|
#include <algorithm> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <functional> |
|
#include <iostream> |
|
#include <queue> |
|
#include <utility> |
|
#include <vector> |
|
using namespace std; |
|
|
|
const int LIM = 6000006; |
|
const long double EPS = 1e-9; |
|
|
|
using LD = long double; |
|
using pii = pair<int, int>; |
|
|
|
|
|
struct point { |
|
LD x, y; |
|
|
|
point(): x(0), y(0) {} |
|
point(LD _x, LD _y): x(_x), y(_y) {} |
|
|
|
LD operator/(point p) const { return x * p.y - y * p.x; } |
|
point operator+(point p) const { return point(x + p.x, y + p.y); } |
|
point operator-(point p) const { return point(x - p.x, y - p.y); } |
|
friend point operator*(LD b, point a) { return point(b * a.x, b * a.y); } |
|
|
|
LD size() const { return hypot(x, y); } |
|
LD sz2() const { return x * x + y * y; } |
|
point r90() const { return point(-y, x); } |
|
LD dot(point p) { return x * p.x + y * p.y; } |
|
}; |
|
|
|
int dcmp(LD x) { |
|
return x < -EPS ? -1 : x > EPS ? 1 : 0; |
|
} |
|
|
|
point line_intersect(point a, point b, point u, point v) { |
|
return u + (((a - u) / b) / (v / b)) * v; |
|
} |
|
|
|
point get_circumcenter(point p0, point p1, point p2) { |
|
return line_intersect( |
|
0.5 * (p0 + p1), (p0 - p1).r90(), 0.5 * (p1 + p2), (p1 - p2).r90() |
|
); |
|
} |
|
|
|
point project_point_segment(point a, point b, point c) { |
|
LD r = (b - a).dot(b - a); |
|
if (fabs(r) < EPS) { |
|
return a; |
|
} |
|
r = (c - a).dot(b - a) / r; |
|
if (r < 0) { |
|
return a; |
|
} |
|
if (r > 1) { |
|
return b; |
|
} |
|
return a + r * (b - a); |
|
} |
|
|
|
bool point_in_polygon_incl(const vector<point> &p, point q) { |
|
bool c = 0; |
|
for (int i = 0; i < p.size(); i++) { |
|
int j = (i + 1) % p.size(); |
|
if ((project_point_segment(p[i], p[j], q) - q).sz2() < EPS) { |
|
return true; |
|
} |
|
if ( |
|
(p[i].y <= q.y && q.y < p[j].y || p[j].y <= q.y && q.y < p[i].y) && |
|
q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y) |
|
) { |
|
c = !c; |
|
} |
|
} |
|
return c; |
|
} |
|
|
|
|
|
LD parabola_intersect(point left, point right, LD sweepline) { |
|
auto f2 = [](point left, point right, LD sweepline) { |
|
int sign = left.x < right.x ? 1 : -1; |
|
point m = 0.5 * (left + right); |
|
point v = line_intersect( |
|
m, (right - left).r90(), point(0, sweepline), point(1, 0) |
|
); |
|
point w = line_intersect(m, (left - v).r90(), v, left - v); |
|
LD l1 = (v - w).size(); |
|
LD l2 = sqrt(pow(sweepline - m.y, 2) - (m - w).sz2()); |
|
LD l3 = (left - v).size(); |
|
return v.x + (m.x - v.x) * l3 / (l1 + sign * l2); |
|
}; |
|
if (fabs(left.y - right.y) < fabs(left.x - right.x) * EPS) { |
|
return f2(left, right, sweepline); |
|
} |
|
