hibana2077 commited on
Commit
56d100b
·
1 Parent(s): 8ff2bc1

del some useless files

Browse files
main/temp_data/LICENSE.txt DELETED
@@ -1,30 +0,0 @@
1
- Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces,
2
- originally created as a benchmark for generative adversarial networks (GAN):
3
-
4
- A Style-Based Generator Architecture for Generative Adversarial Networks
5
- Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
6
- http://stylegan.xyz/paper
7
-
8
- The individual images were published in Flickr by their respective authors
9
- under either Creative Commons BY 2.0, Creative Commons BY-NC 2.0,
10
- Public Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works
11
- license. All of these licenses allow free use, redistribution, and adaptation
12
- for non-commercial purposes. However, some of them require giving appropriate
13
- credit to the original author, as well as indicating any changes that were
14
- made to the images. The license and original author of each image are
15
- indicated in the metadata.
16
-
17
- https://creativecommons.org/licenses/by/2.0/
18
- https://creativecommons.org/licenses/by-nc/2.0/
19
- https://creativecommons.org/publicdomain/mark/1.0/
20
- https://creativecommons.org/publicdomain/zero/1.0/
21
- http://www.usa.gov/copyright.shtml
22
-
23
- The dataset itself (including JSON metadata, download script, and
24
- documentation) is made available under Creative Commons BY-NC-SA 4.0 license
25
- by NVIDIA Corporation. You can use, redistribute, and adapt it for
26
- non-commercial purposes, as long as you (a) give appropriate credit by
27
- citing our paper, (b) indicate any changes that you've made, and
28
- (c) distribute any derivative works under the same license.
29
-
30
- https://creativecommons.org/licenses/by-nc-sa/4.0/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
main/temp_data/auto.sh DELETED
@@ -1,2 +0,0 @@
1
- curl https://raw.githubusercontent.com/NVlabs/ffhq-dataset/refs/heads/master/download_ffhq.py -o download_ffhq.py
2
- python3 download_ffhq.py --json --thumbs
 
 
 
main/temp_data/download_ffhq.py DELETED
@@ -1,447 +0,0 @@
1
- # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # This work is licensed under the Creative Commons
4
- # Attribution-NonCommercial-ShareAlike 4.0 International License.
5
- # To view a copy of this license, visit
6
- # http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to
7
- # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
8
-
9
- """Download Flickr-Faces-HQ (FFHQ) dataset to current working directory."""
10
-
11
- import os
12
- import sys
13
- import requests
14
- import html
15
- import hashlib
16
- import PIL.Image
17
- import PIL.ImageFile
18
- import numpy as np
19
- import scipy.ndimage
20
- import threading
21
- import queue
22
- import time
23
- import json
24
- import uuid
25
- import glob
26
- import argparse
27
- import itertools
28
- import shutil
29
- from collections import OrderedDict, defaultdict
30
-
31
- PIL.ImageFile.LOAD_TRUNCATED_IMAGES = True # avoid "Decompressed Data Too Large" error
32
-
33
- #----------------------------------------------------------------------------
34
-
35
- json_spec = dict(file_url='https://drive.google.com/uc?id=16N0RV4fHI6joBuKbQAoG34V_cQk7vxSA', file_path='ffhq-dataset-v2.json', file_size=267793842, file_md5='425ae20f06a4da1d4dc0f46d40ba5fd6')
36
-
37
- tfrecords_specs = [
38
- dict(file_url='https://drive.google.com/uc?id=1LnhoytWihRRJ7CfhLQ76F8YxwxRDlZN3', file_path='tfrecords/ffhq/ffhq-r02.tfrecords', file_size=6860000, file_md5='63e062160f1ef9079d4f51206a95ba39'),
