Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 8,878 Bytes
d3f4f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#include <algorithm>
#include <iostream>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>
using namespace std;

const int MOD = 1000000007;

int N;

struct Seg {  // Directions: U / R / D / L
  int i = -1, r, c, p, d, t = 0;

  long long get_time_val() {
    return N * ((long long)t - r - c) + i;
  }

  bool operator<(const Seg& b) const {
    return make_pair(r, c) < make_pair(b.r, b.c);
  }
};

struct BIT {
  int N;
  vector<int> V;

  BIT() {}

  BIT(int _N): N(_N) {
    init(_N);
  }

  void init(int _N) {
    N = _N;
    V.resize(N + 1);
  }

  void clear() {
    fill(V.begin(), V.end(), 0);
  }

  void update(int i, int v) {
    for (i++; i <= N; i += (i & -i)) {
      V[i] += v;
    }
  }

  int query(int i) {
    int v = 0;
    i = min(i, N - 1);
    for (i++; i > 0; i -= (i & -i)) {
      v += V[i];
    }
    return v;
  }
};

struct SegTree {
  int N, sz;
  vector<vector<long long>> keys;
  vector<BIT> B;

  SegTree() {}

  SegTree(int _N) {
    init(_N);
  }

  void init(int _N) {
    N = _N;
    for (sz = 1; sz < N; sz <<= 1)
      ;
    keys.resize(sz << 1);
    B.resize(sz << 1);
  }

  void init_keys() {
    for (int i = sz; i < sz + N; i++) {
      auto &K = keys[i];
      sort(K.begin(), K.end());
      B[i].init(K.size());
    }
    for (int i = sz - 1; i >= 1; i--) {
      auto &K = keys[i];
      auto &c1 = keys[i << 1], &c2 = keys[(i << 1) + 1];
      int a = 0, b = 0;
      while (a < c1.size() || b < c2.size()) {
        if (b == c2.size() || (a < c1.size() && c1[a] < c2[b])) {
          K.push_back(c1[a++]);
        } else {
          K.push_back(c2[b++]);
        }
      }
      B[i].init(K.size());
    }
  }

  int query_larger(int a, int b, long long v, int i = 1, int r1 = 0, int r2 = -1) {
    if (r2 < 0) {
      a = max(a, 0);
      b = min(b, sz - 1);
      if (a > b) {
        return 0;
      }
      r2 = sz - 1;
    }
    if (a <= r1 && r2 <= b) {
      auto &K = keys[i];
      v = lower_bound(K.begin(), K.end(), v) - K.begin();
      return B[i].query(K.size() - 1) - B[i].query(v - 1);
    }
    int m = (r1 + r2) >> 1, c = i << 1;
    int res = 0;
    if (a <= m) {
      res += query_larger(a, b, v, c, r1, m);
    }
    if (b > m) {
      res += query_larger(a, b, v, c + 1, m + 1, r2);
    }
    return res;
  }

  void update_one(int i, long long v, int d) {
    i += sz;
    while (i >= 1) {
      auto &K = keys[i];
      B[i].update(lower_bound(K.begin(), K.end(), v) - K.begin(), d);
      i >>= 1;
    }
  }
};

vector<Seg> SS;

Seg trim_seg(Seg s, int a, int b, bool hor) {
  if (s.d == 1 || s.d == 2) {    // Forward segment.
    int& sv1 = hor ? s.c : s.r;  // First value.
    int sv2 = sv1 + s.p - 1;     // Last value.
    int t1 = max(0, a - sv1);    // Truncation at start.
    int t2 = max(0, sv2 - b);    // Truncation at end.
    sv1 += t1, s.t += t1;
    s.p -= t1 + t2;
  } else {                       // Backward segment.
    int& sv2 = hor ? s.c : s.r;  // Last value.
    int sv1 = sv2 - (s.p - 1);   // First value.
    int t1 = max(0, a - sv1);    // Truncation at start.
    int t2 = max(0, sv2 - b);    // Truncation at end.
    sv2 -= t2, s.t += t2;
    s.p -= t1 + t2;
  }
  return s;
}

vector<Seg> merge_opp_segs(Seg s1, Seg s2, bool hor) {
  int nc = (hor ? s2.c - s1.c : s2.r - s1.r) + 1;
  int t1 = s1.t;                                  // Time for s1 to reach start.
  int t2 = s2.t + nc - 1 - (s2.i < s1.i ? 1 : 0); // Time for s2 to reach start.
  int m = (hor ? s1.c : s1.r) + (t2 - t1 + 2) / 2 -
            1; // Last value painted over by s2.
  vector<Seg> S;
  S.push_back(trim_seg(s2, -1e9 - 1, m, hor));
  S.push_back(trim_seg(s1, m + 1, 2e9 + 1, hor));
  return S;
}