int sign = left.y < right.y ? -1 : 1; |
|
point v = line_intersect( |
|
left, right - left, point(0, sweepline), point(1, 0) |
|
); |
|
LD d1 = (0.5 * (left + right) - v).sz2(), d2 = (0.5 * (left - right)).sz2(); |
|
return v.x + sign * sqrt(max(0.0L, d1 - d2)); |
|
} |
|
|
|
struct Beachline { |
|
struct node { |
|
point pt; |
|
int idx; |
|
int end; |
|
node *link[2], *par, *prv, *nxt; |
|
|
|
node() {} |
|
node(point _pt, int idx): |
|
pt(_pt), idx(idx), end(0), link{0, 0}, par(0), prv(0), nxt(0) {} |
|
} *root; |
|
|
|
LD sweepline; |
|
|
|
Beachline() : sweepline(-1e20), root(NULL) { } |
|
|
|
inline int dir(node* x) { |
|
return x->par->link[0] != x; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
void rotate(node* n) { |
|
node* p = n->par; |
|
int d = dir(n); |
|
p->link[d] = n->link[!d]; |
|
if (n->link[!d]) { |
|
n->link[!d]->par = p; |
|
} |
|
n->par = p->par; |
|
if (p->par) { |
|
p->par->link[dir(p)] = n; |
|
} |
|
n->link[!d] = p; |
|
p->par = n; |
|
} |
|
|
|
void splay(node* x, node* f = NULL) { |
|
while (x->par != f) { |
|
if (x->par->par == f) { |
|
|
|
} else if (dir(x) == dir(x->par)) { |
|
rotate(x->par); |
|
} else { |
|
rotate(x); |
|
} |
|
rotate(x); |
|
} |
|
if (f == NULL) { |
|
root = x; |
|
} |
|
} |
|
|
|
void insert(node* n, node* p, int d) { |
|
splay(p); |
|
node *c = p->link[d]; |
|
n->link[d] = c; |
|
if (c) { |
|
c->par = n; |
|
} |
|
p->link[d] = n; |
|
n->par = p; |
|
node *prv = !d ? p->prv : p, *nxt = !d ? p : p->nxt; |
|
n->prv = prv; |
|
if (prv) { |
|
prv->nxt = n; |
|
} |
|
n->nxt = nxt; |
|
if (nxt) { |
|
nxt->prv = n; |
|
} |
|
} |
|
|
|
void erase(node* n) { |
|
node *prv = n->prv, *nxt = n->nxt; |
|
if (!prv && !nxt) { |
|
if (n == root) { |
|
root = NULL; |
|
} |
|
return; |
|
} |
|
n->prv = NULL; |
|
if (prv) { |
|
prv->nxt = nxt; |
|
} |
|
n->nxt = NULL; |
|
if (nxt) { |
|
nxt->prv = prv; |
|
} |
|
splay(n); |
|
if (!nxt) { |
|
root->par = NULL; |
|
n->link[0] = NULL; |
|
root = prv; |
|
} else { |
|
splay(nxt, n); |
|
node* c = n->link[0]; |
|
nxt->link[0] = c; |
|
c->par = nxt; |
|
n->link[0] = NULL; |
|
n->link[1] = NULL; |
|
nxt->par = NULL; |
|
root = nxt; |
|
} |
|
} |
|
|
|
bool get_event(node *cur, LD &next_sweep) { |
|
if (!cur->prv || !cur->nxt) { |
|
return false; |
|
} |
|
point u = (cur->pt - cur->prv->pt).r90(); |
|
point v = (cur->nxt->pt - cur->pt).r90(); |
|
if (dcmp(u / v) != 1) { |
|
return false; |
|
} |
|
point p = get_circumcenter(cur->pt, cur->prv->pt, cur->nxt->pt); |
|
next_sweep = p.y + (p - cur->pt).size(); |
|
return true; |
|
} |
|
|
|
node* find_beachline(LD x) { |
|
node* cur = root; |
|
while (cur) { |
|
LD left = cur->prv |
|
? parabola_intersect(cur->prv->pt, cur->pt, sweepline) |
