title
stringlengths 1
182
| passage_id
int64 12
4.55M
| section_title
stringlengths 0
402
| text
stringlengths 0
99.6k
|
---|---|---|---|
Antimony
| 898 |
Compounds
|
Antimonous acid Sb(OH)3 is unknown, but the conjugate base sodium antimonite ([Na3SbO3]4) forms upon fusing sodium oxide and Sb4O6. Transition metal antimonites are also known. Antimonic acid exists only as the hydrate HSb(OH)6, forming salts as the antimonate anion Sb(OH)6. When a solution containing this anion is dehydrated, the precipitate contains mixed oxides.
|
Antimony
| 898 |
Compounds
|
The most important antimony ore is stibnite (Sb2S3). Other sulfide minerals include pyrargyrite (Ag3SbS3), zinkenite, jamesonite, and boulangerite. Antimony pentasulfide is non-stoichiometric, which features antimony in the +3 oxidation state and S–S bonds. Several thioantimonides are known, such as [Sb6S10] and [Sb8S13].
|
Antimony
| 898 |
Compounds
|
Antimony forms two series of halides: SbX3 and SbX5. The trihalides SbF3, SbCl3, SbBr3, and SbI3 are all molecular compounds having trigonal pyramidal molecular geometry.
|
Antimony
| 898 |
Compounds
|
The trifluoride SbF3 is prepared by the reaction of Sb2O3 with HF:
|
Antimony
| 898 |
Compounds
|
It is Lewis acidic and readily accepts fluoride ions to form the complex anions SbF4 and SbF5. Molten SbF3 is a weak electrical conductor. The trichloride SbCl3 is prepared by dissolving Sb2S3 in hydrochloric acid:
|
Antimony
| 898 |
Compounds
|
Arsenic sulfides are not readily attacked by the hydrochloric acid, so this method offers a route to As-free Sb.
|
Antimony
| 898 |
Compounds
|
The pentahalides SbF5 and SbCl5 have trigonal bipyramidal molecular geometry in the gas phase, but in the liquid phase, SbF5 is polymeric, whereas SbCl5 is monomeric. SbF5 is a powerful Lewis acid used to make the superacid fluoroantimonic acid ("H2SbF7").
|
Antimony
| 898 |
Compounds
|
Oxyhalides are more common for antimony than for arsenic and phosphorus. Antimony trioxide dissolves in concentrated acid to form oxoantimonyl compounds such as SbOCl and (SbO)2SO4.
|
Antimony
| 898 |
Compounds
|
Compounds in this class generally are described as derivatives of Sb. Antimony forms antimonides with metals, such as indium antimonide (InSb) and silver antimonide (Ag3Sb). The alkali metal and zinc antimonides, such as Na3Sb and Zn3Sb2, are more reactive. Treating these antimonides with acid produces the highly unstable gas stibine, SbH3:
|
Antimony
| 898 |
Compounds
|
Stibine can also be produced by treating Sb salts with hydride reagents such as sodium borohydride. Stibine decomposes spontaneously at room temperature. Because stibine has a positive heat of formation, it is thermodynamically unstable and thus antimony does not react with hydrogen directly.
|
Antimony
| 898 |
Compounds
|
Organoantimony compounds are typically prepared by alkylation of antimony halides with Grignard reagents. A large variety of compounds are known with both Sb(III) and Sb(V) centers, including mixed chloro-organic derivatives, anions, and cations. Examples include triphenylstibine (Sb(C6H5)3) and pentaphenylantimony (Sb(C6H5)5).
|
Antimony
| 898 |
History
|
Antimony(III) sulfide, Sb2S3, was recognized in predynastic Egypt as an eye cosmetic (kohl) as early as about 3100 BC, when the cosmetic palette was invented.
|
Antimony
| 898 |
History
|
An artifact, said to be part of a vase, made of antimony dating to about 3000 BC was found at Telloh, Chaldea (part of present-day Iraq), and a copper object plated with antimony dating between 2500 BC and 2200 BC has been found in Egypt. Austen, at a lecture by Herbert Gladstone in 1892, commented that "we only know of antimony at the present day as a highly brittle and crystalline metal, which could hardly be fashioned into a useful vase, and therefore this remarkable 'find' (artifact mentioned above) must represent the lost art of rendering antimony malleable."
|
Antimony
| 898 |
History
|
The British archaeologist Roger Moorey was unconvinced the artifact was indeed a vase, mentioning that Selimkhanov, after his analysis of the Tello object (published in 1975), "attempted to relate the metal to Transcaucasian natural antimony" (i.e. native metal) and that "the antimony objects from Transcaucasia are all small personal ornaments." This weakens the evidence for a lost art "of rendering antimony malleable."
|
Antimony
| 898 |
History
|
The Roman scholar Pliny the Elder described several ways of preparing antimony sulfide for medical purposes in his treatise Natural History, around 77 AD. Pliny the Elder also made a distinction between "male" and "female" forms of antimony; the male form is probably the sulfide, while the female form, which is superior, heavier, and less friable, has been suspected to be native metallic antimony.
|
Antimony
| 898 |
History
|
The Greek naturalist Pedanius Dioscorides mentioned that antimony sulfide could be roasted by heating by a current of air. It is thought that this produced metallic antimony.
