rem
stringlengths 0
322k
| add
stringlengths 0
2.05M
| context
stringlengths 8
228k
|
---|---|---|
msg['From'] = '[email protected]' | msg['From'] = '[email protected]' | def mail(self, to, subject, text): # http://kutuma.blogspot.com/2007/08/sending-emails-via-gmail-with-python.html msg = MIMEMultipart() |
return os.getcwd() | return "Not implemented, for now" | def index(self, format='html'): """GET /uploads: All items in the collection""" # url('uploads') return os.getcwd() |
permanent_file = open(archive.filename.lstrip(os.sep),'w') | permanent_file = open(os.path.join(self.main_root + '/trunk/openaddresses/uploads',archive.filename.lstrip(os.sep)), 'w') | def create(self): """POST /uploads: Create a new item""" archive = request.POST['uploaded_file'] email = request.POST['email'] permanent_file = open(archive.filename.lstrip(os.sep),'w') shutil.copyfileobj(archive.file, permanent_file) archive.file.close() permanent_file.close() self.mail(email,"OpenAddresses.org upload confirmation","The file " + permanent_file.name + " has been uploaded. Thanks ! The OpenAddresses.org team.") self.mail("[email protected]","OpenAddresses.org new file uploaded !","The file " + permanent_file.name + " has been uploaded by " + email) return dumps({"success": True}) |
return dumps({"success": True}) | return dumps({"success": True, "filename": permanent_file.name}) | def create(self): """POST /uploads: Create a new item""" archive = request.POST['uploaded_file'] email = request.POST['email'] permanent_file = open(archive.filename.lstrip(os.sep),'w') shutil.copyfileobj(archive.file, permanent_file) archive.file.close() permanent_file.close() self.mail(email,"OpenAddresses.org upload confirmation","The file " + permanent_file.name + " has been uploaded. Thanks ! The OpenAddresses.org team.") self.mail("[email protected]","OpenAddresses.org new file uploaded !","The file " + permanent_file.name + " has been uploaded by " + email) return dumps({"success": True}) |
sqlQuery = sqlQuery + " WHERE tsvector_street_housenumber_city @@ to_tsquery('" + tsquery + "')" | sqlQuery = sqlQuery + " WHERE tsvector_street_housenumber_city @@ to_tsquery('english', '" + tsquery + "')" | def fullTextSearch(self,request): # addresses/fullTextSearch?fields=street,city,housenumber&query=ch%20du%2028&tolerance=0.005&easting=6.62379551&northing=46.51687241&limit=20&distinct=true # Read request parameters fields = request.params['fields'] |
sqlQuery = sqlQuery + " WHERE tsvector_street @@ to_tsquery('" + tsquery + "')" | sqlQuery = sqlQuery + " WHERE tsvector_street @@ to_tsquery('english','" + tsquery + "')" | def fullTextSearch(self,request): # addresses/fullTextSearch?fields=street,city,housenumber&query=ch%20du%2028&tolerance=0.005&easting=6.62379551&northing=46.51687241&limit=20&distinct=true # Read request parameters fields = request.params['fields'] |
sqlQuery = sqlQuery + " WHERE to_tsvector(" + tsvector + ") @@ to_tsquery('" + tsquery + "')" | sqlQuery = sqlQuery + " WHERE to_tsvector(" + tsvector + ") @@ to_tsquery('english','" + tsquery + "')" | def fullTextSearch(self,request): # addresses/fullTextSearch?fields=street,city,housenumber&query=ch%20du%2028&tolerance=0.005&easting=6.62379551&northing=46.51687241&limit=20&distinct=true # Read request parameters fields = request.params['fields'] |
responseElements = responseText.split('\'') housenumber = responseElements[7] street = responseElements[3] postcode = responseElements[5] city = responseElements[11] | responseElements = responseText.split('\n') for element in responseElements: if element.rfind('strname1') > -1: strname1_s = element.split('=') street = strname1_s[1].lstrip().lstrip('\'').rstrip().rstrip('\'') if element.rfind('plz4') > -1: plz4_s = element.split('=') postcode = plz4_s[1].lstrip().lstrip('\'').rstrip().rstrip('\'') if element.rfind('deinr') > -1: deinr_s = element.split('=') housenumber = deinr_s[1].lstrip().lstrip('\'').rstrip().rstrip('\'') if element.rfind('plzname') > -1: plzname_s = element.split('=') city = plzname_s[1].lstrip().lstrip('\'').rstrip().rstrip('\'') | def index(self): if 'latitude' in request.params and 'longitude' in request.params: latitude = float(request.params['latitude']) longitude = float(request.params['longitude']) if 'easting' in request.params: easting = float(request.params['easting']) if 'northing' in request.params: northing = float(request.params['northing']) |
tsvector = 'tsvector_street_housenumber_city' | tsvector = "to_tsvector('english', coalesce(street,'') || ' ' || coalesce(housenumber,'') || ' ' || coalesce(city,''))" | def index(self, format='json'): """GET /: return all features.""" # If no filter argument is passed to the protocol index method # then the default MapFish filter is used. This default filter # is constructed based on the box, lon, lat, tolerance GET # params. # # If you need your own filter with application-specific params # taken into acount, create your own filter and pass it to the # protocol index method. # # E.g. # # default_filter = create_default_filter( # request, Address # ) # compare_filter = comparison.Comparison( # comparison.Comparison.ILIKE, # Address.mycolumnname, # value=myvalue # ) # filter = logical.Logical(logical.Logical.AND, [default_filter, compare_filter]) # return self.protocol.index(request, response, format=format, filter=filter) # # # You can also create filters using sqlalchemy syntax. # It is possible for example to mix a custom sqlalchemy filter # with the default mapfish filter. # # E.g. # # from sqlalchemy.sql import and_ # # default_filter = create_default_filter( # request, Address # ) # compare_filter = Address.mycolumnname.ilike('%myvalue%') # if default_filter is not None: # filter = and_(default_filter.to_sql_expr(), compare_filter) # else: # filter = compare_filter # return self.protocol.index(request, response, format=format, filter=filter) if 'query' in request.params: # http://lowmanio.co.uk/blog/entries/postgresql-full-text-search-and-sqlalchemy/ terms = request.params.get('query').split() terms = ' & '.join([term + ('' if term.isdigit() else ':*') for term in terms]) |
tsvector = 'tsvector_street' | tsvector = "to_tsvector('english', coalesce(street,''))" | def index(self, format='json'): """GET /: return all features.""" # If no filter argument is passed to the protocol index method # then the default MapFish filter is used. This default filter # is constructed based on the box, lon, lat, tolerance GET # params. # # If you need your own filter with application-specific params # taken into acount, create your own filter and pass it to the # protocol index method. # # E.g. # # default_filter = create_default_filter( # request, Address # ) # compare_filter = comparison.Comparison( # comparison.Comparison.ILIKE, # Address.mycolumnname, # value=myvalue # ) # filter = logical.Logical(logical.Logical.AND, [default_filter, compare_filter]) # return self.protocol.index(request, response, format=format, filter=filter) # # # You can also create filters using sqlalchemy syntax. # It is possible for example to mix a custom sqlalchemy filter # with the default mapfish filter. # # E.g. # # from sqlalchemy.sql import and_ # # default_filter = create_default_filter( # request, Address # ) # compare_filter = Address.mycolumnname.ilike('%myvalue%') # if default_filter is not None: # filter = and_(default_filter.to_sql_expr(), compare_filter) # else: # filter = compare_filter # return self.protocol.index(request, response, format=format, filter=filter) if 'query' in request.params: # http://lowmanio.co.uk/blog/entries/postgresql-full-text-search-and-sqlalchemy/ terms = request.params.get('query').split() terms = ' & '.join([term + ('' if term.isdigit() else ':*') for term in terms]) |
limit = request.params['limit'] | limit = int(request.params['limit']) | def fullTextSearch(self,request): # addresses/fullTextSearch?fields=street,city,housenumber&query=ch%20du%2028&tolerance=0.005&easting=6.62379551&northing=46.51687241&limit=20&distinct=true # Read request parameters fields = request.params['fields'] |
yield UInt16(self, "left", "Text Grid Left") yield UInt16(self, "top", "Text Grid Top") yield UInt16(self, "width", "Text Grid Width") yield UInt16(self, "height", "Text Grid Height") | yield UInt16(parent, "left", "Text Grid Left") yield UInt16(parent, "top", "Text Grid Top") yield UInt16(parent, "width", "Text Grid Width") yield UInt16(parent, "height", "Text Grid Height") | def parseTextExtension(parent): yield UInt8(parent, "block_size", "Block Size") yield UInt16(self, "left", "Text Grid Left") yield UInt16(self, "top", "Text Grid Top") yield UInt16(self, "width", "Text Grid Width") yield UInt16(self, "height", "Text Grid Height") yield UInt8(parent, "cell_width", "Character Cell Width") yield UInt8(parent, "cell_height", "Character Cell Height") yield UInt8(parent, "fg_color", "Foreground Color Index") yield UInt8(parent, "bg_color", "Background Color Index") while True: field = PascalString8(parent, "comment[]", strip=" \0\r\n\t") yield field if field.length == 0: break |
cvt_time=lambda v:datetime(2001,1,1) + timedelta(seconds=v) | def cvt_time(v): v=timedelta(seconds=v) epoch2001 = datetime(2001,1,1) epoch1970 = datetime(1970,1,1) if (epoch2001 + v - datetime.today()).days > 5*365: return epoch1970 + v return epoch2001 + v | def createFields(self): yield Enum(Bits(self, "marker_type", 4), {0: "Simple", 1: "Int", 2: "Real", 3: "Date", 4: "Data", 5: "ASCII String", 6: "UTF-16-BE String", 8: "UID", 10: "Array", 13: "Dict",}) markertype = self['marker_type'].value if markertype == 0: # Simple (Null) yield Enum(Bits(self, "value", 4), {0: "Null", 8: "False", 9: "True", 15: "Fill Byte",}) if self['value'].display == "False": self.xml=lambda prefix:prefix + "<false/>" elif self['value'].display == "True": self.xml=lambda prefix:prefix + "<true/>" else: self.xml=lambda prefix:prefix + "" |
self.xml=lambda prefix:prefix + "<date>%s</date>"%(cvt_time(self['value'].value).isoformat()) | self.xml=lambda prefix:prefix + "<date>%sZ</date>"%(cvt_time(self['value'].value).isoformat()) | def createFields(self): yield Enum(Bits(self, "marker_type", 4), {0: "Simple", 1: "Int", 2: "Real", 3: "Date", 4: "Data", 5: "ASCII String", 6: "UTF-16-BE String", 8: "UID", 10: "Array", 13: "Dict",}) markertype = self['marker_type'].value if markertype == 0: # Simple (Null) yield Enum(Bits(self, "value", 4), {0: "Null", 8: "False", 9: "True", 15: "Fill Byte",}) if self['value'].display == "False": self.xml=lambda prefix:prefix + "<false/>" elif self['value'].display == "True": self.xml=lambda prefix:prefix + "<true/>" else: self.xml=lambda prefix:prefix + "" |
