV,OP): <NEW_LINE> <INDENT> self.deriv = PV <NEW_LINE> self.prevErr = self.cfg['setPoint'] - PV <NEW_LINE> if self.cfg["ctrlType"] == "P": <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> elif self.cfg["ctrlType"] == "PI" or self.cfg["ctrlType"] == "PID": <NEW_LINE> <INDENT> return np.around(((self.cfg['Ki']/self.cfg['interval'])*((OP/self.cfg['Kg'])-(self.cfg['setPoint'] - PV))),0) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return ValueError('Invalid Control Type - Options are P, PI & PID') | Calculate the value for spErr (set point error) to ensure seamless
bump during controller changover. Note that deriv and prevErr are also
set.
:param PV: Process variable at current time
:param OP: Valve operating point
:param ERR: Set point error
:type PV: float
:type OP: float
:type ERR: float
:return: Value for spErr | 625941b592d797404e303f81 |
def orbital_pieces_number(self, piece_diameter): <NEW_LINE> <INDENT> contour_length = self.get_elipse_interpolation().length() <NEW_LINE> return int(contour_length / (piece_diameter + self.clearence)) | Calculates how many pieces are to be placed in the orbital contour | 625941b585dfad0860c3ac4f |
def MEDnLink(*args, **kwargs): <NEW_LINE> <INDENT> return _medlink.MEDnLink(*args, **kwargs) | MEDnLink(fid) -> med_int
Parameters:
fid: med_idt const | 625941b5f7d966606f6a9dff |
def get_pokemon(pokemon_id): <NEW_LINE> <INDENT> return 'do some magic!' | get a specific pokemon by id
get a pokemon using their unique id # noqa: E501
:param pokemon_id: it's the pokemon id
:type pokemon_id: int
:rtype: Pokemon | 625941b57b25080760e39252 |
def find_dirs(start_dir, creds, include=None, exclude=None): <NEW_LINE> <INDENT> return find(start_dir, creds, include=include, exclude=None, ftype='d') | returns a list of directories using the patterns in the include list | 625941b567a9b606de4a7cb3 |
def define_stimuli(self): <NEW_LINE> <INDENT> dev1 = pygame.Surface(self.size) <NEW_LINE> dev2 = pygame.Surface(self.size) <NEW_LINE> std1 = pygame.Surface(self.size) <NEW_LINE> std2 = pygame.Surface(self.size) <NEW_LINE> red, orange, blue, yellow = (255,0,0), (255,100,0), (0,0,255), (255,255,0) <NEW_LINE> dev1.fill(red) <NEW_LINE> dev2.fill(orange) <NEW_LINE> std1.fill(blue) <NEW_LINE> std2.fill(yellow) <NEW_LINE> return [std1,std2], [dev1,dev2] | Creates standard and deviant stimuli. | 625941b567a9b606de4a7cb4 |
def initialization(self, which_sources): <NEW_LINE> <INDENT> return TRIVARIATE_UNQ.initialization(self, which_sources) | Initialize the data for the triplets (T,V,W) where V,W in {X,Y,Z}
Args:
which_sources: list(int) -
[1,2] if sources are X and Y
[1,3] if sources are X and Z
[2,3] if sources are Y and Z
Returns:
(if [1,2] v,w=x,y|if [1,3] v,w=x,z|if [2,3] v,w=y,z|)
dictionary
keys: (t,v,w)
values: their indices
list of (t,v,w) | 625941b5851cf427c661a312 |
def psi_H_Li_Br_PK74(T, P): <NEW_LINE> <INDENT> psi = 0.0 <NEW_LINE> valid = np.isclose(T, 298.15, **temperature_tol) <NEW_LINE> return psi, valid | c-c'-a: hydrogen lithium bromide [PK74]. | 625941b5009cb60464c631b4 |
def testFieldDescriptorGetSet(self): <NEW_LINE> <INDENT> object = FieldTest() <NEW_LINE> self.failUnless(FieldTest.PublicStaticField == 0) <NEW_LINE> self.failUnless(object.PublicStaticField == 0) <NEW_LINE> descriptor = FieldTest.__dict__['PublicStaticField'] <NEW_LINE> self.failUnless(type(descriptor) != types.IntType) <NEW_LINE> object.PublicStaticField = 0 <NEW_LINE> descriptor = FieldTest.__dict__['PublicStaticField'] <NEW_LINE> self.failUnless(type(descriptor) != types.IntType) <NEW_LINE> FieldTest.PublicStaticField = 0 <NEW_LINE> descriptor = FieldTest.__dict__['PublicStaticField'] <NEW_LINE> self.failUnless(type(descriptor) != types.IntType) | Test field descriptor get / set. | 625941b516aa5153ce36226e |
def all_isinstance(iterable, t): <NEW_LINE> <INDENT> return all_iterable(iterable, lambda x: isinstance(x, t)) | check if each object in an iterable is an instance of a type
| 625941b58a43f66fc4b53e60 |
def _pr_convergence_tf(self, convergence: float, topics: List[int] = None, c_criterion=ConvergenceCriterion.ONE) -> tf.Tensor: <NEW_LINE> <INDENT> raise NotImplementedError( 'subclasses must override page_rank_until_convergence()!') | Abstract method to implement a iterative version of PageRank until
convergence rate.
This method runs the PageRank algorithm in iterative fashion a undetermined
number of times bounded by the `convergence` rate and the 'c_criterion'
criterion.