|
Antimony
| 898 |
History
|
Antimony was frequently described in alchemical manuscripts, including the Summa Perfectionis of Pseudo-Geber, written around the 14th century. A description of a procedure for isolating antimony is later given in the 1540 book De la pirotechnia by Vannoccio Biringuccio, predating the more famous 1556 book by Agricola, De re metallica. In this context Agricola has been often incorrectly credited with the discovery of metallic antimony. The book Currus Triumphalis Antimonii (The Triumphal Chariot of Antimony), describing the preparation of metallic antimony, was published in Germany in 1604. It was purported to be written by a Benedictine monk, writing under the name Basilius Valentinus in the 15th century; if it were authentic, which it is not, it would predate Biringuccio.
|
Antimony
| 898 |
History
|
The metal antimony was known to German chemist Andreas Libavius in 1615 who obtained it by adding iron to a molten mixture of antimony sulfide, salt and potassium tartrate. This procedure produced antimony with a crystalline or starred surface.
|
Antimony
| 898 |
History
|
With the advent of challenges to phlogiston theory, it was recognized that antimony is an element forming sulfides, oxides, and other compounds, as do other metals.
|
Antimony
| 898 |
History
|
The first discovery of naturally occurring pure antimony in the Earth's crust was described by the Swedish scientist and local mine district engineer Anton von Swab in 1783; the type-sample was collected from the Sala Silver Mine in the Bergslagen mining district of Sala, Västmanland, Sweden.
|
Antimony
| 898 |
History
|
The medieval Latin form, from which the modern languages and late Byzantine Greek take their names for antimony, is antimonium. The origin of this is uncertain; all suggestions have some difficulty either of form or interpretation. The popular etymology, from ἀντίμοναχός anti-monachos or French antimoine, still has adherents; this would mean "monk-killer", and is explained by many early alchemists being monks, and antimony being poisonous. However, the low toxicity of antimony (see below) makes this unlikely.
|
Antimony
| 898 |
History
|
Another popular etymology is the hypothetical Greek word ἀντίμόνος antimonos, "against aloneness", explained as "not found as metal", or "not found unalloyed". Edmund Oscar von Lippmann conjectured a hypothetical Greek word ανθήμόνιον anthemonion, which would mean "floret", and cites several examples of related Greek words (but not that one) which describe chemical or biological efflorescence.
|
Antimony
| 898 |
History
|
The early uses of antimonium include the translations, in 1050–1100, by Constantine the African of Arabic medical treatises. Several authorities believe antimonium is a scribal corruption of some Arabic form; Meyerhof derives it from ithmid; other possibilities include athimar, the Arabic name of the metalloid, and a hypothetical as-stimmi, derived from or parallel to the Greek.
|
Antimony
| 898 |
History
|
The standard chemical symbol for antimony (Sb) is credited to Jöns Jakob Berzelius, who derived the abbreviation from stibium.
|
Antimony
| 898 |
History
|
The ancient words for antimony mostly have, as their chief meaning, kohl, the sulfide of antimony. The Egyptians called antimony mśdmt or stm.
|
Antimony
| 898 |
History
|
The Arabic word for the substance, as opposed to the cosmetic, can appear as إثمد ithmid, athmoud, othmod, or uthmod. Littré suggests the first form, which is the earliest, derives from stimmida, an accusative for stimmi. The Greek word στίμμι (stimmi) is used by Attic tragic poets of the 5th century BC, and is possibly a loan word from Arabic or from Egyptian stm.
|
Antimony
| 898 |
Production
|
The extraction of antimony from ores depends on the quality and composition of the ore. Most antimony is mined as the sulfide; lower-grade ores are concentrated by froth flotation, while higher-grade ores are heated to 500–600 °C, the temperature at which stibnite melts and separates from the gangue minerals. Antimony can be isolated from the crude antimony sulfide by reduction with scrap iron:
|
Antimony
| 898 |
Production
|
The sulfide is converted to an oxide by roasting. The product is further purified by vaporizing the volatile antimony(III) oxide, which is recovered. This sublimate is often used directly for the main applications, impurities being arsenic and sulfide. Antimony is isolated from the oxide by a carbothermal reduction:
|
Antimony
| 898 |
Production
|
The lower-grade ores are reduced in blast furnaces while the higher-grade ores are reduced in reverberatory furnaces.
|
Antimony
| 898 |
Production
|
In 2022, according to the US Geological Survey, China accounted for 54.5% of total antimony production, followed in second place by Russia with 18.2% and Tajikistan with 15.5%.
|
Antimony
| 898 |
Production
|
Chinese production of antimony is expected to decline in the future as mines and smelters are closed down by the government as part of pollution control. Especially due to an environmental protection law having gone into effect in January 2015 and revised "Emission Standards of Pollutants for Stanum, Antimony, and Mercury" having gone into effect, hurdles for economic production are higher.
|
Antimony
| 898 |
Production
|
Reported production of antimony in China has fallen and is unlikely to increase in the coming years, according to the Roskill report. No significant antimony deposits in China have been developed for about ten years, and the remaining economic reserves are being rapidly depleted.
|
Antimony
| 898 |
Production
|
For antimony-importing regions such as Europe and the U.S., antimony is considered to be a critical mineral for industrial manufacturing that is at risk of supply chain disruption. With global production coming mainly from China (74%), Tajikistan (8%), and Russia (4%), these sources are critical to supply.
