code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def delete(container, queue): <NEW_LINE> <INDENT> while 1: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> batch = queue.get_nowait() <NEW_LINE> <DEDENT> except Empty: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> for name in batch: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> container.delete_object(name) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> pass | Delete from cloudfiles. Runs in a separate process. | 625941b5e8904600ed9f1d14 |
def setOutputTimesteps ( algorithm , timesteps ): <NEW_LINE> <INDENT> executive = algorithm . GetExecutive () <NEW_LINE> outInfo = executive . GetOutputInformation (0) <NEW_LINE> outInfo.Remove ( executive.TIME_STEPS () ) <NEW_LINE> for timestep in timesteps : <NEW_LINE> <INDENT> outInfo . Append ( executive . TIME_STEPS () , timestep ) <NEW_LINE> outInfo . Remove ( executive . TIME_RANGE () ) <NEW_LINE> outInfo . Append ( executive . TIME_RANGE () , timesteps [0]) <NEW_LINE> outInfo . Append ( executive . TIME_RANGE () , timesteps [ -1]) | helper routine to set timestep information | 625941b5ec188e330fd5a593 |
def is_integer_n_tuple(expr, n): <NEW_LINE> <INDENT> return isinstance(expr, tuple) and len(expr) == n and all(isinstance(x, int) for x in expr) | Is true when `expr` is an integer tuple of length `n`.
::
>>> mathtools.is_integer_n_tuple((19, 20, 21), 3)
True
Otherwise false:
::
>>> mathtools.is_integer_n_tuple((19, 20, 'text'), 3)
False
Returns boolean. | 625941b524f1403a92600955 |
def expr(self): <NEW_LINE> <INDENT> result = self.term() <NEW_LINE> while self.current_token.type in (PLUS, MINUS): <NEW_LINE> <INDENT> token = self.current_token <NEW_LINE> if token.type == PLUS: <NEW_LINE> <INDENT> self.eat(PLUS) <NEW_LINE> result += self.term() <NEW_LINE> <DEDENT> elif token.type == MINUS: <NEW_LINE> <INDENT> self.eat(MINUS) <NEW_LINE> result -= self.term() <NEW_LINE> <DEDENT> <DEDENT> return result | Arithmetic expressoin parser / interpreter.
calc> 14 + 2 * 3 - 6 / 2
17
expr : term ((PLUS | MINUS) term)*
term : factor ((MUL | DIV) factor)*
factor : INTEGER | 625941b5b830903b967e9703 |
def start_timer(self): <NEW_LINE> <INDENT> return self.send_command_async("start time") | Starts the timer. Return value is the echoed command. Note that device must already be started to start the timer. | 625941b5ab23a570cc24ff6b |
def _aquifer_qs(request): <NEW_LINE> <INDENT> query = request.GET <NEW_LINE> qs = Aquifer.objects.all() <NEW_LINE> resources__section__code = query.get("resources__section__code") <NEW_LINE> hydraulic = query.get('hydraulically_connected') <NEW_LINE> search = query.get('search') <NEW_LINE> match_any = query.get('match_any') == 'true' <NEW_LINE> now = timezone.now() <NEW_LINE> filters = [] <NEW_LINE> if hydraulic: <NEW_LINE> <INDENT> filters.append(Q(subtype__code__in=serializers.HYDRAULIC_SUBTYPES)) <NEW_LINE> <DEDENT> if resources__section__code: <NEW_LINE> <INDENT> for code in resources__section__code.split(','): <NEW_LINE> <INDENT> filters.append(Q(resources__section__code=code)) <NEW_LINE> <DEDENT> <DEDENT> if match_any: <NEW_LINE> <INDENT> if len(filters) > 0: <NEW_LINE> <INDENT> disjunction = filters.pop() <NEW_LINE> for filter in filters: <NEW_LINE> <INDENT> disjunction |= filter <NEW_LINE> <DEDENT> qs = qs.filter(disjunction) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> for filter in filters: <NEW_LINE> <INDENT> qs = qs.filter(filter) <NEW_LINE> <DEDENT> <DEDENT> if search: <NEW_LINE> <INDENT> disjunction = Q(aquifer_name__icontains=search) <NEW_LINE> if search.isdigit(): <NEW_LINE> <INDENT> disjunction = disjunction | Q(pk=int(search)) <NEW_LINE> <DEDENT> qs = qs.filter(disjunction) <NEW_LINE> <DEDENT> if not request.user.groups.filter(name=AQUIFERS_EDIT_ROLE).exists(): <NEW_LINE> <INDENT> qs = qs.filter(effective_date__lte=now, expiry_date__gt=now) <NEW_LINE> <DEDENT> qs = qs.select_related( 'demand', 'material', 'productivity', 'subtype', 'vulnerability') <NEW_LINE> qs = qs.distinct() <NEW_LINE> return qs | We have a custom search which does a case insensitive substring of aquifer_name,
exact match on aquifer_id, and also looks at an array of provided resources attachments
of which we require one to be present if any are specified. The front-end doesn't use
DjangoFilterBackend's querystring array syntax, preferring ?a=1,2 rather than ?a[]=1&a[]=2,
so again we need a custom back-end implementation.
@param request - the request object | 625941b5cdde0d52a9e52e19 |
def createOutputContext(self): <NEW_LINE> <INDENT> if (self.multicast_address!="" and self.multicast_port>0): <NEW_LINE> <INDENT> self.out_ctx =core.LiveOutboundContext(core.LiveConnectionType_sdp, self.multicast_address, self.slot, self.multicast_port) <NEW_LINE> self.outgoing_livethread.core.registerOutboundCall(self.out_ctx) | Creates an output context for sending the stream
| 625941b576e4537e8c351462 |
def __init__(self, theta_array=None, stack=None, instrument=None): <NEW_LINE> <INDENT> abstract = "simulator_XRF" <NEW_LINE> pyxcel.engine.simulator.generic.Simulator.__init__(self, theta_array, stack, instrument, abstract) | initialization
| 625941b5de87d2750b85fb79 |
def find_and_halve_numbers(line): <NEW_LINE> <INDENT> split_line = re.split("(\d+)",line) <NEW_LINE> new_line = '' <NEW_LINE> for item in split_line: <NEW_LINE> <INDENT> if item.isdigit(): <NEW_LINE> <INDENT> item = str(int(item)/2) <NEW_LINE> <DEDENT> new_line += item <NEW_LINE> <DEDENT> return new_line | Find all occurances of numbers in a line, and divide them by 2
Note! We're using regular expressions here to find the groups of numbers.
This is complex and you aren't expected to know how to do this. The
rest of the function is straightforward, however.
Another possible solution would be to split each line word by word
with split() and test whether each "word" is a number | 625941b5d18da76e235322bc |
def _PrepareValuesForAdd(self, values): <NEW_LINE> <INDENT> if isinstance(values, dict): <NEW_LINE> <INDENT> for col in values: <NEW_LINE> <INDENT> if not col in self._column_set: <NEW_LINE> <INDENT> raise LookupError("Tried adding data to unknown column '%s'" % col) <NEW_LINE> <DEDENT> <DEDENT> for col in self._columns: <NEW_LINE> <INDENT> if not col in values: <NEW_LINE> <INDENT> values[col] = self.EMPTY_CELL <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> elif isinstance(values, list): <NEW_LINE> <INDENT> if len(values) > len(self._columns): <NEW_LINE> <INDENT> raise LookupError("Tried adding row with too many columns") <NEW_LINE> <DEDENT> if len(values) < len(self._columns): <NEW_LINE> <INDENT> shortage = len(self._columns) - len(values) <NEW_LINE> values.extend([self.EMPTY_CELL] * shortage) <NEW_LINE> <DEDENT> values = dict(zip(self._columns, values)) <NEW_LINE> <DEDENT> return values | Prepare a |values| dict/list to be added as a row.
If |values| is a dict, verify that only supported column
values are included. Add empty string values for columns
not seen in the row. The original dict may be altered.
If |values| is a list, translate it to a dict using known
column order. Append empty values as needed to match number
of expected columns.
Return prepared dict. | 625941b5377c676e91271f96 |
def __init__(self): <NEW_LINE> <INDENT> self.Score = None <NEW_LINE> self.RequestId = None | :param Score: 活体打分,取值范围 [0,100],分数一般落于[80, 100]区间内,0分也为常见值。推荐相大于 87 时可判断为活体。可根据具体场景自行调整阈值。
:type Score: float
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | 625941b5e8904600ed9f1d15 |
def decrement_month(date, amount=1): <NEW_LINE> <INDENT> if date.day != 1: <NEW_LINE> <INDENT> raise ValueError("Input must be truncated to the 1st of the month.") <NEW_LINE> <DEDENT> date -= datetime.timedelta(days=1) <NEW_LINE> return date.replace(day=1) | Given a truncated datetime, return a new one one month in the past. | 625941b5a8370b771705268d |
def __invert__(self): <NEW_LINE> <INDENT> r <NEW_LINE> raise NotImplementedError | works if 1/self is again d-finite. | 625941b50c0af96317bb7fd5 |
def Application_EndRequest(app, e): <NEW_LINE> <INDENT> pass | Code that runs at the end of each request | 625941b5d7e4931a7ee9dd07 |
def command_output(cmd): <NEW_LINE> <INDENT> import os <NEW_LINE> return os.popen(cmd, "r").read() | Capture a command's standard output. | 625941b550485f2cf553cb84 |
def get_all_fn_names(): <NEW_LINE> <INDENT> all_names = [] <NEW_LINE> for fn_name, fn_handle in inspect.getmembers(sys.modules[__name__], inspect.isfunction): <NEW_LINE> <INDENT> if fn_name[:4] == "get_": <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> all_names.append(fn_name) <NEW_LINE> <DEDENT> return all_names | Return a list of names of all defined activation functions in
this file.
Returns
-------
list of str
List of names of activation functions.