Args:
convergence (float): A float between 0 and 1 that represents
the convergence rate that allowed to finish the iterative
implementations of the algorithm to accept the solution. Default to
`1.0`.
topics (:obj:`list` of :obj:`int`, optional): A list of integers that
represent the set of vertex where the random jumps arrives. If this
parameter is used, the uniform distribution over all vertices of the
random jumps will be modified to jump only to this vertex set. Default
to `None`.
c_criterion (:obj:`function`, optional): The function used to calculate if
the Convergence Criterion of the iterative implementations is reached.
Default to `tf_G.ConvergenceCriterion.ONE`.
Returns:
(:obj:`tf.Tensor`): A 1-D `tf.Tensor` of [n] shape, where `n` is the
cardinality of the graph vertex set. It contains the normalized rank of
vertex `i` at position `i`. | 625941b5236d856c2ad445d6 |
def __load_variable_combobox(self): <NEW_LINE> <INDENT> self.project.network_model.load_dictionaries() <NEW_LINE> items = self.project.network_model.get_sorted_variables() <NEW_LINE> if items is None: <NEW_LINE> <INDENT> messagebox = QTranusMessageBox.set_new_message_box(QtWidgets.QMessageBox.Warning, "Variables", "There are no variables to load.", ":/plugins/QTranus/icon.png", self, buttons = QtWidgets.QMessageBox.Ok) <NEW_LINE> messagebox.exec_() <NEW_LINE> print ("There are no variables to load.") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.variablesList.addItems(items) | @summary: Loads data to variable combo-box control | 625941b58a43f66fc4b53e61 |
def inject(module, entrance, host, port, inject_args): <NEW_LINE> <INDENT> encoding = inject_args.get('encoding', 'utf-8') <NEW_LINE> code = create_payload(module, entrance, host, port, encoding) <NEW_LINE> inject_args['code'] = code <NEW_LINE> success = _inject(**inject_args) <NEW_LINE> if not success: <NEW_LINE> <INDENT> exit(1) | inject process with module.entrance | 625941b5099cdd3c635f0a53 |
def getObject(self, resource): <NEW_LINE> <INDENT> resource = self.parseUrl(resource, 'objects') <NEW_LINE> res = self.getRequest(resource) <NEW_LINE> obj = vsdModels.APIObject._create(res) <NEW_LINE> return obj | retrieve an object based on the objectID/selfUrl
:param int,str resource: (str) selfUrl of the object or the (int) object ID
:return: the object
:rtype: APIObject (or derived class) | 625941b515fb5d323cde08ff |
def getTarget(self): <NEW_LINE> <INDENT> return self.__target | Get the name of the output
Returns
-------
str
name of the target | 625941b5ab23a570cc24ff77 |
def wait_for_appearance(self, timeout=UI_TIME_OUT): <NEW_LINE> <INDENT> self.proxy.wait_for_appearance(timeout) | 等待出现
:param timeout: 超时时间
:return:
等待元素出现,默认等待超时120秒,Airtest 找不到对象会抛出 TargetNotFoundError,Poco 则是抛出 PocoTargetTimeout
平台支持:- [x] android- [x] ios | 625941b5090684286d50ead6 |
def check_events(ai_settings, screen, ship, bullets): <NEW_LINE> <INDENT> for event in pygame.event.get(): <NEW_LINE> <INDENT> if event.type == pygame.QUIT: <NEW_LINE> <INDENT> sys.exit() <NEW_LINE> <DEDENT> elif event.type == pygame.KEYDOWN: <NEW_LINE> <INDENT> check_keydown_events(event, ai_settings, screen, ship, bullets) <NEW_LINE> <DEDENT> elif event.type == pygame.KEYUP: <NEW_LINE> <INDENT> check_keyup_events(event, ship) | 이벤트를 탐지하고 반응합니다. | 625941b58a349b6b435e7f6b |
def assert_methods_match(first, second): <NEW_LINE> <INDENT> first_methods = dict(inspect.getmembers(first, inspect.ismethod)) <NEW_LINE> second_methods = dict(inspect.getmembers(second, inspect.ismethod)) <NEW_LINE> for name, first_method in iter_items(first_methods): <NEW_LINE> <INDENT> if name.startswith("_"): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> first_argspec = inspect.getargspec(first_method) <NEW_LINE> first_formatted = inspect.formatargspec(*first_argspec) <NEW_LINE> assert name in second_methods <NEW_LINE> second_method = second_methods.get(name) <NEW_LINE> second_argspec = inspect.getargspec(second_method) <NEW_LINE> assert first_argspec == second_argspec | Assert that public methods in C{first} are present in C{second}.
This helper function asserts that all public methods found in C{first} are
also present in C{second} and accept the same arguments. C{first} may have
its own private methods, though, and may not have all methods found in
C{second}. Note that if a private method in C{first} matches the name of
one in C{second}, their specification is still compared.
