File size: 40,279 Bytes
99614d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import json
import math
from typing import List, Optional
import os
import six
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn.parameter import Parameter
from transformers.models.bert.modeling_bert import BertPreTrainedModel
from transformers.models.bert.configuration_bert import BertConfig
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class BertPalConfig(BertConfig):
"""Configuration class to store the configuration of a `BertModel`.
"""
def __init__(self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12,
intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1,
max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, pals=False, mult=False,
top=False, lhuc=False, houlsby=False, bert_lay_top=False, num_tasks=1, extra_dim=None,
hidden_size_aug=204, **kwargs):
"""Constructs BertConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act,
hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size,
initializer_range, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.hidden_size_aug = hidden_size_aug
self.pals = pals
self.extra_dim = extra_dim
self.houlsby = houlsby
self.mult = mult
self.top = top
self.bert_lay_top = bert_lay_top
self.lhuc = lhuc
self.num_tasks = num_tasks
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertPalConfig(vocab_size=None)
for (key, value) in six.iteritems(json_object):
config.__dict__[key] = value
return config
def to_json_string(self, use_diff: bool = True):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class BERTLayerNorm(nn.Module):
def __init__(self, config, multi_params=None, variance_epsilon=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BERTLayerNorm, self).__init__()
if multi_params is not None:
self.weight = nn.Parameter(torch.ones(config.hidden_size_aug))
self.bias = nn.Parameter(torch.zeros(config.hidden_size_aug))
else:
self.weight = nn.Parameter(torch.ones(config.hidden_size))
self.bias = nn.Parameter(torch.zeros(config.hidden_size))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BERTEmbeddings(nn.Module):
def __init__(self, config):
super(BERTEmbeddings, self).__init__()
"""Construct the embedding module from word, position and token_type embeddings.
"""
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BERTLayerNorm(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BERTSelfAttention(nn.Module):
def __init__(self, config, multi_params=None):
super(BERTSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
if multi_params is not None:
self.num_attention_heads = multi_params
self.attention_head_size = int(config.hidden_size_aug / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
hidden_size = config.hidden_size_aug
else:
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
hidden_size = config.hidden_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BERTMultSelfOutput(nn.Module):
def __init__(self, config, multi_params=None):
super(BERTMultSelfOutput, self).__init__()
self.LayerNorm = BERTLayerNorm(config, multi_params)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTSelfOutput(nn.Module):
def __init__(self, config, multi_params=None, houlsby=False):
super(BERTSelfOutput, self).__init__()
if houlsby:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
if multi_params is not None:
self.dense = nn.Linear(config.hidden_size_aug, config.hidden_size_aug)
else:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BERTLayerNorm(config, multi_params)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.houlsby = houlsby
def forward(self, hidden_states, input_tensor, attention_mask=None, i=0):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if self.houlsby:
hidden_states = hidden_states + self.multi_layers[i](hidden_states, attention_mask)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTAttention(nn.Module):
def __init__(self, config, multi_params=None, houlsby=False):
super(BERTAttention, self).__init__()
self.self = BERTSelfAttention(config, multi_params)
self.output = BERTSelfOutput(config, multi_params, houlsby)
def forward(self, input_tensor, attention_mask, i=0):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor, attention_mask, i=i)
return attention_output
class BERTPals(nn.Module):
def __init__(self, config, extra_dim=None):
super(BERTPals, self).__init__()
# Encoder and decoder matrices project down to the smaller dimension
self.aug_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.aug_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
# Attention without the final matrix multiply.
self.attn = BERTSelfAttention(config, 6)
self.config = config
self.hidden_act_fn = gelu
def forward(self, hidden_states, attention_mask=None):
hidden_states_aug = self.aug_dense(hidden_states)
hidden_states_aug = self.attn(hidden_states_aug, attention_mask)
hidden_states = self.aug_dense2(hidden_states_aug)
hidden_states = self.hidden_act_fn(hidden_states)
return hidden_states
class BERTLowRank(nn.Module):
def __init__(self, config, extra_dim=None):
super(BERTLowRank, self).__init__()
# Encoder and decoder matrices project down to the smaller dimension
if config.extra_dim:
self.aug_dense = nn.Linear(config.hidden_size, config.extra_dim)
self.aug_dense2 = nn.Linear(config.extra_dim, config.hidden_size)
else:
self.aug_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.aug_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.config = config
self.hidden_act_fn = gelu
def forward(self, hidden_states, attention_mask=None):
hidden_states_aug = self.aug_dense(hidden_states)
hidden_states_aug = self.hidden_act_fn(hidden_states_aug)
hidden_states = self.aug_dense2(hidden_states_aug)
return hidden_states
class BERTIntermediate(nn.Module):
def __init__(self, config):
super(BERTIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.config = config
self.intermediate_act_fn = gelu