..note:: This is mainly used when you need to dynamically switch
activation functions for things like hyperparameter smashing via
the command line. This is not recommend for production use. | 625941b5e1aae11d1e749a9f |
@lD.log(logBase + ".gradModel") <NEW_LINE> def lime(logger, img, model, num_samples, num_features, random_seed): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> explainer = lime_image.LimeImageExplainer() <NEW_LINE> explanation = explainer.explain_instance( img, classifier_fn=model.predict, top_labels=1, hide_color=0, num_samples=num_samples, random_seed=random_seed, ) <NEW_LINE> temp_img, mask = explanation.get_image_and_mask( label=0, positive_only=True, hide_rest=True, num_features=num_features ) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> print((f"Unable to lime!\n{e}")) <NEW_LINE> <DEDENT> return temp_img, mask | bla bla bla
Parameters
----------
img : {numpy.ndarray}
A single image that is a numpy array in the shape of ()
model : {Keras model instance}
The loaded already-trained TensorFlow SavedModel, as returned by the
function `loadModel()`.
num_samples : {int}
The size of the neighborhood to learn the linear model
num_features : {int}
The number of superpixels to include in explanation.
Returns
-------
temp_img : {numpy.ndarray}
3D numpy array of `img`'s explanation.
mask : {numpy.ndarray}
2D numpy array that can be used with skimage.segmentation.mark_boundaries. | 625941b5498bea3a759b989e |
def model_loss(input_real, input_z, out_channel_dim): <NEW_LINE> <INDENT> g_model = generator(input_z, out_channel_dim) <NEW_LINE> d_model_real, d_logits_real = discriminator(input_real) <NEW_LINE> d_model_fake, d_logits_fake = discriminator(g_model, reuse=True) <NEW_LINE> d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real) * 0.9)) <NEW_LINE> d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_fake))) <NEW_LINE> g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake))) <NEW_LINE> d_loss = d_loss_real + d_loss_fake <NEW_LINE> return d_loss, g_loss | Get the loss for the discriminator and generator
:param input_real: Images from the real dataset
:param input_z: Z input
:param out_channel_dim: The number of channels in the output image
:return: A tuple of (discriminator loss, generator loss) | 625941b54f88993c3716be60 |
def save_html(self,response,page): <NEW_LINE> <INDENT> file_name = '{}第{}页.html'.format(self.name,page) <NEW_LINE> with open(file_name,'wb') as f: <NEW_LINE> <INDENT> f.write(response) | 保存数据 | 625941b50383005118ecf3d0 |
def set_sketch_params(self, scale=None, length=None, randomness=None): <NEW_LINE> <INDENT> if scale is None: <NEW_LINE> <INDENT> self._sketch = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._sketch = (scale, length or 128.0, randomness or 16.0) <NEW_LINE> <DEDENT> self.stale = True | Set the sketch parameters.
Parameters
----------
scale : float, optional
The amplitude of the wiggle perpendicular to the source
line, in pixels. If scale is `None`, or not provided, no
sketch filter will be provided.
length : float, optional
The length of the wiggle along the line, in pixels
(default 128.0)
randomness : float, optional
The scale factor by which the length is shrunken or
expanded (default 16.0)
The PGF backend uses this argument as an RNG seed and not as
described above. Using the same seed yields the same random shape.
.. ACCEPTS: (scale: float, length: float, randomness: float) | 625941b591f36d47f21ac2e1 |
def neighbor_average(values, row, column): <NEW_LINE> <INDENT> if row >= len(values) or column >= len(values[0]): <NEW_LINE> <INDENT> exit("out of range") <NEW_LINE> <DEDENT> a = neighbors(values, row, column) <NEW_LINE> return sum(a) / len(a) | computes the average of the neighbor of a table | 625941b5baa26c4b54cb0f0f |
def test_branched_hooked(self, branched_dummy_context): <NEW_LINE> <INDENT> is_hooked(branched_dummy_context, "bob") | Dummy context should have a SteelToes hook. | 625941b53eb6a72ae02ec2c6 |
def startWorkflow(name, version=None, correlationId=None, body=None): <NEW_LINE> <INDENT> parameterString = "?" <NEW_LINE> if version != None: <NEW_LINE> <INDENT> parameterString += "version=" + str(version) <NEW_LINE> parameterString += "&" <NEW_LINE> <DEDENT> if correlationId != None: <NEW_LINE> <INDENT> parameterString += "sort=" + correlationId <NEW_LINE> parameterString += "&" <NEW_LINE> <DEDENT> if body == None: <NEW_LINE> <INDENT> body = '{}' <NEW_LINE> <DEDENT> path = "/api/workflow/" + name + parameterString <NEW_LINE> response, responseData = httpPost(path, body) <NEW_LINE> workflowInstanceId = None <NEW_LINE> if response.status >= 200 and response.status < 300: <NEW_LINE> <INDENT> workflowInstanceId = responseData <NEW_LINE> <DEDENT> return workflowInstanceId | Start a Conductor Workflow with given name
Will invoke POST request with format http://<ip>:<port>/api/workflow/<name>?version=<version>&correlationId=<correlationId>
Returns workflow instance id | 625941b54c3428357757c117 |
def _wait(self, frame=None, callback_function=None, process_control_events=True): <NEW_LINE> <INDENT> while self.is_playing: <NEW_LINE> <INDENT> if _internals.skip_wait_methods: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> self.present() <NEW_LINE> if frame is not None and self.frame >= frame: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> if isinstance(callback_function, FunctionType): <NEW_LINE> <INDENT> rtn_callback = callback_function() <NEW_LINE> if isinstance(rtn_callback, CallbackQuitEvent): <NEW_LINE> <INDENT> return rtn_callback <NEW_LINE> <DEDENT> <DEDENT> if _internals.active_exp.is_initialized: <NEW_LINE> <INDENT> rtn_callback = _internals.active_exp._execute_wait_callback() <NEW_LINE> if isinstance(rtn_callback, CallbackQuitEvent): <NEW_LINE> <INDENT> return rtn_callback <NEW_LINE> <DEDENT> if process_control_events: <NEW_LINE> <INDENT> if _internals.active_exp.mouse.process_quit_event(): <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> for event in pygame.event.get(pygame.KEYDOWN): <NEW_LINE> <INDENT> if _internals.active_exp.is_initialized and process_control_events and event.type == pygame.KEYDOWN and ( event.key == self.Keyboard.get_quit_key()): <NEW_LINE> <INDENT> self.pause() <NEW_LINE> self.Keyboard.process_control_keys(event, self.stop) <NEW_LINE> self.play() | Wait until frame was shown or end of video and update screen.
Parameters
----------
frame : int, optional
number of the frame to stop after
callback_function : function, optional
function to repeatedly execute during waiting loop
process_control_events : bool, optional
process ``io.Keyboard.process_control_keys()`` and
``io.Mouse.process_quit_event()`` (default = True)
Notes
------
This will also by default process control events (quit and pause).
Thus, keyboard events will be cleared from the cue and cannot be
received by a Keyboard().check() anymore!
See Also
--------
expyriment.design.Experiment.register_wait_callback_function | 625941b510dbd63aa1bd299c |
def __do_search(self, direction="first", skip=0): <NEW_LINE> <INDENT> if direction == "first": <NEW_LINE> <INDENT> search_space = enumerate(self.torrent_names) <NEW_LINE> <DEDENT> elif direction == "last": <NEW_LINE> <INDENT> search_space = enumerate(self.torrent_names) <NEW_LINE> search_space = list(search_space) <NEW_LINE> search_space = reversed(search_space) <NEW_LINE> <DEDENT> elif direction == "next": <NEW_LINE> <INDENT> search_space = enumerate(self.torrent_names) <NEW_LINE> search_space = list(search_space) <NEW_LINE> search_space = search_space[self.cursel:] <NEW_LINE> <DEDENT> elif direction == "previous": <NEW_LINE> <INDENT> search_space = enumerate(self.torrent_names) <NEW_LINE> search_space = list(search_space)[:self.cursel-1] <NEW_LINE> search_space = reversed(search_space) <NEW_LINE> <DEDENT> search_string = self.search_string.lower() <NEW_LINE> for i,n in search_space: <NEW_LINE> <INDENT> n = n.lower() <NEW_LINE> if n.find(search_string) != -1: <NEW_LINE> <INDENT> if skip > 0: <NEW_LINE> <INDENT> skip -= 1 <NEW_LINE> continue <NEW_LINE> <DEDENT> self.cursel = (i+1) <NEW_LINE> if ((self.curoff + self.rows - 5) < self.cursel): <NEW_LINE> <INDENT> self.curoff = self.cursel - self.rows + 5 <NEW_LINE> <DEDENT> elif ((self.curoff +1) > self.cursel): <NEW_LINE> <INDENT> self.curoff = max(1, self.cursel - 1) <NEW_LINE> <DEDENT> self.search_state = SEARCH_SUCCESS <NEW_LINE> return <NEW_LINE> <DEDENT> <DEDENT> if direction in ["first", "last"]: <NEW_LINE> <INDENT> self.search_state = SEARCH_FAILING <NEW_LINE> <DEDENT> elif direction == "next": <NEW_LINE> <INDENT> self.search_state = SEARCH_END_REACHED <NEW_LINE> <DEDENT> elif direction == "previous": <NEW_LINE> <INDENT> self.search_state = SEARCH_START_REACHED | Performs a search on visible torrent and sets cursor to the match
:param string: direction, the direction of search, can be first, last, next or previous
:returns: Nothing | 625941b59f2886367277a67d |
def generate_az_rhi_title(radar, field, azimuth): <NEW_LINE> <INDENT> time_str = generate_radar_time_begin(radar).isoformat() + 'Z' <NEW_LINE> l1 = "%s %s " % (generate_radar_name(radar), time_str) <NEW_LINE> l2 = "Azimuth: %.1f deg" % azimuth <NEW_LINE> field_name = generate_field_name(radar, field) <NEW_LINE> return l1 + '\n' + l2 + '\n' + field_name | Generate a title for a pseudo-RHI from PPI azimuth plot.
Parameters
----------
radar : Radar
Radar structure.
field : str
Field plotted.
azimuth : float
Azimuth plotted.
