Dataset Viewer
Auto-converted to Parquet
text
stringlengths
22
82
0 0.49853515625 0.31130573248407645 0.0966796875 0.19904458598726116
0 0.41748046875 0.29378980891719747 0.0556640625 0.13853503184713375
1 0.9619140625 0.2921974522292994 0.015625 0.027070063694267517
1 0.91650390625 0.29378980891719747 0.0146484375 0.03503184713375796
1 0.9404296875 0.267515923566879 0.013671875 0.02388535031847134
1 0.76220703125 0.3837579617834395 0.0234375 0.041401273885350316
1 0.6015625 0.320859872611465 0.0126953125 0.025477707006369428
1 0.576171875 0.3487261146496815 0.0146484375 0.02388535031847134
1 0.69775390625 0.29538216560509556 0.01171875 0.025477707006369428
1 0.7607421875 0.30254777070063693 0.0107421875 0.03503184713375796
1 0.28369140625 0.37579617834394907 0.01953125 0.03503184713375796
1 0.34228515625 0.3519108280254777 0.0146484375 0.028662420382165606
1 0.259765625 0.35429936305732485 0.0126953125 0.030254777070063694
1 0.18115234375 0.3765923566878981 0.0166015625 0.03503184713375796
1 0.205078125 0.3638535031847134 0.01953125 0.03343949044585987
1 0.08935546875 0.4012738853503185 0.0283203125 0.052547770700636945
1 0.01806640625 0.3765923566878981 0.0263671875 0.03821656050955414
1 0.06005859375 0.3781847133757962 0.0146484375 0.03343949044585987
1 0.78076171875 0.27229299363057324 0.017578125 0.044585987261146494
1 0.5558912386706949 0.5822222222222222 0.5196374622356495 0.2733333333333333
0 0.1044921875 0.35315712187958886 0.04296875 0.06020558002936858
0 0.4697265625 0.42951541850220265 0.111328125 0.18355359765051396
0 0.744140625 0.4104258443465492 0.087890625 0.11600587371512482
0 0.93212890625 0.48237885462555063 0.1337890625 0.315712187958884
0 0.8609375 0.5197916666666667 0.225 0.13333333333333333
1 0.622 0.19518072289156627 0.198 0.36626506024096384
0 0.8310344827586207 0.5879310344827586 0.33448275862068966 0.19425287356321838
1 0.4228515625 0.744258872651357 0.1083984375 0.1524008350730689
1 0.50634765625 0.38945827232796487 0.173828125 0.19326500732064422
1 0.53759765625 0.6112737920937042 0.15625 0.15226939970717424
0 0.62939453125 0.1708507670850767 0.0400390625 0.05509065550906555
0 0.57958984375 0.36052998605299863 0.03564453125 0.04741980474198047
0 0.59423828125 0.6206415620641562 0.0400390625 0.02789400278940028
0 0.5361328125 0.7838214783821479 0.02587890625 0.044630404463040445
0 0.5712890625 0.8556485355648535 0.03857421875 0.045327754532775454
1 0.9326171875 0.4404296875 0.1328125 0.10611979166666667
1 0.75634765625 0.7114914425427873 0.2265625 0.22493887530562348
1 0.529296875 0.7777406417112299 0.17578125 0.16310160427807488
1 0.73046875 0.11397058823529412 0.111328125 0.13088235294117648
1 0.61669921875 0.17794117647058824 0.0556640625 0.061764705882352944
1 0.212890625 0.11397058823529412 0.12890625 0.14705882352941177
1 0.0654296875 0.48131868131868133 0.12890625 0.06886446886446887
1 0.4306640625 0.35896309314586994 0.3212890625 0.4200351493848858
1 0.59521484375 0.049479166666666664 0.1025390625 0.09895833333333333
1 0.58544921875 0.8315972222222222 0.1298828125 0.13368055555555555
0 0.36065573770491804 0.7786069651741293 0.2098360655737705 0.30845771144278605
0 0.6737704918032786 0.7164179104477612 0.17049180327868851 0.3582089552238806
0 0.5969230769230769 0.4981481481481482 0.18769230769230769 0.1962962962962963
0 0.3292307692307692 0.023148148148148147 0.16615384615384615 0.046296296296296294
1 0.6592307692307692 0.0962962962962963 0.08461538461538462 0.1111111111111111
1 0.2915384615384615 0.2111111111111111 0.11538461538461539 0.12962962962962962
1 0.40384615384615385 0.9694444444444444 0.09692307692307692 0.05740740740740741
1 0.35923076923076924 0.075 0.11846153846153847 0.08703703703703704
1 0.44130434782608696 0.28239845261121854 0.2318840579710145 0.3346228239845261
0 0.587 0.26426426426426425 0.274 0.2987987987987988
0 0.5810344827586207 0.4307891332470893 0.5017241379310344 0.5278137128072445
0 0.695 0.62875 0.3075 0.41625
1 0.5166666666666667 0.43222222222222223 0.40166666666666667 0.5466666666666666
0 0.45111111111111113 0.6491666666666667 0.5155555555555555 0.6316666666666667