self.xml=lambda prefix:prefix + "<string>%s</string>"%(self['value'].value.encode('iso-8859-1')) | self.xml=lambda prefix:prefix + "<string>%s</string>"%(self['value'].value.replace('&','&').encode('iso-8859-1')) | def createFields(self): yield Enum(Bits(self, "marker_type", 4), {0: "Simple", 1: "Int", 2: "Real", 3: "Date", 4: "Data", 5: "ASCII String", 6: "UTF-16-BE String", 8: "UID", 10: "Array", 13: "Dict",}) markertype = self['marker_type'].value if markertype == 0: # Simple (Null) yield Enum(Bits(self, "value", 4), {0: "Null", 8: "False", 9: "True", 15: "Fill Byte",}) if self['value'].display == "False": self.xml=lambda prefix:prefix + "<false/>" elif self['value'].display == "True": self.xml=lambda prefix:prefix + "<true/>" else: self.xml=lambda prefix:prefix + "" |
self.xml=lambda prefix:prefix + "<string>%s</string>"%(self['value'].value.encode('utf-8')) | self.xml=lambda prefix:prefix + "<string>%s</string>"%(self['value'].value.replace('&','&').encode('utf-8')) | def createFields(self): yield Enum(Bits(self, "marker_type", 4), {0: "Simple", 1: "Int", 2: "Real", 3: "Date", 4: "Data", 5: "ASCII String", 6: "UTF-16-BE String", 8: "UID", 10: "Array", 13: "Dict",}) markertype = self['marker_type'].value if markertype == 0: # Simple (Null) yield Enum(Bits(self, "value", 4), {0: "Null", 8: "False", 9: "True", 15: "Fill Byte",}) if self['value'].display == "False": self.xml=lambda prefix:prefix + "<false/>" elif self['value'].display == "True": self.xml=lambda prefix:prefix + "<true/>" else: self.xml=lambda prefix:prefix + "" |
while field: | while field is not None: | def _getPath(self): if not self._parent: return '/' names = [] field = self while field: names.append(field._name) field = field._parent names[-1] = '' return '/'.join(reversed(names)) |
addr_text = '' | addr_text_list = [] | def update_addr_view(self): addr_text = '' for i in xrange(self.view.get_height_chars()): addr_text += self.format_addr(self.pos+i*self.view.get_width_chars())+'\n' self.view.addr_view.SetValue(addr_text) |
addr_text += self.format_addr(self.pos+i*self.view.get_width_chars())+'\n' self.view.addr_view.SetValue(addr_text) | addr_text_list.append( self.format_addr(self.pos+i*self.view.get_width_chars())+'\n') self.view.addr_view.SetValue(''.join(addr_text_list)) | def update_addr_view(self): addr_text = '' for i in xrange(self.view.get_height_chars()): addr_text += self.format_addr(self.pos+i*self.view.get_width_chars())+'\n' self.view.addr_view.SetValue(addr_text) |
self.trackCommon(track, video) | def processVideo(self, track): video = Metadata(self) try: self.trackCommon(track, video) video.compression = track["CodecID/string"].value if "Video" in track: video.width = track["Video/PixelWidth/unsigned"].value video.height = track["Video/PixelHeight/unsigned"].value except MissingField: pass self.addGroup("video[]", video, "Video stream") |
|
try: self.trackCommon(track, audio) if "Audio" in track: audio.sample_rate = track["Audio/SamplingFrequency/float"].value | self.trackCommon(track, audio) if "Audio" in track: frequency = self.getDouble(track, "Audio/SamplingFrequency") if frequency is not None: audio.sample_rate = frequency if "Audio/Channels/unsigned" in track: | def processAudio(self, track): audio = Metadata(self) try: self.trackCommon(track, audio) if "Audio" in track: audio.sample_rate = track["Audio/SamplingFrequency/float"].value audio.nb_channel = track["Audio/Channels/unsigned"].value audio.compression = track["CodecID/string"].value except MissingField: pass self.addGroup("audio[]", audio, "Audio stream") |
except MissingField: pass | def processAudio(self, track): audio = Metadata(self) try: self.trackCommon(track, audio) if "Audio" in track: audio.sample_rate = track["Audio/SamplingFrequency/float"].value audio.nb_channel = track["Audio/Channels/unsigned"].value audio.compression = track["CodecID/string"].value except MissingField: pass self.addGroup("audio[]", audio, "Audio stream") |
|
self.trackCommon(track, sub) | def processSubtitle(self, track): sub = Metadata(self) try: self.trackCommon(track, sub) sub.compression = track["CodecID/string"].value except MissingField: pass self.addGroup("subtitle[]", sub, "Subtitle") |
|
@fault_tolerant def readDuration(self, duration, timecode_scale): seconds = duration * timecode_scale self.duration = timedelta(seconds=seconds) | def processSimpleTag(self, tag): if "TagName/unicode" not in tag \ or "TagString/unicode" not in tag: return name = tag["TagName/unicode"].value if name not in self.tag_key: return key = self.tag_key[name] value = tag["TagString/unicode"].value setattr(self, key, value) |
|
timecode_scale = info["TimecodeScale/unsigned"].value * 1e-9 if "Duration/float" in info: self.readDuration(info["Duration/float"].value, timecode_scale) elif "Duration/double" in info: self.readDuration(info["Duration/double"].value, timecode_scale) | duration = self.getDouble(info, "Duration") if duration is not None: try: seconds = duration * info["TimecodeScale/unsigned"].value * 1e-9 self.duration = timedelta(seconds=seconds) except OverflowError: pass | def processInfo(self, info): if "TimecodeScale/unsigned" in info: timecode_scale = info["TimecodeScale/unsigned"].value * 1e-9 if "Duration/float" in info: self.readDuration(info["Duration/float"].value, timecode_scale) elif "Duration/double" in info: self.readDuration(info["Duration/double"].value, timecode_scale) if "DateUTC/date" in info: try: self.creation_date = dateToDatetime(info["DateUTC/date"].value) except OverflowError: pass if "WritingApp/unicode" in info: self.producer = info["WritingApp/unicode"].value if "MuxingApp/unicode" in info: self.producer = info["MuxingApp/unicode"].value if "Title/unicode" in info: self.title = info["Title/unicode"].value |
"stbl": (AtomList, "stbl", ""), | "stbl": (AtomList, "stbl", "Sample Table"), "stco": (STCO, "stsd", "Sample Table Chunk Offset"), "stsd": (STSD, "stsd", "Sample Table Sample Description"), "stss": (STSS, "stss", "Sample Table Sync Samples"), "stsz": (STSZ, "stsz", "Sample Table Sizes"), | def createFields(self): yield UInt32(self, "unk") yield AtomList(self, "tags") |
"file_ext": ("mka", "mkv"), | "file_ext": ("mka", "mkv", "webm"), | def createFields(self): yield RawInt(self, 'id') yield Unsigned(self, 'size') for val in self.val[1:]: if callable(val): yield val(self) else: while not self.eof: yield EBML(self, val) |
return False return self.stream.searchBytes('\x42\x82\x88matroska', 5*8, first._size) is not None | return "First chunk size is invalid" if self[0]['DocType/string'].value not in ('matroska', 'webm'): return "Stream isn't a matroska document." return True | def validate(self): if self.stream.readBits(0, 32, self.endian) != self.EBML_SIGNATURE: return False try: first = self[0] except ParserError: return False if None < self._size < first._size: return False return self.stream.searchBytes('\x42\x82\x88matroska', 5*8, first._size) is not None |
if hdr['DocType/string'].value != 'matroska': raise ParserError("Stream isn't a matroska document.") | def createFields(self): hdr = EBML(self, ebml) yield hdr if hdr['DocType/string'].value != 'matroska': raise ParserError("Stream isn't a matroska document.") |
|
yield UInt32(parent, "gamma", "Gamma (x10,000)") | yield UInt32(parent, "gamma", "Gamma (x100,000)") | def gammaParse(parent): yield UInt32(parent, "gamma", "Gamma (x10,000)") |
return float(parent["gamma"].value) / 10000 | return float(parent["gamma"].value) / 100000 | def gammaValue(parent): return float(parent["gamma"].value) / 10000 |
if index+3 < len(text) \ | elif index+3 < len(text) \ | def parseRange(text, start): r""" >>> parseRange('[a]b', 1) (<RegexRange '[a]'>, 3) >>> parseRange('[a-z]b', 1) (<RegexRange '[a-z]'>, 5) >>> parseRange('[^a-z-]b', 1) (<RegexRange '[^a-z-]'>, 7) >>> parseRange('[^]-]b', 1) (<RegexRange '[^]-]'>, 5) """ index = start char_range = [] exclude = False if text[index] == '^': exclude = True index += 1 if text[index] == ']': char_range.append(RegexRangeCharacter(']')) index += 1 while index < len(text) and text[index] != ']': if index+1 < len(text) \ and text[index] == '-' and text[index+1] == ']': break if index+3 < len(text) \ and text[index+1] == '-' \ and text[index+2] != ']': char_range.append(RegexRangeItem(ord(text[index]), ord(text[index+2]))) index += 3 else: char_range.append(RegexRangeCharacter(text[index])) index += 1 if index < len(text) and text[index] == '-': char_range.append(RegexRangeCharacter('-')) index += 1 if index == len(text) or text[index] != ']': raise SyntaxError('Invalid range: %s' % text[start-1:index]) return RegexRange(char_range, exclude), index+1 |
if "Duration/float" in info \ and "TimecodeScale/unsigned" in info \ and 0 < info["Duration/float"].value: try: seconds = info["Duration/float"].value * info["TimecodeScale/unsigned"].value * 1e-9 self.duration = timedelta(seconds=seconds) except OverflowError: pass | if "TimecodeScale/unsigned" in info: timecode_scale = info["TimecodeScale/unsigned"].value * 1e-9 if "Duration/float" in info: self.readDuration(info["Duration/float"].value, timecode_scale) elif "Duration/double" in info: self.readDuration(info["Duration/double"].value, timecode_scale) | def processInfo(self, info): if "Duration/float" in info \ and "TimecodeScale/unsigned" in info \ and 0 < info["Duration/float"].value: try: seconds = info["Duration/float"].value * info["TimecodeScale/unsigned"].value * 1e-9 self.duration = timedelta(seconds=seconds) except OverflowError: # Catch OverflowError for timedelta # (long int too large to convert to int) pass if "DateUTC/date" in info: try: self.creation_date = dateToDatetime(info["DateUTC/date"].value) except OverflowError: pass if "WritingApp/unicode" in info: self.producer = info["WritingApp/unicode"].value if "MuxingApp/unicode" in info: self.producer = info["MuxingApp/unicode"].value if "Title/unicode" in info: self.title = info["Title/unicode"].value |
install_options["install_requires"] = "hachoir-core>=1.2.1" | install_options["install_requires"] = "hachoir-core>=1.3" | def main(): if "--setuptools" in argv: argv.remove("--setuptools") from setuptools import setup use_setuptools = True else: from distutils.core import setup use_setuptools = False hachoir_parser = load_source("version", path.join("hachoir_parser", "version.py")) PACKAGES = {"hachoir_parser": "hachoir_parser"} for name in MODULES: PACKAGES["hachoir_parser." + name] = "hachoir_parser/" + name install_options = { "name": hachoir_parser.PACKAGE, "version": hachoir_parser.__version__, "url": hachoir_parser.WEBSITE, "download_url": hachoir_parser.WEBSITE, "author": "Hachoir team (see AUTHORS file)", "description": "Package of Hachoir parsers used to open binary files", "long_description": getLongDescription(), "classifiers": CLASSIFIERS, "license": hachoir_parser.LICENSE, "packages": PACKAGES.keys(), "package_dir": PACKAGES, } if use_setuptools: install_options["install_requires"] = "hachoir-core>=1.2.1" install_options["zip_safe"] = True setup(**install_options) |
