Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
hackercup / 2021 /finals /antisocial.cpp
wjomlex's picture
2021 Problems
d3f4f72 verified
raw
history blame
11.2 kB
#include <algorithm>
#include <cassert>
#include <cmath>
#include <functional>
#include <iostream>
#include <queue>
#include <utility>
#include <vector>
using namespace std;
const int LIM = 6000006;
const long double EPS = 1e-9;
using LD = long double;
using pii = pair<int, int>;
// From https://github.com/zigui-ps/VoronoiDiagram
struct point {
LD x, y;
point(): x(0), y(0) {}
point(LD _x, LD _y): x(_x), y(_y) {}
LD operator/(point p) const { return x * p.y - y * p.x; }
point operator+(point p) const { return point(x + p.x, y + p.y); }
point operator-(point p) const { return point(x - p.x, y - p.y); }
friend point operator*(LD b, point a) { return point(b * a.x, b * a.y); }
LD size() const { return hypot(x, y); }
LD sz2() const { return x * x + y * y; }
point r90() const { return point(-y, x); }
LD dot(point p) { return x * p.x + y * p.y; }
};
int dcmp(LD x) {
return x < -EPS ? -1 : x > EPS ? 1 : 0;
}
point line_intersect(point a, point b, point u, point v) {
return u + (((a - u) / b) / (v / b)) * v;
}
point get_circumcenter(point p0, point p1, point p2) {
return line_intersect(
0.5 * (p0 + p1), (p0 - p1).r90(), 0.5 * (p1 + p2), (p1 - p2).r90()
);
}
point project_point_segment(point a, point b, point c) {
LD r = (b - a).dot(b - a);
if (fabs(r) < EPS) {
return a;
}
r = (c - a).dot(b - a) / r;
if (r < 0) {
return a;
}
if (r > 1) {
return b;
}
return a + r * (b - a);
}
bool point_in_polygon_incl(const vector<point> &p, point q) {
bool c = 0;
for (int i = 0; i < p.size(); i++) {
int j = (i + 1) % p.size();
if ((project_point_segment(p[i], p[j], q) - q).sz2() < EPS) {
return true;
}
if (
(p[i].y <= q.y && q.y < p[j].y || p[j].y <= q.y && q.y < p[i].y) &&
q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y)
) {
c = !c;
}
}
return c;
}
// https://www.youtube.com/watch?v=h_vvP4ah6Ck
LD parabola_intersect(point left, point right, LD sweepline) {
auto f2 = [](point left, point right, LD sweepline) {
int sign = left.x < right.x ? 1 : -1;
point m = 0.5 * (left + right);
point v = line_intersect(
m, (right - left).r90(), point(0, sweepline), point(1, 0)
);
point w = line_intersect(m, (left - v).r90(), v, left - v);
LD l1 = (v - w).size();
LD l2 = sqrt(pow(sweepline - m.y, 2) - (m - w).sz2());
LD l3 = (left - v).size();
return v.x + (m.x - v.x) * l3 / (l1 + sign * l2);
};
if (fabs(left.y - right.y) < fabs(left.x - right.x) * EPS) {
return f2(left, right, sweepline);
}
int sign = left.y < right.y ? -1 : 1;
point v = line_intersect(
left, right - left, point(0, sweepline), point(1, 0)
);
LD d1 = (0.5 * (left + right) - v).sz2(), d2 = (0.5 * (left - right)).sz2();
return v.x + sign * sqrt(max(0.0L, d1 - d2));
}
struct Beachline {
struct node {
point pt;
int idx;
int end;
node *link[2], *par, *prv, *nxt;
node() {}
node(point _pt, int idx):
pt(_pt), idx(idx), end(0), link{0, 0}, par(0), prv(0), nxt(0) {}
} *root;
LD sweepline;
Beachline() : sweepline(-1e20), root(NULL) { }
inline int dir(node* x) {
return x->par->link[0] != x;
}
// p n p n
// / \ / \ / \ / \
// n d => a p or a n => p d
// / \ / \ / \ / \
// a b b d c d a c
