Datasets:
Commit
·
8ff2bc1
1
Parent(s):
a8c9215
add LICENSE file for Flickr-Faces-HQ dataset and temporary JSON file for download warning
Browse files
main/temp_data/LICENSE.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces,
|
2 |
+
originally created as a benchmark for generative adversarial networks (GAN):
|
3 |
+
|
4 |
+
A Style-Based Generator Architecture for Generative Adversarial Networks
|
5 |
+
Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
|
6 |
+
http://stylegan.xyz/paper
|
7 |
+
|
8 |
+
The individual images were published in Flickr by their respective authors
|
9 |
+
under either Creative Commons BY 2.0, Creative Commons BY-NC 2.0,
|
10 |
+
Public Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works
|
11 |
+
license. All of these licenses allow free use, redistribution, and adaptation
|
12 |
+
for non-commercial purposes. However, some of them require giving appropriate
|
13 |
+
credit to the original author, as well as indicating any changes that were
|
14 |
+
made to the images. The license and original author of each image are
|
15 |
+
indicated in the metadata.
|
16 |
+
|
17 |
+
https://creativecommons.org/licenses/by/2.0/
|
18 |
+
https://creativecommons.org/licenses/by-nc/2.0/
|
19 |
+
https://creativecommons.org/publicdomain/mark/1.0/
|
20 |
+
https://creativecommons.org/publicdomain/zero/1.0/
|
21 |
+
http://www.usa.gov/copyright.shtml
|
22 |
+
|
23 |
+
The dataset itself (including JSON metadata, download script, and
|
24 |
+
documentation) is made available under Creative Commons BY-NC-SA 4.0 license
|
25 |
+
by NVIDIA Corporation. You can use, redistribute, and adapt it for
|
26 |
+
non-commercial purposes, as long as you (a) give appropriate credit by
|
27 |
+
citing our paper, (b) indicate any changes that you've made, and
|
28 |
+
(c) distribute any derivative works under the same license.
|
29 |
+
|
30 |
+
https://creativecommons.org/licenses/by-nc-sa/4.0/
|
main/temp_data/download_ffhq.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is licensed under the Creative Commons
|
4 |
+
# Attribution-NonCommercial-ShareAlike 4.0 International License.
|
5 |
+
# To view a copy of this license, visit
|
6 |
+
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to
|
7 |
+
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
|
8 |
+
|
9 |
+
"""Download Flickr-Faces-HQ (FFHQ) dataset to current working directory."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import sys
|
13 |
+
import requests
|
14 |
+
import html
|
15 |
+
import hashlib
|
16 |
+
import PIL.Image
|
17 |
+
import PIL.ImageFile
|
18 |
+
import numpy as np
|
19 |
+
import scipy.ndimage
|
20 |
+
import threading
|
21 |
+
import queue
|
22 |
+
import time
|
23 |
+
import json
|
24 |
+
import uuid
|
25 |
+
import glob
|
26 |
+
import argparse
|
27 |
+
import itertools
|
28 |
+
import shutil
|
29 |
+
from collections import OrderedDict, defaultdict
|
30 |
+
|
31 |
+
PIL.ImageFile.LOAD_TRUNCATED_IMAGES = True # avoid "Decompressed Data Too Large" error
|
32 |
+
|
33 |
+
#----------------------------------------------------------------------------
|
34 |
+
|
35 |
+
json_spec = dict(file_url='https://drive.google.com/uc?id=16N0RV4fHI6joBuKbQAoG34V_cQk7vxSA', file_path='ffhq-dataset-v2.json', file_size=267793842, file_md5='425ae20f06a4da1d4dc0f46d40ba5fd6')
|
36 |
+
|
37 |
+
tfrecords_specs = [
|
38 |
+
