File size: 8,808 Bytes
99614d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b0cae
99614d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b0cae
 
99614d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b0cae
99614d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import argparse
import json
from typing import List, Union
from tqdm import tqdm
from evaluation.encoders import Model, HModel
from evaluation.evaluator import IREvaluator, SupervisedEvaluator, SupervisedTask
from evaluation.few_shot_evaluator import FewShotEvaluator
from evaluation.gpt3_encoder import GPT3Model
from evaluation.instructor import InstructorModel
from reviewer_matching import ReviewerMatchingEvaluator
from evaluation.eval_datasets import SimpleDataset, IRDataset

TASK_IDS = {"classification": "[CLF]", "regression": "[RGN]", "proximity": "[PRX]",
            "adhoc_search": {"query": "[QRY]", "candidates": "[PRX]"}}
import pytorch_lightning as pl

pl.seed_everything(42, workers=True)


class SciRepEval:

    def __init__(self, tasks_config: str = "super_scirep.jsonl", task_list: List[str] = None,
                 task_formats: List[str] = None, batch_size: int = 32, document=False):
        tasks_dict = dict()
        task_by_formats = dict()
        with open(tasks_config, encoding="utf-8") as f:
            for line in f:
                d = json.loads(line)
                tasks_dict[d["name"]] = d
                if d["type"] not in task_by_formats:
                    task_by_formats[d["type"]] = []
                task_by_formats[d["type"]].append(d["name"])
        if not task_list and not task_formats:
            self.tasks = tasks_dict
        elif task_list:
            self.tasks = {k: tasks_dict[k] for k in task_list}
        elif task_formats:
            self.tasks = dict()
            for task_format in task_formats:
                self.tasks.update({k: tasks_dict[k] for k in task_by_formats[task_format]})
        self.batch_size = batch_size
        self.document=document

    def evaluate(self, model: Union[Model, List[Model]], output: str):
        final_results = dict()
        if type(model) != list:
            model = [model]
        for task_name, task in tqdm(self.tasks.items(), total=len(self.tasks)):
            for m in model:
                m.task_id = TASK_IDS[task["type"]]
            kwargs = dict()
            task_data = task["data"]
            if not task_data.get("meta"):
                raise ValueError(f"Task {task_name} has no test metadata")
            if task_data.get("meta"):
                metadata = task_data["meta"]
                kwargs["meta_dataset"] = metadata if type(metadata) != dict else (metadata["name"], metadata["config"])

            if not task_data.get("test"):
                if type(metadata) == dict:
                    kwargs["test_dataset"] = (metadata["name"], metadata["config"])
                else:
                    raise ValueError(f"Task {task_name} has no test data")
            if task_data.get("test"):
                testdata = task_data["test"]
                kwargs["test_dataset"] = testdata if type(testdata) != dict else (testdata["name"], testdata["config"])

            kwargs["metrics"] = tuple(task["metrics"])

            kwargs["batch_size"] = task["batch_size"] if "batch_size" in task else self.batch_size