39
- dict(file_url='https://drive.google.com/uc?id=1LWeKZGZ_x2rNlTenqsaTk8s7Cpadzjbh', file_path='tfrecords/ffhq/ffhq-r03.tfrecords', file_size=17290000, file_md5='54fb32a11ebaf1b86807cc0446dd4ec5'),
40
- dict(file_url='https://drive.google.com/uc?id=1Lr7Tiufr1Za85HQ18yg3XnJXstiI2BAC', file_path='tfrecords/ffhq/ffhq-r04.tfrecords', file_size=57610000, file_md5='7164cc5531f6828bf9c578bdc3320e49'),
41
- dict(file_url='https://drive.google.com/uc?id=1LnyiayZ-XJFtatxGFgYePcs9bdxuIJO_', file_path='tfrecords/ffhq/ffhq-r05.tfrecords', file_size=218890000, file_md5='050cc7e5fd07a1508eaa2558dafbd9ed'),
42
- dict(file_url='https://drive.google.com/uc?id=1Lt6UP201zHnpH8zLNcKyCIkbC-aMb5V_', file_path='tfrecords/ffhq/ffhq-r06.tfrecords', file_size=864010000, file_md5='90bedc9cc07007cd66615b2b1255aab8'),
43
- dict(file_url='https://drive.google.com/uc?id=1LwOP25fJ4xN56YpNCKJZM-3mSMauTxeb', file_path='tfrecords/ffhq/ffhq-r07.tfrecords', file_size=3444980000, file_md5='bff839e0dda771732495541b1aff7047'),
44
- dict(file_url='https://drive.google.com/uc?id=1LxxgVBHWgyN8jzf8bQssgVOrTLE8Gv2v', file_path='tfrecords/ffhq/ffhq-r08.tfrecords', file_size=13766900000, file_md5='74de4f07dc7bfb07c0ad4471fdac5e67'),
45
- dict(file_url='https://drive.google.com/uc?id=1M-ulhD5h-J7sqSy5Y1njUY_80LPcrv3V', file_path='tfrecords/ffhq/ffhq-r09.tfrecords', file_size=55054580000, file_md5='05355aa457a4bd72709f74a81841b46d'),
46
- dict(file_url='https://drive.google.com/uc?id=1M11BIdIpFCiapUqV658biPlaXsTRvYfM', file_path='tfrecords/ffhq/ffhq-r10.tfrecords', file_size=220205650000, file_md5='bf43cab9609ab2a27892fb6c2415c11b'),
47
- ]
48
-
49
- license_specs = {
50
- 'json': dict(file_url='https://drive.google.com/uc?id=1SHafCugkpMZzYhbgOz0zCuYiy-hb9lYX', file_path='LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
51
- 'images': dict(file_url='https://drive.google.com/uc?id=1sP2qz8TzLkzG2gjwAa4chtdB31THska4', file_path='images1024x1024/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
52
- 'thumbs': dict(file_url='https://drive.google.com/uc?id=1iaL1S381LS10VVtqu-b2WfF9TiY75Kmj', file_path='thumbnails128x128/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
53
- 'wilds': dict(file_url='https://drive.google.com/uc?id=1rsfFOEQvkd6_Z547qhpq5LhDl2McJEzw', file_path='in-the-wild-images/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
54
- 'tfrecords': dict(file_url='https://drive.google.com/uc?id=1SYUmqKdLoTYq-kqsnPsniLScMhspvl5v', file_path='tfrecords/ffhq/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
55
- }
56
-
57
- #----------------------------------------------------------------------------
58
-
59
- def download_file(session, file_spec, stats, chunk_size=128, num_attempts=10, **kwargs):
60
- file_path = file_spec['file_path']
61
- file_url = file_spec['file_url']
62
- file_dir = os.path.dirname(file_path)
63
- tmp_path = file_path + '.tmp.' + uuid.uuid4().hex
64
- if file_dir:
65
- os.makedirs(file_dir, exist_ok=True)
66
-
67
- for attempts_left in reversed(range(num_attempts)):
68
- data_size = 0
69
- try:
70
- # Download.
71
- data_md5 = hashlib.md5()
72
- with session.get(file_url, stream=True) as res:
73
- res.raise_for_status()
74
- with open(tmp_path, 'wb') as f:
75
- for chunk in res.iter_content(chunk_size=chunk_size<<10):
76
- f.write(chunk)
77
- data_size += len(chunk)
78
- data_md5.update(chunk)
79
- with stats['lock']:
80
- stats['bytes_done'] += len(chunk)
81
-
82
- # Validate.
