Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 4,194 Bytes
f96d8dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Running on Fumes - Chapter 2
// Solution by Jacob Plachta

#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;

#define LL long long
#define LD long double
#define PR pair<int,int>

#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second

template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }

const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);

#define GETCHAR getchar_unlocked

bool Read(int& x)

{
  char c, r = 0, n = 0;
  x = 0;
  for (;;)
  {
    c = GETCHAR();
    if ((c < 0) && (!r))
      return(0);
    if ((c == '-') && (!r))
      n = 1;
    else
      if ((c >= '0') && (c <= '9'))
        x = x * 10 + c - '0', r = 1;
      else
        if (r)
          break;
  }
  if (n)
    x = -x;
  return(1);
}

#define LIM 1000008
#define LIM2 2100000

int N, M, A, B;
vector<int> con[LIM];
int P[LIM], C[LIM];
int mZ, mD, mHas[LIM], mC[LIM];
int sz;
LL tree[LIM2];

// DFS from node i, while populating parents
void rec1(int i)

{
  int j, c;
  Fox(j, Sz(con[i]))
    if ((c = con[i][j]) != P[i])
    {
      P[c] = i;
      rec1(c);
    }
}

// DFS from node i, with depth d and previous node p, while populating min. C values per depth
void rec2(int i, int d, int p)

{
  int j, c;
  if (C[i])
  {
    Max(mD, d);
    if (mHas[d] == mZ)
      Min(mC[d], C[i]);
    else
      mHas[d] = mZ, mC[d] = C[i];
  }
  Fox(j, Sz(con[i]))
    if ((c = con[i][j]) != P[i])
      if (c != p)
        rec2(c, d + 1, p);
}

// update value at index i in segment tree to be at most v
void Update(int i, LL v)

{
  i += sz;
  while (i)
  {
    Min(tree[i], v);
    i >>= 1;
  }
}

// query min. value in segment tree within indices [a, b]
LL Query(int i, int r1, int r2, int a, int b)

{
  if (a <= r1 && r2 <= b)
    return(tree[i]);
  i <<= 1;
  int m = (r1 + r2) >> 1;
  LL ret = (LL)INF * INF;
  if (a <= m)
    Min(ret, Query(i, r1, m, a, b));
  if (b > m)
    Min(ret, Query(i + 1, m + 1, r2, a, b));
  return(ret);
}

LL ProcessCase()
{
  int i, j, k, p, d;
  // input
  Read(N), Read(M), Read(A), Read(B);
  Fox1(i, N)
  {
    Read(j), Read(C[i]);
    if (j)
    {
      con[i].pb(j);
      con[j].pb(i);
    }
  }
  // root tree at B
  P[B] = -1;
  rec1(B);
  // init segment tree of min. costs
  Fill(tree, 60);
  for (sz = 1; sz < N; sz <<= 1);
  // iterate along path from A to B while maintaining segment tree
  Update(0, 0);
  for (p = A, i = P[A], k = 1; i != B; p = i, i = P[i], k++)
  {
    // explore branches off of main path
    mZ++, mD = -1;
    rec2(i, 0, p);
    // consider refueling here or within an attached branch
    Fox(d, mD + 1)
      if (k - d >= 0 && mHas[d] == mZ)
      {
        LL m = Query(1, 0, sz - 1, max(0, k - (M - d)), k);
        Update(k - d, m + mC[d]);
      }
  }
  // clear graph
  Fox1(i, N)
    con[i].clear();
  // get answer
  LL ans = Query(1, 0, sz - 1, max(0, k - M), k - 1);
  return ans >= (LL)INF * INF ? -1 : ans;
}

int main()

{
  int T, t;
  Read(T);
  Fox1(t, T)
    printf("Case #%d: %lld\n", t, ProcessCase());
  return(0);
}