dict(file_url='https://drive.google.com/uc?id=1LnhoytWihRRJ7CfhLQ76F8YxwxRDlZN3', file_path='tfrecords/ffhq/ffhq-r02.tfrecords', file_size=6860000, file_md5='63e062160f1ef9079d4f51206a95ba39'),
|
39 |
+
dict(file_url='https://drive.google.com/uc?id=1LWeKZGZ_x2rNlTenqsaTk8s7Cpadzjbh', file_path='tfrecords/ffhq/ffhq-r03.tfrecords', file_size=17290000, file_md5='54fb32a11ebaf1b86807cc0446dd4ec5'),
|
40 |
+
dict(file_url='https://drive.google.com/uc?id=1Lr7Tiufr1Za85HQ18yg3XnJXstiI2BAC', file_path='tfrecords/ffhq/ffhq-r04.tfrecords', file_size=57610000, file_md5='7164cc5531f6828bf9c578bdc3320e49'),
|
41 |
+
dict(file_url='https://drive.google.com/uc?id=1LnyiayZ-XJFtatxGFgYePcs9bdxuIJO_', file_path='tfrecords/ffhq/ffhq-r05.tfrecords', file_size=218890000, file_md5='050cc7e5fd07a1508eaa2558dafbd9ed'),
|
42 |
+
dict(file_url='https://drive.google.com/uc?id=1Lt6UP201zHnpH8zLNcKyCIkbC-aMb5V_', file_path='tfrecords/ffhq/ffhq-r06.tfrecords', file_size=864010000, file_md5='90bedc9cc07007cd66615b2b1255aab8'),
|
43 |
+
dict(file_url='https://drive.google.com/uc?id=1LwOP25fJ4xN56YpNCKJZM-3mSMauTxeb', file_path='tfrecords/ffhq/ffhq-r07.tfrecords', file_size=3444980000, file_md5='bff839e0dda771732495541b1aff7047'),
|
44 |
+
dict(file_url='https://drive.google.com/uc?id=1LxxgVBHWgyN8jzf8bQssgVOrTLE8Gv2v', file_path='tfrecords/ffhq/ffhq-r08.tfrecords', file_size=13766900000, file_md5='74de4f07dc7bfb07c0ad4471fdac5e67'),
|
45 |
+
dict(file_url='https://drive.google.com/uc?id=1M-ulhD5h-J7sqSy5Y1njUY_80LPcrv3V', file_path='tfrecords/ffhq/ffhq-r09.tfrecords', file_size=55054580000, file_md5='05355aa457a4bd72709f74a81841b46d'),
|
46 |
+
dict(file_url='https://drive.google.com/uc?id=1M11BIdIpFCiapUqV658biPlaXsTRvYfM', file_path='tfrecords/ffhq/ffhq-r10.tfrecords', file_size=220205650000, file_md5='bf43cab9609ab2a27892fb6c2415c11b'),
|
47 |
+
]
|
48 |
+
|
49 |
+
license_specs = {
|
50 |
+
'json': dict(file_url='https://drive.google.com/uc?id=1SHafCugkpMZzYhbgOz0zCuYiy-hb9lYX', file_path='LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
|
51 |
+
'images': dict(file_url='https://drive.google.com/uc?id=1sP2qz8TzLkzG2gjwAa4chtdB31THska4', file_path='images1024x1024/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
|
52 |
+
'thumbs': dict(file_url='https://drive.google.com/uc?id=1iaL1S381LS10VVtqu-b2WfF9TiY75Kmj', file_path='thumbnails128x128/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
|
53 |
+
'wilds': dict(file_url='https://drive.google.com/uc?id=1rsfFOEQvkd6_Z547qhpq5LhDl2McJEzw', file_path='in-the-wild-images/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
|
54 |
+
'tfrecords': dict(file_url='https://drive.google.com/uc?id=1SYUmqKdLoTYq-kqsnPsniLScMhspvl5v', file_path='tfrecords/ffhq/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
|
55 |
+
}
|
56 |
+
|
57 |
+
#----------------------------------------------------------------------------
|
58 |
+
|
59 |
+
def download_file(session, file_spec, stats, chunk_size=128, num_attempts=10, **kwargs):
|
60 |
+
file_path = file_spec['file_path']
|
61 |
+
file_url = file_spec['file_url']
|
62 |
+
file_dir = os.path.dirname(file_path)
|
63 |
+
tmp_path = file_path + '.tmp.' + uuid.uuid4().hex
|
64 |
+
if file_dir:
|
65 |
+
os.makedirs(file_dir, exist_ok=True)
|
66 |
+
|
67 |
+
for attempts_left in reversed(range(num_attempts)):
|
68 |
+
data_size = 0
|
69 |
+
try:
|
70 |
+
# Download.
|
71 |
+
data_md5 = hashlib.md5()
|
72 |
+
with session.get(file_url, stream=True) as res:
|
73 |
+
res.raise_for_status()
|
74 |
+
with open(tmp_path, 'wb') as f:
|
75 |
+
for chunk in res.iter_content(chunk_size=chunk_size<<10):
|
76 |
+
f.write(chunk)
|
77 |
+
data_size += len(chunk)
|
78 |
+
data_md5.update(chunk)
|
79 |
+
with stats['lock']:
|
80 |
+
stats['bytes_done'] += len(chunk)
|
81 |
+
|
82 |
+
# Validate.
|
83 |
+
if 'file_size' in file_spec and data_size != file_spec['file_size']:
|
84 |
+
raise IOError('Incorrect file size', file_path)
|
85 |
+
if 'file_md5' in file_spec and data_md5.hexdigest() != file_spec['file_md5']:
|
86 |
+
raise IOError('Incorrect file MD5', file_path)
|
87 |
+
if 'pixel_size' in file_spec or 'pixel_md5' in file_spec:
|
88 |
+
with PIL.Image.open(tmp_path) as image:
|
89 |
+
if 'pixel_size' in file_spec and list(image.size) != file_spec['pixel_size']:
|
90 |
+
raise IOError('Incorrect pixel size', file_path)
|
91 |
+
if 'pixel_md5' in file_spec and hashlib.md5(np.array(image)).hexdigest() != file_spec['pixel_md5']:
|
92 |
+
raise IOError('Incorrect pixel MD5', file_path)
|
93 |
+
break
|
94 |
+
|
95 |
+
except:
|
96 |
+
with stats['lock']:
|
97 |
+
stats['bytes_done'] -= data_size
|
98 |
+
|
99 |
+
# Handle known failure cases.
|
100 |
+
if data_size > 0 and data_size < 8192:
|
101 |
+
with open(tmp_path, 'rb') as f:
|
102 |
+
data = f.read()
|
103 |
+
data_str = data.decode('utf-8')
|
104 |
+
|
105 |
+
# Google Drive virus checker nag.
|
106 |
+
links = [html.unescape(link) for link in data_str.split('"') if 'export=download' in link]
|
107 |
+
if len(links) == 1:
|
108 |
+
if attempts_left:
|
109 |
+
file_url = requests.compat.urljoin(file_url, links[0])
|
110 |
+
continue
|
111 |
+
|
112 |
+
# Google Drive quota exceeded.
|
113 |
+
if 'Google Drive - Quota exceeded' in data_str:
|
114 |
+
if not attempts_left:
|
115 |
+
raise IOError("Google Drive download quota exceeded -- please try again later")
|
116 |
+
|
117 |
+
# Last attempt => raise error.
|
118 |
+
if not attempts_left:
|
119 |
+
raise
|
120 |
+
|
121 |
+
# Rename temp file to the correct name.
|
122 |
+
os.replace(tmp_path, file_path) # atomic
|
123 |
+
with stats['lock']:
|
124 |
+
stats['files_done'] += 1
|
125 |
+
|
126 |
+
# Attempt to clean up any leftover temps.
|
127 |
+
for filename in glob.glob(file_path + '.tmp.*'):
|
128 |
+
try:
|
129 |
+
os.remove(filename)
|
130 |
+
except:
|
131 |
+
pass
|
132 |
+
|
133 |
+
#----------------------------------------------------------------------------
|
134 |
+
|
135 |
+
def choose_bytes_unit(num_bytes):
|
136 |
+
b = int(np.rint(num_bytes))
|
137 |
+
if b < (100 << 0): return 'B', (1 << 0)
|
138 |
+
if b < (100 << 10): return 'kB', (1 << 10)
|
139 |
+
if b < (100 << 20): return 'MB', (1 << 20)
|
140 |
+
if b < (100 << 30): return 'GB', (1 << 30)
|
141 |
+
return 'TB', (1 << 40)
|
142 |
+
|
143 |
+
#----------------------------------------------------------------------------
|
144 |
+
|
145 |
+
def format_time(seconds):
|
146 |
+
s = int(np.rint(seconds))
|
147 |
+
if s < 60: return '%ds' % s
|
148 |
+
if s < 60 * 60: return '%dm %02ds' % (s // 60, s % 60)
|
149 |
+
if s < 24 * 60 * 60: return '%dh %02dm' % (s // (60 * 60), (s // 60) % 60)
|
150 |
+
if s < 100 * 24 * 60 * 60: return '%dd %02dh' % (s // (24 * 60 * 60), (s // (60 * 60)) % 24)
|
151 |
+
return '>100d'
|
152 |
+
|
153 |
+
#----------------------------------------------------------------------------
|
154 |
+
|
155 |
+
def download_files(file_specs, num_threads=32, status_delay=0.2, timing_window=50, **download_kwargs):