void rotate(node* n) {
node* p = n->par;
int d = dir(n);
p->link[d] = n->link[!d];
if (n->link[!d]) {
n->link[!d]->par = p;
}
n->par = p->par;
if (p->par) {
p->par->link[dir(p)] = n;
}
n->link[!d] = p;
p->par = n;
}
void splay(node* x, node* f = NULL) {
while (x->par != f) {
if (x->par->par == f) {
// no-op
} else if (dir(x) == dir(x->par)) {
rotate(x->par);
} else {
rotate(x);
}
rotate(x);
}
if (f == NULL) {
root = x;
}
}
void insert(node* n, node* p, int d) {
splay(p);
node *c = p->link[d];
n->link[d] = c;
if (c) {
c->par = n;
}
p->link[d] = n;
n->par = p;
node *prv = !d ? p->prv : p, *nxt = !d ? p : p->nxt;
n->prv = prv;
if (prv) {
prv->nxt = n;
}
n->nxt = nxt;
if (nxt) {
nxt->prv = n;
}
}
void erase(node* n) {
node *prv = n->prv, *nxt = n->nxt;
if (!prv && !nxt) {
if (n == root) {
root = NULL;
}
return;
}
n->prv = NULL;
if (prv) {
prv->nxt = nxt;
}
n->nxt = NULL;
if (nxt) {
nxt->prv = prv;
}
splay(n);
if (!nxt) {
root->par = NULL;
n->link[0] = NULL;
root = prv;
} else {
splay(nxt, n);
node* c = n->link[0];
nxt->link[0] = c;
c->par = nxt;
n->link[0] = NULL;
n->link[1] = NULL;
nxt->par = NULL;
root = nxt;
}
}
bool get_event(node *cur, LD &next_sweep) {
if (!cur->prv || !cur->nxt) {
return false;
}
point u = (cur->pt - cur->prv->pt).r90();
point v = (cur->nxt->pt - cur->pt).r90();
if (dcmp(u / v) != 1) {
return false;
}
point p = get_circumcenter(cur->pt, cur->prv->pt, cur->nxt->pt);
next_sweep = p.y + (p - cur->pt).size();
return true;
}
node* find_beachline(LD x) {
node* cur = root;
while (cur) {
LD left = cur->prv
? parabola_intersect(cur->prv->pt, cur->pt, sweepline)
: -1e30;
LD right = cur->nxt
? parabola_intersect(cur->pt, cur->nxt->pt, sweepline)
: 1e30;
if (left <= x && x <= right) {
splay(cur);
return cur;
}
cur = cur->link[x > right];
}
return NULL;
}
};
using BeachNode = Beachline::node;
static BeachNode arr[LIM];
static int sz;
static BeachNode* new_node(point point, int idx) {
arr[sz] = BeachNode(point, idx);
return arr + (sz++);
}
struct event {
int type, idx, prv, nxt;
BeachNode *cur;
LD sweep;
event(LD sweep, int idx) : type(0), sweep(sweep), idx(idx) {}
event(LD sweep, BeachNode* cur) :
type(1), sweep(sweep), prv(cur->prv->idx), cur(cur), nxt(cur->nxt->idx) {}
bool operator>(const event& l) const { return sweep > l.sweep; }
};
void voronoi_diagram(
vector<point> &input,
vector<point> &vertex,
vector<pii> &edge,
vector<pii> &area
) {
Beachline beachline = Beachline();
priority_queue<event, vector<event>, greater<event>> events;
auto add_edge = [&](int u, int v, int a, int b, BeachNode* c1, BeachNode* c2) {
if (c1) {
c1->end = edge.size() * 2;
}
if (c2) {
c2->end = edge.size() * 2 + 1;
}
edge.emplace_back(u, v);
area.emplace_back(a, b);
};
auto write_edge = [&](int idx, int v) {
if (idx % 2 == 0) {
edge[idx / 2].first = v;
} else {
edge[idx / 2].second = v;
}
};
auto add_event = [&](BeachNode* cur) {
LD nxt;
if (beachline.get_event(cur, nxt)) {
events.emplace(nxt, cur);
}
};
int n = input.size(), cnt = 0;
/*arr = new BeachNode[n * 4]; */sz = 0;
sort(input.begin(), input.end(), [](const point &l, const point &r) {
return l.y != r.y ? l.y < r.y : l.x < r.x;
});
BeachNode *tmp = beachline.root = new_node(input[0], 0), *t2;
for (int i = 1; i < n; i++) {