|
: -1e30; |
|
LD right = cur->nxt |
|
? parabola_intersect(cur->pt, cur->nxt->pt, sweepline) |
|
: 1e30; |
|
if (left <= x && x <= right) { |
|
splay(cur); |
|
return cur; |
|
} |
|
cur = cur->link[x > right]; |
|
} |
|
return NULL; |
|
} |
|
}; |
|
|
|
using BeachNode = Beachline::node; |
|
|
|
static BeachNode arr[LIM]; |
|
static int sz; |
|
static BeachNode* new_node(point point, int idx) { |
|
arr[sz] = BeachNode(point, idx); |
|
return arr + (sz++); |
|
} |
|
|
|
struct event { |
|
int type, idx, prv, nxt; |
|
BeachNode *cur; |
|
LD sweep; |
|
|
|
event(LD sweep, int idx) : type(0), sweep(sweep), idx(idx) {} |
|
event(LD sweep, BeachNode* cur) : |
|
type(1), sweep(sweep), prv(cur->prv->idx), cur(cur), nxt(cur->nxt->idx) {} |
|
|
|
bool operator>(const event& l) const { return sweep > l.sweep; } |
|
}; |
|
|
|
void voronoi_diagram( |
|
vector<point> &input, |
|
vector<point> &vertex, |
|
vector<pii> &edge, |
|
vector<pii> &area |
|
) { |
|
Beachline beachline = Beachline(); |
|
priority_queue<event, vector<event>, greater<event>> events; |
|
|
|
auto add_edge = [&](int u, int v, int a, int b, BeachNode* c1, BeachNode* c2) { |
|
if (c1) { |
|
c1->end = edge.size() * 2; |
|
} |
|
if (c2) { |
|
c2->end = edge.size() * 2 + 1; |
|
} |
|
edge.emplace_back(u, v); |
|
area.emplace_back(a, b); |
|
}; |
|
auto write_edge = [&](int idx, int v) { |
|
if (idx % 2 == 0) { |
|
edge[idx / 2].first = v; |
|
} else { |
|
edge[idx / 2].second = v; |
|
} |
|
}; |
|
auto add_event = [&](BeachNode* cur) { |
|
LD nxt; |
|
if (beachline.get_event(cur, nxt)) { |
|
events.emplace(nxt, cur); |
|
} |
|
}; |
|
|
|
int n = input.size(), cnt = 0; |
|
sz = 0; |
|
sort(input.begin(), input.end(), [](const point &l, const point &r) { |
|
return l.y != r.y ? l.y < r.y : l.x < r.x; |
|
}); |
|
|
|
BeachNode *tmp = beachline.root = new_node(input[0], 0), *t2; |
|
for (int i = 1; i < n; i++) { |
|
if (dcmp(input[i].y - input[0].y) == 0) { |
|
add_edge(-1, -1, i - 1, i, 0, tmp); |
|
beachline.insert(t2 = new_node(input[i], i), tmp, 1); |
|
tmp = t2; |
|
} else { |
|
events.emplace(input[i].y, i); |
|
} |
|
} |
|
|
|
while (events.size()) { |
|
event q = events.top(); |
|
events.pop(); |
|
BeachNode *prv, *cur, *nxt, *site; |
|
int v = vertex.size(), idx = q.idx; |
|
beachline.sweepline = q.sweep; |
|
if (q.type == 0) { |
|
point pt = input[idx]; |
|
cur = beachline.find_beachline(pt.x); |
|
beachline.insert(site = new_node(pt, idx), cur, 0); |
|
beachline.insert(prv = new_node(cur->pt, cur->idx), site, 0); |
|
add_edge(-1, -1, cur->idx, idx, site, prv); |
|
add_event(prv); |
|
add_event(cur); |
|
} else { |
|
cur = q.cur; |
|
prv = cur->prv; |
|
nxt = cur->nxt; |
|
