Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
hackercup / 2020 /finals /cake_cutting_committee.cpp
wjomlex's picture
2020 Problems
f96d8dd verified
raw
history blame
7.5 kB
// Cake-Cutting Committee
// Solution by Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (auto i:s)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#define GETCHAR getchar_unlocked
bool Read(int& x) {
char c, r = 0, n = 0;
x = 0;
for (;;) {
c = GETCHAR();
if ((c < 0) && (!r))
return(0);
if ((c == '-') && (!r))
n = 1;
else if ((c >= '0') && (c <= '9'))
x = x * 10 + c - '0', r = 1;
else if (r)
break;
}
if (n)
x = -x;
return(1);
}
#define LIM 800
#define TVAL int
#define TLAZY int
#define TLIM 4100
TVAL ZERO_VAL = 0;
TLAZY ZERO_LAZY = 0;
struct SegTree
{
void UpdateValForUpdateOrLazy(TVAL& a, TLAZY v)
{
a += v;
}
void UpdateLazyForUpdateOrLazy(TLAZY& a, TLAZY v)
{
a += v;
}
TVAL CombVals(TVAL v1, TVAL v2)
{
return(max(v1, v2));
}
int N, sz;
TVAL tree[TLIM];
TLAZY lazy[TLIM];
SegTree() {}
SegTree(int _N)
{
Init(_N);
}
void Init(int _N)
{
N = _N;
for (sz = 1; sz < N; sz <<= 1);
Clear();
}
void Clear()
{
int i;
Fox(i, sz << 1)
tree[i] = ZERO_VAL;
Fox(i, sz << 1)
lazy[i] = ZERO_LAZY;
}
void Prop(int i)
{
TLAZY v = lazy[i];
lazy[i] = ZERO_LAZY;
UpdateValForUpdateOrLazy(tree[i], v);
if (i < sz)
{
int c1 = i << 1, c2 = c1 + 1;
UpdateLazyForUpdateOrLazy(lazy[c1], v);
UpdateLazyForUpdateOrLazy(lazy[c2], v);
}
}
void Comp(int i)
{
int c1 = i << 1, c2 = c1 + 1;
tree[i] = CombVals(tree[c1], tree[c2]);
}
TVAL Query(
int a, int b,
int i = 1, int r1 = 0, int r2 = -1
) {
if (r2 < 0)
{
Max(a, 0);
Min(b, sz - 1);
if (a > b)
return ZERO_VAL;
r2 = sz - 1;
}
Prop(i);
if (a <= r1 && r2 <= b)
return(tree[i]);
int m = (r1 + r2) >> 1, c = i << 1;
TVAL ret = ZERO_VAL;
if (a <= m)
ret = CombVals(ret, Query(a, b, c, r1, m));
if (b > m)
ret = CombVals(ret, Query(a, b, c + 1, m + 1, r2));
return(ret);
}
void Update(
int a, int b,
TLAZY v,
int i = 1, int r1 = 0, int r2 = -1
) {
if (r2 < 0)
{
Max(a, 0);
Min(b, sz - 1);
if (a > b)
return;
r2 = sz - 1;
}
Prop(i);
if (a <= r1 && r2 <= b)
{
UpdateLazyForUpdateOrLazy(lazy[i], v);
Prop(i);
return;
}
int m = (r1 + r2) >> 1, c = i << 1;
if (a <= m)
Update(a, b, v, c, r1, m);
if (b > m)
Update(a, b, v, c + 1, m + 1, r2);
Prop(c), Prop(c + 1), Comp(i);
}
};
struct Event
{
int x, y1, y2, c;
bool s;
};
const bool operator<(const Event& a, const Event& b)
{
return(mp(a.x, !a.s) < mp(b.x, !b.s));
}
int S, N;
int C[LIM], P[LIM][4];
bool IsBetween(int a, int b, int p, bool ex)
{
if (b < a)
b += INF;
if (p < a)
p += INF;
return ex ? a < p && p < b : a <= p && p <= b;
}
int GetPosAfter(int a, int p)
{
if (p < a)
p += INF;
return(p - a);
}
int SolveForLine(vector<int> h)
{
int i, j, s;
// compare all pieces against dividing line, and assemble line sweep events
int base = 0;
vector<int> CY;
vector<Event> E;
Fox(i, N)
{
// full intersection?