This is useful to verify if a fake or stub class have the same API as the
real class being simulated. | 625941b5ec188e330fd5a59f |
def fillObsCPT(bayesNet, gameState): <NEW_LINE> <INDENT> bottomLeftPos, topLeftPos, bottomRightPos, topRightPos = gameState.getPossibleHouses() <NEW_LINE> "*** YOUR CODE HERE ***" <NEW_LINE> def getAssignment(x,y): <NEW_LINE> <INDENT> height = gameState.data.layout.height / 2.0 <NEW_LINE> width = gameState.data.layout.width / 2.0 <NEW_LINE> if x > width and y > height : <NEW_LINE> <INDENT> return TOP_RIGHT_VAL <NEW_LINE> <DEDENT> elif x > width and y < height : <NEW_LINE> <INDENT> return BOTTOM_RIGHT_VAL <NEW_LINE> <DEDENT> elif x < width and y < height : <NEW_LINE> <INDENT> return BOTTOM_LEFT_VAL <NEW_LINE> <DEDENT> elif x < width and y > height: <NEW_LINE> <INDENT> return TOP_LEFT_VAL <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> <DEDENT> for housePos in gameState.getPossibleHouses(): <NEW_LINE> <INDENT> for obsPos in gameState.getHouseWalls(housePos): <NEW_LINE> <INDENT> obsVar = OBS_VAR_TEMPLATE % obsPos <NEW_LINE> obsFactor = bn.Factor([obsVar], [FOOD_HOUSE_VAR, GHOST_HOUSE_VAR] , bayesNet.variableDomainsDict()) <NEW_LINE> for assignment in obsFactor.getAllPossibleAssignmentDicts(): <NEW_LINE> <INDENT> if assignment[FOOD_HOUSE_VAR] == getAssignment(obsPos[0] , obsPos[1]): <NEW_LINE> <INDENT> if assignment[obsVar] == RED_OBS_VAL: <NEW_LINE> <INDENT> prob = PROB_FOOD_RED <NEW_LINE> <DEDENT> elif assignment[obsVar] == BLUE_OBS_VAL: <NEW_LINE> <INDENT> prob = 1 - PROB_FOOD_RED <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> prob = 0 <NEW_LINE> <DEDENT> <DEDENT> elif assignment[GHOST_HOUSE_VAR] == getAssignment(obsPos[0] , obsPos[1]) : <NEW_LINE> <INDENT> if assignment[obsVar] == RED_OBS_VAL: <NEW_LINE> <INDENT> prob = PROB_GHOST_RED <NEW_LINE> <DEDENT> elif assignment[obsVar] == BLUE_OBS_VAL: <NEW_LINE> <INDENT> prob = 1 - PROB_GHOST_RED <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> prob = 0 <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if assignment[obsVar] == NO_OBS_VAL: <NEW_LINE> <INDENT> prob = 1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> prob = 0 <NEW_LINE> <DEDENT> <DEDENT> obsFactor.setProbability(assignment, prob) <NEW_LINE> <DEDENT> bayesNet.setCPT(obsVar , obsFactor) | Question 2b: Bayes net probabilities
Fill the CPT that gives the probability of an observation in each square,
given the locations of the food and ghost houses. Refer to the project
description for what this probability table looks like. You can use
PROB_FOOD_RED and PROB_GHOST_RED from the top of the file.
You will need to create a new factor for *each* of 4*7 = 28 observation
variables. Don't forget to call bayesNet.setCPT for each factor you create.
The XXXPos variables at the beginning of this method contain the (x, y)
coordinates of each possible house location.
IMPORTANT:
Because of the particular choice of probabilities higher up in the Bayes
net, it will never be the case that the ghost house and the food house are
in the same place. However, the CPT for observations must still include a
vaild probability distribution for this case. To conform with the
autograder, use the *food house distribution* over assignment[obsVar]s when both the food
house and ghost house are assigned to the same cell. | 625941b51d351010ab85591b |
def snmp_server_v3host_hostip(self, **kwargs): <NEW_LINE> <INDENT> config = ET.Element("config") <NEW_LINE> snmp_server = ET.SubElement(config, "snmp-server", xmlns="urn:brocade.com:mgmt:brocade-snmp") <NEW_LINE> if kwargs.pop('delete_snmp_server', False) is True: <NEW_LINE> <INDENT> delete_snmp_server = config.find('.//*snmp-server') <NEW_LINE> delete_snmp_server.set('operation', 'delete') <NEW_LINE> <DEDENT> v3host = ET.SubElement(snmp_server, "v3host") <NEW_LINE> if kwargs.pop('delete_v3host', False) is True: <NEW_LINE> <INDENT> delete_v3host = config.find('.//*v3host') <NEW_LINE> delete_v3host.set('operation', 'delete') <NEW_LINE> <DEDENT> username_key = ET.SubElement(v3host, "username") <NEW_LINE> username_key.text = kwargs.pop('username') <NEW_LINE> if kwargs.pop('delete_username', False) is True: <NEW_LINE> <INDENT> delete_username = config.find('.//*username') <NEW_LINE> delete_username.set('operation', 'delete') <NEW_LINE> <DEDENT> hostip = ET.SubElement(v3host, "hostip") <NEW_LINE> if kwargs.pop('delete_hostip', False) is True: <NEW_LINE> <INDENT> delete_hostip = config.find('.//*hostip') <NEW_LINE> delete_hostip.set('operation', 'delete') <NEW_LINE> <DEDENT> hostip.text = kwargs.pop('hostip') <NEW_LINE> callback = kwargs.pop('callback', self._callback) <NEW_LINE> return callback(config) | Auto Generated Code
| 625941b50c0af96317bb7fe0 |
def test_004_certificate__store_cert(self): <NEW_LINE> <INDENT> self.certificate.dbstore.certificate_add.side_effect = Exception('exc_cert_add') <NEW_LINE> with self.assertLogs('test_a2c', level='INFO') as lcm: <NEW_LINE> <INDENT> self.assertFalse(self.certificate._store_cert('cert_name', 'cert', 'raw')) <NEW_LINE> <DEDENT> self.assertIn('CRITICAL:test_a2c:acme2certifier database error in Certificate._store_cert(): exc_cert_add', lcm.output) | test Certificate.store_cert() and check if we get something back | 625941b5e1aae11d1e749aaa |