title=title, desc=desc, tags=tags, search_hidden=not visible, safety=safety, is_public=is_public, is_family=is_family, is_friend=is_friend, content_type=content_type) | title=title, desc=desc, tags=tags, search_hidden=not visible, safety=safety, is_public=is_public, is_family=is_family, is_friend=is_friend, content_type=content_type, progress_tracker=self.upload_progress_tracker) | def upload(self, response=None): """Upload worker function, called by the File->Upload callback. As this calls itself in the deferred callback, it takes a response argument.""" |
search_hidden=not visible, safety=safety, is_public=is_public, is_family=is_family, is_friend=is_friend, content_type=content_type) | search_hidden=not visible, safety=safety, is_public=is_public, is_family=is_family, is_friend=is_friend, content_type=content_type, progress_tracker=self.upload_progress_tracker) | def upload(self, response=None): """Upload worker function, called by the File->Upload callback. As this calls itself in the deferred callback, it takes a response argument.""" |
lock = "org.gtk.PyUnique.lock" | lock = "%s.lock" % name | def __init__(self, name, startup_id=None): gobject.GObject.__init__(self) self._is_running = False self._name = name self._screen = gdk.screen_get_default() |
self._check_for_errors(stderr) | def _download(self): self.log = '' self.information['status'] = DownloadStatus.RUNNING if self.information['download_type'] == DownloadTypes.TORRENT: # download torrent if necessary torrent_filename = os.path.join(self._config.get('general', 'folder_new_otrkeys'), self.filename + '.torrent') if not os.path.exists(torrent_filename): password = base64.b64decode(self._config.get('general', 'password')) hash = hashlib.md5(password).hexdigest() email = self._config.get('general', 'email') url = 'http://81.95.11.2/xbt/xbt_torrent_create.php?filename=%s&email=%s&mode=free&hash=%s' % (self.filename, email, hash) try: urllib.urlretrieve(url, torrent_filename) # read filename f = open(torrent_filename, 'r') line = f.readlines()[0] except IOError, error: self.information['status'] = DownloadStatus.ERROR self.information['message_short'] = 'Torrentdatei konnte nicht geladen werden.' yield "Torrentdatei konnte nicht heruntergeladen werden (%s)!" % error return if "Hash wrong" in line: os.remove(torrent_filename) self.information['status'] = DownloadStatus.ERROR self.information['message_short'] = 'OTR-Daten nicht korrekt!' yield 'OTR-Daten nicht korrekt!' return self.information['output'] = self._config.get('general', 'folder_new_otrkeys') command = self._config.get('downloader', 'aria2c_torrent') + ["-d", self.information['output'], "-T", torrent_filename] yield "Ausgeführt wird:\n%s\n" % " ".join(command) try: self.__process = subprocess.Popen(command, stdout=subprocess.PIPE) except OSError, error: self.information['status'] = DownloadStatus.ERROR self.information['message_short'] = 'Aria2c ist nicht installiert.' yield "Ist aria2c installiert? Der Befehl konnte nicht ausgeführt werden:\nFehlermeldung: %s" % error return while self.__process.poll() == None: line = self.__process.stdout.readline().strip() if "Checksum" in line: result = re.findall('Checksum:.*\((.*%)\)', line) if result: self.information['message_short'] = 'Überprüfen...%s' % result[0] elif "SEEDING" in line: self.information['message_short'] = 'Seeden...' self.information['status'] = DownloadStatus.SEEDING # _NOT_ DownloadStatus.FINISHED self.information['progress'] = 100 self.information['est'] = '' self.information['speed'] = '' self.information['seeders'] = None result = re.findall('ratio:(.*)\)', line) if result: print 'ratio: ', result[0] self.information['ratio'] = result[0] result = re.findall('UP:(.*)\((.*)\)', line) if result: self.information['upspeed'] = result[0][0] self.information['uploaded'] = result[0][1] elif "%" in line: self.information['message_short'] = '' # get size if not self.information['size']: try: # aria2c gives size always in MiB (hopefully) size = re.findall('SIZE:.*/(.*)MiB\(', line)[0] size = size.replace(',', '') size = int(round(float(size))) * 1024 * 1024 self.information['size'] = size yield line except: pass |
|
This path is by default <mfm_lib_path>/../data/ in trunk and /usr/share/mfm in an installed version but this path | This path is by default <otrverwaltung_lib_path>/../data/ in trunk and /usr/share/otrverwaltung in an installed version but this path | def getdatapath(*args): """Retrieve otrverwaltung data path This path is by default <mfm_lib_path>/../data/ in trunk and /usr/share/mfm in an installed version but this path is specified at installation time. """ return os.path.join(os.path.dirname(__file__), data_dir, *args) |
self.combobox_archive.fill(archive_directory) self.combobox_archive.set_active(0) self.combobox_archive.connect('changed', self._on_combobox_archive_changed) | if action != Action.DECODE: self.combobox_archive.fill(archive_directory) self.combobox_archive.set_active(0) self.combobox_archive.connect('changed', self._on_combobox_archive_changed) | def _run(self, file_conclusions, action, rename_by_schema, archive_directory): self.action = action self.rename_by_schema = rename_by_schema self.__file_conclusions = file_conclusions self.forward_clicks = 0 self.show_all() self.combobox_archive.fill(archive_directory) self.combobox_archive.set_active(0) self.combobox_archive.connect('changed', self._on_combobox_archive_changed) # basic show/hide widgets_hidden = [] if self.action == Action.DECODE: self.builder.get_object('box_buttons').show() # show buttons, but hide all except play button widgets_hidden = ['image_cut', 'label_cut', 'label_cut_status', 'button_play_cut', 'box_rating', 'check_delete_uncut', 'box_rename', 'box_archive'] elif self.action == Action.CUT: widgets_hidden = ['image_decode', 'label_decode', 'label_decode_status'] for widget in widgets_hidden: self.builder.get_object(widget).hide() self.show_conclusion(0) |
self.builder.get_object('button_play_cut').props.visible = cut_ok | self.builder.get_object('button_play_cut').props.visible = cut_ok self.builder.get_object('box_archive').props.visible = cut_ok | def show_conclusion(self, new_iter): self.conclusion_iter = new_iter self.file_conclusion = self.__file_conclusions[self.conclusion_iter] self.builder.get_object('label_count').set_text("Zeige Datei %s/%s" % (str(new_iter + 1), len(self.__file_conclusions))) |
url = "%sgetxml.php?ofsb=%s" % (server, str(size)) | urls = ["%sgetxml.php?ofsb=%s" % (server, str(size)), "%sgetxml.php?ofsb=%s" % (server, str((size+2*1024**3)%(4*1024**3)- 2*1024**3))] | def download_cutlists(filename, server, choose_cutlists_by, cutlist_mp4_as_hq, error_cb=None, cutlist_found_cb=None): """ Downloads all cutlists for the given file. filename - movie filename server - cutlist server choose_cutlists_by - 0 by size, 1 by name error_cb - callback: an error occurs (message) cutlist_found_cb - callback: a cutlist is found (Cutlist instance) Returns: a list of Cutlist instances """ if choose_cutlists_by == 0: # by size size = fileoperations.get_size(filename) url = "%sgetxml.php?ofsb=%s" % (server, str(size)) else: # by name root, extension = os.path.splitext(os.path.basename(filename)) if cutlist_mp4_as_hq and extension == '.mp4': root += ".HQ" url = "%sgetxml.php?name=%s" % (server, root) print url try: handle = urllib.urlopen(url) except IOError: if error_cb: error_cb("Verbindungsprobleme") return "Verbindungsprobleme", None try: dom_cutlists = xml.dom.minidom.parse(handle) handle.close() dom_cutlists = dom_cutlists.getElementsByTagName('cutlist') except: if error_cb: error_cb("Keine Cutlists gefunden") return "Keine Cutlists gefunden", None cutlists = [] for cutlist in dom_cutlists: c = Cutlist() c.id = __read_value(cutlist, "id") c.author = __read_value(cutlist, "author") c.ratingbyauthor = __read_value(cutlist, "ratingbyauthor") c.rating = __read_value(cutlist, "rating") c.ratingcount = __read_value(cutlist, "ratingcount") c.countcuts = __read_value(cutlist, "cuts") c.actualcontent = __read_value(cutlist, "actualcontent") c.usercomment = __read_value(cutlist, "usercomment") c.filename = __read_value(cutlist, "filename") c.withframes = __read_value(cutlist, "withframes") c.withtime = __read_value(cutlist, "withtime") c.duration = __read_value(cutlist, "duration") c.errors = __read_value(cutlist, "errors") c.othererrordescription = __read_value(cutlist, "othererrordescription") c.downloadcount = __read_value(cutlist, "downloadcount") c.autoname = __read_value(cutlist, "autoname") c.filename_original = __read_value(cutlist, "filename_original") if cutlist_found_cb: cutlist_found_cb(c) cutlists.append(c) if len(cutlists) == 0: return "Keine Cutlists gefunden", None else: return None, cutlists |
url = "%sgetxml.php?name=%s" % (server, root) print url try: handle = urllib.urlopen(url) except IOError: if error_cb: error_cb("Verbindungsprobleme") return "Verbindungsprobleme", None | urls = ["%sgetxml.php?name=%s" % (server, root)] cutlists = [] for url in urls: print "[Cutlists] Download by : %s" % url try: handle = urllib.urlopen(url) except IOError: if error_cb: error_cb("Verbindungsprobleme") return "Verbindungsprobleme", None try: dom_cutlists = xml.dom.minidom.parse(handle) handle.close() dom_cutlists = dom_cutlists.getElementsByTagName('cutlist') except: if error_cb: error_cb("Keine Cutlists gefunden") return "Keine Cutlists gefunden", None for cutlist in dom_cutlists: c = Cutlist() c.id = __read_value(cutlist, "id") c.author = __read_value(cutlist, "author") c.ratingbyauthor = __read_value(cutlist, "ratingbyauthor") c.rating = __read_value(cutlist, "rating") c.ratingcount = __read_value(cutlist, "ratingcount") c.countcuts = __read_value(cutlist, "cuts") c.actualcontent = __read_value(cutlist, "actualcontent") c.usercomment = __read_value(cutlist, "usercomment") c.filename = __read_value(cutlist, "filename") c.withframes = __read_value(cutlist, "withframes") c.withtime = __read_value(cutlist, "withtime") c.duration = __read_value(cutlist, "duration") c.errors = __read_value(cutlist, "errors") c.othererrordescription = __read_value(cutlist, "othererrordescription") c.downloadcount = __read_value(cutlist, "downloadcount") c.autoname = __read_value(cutlist, "autoname") c.filename_original = __read_value(cutlist, "filename_original") ids = [cutlist.id for cutlist in cutlists] if not c.id in ids: if cutlist_found_cb: cutlist_found_cb(c) | def download_cutlists(filename, server, choose_cutlists_by, cutlist_mp4_as_hq, error_cb=None, cutlist_found_cb=None): """ Downloads all cutlists for the given file. filename - movie filename server - cutlist server choose_cutlists_by - 0 by size, 1 by name error_cb - callback: an error occurs (message) cutlist_found_cb - callback: a cutlist is found (Cutlist instance) Returns: a list of Cutlist instances """ if choose_cutlists_by == 0: # by size size = fileoperations.get_size(filename) url = "%sgetxml.php?ofsb=%s" % (server, str(size)) else: # by name root, extension = os.path.splitext(os.path.basename(filename)) if cutlist_mp4_as_hq and extension == '.mp4': root += ".HQ" url = "%sgetxml.php?name=%s" % (server, root) print url try: handle = urllib.urlopen(url) except IOError: if error_cb: error_cb("Verbindungsprobleme") return "Verbindungsprobleme", None try: dom_cutlists = xml.dom.minidom.parse(handle) handle.close() dom_cutlists = dom_cutlists.getElementsByTagName('cutlist') except: if error_cb: error_cb("Keine Cutlists gefunden") return "Keine Cutlists gefunden", None cutlists = [] for cutlist in dom_cutlists: c = Cutlist() c.id = __read_value(cutlist, "id") c.author = __read_value(cutlist, "author") c.ratingbyauthor = __read_value(cutlist, "ratingbyauthor") c.rating = __read_value(cutlist, "rating") c.ratingcount = __read_value(cutlist, "ratingcount") c.countcuts = __read_value(cutlist, "cuts") c.actualcontent = __read_value(cutlist, "actualcontent") c.usercomment = __read_value(cutlist, "usercomment") c.filename = __read_value(cutlist, "filename") c.withframes = __read_value(cutlist, "withframes") c.withtime = __read_value(cutlist, "withtime") c.duration = __read_value(cutlist, "duration") c.errors = __read_value(cutlist, "errors") c.othererrordescription = __read_value(cutlist, "othererrordescription") c.downloadcount = __read_value(cutlist, "downloadcount") c.autoname = __read_value(cutlist, "autoname") c.filename_original = __read_value(cutlist, "filename_original") if cutlist_found_cb: cutlist_found_cb(c) cutlists.append(c) if len(cutlists) == 0: return "Keine Cutlists gefunden", None else: return None, cutlists |
