File size: 9,742 Bytes
d3f4f72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import java.io.*;
import java.util.*;
/*
Solution by David Harmeyer (SecondThread)
Runtime: O(1e6 + 1e6*log(1e6) + ~4000^2 + ~2^25*(12)), per big testcase, but in practice, that *12 is really more like a * 1
*/
public class StringConcatenation {
static final String filename="input";
static final boolean submit=false, debug=false;
static final int MAX_LEN=1_000_001;
static final int MAX_VAL=1_000_001;
static final Random random=new Random(5);
static void solve(Scanner fs, PrintWriter out) {
int T=fs.nextInt();
for (int tt=0; tt<T; tt++) {
System.err.println("Processing case "+tt);
// we can actually ignore k
int n=fs.nextInt(), k=fs.nextInt();
Str[] strings=new Str[n];
for (int i=0; i<n; i++)
strings[i]=new Str(fs.nextInt(), i+1);
ArrayList<Str>[] ans=solveWithDupesLarge(strings);
if (ans[0].isEmpty()) {
out.println("Case #"+(tt+1)+": Impossible");
}
else {
out.println("Case #"+(tt+1)+": Possible");
for (Str s:ans[0]) out.print(s.id+" ");
out.println();
for (Str s:ans[1]) out.print(s.id+" ");
out.println();
}
}
out.close();
}
//obviously, if we have any two strings of the same length, we can remove duplicates, add them back at the end
static ArrayList<Str>[] solveWithDupesLarge(Str[] strings) {
if (debug) System.out.println("Solving dupes large with "+Arrays.toString(strings));
ArrayList<Str> t1=new ArrayList<>(), t2=new ArrayList<>(), unused=new ArrayList<>();
Str[] ofLen=new Str[MAX_LEN];
for (Str s:strings) {
if (ofLen[s.l]==null) {
ofLen[s.l]=s;
}
else {
t1.add(ofLen[s.l]);
t2.add(s);
ofLen[s.l]=null;
}
}
for (Str s:ofLen) if (s!=null) unused.add(s);
ArrayList<Str>[] solved = solveDedupedLarge(unused);
solved[0].addAll(t1);
solved[1].addAll(t2);
return solved;
}
// now we have no duplicates, so we can remove any triplets i, j, k such that a[i] == a[j] + a[k]
// and any quadruplets i, j, k, l such that a[i] + a[j] == a[k] + a[l]
// This will leave us with at most ~1000 strings.
// We need to be careful to do this faster than n^2 though.
static ArrayList<Str>[] solveDedupedLarge(ArrayList<Str> stringsL) {
if (debug) System.out.println("Solving deduped large with "+stringsL);
int n=stringsL.size();
Str[] strings=new Str[n];
for (int i=0; i<n; i++) strings[i]=stringsL.get(i);
Pair[] withSum=new Pair[MAX_VAL*2];
ArrayList<Str>[] res=new ArrayList[] {new ArrayList<>(), new ArrayList<>(), new ArrayList<>()};
for (int i=0; i<n; i++)
withSum[strings[i].l]=new Pair(strings[i], null);
for (int i=0; i<n; i++) strings[i].positionInList=i;
BIT alive=new BIT(n);
for (int i=0; i<n; i++)
alive.update(i, 1);
// need to be careful not to create nodes with unbalanced degrees. If we create a node
// with a large degree and then it gets deleted, then we have n^2 runtime...
for (int d=1; d<alive.query(0, n-1); d++) {
for (int i=0; i<alive.query(0, n-1) && d<alive.query(0, n-1); i++) {
int j=(d+i)%alive.query(0, n-1);
Str s1=strings[alive.getKth(i)], s2=strings[alive.getKth(j)];
if (s1==s2) continue;
int val=s1.l+s2.l;
if (withSum[val]!=null) {
Pair p=withSum[val];
if(p.a==s1 || p.b==s1 || p.a==s2 || p.b==s2) {
withSum[val]=null;
}
else if (alive.query(p.a.positionInList, p.a.positionInList)==0) {
withSum[val]=null;
}
else if (p.b!=null && alive.query(p.b.positionInList, p.b.positionInList) == 0) {
withSum[val]=null;
}
}
if (withSum[val]==null) {
withSum[val]=new Pair(s1, s2);
continue;
}
else {
Pair p=withSum[val];
res[0].add(p.a);
if (p.b!=null) res[0].add(p.b);
res[1].add(s1);
res[1].add(s2);
Str[] toKill= {p.a, p.b, s1, s2};
for (Str s:toKill) {
if (s!=null) {
alive.update(s.positionInList, -1);
}
}
}
}
}
for (int i=0; i<n; i++)
if (alive.query(i, i)==1)
res[2].add(strings[i]);
ArrayList<Str>[] ans=solveMedium(res[2]);
ans[0].addAll(res[0]);
ans[1].addAll(res[1]);
return ans;
}
// Once we have ~1000 strings left, we can cut the number we have in half by checking random sets of strings
// until we find a collision. The maximum total is ~ 1e6*1000 == 1e9. By the Birthday paradox,
// we should expect to need to check about sqrt(1e9) pairs before finding a pair that works and cutting n in half.
// In reality, it will take fewer steps than that, because these sums won't be uniformly distributed.