def inside(head): <NEW_LINE> <INDENT> return -200 < head.x < 200 and -200 < head.y < 200 | Return True if head inside boundaries. | 625941b5d8ef3951e3243334 |
def ensure_service(self, service_name): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> s = self.services[service_name] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> s = BrokerService(self, service_name) <NEW_LINE> self.services[service_name] = s <NEW_LINE> logger.info('Created new service: "{}"'.format(service_name)) <NEW_LINE> <DEDENT> return s | Fetch (or create and fetch) a :class:`BrokerService` instance for the corresponding `service_name`
| 625941b596565a6dacc8f4cc |
def _checkPassword(self, editable = None, data = None): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> strength = checkPassword(self.pw.get_text()) <NEW_LINE> _pwq_error = None <NEW_LINE> <DEDENT> except PWQError as e: <NEW_LINE> <INDENT> _pwq_error = e.args[1] <NEW_LINE> strength = 0 <NEW_LINE> <DEDENT> if strength < 50: <NEW_LINE> <INDENT> val = 1 <NEW_LINE> text = _("Weak") <NEW_LINE> self._error = _("The password you have provided is weak") <NEW_LINE> if _pwq_error: <NEW_LINE> <INDENT> self._error += ": %s. " % _pwq_error <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._error += ". " <NEW_LINE> <DEDENT> self._error += _("You will have to press Done twice to confirm it.") <NEW_LINE> <DEDENT> elif strength < 75: <NEW_LINE> <INDENT> val = 2 <NEW_LINE> text = _("Fair") <NEW_LINE> self._error = False <NEW_LINE> <DEDENT> elif strength < 90: <NEW_LINE> <INDENT> val = 3 <NEW_LINE> text = _("Good") <NEW_LINE> self._error = False <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> val = 4 <NEW_LINE> text = _("Strong") <NEW_LINE> self._error = False <NEW_LINE> <DEDENT> if not self.pw.get_text(): <NEW_LINE> <INDENT> val = 0 <NEW_LINE> text = _("Empty") <NEW_LINE> self._error = _("The password is empty.") <NEW_LINE> <DEDENT> elif self.confirm.get_text() and self.pw.get_text() != self.confirm.get_text(): <NEW_LINE> <INDENT> self._error = _("The passwords do not match.") <NEW_LINE> <DEDENT> self.pw_bar.set_value(val) <NEW_LINE> self.pw_label.set_text(text) <NEW_LINE> self.clear_info() <NEW_LINE> if self._error: <NEW_LINE> <INDENT> self.set_warning(self._error) <NEW_LINE> self.window.show_all() <NEW_LINE> return False <NEW_LINE> <DEDENT> return True | This method updates the password indicators according
to the passwords entered by the user. It is called by
the changed Gtk event handler. | 625941b5dc8b845886cb532b |
def adj(self, v): <NEW_LINE> <INDENT> return self.adj[v] | vertices adjacent to v | 625941b5498bea3a759b98a9 |
def read(self, argv): <NEW_LINE> <INDENT> self.clear() <NEW_LINE> pas = False <NEW_LINE> last = len(argv) - 1 <NEW_LINE> for w, i_w in zipi(argv): <NEW_LINE> <INDENT> if w[0] == "-" and i_w != last and argv[i_w + 1] == "=": <NEW_LINE> <INDENT> ERROR("flags cannot be assigned with a equal sign: {} =".format(w)) <NEW_LINE> <DEDENT> if w == "=" and i_w == last: <NEW_LINE> <INDENT> ERROR("no assignment after equal sign") <NEW_LINE> <DEDENT> if w[0] == "-" and len(w) == 1: <NEW_LINE> <INDENT> ERROR("single '-', syntax not correct") <NEW_LINE> <DEDENT> <DEDENT> self.arg = [] <NEW_LINE> self.flag = [] <NEW_LINE> i = 0 <NEW_LINE> while i < last: <NEW_LINE> <INDENT> i += 1 <NEW_LINE> w = argv[i] <NEW_LINE> w1 = "-" if i >= last else argv[i+1] <NEW_LINE> w2 = " " if i >= last - 1 else argv[i+2] <NEW_LINE> if w1 == "=": <NEW_LINE> <INDENT> key, val = w, argv[i + 2] <NEW_LINE> if self.has_param(key): <NEW_LINE> <INDENT> self.warn("parameter {0} already set to {1} -> overwrite to {2}".format(key, self[key], val)) <NEW_LINE> <DEDENT> self[key] = to_number(val) <NEW_LINE> i += 2 <NEW_LINE> continue <NEW_LINE> <DEDENT> if w[0] == "-": <NEW_LINE> <INDENT> w = w[1:] <NEW_LINE> if w1[0] != "-" and w2 != "=": <NEW_LINE> <INDENT> if w in self.param: <NEW_LINE> <INDENT> self.warn("parameter {0} already set to {1} -> overwrite to {2}".format(w, self[w], w1)) <NEW_LINE> <DEDENT> self[w] = to_number(w1) <NEW_LINE> i += 1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if w in self.flag: <NEW_LINE> <INDENT> self.warn("flag {0} was already set".format(w)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.flag.append(w) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if pas: <NEW_LINE> <INDENT> pas = False <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if w in self.arg: <NEW_LINE> <INDENT> self.warn("arg {0} was already set".format(w)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.arg.append(w) | The passed argv is parsed and stored in the right places. Legal notation is:
- -flag
- -param value
- param = value
- arg | 625941b5460517430c393f87 |