83
- if 'file_size' in file_spec and data_size != file_spec['file_size']:
84
- raise IOError('Incorrect file size', file_path)
85
- if 'file_md5' in file_spec and data_md5.hexdigest() != file_spec['file_md5']:
86
- raise IOError('Incorrect file MD5', file_path)
87
- if 'pixel_size' in file_spec or 'pixel_md5' in file_spec:
88
- with PIL.Image.open(tmp_path) as image:
89
- if 'pixel_size' in file_spec and list(image.size) != file_spec['pixel_size']:
90
- raise IOError('Incorrect pixel size', file_path)
91
- if 'pixel_md5' in file_spec and hashlib.md5(np.array(image)).hexdigest() != file_spec['pixel_md5']:
92
- raise IOError('Incorrect pixel MD5', file_path)
93
- break
94
-
95
- except:
96
- with stats['lock']:
97
- stats['bytes_done'] -= data_size
98
-
99
- # Handle known failure cases.
100
- if data_size > 0 and data_size < 8192:
101
- with open(tmp_path, 'rb') as f:
102
- data = f.read()
103
- data_str = data.decode('utf-8')
104
-
105
- # Google Drive virus checker nag.
106
- links = [html.unescape(link) for link in data_str.split('"') if 'export=download' in link]
107
- if len(links) == 1:
108
- if attempts_left:
109
- file_url = requests.compat.urljoin(file_url, links[0])
110
- continue
111
-
112
- # Google Drive quota exceeded.
113
- if 'Google Drive - Quota exceeded' in data_str:
114
- if not attempts_left:
115
- raise IOError("Google Drive download quota exceeded -- please try again later")
116
-
117
- # Last attempt => raise error.
118
- if not attempts_left:
119
- raise
120
-
121
- # Rename temp file to the correct name.
122
- os.replace(tmp_path, file_path) # atomic
123
- with stats['lock']:
124
- stats['files_done'] += 1
125
-
126
- # Attempt to clean up any leftover temps.
127
- for filename in glob.glob(file_path + '.tmp.*'):
128
- try:
129
- os.remove(filename)
130
- except:
131
- pass
132
-
133
- #----------------------------------------------------------------------------
134
-
135
- def choose_bytes_unit(num_bytes):
136
- b = int(np.rint(num_bytes))
137
- if b < (100 << 0): return 'B', (1 << 0)
138
- if b < (100 << 10): return 'kB', (1 << 10)
139
- if b < (100 << 20): return 'MB', (1 << 20)
140
- if b < (100 << 30): return 'GB', (1 << 30)
141
- return 'TB', (1 << 40)
142
-
143
- #----------------------------------------------------------------------------
144
-
145
- def format_time(seconds):
146
- s = int(np.rint(seconds))
147
- if s < 60: return '%ds' % s
148
- if s < 60 * 60: return '%dm %02ds' % (s // 60, s % 60)
149
- if s < 24 * 60 * 60: return '%dh %02dm' % (s // (60 * 60), (s // 60) % 60)
150
- if s < 100 * 24 * 60 * 60: return '%dd %02dh' % (s // (24 * 60 * 60), (s // (60 * 60)) % 24)
151
- return '>100d'
152
-
153
- #----------------------------------------------------------------------------
154
-
155
- def download_files(file_specs, num_threads=32, status_delay=0.2, timing_window=50, **download_kwargs):
156
-
157
- # Determine which files to download.
158
- done_specs = {spec['file_path']: spec for spec in file_specs if os.path.isfile(spec['file_path'])}
159
- missing_specs = [spec for spec in file_specs if spec['file_path'] not in done_specs]
160
- files_total = len(file_specs)
161
- bytes_total = sum(spec['file_size'] for spec in file_specs)
162
- stats = dict(files_done=len(done_specs), bytes_done=sum(spec['file_size'] for spec in done_specs.values()), lock=threading.Lock())
163
- if len(done_specs) == files_total:
164
- print('All files already downloaded -- skipping.')
165
- return
166
-
167
- # Launch worker threads.
168
- spec_queue = queue.Queue()
169
- exception_queue = queue.Queue()
170
- for spec in missing_specs:
171
- spec_queue.put(spec)
172
- thread_kwargs = dict(spec_queue=spec_queue, exception_queue=exception_queue, stats=stats, download_kwargs=download_kwargs)
173
- for _thread_idx in range(min(num_threads, len(missing_specs))):
174
- threading.Thread(target=_download_thread, kwargs=thread_kwargs, daemon=True).start()
175
-
176
- # Monitor status until done.