|
Antimony
| 898 |
Applications
|
Approximately 48% of antimony is consumed in flame retardants, 33% in lead–acid batteries, and 8% in plastics.
|
Antimony
| 898 |
Applications
|
Antimony is mainly used as the trioxide for flame-proofing compounds, always in combination with halogenated flame retardants except in halogen-containing polymers. The flame retarding effect of antimony trioxide is produced by the formation of halogenated antimony compounds, which react with hydrogen atoms, and probably also with oxygen atoms and OH radicals, thus inhibiting fire. Markets for these flame-retardants include children's clothing, toys, aircraft, and automobile seat covers. They are also added to polyester resins in fiberglass composites for such items as light aircraft engine covers. The resin will burn in the presence of an externally generated flame, but will extinguish when the external flame is removed.
|
Antimony
| 898 |
Applications
|
Antimony forms a highly useful alloy with lead, increasing its hardness and mechanical strength. For most applications involving lead, varying amounts of antimony are used as alloying metal. In lead–acid batteries, this addition improves plate strength and charging characteristics. For sailboats, lead keels are used to provide righting moment, ranging from 600 lbs to over 200 tons for the largest sailing superyachts; to improve hardness and tensile strength of the lead keel, antimony is mixed with lead between 2% and 5% by volume. Antimony is used in antifriction alloys (such as Babbitt metal), in bullets and lead shot, electrical cable sheathing, type metal (for example, for linotype printing machines), solder (some "lead-free" solders contain 5% Sb), in pewter, and in hardening alloys with low tin content in the manufacturing of organ pipes.
|
Antimony
| 898 |
Applications
|
Three other applications consume nearly all the rest of the world's supply. One application is as a stabilizer and catalyst for the production of polyethylene terephthalate. Another is as a fining agent to remove microscopic bubbles in glass, mostly for TV screens – antimony ions interact with oxygen, suppressing the tendency of the latter to form bubbles. The third application is pigments.
|
Antimony
| 898 |
Applications
|
In the 1990s antimony was increasingly being used in semiconductors as a dopant in n-type silicon wafers for diodes, infrared detectors, and Hall-effect devices. In the 1950s, the emitters and collectors of n-p-n alloy junction transistors were doped with tiny beads of a lead-antimony alloy. Indium antimonide (InSb) is used as a material for mid-infrared detectors.
|
Antimony
| 898 |
Applications
|
Biology and medicine have few uses for antimony. Treatments containing antimony, known as antimonials, are used as emetics. Antimony compounds are used as antiprotozoan drugs. Potassium antimonyl tartrate, or tartar emetic, was once used as an anti-schistosomal drug from 1919 on. It was subsequently replaced by praziquantel. Antimony and its compounds are used in several veterinary preparations, such as anthiomaline and lithium antimony thiomalate, as a skin conditioner in ruminants. Antimony has a nourishing or conditioning effect on keratinized tissues in animals.
|
Antimony
| 898 |
Applications
|
Antimony-based drugs, such as meglumine antimoniate, are also considered the drugs of choice for treatment of leishmaniasis in domestic animals. Besides having low therapeutic indices, the drugs have minimal penetration of the bone marrow, where some of the Leishmania amastigotes reside, and curing the disease – especially the visceral form – is very difficult. Elemental antimony as an antimony pill was once used as a medicine. It could be reused by others after ingestion and elimination.
|
Antimony
| 898 |
Applications
|
Antimony(III) sulfide is used in the heads of some safety matches. Antimony sulfides help to stabilize the friction coefficient in automotive brake pad materials. Antimony is used in bullets, bullet tracers, paint, glass art, and as an opacifier in enamel. Antimony-124 is used together with beryllium in neutron sources; the gamma rays emitted by antimony-124 initiate the photodisintegration of beryllium. The emitted neutrons have an average energy of 24 keV. Natural antimony is used in startup neutron sources.
|
Antimony
| 898 |
Applications
|
Historically, the powder derived from crushed antimony (kohl) has been applied to the eyes with a metal rod and with one's spittle, thought by the ancients to aid in curing eye infections. The practice is still seen in Yemen and in other Muslim countries.
|
Antimony
| 898 |
Precautions
|
Antimony and many of its compounds are toxic, and the effects of antimony poisoning are similar to arsenic poisoning. The toxicity of antimony is far lower than that of arsenic; this might be caused by the significant differences of uptake, metabolism and excretion between arsenic and antimony. The uptake of antimony(III) or antimony(V) in the gastrointestinal tract is at most 20%. Antimony(V) is not quantitatively reduced to antimony(III) in the cell (in fact antimony(III) is oxidised to antimony(V) instead).
|
Antimony
| 898 |
Precautions
|
Since methylation of antimony does not occur, the excretion of antimony(V) in urine is the main way of elimination. Like arsenic, the most serious effect of acute antimony poisoning is cardiotoxicity and the resulted myocarditis, however it can also manifest as Adams–Stokes syndrome which arsenic does not. Reported cases of intoxication by antimony equivalent to 90 mg antimony potassium tartrate dissolved from enamel has been reported to show only short term effects. An intoxication with 6 g of antimony potassium tartrate was reported to result in death after three days.