try: dom_cutlists = xml.dom.minidom.parse(handle) handle.close() dom_cutlists = dom_cutlists.getElementsByTagName('cutlist') except: if error_cb: error_cb("Keine Cutlists gefunden") return "Keine Cutlists gefunden", None cutlists = [] for cutlist in dom_cutlists: c = Cutlist() c.id = __read_value(cutlist, "id") c.author = __read_value(cutlist, "author") c.ratingbyauthor = __read_value(cutlist, "ratingbyauthor") c.rating = __read_value(cutlist, "rating") c.ratingcount = __read_value(cutlist, "ratingcount") c.countcuts = __read_value(cutlist, "cuts") c.actualcontent = __read_value(cutlist, "actualcontent") c.usercomment = __read_value(cutlist, "usercomment") c.filename = __read_value(cutlist, "filename") c.withframes = __read_value(cutlist, "withframes") c.withtime = __read_value(cutlist, "withtime") c.duration = __read_value(cutlist, "duration") c.errors = __read_value(cutlist, "errors") c.othererrordescription = __read_value(cutlist, "othererrordescription") c.downloadcount = __read_value(cutlist, "downloadcount") c.autoname = __read_value(cutlist, "autoname") c.filename_original = __read_value(cutlist, "filename_original") if cutlist_found_cb: cutlist_found_cb(c) cutlists.append(c) | cutlists.append(c) | def download_cutlists(filename, server, choose_cutlists_by, cutlist_mp4_as_hq, error_cb=None, cutlist_found_cb=None): """ Downloads all cutlists for the given file. filename - movie filename server - cutlist server choose_cutlists_by - 0 by size, 1 by name error_cb - callback: an error occurs (message) cutlist_found_cb - callback: a cutlist is found (Cutlist instance) Returns: a list of Cutlist instances """ if choose_cutlists_by == 0: # by size size = fileoperations.get_size(filename) url = "%sgetxml.php?ofsb=%s" % (server, str(size)) else: # by name root, extension = os.path.splitext(os.path.basename(filename)) if cutlist_mp4_as_hq and extension == '.mp4': root += ".HQ" url = "%sgetxml.php?name=%s" % (server, root) print url try: handle = urllib.urlopen(url) except IOError: if error_cb: error_cb("Verbindungsprobleme") return "Verbindungsprobleme", None try: dom_cutlists = xml.dom.minidom.parse(handle) handle.close() dom_cutlists = dom_cutlists.getElementsByTagName('cutlist') except: if error_cb: error_cb("Keine Cutlists gefunden") return "Keine Cutlists gefunden", None cutlists = [] for cutlist in dom_cutlists: c = Cutlist() c.id = __read_value(cutlist, "id") c.author = __read_value(cutlist, "author") c.ratingbyauthor = __read_value(cutlist, "ratingbyauthor") c.rating = __read_value(cutlist, "rating") c.ratingcount = __read_value(cutlist, "ratingcount") c.countcuts = __read_value(cutlist, "cuts") c.actualcontent = __read_value(cutlist, "actualcontent") c.usercomment = __read_value(cutlist, "usercomment") c.filename = __read_value(cutlist, "filename") c.withframes = __read_value(cutlist, "withframes") c.withtime = __read_value(cutlist, "withtime") c.duration = __read_value(cutlist, "duration") c.errors = __read_value(cutlist, "errors") c.othererrordescription = __read_value(cutlist, "othererrordescription") c.downloadcount = __read_value(cutlist, "downloadcount") c.autoname = __read_value(cutlist, "autoname") c.filename_original = __read_value(cutlist, "filename_original") if cutlist_found_cb: cutlist_found_cb(c) cutlists.append(c) if len(cutlists) == 0: return "Keine Cutlists gefunden", None else: return None, cutlists |
def foreach(model, path, iter, data=None): index = model.get_value(iter, 0) stamp = self.app.planned_broadcasts[index].datetime if stamp < now: selection.select_iter(iter) self.builder.get_object('treeview_planning').get_model().foreach(foreach) | for row in self.builder.get_object('treeview_planning').get_model(): if row[0].datetime < now: selection.select_iter(row.iter) | def foreach(model, path, iter, data=None): index = model.get_value(iter, 0) stamp = self.app.planned_broadcasts[index].datetime |
return "%s %s" % (self.user.username, self.group) | if self.user: username = self.user.username else: username = 'anonymous return "%s %s" % (username, self.group) | def __unicode__(self): return "%s %s" % (self.user.username, self.group) |
raise | if settings.DEBUG: raise l.warning("Can't find the GoalType named %s" % goal_name) | def record(cls, goal_name, experiment_user): try: return cls._record(goal_name, experiment_user) except GoalType.DoesNotExist: raise except Exception, e: l.error("Unexpected exception in GoalRecord.record:\n" "%s" % traceback.format_exc) |
goal_types = [GoalType.objects.create(name=i) for i in range(3)] | goal_types = [GoalType.objects.create(name=str(i)) for i in range(3)] | def testParticipantConversionCalculator(self): goal_types = [GoalType.objects.create(name=i) for i in range(3)] anonymous_visitor = AnonymousVisitor.objects.create() participant = self.create_participant( anonymous_visitor=anonymous_visitor, experiment=self.experiment, enrollment_date=self.experiment.start_date + timedelta(days=2), group=Participant.TEST_GROUP) days = [datetime.combine(self.experiment.start_date + timedelta(days=i), time(hour=12)) for i in range(5)] nb_goal_records = GoalRecord.objects.all().count() self.create_goal_record(days[0], anonymous_visitor, goal_types[0]) self.create_goal_record(days[0], anonymous_visitor, goal_types[1]) self.create_goal_record(days[1], anonymous_visitor, goal_types[0]) self.create_goal_record(days[1], anonymous_visitor, goal_types[0]) self.create_goal_record(days[2], anonymous_visitor, goal_types[1]) self.create_goal_record(days[3], anonymous_visitor, goal_types[0]) self.create_goal_record(days[4], anonymous_visitor, goal_types[0]) self.create_goal_record(days[4], anonymous_visitor, goal_types[0]) self.assertEquals(nb_goal_records + 8, GoalRecord.objects.all().count()) # wasn't enrolled yet! self.assertEquals(calculate_participant_conversion(participant, goal_types[0], days[0]), 0) self.assertEquals(calculate_participant_conversion(participant, goal_types[1], days[0]), 0) self.assertEquals(calculate_participant_conversion(participant, goal_types[2], days[0]), 0) self.assertEquals(calculate_participant_conversion(participant, None, days[0]), 0) self.assertEquals(calculate_participant_conversion(participant, goal_types[0], days[1]), 0) self.assertEquals(calculate_participant_conversion(participant, goal_types[1], days[1]), 0) self.assertEquals(calculate_participant_conversion(participant, goal_types[2], days[1]), 0) self.assertEquals(calculate_participant_conversion(participant, None, days[1]), 0) # now enrolled self.assertEquals(calculate_participant_conversion(participant, goal_types[0], days[2]), 0) self.assertEquals(calculate_participant_conversion(participant, goal_types[1], days[2]), 1) self.assertEquals(calculate_participant_conversion(participant, goal_types[2], days[2]), 0) # "any" is one self.assertEquals(calculate_participant_conversion(participant, None, days[2]), 1) self.assertEquals(calculate_participant_conversion(participant, goal_types[0], days[3]), 1) self.assertEquals(calculate_participant_conversion(participant, goal_types[1], days[3]), 1) self.assertEquals(calculate_participant_conversion(participant, goal_types[2], days[3]), 0) # "any" is one, even though two different goals were achieved self.assertEquals(calculate_participant_conversion(participant, None, days[3]), 1) # there were three conversions on this day for goal 0, but we only count the first! self.assertEquals(calculate_participant_conversion(participant, goal_types[0], days[4]), 1) self.assertEquals(calculate_participant_conversion(participant, goal_types[1], days[4]), 1) self.assertEquals(calculate_participant_conversion(participant, goal_types[2], days[4]), 0) self.assertEquals(calculate_participant_conversion(participant, None, days[4]), 1) |
l.error("Unexpected exception in GoalRecord.record:\n" "%s" % traceback.format_exc) | l.exception("Unexpected exception in GoalRecord.record") | def record(cls, goal_name, experiment_user): try: return cls._record(goal_name, experiment_user) except GoalType.DoesNotExist: if settings.DEBUG: raise l.warning("Can't find the GoalType named %s" % goal_name) except Exception, e: l.error("Unexpected exception in GoalRecord.record:\n" "%s" % traceback.format_exc) |
scores a, and b. From Numerical Recipies, p.483. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob. Originally written by Gary Strangman. Usage: lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a') | scores a, and b. Returns t-value, and prob. Originally written by Gary Strangman. Usage: lttest_ind(a,b) | def ttest_ind(a, b): """ Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores a, and b. From Numerical Recipies, p.483. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob. Originally written by Gary Strangman. Usage: lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a') Returns: t-value, two-tailed prob """ x1 = mean(a) x2 = mean(b) v1 = stdev(a)**2 v2 = stdev(b)**2 n1 = len(a) n2 = len(b) df = n1+n2-2 svar = ((n1-1)*v1+(n2-1)*v2)/float(df) t = (x1-x2)/sqrt(svar*(1.0/n1 + 1.0/n2)) prob = betai(0.5*df,0.5,df/(df+t*t)) return t, prob |
x1 = mean(a) x2 = mean(b) v1 = stdev(a)**2 v2 = stdev(b)**2 n1 = len(a) n2 = len(b) | x1, x2 = mean(a), mean(b) v1, v2 = stdev(a)**2, stdev(b)**2 n1, n2 = len(a), len(b) | def ttest_ind(a, b): """ Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores a, and b. From Numerical Recipies, p.483. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob. Originally written by Gary Strangman. Usage: lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a') Returns: t-value, two-tailed prob """ x1 = mean(a) x2 = mean(b) v1 = stdev(a)**2 v2 = stdev(b)**2 n1 = len(a) n2 = len(b) df = n1+n2-2 svar = ((n1-1)*v1+(n2-1)*v2)/float(df) t = (x1-x2)/sqrt(svar*(1.0/n1 + 1.0/n2)) prob = betai(0.5*df,0.5,df/(df+t*t)) return t, prob |
