remove config script
Browse files- super_scirep.py +0 -191
super_scirep.py
DELETED
|
@@ -1,191 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
# TODO: Address all TODOs and remove all explanatory comments
|
| 15 |
-
"""TODO: Add a description here."""
|
| 16 |
-
|
| 17 |
-
import csv
|
| 18 |
-
import json
|
| 19 |
-
|
| 20 |
-
import datasets
|
| 21 |
-
from datasets.data_files import DataFilesDict
|
| 22 |
-
from .super_scirep_config import SUPERSCIREPEVAL_CONFIGS
|
| 23 |
-
|
| 24 |
-
# from datasets.packaged_modules.json import json
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# TODO: Add BibTeX citation
|
| 28 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 29 |
-
_CITATION = """\
|
| 30 |
-
@InProceedings{huggingface:dataset,
|
| 31 |
-
title = {A great new dataset},
|
| 32 |
-
author={huggingface, Inc.
|
| 33 |
-
},
|
| 34 |
-
year={2021}
|
| 35 |
-
}
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
# TODO: Add description of the dataset here
|
| 39 |
-
# You can copy an official description
|
| 40 |
-
_DESCRIPTION = """\
|
| 41 |
-
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
# TODO: Add a link to an official homepage for the dataset here
|
| 45 |
-
_HOMEPAGE = ""
|
| 46 |
-
|
| 47 |
-
# TODO: Add the licence for the dataset here if you can find it
|
| 48 |
-
_LICENSE = ""
|
| 49 |
-
|
| 50 |
-
# TODO: Add link to the official dataset URLs here
|
| 51 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 52 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 53 |
-
_URLS = {
|
| 54 |
-
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
| 55 |
-
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
| 56 |
-
}
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 60 |
-
class SuperSciRep(datasets.GeneratorBasedBuilder):
|
| 61 |
-
"""TODO: Short description of my dataset."""
|
| 62 |
-
|
| 63 |
-
VERSION = datasets.Version("1.1.0")
|
| 64 |
-
|
| 65 |
-
# This is an example of a dataset with multiple configurations.
|
| 66 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 67 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 68 |
-
|
| 69 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 70 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 71 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 72 |
-
|
| 73 |
-
# You will be able to load one or the other configurations in the following list with
|
| 74 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 75 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 76 |
-
BUILDER_CONFIGS = SUPERSCIREPEVAL_CONFIGS
|
| 77 |
-
|
| 78 |
-
def _info(self):
|
| 79 |
-
return datasets.DatasetInfo(
|
| 80 |
-
# This is the description that will appear on the datasets page.
|
| 81 |
-
description=self.config.description,
|
| 82 |
-
# This defines the different columns of the dataset and their types
|
| 83 |
-
features=datasets.Features(self.config.features),
|
| 84 |
-
# Here we define them above because they are different between the two configurations
|
| 85 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 86 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 87 |
-
# supervised_keys=("sentence", "label"),
|
| 88 |
-
# Homepage of the dataset for documentation
|
| 89 |
-
homepage="",
|
| 90 |
-
# License for the dataset if available
|
| 91 |
-
license=self.config.license,
|
| 92 |
-
# Citation for the dataset
|
| 93 |
-
citation=self.config.citation,
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
def _split_generators(self, dl_manager):
|
| 97 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 98 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 99 |
-
base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
|
| 100 |
-
data_urls = dict()
|
| 101 |