if (
(IsBetween(P[i][0], P[i][2], h[0], 0) || IsBetween(P[i][3], P[i][1], h[0], 0)) &&
(IsBetween(P[i][0], P[i][2], h[1], 0) || IsBetween(P[i][3], P[i][1], h[1], 0))
)
{
base += C[i];
continue;
}
// look for orientation of line segments such that at least one spans crosses from the 1st to the 2nd half
Fox(s, 2)
{
int p[4];
memcpy(p, P[i], sizeof(p));
if (s)
reverse(p, p + 4);
// check which points are on their required halves
bool bx[2], by[2];
Fox(j, 2)
{
bx[j] = IsBetween(h[0], h[1], p[j * 2], 0);
by[j] = IsBetween(h[1], h[0], p[j * 2 + 1], 0);
}
// neither line segment is entirely valid?
if ((!bx[0] || !by[0]) && (!bx[1] || !by[1]))
continue;
assert(bx[0] + by[0] + bx[1] + by[1] >= 3); // other one must be at least half-valid
// map points to positions on their halves
int x[2], y[2];
Fox(j, 2)
{
x[j] = bx[j] ? GetPosAfter(h[0], p[j * 2]) : 2 * INF * (j ? 1 : -1);
y[j] = by[j] ? -GetPosAfter(h[1], p[j * 2 + 1]) : 2 * INF * (j ? 1 : -1);
}
assert(x[0] < x[1] && y[0] < y[1]);
E.pb({ x[0], y[0], y[1], C[i], 1 });
E.pb({ x[1], y[0], y[1], C[i], 0 });
CY.pb(y[0]), CY.pb(y[1]);
break;
}
}
// compress Y-coordinates
sort(All(CY));
int K = unique(All(CY)) - CY.begin();
CY.resize(K);
// line sweep
SegTree ST(K);
sort(All(E));
Foxen(e, E)
{
e.y1 = lower_bound(All(CY), e.y1) - CY.begin();
e.y2 = lower_bound(All(CY), e.y2) - CY.begin();
// left edge of a rectangle?
if (e.s)
{
ST.Update(e.y1, K - 1, e.c);
continue;
}
// right edge of a rectangle
ST.Update(e.y2, e.y2, ST.Query(e.y2, K - 1) - ST.Query(e.y2, e.y2));
ST.Update(e.y2 + 1, K - 1, -e.c);
}
return(base + ST.Query(0, K - 1));
}
int ProcessCase()
{
int i, j;
// input
Read(S), Read(N);
Fox(i, N)
{
Read(C[i]);
Fox(j, 4)
{
int x, y;
Read(x), Read(y);
if (!x)
P[i][j] = y;
else if (y == S)
P[i][j] = S + x;
else if (x == S)
P[i][j] = 3 * S - y;
else
P[i][j] = 4 * S - x;
}
// normalize lines
if (IsBetween(P[i][1], P[i][0], P[i][2], 1))
swap(P[i][0], P[i][1]);
if (IsBetween(P[i][2], P[i][3], P[i][0], 1))
swap(P[i][2], P[i][3]);
}
// consider all possible dividing lines
int ans = 0;
Fox(i, N)
{
Fox(j, 2)
Max(ans, SolveForLine({ P[i][j * 2], P[i][j * 2 + 1] }));
}
return(ans);
}
int main()
{
int T, t;
Read(T);
Fox1(t, T)
printf("Case #%d: %d\n", t, ProcessCase());
return(0);
}