Returns
-------
title : str
Plot title. | 625941b5d6c5a10208143e32 |
def coord2pixels_from_filestore(f): <NEW_LINE> <INDENT> contour_coord = f.ROIContourSequence[0].ContourData <NEW_LINE> coord = [] <NEW_LINE> for i in range(0, len(contour_coord), 3): <NEW_LINE> <INDENT> coord.append((contour_coord[i], contour_coord[i + 1], contour_coord[i + 2])) <NEW_LINE> <DEDENT> img_ID = f.SOPInstanceUID <NEW_LINE> img_arr = f.pixel_array <NEW_LINE> img_arr = img_arr.astype(np.int16) <NEW_LINE> pixel_coords = [(np.ceil(y), np.ceil(x)) for x, y, _ in coord] <NEW_LINE> rows = [] <NEW_LINE> cols = [] <NEW_LINE> for i, j in list(set(pixel_coords)): <NEW_LINE> <INDENT> rows.append(i) <NEW_LINE> cols.append(j) <NEW_LINE> <DEDENT> contour_arr = csc_matrix((np.ones_like(rows), (rows, cols)), dtype=np.int8, shape=(img_arr.shape[0], img_arr.shape[1])).toarray() <NEW_LINE> return img_arr, contour_arr, img_ID | Given a contour dataset (a DICOM class) and path that has .dcm files of
corresponding images. This function will return img_arr and contour_arr (2d image and contour pixels)
Inputs
contour_dataset: DICOM dataset class that is identified as (3006, 0016) Contour Image Sequence
path: string that tells the path of all DICOM images
Return
img_arr: 2d np.array of image with pixel intensities
contour_arr: 2d np.array of contour with 0 and 1 labels | 625941b597e22403b379cd84 |
def _update_table_classes(self, table): <NEW_LINE> <INDENT> assert isinstance(table, nodes.table) <NEW_LINE> table['classes'].append('styled-table') <NEW_LINE> header_cols = self.options.get('header-columns') or 0 <NEW_LINE> widths = self.options.get('widths') <NEW_LINE> dividers = self.options.get('column-dividers') <NEW_LINE> if dividers is None: <NEW_LINE> <INDENT> get_divider = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> def get_divider(idx_): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return dividers[idx_] <NEW_LINE> <DEDENT> except IndexError: <NEW_LINE> <INDENT> return 'no' <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> EMPTY = () <NEW_LINE> opts = ( self.options.get('column-alignment', EMPTY), self.options.get('column-wrapping', EMPTY), self.options.get('column-classes', EMPTY), ) <NEW_LINE> def locate(cls): <NEW_LINE> <INDENT> for child_ in table.children: <NEW_LINE> <INDENT> if isinstance(child_, cls): <NEW_LINE> <INDENT> return child_ <NEW_LINE> <DEDENT> <DEDENT> return None <NEW_LINE> <DEDENT> tgroup = locate(nodes.tgroup) <NEW_LINE> if not tgroup: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> col = 0 <NEW_LINE> for child in tgroup: <NEW_LINE> <INDENT> if isinstance(child, nodes.colspec): <NEW_LINE> <INDENT> if widths and col < len(widths): <NEW_LINE> <INDENT> child['colwidth'] = widths[col] <NEW_LINE> <DEDENT> if col < header_cols: <NEW_LINE> <INDENT> child['stub'] = 1 <NEW_LINE> <DEDENT> col += 1 <NEW_LINE> continue <NEW_LINE> <DEDENT> assert isinstance(child, (nodes.thead, nodes.tbody)) <NEW_LINE> for row in child.children: <NEW_LINE> <INDENT> assert isinstance(row, nodes.row) <NEW_LINE> for idx, (entry, align, wrap, clist) in enumerate(zip_longest(row, *opts)): <NEW_LINE> <INDENT> if entry is None: <NEW_LINE> <INDENT> raise ValueError('not enough columns for field options') <NEW_LINE> <DEDENT> assert isinstance(entry, nodes.entry) <NEW_LINE> classes = entry['classes'] <NEW_LINE> if align: <NEW_LINE> <INDENT> classes.append(align + '-align') <NEW_LINE> <DEDENT> if wrap is False: <NEW_LINE> <INDENT> classes.append('nowrap') <NEW_LINE> <DEDENT> if clist: <NEW_LINE> <INDENT> classes.extend(clist) <NEW_LINE> <DEDENT> if get_divider: <NEW_LINE> <INDENT> classes.append(get_divider(idx) + '-left-divider') <NEW_LINE> classes.append(get_divider(idx + 1) + '-right-divider') | _update_table_classes
| 625941b58e05c05ec3eea15d |
def drawImageAndSpectrum(arr, showTimeSec=None, winTitle='Three images') : <NEW_LINE> <INDENT> plt.ion() <NEW_LINE> fig = plt.figure(figsize=(8,8), dpi=80, facecolor='w',edgecolor='w',frameon=True) <NEW_LINE> fig.canvas.set_window_title(winTitle) <NEW_LINE> plt.clf() <NEW_LINE> plt.subplot2grid((10,10), (0,0), rowspan=7, colspan=10) <NEW_LINE> drawImage(arr,'Image and Spectrum') <NEW_LINE> plt.subplot2grid((10,10), (7,0), rowspan=4, colspan=10) <NEW_LINE> drawHistogram(arr) <NEW_LINE> drawOrShow(showTimeSec) | Graphical presentation for three 2D arrays. | 625941b59c8ee82313fbb568 |
def lnfactorial(n, integer=True): <NEW_LINE> <INDENT> assert is_nonneginteger(n), "the argument to lnfactorial must be a non-negative integer!" <NEW_LINE> if integer: <NEW_LINE> <INDENT> fact = factorial(n) <NEW_LINE> lnfact = log(fact) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> lnfact = lngamma(n+1.0) <NEW_LINE> <DEDENT> return lnfact | Computation of the natural logarithm of a factorial using integer
arithmetics (integer=True) or floating point arithmetics using lngamma
(integer=False). In both cases a floating-point number is returned, of
course... | 625941b51b99ca400220a89c |
def interatom_define(self, event=None): <NEW_LINE> <INDENT> uf_store['interatom.define'](wx_wizard_modal=True, spin_id1='@N', spin_id2='@H') | Define the interatomic interactions of the spins via the interatom.define user function.
@keyword event: The wx event.
@type event: wx event | 625941b5b545ff76a8913c0d |
def pwm_heater_control_loop(state): <NEW_LINE> <INDENT> GPIO.setmode(GPIO.BCM) <NEW_LINE> GPIO.setup(21, GPIO.OUT, initial=0) <NEW_LINE> GPIO.output(21, 0) <NEW_LINE> time.sleep(20) <NEW_LINE> period = config['heatperiod'] <NEW_LINE> while True: <NEW_LINE> <INDENT> if state['pid'] > 1: <NEW_LINE> <INDENT> print("on") <NEW_LINE> GPIO.output(21, 1) <NEW_LINE> time.sleep(30) <NEW_LINE> <DEDENT> elif state['pid'] <= 0: <NEW_LINE> <INDENT> print("off") <NEW_LINE> GPIO.output(21, 0) <NEW_LINE> time.sleep(30) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> on_sec = state['pid'] * period <NEW_LINE> if on_sec >= period: <NEW_LINE> <INDENT> on_sec = period <NEW_LINE> <DEDENT> if on_sec < 0: <NEW_LINE> <INDENT> on_sec = 0 <NEW_LINE> <DEDENT> print("on for {:3.2f}%% ({:3.2f} sec)".format( on_sec / period * 100.0, on_sec)) <NEW_LINE> GPIO.output(21, 1) <NEW_LINE> time.sleep(on_sec) <NEW_LINE> print("off for {:3.2f}%% ({:3.2f} sec)".format( (period - on_sec) / period * 100.0, period - on_sec)) <NEW_LINE> GPIO.output(21, 0) <NEW_LINE> time.sleep(period - on_sec) | PID controlled loop using PWM to control heat output | 625941b5fff4ab517eb2f225 |
def test_it_can_calculate_other_angles(self): <NEW_LINE> <INDENT> self.assertEqual(sun_angle("12:15"), 93.75) | Variable angles can be calculated too. | 625941b51f5feb6acb0c4941 |
def testWebhookResponse(self): <NEW_LINE> <INDENT> pass | Test WebhookResponse | 625941b5925a0f43d2549c5f |
def get_sensor_range(self): <NEW_LINE> <INDENT> return self._range | returns the range of the sensor
:return float: range of sensor in meters | 625941b59f2886367277a67e |
def test_case_3(self): <NEW_LINE> <INDENT> a = Square(4, 1, 1, 1) <NEW_LINE> self.assertDictEqual(a.to_dictionary(), { 'id': 1, 'size': 4, 'x': 1, 'y': 1}) | test to_dictionary method | 625941b523849d37ff7b2e7f |
def estimate_nll(self, X): <NEW_LINE> <INDENT> fe = self.free_energy(X) <NEW_LINE> return fe.mean() + self.log_Z | Estimate the :math:`-\log p(x)` using the estimate of :math:`log_Z`.
Args:
X (T.tensor): data samples.
Returns:
T.tensor: NLL estimate. | 625941b5b7558d58953c4d08 |
def to_rdkit_mol(mol_repr, molid=None, instantiator=Chem.MolFromSmiles, to2D=False, to3D=False, toPropertyMol=False): <NEW_LINE> <INDENT> if not isinstance(mol_repr, Chem.Mol): <NEW_LINE> <INDENT> mol = instantiator(mol_repr) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> mol = mol_repr <NEW_LINE> <DEDENT> if mol is None: <NEW_LINE> <INDENT> if molid is None: <NEW_LINE> <INDENT> warning('RDKit cannot create a molecule from %r' % mol_repr) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> warning('RDKit cannot create molecule %s from %r' % (molid, mol_repr)) <NEW_LINE> <DEDENT> return mol <NEW_LINE> <DEDENT> if to3D: <NEW_LINE> <INDENT> AllChem.EmbedMolecule(mol) <NEW_LINE> AllChem.UFFOptimizeMolecule(mol) <NEW_LINE> <DEDENT> elif to2D: <NEW_LINE> <INDENT> AllChem.Compute2DCoords(mol) <NEW_LINE> <DEDENT> if toPropertyMol: <NEW_LINE> <INDENT> return PropertyMol(mol) <NEW_LINE> <DEDENT> return mol | Converts a molecular representation (e.g. smiles string) into an RDKit molecule.