177
- bytes_unit, bytes_div = choose_bytes_unit(bytes_total)
178
- spinner = '/-\\|'
179
- timing = []
180
- while True:
181
- with stats['lock']:
182
- files_done = stats['files_done']
183
- bytes_done = stats['bytes_done']
184
- spinner = spinner[1:] + spinner[:1]
185
- timing = timing[max(len(timing) - timing_window + 1, 0):] + [(time.time(), bytes_done)]
186
- bandwidth = max((timing[-1][1] - timing[0][1]) / max(timing[-1][0] - timing[0][0], 1e-8), 0)
187
- bandwidth_unit, bandwidth_div = choose_bytes_unit(bandwidth)
188
- eta = format_time((bytes_total - bytes_done) / max(bandwidth, 1))
189
-
190
- print('\r%s %6.2f%% done %d/%d files %-13s %-10s ETA: %-7s ' % (
191
- spinner[0],
192
- bytes_done / bytes_total * 100,
193
- files_done, files_total,
194
- '%.2f/%.2f %s' % (bytes_done / bytes_div, bytes_total / bytes_div, bytes_unit),
195
- '%.2f %s/s' % (bandwidth / bandwidth_div, bandwidth_unit),
196
- 'done' if bytes_total == bytes_done else '...' if len(timing) < timing_window or bandwidth == 0 else eta,
197
- ), end='', flush=True)
198
-
199
- if files_done == files_total:
200
- print()
201
- break
202
-
203
- try:
204
- exc_info = exception_queue.get(timeout=status_delay)
205
- raise exc_info[1].with_traceback(exc_info[2])
206
- except queue.Empty:
207
- pass
208
-
209
- def _download_thread(spec_queue, exception_queue, stats, download_kwargs):
210
- with requests.Session() as session:
211
- while not spec_queue.empty():
212
- spec = spec_queue.get()
213
- try:
214
- download_file(session, spec, stats, **download_kwargs)
215
- except:
216
- exception_queue.put(sys.exc_info())
217
-
218
- #----------------------------------------------------------------------------
219
-
220
- def print_statistics(json_data):
221
- categories = defaultdict(int)
222
- licenses = defaultdict(int)
223
- countries = defaultdict(int)
224
- for item in json_data.values():
225
- categories[item['category']] += 1
226
- licenses[item['metadata']['license']] += 1
227
- country = item['metadata']['country']
228
- countries[country if country else '<Unknown>'] += 1
229
-
230
- for name in [name for name, num in countries.items() if num / len(json_data) < 1e-3]:
231
- countries['<Other>'] += countries.pop(name)
232
-
233
- rows = [[]] * 2
234
- rows += [['Category', 'Images', '% of all']]
235
- rows += [['---'] * 3]
236
- for name, num in sorted(categories.items(), key=lambda x: -x[1]):
237
- rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data))]]
238
-
239
- rows += [[]] * 2
240
- rows += [['License', 'Images', '% of all']]
241
- rows += [['---'] * 3]
242
- for name, num in sorted(licenses.items(), key=lambda x: -x[1]):
243
- rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data))]]
244
-
245
- rows += [[]] * 2
246
- rows += [['Country', 'Images', '% of all', '% of known']]
247
- rows += [['---'] * 4]
248
- for name, num in sorted(countries.items(), key=lambda x: -x[1] if x[0] != '<Other>' else 0):
249
- rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data)),
250
- '%.2f' % (0 if name == '<Unknown>' else 100.0 * num / (len(json_data) - countries['<Unknown>']))]]
251
-
252
- rows += [[]] * 2
253
- widths = [max(len(cell) for cell in column if cell is not None) for column in itertools.zip_longest(*rows)]
254
- for row in rows:
255
- print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
256
-
257
- #----------------------------------------------------------------------------
258
-
259
- def recreate_aligned_images(json_data, source_dir, dst_dir='realign1024x1024', output_size=1024, transform_size=4096, enable_padding=True, rotate_level=True, random_shift=0.0, retry_crops=False):
260
- print('Recreating aligned images...')
