super_scirep / bert_pals.py
Haoyu He
first upload
99614d2
raw
history blame
40.3 kB
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import json
import math
from typing import List, Optional
import os
import six
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn.parameter import Parameter
from transformers.models.bert.modeling_bert import BertPreTrainedModel
from transformers.models.bert.configuration_bert import BertConfig
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class BertPalConfig(BertConfig):
"""Configuration class to store the configuration of a `BertModel`.
"""
def __init__(self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12,
intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1,
max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, pals=False, mult=False,
top=False, lhuc=False, houlsby=False, bert_lay_top=False, num_tasks=1, extra_dim=None,
hidden_size_aug=204, **kwargs):
"""Constructs BertConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act,
hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size,
initializer_range, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.hidden_size_aug = hidden_size_aug
self.pals = pals
self.extra_dim = extra_dim
self.houlsby = houlsby
self.mult = mult
self.top = top
self.bert_lay_top = bert_lay_top
self.lhuc = lhuc
self.num_tasks = num_tasks
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertPalConfig(vocab_size=None)
for (key, value) in six.iteritems(json_object):
config.__dict__[key] = value
return config
def to_json_string(self, use_diff: bool = True):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class BERTLayerNorm(nn.Module):
def __init__(self, config, multi_params=None, variance_epsilon=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BERTLayerNorm, self).__init__()
if multi_params is not None:
self.weight = nn.Parameter(torch.ones(config.hidden_size_aug))
self.bias = nn.Parameter(torch.zeros(config.hidden_size_aug))
else:
self.weight = nn.Parameter(torch.ones(config.hidden_size))
self.bias = nn.Parameter(torch.zeros(config.hidden_size))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BERTEmbeddings(nn.Module):
def __init__(self, config):
super(BERTEmbeddings, self).__init__()
"""Construct the embedding module from word, position and token_type embeddings.
"""
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BERTLayerNorm(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BERTSelfAttention(nn.Module):
def __init__(self, config, multi_params=None):
super(BERTSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
if multi_params is not None:
self.num_attention_heads = multi_params
self.attention_head_size = int(config.hidden_size_aug / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
hidden_size = config.hidden_size_aug
else:
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
hidden_size = config.hidden_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BERTMultSelfOutput(nn.Module):
def __init__(self, config, multi_params=None):
super(BERTMultSelfOutput, self).__init__()
self.LayerNorm = BERTLayerNorm(config, multi_params)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTSelfOutput(nn.Module):
def __init__(self, config, multi_params=None, houlsby=False):
super(BERTSelfOutput, self).__init__()
if houlsby:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
if multi_params is not None:
self.dense = nn.Linear(config.hidden_size_aug, config.hidden_size_aug)
else:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BERTLayerNorm(config, multi_params)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.houlsby = houlsby
def forward(self, hidden_states, input_tensor, attention_mask=None, i=0):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if self.houlsby:
hidden_states = hidden_states + self.multi_layers[i](hidden_states, attention_mask)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTAttention(nn.Module):
def __init__(self, config, multi_params=None, houlsby=False):
super(BERTAttention, self).__init__()
self.self = BERTSelfAttention(config, multi_params)
self.output = BERTSelfOutput(config, multi_params, houlsby)
def forward(self, input_tensor, attention_mask, i=0):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor, attention_mask, i=i)
return attention_output
class BERTPals(nn.Module):
def __init__(self, config, extra_dim=None):
super(BERTPals, self).__init__()
# Encoder and decoder matrices project down to the smaller dimension
self.aug_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.aug_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