@template("repo_browser/commit_list.html") <NEW_LINE> def commitlist(request, repository_slug): <NEW_LINE> <INDENT> repository = get_object_or_404( repo_browser.models.Repository, slug=str(repository_slug)) <NEW_LINE> commit_paginator = Paginator( repository.commits.all(), int(request.GET.get("per_page", 50))) <NEW_LINE> commits = commit_paginator.page(int(request.GET.get("page", 1))) <NEW_LINE> return {"repository": repository, "commits": commits} | View a set of commits in a repo | 625941b5d58c6744b4257a58 |
def openfile(self): <NEW_LINE> <INDENT> self.title=self.txt.get() <NEW_LINE> self.title=str(self.title) <NEW_LINE> filepath=askopenfilename(title="Chose file ",filetypes=[('txt files','.txt'),('iperf files','.iperf'),('all files','.*')]) <NEW_LINE> iperf_log(filepath,"r",self.title) | Renvoye le chemain du fichier | 625941b55166f23b2e1a4f50 |
def handle_extra_path(self): <NEW_LINE> <INDENT> if self.extra_path is None: <NEW_LINE> <INDENT> self.extra_path = self.distribution.extra_path <NEW_LINE> <DEDENT> if self.extra_path is not None: <NEW_LINE> <INDENT> if isinstance(self.extra_path, str): <NEW_LINE> <INDENT> self.extra_path = self.extra_path.split(',') <NEW_LINE> <DEDENT> if len(self.extra_path) == 1: <NEW_LINE> <INDENT> path_file = extra_dirs = self.extra_path[0] <NEW_LINE> <DEDENT> elif len(self.extra_path) == 2: <NEW_LINE> <INDENT> path_file, extra_dirs = self.extra_path <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise DistutilsOptionError( "'extra_path' option must be a list, tuple, or " "comma-separated string with 1 or 2 elements") <NEW_LINE> <DEDENT> extra_dirs = convert_path(extra_dirs) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> path_file = None <NEW_LINE> extra_dirs = '' <NEW_LINE> <DEDENT> self.path_file = path_file <NEW_LINE> self.extra_dirs = extra_dirs | Set `path_file` and `extra_dirs` using `extra_path`. | 625941b5507cdc57c6306ac9 |
def remove_html_tag(source): <NEW_LINE> <INDENT> if source: <NEW_LINE> <INDENT> result = re.sub('<[^>]+>', '', source) <NEW_LINE> return result <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return str() | 移除字符串中的HTML格式标签
:param source:
:return: | 625941b53346ee7daa2b2b60 |
def RiFrameAspectRatio(frameratio): <NEW_LINE> <INDENT> _ribout.write('FrameAspectRatio %s\n'%frameratio) | Set the ratio between width and height of the image.
Example: RiFrameAspectRatio(4.0/3) | 625941b5b5575c28eb68ddf4 |
def step(self, closure=None): <NEW_LINE> <INDENT> loss = None <NEW_LINE> if closure is not None: <NEW_LINE> <INDENT> loss = closure() <NEW_LINE> <DEDENT> for group in self.param_groups: <NEW_LINE> <INDENT> for p in group['params']: <NEW_LINE> <INDENT> if p.grad is None: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> grad = p.grad.data <NEW_LINE> if grad.is_sparse: <NEW_LINE> <INDENT> raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') <NEW_LINE> <DEDENT> amsgrad = group['amsgrad'] <NEW_LINE> state = self.state[p] <NEW_LINE> if len(state) == 0: <NEW_LINE> <INDENT> state['step'] = 0 <NEW_LINE> state['exp_avg'] = torch.zeros_like(p.data) <NEW_LINE> state['exp_avg_sq'] = torch.zeros_like(p.data) <NEW_LINE> if len(p.size())!=1: <NEW_LINE> <INDENT> state['followed_weight'] = np.random.randint(p.size(0)),np.random.randint(p.size(1)) <NEW_LINE> <DEDENT> if amsgrad: <NEW_LINE> <INDENT> state['max_exp_avg_sq'] = torch.zeros_like(p.data) <NEW_LINE> <DEDENT> <DEDENT> exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] <NEW_LINE> if amsgrad: <NEW_LINE> <INDENT> max_exp_avg_sq = state['max_exp_avg_sq'] <NEW_LINE> <DEDENT> beta1, beta2 = group['betas'] <NEW_LINE> state['step'] += 1 <NEW_LINE> if group['weight_decay'] != 0: <NEW_LINE> <INDENT> grad.add_(group['weight_decay'], p.data) <NEW_LINE> <DEDENT> exp_avg.mul_(beta1).add_(1 - beta1, grad) <NEW_LINE> exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) <NEW_LINE> if amsgrad: <NEW_LINE> <INDENT> torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) <NEW_LINE> denom = max_exp_avg_sq.sqrt().add_(group['eps']) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> denom = exp_avg_sq.sqrt().add_(group['eps']) <NEW_LINE> <DEDENT> bias_correction1 = 1 - beta1 ** state['step'] <NEW_LINE> bias_correction2 = 1 - beta2 ** state['step'] <NEW_LINE> step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 <NEW_LINE> binary_weight_before_update = torch.sign(p.data) <NEW_LINE> condition_consolidation = (torch.mul(binary_weight_before_update,exp_avg) > 0.0 ) <NEW_LINE> decayed_exp_avg = torch.mul(torch.ones_like(p.data)-torch.pow(torch.tanh(group['meta']*torch.abs(p.data)),2) ,exp_avg) <NEW_LINE> if len(p.size())==1: <NEW_LINE> <INDENT> p.data.addcdiv_(-step_size, exp_avg, denom) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> p.data.addcdiv_(-step_size, torch.where(condition_consolidation, decayed_exp_avg, exp_avg) , denom) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return loss | Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss. | 625941b5d18da76e235322c8 |
def numbers_constant_forward(r, maxnum, n): <NEW_LINE> <INDENT> for k in range(r): <NEW_LINE> <INDENT> for r in range(1, maxnum + 1): <NEW_LINE> <INDENT> for j in range(n): <NEW_LINE> <INDENT> print(r, end='') <NEW_LINE> <DEDENT> <DEDENT> print() <NEW_LINE> <DEDENT> print() | Prints a rectangle of numbers, with r rows.