|
Antimony
| 898 |
Precautions
|
Inhalation of antimony dust is harmful and in certain cases may be fatal; in small doses, antimony causes headaches, dizziness, and depression. Larger doses such as prolonged skin contact may cause dermatitis, or damage the kidneys and the liver, causing violent and frequent vomiting, leading to death in a few days.
|
Antimony
| 898 |
Precautions
|
Antimony is incompatible with strong oxidizing agents, strong acids, halogen acids, chlorine, or fluorine. It should be kept away from heat.
|
Antimony
| 898 |
Precautions
|
Antimony leaches from polyethylene terephthalate (PET) bottles into liquids. While levels observed for bottled water are below drinking water guidelines, fruit juice concentrates (for which no guidelines are established) produced in the UK were found to contain up to 44.7 µg/L of antimony, well above the EU limits for tap water of 5 µg/L. The guidelines are:
|
Antimony
| 898 |
Precautions
|
The tolerable daily intake (TDI) proposed by WHO is 6 µg antimony per kilogram of body weight. The immediately dangerous to life or health (IDLH) value for antimony is 50 mg/m.
|
Antimony
| 898 |
Precautions
|
Certain compounds of antimony appear to be toxic, particularly antimony trioxide and antimony potassium tartrate. Effects may be similar to arsenic poisoning. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin, gastrointestinal symptoms, and cardiac arrhythmias. In addition, antimony trioxide is potentially carcinogenic to humans.
|
Antimony
| 898 |
Precautions
|
Adverse health effects have been observed in humans and animals following inhalation, oral, or dermal exposure to antimony and antimony compounds. Antimony toxicity typically occurs either due to occupational exposure, during therapy or from accidental ingestion. It is unclear if antimony can enter the body through the skin. The presence of low levels of antimony in saliva may also be associated with dental decay.
|
Actinium
| 899 |
Actinium is a chemical element; it has symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name emanium; the element got its name by being wrongly identified with a substance André-Louis Debierne found in 1899 and called actinium. Actinium gave the name to the actinide series, a set of 15 elements between actinium and lawrencium in the periodic table. Together with polonium, radium, and radon, actinium was one of the first non-primordial radioactive elements to be isolated.
|
|
Actinium
| 899 |
A soft, silvery-white radioactive metal, actinium reacts rapidly with oxygen and moisture in air forming a white coating of actinium oxide that prevents further oxidation. As with most lanthanides and many actinides, actinium assumes oxidation state +3 in nearly all its chemical compounds. Actinium is found only in traces in uranium and thorium ores as the isotope Ac, which decays with a half-life of 21.772 years, predominantly emitting beta and sometimes alpha particles, and Ac, which is beta active with a half-life of 6.15 hours. One tonne of natural uranium in ore contains about 0.2 milligrams of actinium-227, and one tonne of thorium contains about 5 nanograms of actinium-228. The close similarity of physical and chemical properties of actinium and lanthanum makes separation of actinium from the ore impractical. Instead, the element is prepared, in milligram amounts, by the neutron irradiation of Ra in a nuclear reactor. Owing to its scarcity, high price and radioactivity, actinium has no significant industrial use. Its current applications include a neutron source and an agent for radiation therapy.
|
|
Actinium
| 899 |
History
|
André-Louis Debierne, a French chemist, announced the discovery of a new element in 1899. He separated it from pitchblende residues left by Marie and Pierre Curie after they had extracted radium. In 1899, Debierne described the substance as similar to titanium and (in 1900) as similar to thorium. Friedrich Oskar Giesel found in 1902 a substance similar to lanthanum and called it "emanium" in 1904. After a comparison of the substances' half-lives determined by Debierne, Harriet Brooks in 1904, and Otto Hahn and Otto Sackur in 1905, Debierne's chosen name for the new element was retained because it had seniority, despite the contradicting chemical properties he claimed for the element at different times.
|
Actinium
| 899 |
History
|
Articles published in the 1970s and later suggest that Debierne's results published in 1904 conflict with those reported in 1899 and 1900. Furthermore, the now-known chemistry of actinium precludes its presence as anything other than a minor constituent of Debierne's 1899 and 1900 results; in fact, the chemical properties he reported make it likely that he had, instead, accidentally identified protactinium, which would not be discovered for another fourteen years, only to have it disappear due to its hydrolysis and adsorption onto his laboratory equipment. This has led some authors to advocate that Giesel alone should be credited with the discovery. A less confrontational vision of scientific discovery is proposed by Adloff. He suggests that hindsight criticism of the early publications should be mitigated by the then nascent state of radiochemistry: highlighting the prudence of Debierne's claims in the original papers, he notes that nobody can contend that Debierne's substance did not contain actinium. Debierne, who is now considered by the vast majority of historians as the discoverer, lost interest in the element and left the topic. Giesel, on the other hand, can rightfully be credited with the first preparation of radiochemically pure actinium and with the identification of its atomic number 89.
|
Actinium
| 899 |
History
|
The name actinium originates from the Ancient Greek aktis, aktinos (ακτίς, ακτίνος), meaning beam or ray. Its symbol Ac is also used in abbreviations of other compounds that have nothing to do with actinium, such as acetyl, acetate and sometimes acetaldehyde.