if (dcmp(input[i].y - input[0].y) == 0) {
add_edge(-1, -1, i - 1, i, 0, tmp);
beachline.insert(t2 = new_node(input[i], i), tmp, 1);
tmp = t2;
} else {
events.emplace(input[i].y, i);
}
}
while (events.size()) {
event q = events.top();
events.pop();
BeachNode *prv, *cur, *nxt, *site;
int v = vertex.size(), idx = q.idx;
beachline.sweepline = q.sweep;
if (q.type == 0) {
point pt = input[idx];
cur = beachline.find_beachline(pt.x);
beachline.insert(site = new_node(pt, idx), cur, 0);
beachline.insert(prv = new_node(cur->pt, cur->idx), site, 0);
add_edge(-1, -1, cur->idx, idx, site, prv);
add_event(prv);
add_event(cur);
} else {
cur = q.cur;
prv = cur->prv;
nxt = cur->nxt;
if (!prv || !nxt || prv->idx != q.prv || nxt->idx != q.nxt) {
continue;
}
vertex.push_back(get_circumcenter(prv->pt, nxt->pt, cur->pt));
write_edge(prv->end, v);
write_edge(cur->end, v);
add_edge(v, -1, prv->idx, nxt->idx, 0, prv);
beachline.erase(cur);
add_event(prv);
add_event(nxt);
}
}
// delete arr;
}
int XR, YR;
int N, M;
vector<pair<int, LD>> adj[LIM];
point KP[2];
int KN[2];
LD ans;
void process_voronoi_diagrams(vector<point> P) {
int i, j, k;
vector<point> vertex;
vector<pii> edge, area;
voronoi_diagram(P, vertex, edge, area);
M = vertex.size();
for (int i = 0; i < area.size(); i++) {
int e1 = edge[i].first, e2 = edge[i].second;
if (e1 < 0 || e2 < 0) {
continue; // Infinite edge.
}
point v1 = vertex[e1], v2 = vertex[e2];
if (
min(v1.x, v2.x) < -EPS || max(v1.x, v2.x) > XR + EPS ||
min(v1.y, v2.y) < -EPS || max(v1.y, v2.y) > YR + EPS
) {
continue; // Edge outside rectangle.
}
// Add edge to graph with appropriate weight.
int pi1 = area[i].first, pi2 = area[i].second;
point p1 = P[pi1], p2 = P[pi2];
LD d = (p1 - project_point_segment(v1, v2, p1)).size();
adj[e1].emplace_back(e2, d);
adj[e2].emplace_back(e1, d);
// Consider any key points in triangles adjacent to this edge.
point mid = 0.5 * (p1 + p2);
for (int j : {0, 1}) {
for (int k : {0, 1}) {
point kp = KP[j], p = k ? p2 : p1;
ans = min(ans, (kp - p).size()); // Must be this close to a point.
if (point_in_polygon_incl({p, v1, mid}, kp)) {
KN[j] = e1;
}
if (point_in_polygon_incl({p, mid, v2}, kp)) {
KN[j] = e2;
}
}
}
}
}
LD solve() {
vector<point> P;
for (int i = 0; i < LIM; i++) {
adj[i].clear();
}
// Input.
cin >> XR >> YR;
cin >> KP[0].x >> KP[0].y >> KP[1].x >> KP[1].y;
cin >> N;
for (int i = 0; i < N; i++) {
int a, b;
cin >> a >> b;
P.emplace_back(a, b);
// Additionally mirror each point across each side of the rectangle.
P.emplace_back(-a, b);
P.emplace_back(a, -b);
P.emplace_back(2 * XR - a, b);
P.emplace_back(a, 2 * YR - b);
}
// Compute Voronoi diagram and corresponding graph.
ans = 1e18;
KN[0] = KN[1] = -1;
process_voronoi_diagrams(P);
assert(KN[0] >= 0 && KN[1] >= 0);
// MST.
vector<bool> visit(M);
priority_queue<pair<LD, int>> Q;
Q.emplace(ans, KN[0]);
while (!Q.empty()) {
ans = min(ans, Q.top().first);
int i = Q.top().second;
Q.pop();
if (i == KN[1]) {
break;
}
if (visit[i]) {
continue;
}
visit[i] = true;
for (auto c : adj[i]) {
if (!visit[c.first]) {
Q.emplace(c.second, c.first);
}
}
}
return ans;
}
int main() {
cout.precision(10);
int T;
cin >> T;
for (int t = 1; t <= T; t++) {
cout << "Case #" << t << ": " << fixed << solve() << endl;
}
return 0;
}