|
156 |
+
|
157 |
+
# Determine which files to download.
|
158 |
+
done_specs = {spec['file_path']: spec for spec in file_specs if os.path.isfile(spec['file_path'])}
|
159 |
+
missing_specs = [spec for spec in file_specs if spec['file_path'] not in done_specs]
|
160 |
+
files_total = len(file_specs)
|
161 |
+
bytes_total = sum(spec['file_size'] for spec in file_specs)
|
162 |
+
stats = dict(files_done=len(done_specs), bytes_done=sum(spec['file_size'] for spec in done_specs.values()), lock=threading.Lock())
|
163 |
+
if len(done_specs) == files_total:
|
164 |
+
print('All files already downloaded -- skipping.')
|
165 |
+
return
|
166 |
+
|
167 |
+
# Launch worker threads.
|
168 |
+
spec_queue = queue.Queue()
|
169 |
+
exception_queue = queue.Queue()
|
170 |
+
for spec in missing_specs:
|
171 |
+
spec_queue.put(spec)
|
172 |
+
thread_kwargs = dict(spec_queue=spec_queue, exception_queue=exception_queue, stats=stats, download_kwargs=download_kwargs)
|
173 |
+
for _thread_idx in range(min(num_threads, len(missing_specs))):
|
174 |
+
threading.Thread(target=_download_thread, kwargs=thread_kwargs, daemon=True).start()
|
175 |
+
|
176 |
+
# Monitor status until done.
|
177 |
+
bytes_unit, bytes_div = choose_bytes_unit(bytes_total)
|
178 |
+
spinner = '/-\\|'
|
179 |
+
timing = []
|
180 |
+
while True:
|
181 |
+
with stats['lock']:
|
182 |
+
files_done = stats['files_done']
|
183 |
+
bytes_done = stats['bytes_done']
|
184 |
+
spinner = spinner[1:] + spinner[:1]
|
185 |
+
timing = timing[max(len(timing) - timing_window + 1, 0):] + [(time.time(), bytes_done)]
|
186 |
+
bandwidth = max((timing[-1][1] - timing[0][1]) / max(timing[-1][0] - timing[0][0], 1e-8), 0)
|
187 |
+
bandwidth_unit, bandwidth_div = choose_bytes_unit(bandwidth)
|
188 |
+
eta = format_time((bytes_total - bytes_done) / max(bandwidth, 1))
|
189 |
+
|
190 |
+
print('\r%s %6.2f%% done %d/%d files %-13s %-10s ETA: %-7s ' % (
|
191 |
+
spinner[0],
|
192 |
+
bytes_done / bytes_total * 100,
|
193 |
+
files_done, files_total,
|
194 |
+
'%.2f/%.2f %s' % (bytes_done / bytes_div, bytes_total / bytes_div, bytes_unit),
|
195 |
+
'%.2f %s/s' % (bandwidth / bandwidth_div, bandwidth_unit),
|
196 |
+
'done' if bytes_total == bytes_done else '...' if len(timing) < timing_window or bandwidth == 0 else eta,
|
197 |
+
), end='', flush=True)
|
198 |
+
|
199 |
+
if files_done == files_total:
|
200 |
+
print()
|
201 |
+
break
|
202 |
+
|
203 |
+
try:
|
204 |
+
exc_info = exception_queue.get(timeout=status_delay)
|
205 |
+
raise exc_info[1].with_traceback(exc_info[2])
|
206 |
+
except queue.Empty:
|
207 |
+
pass
|
208 |
+
|
209 |
+
def _download_thread(spec_queue, exception_queue, stats, download_kwargs):
|
210 |
+
with requests.Session() as session:
|
211 |
+
while not spec_queue.empty():
|
212 |
+
spec = spec_queue.get()
|
213 |
+
try:
|
214 |
+
download_file(session, spec, stats, **download_kwargs)
|
215 |
+
except:
|
216 |
+
exception_queue.put(sys.exc_info())
|
217 |
+
|
218 |
+