|
Actinium
| 899 |
Properties
|
Actinium is a soft, silvery-white, radioactive, metallic element. Its estimated shear modulus is similar to that of lead. Owing to its strong radioactivity, actinium glows in the dark with a pale blue light, which originates from the surrounding air ionized by the emitted energetic particles. Actinium has similar chemical properties to lanthanum and other lanthanides, and therefore these elements are difficult to separate when extracting from uranium ores. Solvent extraction and ion chromatography are commonly used for the separation.
|
Actinium
| 899 |
Properties
|
The first element of the actinides, actinium gave the set its name, much as lanthanum had done for the lanthanides. The actinides are much more diverse than the lanthanides and therefore it was not until 1945 that the most significant change to Dmitri Mendeleev's periodic table since the recognition of the lanthanides, the introduction of the actinides, was generally accepted after Glenn T. Seaborg's research on the transuranium elements (although it had been proposed as early as 1892 by British chemist Henry Bassett).
|
Actinium
| 899 |
Properties
|
Actinium reacts rapidly with oxygen and moisture in air forming a white coating of actinium oxide that impedes further oxidation. As with most lanthanides and actinides, actinium exists in the oxidation state +3, and the Ac ions are colorless in solutions. The oxidation state +3 originates from the [Rn] 6d7s electronic configuration of actinium, with three valence electrons that are easily donated to give the stable closed-shell structure of the noble gas radon. Although the 5f orbitals are unoccupied in an actinium atom, it can be used as a valence orbital in actinium complexes and hence it is generally considered the first 5f element by authors working on it. Ac is the largest of all known tripositive ions and its first coordination sphere contains approximately 10.9 ± 0.5 water molecules.
|
Actinium
| 899 |
Chemical compounds
|
Due to actinium's intense radioactivity, only a limited number of actinium compounds are known. These include: AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3, AcPO4 and Ac(NO3)3. They all contain actinium in the oxidation state +3. In particular, the lattice constants of the analogous lanthanum and actinium compounds differ by only a few percent.
|
Actinium
| 899 |
Chemical compounds
|
Here a, b and c are lattice constants, No is space group number and Z is the number of formula units per unit cell. Density was not measured directly but calculated from the lattice parameters.
|
Actinium
| 899 |
Chemical compounds
|
Actinium oxide (Ac2O3) can be obtained by heating the hydroxide at 500 °C or the oxalate at 1100 °C, in vacuum. Its crystal lattice is isotypic with the oxides of most trivalent rare-earth metals.
|
Actinium
| 899 |
Chemical compounds
|
Actinium trifluoride can be produced either in solution or in solid reaction. The former reaction is carried out at room temperature, by adding hydrofluoric acid to a solution containing actinium ions. In the latter method, actinium metal is treated with hydrogen fluoride vapors at 700 °C in an all-platinum setup. Treating actinium trifluoride with ammonium hydroxide at 900–1000 °C yields oxyfluoride AcOF. Whereas lanthanum oxyfluoride can be easily obtained by burning lanthanum trifluoride in air at 800 °C for an hour, similar treatment of actinium trifluoride yields no AcOF and only results in melting of the initial product.
|
Actinium
| 899 |
Chemical compounds
|
Actinium trichloride is obtained by reacting actinium hydroxide or oxalate with carbon tetrachloride vapors at temperatures above 960 °C. Similar to oxyfluoride, actinium oxychloride can be prepared by hydrolyzing actinium trichloride with ammonium hydroxide at 1000 °C. However, in contrast to the oxyfluoride, the oxychloride could well be synthesized by igniting a solution of actinium trichloride in hydrochloric acid with ammonia.
|
Actinium
| 899 |
Chemical compounds
|
Reaction of aluminium bromide and actinium oxide yields actinium tribromide:
|
Actinium
| 899 |
Chemical compounds
|
and treating it with ammonium hydroxide at 500 °C results in the oxybromide AcOBr.
|
Actinium
| 899 |
Chemical compounds
|
Actinium hydride was obtained by reduction of actinium trichloride with potassium at 300 °C, and its structure was deduced by analogy with the corresponding LaH2 hydride. The source of hydrogen in the reaction was uncertain.
|
Actinium
| 899 |
Chemical compounds
|
Mixing monosodium phosphate (NaH2PO4) with a solution of actinium in hydrochloric acid yields white-colored actinium phosphate hemihydrate (AcPO4·0.5H2O), and heating actinium oxalate with hydrogen sulfide vapors at 1400 °C for a few minutes results in a black actinium sulfide Ac2S3. It may possibly be produced by acting with a mixture of hydrogen sulfide and carbon disulfide on actinium oxide at 1000 °C.
|
Actinium
| 899 |
Isotopes
|
Naturally occurring actinium is composed of two radioactive isotopes; Ac (from the radioactive family of U) and Ac (a granddaughter of Th). Ac decays mainly as a beta emitter with a very small energy, but in 1.38% of cases it emits an alpha particle, so it can readily be identified through alpha spectrometry. Thirty-three radioisotopes have been identified, the most stable being Ac with a half-life of 21.772 years, Ac with a half-life of 10.0 days and Ac with a half-life of 29.37 hours. All remaining radioactive isotopes have half-lives that are less than 10 hours and the majority of them have half-lives shorter than one minute. The shortest-lived known isotope of actinium is Ac (half-life of 69 nanoseconds) which decays through alpha decay. Actinium also has two known meta states. The most significant isotopes for chemistry are Ac, Ac, and Ac.