svar = ((n1-1)*v1+(n2-1)*v2)/float(df) t = (x1-x2)/sqrt(svar*(1.0/n1 + 1.0/n2)) | try: svar = ((n1-1)*v1+(n2-1)*v2)/float(df) except ZeroDivisionError: return float('nan'), float('nan') try: t = (x1-x2)/sqrt(svar*(1.0/n1 + 1.0/n2)) except ZeroDivisionError: t = 1.0 | def ttest_ind(a, b): """ Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores a, and b. From Numerical Recipies, p.483. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob. Originally written by Gary Strangman. Usage: lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a') Returns: t-value, two-tailed prob """ x1 = mean(a) x2 = mean(b) v1 = stdev(a)**2 v2 = stdev(b)**2 n1 = len(a) n2 = len(b) df = n1+n2-2 svar = ((n1-1)*v1+(n2-1)*v2)/float(df) t = (x1-x2)/sqrt(svar*(1.0/n1 + 1.0/n2)) prob = betai(0.5*df,0.5,df/(df+t*t)) return t, prob |
arg = len(names) | arg = len(proposals) | def code_assist(self, prefix): proposals = self._calculate_proposals() if prefix is not None: arg = self.env.prefix_value(prefix) if arg == 0: arg = len(names) common_start = self._calculate_prefix(proposals[:arg]) self.env.insert(common_start[self.offset - self.starting_offset:]) self._starting = common_start self._offset = self.starting_offset + len(common_start) prompt = 'Completion for %s: ' % self.expression proposals = map(self.env._completion_data, proposals) result = self.env.ask_completion(prompt, proposals, self.starting) if result is not None: self._apply_assist(result) |
proposals = codeassist.sorted_proposals(proposals) | if self.env.get('sorted_completions', True): proposals = codeassist.sorted_proposals(proposals) | def _calculate_proposals(self): self.interface._check_project() resource = self.interface.resource maxfixes = self.env.get('codeassist_maxfixes') proposals = codeassist.code_assist( self.interface.project, self.source, self.offset, resource, maxfixes=maxfixes) proposals = codeassist.sorted_proposals(proposals) if self.autoimport is not None: if self.starting.strip() and '.' not in self.expression: import_assists = self.autoimport.import_assist(self.starting) for assist in import_assists: p = codeassist.CompletionProposal(' : '.join(assist), 'autoimport') proposals.append(p) return proposals |
response = self.requestor.request('execute_cql_query', request_params) | try: response = self.requestor.request('execute_cql_query', request_params) except AvroRemoteException, are: raise CQLException(are) | def execute(self, query, compression=None): compress = compression is None and DEFAULT_COMPRESSION \ or compression.upper() if not compress in COMPRESSION_SCHEMES: raise InvalidCompressionScheme(compress) compressed_query = Connection.compress_query(query, compress) request_params = dict(query=compressed_query, compression=compress) response = self.requestor.request('execute_cql_query', request_params) |
newSnpData = SNPData(col_id_ls=copy.deepcopy(snpData.col_id_ls), row_id_ls=[]) newSnpData.data_matrix = num.zeros([no_of_rows, no_of_cols], num.int8) | new_col_id_ls = copy.deepcopy(snpData.col_id_ls) new_row_id_ls = [] new_data_matrix = num.zeros([no_of_rows, no_of_cols], num.int8) | def keepRowsByRowID(cls, snpData, row_id_ls): """ 2009-05-19 keep certain rows in snpData given row_id_ls """ sys.stderr.write("Keeping rows given row_id_ls ...") no_of_rows = len(row_id_ls) row_id_wanted_set = set(row_id_ls) no_of_cols = len(snpData.col_id_ls) newSnpData = SNPData(col_id_ls=copy.deepcopy(snpData.col_id_ls), row_id_ls=[]) newSnpData.data_matrix = num.zeros([no_of_rows, no_of_cols], num.int8) row_index = 0 for i in range(len(snpData.row_id_ls)): row_id = snpData.row_id_ls[i] if row_id in row_id_wanted_set: newSnpData.row_id_ls.append(row_id) newSnpData.data_matrix[row_index] = snpData.data_matrix[i] row_index += 1 newSnpData.no_of_rows_filtered_by_mismatch = len(snpData.row_id_ls)-no_of_rows sys.stderr.write("%s rows discarded. Done.\n"%(newSnpData.no_of_rows_filtered_by_mismatch)) return newSnpData |
newSnpData.row_id_ls.append(row_id) newSnpData.data_matrix[row_index] = snpData.data_matrix[i] | new_row_id_ls.append(row_id) new_data_matrix[row_index] = snpData.data_matrix[i] | def keepRowsByRowID(cls, snpData, row_id_ls): """ 2009-05-19 keep certain rows in snpData given row_id_ls """ sys.stderr.write("Keeping rows given row_id_ls ...") no_of_rows = len(row_id_ls) row_id_wanted_set = set(row_id_ls) no_of_cols = len(snpData.col_id_ls) newSnpData = SNPData(col_id_ls=copy.deepcopy(snpData.col_id_ls), row_id_ls=[]) newSnpData.data_matrix = num.zeros([no_of_rows, no_of_cols], num.int8) row_index = 0 for i in range(len(snpData.row_id_ls)): row_id = snpData.row_id_ls[i] if row_id in row_id_wanted_set: newSnpData.row_id_ls.append(row_id) newSnpData.data_matrix[row_index] = snpData.data_matrix[i] row_index += 1 newSnpData.no_of_rows_filtered_by_mismatch = len(snpData.row_id_ls)-no_of_rows sys.stderr.write("%s rows discarded. Done.\n"%(newSnpData.no_of_rows_filtered_by_mismatch)) return newSnpData |
report=1, run_type=1): """ | cofactor_phenotype_id_ls=[], report=1, run_type=1,): """ 2010-1-11 add argument cofactor_phenotype_id_ls to have the functionality of treating some phenotypes as cofactors | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) | one phenotype at a time: 1. create a new SNP matrix which includes accessions whose phenotypes (this phenotype + cofactor_phenotype_id_ls) are non-NA 2. one SNP at a time 1. add cofactor SNP matrix if cofactors are present 2. add cofactor phenotype matrix if cofactor_phenotype_id_ls exist 3. run association parameter run_type is passed to Association.linear_model() run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
chromosome, start_pos = start_snp.split('_')[:2] | start_chr, start_pos = start_snp.split('_')[:2] start_chr = int(start_chr) | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
stop_pos = int(stop_snp.split('_')[1]) | stop_chr, stop_pos = stop_snp.split('_')[:2] stop_chr = int(stop_chr) stop_pos = int(stop_pos) | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
if not numpy.isnan(phenotype_ls[i]): | this_row_has_NA_phenotype = False if cofactor_phenotype_index_ls: for phenotype_index in cofactor_phenotype_index_ls: if numpy.isnan(initData.phenData.data_matrix[i, phenotype_index]): this_row_has_NA_phenotype = True break if numpy.isnan(phenotype_ls[i]): this_row_has_NA_phenotype = True if not this_row_has_NA_phenotype: | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
if chr==chromosome and pos>=start_pos and pos<=stop_pos: | if chr>=start_chr and chr<=stop_chr and pos>=start_pos and pos<=stop_pos: | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
phenotype_method_id_ls = [43] | phenotype_method_id_ls = [285] | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
GWA.cofactorLM(genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=cofactors) | cofactor_phenotype_id_ls = [77] GWA.cofactorLM(genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, \ cofactors=cofactors, cofactor_phenotype_id_ls=cofactor_phenotype_id_ls) | def cofactorLM(cls, genotype_fname, phenotype_fname, phenotype_method_id_ls, output_fname_prefix, start_snp, stop_snp, cofactors=[],\ report=1, run_type=1): """ 2009-8-26 run_type 1: pure linear model by python run_type 2: EMMA run_type 3: pure linear model by R (Field test shows run_type 3 is same as 1.) start_snp and end_snp are on the same chromosome """ sys.stderr.write("Running association (pure linear model or EMMA) with cofactor ... \n") from Association import Association chromosome, start_pos = start_snp.split('_')[:2] start_pos = int(start_pos) stop_pos = int(stop_snp.split('_')[1]) eigen_vector_fname = '' test_type = 3 #Emma initData = Association.readInData(phenotype_fname, genotype_fname, eigen_vector_fname, phenotype_method_id_ls, test_type=test_type) which_phenotype_index_ls = initData.which_phenotype_ls environment_matrix = None data_matrix = initData.snpData.data_matrix min_data_point = 3 #create an index list of cofactor SNPs cofactors_indices = [] cofactors_set = set(cofactors) for i in range(len(initData.snpData.col_id_ls)): col_id = initData.snpData.col_id_ls[i] if col_id in cofactors_set: cofactors_indices.append(i) import numpy, rpy rpy.r.source(os.path.expanduser('~/script/variation/src/gwa/emma/R/emma.R')) for which_phenotype in which_phenotype_index_ls: phenotype_name = initData.phenData.col_id_ls[which_phenotype] phenotype_name = phenotype_name.replace('/', '_') #'/' will be recognized as directory in output_fname output_fname='%s_pheno_%s.tsv'%(os.path.splitext(output_fname_prefix)[0], phenotype_name) #make up a new name corresponding to this phenotype #create non NA phenotype phenotype_ls = initData.phenData.data_matrix[:, which_phenotype] non_phenotype_NA_row_index_ls = [] non_NA_phenotype_ls = [] for i in range(len(phenotype_ls)): if not numpy.isnan(phenotype_ls[i]): non_phenotype_NA_row_index_ls.append(i) non_NA_phenotype_ls.append(phenotype_ls[i]) non_NA_phenotype_ar = numpy.array(non_NA_phenotype_ls) new_data_matrix = data_matrix[non_phenotype_NA_row_index_ls,:] if run_type==2: kinship_matrix = Association.get_kinship_matrix(new_data_matrix) eig_L = rpy.r.emma_eigen_L(None, kinship_matrix) #to avoid repeating the computation of eig_L inside emma.REMLE else: kinship_matrix = None eig_L = None |