Allows to perform common postprocessing operations on the resulting molecule. | 625941b56fece00bbac2d527 |
def recognize(models: dict, test_set: SinglesData): <NEW_LINE> <INDENT> warnings.filterwarnings("ignore", category=DeprecationWarning) <NEW_LINE> probabilities = [] <NEW_LINE> guesses = [] <NEW_LINE> for i in range(len(test_set.wordlist)): <NEW_LINE> <INDENT> sample_frames , sample_length = test_set._hmm_data[i][0], test_set._hmm_data[i][1] <NEW_LINE> sample_dict = {} <NEW_LINE> for word in models: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> score = models[word].score(sample_frames, sample_length) <NEW_LINE> sample_dict[word] = models[word].score(sample_frames, sample_length) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> sample_dict[word] = float('-inf') <NEW_LINE> <DEDENT> <DEDENT> probabilities.append(sample_dict) <NEW_LINE> <DEDENT> for sample in probabilities: <NEW_LINE> <INDENT> biggest_prob = float('-inf') <NEW_LINE> best_guess = '' <NEW_LINE> for word, prob in sample.items(): <NEW_LINE> <INDENT> if prob > biggest_prob: <NEW_LINE> <INDENT> biggest_prob = prob <NEW_LINE> best_guess = word <NEW_LINE> <DEDENT> <DEDENT> guesses.append(best_guess) <NEW_LINE> <DEDENT> return probabilities, guesses | Recognize test word sequences from word models set
:param models: dict of trained models
{'SOMEWORD': GaussianHMM model object, 'SOMEOTHERWORD': GaussianHMM model object, ...}
:param test_set: SinglesData object
:return: (list, list) as probabilities, guesses
both lists are ordered by the test set word_id
probabilities is a list of dictionaries where each key a word and value is Log Liklihood
[{SOMEWORD': LogLvalue, 'SOMEOTHERWORD' LogLvalue, ... },
{SOMEWORD': LogLvalue, 'SOMEOTHERWORD' LogLvalue, ... },
]
guesses is a list of the best guess words ordered by the test set word_id
['WORDGUESS0', 'WORDGUESS1', 'WORDGUESS2',...] | 625941b50fa83653e4656dab |
def test_doubles(): <NEW_LINE> <INDENT> array = [3.1, 2.9, 2.4] <NEW_LINE> bubble.sort(array) <NEW_LINE> assert all(array[x] <= array[x + 1] for x in range(len(array) - 1)) | Handling of double values | 625941b555399d3f055884a0 |
def get(self, request, format=None): <NEW_LINE> <INDENT> an_apiview = [ 'USES HTTP methods as function (get, post, patch, put, delete)' 'Is similar to a traditional Django View', 'Gives you the most control over your application logic', 'Is mapped manualled to URLs', ] <NEW_LINE> return Response({'message': 'Hello!', 'an_apiview': an_apiview}) | Returns a list of APIView features | 625941b545492302aab5e0ac |
def remove_low_intensity_frames(data, parameters): <NEW_LINE> <INDENT> firstIndex = parameters['firstSampleIndex'] - 1 <NEW_LINE> lastIndex = firstIndex + (parameters['numSamples'] * parameters['numTechReps']) <NEW_LINE> temp = data.iloc[:, firstIndex : lastIndex] <NEW_LINE> temp[temp < parameters['intenSignifCutOff']] = 0 <NEW_LINE> data.iloc[:, firstIndex : lastIndex] = temp <NEW_LINE> data.drop_empty_frames('Background correction', parameters) | Discard features (rows) where intensity is below the threshold.
The threshold is set by "intenSignifCutOff" parameter.
Keyword Arguments:
data -- LFDataFrame instance
parameters -- LipidFinder's PeakFilter parameters instance | 625941b53617ad0b5ed67ceb |
def test_reference_query_conversion(self): <NEW_LINE> <INDENT> class Member(Document): <NEW_LINE> <INDENT> user_num = IntField(primary_key=True) <NEW_LINE> <DEDENT> class BlogPost(Document): <NEW_LINE> <INDENT> title = StringField() <NEW_LINE> author = ReferenceField(Member) <NEW_LINE> <DEDENT> Member.drop_collection() <NEW_LINE> BlogPost.drop_collection() <NEW_LINE> m1 = Member(user_num=1) <NEW_LINE> m1.save() <NEW_LINE> m2 = Member(user_num=2) <NEW_LINE> m2.save() <NEW_LINE> post1 = BlogPost(title='post 1', author=m1) <NEW_LINE> post1.save() <NEW_LINE> post2 = BlogPost(title='post 2', author=m2) <NEW_LINE> post2.save() <NEW_LINE> post = BlogPost.objects(author=m1).first() <NEW_LINE> self.assertEqual(post.id, post1.id) <NEW_LINE> post = BlogPost.objects(author=m2).first() <NEW_LINE> self.assertEqual(post.id, post2.id) <NEW_LINE> Member.drop_collection() <NEW_LINE> BlogPost.drop_collection() | Ensure that ReferenceFields can be queried using objects and values
of the type of the primary key of the referenced object. | 625941b538b623060ff0abdb |
def load_data(): <NEW_LINE> <INDENT> pass | Load input data. | 625941b5eab8aa0e5d26d94b |
def login(request): <NEW_LINE> <INDENT> result = {"status": False, "message": {}} <NEW_LINE> if request.method == "POST": <NEW_LINE> <INDENT> caret_result = Login.creat_user(request,User,result) <NEW_LINE> print(caret_result) <NEW_LINE> return HttpResponse(caret_result) <NEW_LINE> <DEDENT> if request.method == "GET": <NEW_LINE> <INDENT> login_result = Login.user_login(request,result) <NEW_LINE> return HttpResponse(login_result) | 使用方法
POST 提交username,password,email 注册用户
GET 提交username,password 用户名密码验证,验证成功写入session
OPTION 用户注销 | 625941b56e29344779a62403 |
def on_right(): <NEW_LINE> <INDENT> global FLIP_TIMER_ID <NEW_LINE> still_to_learn_words.remove(NEW_WORD) <NEW_LINE> window.after_cancel(FLIP_TIMER_ID) <NEW_LINE> new_card() | IF you got the card right | 625941b5bde94217f3682be9 |
def get_characters_character_id_wallets_with_http_info(self, character_id, **kwargs): <NEW_LINE> <INDENT> all_params = ['character_id', 'datasource', 'token', 'user_agent', 'x_user_agent'] <NEW_LINE> all_params.append('callback') <NEW_LINE> all_params.append('_return_http_data_only') <NEW_LINE> all_params.append('_preload_content') <NEW_LINE> all_params.append('_request_timeout') <NEW_LINE> params = locals() <NEW_LINE> for key, val in iteritems(params['kwargs']): <NEW_LINE> <INDENT> if key not in all_params: <NEW_LINE> <INDENT> raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_characters_character_id_wallets" % key ) <NEW_LINE> <DEDENT> params[key] = val <NEW_LINE> <DEDENT> del params['kwargs'] <NEW_LINE> if ('character_id' not in params) or (params['character_id'] is None): <NEW_LINE> <INDENT> raise ValueError("Missing the required parameter `character_id` when calling `get_characters_character_id_wallets`") <NEW_LINE> <DEDENT> collection_formats = {} <NEW_LINE> resource_path = '/v1/characters/{character_id}/wallets/'.replace('{format}', 'json') <NEW_LINE> path_params = {} <NEW_LINE> if 'character_id' in params: <NEW_LINE> <INDENT> path_params['character_id'] = params['character_id'] <NEW_LINE> <DEDENT> query_params = {} <NEW_LINE> if 'datasource' in params: <NEW_LINE> <INDENT> query_params['datasource'] = params['datasource'] <NEW_LINE> <DEDENT> if 'token' in params: <NEW_LINE> <INDENT> query_params['token'] = params['token'] <NEW_LINE> <DEDENT> if 'user_agent' in params: <NEW_LINE> <INDENT> query_params['user_agent'] = params['user_agent'] <NEW_LINE> <DEDENT> header_params = {} <NEW_LINE> if 'x_user_agent' in params: <NEW_LINE> <INDENT> header_params['X-User-Agent'] = params['x_user_agent'] <NEW_LINE> <DEDENT> form_params = [] <NEW_LINE> local_var_files = {} <NEW_LINE> body_params = None <NEW_LINE> header_params['Accept'] = self.api_client. select_header_accept(['application/json']) <NEW_LINE> auth_settings = ['evesso'] <NEW_LINE> return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[GetCharactersCharacterIdWallets200Ok]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) | List wallets and balances
List your wallets and their balances. Characters typically have only one wallet, with wallet_id 1000 being the master wallet. --- This route is cached for up to 120 seconds
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.get_characters_character_id_wallets_with_http_info(character_id, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param int character_id: An EVE character ID (required)
