|
|
|
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <deque>
|
|
#include <queue>
|
|
#include <stack>
|
|
#include <bitset>
|
|
#include <sstream>
|
|
using namespace std;
|
|
|
|
#define LL long long
|
|
#define LD long double
|
|
#define PR pair<int,int>
|
|
|
|
#define Fox(i,n) for (i=0; i<n; i++)
|
|
#define Fox1(i,n) for (i=1; i<=n; i++)
|
|
#define FoxI(i,a,b) for (i=a; i<=b; i++)
|
|
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
|
|
#define FoxR1(i,n) for (i=n; i>0; i--)
|
|
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
|
|
#define Foxen(i,s) for (auto i:s)
|
|
#define Min(a,b) a=min(a,b)
|
|
#define Max(a,b) a=max(a,b)
|
|
#define Sz(s) int((s).size())
|
|
#define All(s) (s).begin(),(s).end()
|
|
#define Fill(s,v) memset(s,v,sizeof(s))
|
|
#define pb push_back
|
|
#define mp make_pair
|
|
#define x first
|
|
#define y second
|
|
|
|
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
|
|
template<typename T> T Sqr(T x) { return(x * x); }
|
|
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
|
|
|
|
const int INF = (int)1e9;
|
|
const LD EPS = 1e-12;
|
|
const LD PI = acos(-1.0);
|
|
|
|
#define GETCHAR getchar_unlocked
|
|
|
|
bool Read(int& x) {
|
|
char c, r = 0, n = 0;
|
|
x = 0;
|
|
for (;;) {
|
|
c = GETCHAR();
|
|
if ((c < 0) && (!r))
|
|
return(0);
|
|
if ((c == '-') && (!r))
|
|
n = 1;
|
|
else if ((c >= '0') && (c <= '9'))
|
|
x = x * 10 + c - '0', r = 1;
|
|
else if (r)
|
|
break;
|
|
}
|
|
if (n)
|
|
x = -x;
|
|
return(1);
|
|
}
|
|
|
|
#define LIM 800
|
|
|
|
#define TVAL int
|
|
#define TLAZY int
|
|
#define TLIM 4100
|
|
|
|
TVAL ZERO_VAL = 0;
|
|
TLAZY ZERO_LAZY = 0;
|
|
|
|
struct SegTree
|
|
{
|
|
void UpdateValForUpdateOrLazy(TVAL& a, TLAZY v)
|
|
{
|
|
a += v;
|
|
}
|
|
|
|
void UpdateLazyForUpdateOrLazy(TLAZY& a, TLAZY v)
|
|
{
|
|
a += v;
|
|
}
|
|
|
|
TVAL CombVals(TVAL v1, TVAL v2)
|
|
{
|
|
return(max(v1, v2));
|
|
}
|
|
|
|
int N, sz;
|
|
TVAL tree[TLIM];
|
|
TLAZY lazy[TLIM];
|
|
|
|
SegTree() {}
|
|
|
|
SegTree(int _N)
|
|
{
|
|
Init(_N);
|
|
}
|
|
|
|
void Init(int _N)
|
|
{
|
|
N = _N;
|
|
for (sz = 1; sz < N; sz <<= 1);
|
|
Clear();
|
|
}
|
|
|
|
void Clear()
|
|
{
|
|
int i;
|
|
Fox(i, sz << 1)
|
|
tree[i] = ZERO_VAL;
|
|
Fox(i, sz << 1)
|
|
lazy[i] = ZERO_LAZY;
|
|
}
|
|
|
|
void Prop(int i)
|
|
{
|
|
TLAZY v = lazy[i];
|
|
lazy[i] = ZERO_LAZY;
|
|
UpdateValForUpdateOrLazy(tree[i], v);
|
|
if (i < sz)
|
|
{
|
|
int c1 = i << 1, c2 = c1 + 1;
|
|
UpdateLazyForUpdateOrLazy(lazy[c1], v);
|
|
UpdateLazyForUpdateOrLazy(lazy[c2], v);
|
|
}
|
|
}
|
|
|
|
void Comp(int i)
|
|
{
|
|
int c1 = i << 1, c2 = c1 + 1;
|
|
tree[i] = CombVals(tree[c1], tree[c2]);
|
|
}
|
|
|
|
TVAL Query(
|
|
int a, int b,
|
|
int i = 1, int r1 = 0, int r2 = -1
|
|
) {
|
|
if (r2 < 0)
|
|
{
|
|
Max(a, 0);
|
|
Min(b, sz - 1);
|
|
if (a > b)
|
|
return ZERO_VAL;
|
|
r2 = sz - 1;
|
|
}
|
|
Prop(i);
|
|
if (a <= r1 && r2 <= b)
|
|
return(tree[i]);
|
|
int m = (r1 + r2) >> 1, c = i << 1;
|
|
TVAL ret = ZERO_VAL;
|
|
if (a <= m)
|
|
ret = CombVals(ret, Query(a, b, c, r1, m));
|
|
if (b > m)
|
|
ret = CombVals(ret, Query(a, b, c + 1, m + 1, r2));
|
|
return(ret);
|
|
}
|
|
|
|
void Update(
|
|
int a, int b,
|
|
TLAZY v,
|
|
int i = 1, int r1 = 0, int r2 = -1
|
|
) {
|
|
if (r2 < 0)
|
|
{
|
|
Max(a, 0);
|
|