max_diff_perc=0.10, min_no_of_probes=5, count_embedded_segment_as_match=False): """ | max_diff_perc=0.10, min_no_of_probes=5, count_embedded_segment_as_match=False, \ min_reciprocal_overlap=0.6, report=True): """ 2010-1-26 value of the ecotype_id2cnv_qc_call_data dictionary is a RBDict (RBTree dictionary) structure. 2009-12-8 add argument min_reciprocal_overlap | def compareCNVSegmentsAgainstQCHandler(cls, input_fname_ls, ecotype_id2cnv_qc_call_data, function_handler, param_obj, \ deletion_cutoff=None, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5, count_embedded_segment_as_match=False): """ 2009-11-4 a general handler to compare CNV segments from input_fname_ls with cnv_qc_call_data. Upon a match between a CNV segment from input_fname_ls and cnv_qc_call_data, function_handler would be called with param_obj as argument. If deletion_cutoff is None, all segments who have matches in ecotype_id2cnv_qc_call_data would be considered in function_handler(). If deletion_cutoff is not None (some float), only those segments whose amplitude is below this value would be considered in function_handler(). """ import fileinput from pymodule import getColName2IndexFromHeader, PassingData sys.stderr.write("Getting probe amplitude from %s ... \n"%repr(input_fname_ls)) amp_ls = [] array_id2array = {} counter = 0 real_counter = 0 no_of_deletions = 0 no_of_valid_deletions = 0 input_handler = fileinput.input(input_fname_ls) header = input_handler.readline().strip().split('\t') col_name2index = getColName2IndexFromHeader(header) for line in input_handler: if line.find("array_id")!=-1: continue line = line.strip() row = line.split('\t') ecotype_id_idx = col_name2index.get('ecotype_id', col_name2index.get('array_id')) cnv_ecotype_id = int(row[ecotype_id_idx]) array_id = int(row[col_name2index.get('array_id')]) #row[ecotype_id_idx] = cnv_ecotype_id counter += 1 if cnv_ecotype_id in ecotype_id2cnv_qc_call_data: # array is in CNVQCDat cnv_qc_call_data = ecotype_id2cnv_qc_call_data.get(cnv_ecotype_id) start_probe = row[col_name2index['start_probe']].split('_') # split chr_pos start_probe = map(int, start_probe) stop_probe = row[col_name2index['end_probe']].split('_') stop_probe = map(int, stop_probe) no_of_probes = int(row[col_name2index['length']]) if no_of_probes<min_no_of_probes: continue amplitude = float(row[col_name2index['amplitude']]) segment_chromosome = start_probe[0] segment_start_pos = start_probe[1]-12 segment_stop_pos = stop_probe[1]+12 segment_length = abs(segment_stop_pos-segment_start_pos+1) if deletion_cutoff is not None and amplitude>deletion_cutoff: continue no_of_deletions+=1 for cnv_qc_call in cnv_qc_call_data: qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] valid_match = False if qc_chromosome==segment_chromosome: boundary_diff1 = abs(segment_start_pos-qc_start) boundary_diff2 = abs(segment_stop_pos-qc_stop) diff1_perc = boundary_diff1/float(segment_length) diff2_perc = boundary_diff2/float(segment_length) if boundary_diff1<=max_boundary_diff and boundary_diff2<=max_boundary_diff and diff1_perc<=max_diff_perc and \ diff2_perc<=max_diff_perc: no_of_valid_deletions += 1 valid_match = True elif count_embedded_segment_as_match and segment_start_pos>=qc_start and segment_stop_pos<=qc_stop: #the segment doesn't match the criteria but very small and within no_of_valid_deletions += 1 valid_match = True if valid_match: cnv_segment_obj = PassingData(ecotype_id=cnv_ecotype_id, start_probe=start_probe, stop_probe=stop_probe,\ no_of_probes=no_of_probes, amplitude=amplitude, segment_length=segment_length,\ segment_chromosome=segment_chromosome, ) function_handler(cnv_segment_obj, cnv_qc_call, param_obj) elif qc_chromosome>segment_chromosome: break if counter%10000==0: sys.stderr.write('%s%s\t%s\t%s'%('\x08'*80, counter, no_of_deletions, no_of_valid_deletions)) setattr(param_obj, "no_of_deletions", no_of_deletions) setattr(param_obj, "no_of_valid_deletions", no_of_valid_deletions) sys.stderr.write("\n") |
if boundary_diff1<=max_boundary_diff and boundary_diff2<=max_boundary_diff and diff1_perc<=max_diff_perc and \ diff2_perc<=max_diff_perc: | is_overlap = is_reciprocal_overlap([segment_start_pos, segment_stop_pos], [qc_start, qc_stop], \ min_reciprocal_overlap=min_reciprocal_overlap) if is_overlap: | def compareCNVSegmentsAgainstQCHandler(cls, input_fname_ls, ecotype_id2cnv_qc_call_data, function_handler, param_obj, \ deletion_cutoff=None, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5, count_embedded_segment_as_match=False): """ 2009-11-4 a general handler to compare CNV segments from input_fname_ls with cnv_qc_call_data. Upon a match between a CNV segment from input_fname_ls and cnv_qc_call_data, function_handler would be called with param_obj as argument. If deletion_cutoff is None, all segments who have matches in ecotype_id2cnv_qc_call_data would be considered in function_handler(). If deletion_cutoff is not None (some float), only those segments whose amplitude is below this value would be considered in function_handler(). """ import fileinput from pymodule import getColName2IndexFromHeader, PassingData sys.stderr.write("Getting probe amplitude from %s ... \n"%repr(input_fname_ls)) amp_ls = [] array_id2array = {} counter = 0 real_counter = 0 no_of_deletions = 0 no_of_valid_deletions = 0 input_handler = fileinput.input(input_fname_ls) header = input_handler.readline().strip().split('\t') col_name2index = getColName2IndexFromHeader(header) for line in input_handler: if line.find("array_id")!=-1: continue line = line.strip() row = line.split('\t') ecotype_id_idx = col_name2index.get('ecotype_id', col_name2index.get('array_id')) cnv_ecotype_id = int(row[ecotype_id_idx]) array_id = int(row[col_name2index.get('array_id')]) #row[ecotype_id_idx] = cnv_ecotype_id counter += 1 if cnv_ecotype_id in ecotype_id2cnv_qc_call_data: # array is in CNVQCDat cnv_qc_call_data = ecotype_id2cnv_qc_call_data.get(cnv_ecotype_id) start_probe = row[col_name2index['start_probe']].split('_') # split chr_pos start_probe = map(int, start_probe) stop_probe = row[col_name2index['end_probe']].split('_') stop_probe = map(int, stop_probe) no_of_probes = int(row[col_name2index['length']]) if no_of_probes<min_no_of_probes: continue amplitude = float(row[col_name2index['amplitude']]) segment_chromosome = start_probe[0] segment_start_pos = start_probe[1]-12 segment_stop_pos = stop_probe[1]+12 segment_length = abs(segment_stop_pos-segment_start_pos+1) if deletion_cutoff is not None and amplitude>deletion_cutoff: continue no_of_deletions+=1 for cnv_qc_call in cnv_qc_call_data: qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] valid_match = False if qc_chromosome==segment_chromosome: boundary_diff1 = abs(segment_start_pos-qc_start) boundary_diff2 = abs(segment_stop_pos-qc_stop) diff1_perc = boundary_diff1/float(segment_length) diff2_perc = boundary_diff2/float(segment_length) if boundary_diff1<=max_boundary_diff and boundary_diff2<=max_boundary_diff and diff1_perc<=max_diff_perc and \ diff2_perc<=max_diff_perc: no_of_valid_deletions += 1 valid_match = True elif count_embedded_segment_as_match and segment_start_pos>=qc_start and segment_stop_pos<=qc_stop: #the segment doesn't match the criteria but very small and within no_of_valid_deletions += 1 valid_match = True if valid_match: cnv_segment_obj = PassingData(ecotype_id=cnv_ecotype_id, start_probe=start_probe, stop_probe=stop_probe,\ no_of_probes=no_of_probes, amplitude=amplitude, segment_length=segment_length,\ segment_chromosome=segment_chromosome, ) function_handler(cnv_segment_obj, cnv_qc_call, param_obj) elif qc_chromosome>segment_chromosome: break if counter%10000==0: sys.stderr.write('%s%s\t%s\t%s'%('\x08'*80, counter, no_of_deletions, no_of_valid_deletions)) setattr(param_obj, "no_of_deletions", no_of_deletions) setattr(param_obj, "no_of_valid_deletions", no_of_valid_deletions) sys.stderr.write("\n") |
elif count_embedded_segment_as_match and segment_start_pos>=qc_start and segment_stop_pos<=qc_stop: no_of_valid_deletions += 1 valid_match = True | def compareCNVSegmentsAgainstQCHandler(cls, input_fname_ls, ecotype_id2cnv_qc_call_data, function_handler, param_obj, \ deletion_cutoff=None, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5, count_embedded_segment_as_match=False): """ 2009-11-4 a general handler to compare CNV segments from input_fname_ls with cnv_qc_call_data. Upon a match between a CNV segment from input_fname_ls and cnv_qc_call_data, function_handler would be called with param_obj as argument. If deletion_cutoff is None, all segments who have matches in ecotype_id2cnv_qc_call_data would be considered in function_handler(). If deletion_cutoff is not None (some float), only those segments whose amplitude is below this value would be considered in function_handler(). """ import fileinput from pymodule import getColName2IndexFromHeader, PassingData sys.stderr.write("Getting probe amplitude from %s ... \n"%repr(input_fname_ls)) amp_ls = [] array_id2array = {} counter = 0 real_counter = 0 no_of_deletions = 0 no_of_valid_deletions = 0 input_handler = fileinput.input(input_fname_ls) header = input_handler.readline().strip().split('\t') col_name2index = getColName2IndexFromHeader(header) for line in input_handler: if line.find("array_id")!=-1: continue line = line.strip() row = line.split('\t') ecotype_id_idx = col_name2index.get('ecotype_id', col_name2index.get('array_id')) cnv_ecotype_id = int(row[ecotype_id_idx]) array_id = int(row[col_name2index.get('array_id')]) #row[ecotype_id_idx] = cnv_ecotype_id counter += 1 if cnv_ecotype_id in ecotype_id2cnv_qc_call_data: # array is in CNVQCDat cnv_qc_call_data = ecotype_id2cnv_qc_call_data.get(cnv_ecotype_id) start_probe = row[col_name2index['start_probe']].split('_') # split chr_pos start_probe = map(int, start_probe) stop_probe = row[col_name2index['end_probe']].split('_') stop_probe = map(int, stop_probe) no_of_probes = int(row[col_name2index['length']]) if no_of_probes<min_no_of_probes: continue amplitude = float(row[col_name2index['amplitude']]) segment_chromosome = start_probe[0] segment_start_pos = start_probe[1]-12 segment_stop_pos = stop_probe[1]+12 segment_length = abs(segment_stop_pos-segment_start_pos+1) if deletion_cutoff is not None and amplitude>deletion_cutoff: continue no_of_deletions+=1 for cnv_qc_call in cnv_qc_call_data: qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] valid_match = False if qc_chromosome==segment_chromosome: boundary_diff1 = abs(segment_start_pos-qc_start) boundary_diff2 = abs(segment_stop_pos-qc_stop) diff1_perc = boundary_diff1/float(segment_length) diff2_perc = boundary_diff2/float(segment_length) if boundary_diff1<=max_boundary_diff and boundary_diff2<=max_boundary_diff and diff1_perc<=max_diff_perc and \ diff2_perc<=max_diff_perc: no_of_valid_deletions += 1 valid_match = True elif count_embedded_segment_as_match and segment_start_pos>=qc_start and segment_stop_pos<=qc_stop: #the segment doesn't match the criteria but very small and within no_of_valid_deletions += 1 valid_match = True if valid_match: cnv_segment_obj = PassingData(ecotype_id=cnv_ecotype_id, start_probe=start_probe, stop_probe=stop_probe,\ no_of_probes=no_of_probes, amplitude=amplitude, segment_length=segment_length,\ segment_chromosome=segment_chromosome, ) function_handler(cnv_segment_obj, cnv_qc_call, param_obj) elif qc_chromosome>segment_chromosome: break if counter%10000==0: sys.stderr.write('%s%s\t%s\t%s'%('\x08'*80, counter, no_of_deletions, no_of_valid_deletions)) setattr(param_obj, "no_of_deletions", no_of_deletions) setattr(param_obj, "no_of_valid_deletions", no_of_valid_deletions) sys.stderr.write("\n") |
|
