|
Consider two horizontal lines and a set of **N** trapezoids. A trapezoid |
|
**T[i]** between these lines has two vertices situated on the upper line and |
|
the other two vertices on the lower line. We will denote by **a[i], b[i], |
|
c[i]** and **d[i]** the upper left, upper right, lower left and respectively |
|
lower right vertices of the trapezoid **T[i]**. Assume that no two trapezoids |
|
share a common vertex (meaning that all **a [i]** and **b [i]** coordinates on |
|
the upper line are different, and the same holds for the bottom line and |
|
coordinates **c [i]** and **d [i]**). A trapezoid set is called |
|
**disconnected** if one can separate the trapezoids in two or more groups such |
|
that no two trapezoids from different groups intersect. Determine the smallest |
|
number of trapezoids to remove, such that the remaining trapezoids form a |
|
disconnected set. If the solution does not exist, output **-1**. |
|
|
|
### Input |
|
|
|
The first line of the input file contains an integer **T**, and this is |
|
followed by **T** test cases. Each test case is given in the compressed |
|
format. |
|
|
|
The first line of each test case contains the number of trapezoids **N**, an |
|
integer **K**, and integer parameters **X, A, B, M, p, q**. In the next **K** |
|
lines are given integer numbers **aa[i], bb[i], cc[i], dd[i]**. The following |
|
code is used for generating the next random number using linear congruential |
|
generator with the starting value **X** and parameters **A, B** and modulo |
|
**M**: |
|
|
|
long long prior = X; |
|
long long next() { |
|
prior = (A * prior + B) % M; |
|
return prior; |
|
} |
|
|
|
The following code is used for extending the auxiliary sequences **aa, bb, |
|
cc** and **dd**: |
|
|
|
for (int i = K; i < N; i++) { |
|
aa [i] = aa [i - K] + next() % (2 * p) - p; |
|
bb [i] = aa [i] + 1 + next() % (2 * (bb [i % K] - aa [i % K])); |
|
cc [i] = cc [i - K] + next() % (2 * q) - q; |
|
dd [i] = cc [i] + 1 + next() % (2 * (dd [i % K] - cc [i % K])); |
|
} |
|
|
|
The final coordinates of the trapezoids are given by: |
|
|
|
for (int i = 0; i < N; i++) { |
|
a [i] = aa [i] * 1000000 + i; |
|
b [i] = bb [i] * 1000000 + i; |
|
c [i] = cc [i] * 1000000 + i; |
|
d [i] = dd [i] * 1000000 + i; |
|
} |
|
|
|
Note that above code generates trapezoids that satisfy all conditions of the |
|
problem, and '%' denotes the remainder of division. |
|
|
|
## Output |
|
|
|
For each of the test cases numbered in order from **1** to **T**, output "Case |
|
#i: " followed by a single integer, the minimum number of trapezoids that need |
|
to be removed such that the remaining trapezoids form a disconnected set. |
|
|
|
## Constraints |
|
|
|
1 ≤ **T** ≤ 20 |
|
1 ≤ **N** ≤ 300,000 |
|
1 ≤ **K** ≤ **N** |
|
0 ≤ **X, A, B** ≤ 2,000,000,000 |
|
-2,000,000,000 ≤ **aa [i], bb [i], cc [i], dd [i]** ≤ 2,000,000,000 |
|
1 ≤ **p, q, M** ≤ 2,000,000,000 |
|
|
|
### Examples |
|
|
|
In the first example, one can remove trapezoids 5 and 6 leaving two |
|
disconnected sets with trapezoids (1, 2, 3, 4) and (7, 8). |
|
|
|
In the second example, the coordinates of ten trapezoids are |
|
|
|
1000000 4000000 3000000 5000000 |
|
7000001 8000001 2000001 6000001 |
|
2000002 7000002 2000002 5000002 |
|
5000003 7000003 2000003 6000003 |
|
4 6000004 2000004 3000004 |
|
4000005 5000005 3000005 8000005 |
|
-999994 6 6 2000006 |
|
4000007 6000007 1000007 7000007 |
|
-999992 8 -999992 2000008 |
|
5000009 6000009 9 7000009 |
|
|
|
|