261
-
262
- # Fix random seed for reproducibility
263
- np.random.seed(12345)
264
- # The following random numbers are unused in present implementation, but we consume them for reproducibility
265
- _ = np.random.normal(0, 1, (len(json_data.values()), 2))
266
-
267
- if dst_dir:
268
- os.makedirs(dst_dir, exist_ok=True)
269
- shutil.copyfile('LICENSE.txt', os.path.join(dst_dir, 'LICENSE.txt'))
270
-
271
- for item_idx, item in enumerate(json_data.values()):
272
- print('\r%d / %d ... ' % (item_idx, len(json_data)), end='', flush=True)
273
-
274
- # Parse landmarks.
275
- # pylint: disable=unused-variable
276
- lm = np.array(item['in_the_wild']['face_landmarks'])
277
- lm_chin = lm[0 : 17] # left-right
278
- lm_eyebrow_left = lm[17 : 22] # left-right
279
- lm_eyebrow_right = lm[22 : 27] # left-right
280
- lm_nose = lm[27 : 31] # top-down
281
- lm_nostrils = lm[31 : 36] # top-down
282
- lm_eye_left = lm[36 : 42] # left-clockwise
283
- lm_eye_right = lm[42 : 48] # left-clockwise
284
- lm_mouth_outer = lm[48 : 60] # left-clockwise
285
- lm_mouth_inner = lm[60 : 68] # left-clockwise
286
-
287
- # Calculate auxiliary vectors.
288
- eye_left = np.mean(lm_eye_left, axis=0)
289
- eye_right = np.mean(lm_eye_right, axis=0)
290
- eye_avg = (eye_left + eye_right) * 0.5
291
- eye_to_eye = eye_right - eye_left
292
- mouth_left = lm_mouth_outer[0]
293
- mouth_right = lm_mouth_outer[6]
294
- mouth_avg = (mouth_left + mouth_right) * 0.5
295
- eye_to_mouth = mouth_avg - eye_avg
296
-
297
- # Choose oriented crop rectangle.
298
- if rotate_level:
299
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
300
- x /= np.hypot(*x)
301
- x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
302
- y = np.flipud(x) * [-1, 1]
303
- c0 = eye_avg + eye_to_mouth * 0.1
304
- else:
305
- x = np.array([1, 0], dtype=np.float64)
306
- x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
307
- y = np.flipud(x) * [-1, 1]
308
- c0 = eye_avg + eye_to_mouth * 0.1
309
-
310
- # Load in-the-wild image.
311
- src_file = os.path.join(source_dir, item['in_the_wild']['file_path'])
312
- if not os.path.isfile(src_file):
313
- print('\nCannot find source image. Please run "--wilds" before "--align".')
314
- return
315
- img = PIL.Image.open(src_file)
316
-
317
- quad = np.stack([c0 - x - y, c0 - x + y, c0 + x + y, c0 + x - y])
318
- qsize = np.hypot(*x) * 2
319
-
320
- # Keep drawing new random crop offsets until we find one that is contained in the image
321
- # and does not require padding
322
- if random_shift != 0:
323
- for _ in range(1000):
324
- # Offset the crop rectange center by a random shift proportional to image dimension
325
- # and the requested standard deviation
326
- c = (c0 + np.hypot(*x)*2 * random_shift * np.random.normal(0, 1, c0.shape))
327
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
328
- crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
329
- if not retry_crops or not (crop[0] < 0 or crop[1] < 0 or crop[2] >= img.width or crop[3] >= img.height):
330
- # We're happy with this crop (either it fits within the image, or retries are disabled)
331
- break
332
- else:
333
- # rejected N times, give up and move to next image
334
- # (does not happen in practice with the FFHQ data)
335
- print('rejected image')
336
- return
337
-
338
- # Shrink.
339
- shrink = int(np.floor(qsize / output_size * 0.5))
340
- if shrink > 1:
341
- rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
342
- img = img.resize(rsize, PIL.Image.ANTIALIAS)
343
- quad /= shrink
344
- qsize /= shrink
345
-
346
- # Crop.
347
- border = max(int(np.rint(qsize * 0.1)), 3)
348
- crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
349
- crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
350
- if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
351
- img = img.crop(crop)
352
- quad -= crop[0:2]
353
-
354
- # Pad.
