|
#include <cassert> |
|
#include <iostream> |
|
#include <vector> |
|
using namespace std; |
|
|
|
const int MAX = 1000010; |
|
const int MOD = 1000000007; |
|
using LL = long long; |
|
|
|
class mint { |
|
LL val; |
|
|
|
mint& normalize(LL x) { |
|
val = x % MOD; |
|
if (val < 0) { |
|
val += MOD; |
|
} |
|
return *this; |
|
} |
|
|
|
static LL inverse(LL a) { |
|
LL u = 0, v = 1, m = MOD; |
|
while (a != 0) { |
|
LL t = m / a; |
|
m -= t * a; |
|
swap(a, m); |
|
u -= t * v; |
|
swap(u, v); |
|
} |
|
assert(m == 1); |
|
return u; |
|
} |
|
|
|
public: |
|
mint(LL x = 0) { normalize(x); } |
|
|
|
LL operator()() const { return val; } |
|
|
|
template <typename U> |
|
explicit operator U() const { return static_cast<U>(val); } |
|
|
|
mint& operator=(LL x) { return normalize(x); } |
|
mint& operator=(const mint& x) { val = x.val; return *this; } |
|
|
|
mint& operator+=(const mint& x) { return normalize(val + x.val); } |
|
mint& operator-=(const mint& x) { return normalize(val - x.val); } |
|
mint& operator*=(const mint& x) { return normalize(val * x.val); } |
|
mint& operator/=(const mint& x) { return *this *= mint(inverse(x.val)); } |
|
|
|
mint& operator+=(LL x) { return *this += mint(x); } |
|
mint& operator-=(LL x) { return *this -= mint(x); } |
|
mint& operator*=(LL x) { return *this *= mint(x); } |
|
mint& operator/=(LL x) { return *this /= mint(x); } |
|
|
|
mint& operator++() { return *this += 1; } |
|
mint& operator--() { return *this -= 1; } |
|
mint operator++(int) { mint z(*this); ++*this; return z; } |
|
mint operator--(int) { mint z(*this); --*this; return z; } |
|
|
|
friend mint operator+(mint x, const mint& y) { return x += y; } |
|
friend mint operator*(mint x, const mint& y) { return x *= y; } |
|
friend mint operator-(mint x, const mint& y) { return x -= y; } |
|
friend mint operator/(mint x, const mint& y) { return x /= y; } |
|
|
|
friend mint operator+(mint x, LL y) { return x += y; } |
|
friend mint operator*(mint x, LL y) { return x *= y; } |
|
friend mint operator-(mint x, LL y) { return x -= y; } |
|
friend mint operator/(mint x, LL y) { return x /= y; } |
|
|
|
friend mint operator+(LL x, mint y) { return y += x; } |
|
friend mint operator*(LL x, mint y) { return y *= x; } |
|
friend mint operator-(LL x, const mint& y) { mint z(x); return z -= y; } |
|
friend mint operator/(LL x, const mint& y) { mint z(x); return z /= y; } |
|
|
|
bool operator <(const mint& x) const { return val < x.val; } |
|
bool operator==(const mint& x) const { return val == x.val; } |
|
bool operator >(const mint& x) const { return val > x.val; } |
|
bool operator!=(const mint& x) const { return val != x.val; } |
|
bool operator<=(const mint& x) const { return val <= x.val; } |
|
bool operator>=(const mint& x) const { return val >= x.val; } |
|
|
|
bool operator <(LL x) const { return val < x; } |
|
bool operator==(LL x) const { return val == x; } |
|
bool operator >(LL x) const { return val > x; } |
|
bool operator!=(LL x) const { return val != x; } |
|
bool operator<=(LL x) const { return val <= x; } |
|
bool operator>=(LL x) const { return val >= x; } |
|
}; |
|
|
|
class factorial : vector<mint> { |
|
void lazy_eval(int n) { |
|
for (LL p = size(); n >= p; ++p) { |
|
push_back(back() * p); |
|
} |
|
} |
|
|
|
public: |
|
factorial() { push_back(1); } |
|
|
|
mint choose(LL n, LL k) { |
|
if (n < 0 || k < 0 || n < k) { |
|
return 0; |
|
} |
|
if (k == 0 || k == n) { |
|
return 1; |
|
} |
|
if (n >= MOD && n <= k + MOD - 1) { |
|
return 0; |
|
} |
|
lazy_eval(n); |
|
return at(n) / (at(k) * at(n - k)); |
|
} |
|
|
|
mint operator[](LL n) { |
|
lazy_eval(n); |
|
return at(n); |
|
} |
|
}; |
|
|
|
factorial F; |
|
vector<vector<LL>> divisors(MAX); |
|
vector<LL> mu(MAX); |
|
|
|
void build_mu() { |
|
vector<bool> B(MAX); |
|
vector<LL> primes; |
|
mu[1] = 1LL; |
|
for (LL i = 2; i < MAX; i++) { |
|
if (!B[i]) { |
|
primes.push_back(i); |
|
mu[i] = -1; |
|
} |
|
for (auto& p : primes) { |
|
LL k = (LL)i * p; |
|
if (k > MAX) { |
|
break; |
|
} |
|
B[k] = 1; |
|
if (i % p != 0) { |
|
mu[k] = -mu[i]; |
|
} else { |
|
mu[k] = 0; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
LL solve() { |
|
int N, K, D; |
|
cin >> N >> K >> D; |
|
vector<int> H(N), freq(MAX); |
|
for (int i = 0; i < N; i++) { |
|
cin >> H[i]; |
|
for (LL d : divisors[H[i]]) { |
|
freq[d]++; |
|
} |
|
} |
|
mint ans = 0; |
|
for (LL d : divisors[D]) { |
|
for (LL j = 0; j < MAX; j++) { |
|
LL i = (LL)d * j; |
|
if (i > MAX) { |
|
break; |
|
} |
|
ans += F.choose(freq[i], K) * mu[j]; |
|
} |
|
} |
|
return (LL)(ans * F[K]); |
|
} |
|
|
|
int main() { |
|
ios_base::sync_with_stdio(false); |
|
cin.tie(nullptr); |
|
|
|
for (int i = 1; i < MAX; i++) { |
|
for (int j = i; j < MAX; j += i) { |
|
divisors[j].push_back(i); |
|
} |
|
} |
|
build_mu(); |
|
|
|
int T; |
|
cin >> T; |
|
for (int t = 1; t <= T; t++) { |
|
cout << "Case #" << t << ": " << solve() << endl; |
|
} |
|
return 0; |
|
} |