Min(b, sz - 1);
|
|
if (a > b)
|
|
return;
|
|
r2 = sz - 1;
|
|
}
|
|
Prop(i);
|
|
if (a <= r1 && r2 <= b)
|
|
{
|
|
UpdateLazyForUpdateOrLazy(lazy[i], v);
|
|
Prop(i);
|
|
return;
|
|
}
|
|
int m = (r1 + r2) >> 1, c = i << 1;
|
|
if (a <= m)
|
|
Update(a, b, v, c, r1, m);
|
|
if (b > m)
|
|
Update(a, b, v, c + 1, m + 1, r2);
|
|
Prop(c), Prop(c + 1), Comp(i);
|
|
}
|
|
};
|
|
|
|
struct Event
|
|
{
|
|
int x, y1, y2, c;
|
|
bool s;
|
|
};
|
|
|
|
const bool operator<(const Event& a, const Event& b)
|
|
{
|
|
return(mp(a.x, !a.s) < mp(b.x, !b.s));
|
|
}
|
|
|
|
int S, N;
|
|
int C[LIM], P[LIM][4];
|
|
|
|
bool IsBetween(int a, int b, int p, bool ex)
|
|
{
|
|
if (b < a)
|
|
b += INF;
|
|
if (p < a)
|
|
p += INF;
|
|
return ex ? a < p && p < b : a <= p && p <= b;
|
|
}
|
|
|
|
int GetPosAfter(int a, int p)
|
|
{
|
|
if (p < a)
|
|
p += INF;
|
|
return(p - a);
|
|
}
|
|
|
|
int SolveForLine(vector<int> h)
|
|
{
|
|
int i, j, s;
|
|
|
|
int base = 0;
|
|
vector<int> CY;
|
|
vector<Event> E;
|
|
Fox(i, N)
|
|
{
|
|
|
|
if (
|
|
(IsBetween(P[i][0], P[i][2], h[0], 0) || IsBetween(P[i][3], P[i][1], h[0], 0)) &&
|
|
(IsBetween(P[i][0], P[i][2], h[1], 0) || IsBetween(P[i][3], P[i][1], h[1], 0))
|
|
)
|
|
{
|
|
base += C[i];
|
|
continue;
|
|
}
|
|
|
|
Fox(s, 2)
|
|
{
|
|
int p[4];
|
|
memcpy(p, P[i], sizeof(p));
|
|
if (s)
|
|
reverse(p, p + 4);
|
|
|
|
bool bx[2], by[2];
|
|
Fox(j, 2)
|
|
{
|
|
bx[j] = IsBetween(h[0], h[1], p[j * 2], 0);
|
|
by[j] = IsBetween(h[1], h[0], p[j * 2 + 1], 0);
|
|
}
|
|
|
|
if ((!bx[0] || !by[0]) && (!bx[1] || !by[1]))
|
|
continue;
|
|
assert(bx[0] + by[0] + bx[1] + by[1] >= 3);
|
|
|
|
int x[2], y[2];
|
|
Fox(j, 2)
|
|
{
|
|
x[j] = bx[j] ? GetPosAfter(h[0], p[j * 2]) : 2 * INF * (j ? 1 : -1);
|
|
y[j] = by[j] ? -GetPosAfter(h[1], p[j * 2 + 1]) : 2 * INF * (j ? 1 : -1);
|
|
}
|
|
assert(x[0] < x[1] && y[0] < y[1]);
|
|
E.pb({ x[0], y[0], y[1], C[i], 1 });
|
|
E.pb({ x[1], y[0], y[1], C[i], 0 });
|
|
CY.pb(y[0]), CY.pb(y[1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
sort(All(CY));
|
|
int K = unique(All(CY)) - CY.begin();
|
|
CY.resize(K);
|
|
|
|
SegTree ST(K);
|
|
sort(All(E));
|
|
Foxen(e, E)
|
|
{
|
|
e.y1 = lower_bound(All(CY), e.y1) - CY.begin();
|
|
e.y2 = lower_bound(All(CY), e.y2) - CY.begin();
|
|
|
|
if (e.s)
|
|
{
|
|
ST.Update(e.y1, K - 1, e.c);
|
|
continue;
|
|
}
|
|
|
|
ST.Update(e.y2, e.y2, ST.Query(e.y2, K - 1) - ST.Query(e.y2, e.y2));
|
|
ST.Update(e.y2 + 1, K - 1, -e.c);
|
|
}
|
|
return(base + ST.Query(0, K - 1));
|
|
}
|
|
|
|
int ProcessCase()
|
|
{
|
|
int i, j;
|
|
|
|
Read(S), Read(N);
|
|
Fox(i, N)
|
|
{
|
|
Read(C[i]);
|
|
Fox(j, 4)
|
|
{
|
|
int x, y;
|
|
Read(x), Read(y);
|
|
if (!x)
|
|
P[i][j] = y;
|
|
else if (y == S)
|
|
P[i][j] = S + x;
|
|
else if (x == S)
|
|
P[i][j] = 3 * S - y;
|
|
else
|
|
P[i][j] = 4 * S - x;
|
|
}
|
|
|
|
if (IsBetween(P[i][1], P[i][0], P[i][2], 1))
|
|
swap(P[i][0], P[i][1]);
|
|
if (IsBetween(P[i][2], P[i][3], P[i][0], 1))
|
|
swap(P[i][2], P[i][3]);
|
|
}
|
|
|
|
int ans = 0;
|
|
Fox(i, N)
|
|
{
|
|
Fox(j, 2)
|
|
Max(ans, SolveForLine({ P[i][j * 2], P[i][j * 2 + 1] }));
|
|
}
|
|
return(ans);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
int T, t;
|
|
Read(T);
|
|
Fox1(t, T)
|
|
printf("Case #%d: %d\n", t, ProcessCase());
|
|
return(0);
|
|
} |