Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 4,689 Bytes
ff444f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include <cassert>
#include <iostream>
#include <vector>
using namespace std;

const int MAX = 1000010;
const int MOD = 1000000007;
using LL = long long;

class mint {
  LL val;

  mint& normalize(LL x) {
    val = x % MOD;
    if (val < 0) {
      val += MOD;
    }
    return *this;
  }

  static LL inverse(LL a) {
    LL u = 0, v = 1, m = MOD;
    while (a != 0) {
      LL t = m / a;
      m -= t * a;
      swap(a, m);
      u -= t * v;
      swap(u, v);
    }
    assert(m == 1);
    return u;
  }

 public:
  mint(LL x = 0) { normalize(x); }

  LL operator()() const { return val; }

  template <typename U>
  explicit operator U() const { return static_cast<U>(val); }

  mint& operator=(LL x) { return normalize(x); }
  mint& operator=(const mint& x) { val = x.val; return *this; }

  mint& operator+=(const mint& x) { return normalize(val + x.val); }
  mint& operator-=(const mint& x) { return normalize(val - x.val); }
  mint& operator*=(const mint& x) { return normalize(val * x.val); }
  mint& operator/=(const mint& x) { return *this *= mint(inverse(x.val)); }

  mint& operator+=(LL x) { return *this += mint(x); }
  mint& operator-=(LL x) { return *this -= mint(x); }
  mint& operator*=(LL x) { return *this *= mint(x); }
  mint& operator/=(LL x) { return *this /= mint(x); }

  mint& operator++() { return *this += 1; }
  mint& operator--() { return *this -= 1; }
  mint operator++(int) { mint z(*this); ++*this; return z; }
  mint operator--(int) { mint z(*this); --*this; return z; }

  friend mint operator+(mint x, const mint& y) { return x += y; }
  friend mint operator*(mint x, const mint& y) { return x *= y; }
  friend mint operator-(mint x, const mint& y) { return x -= y; }
  friend mint operator/(mint x, const mint& y) { return x /= y; }

  friend mint operator+(mint x, LL y) { return x += y; }
  friend mint operator*(mint x, LL y) { return x *= y; }
  friend mint operator-(mint x, LL y) { return x -= y; }
  friend mint operator/(mint x, LL y) { return x /= y; }

  friend mint operator+(LL x, mint y) { return y += x; }
  friend mint operator*(LL x, mint y) { return y *= x; }
  friend mint operator-(LL x, const mint& y) { mint z(x); return z -= y; }
  friend mint operator/(LL x, const mint& y) { mint z(x); return z /= y; }

  bool operator <(const mint& x) const { return val < x.val; }
  bool operator==(const mint& x) const { return val == x.val; }
  bool operator >(const mint& x) const { return val > x.val; }
  bool operator!=(const mint& x) const { return val != x.val; }
  bool operator<=(const mint& x) const { return val <= x.val; }
  bool operator>=(const mint& x) const { return val >= x.val; }

  bool operator <(LL x) const { return val < x; }
  bool operator==(LL x) const { return val == x; }
  bool operator >(LL x) const { return val > x; }
  bool operator!=(LL x) const { return val != x; }
  bool operator<=(LL x) const { return val <= x; }
  bool operator>=(LL x) const { return val >= x; }
};

class factorial : vector<mint> {
  void lazy_eval(int n) {
    for (LL p = size(); n >= p; ++p) {
      push_back(back() * p);
    }
  }

 public:
  factorial() { push_back(1); }

  mint choose(LL n, LL k) {
    if (n < 0 || k < 0 || n < k) {
      return 0;
    }
    if (k == 0 || k == n) {
      return 1;
    }
    if (n >= MOD && n <= k + MOD - 1) {
      return 0;
    }
    lazy_eval(n);
    return at(n) / (at(k) * at(n - k));
  }

  mint operator[](LL n) {
    lazy_eval(n);
    return at(n);
  }
};

factorial F;
vector<vector<LL>> divisors(MAX);
vector<LL> mu(MAX);

void build_mu() {
  vector<bool> B(MAX);
  vector<LL> primes;
  mu[1] = 1LL;
  for (LL i = 2; i < MAX; i++) {
    if (!B[i]) {
      primes.push_back(i);
      mu[i] = -1;
    }
    for (auto& p : primes) {
      LL k = (LL)i * p;
      if (k > MAX) {
        break;
      }
      B[k] = 1;
      if (i % p != 0) {
        mu[k] = -mu[i];
      } else {
        mu[k] = 0;
        break;
      }
    }
  }
}

LL solve() {
  int N, K, D;
  cin >> N >> K >> D;
  vector<int> H(N), freq(MAX);
  for (int i = 0; i < N; i++) {
    cin >> H[i];
    for (LL d : divisors[H[i]]) {
      freq[d]++;
    }
  }
  mint ans = 0;
  for (LL d : divisors[D]) {
    for (LL j = 0; j < MAX; j++) {
      LL i = (LL)d * j;
      if (i > MAX) {
        break;
      }
      ans += F.choose(freq[i], K) * mu[j];
    }
  }
  return (LL)(ans * F[K]);
}

int main() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr);

  for (int i = 1; i < MAX; i++) {
    for (int j = i; j < MAX; j += i) {
      divisors[j].push_back(i);
    }
  }
  build_mu();

  int T;
  cin >> T;
  for (int t = 1; t <= T; t++) {
    cout << "Case #" << t << ": " << solve() << endl;
  }
  return 0;
}