cnv_segment_obj = PassingData(ecotype_id=cnv_ecotype_id, start_probe=start_probe, stop_probe=stop_probe,\ no_of_probes=no_of_probes, amplitude=amplitude, segment_length=segment_length,\ segment_chromosome=segment_chromosome, ) function_handler(cnv_segment_obj, cnv_qc_call, param_obj) | function_handler(param_obj, cnv_segment_obj, cnv_qc_call, ) | def compareCNVSegmentsAgainstQCHandler(cls, input_fname_ls, ecotype_id2cnv_qc_call_data, function_handler, param_obj, \ deletion_cutoff=None, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5, count_embedded_segment_as_match=False): """ 2009-11-4 a general handler to compare CNV segments from input_fname_ls with cnv_qc_call_data. Upon a match between a CNV segment from input_fname_ls and cnv_qc_call_data, function_handler would be called with param_obj as argument. If deletion_cutoff is None, all segments who have matches in ecotype_id2cnv_qc_call_data would be considered in function_handler(). If deletion_cutoff is not None (some float), only those segments whose amplitude is below this value would be considered in function_handler(). """ import fileinput from pymodule import getColName2IndexFromHeader, PassingData sys.stderr.write("Getting probe amplitude from %s ... \n"%repr(input_fname_ls)) amp_ls = [] array_id2array = {} counter = 0 real_counter = 0 no_of_deletions = 0 no_of_valid_deletions = 0 input_handler = fileinput.input(input_fname_ls) header = input_handler.readline().strip().split('\t') col_name2index = getColName2IndexFromHeader(header) for line in input_handler: if line.find("array_id")!=-1: continue line = line.strip() row = line.split('\t') ecotype_id_idx = col_name2index.get('ecotype_id', col_name2index.get('array_id')) cnv_ecotype_id = int(row[ecotype_id_idx]) array_id = int(row[col_name2index.get('array_id')]) #row[ecotype_id_idx] = cnv_ecotype_id counter += 1 if cnv_ecotype_id in ecotype_id2cnv_qc_call_data: # array is in CNVQCDat cnv_qc_call_data = ecotype_id2cnv_qc_call_data.get(cnv_ecotype_id) start_probe = row[col_name2index['start_probe']].split('_') # split chr_pos start_probe = map(int, start_probe) stop_probe = row[col_name2index['end_probe']].split('_') stop_probe = map(int, stop_probe) no_of_probes = int(row[col_name2index['length']]) if no_of_probes<min_no_of_probes: continue amplitude = float(row[col_name2index['amplitude']]) segment_chromosome = start_probe[0] segment_start_pos = start_probe[1]-12 segment_stop_pos = stop_probe[1]+12 segment_length = abs(segment_stop_pos-segment_start_pos+1) if deletion_cutoff is not None and amplitude>deletion_cutoff: continue no_of_deletions+=1 for cnv_qc_call in cnv_qc_call_data: qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] valid_match = False if qc_chromosome==segment_chromosome: boundary_diff1 = abs(segment_start_pos-qc_start) boundary_diff2 = abs(segment_stop_pos-qc_stop) diff1_perc = boundary_diff1/float(segment_length) diff2_perc = boundary_diff2/float(segment_length) if boundary_diff1<=max_boundary_diff and boundary_diff2<=max_boundary_diff and diff1_perc<=max_diff_perc and \ diff2_perc<=max_diff_perc: no_of_valid_deletions += 1 valid_match = True elif count_embedded_segment_as_match and segment_start_pos>=qc_start and segment_stop_pos<=qc_stop: #the segment doesn't match the criteria but very small and within no_of_valid_deletions += 1 valid_match = True if valid_match: cnv_segment_obj = PassingData(ecotype_id=cnv_ecotype_id, start_probe=start_probe, stop_probe=stop_probe,\ no_of_probes=no_of_probes, amplitude=amplitude, segment_length=segment_length,\ segment_chromosome=segment_chromosome, ) function_handler(cnv_segment_obj, cnv_qc_call, param_obj) elif qc_chromosome>segment_chromosome: break if counter%10000==0: sys.stderr.write('%s%s\t%s\t%s'%('\x08'*80, counter, no_of_deletions, no_of_valid_deletions)) setattr(param_obj, "no_of_deletions", no_of_deletions) setattr(param_obj, "no_of_valid_deletions", no_of_valid_deletions) sys.stderr.write("\n") |
if counter%10000==0: | """ if report and counter%10000==0: | def compareCNVSegmentsAgainstQCHandler(cls, input_fname_ls, ecotype_id2cnv_qc_call_data, function_handler, param_obj, \ deletion_cutoff=None, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5, count_embedded_segment_as_match=False): """ 2009-11-4 a general handler to compare CNV segments from input_fname_ls with cnv_qc_call_data. Upon a match between a CNV segment from input_fname_ls and cnv_qc_call_data, function_handler would be called with param_obj as argument. If deletion_cutoff is None, all segments who have matches in ecotype_id2cnv_qc_call_data would be considered in function_handler(). If deletion_cutoff is not None (some float), only those segments whose amplitude is below this value would be considered in function_handler(). """ import fileinput from pymodule import getColName2IndexFromHeader, PassingData sys.stderr.write("Getting probe amplitude from %s ... \n"%repr(input_fname_ls)) amp_ls = [] array_id2array = {} counter = 0 real_counter = 0 no_of_deletions = 0 no_of_valid_deletions = 0 input_handler = fileinput.input(input_fname_ls) header = input_handler.readline().strip().split('\t') col_name2index = getColName2IndexFromHeader(header) for line in input_handler: if line.find("array_id")!=-1: continue line = line.strip() row = line.split('\t') ecotype_id_idx = col_name2index.get('ecotype_id', col_name2index.get('array_id')) cnv_ecotype_id = int(row[ecotype_id_idx]) array_id = int(row[col_name2index.get('array_id')]) #row[ecotype_id_idx] = cnv_ecotype_id counter += 1 if cnv_ecotype_id in ecotype_id2cnv_qc_call_data: # array is in CNVQCDat cnv_qc_call_data = ecotype_id2cnv_qc_call_data.get(cnv_ecotype_id) start_probe = row[col_name2index['start_probe']].split('_') # split chr_pos start_probe = map(int, start_probe) stop_probe = row[col_name2index['end_probe']].split('_') stop_probe = map(int, stop_probe) no_of_probes = int(row[col_name2index['length']]) if no_of_probes<min_no_of_probes: continue amplitude = float(row[col_name2index['amplitude']]) segment_chromosome = start_probe[0] segment_start_pos = start_probe[1]-12 segment_stop_pos = stop_probe[1]+12 segment_length = abs(segment_stop_pos-segment_start_pos+1) if deletion_cutoff is not None and amplitude>deletion_cutoff: continue no_of_deletions+=1 for cnv_qc_call in cnv_qc_call_data: qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] valid_match = False if qc_chromosome==segment_chromosome: boundary_diff1 = abs(segment_start_pos-qc_start) boundary_diff2 = abs(segment_stop_pos-qc_stop) diff1_perc = boundary_diff1/float(segment_length) diff2_perc = boundary_diff2/float(segment_length) if boundary_diff1<=max_boundary_diff and boundary_diff2<=max_boundary_diff and diff1_perc<=max_diff_perc and \ diff2_perc<=max_diff_perc: no_of_valid_deletions += 1 valid_match = True elif count_embedded_segment_as_match and segment_start_pos>=qc_start and segment_stop_pos<=qc_stop: #the segment doesn't match the criteria but very small and within no_of_valid_deletions += 1 valid_match = True if valid_match: cnv_segment_obj = PassingData(ecotype_id=cnv_ecotype_id, start_probe=start_probe, stop_probe=stop_probe,\ no_of_probes=no_of_probes, amplitude=amplitude, segment_length=segment_length,\ segment_chromosome=segment_chromosome, ) function_handler(cnv_segment_obj, cnv_qc_call, param_obj) elif qc_chromosome>segment_chromosome: break if counter%10000==0: sys.stderr.write('%s%s\t%s\t%s'%('\x08'*80, counter, no_of_deletions, no_of_valid_deletions)) setattr(param_obj, "no_of_deletions", no_of_deletions) setattr(param_obj, "no_of_valid_deletions", no_of_valid_deletions) sys.stderr.write("\n") |
def getCNVQCDataFromDB(cls, data_source_id=1, ecotype_id=None, cnv_type_id=1, \ min_QC_segment_size=200, min_no_of_probes=None): """ | def getCNVQCDataFromDB(cls, data_source_id=1, ecotype_id=None, cnv_type_id=None, \ min_QC_segment_size=None, min_no_of_probes=None, min_reciprocal_overlap=0.6): """ 2010-1-26 replace the list structure of cnv_qc_call_data in ecotype_id2cnv_qc_call_data with binary_tree structure 2009-12-9 add no_of_probes_covered into returning data add cnv_type_id | def getCNVQCDataFromDB(cls, data_source_id=1, ecotype_id=None, cnv_type_id=1, \ min_QC_segment_size=200, min_no_of_probes=None): """ 2009-11-4 get CNV QC data from database """ sys.stderr.write("Getting CNV QC data ... \n") import Stock_250kDB sql_string = "select a.ecotype_id, c.chromosome, c.start, c.stop, c.size_affected, c.id from %s c,\ %s a where c.accession_id=a.id and a.data_source_id=%s and c.size_affected>=%s \ and c.cnv_type_id=%s"%\ (Stock_250kDB.CNVQCCalls.table.name, Stock_250kDB.CNVQCAccession.table.name, data_source_id,\ min_QC_segment_size, cnv_type_id) if ecotype_id is not None: sql_string += " and a.ecotype_id=%s"%ecotype_id if min_no_of_probes is not None: sql_string += " and c.no_of_probes_covered>=%s"%min_no_of_probes rows = db_250k.metadata.bind.execute(sql_string) count = 0 ecotype_id2cnv_qc_call_data = {} for row in rows: if row.ecotype_id not in ecotype_id2cnv_qc_call_data: ecotype_id2cnv_qc_call_data[row.ecotype_id] = [] cnv_qc_call_data = ecotype_id2cnv_qc_call_data[row.ecotype_id] cnv_qc_call_data.append((row.chromosome, row.start, row.stop, row.size_affected, row.id)) count += 1 for ecotype_id, cnv_qc_call_data in ecotype_id2cnv_qc_call_data.iteritems(): cnv_qc_call_data.sort() ecotype_id2cnv_qc_call_data[ecotype_id] = cnv_qc_call_data sys.stderr.write("%s cnv qc calls for %s ecotypes. Done.\n"%(count, len(ecotype_id2cnv_qc_call_data))) return ecotype_id2cnv_qc_call_data |
sql_string = "select a.ecotype_id, c.chromosome, c.start, c.stop, c.size_affected, c.id from %s c,\ %s a where c.accession_id=a.id and a.data_source_id=%s and c.size_affected>=%s \ and c.cnv_type_id=%s"%\ (Stock_250kDB.CNVQCCalls.table.name, Stock_250kDB.CNVQCAccession.table.name, data_source_id,\ min_QC_segment_size, cnv_type_id) | sql_string = "select a.ecotype_id, c.chromosome, c.start, c.stop, c.size_affected, c.no_of_probes_covered, c.copy_number, c.id from %s c,\ %s a where c.accession_id=a.id and a.data_source_id=%s order by RAND()"%\ (Stock_250kDB.CNVQCCalls.table.name, Stock_250kDB.CNVQCAccession.table.name, data_source_id) if cnv_type_id is not None: sql_string += " and c.cnv_type_id=%s"%cnv_type_id | def getCNVQCDataFromDB(cls, data_source_id=1, ecotype_id=None, cnv_type_id=1, \ min_QC_segment_size=200, min_no_of_probes=None): """ 2009-11-4 get CNV QC data from database """ sys.stderr.write("Getting CNV QC data ... \n") import Stock_250kDB sql_string = "select a.ecotype_id, c.chromosome, c.start, c.stop, c.size_affected, c.id from %s c,\ %s a where c.accession_id=a.id and a.data_source_id=%s and c.size_affected>=%s \ and c.cnv_type_id=%s"%\ (Stock_250kDB.CNVQCCalls.table.name, Stock_250kDB.CNVQCAccession.table.name, data_source_id,\ min_QC_segment_size, cnv_type_id) if ecotype_id is not None: sql_string += " and a.ecotype_id=%s"%ecotype_id if min_no_of_probes is not None: sql_string += " and c.no_of_probes_covered>=%s"%min_no_of_probes rows = db_250k.metadata.bind.execute(sql_string) count = 0 ecotype_id2cnv_qc_call_data = {} for row in rows: if row.ecotype_id not in ecotype_id2cnv_qc_call_data: ecotype_id2cnv_qc_call_data[row.ecotype_id] = [] cnv_qc_call_data = ecotype_id2cnv_qc_call_data[row.ecotype_id] cnv_qc_call_data.append((row.chromosome, row.start, row.stop, row.size_affected, row.id)) count += 1 for ecotype_id, cnv_qc_call_data in ecotype_id2cnv_qc_call_data.iteritems(): cnv_qc_call_data.sort() ecotype_id2cnv_qc_call_data[ecotype_id] = cnv_qc_call_data sys.stderr.write("%s cnv qc calls for %s ecotypes. Done.\n"%(count, len(ecotype_id2cnv_qc_call_data))) return ecotype_id2cnv_qc_call_data |