#----------------------------------------------------------------------------
|
219 |
+
|
220 |
+
def print_statistics(json_data):
|
221 |
+
categories = defaultdict(int)
|
222 |
+
licenses = defaultdict(int)
|
223 |
+
countries = defaultdict(int)
|
224 |
+
for item in json_data.values():
|
225 |
+
categories[item['category']] += 1
|
226 |
+
licenses[item['metadata']['license']] += 1
|
227 |
+
country = item['metadata']['country']
|
228 |
+
countries[country if country else '<Unknown>'] += 1
|
229 |
+
|
230 |
+
for name in [name for name, num in countries.items() if num / len(json_data) < 1e-3]:
|
231 |
+
countries['<Other>'] += countries.pop(name)
|
232 |
+
|
233 |
+
rows = [[]] * 2
|
234 |
+
rows += [['Category', 'Images', '% of all']]
|
235 |
+
rows += [['---'] * 3]
|
236 |
+
for name, num in sorted(categories.items(), key=lambda x: -x[1]):
|
237 |
+
rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data))]]
|
238 |
+
|
239 |
+
rows += [[]] * 2
|
240 |
+
rows += [['License', 'Images', '% of all']]
|
241 |
+
rows += [['---'] * 3]
|
242 |
+
for name, num in sorted(licenses.items(), key=lambda x: -x[1]):
|
243 |
+
rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data))]]
|
244 |
+
|
245 |
+
rows += [[]] * 2
|
246 |
+
rows += [['Country', 'Images', '% of all', '% of known']]
|
247 |
+
rows += [['---'] * 4]
|
248 |
+
for name, num in sorted(countries.items(), key=lambda x: -x[1] if x[0] != '<Other>' else 0):
|
249 |
+
rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data)),
|
250 |
+
'%.2f' % (0 if name == '<Unknown>' else 100.0 * num / (len(json_data) - countries['<Unknown>']))]]
|
251 |
+
|
252 |
+
rows += [[]] * 2
|
253 |
+
widths = [max(len(cell) for cell in column if cell is not None) for column in itertools.zip_longest(*rows)]
|
254 |
+
for row in rows:
|
255 |
+
print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
|
256 |
+
|
257 |
+
#----------------------------------------------------------------------------
|
258 |
+
|
259 |
+
def recreate_aligned_images(json_data, source_dir, dst_dir='realign1024x1024', output_size=1024, transform_size=4096, enable_padding=True, rotate_level=True, random_shift=0.0, retry_crops=False):
|
260 |
+
print('Recreating aligned images...')
|
261 |
+
|
262 |
+
# Fix random seed for reproducibility
|
263 |
+
np.random.seed(12345)
|
264 |
+
# The following random numbers are unused in present implementation, but we consume them for reproducibility
|
265 |
+
_ = np.random.normal(0, 1, (len(json_data.values()), 2))
|
266 |
+
|
267 |
+
if dst_dir:
|
268 |
+
os.makedirs(dst_dir, exist_ok=True)
|
269 |
+
shutil.copyfile('LICENSE.txt', os.path.join(dst_dir, 'LICENSE.txt'))
|
270 |
+
|
271 |
+
for item_idx, item in enumerate(json_data.values()):
|
272 |
+
print('\r%d / %d ... ' % (item_idx, len(json_data)), end='', flush=True)
|
273 |
+
|
274 |
+
# Parse landmarks.
|
275 |
+
# pylint: disable=unused-variable
|
276 |
+
lm = np.array(item['in_the_wild']['face_landmarks'])