Each row has n 1s, then n 2s, then n 3s, etc. up to n maxnum's.
For example, when r = 4, maxnum = 7 and n = 3:
111222333444555666777
111222333444555666777
111222333444555666777
111222333444555666777
Notice that there were r = 4 rows;
each row had numbers that went from 1 to maxnum = 7; and
there were n occurrences of each number on each row.
Here is another example,
when r = 3, maxnum = 5 and n = 8:
1111111122222222333333334444444455555555
1111111122222222333333334444444455555555
1111111122222222333333334444444455555555
Preconditions: r, maxnum and n are positive integers. | 625941b566673b3332b91e8e |
def test_getfeature_geojson_with_selection(client): <NEW_LINE> <INDENT> query_string = ( "?" "SERVICE=WFS&" "VERSION=1.1.0&" "REQUEST=GetFeature&" "TYPENAME=lines&" "OUTPUTFORMAT=GeoJSON&" "FEATUREID=lines.1,lines.2&" "MAP={}" ).format(PROJECT) <NEW_LINE> rv = client.get(query_string, PROJECT) <NEW_LINE> assert rv.status_code == 200 <NEW_LINE> assert 'application/vnd.geo+json' in rv.headers.get('Content-Type'), rv.headers <NEW_LINE> layer = _test_vector_layer(rv.file('geojson'), 'GeoJSON', count=2) <NEW_LINE> _test_list(layer.fields().names(), ['id', 'name', 'comment']) | Test GetFeature as GeoJSON with a selection. | 625941b54a966d76dd550e03 |
def recursive_data_display(self, data, cnt = 1, out = True): <NEW_LINE> <INDENT> if type(data) is not dict or len(data) is 0 or type(cnt) is not int or cnt < 0 or type(out) is not bool: <NEW_LINE> <INDENT> if out is True: <NEW_LINE> <INDENT> print(self._invalid_arguments.format( self._red, datetime.now().strftime(self._format_time), self._end, __class__.__name__ + '.' + self.recursive_data_display.__name__ )) <NEW_LINE> <DEDENT> return None <NEW_LINE> <DEDENT> if out is False: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> for key, val in data.items(): <NEW_LINE> <INDENT> if type(val) is not dict: <NEW_LINE> <INDENT> val = str(val) if type(val) is not list else ', '.join(str(v) for v in val) <NEW_LINE> print(('\t' * cnt) + '"' + key + '" - ' + val) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print(('\t' * cnt) + '"' + key + '":') <NEW_LINE> self.recursive_data_display(val, cnt + 1) <NEW_LINE> <DEDENT> <DEDENT> return None | Рекурсивное отображение данных из словаря
(dict [, int, bool]) -> None
Аргументы:
data - Словарь
cnt - Рекурсивный счетчик
out - Печатать процесс выполнения
Возвращает None | 625941b58a349b6b435e7f6c |
def _base_url(): <NEW_LINE> <INDENT> return __opts__.get("digicert", {}).get( "base_url", "https://www.digicert.com/services/v2/" ) | Return the base_url | 625941b5e8904600ed9f1d21 |
def test_right_login_form(self): <NEW_LINE> <INDENT> form_data = {'username': 'TimeaKovacs', 'password': 'Test_password'} <NEW_LINE> form = UserLoginForm(data=form_data) <NEW_LINE> self.assertTrue(form.is_valid()) | Test the UserLoginForm | 625941b591f36d47f21ac2ed |
def test_get_all_boatrooms(self): <NEW_LINE> <INDENT> pass | Test case for get_all_boatrooms
Retrieve all boatrooms | 625941b50fa83653e4656db6 |
def test_index_view_with_two_past_questions(self): <NEW_LINE> <INDENT> create_question(question_text="Past question 1.", days=-30) <NEW_LINE> create_question(question_text="Past question 2.", days=-5) <NEW_LINE> print(reverse('polls:index')) <NEW_LINE> response = self.client.get(reverse('polls:index')) <NEW_LINE> self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question 2.>', '<Question: Past question 1.>'] ) | The questions index page may display multiple questions.