:param str datasource: The server name you would like data from
:param str token: Access token to use, if preferred over a header
:param str user_agent: Client identifier, takes precedence over headers
:param str x_user_agent: Client identifier, takes precedence over User-Agent
:return: list[GetCharactersCharacterIdWallets200Ok]
If the method is called asynchronously,
returns the request thread. | 625941b5004d5f362079a124 |
def main(args): <NEW_LINE> <INDENT> bad_files = list_files(BAD_DIR) <NEW_LINE> logger.debug(f'{len(bad_files)} files found') <NEW_LINE> for bf in bad_files: <NEW_LINE> <INDENT> df = DataFile.objects.get(name=os.path.basename(bf)) <NEW_LINE> new_dir = os.path.join(BASE_OUTPUT_DIR, construct_drs_path(df)) <NEW_LINE> new_path = os.path.join(new_dir, df.name) <NEW_LINE> if not os.path.exists(new_dir): <NEW_LINE> <INDENT> os.makedirs(new_dir) <NEW_LINE> <DEDENT> if os.path.exists(new_path): <NEW_LINE> <INDENT> if os.path.islink(new_path): <NEW_LINE> <INDENT> os.remove(new_path) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> logger.error(f'{new_path} is not a link') <NEW_LINE> continue <NEW_LINE> <DEDENT> <DEDENT> os.rename(bf, new_path) <NEW_LINE> df.directory = new_dir <NEW_LINE> df.save() | Main entry point | 625941b51b99ca400220a89d |
def updateScores(self): <NEW_LINE> <INDENT> root = self.scores.invisibleRootItem() <NEW_LINE> for key, value in self.score_headers.items(): <NEW_LINE> <INDENT> if 'Score:' in key: <NEW_LINE> <INDENT> score_value = value <NEW_LINE> <DEDENT> elif 'Start Time' in key: <NEW_LINE> <INDENT> start_value = value <NEW_LINE> <DEDENT> elif 'Stop Time' in key: <NEW_LINE> <INDENT> stop_value = value <NEW_LINE> <DEDENT> <DEDENT> if hasattr(self.mainWindow, 'lr'): <NEW_LINE> <INDENT> x1, x2 = self.mainWindow.lr.getRegion() <NEW_LINE> for item in self.scores.selectedItems(): <NEW_LINE> <INDENT> item.setText(score_value, self.score.currentText()) <NEW_LINE> item.setText(start_value, str(x1)) <NEW_LINE> item.setText(stop_value, str(x2)) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> for item in self.scores.selectedItems(): <NEW_LINE> <INDENT> item.setText(score_value, self.score.currentText()) | updates the selected scores in the Score Window's TreeWidget | 625941b5d53ae8145f87a063 |
def reduce_resources(self, ram_factor, core_factor): <NEW_LINE> <INDENT> self.reduced_ram = self.ram / ram_factor <NEW_LINE> self.reduced_core = self.core / core_factor | We need to reduce complexity of the problem in all possible ways
As soon as we deal with flavors - we have to keep in mind that we can
count flavors http://en.wikipedia.org/wiki/Greatest_common_divisor
for ram and core
and reduce complexity when calculating distribution of flavors over
nodes with dynamic programming techinque | 625941b53346ee7daa2b2b55 |
def _get(session, baseurl, path=''): <NEW_LINE> <INDENT> url = urljoin(baseurl, path) <NEW_LINE> response = session.get(url) <NEW_LINE> response.raise_for_status() <NEW_LINE> return response | Fetch and return a request. Throws on HTTP 4xx or HTTP 5xx. | 625941b5377c676e91271f97 |
def __set_present(self, value): <NEW_LINE> <INDENT> self.header.set_long(4, value) | Set RadioTap present field bit | 625941b531939e2706e4cc5e |
def test_integer_sparse_input(self): <NEW_LINE> <INDENT> op = sparse_ops.sparse_cross([ self._sparse_tensor([[11], [333, 5555]]), constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']], dtypes.string), ]) <NEW_LINE> expected_out = self._sparse_tensor( [['11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2'], [ '333_X_batch2-FC2-F1', '333_X_batch2-FC2-F2', '5555_X_batch2-FC2-F1', '5555_X_batch2-FC2-F2' ]]) <NEW_LINE> with self.cached_session() as sess: <NEW_LINE> <INDENT> self._assert_sparse_tensor_equals(expected_out, self.evaluate(op)) | Tests mixed type sparse and dense inputs. | 625941b5a17c0f6771cbde41 |
def submit(self, func, *args, **kwargs): <NEW_LINE> <INDENT> with self._count_lock: <NEW_LINE> <INDENT> self._wait_count += 1 <NEW_LINE> <DEDENT> def do_task(): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> with self._app.app_context(): <NEW_LINE> <INDENT> func(*args, **kwargs) <NEW_LINE> <DEDENT> <DEDENT> except Exception: <NEW_LINE> <INDENT> LOGGER.exception("Task failed") <NEW_LINE> <DEDENT> with self._count_lock: <NEW_LINE> <INDENT> self._wait_count -= 1 <NEW_LINE> <DEDENT> <DEDENT> return self._thread_pool.submit(do_task) | Schedule a task into the task pool | 625941b5e8904600ed9f1d16 |
def is_valid_score(self, update): <NEW_LINE> <INDENT> username = self.get_first_word(update) <NEW_LINE> return self.score.is_valid_score(username, update) | Returns if score is valid | 625941b5d53ae8145f87a064 |
def order_gradebook_results(self, gradebook_search_order): <NEW_LINE> <INDENT> pass | Specify an ordering to the search results.
:param gradebook_search_order: gradebook search order
:type gradebook_search_order: ``osid.grading.GradebookSearchOrder``
:raise: ``NullArgument`` -- ``gradebook_search_order`` is ``null``
:raise: ``Unsupported`` -- ``gradebook_search_order`` is not of this service
*compliance: mandatory -- This method must be implemented.* | 625941b515fb5d323cde08f5 |
def fw(self, i): <NEW_LINE> <INDENT> if self.__position__ + i > len(self.string): <NEW_LINE> <INDENT> raise ValueError("Hops beyond the end of the data") <NEW_LINE> <DEDENT> self.__position__ += i | Jumps forward by the given number of symbols.
Args:
i (int): the number of symbols to skip; | 625941b5627d3e7fe0d68c3b |
def get_db_product_count(self): <NEW_LINE> <INDENT> if self.uri: <NEW_LINE> <INDENT> print('\n\t5) Products count from database: {products_count}\t'.format( products_count=self.pyro_obj.get_products_count()) ) | Calls database object to return product's count. | 625941b51d351010ab855912 |
def onCameraChanged(self, *args): <NEW_LINE> <INDENT> self.updateLiveScriptText() | Slot that is called when the camera is changed. | 625941b52ae34c7f2600cf1f |
def chunks(self, size, *args, **kwargs): <NEW_LINE> <INDENT> with self.open(*args, **kwargs) as f: <NEW_LINE> <INDENT> for chunk in iter(lambda: f.read(size) or None, None): <NEW_LINE> <INDENT> yield chunk | Returns a generator yielding chunks of the file, so it can
be read piece by piece with a simple for loop.
Any argument you pass after `size` will be passed to :meth:`open`.
:example:
>>> hash = hashlib.md5()
>>> for chunk in Path("CHANGES.rst").chunks(8192, mode='rb'):
... hash.update(chunk)
This will read the file by chunks of 8192 bytes. | 625941b55f7d997b87174888 |
def __init__(self, name, doccount, fieldlength_totals, fieldlength_maxes, deleted=None): <NEW_LINE> <INDENT> assert isinstance(name, basestring) <NEW_LINE> assert isinstance(doccount, (int, long)) <NEW_LINE> assert fieldlength_totals is None or isinstance(fieldlength_totals, dict), "fl_totals=%r" % fieldlength_totals <NEW_LINE> assert fieldlength_maxes is None or isinstance(fieldlength_maxes, dict), "fl_maxes=%r" % fieldlength_maxes <NEW_LINE> self.name = name <NEW_LINE> self.doccount = doccount <NEW_LINE> self.fieldlength_totals = fieldlength_totals <NEW_LINE> self.fieldlength_maxes = fieldlength_maxes <NEW_LINE> self.deleted = deleted <NEW_LINE> self._filenames = set() <NEW_LINE> for attr, ext in self.EXTENSIONS.iteritems(): <NEW_LINE> <INDENT> fname = "%s.%s" % (self.name, ext) <NEW_LINE> setattr(self, attr + "_filename", fname) <NEW_LINE> self._filenames.add(fname) | :param name: The name of the segment (the Index object computes this
from its name and the generation).
:param doccount: The maximum document number in the segment.
:param term_count: Total count of all terms in all documents.
:param fieldlength_totals: A dictionary mapping field numbers to the
total number of terms in that field across all documents in the
segment.