// So the expected runtime of one iteration is faster than O(1000 * sqrt(1e9). After one iteration, n is only half as big,
// which means there is no log factor in the runtime of this step, since it is dominated by the case when n is large.
static ArrayList<Str>[] solveMedium(ArrayList<Str> strings) {
if (debug) System.out.println("Solving medium with "+strings);
if (strings.size()<50) return solveSmall(strings);
if (strings.size()>5000) throw null;
HashMap<Long, ArrayList<Str>> groupsWithSum=new HashMap<>();
for (Str s:strings) s.usedIn1=s.usedIn2=false;
int n=strings.size();
while (true) {
ArrayList<Str> group=new ArrayList<>();
long sum=0;
for (Str s:strings) {
if (random.nextBoolean()) {
sum+=s.l;
group.add(s);
}
}
if (groupsWithSum.containsKey(sum)) {
//Then we've found a collision
for (Str s:groupsWithSum.get(sum)) s.usedIn1=true;
for (Str s:group) s.usedIn2=true;
ArrayList<Str>[] res=new ArrayList[] {new ArrayList<>(), new ArrayList<>(), new ArrayList<>()};
for (Str s:strings) {
if (s.usedIn1==s.usedIn2) res[2].add(s);
else if (s.usedIn1) res[0].add(s);
else res[1].add(s);
}
ArrayList<Str>[] ans=solveMedium(res[2]);
ans[0].addAll(res[0]);
ans[1].addAll(res[1]);
return ans;
}
groupsWithSum.put(sum, group);
}
}
// Once we have ~50 strings left, we can repeatedly consider the first 25 of them, remove that pair, and continue
// This will run call solveVerySmall at most 25/2 +1 == 14 times (as each call removes two elements)
// but in practice probably much less than that.
static ArrayList<Str>[] solveSmall(ArrayList<Str> strings) {
if (debug) System.out.println("Solving small with "+strings);
if (strings.size()<=25) {
return solveVerySmall(strings);
}
ArrayList<Str> first25=new ArrayList<>(), rest=new ArrayList<>();
for (Str s:strings) if (first25.size()<25) first25.add(s); else rest.add(s);
ArrayList<Str>[] nextAns=solveVerySmall(first25);
nextAns[2].addAll(rest);
ArrayList<Str>[] ans=solveSmall(nextAns[2]);
ans[0].addAll(nextAns[0]);
ans[1].addAll(nextAns[1]);
return ans;
}
// When we have at most 25 strings left, we can just brute force all subsets in O(2^n)
// k could be down to 23 and this solution would still work.
static ArrayList<Str>[] solveVerySmall(ArrayList<Str> stringsL) {
if (debug) System.out.println("Solving very small with "+stringsL);
Str[] strings=new Str[stringsL.size()];
for (int i=0; i<strings.length; i++) strings[i]=stringsL.get(i);
for (Str s:stringsL) s.usedIn1=s.usedIn2=false;
int n=strings.length;
if (n>25)
throw null;
Str[] lastAdded = new Str[n*MAX_VAL];
int[] sum=new int[1<<n];
for (int i=0; i<n; i++) {
lastAdded[strings[i].l]=strings[i];
sum[1<<i]=strings[i].l;
}
for (int mask=1; mask<1<<n; mask++) {
if (Integer.bitCount(mask)<2) continue;
int lowestBit=Integer.lowestOneBit(mask);
int oldMask=mask-lowestBit;
int added=Integer.numberOfTrailingZeros(lowestBit);
int newSum=sum[oldMask]+strings[added].l;
sum[mask]=newSum;
if (lastAdded[newSum]!=null) {
//then we found a collision
int oldSum=newSum;
while (oldSum!=0) {
Str next=lastAdded[oldSum];
next.usedIn1=true;
oldSum-=next.l;
}
for (int i=0; i<n; i++) {
strings[i].usedIn2=(mask&(1<<i))!=0;
}
ArrayList<Str>[] ans= new ArrayList[] {new ArrayList<>(), new ArrayList<>(), new ArrayList<>()};
for (Str s:strings) {
if (s.usedIn1 == s.usedIn2) {
ans[2].add(s);
}
else if (s.usedIn1) ans[0].add(s);
else ans[1].add(s);
}
return ans;
}
lastAdded[newSum]=strings[added];
}
//checked everything possible and didn't find a match: none exist
return new ArrayList[] {new ArrayList<>(), new ArrayList<>(), (ArrayList) stringsL.clone()};
}
static class Pair {
Str a, b;
public Pair(Str a, Str b) {
this.a=a;
this.b=b;
}
}
static class Str {
int l, id;
boolean usedIn1;
boolean usedIn2;
int positionInList;
public Str(int l, int id) {
this.l=l;
this.id=id;
}
public String toString() {
return l+"";
}
}
static class BIT {
int n, tree[];
public BIT(int N) {
n = N; tree = new int[N + 1];
}
void update(int i, int val) {
for (i++; i <= n; i += i & -i) tree[i] += val;
}
int read(int i) {
int sum = 0;
for (i++; i > 0; i -= i & -i) sum += tree[i];
return sum;
}
// query sum of [l, r] inclusive
int query(int l, int r) { return read(r) - read(l - 1); }
// if the BIT is a freq array, returns the index of the
// kth item (0-indexed), or n if there are <= k items.
int getKth(int k) {
if (k < 0) return -1;
int i = 0;
for (int pw = Integer.highestOneBit(n); pw > 0; pw >>= 1)
if (i + pw <= n && tree[i + pw] <= k) k -= tree[i += pw];
return i;
}
}
public static void main(String[] args) throws FileNotFoundException {
if (!submit) solve(new Scanner(System.in), new PrintWriter(System.out));
else solve(new Scanner(new File(filename+".txt")), new PrintWriter(new File(filename+".out")));
}
}
|