|
277 |
+
lm_chin = lm[0 : 17] # left-right
|
278 |
+
lm_eyebrow_left = lm[17 : 22] # left-right
|
279 |
+
lm_eyebrow_right = lm[22 : 27] # left-right
|
280 |
+
lm_nose = lm[27 : 31] # top-down
|
281 |
+
lm_nostrils = lm[31 : 36] # top-down
|
282 |
+
lm_eye_left = lm[36 : 42] # left-clockwise
|
283 |
+
lm_eye_right = lm[42 : 48] # left-clockwise
|
284 |
+
lm_mouth_outer = lm[48 : 60] # left-clockwise
|
285 |
+
lm_mouth_inner = lm[60 : 68] # left-clockwise
|
286 |
+
|
287 |
+
# Calculate auxiliary vectors.
|
288 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
289 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
290 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
291 |
+
eye_to_eye = eye_right - eye_left
|
292 |
+
mouth_left = lm_mouth_outer[0]
|
293 |
+
mouth_right = lm_mouth_outer[6]
|
294 |
+
mouth_avg = (mouth_left + mouth_right) * 0.5
|
295 |
+
eye_to_mouth = mouth_avg - eye_avg
|
296 |
+
|
297 |
+
# Choose oriented crop rectangle.
|
298 |
+
if rotate_level:
|
299 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
300 |
+
x /= np.hypot(*x)
|
301 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
302 |
+
y = np.flipud(x) * [-1, 1]
|
303 |
+
c0 = eye_avg + eye_to_mouth * 0.1
|
304 |
+
else:
|
305 |
+
x = np.array([1, 0], dtype=np.float64)
|
306 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
307 |
+
y = np.flipud(x) * [-1, 1]
|
308 |
+
c0 = eye_avg + eye_to_mouth * 0.1
|
309 |
+
|
310 |
+
# Load in-the-wild image.
|
311 |
+
src_file = os.path.join(source_dir, item['in_the_wild']['file_path'])
|
312 |
+
if not os.path.isfile(src_file):
|
313 |
+
print('\nCannot find source image. Please run "--wilds" before "--align".')
|
314 |
+
return
|
315 |
+
img = PIL.Image.open(src_file)
|
316 |
+
|
317 |
+
quad = np.stack([c0 - x - y, c0 - x + y, c0 + x + y, c0 + x - y])
|
318 |
+
qsize = np.hypot(*x) * 2
|
319 |
+
|
320 |
+
# Keep drawing new random crop offsets until we find one that is contained in the image
|
321 |
+
# and does not require padding
|
322 |
+
if random_shift != 0:
|
323 |
+
for _ in range(1000):
|
324 |
+
# Offset the crop rectange center by a random shift proportional to image dimension
|
325 |
+
# and the requested standard deviation
|
326 |
+
c = (c0 + np.hypot(*x)*2 * random_shift * np.random.normal(0, 1, c0.shape))
|
327 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
328 |
+
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
|
329 |
+
if not retry_crops or not (crop[0] < 0 or crop[1] < 0 or crop[2] >= img.width or crop[3] >= img.height):
|
330 |
+
# We're happy with this crop (either it fits within the image, or retries are disabled)
|
331 |
+
break
|
332 |
+
else:
|
333 |
+
# rejected N times, give up and move to next image
|
334 |
+
# (does not happen in practice with the FFHQ data)
|
335 |
+
print('rejected image')
|
336 |
+
return
|
337 |
+
|
338 |
+
# Shrink.
|
339 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
340 |
+
if shrink > 1:
|
341 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
342 |
+
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
343 |
+
quad /= shrink
|
344 |
+
qsize /= shrink
|
345 |
+
|
346 |
+
# Crop.
|
347 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
348 |
+
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
|
349 |
+
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
|
350 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
351 |
+
img = img.crop(crop)
|
352 |
+
quad -= crop[0:2]
|
353 |
+
|
354 |
+
# Pad.
|
355 |
+
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
|
356 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
|
357 |
+
if enable_padding and max(pad) > border - 4:
|
358 |
+
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
359 |
+
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
360 |
+
h, w, _ = img.shape
|
361 |
+
y, x, _ = np.ogrid[:h, :w, :1]
|
362 |
+
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
|
363 |
+
blur = qsize * 0.02
|
364 |
+
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
365 |
+
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
|
366 |
+
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
367 |
+
quad += pad[:2]
|
368 |
+
|
369 |
+
# Transform.
|
370 |
+
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
|
371 |
+
if output_size < transform_size:
|
372 |
+
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
|
373 |
+
|
374 |
+
# Save aligned image.
|
375 |
+
dst_subdir = os.path.join(dst_dir, '%05d' % (item_idx - item_idx % 1000))
|
376 |
+
os.makedirs(dst_subdir, exist_ok=True)
|
377 |
+
img.save(os.path.join(dst_subdir, '%05d.png' % item_idx))
|
378 |
+
|
379 |
+
# All done.
|
380 |
+
print('\r%d / %d ... done' % (len(json_data), len(json_data)))
|
381 |
+
|
382 |
+
#----------------------------------------------------------------------------
|
383 |
+
|
384 |
+
def run(tasks, **download_kwargs):
|
385 |
+
if not os.path.isfile(json_spec['file_path']) or not os.path.isfile('LICENSE.txt'):
|
386 |
+
print('Downloading JSON metadata...')