|
Actinium
| 899 |
Isotopes
|
Purified Ac comes into equilibrium with its decay products after about a half of year. It decays according to its 21.772-year half-life emitting mostly beta (98.62%) and some alpha particles (1.38%); the successive decay products are part of the actinium series. Owing to the low available amounts, low energy of its beta particles (maximum 44.8 keV) and low intensity of alpha radiation, Ac is difficult to detect directly by its emission and it is therefore traced via its decay products. The isotopes of actinium range in atomic weight from 204 u (Ac) to 236 u (Ac).
|
Actinium
| 899 |
Occurrence and synthesis
|
Actinium is found only in traces in uranium ores – one tonne of uranium in ore contains about 0.2 milligrams of Ac – and in thorium ores, which contain about 5 nanograms of Ac per one tonne of thorium. The actinium isotope Ac is a transient member of the uranium-actinium series decay chain, which begins with the parent isotope U (or Pu) and ends with the stable lead isotope Pb. The isotope Ac is a transient member of the thorium series decay chain, which begins with the parent isotope Th and ends with the stable lead isotope Pb. Another actinium isotope (Ac) is transiently present in the neptunium series decay chain, beginning with Np (or U) and ending with thallium (Tl) and near-stable bismuth (Bi); even though all primordial Np has decayed away, it is continuously produced by neutron knock-out reactions on natural U.
|
Actinium
| 899 |
Occurrence and synthesis
|
The low natural concentration, and the close similarity of physical and chemical properties to those of lanthanum and other lanthanides, which are always abundant in actinium-bearing ores, render separation of actinium from the ore impractical, and complete separation was never achieved. Instead, actinium is prepared, in milligram amounts, by the neutron irradiation of Ra in a nuclear reactor.
|
Actinium
| 899 |
Occurrence and synthesis
|
The reaction yield is about 2% of the radium weight. Ac can further capture neutrons resulting in small amounts of Ac. After the synthesis, actinium is separated from radium and from the products of decay and nuclear fusion, such as thorium, polonium, lead and bismuth. The extraction can be performed with thenoyltrifluoroacetone-benzene solution from an aqueous solution of the radiation products, and the selectivity to a certain element is achieved by adjusting the pH (to about 6.0 for actinium). An alternative procedure is anion exchange with an appropriate resin in nitric acid, which can result in a separation factor of 1,000,000 for radium and actinium vs. thorium in a two-stage process. Actinium can then be separated from radium, with a ratio of about 100, using a low cross-linking cation exchange resin and nitric acid as eluant.
|
Actinium
| 899 |
Occurrence and synthesis
|
Ac was first produced artificially at the Institute for Transuranium Elements (ITU) in Germany using a cyclotron and at St George Hospital in Sydney using a linac in 2000. This rare isotope has potential applications in radiation therapy and is most efficiently produced by bombarding a radium-226 target with 20–30 MeV deuterium ions. This reaction also yields Ac which however decays with a half-life of 29 hours and thus does not contaminate Ac.
|
Actinium
| 899 |
Occurrence and synthesis
|
Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor in vacuum at a temperature between 1100 and 1300 °C. Higher temperatures resulted in evaporation of the product and lower ones lead to an incomplete transformation. Lithium was chosen among other alkali metals because its fluoride is most volatile.
|
Actinium
| 899 |
Applications
|
Owing to its scarcity, high price and radioactivity, Ac currently has no significant industrial use, but Ac is currently being studied for use in cancer treatments such as targeted alpha therapies. Ac is highly radioactive and was therefore studied for use as an active element of radioisotope thermoelectric generators, for example in spacecraft. The oxide of Ac pressed with beryllium is also an efficient neutron source with the activity exceeding that of the standard americium-beryllium and radium-beryllium pairs. In all those applications, Ac (a beta source) is merely a progenitor which generates alpha-emitting isotopes upon its decay. Beryllium captures alpha particles and emits neutrons owing to its large cross-section for the (α,n) nuclear reaction:
|
Actinium
| 899 |
Applications
|
The AcBe neutron sources can be applied in a neutron probe – a standard device for measuring the quantity of water present in soil, as well as moisture/density for quality control in highway construction. Such probes are also used in well logging applications, in neutron radiography, tomography and other radiochemical investigations.
|
Actinium
| 899 |
Applications
|
Ac is applied in medicine to produce Bi in a reusable generator or can be used alone as an agent for radiation therapy, in particular targeted alpha therapy (TAT). This isotope has a half-life of 10 days, making it much more suitable for radiation therapy than Bi (half-life 46 minutes). Additionally, Ac decays to nontoxic Bi rather than stable but toxic lead, which is the final product in the decay chains of several other candidate isotopes, namely Th, Th, and U. Not only Ac itself, but also its daughters, emit alpha particles which kill cancer cells in the body. The major difficulty with application of Ac was that intravenous injection of simple actinium complexes resulted in their accumulation in the bones and liver for a period of tens of years. As a result, after the cancer cells were quickly killed by alpha particles from Ac, the radiation from the actinium and its daughters might induce new mutations. To solve this problem, Ac was bound to a chelating agent, such as citrate, ethylenediaminetetraacetic acid (EDTA) or diethylene triamine pentaacetic acid (DTPA). This reduced actinium accumulation in the bones, but the excretion from the body remained slow. Much better results were obtained with such chelating agents as HEHA (1,4,7,10,13,16-hexaazacyclohexadecane-N,N′,N″,N‴,N‴′,N‴″-hexaacetic acid) or DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) coupled to trastuzumab, a monoclonal antibody that interferes with the HER2/neu receptor. The latter delivery combination was tested on mice and proved to be effective against leukemia, lymphoma, breast, ovarian, neuroblastoma and prostate cancers.
