Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 4,678 Bytes
f96d8dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Quarantine
// Solution by Jacob Plachta

#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <sstream>
using namespace std;

#define LL long long
#define LD long double
#define PR pair<int,int>

#define Fox(i,n) for (i=0; i<n; i++)
#define Fox1(i,n) for (i=1; i<=n; i++)
#define FoxI(i,a,b) for (i=a; i<=b; i++)
#define FoxR(i,n) for (i=(n)-1; i>=0; i--)
#define FoxR1(i,n) for (i=n; i>0; i--)
#define FoxRI(i,a,b) for (i=b; i>=a; i--)
#define Foxen(i,s) for (i=s.begin(); i!=s.end(); i++)
#define Min(a,b) a=min(a,b)
#define Max(a,b) a=max(a,b)
#define Sz(s) int((s).size())
#define All(s) (s).begin(),(s).end()
#define Fill(s,v) memset(s,v,sizeof(s))
#define pb push_back
#define mp make_pair
#define x first
#define y second

template<typename T> T Abs(T x) { return(x < 0 ? -x : x); }
template<typename T> T Sqr(T x) { return(x * x); }
string plural(string s) { return(Sz(s) && s[Sz(s) - 1] == 'x' ? s + "en" : s + "s"); }

const int INF = (int)1e9;
const LD EPS = 1e-12;
const LD PI = acos(-1.0);

#define GETCHAR getchar_unlocked

bool Read(int& x)

{
  char c, r = 0, n = 0;
  x = 0;
  for (;;)
  {
    c = GETCHAR();
    if ((c < 0) && (!r))
      return(0);
    if ((c == '-') && (!r))
      n = 1;
    else
      if ((c >= '0') && (c <= '9'))
        x = x * 10 + c - '0', r = 1;
      else
        if (r)
          break;
  }
  if (n)
    x = -x;
  return(1);
}

#define LIM 1000001
#define MOD 1000000007

#define MCPR pair<LL,LL>

int N, K, A, B;
char S[LIM];
int E[LIM], C[LIM];
int pi, P[LIM], L[LIM], R[LIM];
vector<int> ch[LIM];
MCPR preM[LIM], sufM[LIM], subM[LIM];

void ReadSeq(int* V, int N, int K)

{
  int i, A, B, C;
  Fox1(i, K)
    Read(V[i]);
  Read(A), Read(B), Read(C);
  FoxI(i, K + 1, N - 1)
    V[i] = ((LL)A * V[i - 2] + (LL)B * V[i - 1] + C) % i + 1;
}

// traverses the tree in pre-order, numbering nodes and storing their subtrees' ranges
void Pre(int i)

{
  P[pi] = i;
  L[i] = pi++;
  for (auto j : ch[i])
    Pre(j);
  R[i] = pi - 1;
}

// returns number of "*" nodes reachable from i in its subtree
int CountC(int i)

{
  if (S[i] == '#')
    return(0);
  int c = 1;
  for (auto j : ch[i])
    c += CountC(j);
  return(c);
}

// sets C values of all "*" nodes reachable from i in its subtree
void SetC(int i, int c)

{
  if (S[i] == '#')
    return;
  C[i] = c;
  for (auto j : ch[i])
    SetC(j, c);
}

// combines two max/count pairs
MCPR Comb(MCPR a, MCPR b)

{
  LL m = max(a.x, b.x);
  return(mp(m, (a.x == m ? a.y : 0) + (b.x == m ? b.y : 0)));
}

MCPR ProcessCase()

{
  int i, j;
  // init
  Fill(C, 0);
  Fox(i, N)
    ch[i].clear();
  // input, and generate E values
  Read(N), Read(K);
  scanf("%s", &S);
  ReadSeq(E, N, K);
  Fox1(i, N - 1)
  {
    E[i]--;
    ch[E[i]].pb(i);
  }
  // number nodes in pre-order
  pi = 0;
  Pre(0);
  // floodfill to find connected * regions
  int nr = 0;
  LL base = 0;
  Fox(i, N)
    if (S[i] == '*' && !C[i])
    {
      nr++;
      int c = CountC(i);
      SetC(i, c);
      base += (LL)c * (c - 1) / 2;
    }
  // precompute prefix, suffix, and subtree C value max/count pairs
  preM[0] = sufM[N] = mp(-1, 0);
  Fox(i, N)
    preM[i + 1] = Comb(preM[i], mp(C[P[i]], 1));
  FoxR(i, N)
  {
    sufM[i] = Comb(sufM[i + 1], mp(C[P[i]], 1));
    subM[i] = mp(C[i], 1);
    for (auto j : ch[i])
      subM[i] = Comb(subM[i], subM[j]);
  }
  // consider each possible edge to delete
  MCPR ans = mp(-1, 0);
  Fox1(i, N - 1)
    if (S[i] == '#' || S[E[i]] == '#' || nr == 1)
    {
      // compute max/count pairs inside/outside i's subtree
      MCPR in, out;
      if (nr == 1 && (S[i] == '#' || S[E[i]] == '#'))
      {
        // max values are irrelevant in this case
        in = mp(0, R[i] - L[i] + 1);
        out = mp(0, N - in.y);
      }
      else
      {
        in = subM[i];
        out = Comb(preM[L[i]], sufM[R[i] + 1]);
      }
      MCPR cur = mp(base, in.y * out.y);
      if (nr > 1)
        cur.x += in.x * out.x;
      ans = Comb(ans, cur);
    }
  return(ans);
}

int main()

{
  int T, t;
  Read(T);
  Fox1(t, T)
  {
    MCPR ans = ProcessCase();
    printf("Case #%d: %lld %lld\n", t, ans.x, ans.y);
  }
  return(0);
}