355
- pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
356
- pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
357
- if enable_padding and max(pad) > border - 4:
358
- pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
359
- img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
360
- h, w, _ = img.shape
361
- y, x, _ = np.ogrid[:h, :w, :1]
362
- mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
363
- blur = qsize * 0.02
364
- img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
365
- img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
366
- img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
367
- quad += pad[:2]
368
-
369
- # Transform.
370
- img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
371
- if output_size < transform_size:
372
- img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
373
-
374
- # Save aligned image.
375
- dst_subdir = os.path.join(dst_dir, '%05d' % (item_idx - item_idx % 1000))
376
- os.makedirs(dst_subdir, exist_ok=True)
377
- img.save(os.path.join(dst_subdir, '%05d.png' % item_idx))
378
-
379
- # All done.
380
- print('\r%d / %d ... done' % (len(json_data), len(json_data)))
381
-
382
- #----------------------------------------------------------------------------
383
-
384
- def run(tasks, **download_kwargs):
385
- if not os.path.isfile(json_spec['file_path']) or not os.path.isfile('LICENSE.txt'):
386
- print('Downloading JSON metadata...')
387
- download_files([json_spec, license_specs['json']], **download_kwargs)
388
-
389
- print('Parsing JSON metadata...')
390
- with open(json_spec['file_path'], 'rb') as f:
391
- json_data = json.load(f, object_pairs_hook=OrderedDict)
392
-
393
- if 'stats' in tasks:
394
- print_statistics(json_data)
395
-
396
- specs = []
397
- if 'images' in tasks:
398
- specs += [item['image'] for item in json_data.values()] + [license_specs['images']]
399
- if 'thumbs' in tasks:
400
- specs += [item['thumbnail'] for item in json_data.values()] + [license_specs['thumbs']]
401
- if 'wilds' in tasks:
402
- specs += [item['in_the_wild'] for item in json_data.values()] + [license_specs['wilds']]
403
- if 'tfrecords' in tasks:
404
- specs += tfrecords_specs + [license_specs['tfrecords']]
405
-
406
- if len(specs):
407
- print('Downloading %d files...' % len(specs))
408
- np.random.shuffle(specs) # to make the workload more homogeneous
409
- download_files(specs, **download_kwargs)
410
-
411
- if 'align' in tasks:
412
- recreate_aligned_images(json_data, source_dir=download_kwargs['source_dir'], rotate_level=not download_kwargs['no_rotation'], random_shift=download_kwargs['random_shift'], enable_padding=not download_kwargs['no_padding'], retry_crops=download_kwargs['retry_crops'])
413
-
414
- #----------------------------------------------------------------------------
415
-
416
- def run_cmdline(argv):
417
- parser = argparse.ArgumentParser(prog=argv[0], description='Download Flickr-Face-HQ (FFHQ) dataset to current working directory.')
418
- parser.add_argument('-j', '--json', help='download metadata as JSON (254 MB)', dest='tasks', action='append_const', const='json')
419
- parser.add_argument('-s', '--stats', help='print statistics about the dataset', dest='tasks', action='append_const', const='stats')
420
- parser.add_argument('-i', '--images', help='download 1024x1024 images as PNG (89.1 GB)', dest='tasks', action='append_const', const='images')
421
- parser.add_argument('-t', '--thumbs', help='download 128x128 thumbnails as PNG (1.95 GB)', dest='tasks', action='append_const', const='thumbs')
422
- parser.add_argument('-w', '--wilds', help='download in-the-wild images as PNG (955 GB)', dest='tasks', action='append_const', const='wilds')
423
- parser.add_argument('-r', '--tfrecords', help='download multi-resolution TFRecords (273 GB)', dest='tasks', action='append_const', const='tfrecords')
424
- parser.add_argument('-a', '--align', help='recreate 1024x1024 images from in-the-wild images', dest='tasks', action='append_const', const='align')
425
- parser.add_argument('--num_threads', help='number of concurrent download threads (default: 32)', type=int, default=32, metavar='NUM')
426
- parser.add_argument('--status_delay', help='time between download status prints (default: 0.2)', type=float, default=0.2, metavar='SEC')
427
- parser.add_argument('--timing_window', help='samples for estimating download eta (default: 50)', type=int, default=50, metavar='LEN')
428
- parser.add_argument('--chunk_size', help='chunk size for each download thread (default: 128)', type=int, default=128, metavar='KB')
429
- parser.add_argument('--num_attempts', help='number of download attempts per file (default: 10)', type=int, default=10, metavar='NUM')
430
- parser.add_argument('--random-shift', help='standard deviation of random crop rectangle jitter', type=float, default=0.0, metavar='SHIFT')
431
- parser.add_argument('--retry-crops', help='retry random shift if crop rectangle falls outside image (up to 1000 times)', dest='retry_crops', default=False, action='store_true')
432
- parser.add_argument('--no-rotation', help='keep the original orientation of images', dest='no_rotation', default=False, action='store_true')
433
- parser.add_argument('--no-padding', help='do not apply blur-padding outside and near the image borders', dest='no_padding', default=False, action='store_true')
434
- parser.add_argument('--source-dir', help='where to find already downloaded FFHQ source data', default='', metavar='DIR')
435
-
436
- args = parser.parse_args()
437
- if not args.tasks:
438
- print('No tasks specified. Please see "-h" for help.')