|
Actinium
| 899 |
Applications
|
The medium half-life of Ac (21.77 years) makes it a very convenient radioactive isotope in modeling the slow vertical mixing of oceanic waters. The associated processes cannot be studied with the required accuracy by direct measurements of current velocities (of the order 50 meters per year). However, evaluation of the concentration depth-profiles for different isotopes allows estimating the mixing rates. The physics behind this method is as follows: oceanic waters contain homogeneously dispersed U. Its decay product, Pa, gradually precipitates to the bottom, so that its concentration first increases with depth and then stays nearly constant. Pa decays to Ac; however, the concentration of the latter isotope does not follow the Pa depth profile, but instead increases toward the sea bottom. This occurs because of the mixing processes which raise some additional Ac from the sea bottom. Thus analysis of both Pa and Ac depth profiles allows researchers to model the mixing behavior.
|
Actinium
| 899 |
Applications
|
There are theoretical predictions that AcHx hydrides (in this case with very high pressure) are a candidate for a near room-temperature superconductor as they have Tc significantly higher than H3S, possibly near 250 K.
|
Actinium
| 899 |
Precautions
|
Ac is highly radioactive and experiments with it are carried out in a specially designed laboratory equipped with a tight glove box. When actinium trichloride is administered intravenously to rats, about 33% of actinium is deposited into the bones and 50% into the liver. Its toxicity is comparable to, but slightly lower than that of americium and plutonium. For trace quantities, fume hoods with good aeration suffice; for gram amounts, hot cells with shielding from the intense gamma radiation emitted by Ac are necessary.
|
Actinium
| 899 |
External links
| |
Americium
| 900 |
Americium is a synthetic chemical element; it has symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element europium and was thus named after the Americas by analogy.
|
|
Americium
| 900 |
Americium was first produced in 1944 by the group of Glenn T. Seaborg from Berkeley, California, at the Metallurgical Laboratory of the University of Chicago, as part of the Manhattan Project. Although it is the third element in the transuranic series, it was discovered fourth, after the heavier curium. The discovery was kept secret and only released to the public in November 1945. Most americium is produced by uranium or plutonium being bombarded with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains about 100 grams of americium. It is widely used in commercial ionization chamber smoke detectors, as well as in neutron sources and industrial gauges. Several unusual applications, such as nuclear batteries or fuel for space ships with nuclear propulsion, have been proposed for the isotope Am, but they are as yet hindered by the scarcity and high price of this nuclear isomer.
|
|
Americium
| 900 |
Americium is a relatively soft radioactive metal with silvery appearance. Its most common isotopes are Am and Am. In chemical compounds, americium usually assumes the oxidation state +3, especially in solutions. Several other oxidation states are known, ranging from +2 to +7, and can be identified by their characteristic optical absorption spectra. The crystal lattices of solid americium and its compounds contain small intrinsic radiogenic defects, due to metamictization induced by self-irradiation with alpha particles, which accumulates with time; this can cause a drift of some material properties over time, more noticeable in older samples.
|
|
Americium
| 900 |
History
|
Although americium was likely produced in previous nuclear experiments, it was first intentionally synthesized, isolated and identified in late autumn 1944, at the University of California, Berkeley, by Glenn T. Seaborg, Leon O. Morgan, Ralph A. James, and Albert Ghiorso. They used a 60-inch cyclotron at the University of California, Berkeley. The element was chemically identified at the Metallurgical Laboratory (now Argonne National Laboratory) of the University of Chicago. Following the lighter neptunium, plutonium, and heavier curium, americium was the fourth transuranium element to be discovered. At the time, the periodic table had been restructured by Seaborg to its present layout, containing the actinide row below the lanthanide one. This led to americium being located right below its twin lanthanide element europium; it was thus by analogy named after the Americas: "The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series."
|
Americium
| 900 |
History
|
The new element was isolated from its oxides in a complex, multi-step process. First plutonium-239 nitrate (PuNO3) solution was coated on a platinum foil of about 0.5 cm area, the solution was evaporated and the residue was converted into plutonium dioxide (PuO2) by calcining. After cyclotron irradiation, the coating was dissolved with nitric acid, and then precipitated as the hydroxide using concentrated aqueous ammonia solution. The residue was dissolved in perchloric acid. Further separation was carried out by ion exchange, yielding a certain isotope of curium. The separation of curium and americium was so painstaking that those elements were initially called by the Berkeley group as pandemonium (from Greek for all demons or hell) and delirium (from Latin for madness).
|
Americium
| 900 |
History
|
Initial experiments yielded four americium isotopes: Am, Am, Am and Am. Americium-241 was directly obtained from plutonium upon absorption of two neutrons. It decays by emission of a α-particle to Np; the half-life of this decay was first determined as 510±20 years but then corrected to 432.2 years.
