File size: 4,194 Bytes
f96d8dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
// Running on Fumes - Chapter 2
// Solution by Jacob Plachta
#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;
#define LL long long
#define LD long double
#define PR pair<int,int>
#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second
template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }
const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);
#define GETCHAR getchar_unlocked
bool Read(int& x)
{
char c, r = 0, n = 0;
x = 0;
for (;;)
{
c = GETCHAR();
if ((c < 0) && (!r))
return(0);
if ((c == '-') && (!r))
n = 1;
else
if ((c >= '0') && (c <= '9'))
x = x * 10 + c - '0', r = 1;
else
if (r)
break;
}
if (n)
x = -x;
return(1);
}
#define LIM 1000008
#define LIM2 2100000
int N, M, A, B;
vector<int> con[LIM];
int P[LIM], C[LIM];
int mZ, mD, mHas[LIM], mC[LIM];
int sz;
LL tree[LIM2];
// DFS from node i, while populating parents
void rec1(int i)
{
int j, c;
Fox(j, Sz(con[i]))
if ((c = con[i][j]) != P[i])
{
P[c] = i;
rec1(c);
}
}
// DFS from node i, with depth d and previous node p, while populating min. C values per depth
void rec2(int i, int d, int p)
{
int j, c;
if (C[i])
{
Max(mD, d);
if (mHas[d] == mZ)
Min(mC[d], C[i]);
else
mHas[d] = mZ, mC[d] = C[i];
}
Fox(j, Sz(con[i]))
if ((c = con[i][j]) != P[i])
if (c != p)
rec2(c, d + 1, p);
}
// update value at index i in segment tree to be at most v
void Update(int i, LL v)
{
i += sz;
while (i)
{
Min(tree[i], v);
i >>= 1;
}
}
// query min. value in segment tree within indices [a, b]
LL Query(int i, int r1, int r2, int a, int b)
{
if (a <= r1 && r2 <= b)
return(tree[i]);
i <<= 1;
int m = (r1 + r2) >> 1;
LL ret = (LL)INF * INF;
if (a <= m)
Min(ret, Query(i, r1, m, a, b));
if (b > m)
Min(ret, Query(i + 1, m + 1, r2, a, b));
return(ret);
}
LL ProcessCase()
{
int i, j, k, p, d;
// input
Read(N), Read(M), Read(A), Read(B);
Fox1(i, N)
{
Read(j), Read(C[i]);
if (j)
{
con[i].pb(j);
con[j].pb(i);
}
}
// root tree at B
P[B] = -1;
rec1(B);
// init segment tree of min. costs
Fill(tree, 60);
for (sz = 1; sz < N; sz <<= 1);
// iterate along path from A to B while maintaining segment tree
Update(0, 0);
for (p = A, i = P[A], k = 1; i != B; p = i, i = P[i], k++)
{
// explore branches off of main path
mZ++, mD = -1;
rec2(i, 0, p);
// consider refueling here or within an attached branch
Fox(d, mD + 1)
if (k - d >= 0 && mHas[d] == mZ)
{
LL m = Query(1, 0, sz - 1, max(0, k - (M - d)), k);
Update(k - d, m + mC[d]);
}
}
// clear graph
Fox1(i, N)
con[i].clear();
// get answer
LL ans = Query(1, 0, sz - 1, max(0, k - M), k - 1);
return ans >= (LL)INF * INF ? -1 : ans;
}
int main()
{
int T, t;
Read(T);
Fox1(t, T)
printf("Case #%d: %lld\n", t, ProcessCase());
return(0);
}
|