|
387 |
+
download_files([json_spec, license_specs['json']], **download_kwargs)
|
388 |
+
|
389 |
+
print('Parsing JSON metadata...')
|
390 |
+
with open(json_spec['file_path'], 'rb') as f:
|
391 |
+
json_data = json.load(f, object_pairs_hook=OrderedDict)
|
392 |
+
|
393 |
+
if 'stats' in tasks:
|
394 |
+
print_statistics(json_data)
|
395 |
+
|
396 |
+
specs = []
|
397 |
+
if 'images' in tasks:
|
398 |
+
specs += [item['image'] for item in json_data.values()] + [license_specs['images']]
|
399 |
+
if 'thumbs' in tasks:
|
400 |
+
specs += [item['thumbnail'] for item in json_data.values()] + [license_specs['thumbs']]
|
401 |
+
if 'wilds' in tasks:
|
402 |
+
specs += [item['in_the_wild'] for item in json_data.values()] + [license_specs['wilds']]
|
403 |
+
if 'tfrecords' in tasks:
|
404 |
+
specs += tfrecords_specs + [license_specs['tfrecords']]
|
405 |
+
|
406 |
+
if len(specs):
|
407 |
+
print('Downloading %d files...' % len(specs))
|
408 |
+
np.random.shuffle(specs) # to make the workload more homogeneous
|
409 |
+
download_files(specs, **download_kwargs)
|
410 |
+
|
411 |
+
if 'align' in tasks:
|
412 |
+
recreate_aligned_images(json_data, source_dir=download_kwargs['source_dir'], rotate_level=not download_kwargs['no_rotation'], random_shift=download_kwargs['random_shift'], enable_padding=not download_kwargs['no_padding'], retry_crops=download_kwargs['retry_crops'])
|
413 |
+
|
414 |
+
#----------------------------------------------------------------------------
|
415 |
+
|
416 |
+
def run_cmdline(argv):
|
417 |
+
parser = argparse.ArgumentParser(prog=argv[0], description='Download Flickr-Face-HQ (FFHQ) dataset to current working directory.')
|
418 |
+
parser.add_argument('-j', '--json', help='download metadata as JSON (254 MB)', dest='tasks', action='append_const', const='json')
|
419 |
+
parser.add_argument('-s', '--stats', help='print statistics about the dataset', dest='tasks', action='append_const', const='stats')
|
420 |
+
parser.add_argument('-i', '--images', help='download 1024x1024 images as PNG (89.1 GB)', dest='tasks', action='append_const', const='images')
|
421 |
+
parser.add_argument('-t', '--thumbs', help='download 128x128 thumbnails as PNG (1.95 GB)', dest='tasks', action='append_const', const='thumbs')
|
422 |
+
parser.add_argument('-w', '--wilds', help='download in-the-wild images as PNG (955 GB)', dest='tasks', action='append_const', const='wilds')
|
423 |
+
parser.add_argument('-r', '--tfrecords', help='download multi-resolution TFRecords (273 GB)', dest='tasks', action='append_const', const='tfrecords')
|
424 |
+
parser.add_argument('-a', '--align', help='recreate 1024x1024 images from in-the-wild images', dest='tasks', action='append_const', const='align')
|
425 |
+
parser.add_argument('--num_threads', help='number of concurrent download threads (default: 32)', type=int, default=32, metavar='NUM')
|
426 |
+
parser.add_argument('--status_delay', help='time between download status prints (default: 0.2)', type=float, default=0.2, metavar='SEC')
|
427 |
+
parser.add_argument('--timing_window', help='samples for estimating download eta (default: 50)', type=int, default=50, metavar='LEN')
|
428 |
+
parser.add_argument('--chunk_size', help='chunk size for each download thread (default: 128)', type=int, default=128, metavar='KB')
|
429 |
+
parser.add_argument('--num_attempts', help='number of download attempts per file (default: 10)', type=int, default=10, metavar='NUM')
|
430 |
+
parser.add_argument('--random-shift', help='standard deviation of random crop rectangle jitter', type=float, default=0.0, metavar='SHIFT')
|
431 |
+
parser.add_argument('--retry-crops', help='retry random shift if crop rectangle falls outside image (up to 1000 times)', dest='retry_crops', default=False, action='store_true')
|
432 |
+
parser.add_argument('--no-rotation', help='keep the original orientation of images', dest='no_rotation', default=False, action='store_true')
|
433 |
+
parser.add_argument('--no-padding', help='do not apply blur-padding outside and near the image borders', dest='no_padding', default=False, action='store_true')
|
434 |
+
parser.add_argument('--source-dir', help='where to find already downloaded FFHQ source data', default='', metavar='DIR')
|
435 |
+
|
436 |
+
args = parser.parse_args()
|
437 |
+
if not args.tasks:
|
438 |
+
print('No tasks specified. Please see "-h" for help.')