439
- exit(1)
440
- run(**vars(args))
441
-
442
- #----------------------------------------------------------------------------
443
-
444
- if __name__ == "__main__":
445
- run_cmdline(sys.argv)
446
-
447
- #----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
main/temp_data/ffhq-dataset-v2.json.tmp.643c371ce6e445d1a35409d2f07ca20d DELETED
@@ -1 +0,0 @@
1
- <!DOCTYPE html><html><head><title>Google Drive - Virus scan warning</title><meta http-equiv="content-type" content="text/html; charset=utf-8"/><style nonce="BClLfRWu_3akhFm1bkkxgA">.goog-link-button{position:relative;color:#15c;text-decoration:underline;cursor:pointer}.goog-link-button-disabled{color:#ccc;text-decoration:none;cursor:default}body{color:#222;font:normal 13px/1.4 arial,sans-serif;margin:0}.grecaptcha-badge{visibility:hidden}.uc-main{padding-top:50px;text-align:center}#uc-dl-icon{display:inline-block;margin-top:16px;padding-right:1em;vertical-align:top}#uc-text{display:inline-block;max-width:68ex;text-align:left}.uc-error-caption,.uc-warning-caption{color:#222;font-size:16px}#uc-download-link{text-decoration:none}.uc-name-size a{color:#15c;text-decoration:none}.uc-name-size a:visited{color:#61c;text-decoration:none}.uc-name-size a:active{color:#d14836;text-decoration:none}.uc-footer{color:#777;font-size:11px;padding-bottom:5ex;padding-top:5ex;text-align:center}.uc-footer a{color:#15c}.uc-footer a:visited{color:#61c}.uc-footer a:active{color:#d14836}.uc-footer-divider{color:#ccc;width:100%}.goog-inline-block{position:relative;display:-moz-inline-box;display:inline-block}* html .goog-inline-block{display:inline}*:first-child+html .goog-inline-block{display:inline}sentinel{}</style><link rel="icon" href="//ssl.gstatic.com/docs/doclist/images/drive_2022q3_32dp.png"/></head><body><div class="uc-main"><div id="uc-dl-icon" class="image-container"><div class="drive-sprite-aux-download-file"></div></div><div id="uc-text"><p class="uc-warning-caption">Google Drive can't scan this file for viruses.</p><p class="uc-warning-subcaption"><span class="uc-name-size"><a href="/open?id=16N0RV4fHI6joBuKbQAoG34V_cQk7vxSA">ffhq-dataset-v2.json</a> (255M)</span> is too large for Google to scan for viruses. Would you still like to download this file?</p><form id="download-form" action="https://drive.usercontent.google.com/download" method="get"><input type="submit" id="uc-download-link" class="goog-inline-block jfk-button jfk-button-action" value="Download anyway"/><input type="hidden" name="id" value="16N0RV4fHI6joBuKbQAoG34V_cQk7vxSA"><input type="hidden" name="confirm" value="t"><input type="hidden" name="uuid" value="709e518a-d83c-4a01-89c8-7c84852cf844"></form></div></div><div class="uc-footer"><hr class="uc-footer-divider"></div></body></html>