:param deleted: A set of deleted document numbers, or None if no
deleted documents exist in this segment. | 625941b56aa9bd52df036b8f |
def data(self, idx=QModelIndex(), role=None): <NEW_LINE> <INDENT> if role == Qt.DisplayRole: <NEW_LINE> <INDENT> x: int = idx.row() <NEW_LINE> y: int = idx.column() <NEW_LINE> commands_in_game = [command for command in self.commanddata.commands if command.available] <NEW_LINE> if y == 0: <NEW_LINE> <INDENT> return commands_in_game[x].name <NEW_LINE> <DEDENT> if y == 1: <NEW_LINE> <INDENT> return commands_in_game[x].questions <NEW_LINE> <DEDENT> if y == 2: <NEW_LINE> <INDENT> return commands_in_game[x].points <NEW_LINE> <DEDENT> if y == 3: <NEW_LINE> <INDENT> return commands_in_game[x].question_points <NEW_LINE> <DEDENT> if y == 4: <NEW_LINE> <INDENT> return commands_in_game[x].button_id <NEW_LINE> <DEDENT> if y == 5: <NEW_LINE> <INDENT> return commands_in_game[x].bets <NEW_LINE> <DEDENT> <DEDENT> return QVariant() | reimplements data function of Abstract Table model
:param idx: index of data (x, y positions)
:param role: role of query
:return: appropriate data of selected command (x is command number, y is 0 for name, 1 for question number,
2 for points | 625941b5d8ef3951e324332a |
def make_api_response(data, status=200): <NEW_LINE> <INDENT> api_resp = HttpResponse(json.dumps( data, sort_keys=True, indent=4, separators=(',', ': ')), content_type="application/json; charset=utf-8", status=status) <NEW_LINE> api_resp['Access-Control-Allow-Origin'] = '*' <NEW_LINE> return api_resp | Make API Response | 625941b5099cdd3c635f0a4a |
def reset_input_buffer(self): <NEW_LINE> <INDENT> if not self.is_open: <NEW_LINE> <INDENT> raise portNotOpenError <NEW_LINE> <DEDENT> if self.logger: <NEW_LINE> <INDENT> self.logger.info('reset_input_buffer()') <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> while self.queue.qsize(): <NEW_LINE> <INDENT> self.queue.get_nowait() <NEW_LINE> <DEDENT> <DEDENT> except queue.Empty: <NEW_LINE> <INDENT> pass | Clear input buffer, discarding all that is in the buffer. | 625941b515fb5d323cde08f6 |
def check_blocked_rows(self): <NEW_LINE> <INDENT> for a in range(9): <NEW_LINE> <INDENT> missing_numbers = list({1,2,3,4,5,6,7,8,9}.difference(set(self.squares[a]))) <NEW_LINE> for missing in missing_numbers: <NEW_LINE> <INDENT> rows_allowed = set() <NEW_LINE> for b in range(9): <NEW_LINE> <INDENT> pos = self.pos_from_square(a, b) <NEW_LINE> if missing in self.allowed[pos]: <NEW_LINE> <INDENT> rows_allowed.add(pos[0]) <NEW_LINE> <DEDENT> <DEDENT> if len(rows_allowed) == 1: <NEW_LINE> <INDENT> i = list(rows_allowed)[0] <NEW_LINE> for j in range(9): <NEW_LINE> <INDENT> square, z = self.square_from_pos((i, j)) <NEW_LINE> if square != a and missing in self.allowed[(i, j)]: <NEW_LINE> <INDENT> self.allowed[(i, j)].remove(missing) | Similar functionality to check_blocked_cols, but checks for rows | 625941b58e7ae83300e4adb9 |
def test_008_create_project_with_appid(self): <NEW_LINE> <INDENT> Tns.create(app_name=Settings.AppName.DEFAULT, template=Template.HELLO_WORLD_JS.local_package, app_data=Apps.HELLO_WORLD_JS, update=False, app_id='org.nativescript.MyApp') | Create project with --appid option | 625941b58a349b6b435e7f62 |
def get_journal(id): <NEW_LINE> <INDENT> ses = _session() <NEW_LINE> return ses.query(Journal).get(id) | Get journal entry with id. | 625941b576e4537e8c351464 |
def expire_staff_apply_by_staff(shop_id: int, user_id: int): <NEW_LINE> <INDENT> staff_apply_list = list_staff_apply_by_shop_id_and_user_id(shop_id, user_id, filter_expired=True) <NEW_LINE> for sal in staff_apply_list: <NEW_LINE> <INDENT> sal.expired = StaffApplyExpired.YES <NEW_LINE> sal.save() | 删除员工时使其申请记录过期
:param shop_id:
:param user_id:
:return: | 625941b544b2445a33931e8e |
def model_fn(features, labels, mode, params): <NEW_LINE> <INDENT> unique_ids = features["unique_ids"] <NEW_LINE> input_ids = features["input_ids"] <NEW_LINE> input_mask = features["input_mask"] <NEW_LINE> segment_ids = features["segment_ids"] <NEW_LINE> is_training = (mode == tf.estimator.ModeKeys.TRAIN) <NEW_LINE> (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) <NEW_LINE> tvars = tf.trainable_variables() <NEW_LINE> initialized_variable_names = {} <NEW_LINE> scaffold_fn = None <NEW_LINE> if init_checkpoint: <NEW_LINE> <INDENT> (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) <NEW_LINE> if use_tpu: <NEW_LINE> <INDENT> def tpu_scaffold(): <NEW_LINE> <INDENT> tf.train.init_from_checkpoint(init_checkpoint, assignment_map) <NEW_LINE> return tf.train.Scaffold() <NEW_LINE> <DEDENT> scaffold_fn = tpu_scaffold <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> tf.train.init_from_checkpoint(init_checkpoint, assignment_map) <NEW_LINE> <DEDENT> <DEDENT> output_spec = None <NEW_LINE> if mode == tf.estimator.ModeKeys.PREDICT: <NEW_LINE> <INDENT> predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, } <NEW_LINE> output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) <NEW_LINE> <DEDENT> return output_spec | The `model_fn` for TPUEstimator. | 625941b58e05c05ec3eea15e |
def reset(self): <NEW_LINE> <INDENT> if self.getProgramCounter() == 0: <NEW_LINE> <INDENT> va = self.readMemoryPtr(self.IVT_RESET) <NEW_LINE> self.setProgramCounter(va) | triggers the reset interrupt | 625941b54a966d76dd550df9 |
def length_of_words_list(words2): <NEW_LINE> <INDENT> return [len(word2) for word2 in words2] | we are defining the function length_of_words_list which will return the length of the words given using list comprehension in the code
Parameters: a list of characters
Return: the length of each word separated by a comma in the input | 625941b585dfad0860c3ac46 |
def post(self, request, format=None): <NEW_LINE> <INDENT> if u'document' in request.data: <NEW_LINE> <INDENT> data = request.data['document'] <NEW_LINE> if 'id' in data: <NEW_LINE> <INDENT> document = Document.objects.filter(id=data['id']).first() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> document = Document() <NEW_LINE> <DEDENT> ds = DocumentSerializer(instance=document, data=data) <NEW_LINE> if ds.is_valid(raise_exception=True): <NEW_LINE> <INDENT> ds.update_document(document) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise ParseError("Required parameter 'document' is missing.") <NEW_LINE> <DEDENT> if not document.document_xml: <NEW_LINE> <INDENT> html = "" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> renderer = HTMLRenderer() <NEW_LINE> body_html = renderer.render_xml(document.document_xml) <NEW_LINE> html = render_to_string('html_preview.html', { 'document': document, 'body_html': body_html, }) <NEW_LINE> <DEDENT> return Response({'html': html}) | Render a document into HTML. The request MUST include a JSON description of
what to render.
Parameters:
format: "html" (default)
document: { ... }
To determine what to render, include a document description. If the description has an
id, the missing details are filled in from the existing document in the database.
{
"document": {
"title": "A title",
"body": "... xml ..."
}
} | 625941b5097d151d1a222c4a |
def addAtTail(self, val: int) -> None: <NEW_LINE> <INDENT> if self.len == 0: <NEW_LINE> <INDENT> self.addAtHead(val) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> node = self.head <NEW_LINE> while node.next is not None: <NEW_LINE> <INDENT> node = node.next <NEW_LINE> <DEDENT> node.next = Node(val) <NEW_LINE> self.len += 1 | Append a node of value val to the last element of the linked list. | 625941b5f548e778e58cd369 |
def recalculate_percentile(snapshot: models.SnapshotMetadata, cached_adapter: CachedCDIAdapter) -> None: <NEW_LINE> <INDENT> cdi_type = snapshot.cdi_type <NEW_LINE> gender = snapshot.gender <NEW_LINE> individual_words = db_util.load_snapshot_contents(snapshot) <NEW_LINE> snapshot.words_spoken = get_words_spoken( cached_adapter, cdi_type, individual_words ) <NEW_LINE> snapshot.percentile = recalculate_percentile_raw( cached_adapter, cdi_type, gender, snapshot.words_spoken, snapshot.age ) | Recalculate the percentile for a snapshot to be modified in place.
@param snapshot: The snapshot to modify. | 625941b526068e7796caeac5 |
def generate_new_script(debugger, command, result, internal_dict): <NEW_LINE> <INDENT> command_args = shlex.split(command, posix=False) <NEW_LINE> parser = generateOptionParser() <NEW_LINE> try: <NEW_LINE> <INDENT> (options, args) = parser.parse_args(command_args) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> result.SetError(parser.usage) <NEW_LINE> return <NEW_LINE> <DEDENT> if not args: <NEW_LINE> <INDENT> result.SetError('Expects a filename. Usage: __generate_script filename') <NEW_LINE> return <NEW_LINE> <DEDENT> clean_command = ('').join(args) <NEW_LINE> file_path = str(os.path.splitext(os.path.join( os.path.dirname(__file__), clean_command))[0] + '.py') <NEW_LINE> if os.path.isfile(file_path): <NEW_LINE> <INDENT> result.SetError('There already exists a file named "{}", please remove the file at "{}" first'.format(clean_command, file_path)) <NEW_LINE> return <NEW_LINE> <DEDENT> if options.create_class: <NEW_LINE> <INDENT> script = generate_class_file(clean_command, options) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> script = generate_function_file(clean_command, options) <NEW_LINE> <DEDENT> create_or_touch_filepath(file_path, script) <NEW_LINE> os.system('atom ' + file_path) <NEW_LINE> result.AppendMessage('Opening \"{}\"...'.format(file_path)) | Generates a new script in the same directory as this file.
Can generate function styled scripts or class styled scripts.
Expected Usage:
__generate_script cool_command
reload_lldbinit
cool_command | 625941b57047854f462a11fb |
def save(self, file_name: str) -> None: <NEW_LINE> <INDENT> with open(file_name, "wb") as f: <NEW_LINE> <INDENT> pickle.dump(self, f) | Serializes this corpus to file with file_name
:param file_name: File name to save corpus to
:returns: None | 625941b515baa723493c3d60 |
def __init__(self, items, depth=8, bounding_rect=None): <NEW_LINE> <INDENT> self.nw = self.ne = self.se = self.sw = None <NEW_LINE> depth -= 1 <NEW_LINE> if depth == 0 or not items: <NEW_LINE> <INDENT> self.items = items <NEW_LINE> return <NEW_LINE> <DEDENT> if bounding_rect: <NEW_LINE> <INDENT> bounding_rect = Rect( bounding_rect ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> bounding_rect = Rect( items[0] ) <NEW_LINE> for item in items[1:]: <NEW_LINE> <INDENT> bounding_rect.union_ip( item ) <NEW_LINE> <DEDENT> <DEDENT> cx = self.cx = bounding_rect.centerx <NEW_LINE> cy = self.cy = bounding_rect.centery <NEW_LINE> self.items = [] <NEW_LINE> nw_items = [] <NEW_LINE> ne_items = [] <NEW_LINE> se_items = [] <NEW_LINE> sw_items = [] <NEW_LINE> for item in items: <NEW_LINE> <INDENT> in_nw = item.left <= cx and item.top <= cy <NEW_LINE> in_sw = item.left <= cx and item.bottom >= cy <NEW_LINE> in_ne = item.right >= cx and item.top <= cy <NEW_LINE> in_se = item.right >= cx and item.bottom >= cy <NEW_LINE> if in_nw and in_ne and in_se and in_sw: <NEW_LINE> <INDENT> self.items.append(item) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if in_nw: nw_items.append(item) <NEW_LINE> if in_ne: ne_items.append(item) <NEW_LINE> if in_se: se_items.append(item) <NEW_LINE> if in_sw: sw_items.append(item) <NEW_LINE> <DEDENT> <DEDENT> if nw_items: <NEW_LINE> <INDENT> self.nw = QuadTree(nw_items, depth, (bounding_rect.left, bounding_rect.top, cx, cy)) <NEW_LINE> <DEDENT> if ne_items: <NEW_LINE> <INDENT> self.ne = QuadTree(ne_items, depth, (cx, bounding_rect.top, bounding_rect.right, cy)) <NEW_LINE> <DEDENT> if se_items: <NEW_LINE> <INDENT> self.se = QuadTree(se_items, depth, (cx, cy, bounding_rect.right, bounding_rect.bottom)) <NEW_LINE> <DEDENT> if sw_items: <NEW_LINE> <INDENT> self.sw = QuadTree(sw_items, depth, (bounding_rect.left, cy, cx, bounding_rect.bottom)) | Creates a quad-tree.