if (!prv || !nxt || prv->idx != q.prv || nxt->idx != q.nxt) { |
|
continue; |
|
} |
|
vertex.push_back(get_circumcenter(prv->pt, nxt->pt, cur->pt)); |
|
write_edge(prv->end, v); |
|
write_edge(cur->end, v); |
|
add_edge(v, -1, prv->idx, nxt->idx, 0, prv); |
|
beachline.erase(cur); |
|
add_event(prv); |
|
add_event(nxt); |
|
} |
|
} |
|
|
|
} |
|
|
|
int XR, YR; |
|
int N, M; |
|
vector<pair<int, LD>> adj[LIM]; |
|
point KP[2]; |
|
int KN[2]; |
|
LD ans; |
|
|
|
void process_voronoi_diagrams(vector<point> P) { |
|
int i, j, k; |
|
vector<point> vertex; |
|
vector<pii> edge, area; |
|
voronoi_diagram(P, vertex, edge, area); |
|
M = vertex.size(); |
|
for (int i = 0; i < area.size(); i++) { |
|
int e1 = edge[i].first, e2 = edge[i].second; |
|
if (e1 < 0 || e2 < 0) { |
|
continue; |
|
} |
|
point v1 = vertex[e1], v2 = vertex[e2]; |
|
if ( |
|
min(v1.x, v2.x) < -EPS || max(v1.x, v2.x) > XR + EPS || |
|
min(v1.y, v2.y) < -EPS || max(v1.y, v2.y) > YR + EPS |
|
) { |
|
continue; |
|
} |
|
|
|
int pi1 = area[i].first, pi2 = area[i].second; |
|
point p1 = P[pi1], p2 = P[pi2]; |
|
LD d = (p1 - project_point_segment(v1, v2, p1)).size(); |
|
adj[e1].emplace_back(e2, d); |
|
adj[e2].emplace_back(e1, d); |
|
|
|
point mid = 0.5 * (p1 + p2); |
|
for (int j : {0, 1}) { |
|
for (int k : {0, 1}) { |
|
point kp = KP[j], p = k ? p2 : p1; |
|
ans = min(ans, (kp - p).size()); |
|
if (point_in_polygon_incl({p, v1, mid}, kp)) { |
|
KN[j] = e1; |
|
} |
|
if (point_in_polygon_incl({p, mid, v2}, kp)) { |
|
KN[j] = e2; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
LD solve() { |
|
vector<point> P; |
|
for (int i = 0; i < LIM; i++) { |
|
adj[i].clear(); |
|
} |
|
|
|
cin >> XR >> YR; |
|
cin >> KP[0].x >> KP[0].y >> KP[1].x >> KP[1].y; |
|
cin >> N; |
|
for (int i = 0; i < N; i++) { |
|
int a, b; |
|
cin >> a >> b; |
|
P.emplace_back(a, b); |
|
|
|
P.emplace_back(-a, b); |
|
P.emplace_back(a, -b); |
|
P.emplace_back(2 * XR - a, b); |
|
P.emplace_back(a, 2 * YR - b); |
|
} |
|
|
|
ans = 1e18; |
|
KN[0] = KN[1] = -1; |
|
process_voronoi_diagrams(P); |
|
assert(KN[0] >= 0 && KN[1] >= 0); |
|
|
|
vector<bool> visit(M); |
|
priority_queue<pair<LD, int>> Q; |
|
Q.emplace(ans, KN[0]); |
|
while (!Q.empty()) { |
|
ans = min(ans, Q.top().first); |
|
int i = Q.top().second; |
|
Q.pop(); |
|
if (i == KN[1]) { |
|
break; |
|
} |
|
if (visit[i]) { |
|
continue; |
|
} |
|
visit[i] = true; |
|
for (auto c : adj[i]) { |
|
if (!visit[c.first]) { |
|
Q.emplace(c.second, c.first); |
|
} |
|
} |
|
} |
|
return ans; |
|
} |
|
|
|
int main() { |
|
cout.precision(10); |
|
int T; |
|
cin >> T; |
|
for (int t = 1; t <= T; t++) { |
|
cout << "Case #" << t << ": " << fixed << solve() << endl; |
|
} |
|
return 0; |
|
} |
|
|