-
data_dir = self.config.url if self.config.url else self.config.name
|
| 102 |
-
if self.config.is_training:
|
| 103 |
-
data_urls = {"train": f"{base_url}/train/{data_dir}/train.jsonl",
|
| 104 |
-
"val": f"{base_url}/train/{data_dir}/val.jsonl"}
|
| 105 |
-
|
| 106 |
-
if "cite_prediction" not in self.config.name:
|
| 107 |
-
data_urls.update({"test": f"{base_url}/test/{data_dir}/meta.jsonl"})
|
| 108 |
-
print(data_urls)
|
| 109 |
-
downloaded_files = dl_manager.download_and_extract(data_urls)
|
| 110 |
-
splits = []
|
| 111 |
-
if "test" in downloaded_files:
|
| 112 |
-
splits = [datasets.SplitGenerator(
|
| 113 |
-
name=datasets.Split("evaluation"),
|
| 114 |
-
# These kwargs will be passed to _generate_examples
|
| 115 |
-
gen_kwargs={
|
| 116 |
-
"filepath": downloaded_files["test"],
|
| 117 |
-
"split": "evaluation"
|
| 118 |
-
},
|
| 119 |
-
),
|
| 120 |
-
]
|
| 121 |
-
|
| 122 |
-
if "train" in downloaded_files:
|
| 123 |
-
splits += [
|
| 124 |
-
datasets.SplitGenerator(
|
| 125 |
-
name=datasets.Split.TRAIN,
|
| 126 |
-
# These kwargs will be passed to _generate_examples
|
| 127 |
-
gen_kwargs={
|
| 128 |
-
"filepath": downloaded_files["train"],
|
| 129 |
-
"split": "train",
|
| 130 |
-
},
|
| 131 |
-
),
|
| 132 |
-
datasets.SplitGenerator(
|
| 133 |
-
name=datasets.Split.VALIDATION,
|
| 134 |
-
# These kwargs will be passed to _generate_examples
|
| 135 |
-
gen_kwargs={
|
| 136 |
-
"filepath": downloaded_files["val"],
|
| 137 |
-
"split": "validation",
|
| 138 |
-
})
|
| 139 |
-
]
|
| 140 |
-
return splits
|
| 141 |
-
|
| 142 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 143 |
-
def _generate_examples(self, filepath, split):
|
| 144 |
-
def read_data(data_path):
|
| 145 |
-
task_data = []
|
| 146 |
-
try:
|
| 147 |
-
task_data = json.load(open(data_path, "r", encoding="utf-8"))
|
| 148 |
-
except:
|
| 149 |
-
with open(data_path) as f:
|
| 150 |
-
task_data = [json.loads(line) for line in f]
|
| 151 |
-
if type(task_data) == dict:
|
| 152 |
-
task_data = list(task_data.values())
|
| 153 |
-
return task_data
|
| 154 |
-
|
| 155 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 156 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 157 |
-
# data = read_data(filepath)
|
| 158 |
-
seen_keys = set()
|
| 159 |
-
IGNORE = set(["n_key_citations", "session_id", "user_id", "user"])
|
| 160 |
-
with open(filepath, encoding="utf-8") as f:
|
| 161 |
-
for line in f:
|
| 162 |
-
d = json.loads(line)
|
| 163 |
-
d = {k: v for k, v in d.items() if k not in IGNORE}
|
| 164 |
-
key = "doc_id" if self.config.name != "cite_prediction_new" else "corpus_id"
|
| 165 |
-
if self.config.task_type == "proximity":
|
| 166 |
-
if "cite_prediction" in self.config.name:
|
| 167 |
-
if "arxiv_id" in d["query"]:
|
| 168 |
-
for item in ["query", "pos", "neg"]:
|
| 169 |
-
del d[item]["arxiv_id"]
|
| 170 |
-
del d[item]["doi"]
|
| 171 |
-
if "fos" in d["query"]:
|
| 172 |
-
del d["query"]["fos"]
|
| 173 |
-
if "score" in d["pos"]:
|
| 174 |
-
del d["pos"]["score"]
|
| 175 |
-
yield str(d["query"][key]) + str(d["pos"][key]) + str(d["neg"][key]), d
|
| 176 |
-
else:
|
| 177 |
-
if d["query"][key] not in seen_keys:
|
| 178 |
-
seen_keys.add(d["query"][key])
|
| 179 |
-
yield str(d["query"][key]), d
|
| 180 |
-
else:
|
| 181 |
-
if d[key] not in seen_keys:
|
| 182 |
-
seen_keys.add(d[key])
|
| 183 |
-
if self.config.task_type != "search":
|
| 184 |
-
if "corpus_id" not in d:
|
| 185 |
-
d["corpus_id"] = None
|
| 186 |
-
if "scidocs" in self.config.name:
|
| 187 |
-
if "cited by" not in d:
|
| 188 |
-
d["cited_by"] = []
|
| 189 |
-
if type(d["corpus_id"]) == str:
|
| 190 |
-
d["corpus_id"] = None
|
| 191 |
-
yield d[key], d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|