@param items:
A sequence of items to store in the quad-tree. Note that these
items must be a pygame.Rect or have a .rect attribute.
@param depth:
The maximum recursion depth.
@param bounding_rect:
The bounding rectangle of all of the items in the quad-tree. For
internal use only. | 625941b5cc40096d61595741 |
def test_queryparser_unstem_iter(): <NEW_LINE> <INDENT> stemmer = xapian.Stem('en') <NEW_LINE> queryparser = xapian.QueryParser() <NEW_LINE> expect([term for term in queryparser.unstemlist('to')], []) <NEW_LINE> expect([term for term in queryparser.unstemlist('question')], []) <NEW_LINE> expect([term for term in queryparser.unstemlist('questions')], []) <NEW_LINE> query = queryparser.parse_query('to question questions') <NEW_LINE> expect([term for term in queryparser.unstemlist('to')], ['to']) <NEW_LINE> expect([term for term in queryparser.unstemlist('question')], ['question']) <NEW_LINE> expect([term for term in queryparser.unstemlist('questions')], ['questions']) <NEW_LINE> expect(str(query), 'Xapian::Query((to:(pos=1) OR question:(pos=2) OR questions:(pos=3)))') <NEW_LINE> queryparser = xapian.QueryParser() <NEW_LINE> queryparser.set_stemmer(stemmer) <NEW_LINE> queryparser.set_stemming_strategy(queryparser.STEM_SOME) <NEW_LINE> expect([term for term in queryparser.unstemlist('Zto')], []) <NEW_LINE> expect([term for term in queryparser.unstemlist('Zquestion')], []) <NEW_LINE> expect([term for term in queryparser.unstemlist('Zquestions')], []) <NEW_LINE> query = queryparser.parse_query('to question questions') <NEW_LINE> expect([term for term in queryparser.unstemlist('Zto')], ['to']) <NEW_LINE> expect([term for term in queryparser.unstemlist('Zquestion')], ['question', 'questions']) <NEW_LINE> expect([term for term in queryparser.unstemlist('Zquestions')], []) <NEW_LINE> expect(str(query), 'Xapian::Query((Zto:(pos=1) OR Zquestion:(pos=2) OR Zquestion:(pos=3)))') | Test QueryParser unstemlist iterator.
| 625941b5656771135c3eb661 |
def test_rest_pool_config_put(api_client): <NEW_LINE> <INDENT> user = User.objects.get(username="test") <NEW_LINE> api_client.force_authenticate(user=user) <NEW_LINE> resp = api_client.put("/ec2spotmanager/rest/configurations/1/") <NEW_LINE> assert resp.status_code == requests.codes["method_not_allowed"] | put should not be allowed | 625941b5cdde0d52a9e52e1c |
def validate(data,log_type): <NEW_LINE> <INDENT> if log_type is LOG_SWEAR: <NEW_LINE> <INDENT> fields = ["date", "time", "song title", "song artist", "song composer", "show name", "report"] <NEW_LINE> for f in fields: <NEW_LINE> <INDENT> if f not in data: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return True <NEW_LINE> <DEDENT> <DEDENT> return False | Ensure json data has all the important entry fields
Args:
data (dict): JSON data for swear log
log_type (int): Specified log type
Returns:
(boolean): True if valid, False otherwise. | 625941b5dd821e528d63af99 |
def __init__(self, *args, **kwargs): <NEW_LINE> <INDENT> super().__init__(' ') <NEW_LINE> self.tab_width = 0 | Initialize this tab character. Its attribute :attr:`tab_width` is set
a later point in time when context (:class:`TabStop`) is available. | 625941b5d164cc6175782b3b |
def sort_data(self): <NEW_LINE> <INDENT> srt_indx = np.argsort( self.betas ) <NEW_LINE> self.betas = [self.betas[indx] for indx in srt_indx] <NEW_LINE> self.Z = [self.Z[indx] for indx in srt_indx] | Sorts the data according to the betas | 625941b55fdd1c0f98dc001f |
def resource_name_to_path(self, resource_name): <NEW_LINE> <INDENT> return self.entity_name_to_path(resource_name, 'resource') | TODO
:param resource_name: TODO | 625941b54e4d5625662d41cc |
def __valid_webservice(self, webservice): <NEW_LINE> <INDENT> return True | valid all information from webservice and save it if everything goes ok | 625941b521a7993f00bc7ad6 |
def initialAction(self, graph): <NEW_LINE> <INDENT> for tip in graph.listNodes.keys(): <NEW_LINE> <INDENT> for node in graph.listNodes[tip]: <NEW_LINE> <INDENT> if tip == "SubType" : <NEW_LINE> <INDENT> node.FILE_ = ( node.Type.getValue()[0] ,'ATOM3'+node.Type.getValue()[1]) <NEW_LINE> <DEDENT> elif tip == "TypeName": <NEW_LINE> <INDENT> node.FILE_ = node.Name.toString() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> node.FILE_ = None | action to be performed before the graph grammar starts its execution | 625941b5d99f1b3c44c6738c |
def test_changerole_user(self): <NEW_LINE> <INDENT> print('('+self.test_changerole_user.__name__+')', self.test_changerole_user.__doc__) <NEW_LINE> user = self.connection.change_role_user(USER1_USERNAME,0,0) <NEW_LINE> userobj = self.connection.get_user(user) <NEW_LINE> self.assertEqual(userobj['isAdmin'],'0') | Check if the role of user with username user1 is changing | 625941b52c8b7c6e89b355b2 |
def test_sort_nums_in_list_random_case(rand_ten): <NEW_LINE> <INDENT> result = quick_sort(rand_ten) <NEW_LINE> key = sorted(rand_ten) <NEW_LINE> assert result == key | Test quick sort function. | 625941b556b00c62f0f1444a |
def get_application(name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetApplicationResult: <NEW_LINE> <INDENT> __args__ = dict() <NEW_LINE> __args__['name'] = name <NEW_LINE> if opts is None: <NEW_LINE> <INDENT> opts = pulumi.InvokeOptions() <NEW_LINE> <DEDENT> if opts.version is None: <NEW_LINE> <INDENT> opts.version = _utilities.get_version() <NEW_LINE> <DEDENT> __ret__ = pulumi.runtime.invoke('aws:elasticbeanstalk/getApplication:getApplication', __args__, opts=opts, typ=GetApplicationResult).value <NEW_LINE> return AwaitableGetApplicationResult( appversion_lifecycle=__ret__.appversion_lifecycle, arn=__ret__.arn, description=__ret__.description, id=__ret__.id, name=__ret__.name) | Retrieve information about an Elastic Beanstalk Application.
## Example Usage
```python
import pulumi
import pulumi_aws as aws
example = aws.elasticbeanstalk.get_application(name="example")
pulumi.export("arn", example.arn)
pulumi.export("description", example.description)
```
:param str name: The name of the application | 625941b550812a4eaa59c114 |
def _force_bytes_parts( self, signature: typing.Union[Blake2Signature, Blake2SignatureDump], ) -> Blake2Signature: <NEW_LINE> <INDENT> return Blake2Signature( data=self._force_bytes(signature.data), signature=self._force_bytes(signature.signature), ) | Force given value into bytes, meaning a Blake2Signature container. | 625941b526238365f5f0ec57 |
def chain(funcs, combine=True, stop_on_failure=False, all_or_nothing=True, save_iterator=True): <NEW_LINE> <INDENT> return _Chain(funcs, combine, stop_on_failure, all_or_nothing, save_iterator) | Create a parser that chains a given iterable of parsers together, using
output of one parser as input for another.
If 'combine' is truthy, resulting 'parsed' window will cover the input
between starting point of the first parser and the ending point of the
last one. Note that this might be different than what you'd get by
concatenating together individual 'parsed' windows if some of the parsers
performed unusual operations on their windows - like 'noconsume' does, for
example.
If 'stop_on_failure' is truthy, stop parsing instead of failing it when a
parser in the chain raises a ParsingFailure exception. Note that this also
includes parsers with lookahead, effectively disabling it.
If 'all_or_nothing' is truthy (the default), a ParsingEnd exception thrown
inside it will not cause the effects gathered so far to be registered and
the part of the string parsed so far to be marked as 'parsed'. If the
parameter is falsey, partial application of effects and parsers is
possible. 'all_or_nothing' is suppressed if 'stop_on_failure' is truthy.
If 'save_iterator' is truthy (the default), the elements of the supplied
iterator will be saved for future reuse. This avoids a problem of the
iterator being exausted after the first parser run, but leads to higher
memory consumption. Disable it only if you're sure that the chain will only
be used once, or if you've wrapped the iterator into some reusable
iterable, like a list or a deque, or if you've used 'reuse_iter'.