|
Americium
| 900 |
History
|
The second isotope Am was produced upon neutron bombardment of the already-created Am. Upon rapid β-decay, Am converts into the isotope of curium Cm (which had been discovered previously). The half-life of this decay was initially determined at 17 hours, which was close to the presently accepted value of 16.02 h.
|
Americium
| 900 |
History
|
The discovery of americium and curium in 1944 was closely related to the Manhattan Project; the results were confidential and declassified only in 1945. Seaborg leaked the synthesis of the elements 95 and 96 on the U.S. radio show for children Quiz Kids five days before the official presentation at an American Chemical Society meeting on 11 November 1945, when one of the listeners asked whether any new transuranium element besides plutonium and neptunium had been discovered during the war. After the discovery of americium isotopes Am and Am, their production and compounds were patented listing only Seaborg as the inventor. The initial americium samples weighed a few micrograms; they were barely visible and were identified by their radioactivity. The first substantial amounts of metallic americium weighing 40–200 micrograms were not prepared until 1951 by reduction of americium(III) fluoride with barium metal in high vacuum at 1100 °C.
|
Americium
| 900 |
Occurrence
|
The longest-lived and most common isotopes of americium, Am and Am, have half-lives of 432.2 and 7,370 years, respectively. Therefore, any primordial americium (americium that was present on Earth during its formation) should have decayed by now. Trace amounts of americium probably occur naturally in uranium minerals as a result of nuclear reactions, though this has not been confirmed.
|
Americium
| 900 |
Occurrence
|
Existing americium is concentrated in the areas used for the atmospheric nuclear weapons tests conducted between 1945 and 1980, as well as at the sites of nuclear incidents, such as the Chernobyl disaster. For example, the analysis of the debris at the testing site of the first U.S. hydrogen bomb, Ivy Mike, (1 November 1952, Enewetak Atoll), revealed high concentrations of various actinides including americium; but due to military secrecy, this result was not published until later, in 1956. Trinitite, the glassy residue left on the desert floor near Alamogordo, New Mexico, after the plutonium-based Trinity nuclear bomb test on 16 July 1945, contains traces of americium-241. Elevated levels of americium were also detected at the crash site of a US Boeing B-52 bomber aircraft, which carried four hydrogen bombs, in 1968 in Greenland.
|
Americium
| 900 |
Occurrence
|
In other regions, the average radioactivity of surface soil due to residual americium is only about 0.01 picocuries per gram (0.37 mBq/g). Atmospheric americium compounds are poorly soluble in common solvents and mostly adhere to soil particles. Soil analysis revealed about 1,900 times higher concentration of americium inside sandy soil particles than in the water present in the soil pores; an even higher ratio was measured in loam soils.
|
Americium
| 900 |
Occurrence
|
Americium is produced mostly artificially in small quantities, for research purposes. A tonne of spent nuclear fuel contains about 100 grams of various americium isotopes, mostly Am and Am. Their prolonged radioactivity is undesirable for the disposal, and therefore americium, together with other long-lived actinides, must be neutralized. The associated procedure may involve several steps, where americium is first separated and then converted by neutron bombardment in special reactors to short-lived nuclides. This procedure is well known as nuclear transmutation, but it is still being developed for americium. The transuranic elements from americium to fermium occurred naturally in the natural nuclear fission reactor at Oklo, but no longer do so.
|
Americium
| 900 |
Occurrence
|
Americium is also one of the elements that have theoretically been detected in Przybylski's Star.
|
Americium
| 900 |
Synthesis and extraction
|
Americium has been produced in small quantities in nuclear reactors for decades, and kilograms of its Am and Am isotopes have been accumulated by now. Nevertheless, since it was first offered for sale in 1962, its price, about US$1,500 per gram (US$43,000/oz) of Am, remains almost unchanged owing to the very complex separation procedure. The heavier isotope Am is produced in much smaller amounts; it is thus more difficult to separate, resulting in a higher cost of the order US$100,000–US$160,000 per gram (US$2,800,000–US$4,500,000/oz).
|
Americium
| 900 |
Synthesis and extraction
|
Americium is not synthesized directly from uranium – the most common reactor material – but from the plutonium isotope Pu. The latter needs to be produced first, according to the following nuclear process:
|
Americium
| 900 |
Synthesis and extraction
|
The capture of two neutrons by Pu (a so-called (n,γ) reaction), followed by a β-decay, results in Am:
|
Americium
| 900 |
Synthesis and extraction
|
The plutonium present in spent nuclear fuel contains about 12% of Pu. Because it beta-decays to Am, Pu can be extracted and may be used to generate further Am. However, this process is rather slow: half of the original amount of Pu decays to Am after about 15 years, and the Am amount reaches a maximum after 70 years.
|
Americium
| 900 |
Synthesis and extraction
|
The obtained Am can be used for generating heavier americium isotopes by further neutron capture inside a nuclear reactor. In a light water reactor (LWR), 79% of Am converts to Am and 10% to its nuclear isomer Am:
|
Americium
| 900 |
Synthesis and extraction
|
Americium-242 has a half-life of only 16 hours, which makes its further conversion to Am extremely inefficient. The latter isotope is produced instead in a process where Pu captures four neutrons under high neutron flux:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.