# Attention without the final matrix multiply.
self.attn = BERTSelfAttention(config, 6)
self.config = config
self.hidden_act_fn = gelu
def forward(self, hidden_states, attention_mask=None):
hidden_states_aug = self.aug_dense(hidden_states)
hidden_states_aug = self.attn(hidden_states_aug, attention_mask)
hidden_states = self.aug_dense2(hidden_states_aug)
hidden_states = self.hidden_act_fn(hidden_states)
return hidden_states
class BERTLowRank(nn.Module):
def __init__(self, config, extra_dim=None):
super(BERTLowRank, self).__init__()
# Encoder and decoder matrices project down to the smaller dimension
if config.extra_dim:
self.aug_dense = nn.Linear(config.hidden_size, config.extra_dim)
self.aug_dense2 = nn.Linear(config.extra_dim, config.hidden_size)
else:
self.aug_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.aug_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.config = config
self.hidden_act_fn = gelu
def forward(self, hidden_states, attention_mask=None):
hidden_states_aug = self.aug_dense(hidden_states)
hidden_states_aug = self.hidden_act_fn(hidden_states_aug)
hidden_states = self.aug_dense2(hidden_states_aug)
return hidden_states
class BERTIntermediate(nn.Module):
def __init__(self, config):
super(BERTIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.config = config
self.intermediate_act_fn = gelu
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BERTLhuc(nn.Module):
def __init__(self, config):
super(BERTLhuc, self).__init__()
self.lhuc = Parameter(torch.zeros(config.hidden_size))
def forward(self, hidden_states):
hidden_states = hidden_states * 2. * nn.functional.sigmoid(self.lhuc)
return hidden_states
class BERTOutput(nn.Module):
def __init__(self, config, houlsby=False):
super(BERTOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BERTLayerNorm(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if houlsby:
if config.pals:
multi = BERTPals(config)
else:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.houlsby = houlsby
def forward(self, hidden_states, input_tensor, attention_mask=None, i=0):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if self.houlsby:
hidden_states = hidden_states + self.multi_layers[i](input_tensor, attention_mask)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTLayer(nn.Module):
def __init__(self, config, mult=False, houlsby=False):
super(BERTLayer, self).__init__()
self.attention = BERTAttention(config, houlsby=houlsby)
self.intermediate = BERTIntermediate(config)
self.output = BERTOutput(config, houlsby=houlsby)
if config.lhuc:
lhuc = BERTLhuc(config)
self.multi_lhuc = nn.ModuleList([copy.deepcopy(lhuc) for _ in range(config.num_tasks)])
if mult:
if config.pals:
multi = BERTPals(config)
else:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.mult = mult
self.lhuc = config.lhuc
self.houlsby = houlsby
def forward(self, hidden_states, attention_mask, i=0):
attention_output = self.attention(hidden_states, attention_mask, i)
intermediate_output = self.intermediate(attention_output)
if self.lhuc and not self.mult:
layer_output = self.output(intermediate_output, attention_output)
layer_output = self.multi_lhuc[i](layer_output)
elif self.mult:
extra = self.multi_layers[i](hidden_states, attention_mask)
if self.lhuc:
extra = self.multi_lhuc[i](extra)
layer_output = self.output(intermediate_output, attention_output + extra)
elif self.houlsby:
layer_output = self.output(intermediate_output, attention_output, attention_mask, i)
else:
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BERTEncoder(nn.Module):
def __init__(self, config):
super(BERTEncoder, self).__init__()
self.config = config
if config.houlsby:
# Adjust line below to add PALs etc. to different layers. True means add a PAL.
self.multis = [True if i < 999 else False for i in range(config.num_hidden_layers)]
self.layer = nn.ModuleList([BERTLayer(config, houlsby=mult) for mult in self.multis])
elif config.mult:
# Adjust line below to add PALs etc. to different layers. True means add a PAL.
self.multis = [True if i < 999 else False for i in range(config.num_hidden_layers)]
self.layer = nn.ModuleList([BERTLayer(config, mult=mult) for mult in self.multis])
else:
layer = BERTLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
if config.top:
if config.bert_lay_top:
multi = BERTLayer(config)
else:
# Projection matrices and attention for adding to the top.
mult_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.mult_dense = nn.ModuleList([copy.deepcopy(mult_dense) for _ in range(config.num_tasks)])
mult_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_dense2 = nn.ModuleList([copy.deepcopy(mult_dense2) for _ in range(config.num_tasks)])
multi = nn.ModuleList([copy.deepcopy(BERTAttention(config, 12)) for _ in range(6)])
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.gelu = gelu
if config.mult and config.pals:
dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
# Shared encoder and decoder across layers
self.mult_aug_dense = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_aug_dense2 = nn.ModuleList([copy.deepcopy(dense2) for _ in range(config.num_tasks)])
for l, layer in enumerate(self.layer):
if self.multis[l]:
for i, lay in enumerate(layer.multi_layers):
lay.aug_dense = self.mult_aug_dense[i]
lay.aug_dense2 = self.mult_aug_dense2[i]
if config.houlsby and config.pals:
dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
# Shared encoder and decoder across layers
self.mult_aug_dense = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_aug_dense2 = nn.ModuleList([copy.deepcopy(dense2) for _ in range(config.num_tasks)])
dense3 = nn.Linear(config.hidden_size, config.hidden_size_aug)
for l, layer in enumerate(self.layer):
if self.multis[l]:
for i, lay in enumerate(layer.output.multi_layers):
lay.aug_dense = self.mult_aug_dense[i]
lay.aug_dense2 = self.mult_aug_dense2[i]
def forward(self, hidden_states, attention_mask, i=0):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask, i)
all_encoder_layers.append(hidden_states)
if self.config.top:
if self.config.bert_lay_top:
all_encoder_layers[-1] = self.multi_layers[i](hidden_states, attention_mask)
else:
hidden_states = self.mult_dense[i](hidden_states)
for lay in self.multi_layers[i]:
hidden_states = lay(hidden_states, attention_mask)
all_encoder_layers[-1] = self.mult_dense2[i](hidden_states)
return all_encoder_layers
class BERTPooler(nn.Module):
def __init__(self, config):
super(BERTPooler, self).__init__()
dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
self.pool = False
if self.pool:
self.mult_dense_layers = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
else:
self.dense = dense
self.mult = config.mult
self.top = config.top
def forward(self, hidden_states, i=0):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
if (self.mult or self.top) and self.pool:
pooled_output = self.mult_dense_layers[i](first_token_tensor)
else:
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertModel(BertPreTrainedModel):
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
model = modeling.BertModel(config=config)
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config: BertPalConfig):
"""Constructor for BertModel.
