update cpmfog script
Browse files- super_scirep.py +191 -0
super_scirep.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
import csv
|
18 |
+
import json
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
from datasets.data_files import DataFilesDict
|
22 |
+
from .super_scirep_config import SUPERSCIREPEVAL_CONFIGS
|
23 |
+
|
24 |
+
# from datasets.packaged_modules.json import json
|
25 |
+
|
26 |
+
|
27 |
+
# TODO: Add BibTeX citation
|
28 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
29 |
+
_CITATION = """\
|
30 |
+
@InProceedings{huggingface:dataset,
|
31 |
+
title = {A great new dataset},
|
32 |
+
author={huggingface, Inc.
|
33 |
+
},
|
34 |
+
year={2021}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
# TODO: Add description of the dataset here
|
39 |
+
# You can copy an official description
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
42 |
+
"""
|
43 |
+
|
44 |
+
# TODO: Add a link to an official homepage for the dataset here
|
45 |
+
_HOMEPAGE = ""
|
46 |
+
|
47 |
+
# TODO: Add the licence for the dataset here if you can find it
|
48 |
+
_LICENSE = ""
|
49 |
+
|
50 |
+
# TODO: Add link to the official dataset URLs here
|
51 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
52 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
53 |
+
_URLS = {
|
54 |
+
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
55 |
+
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
60 |
+
class SuperSciRep(datasets.GeneratorBasedBuilder):
|
61 |
+
"""TODO: Short description of my dataset."""
|
62 |
+
|
63 |
+
VERSION = datasets.Version("1.1.0")
|
64 |
+
|
65 |
+
# This is an example of a dataset with multiple configurations.
|
66 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
67 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
68 |
+
|
69 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
70 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
71 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
72 |
+
|
73 |
+
# You will be able to load one or the other configurations in the following list with
|
74 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
75 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
76 |
+
BUILDER_CONFIGS = SUPERSCIREPEVAL_CONFIGS
|
77 |
+
|
78 |
+
def _info(self):
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
# This is the description that will appear on the datasets page.
|
81 |
+
description=self.config.description,
|
82 |
+
# This defines the different columns of the dataset and their types
|
83 |
+
features=datasets.Features(self.config.features),
|
84 |
+
# Here we define them above because they are different between the two configurations
|
85 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
86 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
87 |
+
# supervised_keys=("sentence", "label"),
|
88 |
+
# Homepage of the dataset for documentation
|
89 |
+
homepage="",
|
90 |
+
# License for the dataset if available
|
91 |
+
license=self.config.license,
|
92 |
+
# Citation for the dataset
|
93 |
+
citation=self.config.citation,
|
94 |
+
)
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager):
|
97 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
98 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
99 |
+
base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
|
100 |
+
data_urls = dict()
|
101 |
+
data_dir = self.config.url if self.config.url else self.config.name
|
102 |
+
if self.config.is_training:
|
103 |
+
data_urls = {"train": f"{base_url}/train/{data_dir}/train.jsonl",
|
104 |
+
"val": f"{base_url}/train/{data_dir}/val.jsonl"}
|
105 |
+
|
106 |
+
if "cite_prediction" not in self.config.name:
|
107 |
+
data_urls.update({"test": f"{base_url}/test/{data_dir}/meta.jsonl"})
|
108 |
+
print(data_urls)
|
109 |
+
downloaded_files = dl_manager.download_and_extract(data_urls)
|
110 |
+
splits = []
|
111 |
+
if "test" in downloaded_files:
|
112 |
+
splits = [datasets.SplitGenerator(
|
113 |
+
name=datasets.Split("evaluation"),
|
114 |
+
# These kwargs will be passed to _generate_examples
|
115 |
+
gen_kwargs={
|
116 |
+
"filepath": downloaded_files["test"],
|
117 |
+
"split": "evaluation"
|
118 |
+
},
|
119 |
+
),
|
120 |
+
]
|
121 |
+
|
122 |
+
if "train" in downloaded_files:
|
123 |
+
splits += [
|
124 |
+
datasets.SplitGenerator(
|
125 |
+
name=datasets.Split.TRAIN,
|
126 |
+
# These kwargs will be passed to _generate_examples
|
127 |
+
gen_kwargs={
|
128 |
+
"filepath": downloaded_files["train"],
|
129 |
+
"split": "train",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.VALIDATION,
|
134 |
+
# These kwargs will be passed to _generate_examples
|
135 |
+
gen_kwargs={
|
136 |
+
"filepath": downloaded_files["val"],
|
137 |
+
"split": "validation",
|
138 |
+
})
|
139 |
+
]
|
140 |
+
return splits
|
141 |
+
|
142 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
143 |
+
def _generate_examples(self, filepath, split):
|
144 |
+
def read_data(data_path):
|
145 |
+
task_data = []
|
146 |
+
try:
|
147 |
+
task_data = json.load(open(data_path, "r", encoding="utf-8"))
|
148 |
+
except:
|
149 |
+
with open(data_path) as f:
|
150 |
+
task_data = [json.loads(line) for line in f]
|
151 |
+
if type(task_data) == dict:
|
152 |
+
task_data = list(task_data.values())
|
153 |
+
return task_data
|
154 |
+
|
155 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
156 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
157 |
+
# data = read_data(filepath)
|
158 |
+
seen_keys = set()
|
159 |
+
IGNORE = set(["n_key_citations", "session_id", "user_id", "user"])
|
160 |
+
with open(filepath, encoding="utf-8") as f:
|
161 |
+
for line in f:
|
162 |
+
d = json.loads(line)
|
163 |
+
d = {k: v for k, v in d.items() if k not in IGNORE}
|
164 |
+
key = "doc_id" if self.config.name != "cite_prediction_new" else "corpus_id"
|
165 |
+
if self.config.task_type == "proximity":
|
166 |
+
if "cite_prediction" in self.config.name:
|
167 |
+
if "arxiv_id" in d["query"]:
|
168 |
+
for item in ["query", "pos", "neg"]:
|
169 |
+
del d[item]["arxiv_id"]
|
170 |
+
del d[item]["doi"]
|
171 |
+
if "fos" in d["query"]:
|
172 |
+
del d["query"]["fos"]
|
173 |
+
if "score" in d["pos"]:
|
174 |
+
del d["pos"]["score"]
|
175 |
+
yield str(d["query"][key]) + str(d["pos"][key]) + str(d["neg"][key]), d
|
176 |
+
else:
|
177 |
+
if d["query"][key] not in seen_keys:
|
178 |
+
seen_keys.add(d["query"][key])
|
179 |
+
yield str(d["query"][key]), d
|
180 |
+
else:
|
181 |
+
if d[key] not in seen_keys:
|
182 |
+
seen_keys.add(d[key])
|
183 |
+
if self.config.task_type != "search":
|
184 |
+
if "corpus_id" not in d:
|
185 |
+
d["corpus_id"] = None
|
186 |
+
if "scidocs" in self.config.name:
|
187 |
+
if "cited by" not in d:
|
188 |
+
d["cited_by"] = []
|
189 |
+
if type(d["corpus_id"]) == str:
|
190 |
+
d["corpus_id"] = None
|
191 |
+
yield d[key], d
|