1 0.4898989898989899 0.6428571428571429 0.08686868686868687 0.10752688172043011
1 0.7288135593220338 0.4264705882352941 0.10508474576271186 0.1334841628959276
1 0.4559322033898305 0.7341628959276018 0.07796610169491526 0.10407239819004525
1 0.44745762711864406 0.9558823529411765 0.10508474576271186 0.083710407239819
1 0.5050847457627119 0.2171945701357466 0.08305084745762711 0.0746606334841629
1 0.47203389830508474 0.049773755656108594 0.07796610169491526 0.09502262443438914
1 0.67626953125 0.4809027777777778 0.228515625 0.5121527777777778
1 0.7080078125 0.44502617801047123 0.025390625 0.06806282722513089
1 0.8525390625 0.45091623036649214 0.033203125 0.05366492146596859
1 0.3427734375 0.21400523560209425 0.05859375 0.08900523560209424
1 0.13720703125 0.5176701570680629 0.0693359375 0.10340314136125654
1 0.8857421875 0.5380859375 0.2265625 0.09700520833333333
1 0.56103515625 0.3333333333333333 0.0703125 0.13069016152716592
1 0.7001953125 0.2209985315712188 0.08203125 0.1395007342143906
1 0.77783203125 0.23641703377386197 0.0634765625 0.14096916299559473
1 0.9267578125 0.24302496328928047 0.0732421875 0.13215859030837004
1 0.3994140625 0.1894273127753304 0.072265625 0.15712187958883994
1 0.2255859375 0.28707782672540383 0.056640625 0.14537444933920704
1 0.025390625 0.35462555066079293 0.048828125 0.1527165932452276
1 0.3642578125 0.3854166666666667 0.2412109375 0.4440104166666667
1 0.74267578125 0.6438802083333334 0.2568359375 0.4361979166666667
1 0.6435546875 0.10379981464318813 0.0947265625 0.12140871177015755
1 0.29052734375 0.3178869323447637 0.107421875 0.0871177015755329
0 0.5236907730673317 0.47215777262180975 0.3341645885286783 0.3433874709976798
0 0.50875 0.7453183520599251 0.095 0.1647940074906367
0 0.30875 0.6947565543071161 0.08 0.149812734082397
0 0.75125 0.7228464419475655 0.0925 0.16104868913857678
0 0.57421875 0.7558823529411764 0.2109375 0.2823529411764706
1 0.525390625 0.5035063113604488 0.0478515625 0.06311360448807854
0 0.38205980066445183 0.42375 0.4684385382059801 0.235
0 0.595 0.8448979591836735 0.06 0.09795918367346938
0 0.65375 0.9285714285714286 0.055 0.0653061224489796
0 0.63875 0.5979591836734693 0.05 0.06938775510204082
0 0.62625 0.6775510204081633 0.05 0.061224489795918366
0 0.60625 0.7489795918367347 0.0575 0.05714285714285714
0 0.5225 0.4204081632653061 0.055 0.08979591836734693
0 0.62875 0.2571428571428571 0.0725 0.07755102040816327
0 0.63875 0.3489795918367347 0.055 0.06938775510204082
0 0.64 0.46530612244897956 0.0475 0.053061224489795916
0 0.64625 0.5387755102040817 0.0525 0.04081632653061224
1 0.6525 0.9877551020408163 0.045 0.0163265306122449
End of preview. Expand in Data Studio

Face Masks ensemble dataset is no longer limited to Kaggle, it is now coming to Huggingface!

This dataset was created to help train and/or fine tune models for detecting masked and un-masked faces.

I created a new face masks object detection dataset by compositing together three publically available face masks object detection datasets on Kaggle that used the YOLO annotation format. To combine the datasets, I used Roboflow. All three original datasets had different class dictionaries, so I recoded the classes into two classes: "Mask" and "No Mask". One dataset included a class for incorrectly worn face masks, images with this class were removed from the dataset. Approximately 50 images had corrupted annotations, so they were manually re-annotated in the Roboflow platform. The final dataset includes 9,982 images, with 24,975 annotated instances. Image resolution was on average 0.49 mp, with a median size of 750 x 600 pixels.

To improve model performance on out of sample data, I used 90 degree rotational augmentation. This saved duplicate versions of each image for 90, 180, and 270 degree rotations. I then split the data into 85% training, 10% validation, and 5% testing. Images with classes that were removed from the dataset were removed, leaving 16,000 images in training, 1,900 in validation, and 1,000 in testing.

Downloads last month
926