Args:
config: `BertConfig` instance.
"""
super(BertModel, self).__init__(config)
self.embeddings = BERTEmbeddings(config)
self.encoder = BERTEncoder(config)
self.pooler = BERTPooler(config)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, i=0):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, from_seq_length]
# So we can broadcast to [batch_size, num_heads, to_seq_length, from_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.float()
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids, token_type_ids)
all_encoder_layers = self.encoder(embedding_output, extended_attention_mask, i)
sequence_output = all_encoder_layers[-1]
pooled_output = self.pooler(sequence_output, i)
return all_encoder_layers, pooled_output
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
class BertForMultiTask(nn.Module):
"""BERT model for classification or regression on GLUE tasks (STS-B is treated as a regression task).
This module is composed of the BERT model with a linear layer on top of
the pooled output.
```
"""
def __init__(self, config, tasks):
super(BertForMultiTask, self).__init__()
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.ModuleList([nn.Linear(config.hidden_size, num_labels)
for i, num_labels in enumerate(tasks)])
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, task_id, name='cola', labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, task_id)
pooled_output = self.dropout(pooled_output)
logits = self.classifier[task_id](pooled_output)
if labels is not None and name != 'sts':
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, logits
# STS is a regression task.
elif labels is not None and name == 'sts':
loss_fct = MSELoss()
loss = loss_fct(logits, labels.unsqueeze(1))
return loss, logits
else:
return logits
class BertForSequenceClassification(nn.Module):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
num_labels = 2
model = BertForSequenceClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels):
super(BertForSequenceClassification, self).__init__()
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, logits
else:
return logits
class BertForQuestionAnswering(nn.Module):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForQuestionAnswering, self).__init__()
self.bert = BertModel(config)
# TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, start_positions=None, end_positions=None):
all_encoder_layers, _ = self.bert(input_ids, token_type_ids, attention_mask)
sequence_output = all_encoder_layers[-1]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension - if not this is a no-op
start_positions = start_positions.squeeze(-1)
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
else:
return start_logits, end_logits
class BertForMultipleChoice(nn.Module):
"""BERT model for multiple choice tasks.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_choices = 2
model = BertForMultipleChoice(config, num_choices)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_choices=2):
super(BertForMultipleChoice, self).__init__()
self.num_choices = num_choices
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
_, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
return loss
else:
return reshaped_logits
class BertPalsEncoder(torch.nn.Module):
def __init__(self, config: str, task_ids: List[str], checkpoint):
super(BertPalsEncoder, self).__init__()
self.bert_config = BertPalConfig.from_json_file(config) if type(config) == str else config
self.bert_config.num_tasks = len(task_ids)
if type(checkpoint) != str:
self.bert_config.vocab_size = checkpoint.config.vocab_size
self.bert = BertModel(self.bert_config) if type(config) == str else checkpoint
self.task_idx = {task: i for i, task in enumerate(task_ids)}
print(self.task_idx)
def init_weights(module):
if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.bert_config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.bias.data.normal_(mean=0.0, std=self.bert_config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.bert_config.initializer_range)
if isinstance(module, torch.nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
if type(config) == str:
if type(checkpoint) == str:
chk = torch.load(checkpoint, map_location='cpu')
update = {k.replace("bert.", ""): v for k, v in chk.items()}
else:
self.apply(init_weights)
partial = checkpoint.state_dict()
model_dict = self.bert.state_dict()
update = {}
for n, p in model_dict.items():
if 'aug' in n or 'mult' in n:
update[n] = p
if 'pooler.mult' in n and 'bias' in n:
update[n] = partial['pooler.dense.bias']
if 'pooler.mult' in n and 'weight' in n:
update[n] = partial['pooler.dense.weight']
else:
update[n] = partial[n]
self.bert.load_state_dict(update)
def forward(self, input_ids, attention_mask=None, task_id=None):
embedding = self.bert(input_ids, attention_mask=attention_mask, i=self.task_idx[task_id])
return embedding[0][-1]
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None):
return self.bert.resize_token_embeddings(new_num_tokens)
def save_pretrained(self, save_path: str):
os.makedirs(save_path, exist_ok=True)
torch.save(self.bert.state_dict(), f'{save_path}/pytorch_model.bin')
torch.save(self.bert.config.save_pretrained(save_path))