:return: | 625941b576d4e153a657e927 |
def test_enabled_doesnt_query_site(self): <NEW_LINE> <INDENT> re_django_site_query = re.compile(r'FROM\s+"django_site"') <NEW_LINE> self.enable_saml() <NEW_LINE> provider_count = 5 <NEW_LINE> for i in range(provider_count): <NEW_LINE> <INDENT> self.configure_saml_provider(enabled=True, slug="saml-slug-%s" % i) <NEW_LINE> <DEDENT> with CaptureQueriesContext(connections[DEFAULT_DB_ALIAS]) as cq: <NEW_LINE> <INDENT> enabled_slugs = {p.slug for p in provider.Registry.enabled()} <NEW_LINE> <DEDENT> self.assertEqual(len(enabled_slugs), provider_count) <NEW_LINE> all_queries = [q['sql'] for q in cq.captured_queries] <NEW_LINE> django_site_queries = list(filter(re_django_site_query.search, all_queries)) <NEW_LINE> self.assertEqual(len(django_site_queries), 0) | Regression test for 1+N queries for django_site (ARCHBOM-1139) | 625941b5c432627299f04a3c |
def ack3Callback(self): <NEW_LINE> <INDENT> if self.checkButtons.getButtonPressed("ACK3"): <NEW_LINE> <INDENT> self.notifyModelTask(["OBQENABLEACK3"]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.notifyModelTask(["OBQDISABLEACK3"]) | Called when the ACK3 checkbutton is pressed | 625941b5656771135c3eb66a |
def create_allow_rule(name: str, addresses: List[str], *, dry_run: bool): <NEW_LINE> <INDENT> args = [ 'gcloud', 'compute', 'firewall-rules', 'create', name, '--project={}'.format(GCP_PROJECT), '--action=ALLOW', '--rules=tcp:80,tcp:443', '--direction=INGRESS', '--priority={}'.format(PRIORITY_ALLOW), '--no-enable-logging', '--source-ranges={}'.format(','.join(addresses)), ] <NEW_LINE> if dry_run: <NEW_LINE> <INDENT> print('実行:', ' '.join(args)) <NEW_LINE> return <NEW_LINE> <DEDENT> return subprocess.run(args, check=True) | 特定のレンジを許可するルールを 1 件作成する | 625941b54e4d5625662d41d5 |
def test_missing_scratch_stat(self): <NEW_LINE> <INDENT> out = StringIO() <NEW_LINE> call_command( 'import_weekly_storage', '--homefile=/app/stats/tests/project_usage_home.csv', '--scratchfile=/app/stats/tests/project_usage_scratch.csv', '-d 21', '-m 11', '-y 2020', '-s CF', stdout=out ) <NEW_LINE> self.assertIn( "Couldn't find scratch stats for scw0000...skipping", out.getvalue(), ) | Ensure an error is displayed to the user if scratch stats
for a project are not found. | 625941b530c21e258bdfa294 |
def __str__(self): <NEW_LINE> <INDENT> __str_object = "" <NEW_LINE> for arg in dir(self): <NEW_LINE> <INDENT> if not arg.startswith("__") and not isinstance(getattr(self, arg), MethodType): <NEW_LINE> <INDENT> __str_object += "{ %-15s } -> " % arg + str(getattr(self, arg)) + '\n' <NEW_LINE> <DEDENT> <DEDENT> return __str_object | :return: a description of one object. | 625941b556b00c62f0f14454 |
def update( self, resource_group_name, search_service_name, service, search_management_request_options=None, **kwargs ): <NEW_LINE> <INDENT> cls = kwargs.pop('cls', None) <NEW_LINE> error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } <NEW_LINE> error_map.update(kwargs.pop('error_map', {})) <NEW_LINE> _client_request_id = None <NEW_LINE> if search_management_request_options is not None: <NEW_LINE> <INDENT> _client_request_id = search_management_request_options.client_request_id <NEW_LINE> <DEDENT> api_version = "2020-08-01" <NEW_LINE> content_type = kwargs.pop("content_type", "application/json") <NEW_LINE> accept = "application/json" <NEW_LINE> url = self.update.metadata['url'] <NEW_LINE> path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'searchServiceName': self._serialize.url("search_service_name", search_service_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } <NEW_LINE> url = self._client.format_url(url, **path_format_arguments) <NEW_LINE> query_parameters = {} <NEW_LINE> query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') <NEW_LINE> header_parameters = {} <NEW_LINE> if _client_request_id is not None: <NEW_LINE> <INDENT> header_parameters['x-ms-client-request-id'] = self._serialize.header("client_request_id", _client_request_id, 'str') <NEW_LINE> <DEDENT> header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') <NEW_LINE> header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') <NEW_LINE> body_content_kwargs = {} <NEW_LINE> body_content = self._serialize.body(service, 'SearchServiceUpdate') <NEW_LINE> body_content_kwargs['content'] = body_content <NEW_LINE> request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) <NEW_LINE> pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) <NEW_LINE> response = pipeline_response.http_response <NEW_LINE> if response.status_code not in [200]: <NEW_LINE> <INDENT> map_error(status_code=response.status_code, response=response, error_map=error_map) <NEW_LINE> raise HttpResponseError(response=response, error_format=ARMErrorFormat) <NEW_LINE> <DEDENT> deserialized = self._deserialize('SearchService', pipeline_response) <NEW_LINE> if cls: <NEW_LINE> <INDENT> return cls(pipeline_response, deserialized, {}) <NEW_LINE> <DEDENT> return deserialized | Updates an existing search service in the given resource group.