|
439 |
+
exit(1)
|
440 |
+
run(**vars(args))
|
441 |
+
|
442 |
+
#----------------------------------------------------------------------------
|
443 |
+
|
444 |
+
if __name__ == "__main__":
|
445 |
+
run_cmdline(sys.argv)
|
446 |
+
|
447 |
+
#----------------------------------------------------------------------------
|
main/temp_data/ffhq-dataset-v2.json.tmp.643c371ce6e445d1a35409d2f07ca20d
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
<!DOCTYPE html><html><head><title>Google Drive - Virus scan warning</title><meta http-equiv="content-type" content="text/html; charset=utf-8"/><style nonce="BClLfRWu_3akhFm1bkkxgA">.goog-link-button{position:relative;color:#15c;text-decoration:underline;cursor:pointer}.goog-link-button-disabled{color:#ccc;text-decoration:none;cursor:default}body{color:#222;font:normal 13px/1.4 arial,sans-serif;margin:0}.grecaptcha-badge{visibility:hidden}.uc-main{padding-top:50px;text-align:center}#uc-dl-icon{display:inline-block;margin-top:16px;padding-right:1em;vertical-align:top}#uc-text{display:inline-block;max-width:68ex;text-align:left}.uc-error-caption,.uc-warning-caption{color:#222;font-size:16px}#uc-download-link{text-decoration:none}.uc-name-size a{color:#15c;text-decoration:none}.uc-name-size a:visited{color:#61c;text-decoration:none}.uc-name-size a:active{color:#d14836;text-decoration:none}.uc-footer{color:#777;font-size:11px;padding-bottom:5ex;padding-top:5ex;text-align:center}.uc-footer a{color:#15c}.uc-footer a:visited{color:#61c}.uc-footer a:active{color:#d14836}.uc-footer-divider{color:#ccc;width:100%}.goog-inline-block{position:relative;display:-moz-inline-box;display:inline-block}* html .goog-inline-block{display:inline}*:first-child+html .goog-inline-block{display:inline}sentinel{}</style><link rel="icon" href="//ssl.gstatic.com/docs/doclist/images/drive_2022q3_32dp.png"/></head><body><div class="uc-main"><div id="uc-dl-icon" class="image-container"><div class="drive-sprite-aux-download-file"></div></div><div id="uc-text"><p class="uc-warning-caption">Google Drive can't scan this file for viruses.</p><p class="uc-warning-subcaption"><span class="uc-name-size"><a href="/open?id=16N0RV4fHI6joBuKbQAoG34V_cQk7vxSA">ffhq-dataset-v2.json</a> (255M)</span> is too large for Google to scan for viruses. Would you still like to download this file?</p><form id="download-form" action="https://drive.usercontent.google.com/download" method="get"><input type="submit" id="uc-download-link" class="goog-inline-block jfk-button jfk-button-action" value="Download anyway"/><input type="hidden" name="id" value="16N0RV4fHI6joBuKbQAoG34V_cQk7vxSA"><input type="hidden" name="confirm" value="t"><input type="hidden" name="uuid" value="709e518a-d83c-4a01-89c8-7c84852cf844"></form></div></div><div class="uc-footer"><hr class="uc-footer-divider"></div></body></html>
|