void process_linear_segs(vector<Seg> V, bool hor) {
  // Collect and sort forward / backward segments.
  int d1, d2;
  if (hor) {
    d1 = 1;
    d2 = 3;
  } else {
    d1 = 2;
    d2 = 0;
  }
  vector<tuple<int, int, Seg>> P1, P2;
  for (auto s : V) {
    if (s.d == d1) {
      P1.emplace_back(s.r + s.c, -s.i, s);
    } else {
      P2.emplace_back(-(s.r + s.c), -s.i, s);
    }
  }
  sort(P1.begin(), P1.end());
  sort(P2.begin(), P2.end());
  // Reduce forward / backward segments independently.
  vector<Seg> S1, S2;
  int last = -1e9 - 1;
  for (auto p : P1) {
    Seg s = trim_seg(get<2>(p), last + 1, 2e9 + 1, hor); // Trim to after last.
    if (s.p > 0) {                                   // Include if not obsolete.
      S1.push_back(s);
    }
    last = max(last, (hor ? s.c : s.r) + (s.p - 1));
  }
  last = 2e9 + 1;
  for (auto p : P2) {
    Seg s = trim_seg(get<2>(p), -1e9 - 1, last - 1, hor); // Trim to before last.
    if (s.p > 0) {                                    // Include if not obsolete.
      S2.push_back(s);
    }
    last = min(last, (hor ? s.c : s.r) - (s.p - 1));
  }
  // Merge forward / backward segments.
  vector<tuple<int, int, int>> E;
  for (int i = 0; i < S1.size(); i++) {
    Seg s = S1[i];
    int sv = hor ? s.c : s.r;
    E.emplace_back(sv, 1, i);
    E.emplace_back(sv + s.p, 0, i);
  }
  for (int i = 0; i < S2.size(); i++) {
    Seg s = S2[i];
    int sv = hor ? s.c : s.r;
    E.emplace_back(sv - (s.p - 1), 3, i);
    E.emplace_back(sv + 1, 2, i);
  }
  sort(E.begin(), E.end());
  vector<int> inds{-1, -1};
  for (int i = 0; i < E.size(); i++) {
    int v = get<0>(E[i]), e = get<1>(E[i]);
    // Update set of ongoing segments.
    int j = e / 2;
    if (e % 2) {
      inds[j] = get<2>(E[i]);
    } else {
      inds[j] = -1;
    }
    // Process ongoing segments?
    if (i + 1 < E.size() && v < get<0>(E[i + 1])) {
      vector<Seg> S;
      if (inds[0] >= 0 && inds[1] >= 0) {
        S = merge_opp_segs(S1[inds[0]], S2[inds[1]], hor);
      } else if (inds[0] >= 0) {
        S.push_back(S1[inds[0]]);
      } else if (inds[1] >= 0) {
        S.push_back(S2[inds[1]]);
      }
      for (auto s : S) {
        Seg s2 = trim_seg(s, v, get<0>(E[i + 1]) - 1, hor);
        if (s2.p > 0) {
          SS.push_back(s2);
        }
      }
    }
  }
}

int solve() {
  SS.clear();
  map<int, vector<Seg>> rowS, colS;
  // Input.
  cin >> N;
  for (int i = 0; i < N; i++) {
    Seg s;
    s.i = i + 1;
    char d;
    cin >> s.r >> s.c >> s.p >> d;
    s.d = d == 'N' ? 0 : d == 'E' ? 1 : d == 'S' ? 2 : 3;
    if (s.d % 2) {
      rowS[s.r].push_back(s);
    } else {
      colS[s.c].push_back(s);
    }
  }
  // Reduce each relevant row / column to disjoint segments
  for (auto p : rowS) {
    process_linear_segs(p.second, true);
  }
  for (auto p : colS) {
    process_linear_segs(p.second, false);
  }
  // Compute base answer.
  int ans = 0;
  for (auto s : SS) {
    ans = (ans + (long long)s.i * s.p) % MOD;
  }
  // Consider 4 different rotations of the grid.
  for (int r = 0; r < 4; r++) {
    // Rotate everything 90 degrees clockwise.
    for (int i = 0; i < SS.size(); i++) {
      Seg &s = SS[i];
      int r = s.r, c = s.c, d = s.d;
      s.r = c;
      s.c = -r;
      s.d = (d + 1) % 4;
    }
    // Consider 2 different vertical flips of the grid.
    for (int _ : {0, 1}) {
      // Flip everything vertically.
      for (int i = 0; i < SS.size(); i++) {
        Seg &s = SS[i];
        s.r = -s.r;
        if (s.d % 2 == 0) {
          s.d = 2 - s.d;
        }
      }
      // Assemble list of line sweep events and distinct D segment columns.
      vector<tuple<int, int, Seg>> E;
      vector<int> cc;
      for (auto s : SS) {
        if (s.d == 1) {  // R
          E.emplace_back(s.r, 1, s);
        } else if (s.d == 2) {  // D
          E.emplace_back(s.r, 0, s);
          E.emplace_back(s.r + s.p - 1, 2, s);
          cc.push_back(s.c);
        }
      }
      sort(E.begin(), E.end());
      sort(cc.begin(), cc.end());
      cc.resize(unique(cc.begin(), cc.end()) - cc.begin());
      // Initialize 2D segment tree.
      SegTree ST(cc.size());
      for (auto s : SS) {
        if (s.d == 2) { // D
          ST.keys[ST.sz + (lower_bound(cc.begin(), cc.end(), s.c) - cc.begin())]
              .push_back(s.get_time_val());
        }
      }
      ST.init_keys();
      // Line sweep to subtract R segments covered by D ones.
      for (auto p : E) {
        int e = get<1>(p);
        Seg s = get<2>(p);
        if (e == 1) {
          int a = lower_bound(cc.begin(), cc.end(), s.c) - cc.begin();
          int b = lower_bound(cc.begin(), cc.end(), s.c + s.p) - cc.begin() - 1;
          long long v = s.get_time_val();
          ans = (ans + MOD - (long long)s.i * ST.query_larger(a, b, v) % MOD) % MOD;
        } else {
          ST.update_one(
            lower_bound(cc.begin(), cc.end(), s.c) - cc.begin(),
            s.get_time_val(),
            e == 0 ? 1 : -1
          );
        }
      }
    }
  }
  return ans;
}

int main() {
  int T;
  cin >> T;
  for (int t = 1; t <= T; t++) {
    cout << "Case #" << t << ": " << solve() << endl;
  }
  return 0;
}