:param resource_group_name: The name of the resource group within the current subscription. You
can obtain this value from the Azure Resource Manager API or the portal.
:type resource_group_name: str
:param search_service_name: The name of the Azure Cognitive Search service to update.
:type search_service_name: str
:param service: The definition of the search service to update.
:type service: ~azure.mgmt.search.models.SearchServiceUpdate
:param search_management_request_options: Parameter group.
:type search_management_request_options: ~azure.mgmt.search.models.SearchManagementRequestOptions
:keyword callable cls: A custom type or function that will be passed the direct response
:return: SearchService, or the result of cls(response)
:rtype: ~azure.mgmt.search.models.SearchService
:raises: ~azure.core.exceptions.HttpResponseError | 625941b5d10714528d5ffad7 |
def train(hparams, summary_dir, num_gpus, model_type, max_steps, save_step, data_dir, num_targets, dataset, validate): <NEW_LINE> <INDENT> gpu_id = 3 <NEW_LINE> with tf.device('/gpu:%d' % gpu_id): <NEW_LINE> <INDENT> with tf.Graph().as_default(): <NEW_LINE> <INDENT> features = dict() <NEW_LINE> sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) <NEW_LINE> init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) <NEW_LINE> sess.run(init_op) <NEW_LINE> model = models[model_type](hparams) <NEW_LINE> coord = tf.train.Coordinator() <NEW_LINE> threads = tf.train.start_queue_runners(sess=sess, coord=coord) <NEW_LINE> for i in range(epoch): <NEW_LINE> <INDENT> print('--------------------epoch:{}------------------'.format(i + 1)) <NEW_LINE> data = next_batch(batch_size, 'train') <NEW_LINE> total_correct = 0 <NEW_LINE> total_loss = 0 <NEW_LINE> count = 0 <NEW_LINE> for batched_data in data: <NEW_LINE> <INDENT> X, Y, ngram_num = batched_data <NEW_LINE> count += 1 <NEW_LINE> features['text'], features['labels'] = X, Y <NEW_LINE> features['num_classes'], features['max_ngram_len'] = len(user2idx), max_len <NEW_LINE> features['ngram_num'] = ngram_num <NEW_LINE> out = model._single_tower(gpu_id, features) <NEW_LINE> loss, correct = sess.run([out.losses, out.correct]) <NEW_LINE> total_loss += loss <NEW_LINE> total_correct += correct <NEW_LINE> <DEDENT> print('train_loss: {}, train_acc: {}'.format(total_loss / i, total_correct / (i * batch_size))) <NEW_LINE> print('-------------------valid:{}--------------------'.format(i + 1)) <NEW_LINE> data = next_batch(batch_size, 'valid') <NEW_LINE> total_correct = 0 <NEW_LINE> total_loss = 0 <NEW_LINE> count = 0 <NEW_LINE> for batched_data in data: <NEW_LINE> <INDENT> X, Y, ngram_num = batched_data <NEW_LINE> count += 1 <NEW_LINE> features['text'], features['labels'] = X, Y <NEW_LINE> features['num_classes'], features['max_ngram_len'] = len(user2idx), max_len <NEW_LINE> features['ngram_num'] = ngram_num <NEW_LINE> out = model._single_tower(gpu_id, features) <NEW_LINE> loss, correct = sess.run(out.losses, out.correct) <NEW_LINE> total_loss += loss <NEW_LINE> total_correct += correct <NEW_LINE> <DEDENT> print('valid_loss: {}, valid_acc: {}'.format(total_loss / i, total_correct / (i * batch_size))) <NEW_LINE> <DEDENT> coord.join(threads) <NEW_LINE> sess.close() | Trains a model with batch sizes of 128 to FLAGS.max_steps steps.
It will initialize the model with either previously saved model in the
summary directory or start from scratch if FLAGS.restart is set or the
directory is empty.
The training is distributed on num_gpus GPUs. It writes a summary at every
step and saves the model every 1500 iterations.
Args:
hparams: The hyper parameters to build the model graph.
summary_dir: The directory to save model and write training summaries.
num_gpus: Number of GPUs to use for reading data and computation.
model_type: The model architecture category.
max_steps: Maximum number of training iterations.
save_step: How often the training model should be saved.
data_dir: Directory containing the input data.
num_targets: Number of objects present in the image.
dataset: Name of the dataset for the experiments.
validate: If set, use training-validation set for training. | 625941b55fc7496912cc377d |
def critical_density(wavelength): <NEW_LINE> <INDENT> n_c = electron_rest_mass * epsilon_zero * ((2 * np.pi * lightspeed) / (electric_charge * wavelength)) ** 2 <NEW_LINE> return n_c | Calculates the critical plasma density:
.. math::
n_c = m_e arepsilon_0 * (rac{2 \pi c}{e \lambda})^2
Parameters
----------
wavelength : in meters
Returns
-------
float
the critical plasma density | 625941b5187af65679ca4f1c |
def __init__(self, tunables, gridding=0, r_minimum=2): <NEW_LINE> <INDENT> super(GCP, self).__init__(tunables, gridding=gridding) <NEW_LINE> self.r_minimum = r_minimum | Extra args:
r_minimum: the minimum number of past results this selector needs in
order to use gaussian process for prediction. If not enough
results are present during a fit(), subsequent calls to
propose() will revert to uniform selection. | 625941b5a05bb46b383ec626 |
Subsets and Splits