Note that chains inherit lookahead mode from the first parser inside them
that has the capability. | 625941b582261d6c526ab291 |
def __contains__(self, value): <NEW_LINE> <INDENT> node = self.head <NEW_LINE> for i in range(len(self)): <NEW_LINE> <INDENT> node = node.next <NEW_LINE> if node.val == value: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> return False | Implements `val in self`. Returns true if value is found in this list. | 625941b5cc40096d61595742 |
def get_name(self): <NEW_LINE> <INDENT> return self._name | Method to get the membership name.
Return a string with the membership name | 625941b5167d2b6e3121898c |
def get_format_tool_instance(format_tool): <NEW_LINE> <INDENT> check_param_not_none(format_tool, "format_tool") <NEW_LINE> format_tool_instance = None <NEW_LINE> try: <NEW_LINE> <INDENT> if format_tool.name.lower() == 'file': <NEW_LINE> <INDENT> format_tool_instance = FineFreeFile(format_tool) <NEW_LINE> <DEDENT> elif format_tool.name.lower() == 'droid': <NEW_LINE> <INDENT> format_tool_instance = DROID(format_tool) <NEW_LINE> <DEDENT> elif format_tool.name.lower() == 'fido': <NEW_LINE> <INDENT> format_tool_instance = FIDO(format_tool) <NEW_LINE> <DEDENT> elif format_tool.name.lower() == 'python-magic': <NEW_LINE> <INDENT> format_tool_instance = PythonMagic(format_tool) <NEW_LINE> <DEDENT> elif format_tool.name.lower() == 'apache tika': <NEW_LINE> <INDENT> format_tool_instance = Tika(format_tool) <NEW_LINE> <DEDENT> <DEDENT> except ValueError: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> return format_tool_instance | Given an instance from the DB will find the right tool. | 625941b5566aa707497f4369 |
def read2list(filename, commentchar='#', splitchar=None, skip_empty=True, skip_lines=0, **kwargs): <NEW_LINE> <INDENT> if os.path.splitext(filename)[1] == '.gz' and has_zip: <NEW_LINE> <INDENT> ff = gzip.open(filename) <NEW_LINE> <DEDENT> elif os.path.splitext(filename)[1] == '.gz': <NEW_LINE> <INDENT> print('gzip not installed') <NEW_LINE> return [], [] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> ff = open(filename) <NEW_LINE> <DEDENT> data = [] <NEW_LINE> comm = [] <NEW_LINE> line_nr = -1 <NEW_LINE> if splitchar is None or isinstance(splitchar,str): <NEW_LINE> <INDENT> fixwidth = False <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> fixwidth = True <NEW_LINE> <DEDENT> while 1: <NEW_LINE> <INDENT> line = ff.readline() <NEW_LINE> if not line: break <NEW_LINE> line_nr += 1 <NEW_LINE> if line_nr<skip_lines: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if skip_empty and line.isspace(): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> line = line.replace('\n','') <NEW_LINE> if line[0] in commentchar: <NEW_LINE> <INDENT> comm.append(line[1:]) <NEW_LINE> continue <NEW_LINE> <DEDENT> if not fixwidth: <NEW_LINE> <INDENT> data.append(line.split(splitchar)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> data.append(fw2python(line,splitchar)) <NEW_LINE> <DEDENT> <DEDENT> ff.close() <NEW_LINE> return data,comm | Load an ASCII file to list of lists.
The comments and data go to two different lists.
Also opens gzipped files.
@param filename: name of file with the data
@type filename: string
@keyword commentchar: character(s) denoting comment rules
@type commentchar: list of str
@keyword splitchar: character seperating entries in a row (default: whitespace)
@type splitchar: str or None
@keyword skip_empty: skip empty lines
@type skip_empty: bool
@keyword skip_lines: skip nr of lines (including comment and empty lines)
@type skip_lines: integer
@return: list of lists (data rows)
list of lists (comments lines without commentchar),
@rtype: (list,list) | 625941b5fff4ab517eb2f227 |
def prepare_iteration_parameters(prepared_parameters): <NEW_LINE> <INDENT> (sess, graph, bottleneck_tensor, jpeg_data_tensor, resized_image_tensor, image_lists) = prepared_parameters <NEW_LINE> (do_distort_images, distorted_jpeg_data_tensor, distorted_image_tensor) = distort.distort_images(prepared_parameters) <NEW_LINE> num_classes = len(image_lists.keys()) <NEW_LINE> (train_step, cross_entropy, total_loss, bottleneck_input, ground_truth_input, final_tensor, keep_prob) = config.add_final_training_ops(num_classes, flags.final_tensor_name, bottleneck_tensor) <NEW_LINE> prepare_session(sess) <NEW_LINE> evaluation_step = config.add_evaluation_step(final_tensor, ground_truth_input) <NEW_LINE> prediction_step = config.add_prediction_step(final_tensor) <NEW_LINE> return (sess, graph, (do_distort_images, image_lists, distorted_jpeg_data_tensor, distorted_image_tensor, resized_image_tensor, bottleneck_tensor, jpeg_data_tensor, train_step, bottleneck_input, ground_truth_input, keep_prob, evaluation_step, prediction_step, cross_entropy, total_loss)) | Prepares parameters for training iterations
Args:
prepared_parameters - prepared parameters tuple for training
Returns:
tuple of -
sess - current TensorFlow session
graph - network graph
do_distort_images - distort flag
image_lists - training images list
distorted_jpeg_data_tensor - distorted JPEG image
as tensor
distorted_image_tensor - distorted image
as tensor
bottleneck_tensor - bottleneck layer tensor
jpeg_data_tensor - images for iteration
train_step - training step descriptor
bottleneck_input - input for bottleneck layer
ground_truth_input - label for input
evaluation_step - prepared step for evaluation
cross_entropy - result producer function | 625941b550485f2cf553cb87 |
def create_new(username, password, first_name=None, last_name=None): <NEW_LINE> <INDENT> logging.debug("Initiated Account creation") <NEW_LINE> if __check_existence(username): <NEW_LINE> <INDENT> raise NameError('User already exists') <NEW_LINE> <DEDENT> user = utils.load_json(env.USER_JSON_PATH) <NEW_LINE> user["login"] = username <NEW_LINE> user["loginUppercase"] = username.upper() <NEW_LINE> user["password"] = password <NEW_LINE> if first_name: <NEW_LINE> <INDENT> user["personalInfo"]["firstName"] = first_name <NEW_LINE> <DEDENT> if last_name: <NEW_LINE> <INDENT> user["personalInfo"]["lastName"] = last_name <NEW_LINE> <DEDENT> if not __raw_create(user): <NEW_LINE> <INDENT> raise RuntimeError('Unable to create account') <NEW_LINE> <DEDENT> logging.debug("Verifying user") <NEW_LINE> try: <NEW_LINE> <INDENT> org_id = utils.get_orgid(username) <NEW_LINE> <DEDENT> except NameError as e: <NEW_LINE> <INDENT> logging.error('[New Account] failed to verify account: {0}'.format(e)) <NEW_LINE> raise RuntimeError('Unable to verify if account creation was ' 'successful') <NEW_LINE> <DEDENT> return org_id | Create new account for Stage Candlepin
Loads the env.USER_JSON_PATH JSON with user specification. Then verifies if
the user is not already present in the Stage Candlepin. If not, the account
is created and verified.
:param username: Account's username
:param password: Account's password
:param first_name: Account's first name
:param last_name: Account's last name
:return org_id: User's Org ID is returned if the creation was successful | 625941b563d6d428bbe442de |
def start(self, tid): <NEW_LINE> <INDENT> self._join_transaction(tid) <NEW_LINE> logging.debug("Start activating user interface module") <NEW_LINE> self.__started = True <NEW_LINE> logging.debug("Start button monitoring thread") <NEW_LINE> threading.Thread( target=self.__button_monitor_thread, daemon=True).start() <NEW_LINE> logging.debug("Finish activating user interface module") | Starts working from the current state. | 625941b5b545ff76a8913c0f |
def remove_punctuation(self, repl=" ", punc=punc): <NEW_LINE> <INDENT> self._text = punc.remove(self._text, repl) <NEW_LINE> return self | :param str repl: replacement for regex, if setted, default value will be overwritten
remove all punctuations | 625941b56e29344779a62404 |
def _get_sequence(value, n, channel_index, name): <NEW_LINE> <INDENT> if value is None: <NEW_LINE> <INDENT> value = [1] <NEW_LINE> <DEDENT> elif not isinstance(value, collections_abc.Sized): <NEW_LINE> <INDENT> value = [value] <NEW_LINE> <DEDENT> current_n = len(value) <NEW_LINE> if current_n == n + 2: <NEW_LINE> <INDENT> return value <NEW_LINE> <DEDENT> elif current_n == 1: <NEW_LINE> <INDENT> value = list((value[0],) * n) <NEW_LINE> <DEDENT> elif current_n == n: <NEW_LINE> <INDENT> value = list(value) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError("{} should be of length 1, {} or {} but was {}".format( name, n, n + 2, current_n)) <NEW_LINE> <DEDENT> if channel_index == 1: <NEW_LINE> <INDENT> return [1, 1] + value <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [1] + value + [1] | Formats a value input for gen_nn_ops. | 625941b555399d3f055884a1 |
def quiz_selected(self, quiz_name): <NEW_LINE> <INDENT> if not self.quiz_name is None: <NEW_LINE> <INDENT> write_quiz_stats(self.quiz_name, self.qs) <NEW_LINE> <DEDENT> self.quiz = read_quiz_queries(quiz_name) <NEW_LINE> if len(self.quiz) == 0: <NEW_LINE> <INDENT> self.quiz_name = None <NEW_LINE> self.summary['text'] = 'NIE ZNALEZIONO PYTAN' <NEW_LINE> return <NEW_LINE> <DEDENT> self.quiz_name = quiz_name <NEW_LINE> self.qs = read_quiz_stats(quiz_name, self.quiz) <NEW_LINE> self.start_quiz() <NEW_LINE> return | Callback na wybranie nazwy quizu z menu rozwijanego | 625941b5435de62698dfda43 |
Subsets and Splits