            if "fields" in task:
                kwargs["fields"] = task["fields"]
            save_path, load_path = None, None
            if "embeddings" in task:
                save_path = task["embeddings"].get("save")
                load_path = task["embeddings"].get("load")
            few_shot_evaluators = []
            if task["type"] in {"classification", "regression"}:
                subtype = SupervisedTask.CLASSIFICATION if task[
                                                               "type"] == "classification" else SupervisedTask.REGRESSION
                if task.get("multi_label"):
                    subtype = SupervisedTask.MULTILABEL_CLASSIFICATION
                evaluator = SupervisedEvaluator(task_name, subtype, model=model,
                                                **kwargs)
                if task.get("few_shot"):
                    for run in task["few_shot"]:
                        few_shot_evaluators.append(
                            FewShotEvaluator(f"{task_name} {run['sample_size']} shot", subtype, model=model,
                                             sample_size=run["sample_size"], num_iterations=run["iterations"],
                                             **kwargs))
            else:
                if task_name == "Paper-Reviewer Matching":
                    if not task_data.get("reviewers") and not task_data.get("hf_reviewers"):
                        raise ValueError(f"Task {task_name} has no reviewer metadata locally or hf_metadata")
                    if task_data.get("reviewers"):
                        reviewers = task_data["reviewers"]
                        kwargs["reviewer_metadata"] = reviewers if type(reviewers) != dict else (
                            reviewers["name"], reviewers["config"])
                    evaluator = ReviewerMatchingEvaluator(task_name, model=model, **kwargs)
                else:
                    data_class = SimpleDataset if task_data.get("simple_format") else IRDataset
                    evaluator = IREvaluator(task_name, model=model, dataset_class=data_class, **kwargs)
            embeddings = evaluator.generate_embeddings(save_path, htrans=args.htrans, document=args.document) if not load_path else load_path
            results = evaluator.evaluate(embeddings)
            if not few_shot_evaluators:
                final_results[task_name] = results
            else:
                final_results[task_name] = dict()
                final_results[task_name]["complete"] = results
                final_results[task_name]["few_shot"] = []

            for few_shot in few_shot_evaluators:
                final_results[task_name]["few_shot"].append(
                    {"sample_size": few_shot.sample_size, "results": few_shot.evaluate(embeddings)})
            final_results[task_name]["task_name"] = task_name
            with open(output, "a") as f:
                json.dump(final_results[task_name], f, indent=4)
                f.write("\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--tasks-config', help='path to the task config file', default="super_scirep.jsonl")
    parser.add_argument('--mtype', help='Model variant to be used (default, pals, adapters, fusion)', default="default")
    parser.add_argument('--gpt3-model', help='Name of embedding model in case of using openai api', default=None)
    parser.add_argument('--model', '-m', help='HuggingFace model to be used')
    parser.add_argument('--max_len', default=512, type=int)
    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
    parser.add_argument('--ctrl-tokens', action='store_true', default=False, help='use control codes for tasks')
    parser.add_argument('--adapters-dir', help='path to the adapter checkpoints', default=None)
    parser.add_argument('--fusion-dir', help='path to the fusion checkpoints', default=None)
    parser.add_argument('--adapters-chkpt', help='hf adapter names keyed on tasks', default=None, type=json.loads)
    parser.add_argument('--output', help="path to the output file", default="scirepeval_results.json")
    parser.add_argument('--fp16', action='store_true', default=False, help='use floating point 16 precision')
    parser.add_argument('--htrans', action='store_true', default=False, help='use hierarchical model')
    parser.add_argument('--instructor', action='store_true', default=False, help='use an instructor model for eval')
    parser.add_argument('--document', action='store_true', default=False)

    args = parser.parse_args()
    adapters_load_from = args.adapters_dir if args.adapters_dir else args.adapters_chkpt
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    if args.gpt3_model:
        model = GPT3Model(embed_model=args.gpt3_model)
    elif args.instructor:
        model = InstructorModel(args.model)
    elif args.htrans:
        model = HModel(variant=args.mtype, base_checkpoint=args.model, adapters_load_from=adapters_load_from,
                      fusion_load_from=args.fusion_dir,
                      use_ctrl_codes=args.ctrl_tokens,
                      task_id="", all_tasks=["[CLF]", "[QRY]", "[RGN]", "[PRX]"], use_fp16=args.fp16)
    else:
        model = Model(variant=args.mtype, base_checkpoint=args.model, adapters_load_from=adapters_load_from,
                      fusion_load_from=args.fusion_dir,
                      use_ctrl_codes=args.ctrl_tokens,
                      task_id="", all_tasks=["[CLF]", "[QRY]", "[RGN]", "[PRX]"], use_fp16=args.fp16, document=args.document)
    evaluator = SciRepEval(tasks_config=args.tasks_config, batch_size=args.batch_size, document=args.document)
    evaluator.evaluate(model, args.output)