super_scirep / scirepeval.py
howey's picture
adapt to super scirep format
33b0cae
raw
history blame
8.81 kB
import os
import argparse
import json
from typing import List, Union
from tqdm import tqdm
from evaluation.encoders import Model, HModel
from evaluation.evaluator import IREvaluator, SupervisedEvaluator, SupervisedTask
from evaluation.few_shot_evaluator import FewShotEvaluator
from evaluation.gpt3_encoder import GPT3Model
from evaluation.instructor import InstructorModel
from reviewer_matching import ReviewerMatchingEvaluator
from evaluation.eval_datasets import SimpleDataset, IRDataset
TASK_IDS = {"classification": "[CLF]", "regression": "[RGN]", "proximity": "[PRX]",
"adhoc_search": {"query": "[QRY]", "candidates": "[PRX]"}}
import pytorch_lightning as pl
pl.seed_everything(42, workers=True)
class SciRepEval:
def __init__(self, tasks_config: str = "super_scirep.jsonl", task_list: List[str] = None,
task_formats: List[str] = None, batch_size: int = 32, document=False):
tasks_dict = dict()
task_by_formats = dict()
with open(tasks_config, encoding="utf-8") as f:
for line in f:
d = json.loads(line)
tasks_dict[d["name"]] = d
if d["type"] not in task_by_formats:
task_by_formats[d["type"]] = []
task_by_formats[d["type"]].append(d["name"])
if not task_list and not task_formats:
self.tasks = tasks_dict
elif task_list:
self.tasks = {k: tasks_dict[k] for k in task_list}
elif task_formats:
self.tasks = dict()
for task_format in task_formats:
self.tasks.update({k: tasks_dict[k] for k in task_by_formats[task_format]})
self.batch_size = batch_size
self.document=document
def evaluate(self, model: Union[Model, List[Model]], output: str):
final_results = dict()
if type(model) != list:
model = [model]
for task_name, task in tqdm(self.tasks.items(), total=len(self.tasks)):
for m in model:
m.task_id = TASK_IDS[task["type"]]
kwargs = dict()
task_data = task["data"]
if not task_data.get("meta"):
raise ValueError(f"Task {task_name} has no test metadata")
if task_data.get("meta"):
metadata = task_data["meta"]
kwargs["meta_dataset"] = metadata if type(metadata) != dict else (metadata["name"], metadata["config"])
if not task_data.get("test"):
if type(metadata) == dict:
kwargs["test_dataset"] = (metadata["name"], metadata["config"])
else:
raise ValueError(f"Task {task_name} has no test data")
if task_data.get("test"):
testdata = task_data["test"]
kwargs["test_dataset"] = testdata if type(testdata) != dict else (testdata["name"], testdata["config"])
kwargs["metrics"] = tuple(task["metrics"])
kwargs["batch_size"] = task["batch_size"] if "batch_size" in task else self.batch_size
if "fields" in task:
kwargs["fields"] = task["fields"]
save_path, load_path = None, None
if "embeddings" in task:
save_path = task["embeddings"].get("save")
load_path = task["embeddings"].get("load")
few_shot_evaluators = []
if task["type"] in {"classification", "regression"}:
subtype = SupervisedTask.CLASSIFICATION if task[
"type"] == "classification" else SupervisedTask.REGRESSION
if task.get("multi_label"):
subtype = SupervisedTask.MULTILABEL_CLASSIFICATION
evaluator = SupervisedEvaluator(task_name, subtype, model=model,
**kwargs)
if task.get("few_shot"):
for run in task["few_shot"]:
few_shot_evaluators.append(
FewShotEvaluator(f"{task_name} {run['sample_size']} shot", subtype, model=model,
sample_size=run["sample_size"], num_iterations=run["iterations"],
**kwargs))
else:
if task_name == "Paper-Reviewer Matching":
if not task_data.get("reviewers") and not task_data.get("hf_reviewers"):
raise ValueError(f"Task {task_name} has no reviewer metadata locally or hf_metadata")
if task_data.get("reviewers"):
reviewers = task_data["reviewers"]
kwargs["reviewer_metadata"] = reviewers if type(reviewers) != dict else (
reviewers["name"], reviewers["config"])
evaluator = ReviewerMatchingEvaluator(task_name, model=model, **kwargs)
else:
data_class = SimpleDataset if task_data.get("simple_format") else IRDataset
evaluator = IREvaluator(task_name, model=model, dataset_class=data_class, **kwargs)
embeddings = evaluator.generate_embeddings(save_path, htrans=args.htrans, document=args.document) if not load_path else load_path
results = evaluator.evaluate(embeddings)
if not few_shot_evaluators:
final_results[task_name] = results
else:
final_results[task_name] = dict()
final_results[task_name]["complete"] = results
final_results[task_name]["few_shot"] = []
for few_shot in few_shot_evaluators:
final_results[task_name]["few_shot"].append(
{"sample_size": few_shot.sample_size, "results": few_shot.evaluate(embeddings)})
final_results[task_name]["task_name"] = task_name
with open(output, "a") as f:
json.dump(final_results[task_name], f, indent=4)
f.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--tasks-config', help='path to the task config file', default="super_scirep.jsonl")
parser.add_argument('--mtype', help='Model variant to be used (default, pals, adapters, fusion)', default="default")
parser.add_argument('--gpt3-model', help='Name of embedding model in case of using openai api', default=None)
parser.add_argument('--model', '-m', help='HuggingFace model to be used')
parser.add_argument('--max_len', default=512, type=int)
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
parser.add_argument('--ctrl-tokens', action='store_true', default=False, help='use control codes for tasks')
parser.add_argument('--adapters-dir', help='path to the adapter checkpoints', default=None)
parser.add_argument('--fusion-dir', help='path to the fusion checkpoints', default=None)
parser.add_argument('--adapters-chkpt', help='hf adapter names keyed on tasks', default=None, type=json.loads)
parser.add_argument('--output', help="path to the output file", default="scirepeval_results.json")
parser.add_argument('--fp16', action='store_true', default=False, help='use floating point 16 precision')
parser.add_argument('--htrans', action='store_true', default=False, help='use hierarchical model')
parser.add_argument('--instructor', action='store_true', default=False, help='use an instructor model for eval')
parser.add_argument('--document', action='store_true', default=False)
args = parser.parse_args()
adapters_load_from = args.adapters_dir if args.adapters_dir else args.adapters_chkpt
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if args.gpt3_model:
model = GPT3Model(embed_model=args.gpt3_model)
elif args.instructor:
model = InstructorModel(args.model)
elif args.htrans:
model = HModel(variant=args.mtype, base_checkpoint=args.model, adapters_load_from=adapters_load_from,
fusion_load_from=args.fusion_dir,
use_ctrl_codes=args.ctrl_tokens,
task_id="", all_tasks=["[CLF]", "[QRY]", "[RGN]", "[PRX]"], use_fp16=args.fp16)
else:
model = Model(variant=args.mtype, base_checkpoint=args.model, adapters_load_from=adapters_load_from,
fusion_load_from=args.fusion_dir,
use_ctrl_codes=args.ctrl_tokens,
task_id="", all_tasks=["[CLF]", "[QRY]", "[RGN]", "[PRX]"], use_fp16=args.fp16, document=args.document)
evaluator = SciRepEval(tasks_config=args.tasks_config, batch_size=args.batch_size, document=args.document)
evaluator.evaluate(model, args.output)