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BERTLhuc(nn.Module):
def __init__(self, config):
super(BERTLhuc, self).__init__()
self.lhuc = Parameter(torch.zeros(config.hidden_size))
def forward(self, hidden_states):
hidden_states = hidden_states * 2. * nn.functional.sigmoid(self.lhuc)
return hidden_states
class BERTOutput(nn.Module):
def __init__(self, config, houlsby=False):
super(BERTOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BERTLayerNorm(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if houlsby:
if config.pals:
multi = BERTPals(config)
else:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.houlsby = houlsby
def forward(self, hidden_states, input_tensor, attention_mask=None, i=0):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if self.houlsby:
hidden_states = hidden_states + self.multi_layers[i](input_tensor, attention_mask)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BERTLayer(nn.Module):
def __init__(self, config, mult=False, houlsby=False):
super(BERTLayer, self).__init__()
self.attention = BERTAttention(config, houlsby=houlsby)
self.intermediate = BERTIntermediate(config)
self.output = BERTOutput(config, houlsby=houlsby)
if config.lhuc:
lhuc = BERTLhuc(config)
self.multi_lhuc = nn.ModuleList([copy.deepcopy(lhuc) for _ in range(config.num_tasks)])
if mult:
if config.pals:
multi = BERTPals(config)
else:
multi = BERTLowRank(config)
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.mult = mult
self.lhuc = config.lhuc
self.houlsby = houlsby
def forward(self, hidden_states, attention_mask, i=0):
attention_output = self.attention(hidden_states, attention_mask, i)
intermediate_output = self.intermediate(attention_output)
if self.lhuc and not self.mult:
layer_output = self.output(intermediate_output, attention_output)
layer_output = self.multi_lhuc[i](layer_output)
elif self.mult:
extra = self.multi_layers[i](hidden_states, attention_mask)
if self.lhuc:
extra = self.multi_lhuc[i](extra)
layer_output = self.output(intermediate_output, attention_output + extra)
elif self.houlsby:
layer_output = self.output(intermediate_output, attention_output, attention_mask, i)
else:
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BERTEncoder(nn.Module):
def __init__(self, config):
super(BERTEncoder, self).__init__()
self.config = config
if config.houlsby:
# Adjust line below to add PALs etc. to different layers. True means add a PAL.
self.multis = [True if i < 999 else False for i in range(config.num_hidden_layers)]
self.layer = nn.ModuleList([BERTLayer(config, houlsby=mult) for mult in self.multis])
elif config.mult:
# Adjust line below to add PALs etc. to different layers. True means add a PAL.
self.multis = [True if i < 999 else False for i in range(config.num_hidden_layers)]
self.layer = nn.ModuleList([BERTLayer(config, mult=mult) for mult in self.multis])
else:
layer = BERTLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
if config.top:
if config.bert_lay_top:
multi = BERTLayer(config)
else:
# Projection matrices and attention for adding to the top.
mult_dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
self.mult_dense = nn.ModuleList([copy.deepcopy(mult_dense) for _ in range(config.num_tasks)])
mult_dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_dense2 = nn.ModuleList([copy.deepcopy(mult_dense2) for _ in range(config.num_tasks)])
multi = nn.ModuleList([copy.deepcopy(BERTAttention(config, 12)) for _ in range(6)])
self.multi_layers = nn.ModuleList([copy.deepcopy(multi) for _ in range(config.num_tasks)])
self.gelu = gelu
if config.mult and config.pals:
dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
# Shared encoder and decoder across layers
self.mult_aug_dense = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_aug_dense2 = nn.ModuleList([copy.deepcopy(dense2) for _ in range(config.num_tasks)])
for l, layer in enumerate(self.layer):
if self.multis[l]:
for i, lay in enumerate(layer.multi_layers):
lay.aug_dense = self.mult_aug_dense[i]
lay.aug_dense2 = self.mult_aug_dense2[i]
if config.houlsby and config.pals:
dense = nn.Linear(config.hidden_size, config.hidden_size_aug)
# Shared encoder and decoder across layers
self.mult_aug_dense = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
dense2 = nn.Linear(config.hidden_size_aug, config.hidden_size)
self.mult_aug_dense2 = nn.ModuleList([copy.deepcopy(dense2) for _ in range(config.num_tasks)])
dense3 = nn.Linear(config.hidden_size, config.hidden_size_aug)
for l, layer in enumerate(self.layer):
if self.multis[l]:
for i, lay in enumerate(layer.output.multi_layers):
lay.aug_dense = self.mult_aug_dense[i]
lay.aug_dense2 = self.mult_aug_dense2[i]
def forward(self, hidden_states, attention_mask, i=0):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask, i)
all_encoder_layers.append(hidden_states)
if self.config.top:
if self.config.bert_lay_top:
all_encoder_layers[-1] = self.multi_layers[i](hidden_states, attention_mask)
else:
hidden_states = self.mult_dense[i](hidden_states)
for lay in self.multi_layers[i]:
hidden_states = lay(hidden_states, attention_mask)
all_encoder_layers[-1] = self.mult_dense2[i](hidden_states)
return all_encoder_layers
class BERTPooler(nn.Module):
def __init__(self, config):
super(BERTPooler, self).__init__()
dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
self.pool = False
if self.pool:
self.mult_dense_layers = nn.ModuleList([copy.deepcopy(dense) for _ in range(config.num_tasks)])
else:
self.dense = dense
self.mult = config.mult
self.top = config.top
def forward(self, hidden_states, i=0):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
if (self.mult or self.top) and self.pool:
pooled_output = self.mult_dense_layers[i](first_token_tensor)
else:
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertModel(BertPreTrainedModel):
"""BERT model ("Bidirectional Embedding Representations from a Transformer").
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
model = modeling.BertModel(config=config)
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config: BertPalConfig):
"""Constructor for BertModel.
Args:
config: `BertConfig` instance.
"""
super(BertModel, self).__init__(config)
self.embeddings = BERTEmbeddings(config)
self.encoder = BERTEncoder(config)
self.pooler = BERTPooler(config)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, i=0):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, from_seq_length]
# So we can broadcast to [batch_size, num_heads, to_seq_length, from_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.float()
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids, token_type_ids)
all_encoder_layers = self.encoder(embedding_output, extended_attention_mask, i)
sequence_output = all_encoder_layers[-1]
pooled_output = self.pooler(sequence_output, i)
return all_encoder_layers, pooled_output
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
class BertForMultiTask(nn.Module):
"""BERT model for classification or regression on GLUE tasks (STS-B is treated as a regression task).
This module is composed of the BERT model with a linear layer on top of
the pooled output.
```
"""
def __init__(self, config, tasks):
super(BertForMultiTask, self).__init__()
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.ModuleList([nn.Linear(config.hidden_size, num_labels)
for i, num_labels in enumerate(tasks)])
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, task_id, name='cola', labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, task_id)
pooled_output = self.dropout(pooled_output)
logits = self.classifier[task_id](pooled_output)
if labels is not None and name != 'sts':
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, logits
# STS is a regression task.
elif labels is not None and name == 'sts':
loss_fct = MSELoss()
loss = loss_fct(logits, labels.unsqueeze(1))
return loss, logits
else:
return logits
class BertForSequenceClassification(nn.Module):
"""BERT model for classification.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
num_labels = 2
model = BertForSequenceClassification(config, num_labels)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels):
super(BertForSequenceClassification, self).__init__()
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, labels=None):
_, pooled_output = self.bert(input_ids, token_type_ids, attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits, labels)
return loss, logits
else:
return logits
class BertForQuestionAnswering(nn.Module):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])
config = BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config):
super(BertForQuestionAnswering, self).__init__()
self.bert = BertModel(config)
# TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, start_positions=None, end_positions=None):
all_encoder_layers, _ = self.bert(input_ids, token_type_ids, attention_mask)
sequence_output = all_encoder_layers[-1]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension - if not this is a no-op
start_positions = start_positions.squeeze(-1)
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
else:
return start_logits, end_logits
class BertForMultipleChoice(nn.Module):
"""BERT model for multiple choice tasks.
This module is composed of the BERT model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
num_choices = 2
model = BertForMultipleChoice(config, num_choices)
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_choices=2):
super(BertForMultipleChoice, self).__init__()
self.num_choices = num_choices
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
if isinstance(module, nn.Linear):
module.bias.data.zero_()
self.apply(init_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
_, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
return loss
else:
return reshaped_logits
class BertPalsEncoder(torch.nn.Module):
def __init__(self, config: str, task_ids: List[str], checkpoint):
super(BertPalsEncoder, self).__init__()
self.bert_config = BertPalConfig.from_json_file(config) if type(config) == str else config
self.bert_config.num_tasks = len(task_ids)
if type(checkpoint) != str:
self.bert_config.vocab_size = checkpoint.config.vocab_size
self.bert = BertModel(self.bert_config) if type(config) == str else checkpoint
self.task_idx = {task: i for i, task in enumerate(task_ids)}
print(self.task_idx)
def init_weights(module):
if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.bert_config.initializer_range)
elif isinstance(module, BERTLayerNorm):
module.bias.data.normal_(mean=0.0, std=self.bert_config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.bert_config.initializer_range)
if isinstance(module, torch.nn.Linear):
if module.bias is not None:
module.bias.data.zero_()
if type(config) == str:
if type(checkpoint) == str:
chk = torch.load(checkpoint, map_location='cpu')
update = {k.replace("bert.", ""): v for k, v in chk.items()}
else:
self.apply(init_weights)
partial = checkpoint.state_dict()
model_dict = self.bert.state_dict()
update = {}
for n, p in model_dict.items():
if 'aug' in n or 'mult' in n:
update[n] = p
if 'pooler.mult' in n and 'bias' in n:
update[n] = partial['pooler.dense.bias']
if 'pooler.mult' in n and 'weight' in n:
update[n] = partial['pooler.dense.weight']
else:
update[n] = partial[n]
self.bert.load_state_dict(update)
def forward(self, input_ids, attention_mask=None, task_id=None):
embedding = self.bert(input_ids, attention_mask=attention_mask, i=self.task_idx[task_id])
return embedding[0][-1]
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None):
return self.bert.resize_token_embeddings(new_num_tokens)
def save_pretrained(self, save_path: str):
os.makedirs(save_path, exist_ok=True)
torch.save(self.bert.state_dict(), f'{save_path}/pytorch_model.bin')
torch.save(self.bert.config.save_pretrained(save_path))
|