ecotype_id2cnv_qc_call_data[row.ecotype_id] = [] cnv_qc_call_data = ecotype_id2cnv_qc_call_data[row.ecotype_id] cnv_qc_call_data.append((row.chromosome, row.start, row.stop, row.size_affected, row.id)) | ecotype_id2cnv_qc_call_data[row.ecotype_id] = RBDict() segmentKey = CNVSegmentBinarySearchTreeKey(chromosome=row.chromosome, span_ls=[row.start, row.stop], \ min_reciprocal_overlap=min_reciprocal_overlap) ecotype_id2cnv_qc_call_data[row.ecotype_id][segmentKey] = (row.chromosome, row.start, row.stop, row.size_affected, row.no_of_probes_covered, row.copy_number, row.id) | def getCNVQCDataFromDB(cls, data_source_id=1, ecotype_id=None, cnv_type_id=1, \ min_QC_segment_size=200, min_no_of_probes=None): """ 2009-11-4 get CNV QC data from database """ sys.stderr.write("Getting CNV QC data ... \n") import Stock_250kDB sql_string = "select a.ecotype_id, c.chromosome, c.start, c.stop, c.size_affected, c.id from %s c,\ %s a where c.accession_id=a.id and a.data_source_id=%s and c.size_affected>=%s \ and c.cnv_type_id=%s"%\ (Stock_250kDB.CNVQCCalls.table.name, Stock_250kDB.CNVQCAccession.table.name, data_source_id,\ min_QC_segment_size, cnv_type_id) if ecotype_id is not None: sql_string += " and a.ecotype_id=%s"%ecotype_id if min_no_of_probes is not None: sql_string += " and c.no_of_probes_covered>=%s"%min_no_of_probes rows = db_250k.metadata.bind.execute(sql_string) count = 0 ecotype_id2cnv_qc_call_data = {} for row in rows: if row.ecotype_id not in ecotype_id2cnv_qc_call_data: ecotype_id2cnv_qc_call_data[row.ecotype_id] = [] cnv_qc_call_data = ecotype_id2cnv_qc_call_data[row.ecotype_id] cnv_qc_call_data.append((row.chromosome, row.start, row.stop, row.size_affected, row.id)) count += 1 for ecotype_id, cnv_qc_call_data in ecotype_id2cnv_qc_call_data.iteritems(): cnv_qc_call_data.sort() ecotype_id2cnv_qc_call_data[ecotype_id] = cnv_qc_call_data sys.stderr.write("%s cnv qc calls for %s ecotypes. Done.\n"%(count, len(ecotype_id2cnv_qc_call_data))) return ecotype_id2cnv_qc_call_data |
for ecotype_id, cnv_qc_call_data in ecotype_id2cnv_qc_call_data.iteritems(): cnv_qc_call_data.sort() ecotype_id2cnv_qc_call_data[ecotype_id] = cnv_qc_call_data sys.stderr.write("%s cnv qc calls for %s ecotypes. Done.\n"%(count, len(ecotype_id2cnv_qc_call_data))) | import math for ecotype_id, tree in ecotype_id2cnv_qc_call_data.iteritems(): print "\tDepth of Ecotype %s's tree: %d" % (ecotype_id, tree.depth()) print "\tOptimum Depth: %f (%d) (%f%% depth efficiency)" % (tree.optimumdepth(), math.ceil(tree.optimumdepth()), math.ceil(tree.optimumdepth()) / tree.depth()) sys.stderr.write("\t%s cnv qc calls for %s ecotypes. Done.\n"%(count, len(ecotype_id2cnv_qc_call_data))) | def getCNVQCDataFromDB(cls, data_source_id=1, ecotype_id=None, cnv_type_id=1, \ min_QC_segment_size=200, min_no_of_probes=None): """ 2009-11-4 get CNV QC data from database """ sys.stderr.write("Getting CNV QC data ... \n") import Stock_250kDB sql_string = "select a.ecotype_id, c.chromosome, c.start, c.stop, c.size_affected, c.id from %s c,\ %s a where c.accession_id=a.id and a.data_source_id=%s and c.size_affected>=%s \ and c.cnv_type_id=%s"%\ (Stock_250kDB.CNVQCCalls.table.name, Stock_250kDB.CNVQCAccession.table.name, data_source_id,\ min_QC_segment_size, cnv_type_id) if ecotype_id is not None: sql_string += " and a.ecotype_id=%s"%ecotype_id if min_no_of_probes is not None: sql_string += " and c.no_of_probes_covered>=%s"%min_no_of_probes rows = db_250k.metadata.bind.execute(sql_string) count = 0 ecotype_id2cnv_qc_call_data = {} for row in rows: if row.ecotype_id not in ecotype_id2cnv_qc_call_data: ecotype_id2cnv_qc_call_data[row.ecotype_id] = [] cnv_qc_call_data = ecotype_id2cnv_qc_call_data[row.ecotype_id] cnv_qc_call_data.append((row.chromosome, row.start, row.stop, row.size_affected, row.id)) count += 1 for ecotype_id, cnv_qc_call_data in ecotype_id2cnv_qc_call_data.iteritems(): cnv_qc_call_data.sort() ecotype_id2cnv_qc_call_data[ecotype_id] = cnv_qc_call_data sys.stderr.write("%s cnv qc calls for %s ecotypes. Done.\n"%(count, len(ecotype_id2cnv_qc_call_data))) return ecotype_id2cnv_qc_call_data |
def countMatchedDeletionsFunctor(cls, cnv_segment_obj, cnv_qc_call, param_obj): """ | def countMatchedDeletionsFunctor(cls, param_obj, cnv_segment_obj=None, cnv_qc_call=None): """ 2009-12-9 store qc data in param_obj.array_id2qc_data | def countMatchedDeletionsFunctor(cls, cnv_segment_obj, cnv_qc_call, param_obj): """ 2009-11-4 a functor to be called in """ if not hasattr(param_obj, 'no_of_valid_deletions'): setattr(param_obj, 'no_of_valid_deletions', 0) qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] param_obj.cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.no_of_valid_deletions += 1 |
qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] param_obj.cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.no_of_valid_deletions += 1 | if not hasattr(param_obj, "array_id2qc_data"): param_obj.array_id2qc_data = {} if not hasattr(param_obj, "array_id2no_of_probes2qc_data"): param_obj.array_id2no_of_probes2qc_data = {} if not hasattr(param_obj, "array_id2qc_no_of_probes2qc_data"): param_obj.array_id2qc_no_of_probes2qc_data = {} array_id = cnv_segment_obj.array_id no_of_probes = cnv_segment_obj.no_of_probes if array_id not in param_obj.array_id2qc_data: param_obj.array_id2qc_data[array_id] = PassingData(ecotype_id=cnv_segment_obj.ecotype_id, \ no_of_valid_deletions=0,\ no_of_deletions=0,\ cnv_qc_call_id_set=set()) param_obj.array_id2no_of_probes2qc_data[array_id] = {} param_obj.array_id2qc_no_of_probes2qc_data[array_id] = {} if no_of_probes not in param_obj.array_id2no_of_probes2qc_data[array_id]: param_obj.array_id2no_of_probes2qc_data[array_id][no_of_probes] = PassingData(ecotype_id=cnv_segment_obj.ecotype_id, \ no_of_valid_deletions=0,\ no_of_deletions=0,\ cnv_qc_call_id_set=set()) param_obj.array_id2qc_data[array_id].no_of_deletions += 1 param_obj.array_id2no_of_probes2qc_data[array_id][no_of_probes].no_of_deletions += 1 if cnv_qc_call is not None: qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] param_obj.array_id2qc_data[array_id].cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.array_id2qc_data[array_id].no_of_valid_deletions += 1 qc_no_of_probes = cnv_qc_call[4] if qc_no_of_probes not in param_obj.array_id2qc_no_of_probes2qc_data[array_id]: param_obj.array_id2qc_no_of_probes2qc_data[array_id][qc_no_of_probes] = PassingData(ecotype_id=cnv_segment_obj.ecotype_id, \ cnv_qc_call_id_set=set()) param_obj.array_id2qc_no_of_probes2qc_data[array_id][qc_no_of_probes].cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.array_id2no_of_probes2qc_data[array_id][no_of_probes].cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.array_id2no_of_probes2qc_data[array_id][no_of_probes].no_of_valid_deletions += 1 | def countMatchedDeletionsFunctor(cls, cnv_segment_obj, cnv_qc_call, param_obj): """ 2009-11-4 a functor to be called in """ if not hasattr(param_obj, 'no_of_valid_deletions'): setattr(param_obj, 'no_of_valid_deletions', 0) qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] param_obj.cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.no_of_valid_deletions += 1 |
no_of_QCCalls_matched = len(param_obj.cnv_qc_call_id_set) no_of_total_QCCalls = sum(map(len, param_obj.ecotype_id2cnv_qc_call_data.values())) false_negative_rate = (no_of_total_QCCalls-no_of_QCCalls_matched)/float(no_of_total_QCCalls) sys.stderr.write("False negative rate: %s/%s(%s).\n"%(no_of_total_QCCalls-no_of_QCCalls_matched, no_of_total_QCCalls, false_negative_rate)) | for array_id, qc_data in param_obj.array_id2qc_data.iteritems(): no_of_QCCalls_matched = len(qc_data.cnv_qc_call_id_set) no_of_total_QCCalls = len(param_obj.ecotype_id2cnv_qc_call_data[qc_data.ecotype_id]) false_negative_rate = (no_of_total_QCCalls-no_of_QCCalls_matched)/float(no_of_total_QCCalls) sys.stderr.write("Array %s false negative rate: %s/%s(%s).\n"%(array_id, \ no_of_total_QCCalls-no_of_QCCalls_matched,\ no_of_total_QCCalls, false_negative_rate)) if getattr(param_obj, 'array_id2qc_no_of_probes2qc_data', None): qc_no_of_probes2qc_data = param_obj.array_id2qc_no_of_probes2qc_data[array_id] no_of_probes_ls = qc_no_of_probes2qc_data.keys() no_of_probes_ls.sort() for no_of_probes in no_of_probes_ls: qc_data = qc_no_of_probes2qc_data[no_of_probes] no_of_QCCalls_matched = len(qc_data.cnv_qc_call_id_set) no_of_total_QCCalls = len(param_obj.ecotype_id2qc_no_of_probes2cnv_qc_call_id_set[qc_data.ecotype_id][no_of_probes]) false_negative_rate = (no_of_total_QCCalls-no_of_QCCalls_matched)/float(no_of_total_QCCalls) sys.stderr.write("\t%s\t%s\t%s\t%s\n"%(no_of_probes, \ no_of_total_QCCalls-no_of_QCCalls_matched,\ no_of_total_QCCalls, false_negative_rate)) | def outputFalseNegativeRate(cls, param_obj): """ 2009-11-4 """ no_of_QCCalls_matched = len(param_obj.cnv_qc_call_id_set) no_of_total_QCCalls = sum(map(len, param_obj.ecotype_id2cnv_qc_call_data.values())) false_negative_rate = (no_of_total_QCCalls-no_of_QCCalls_matched)/float(no_of_total_QCCalls) sys.stderr.write("False negative rate: %s/%s(%s).\n"%(no_of_total_QCCalls-no_of_QCCalls_matched, no_of_total_QCCalls, false_negative_rate)) |
no_of_valid_deletions = param_obj.no_of_valid_deletions no_of_deletions = param_obj.no_of_deletions no_of_non_valid_deletions = no_of_deletions-no_of_valid_deletions false_positive_rate = no_of_non_valid_deletions/float(no_of_deletions) sys.stderr.write("False positive rate: %s/%s(%s).\n"%\ (no_of_non_valid_deletions, no_of_deletions, false_positive_rate)) | for array_id, qc_data in param_obj.array_id2qc_data.iteritems(): no_of_valid_deletions = qc_data.no_of_valid_deletions no_of_deletions = qc_data.no_of_deletions no_of_non_valid_deletions = no_of_deletions-no_of_valid_deletions false_positive_rate = no_of_non_valid_deletions/float(no_of_deletions) sys.stderr.write("Array %s false positive rate: %s/%s(%s).\n"%(array_id, \ no_of_non_valid_deletions, no_of_deletions, false_positive_rate)) if getattr(param_obj, 'array_id2no_of_probes2qc_data', None): no_of_probes2qc_data = param_obj.array_id2no_of_probes2qc_data[array_id] no_of_probes_ls = no_of_probes2qc_data.keys() no_of_probes_ls.sort() for no_of_probes in no_of_probes_ls: qc_data = no_of_probes2qc_data[no_of_probes] no_of_valid_deletions = qc_data.no_of_valid_deletions no_of_deletions = qc_data.no_of_deletions no_of_non_valid_deletions = no_of_deletions-no_of_valid_deletions false_positive_rate = no_of_non_valid_deletions/float(no_of_deletions) sys.stderr.write("\t%s\t%s\t%s\t%s\n"%(no_of_probes, \ no_of_non_valid_deletions, no_of_deletions, false_positive_rate)) | def outputFalsePositiveRate(cls, param_obj): """ 2009-11-4 """ no_of_valid_deletions = param_obj.no_of_valid_deletions no_of_deletions = param_obj.no_of_deletions no_of_non_valid_deletions = no_of_deletions-no_of_valid_deletions false_positive_rate = no_of_non_valid_deletions/float(no_of_deletions) sys.stderr.write("False positive rate: %s/%s(%s).\n"%\ (no_of_non_valid_deletions, no_of_deletions, false_positive_rate)) |
count_embedded_segment_as_match=True): """ | count_embedded_segment_as_match=True, min_reciprocal_overlap=0.6): """ 2010-1-26 pass min_reciprocal_overlap to cls.getCNVQCDataFromDB() 2009-12-9 calculate FNR for each class with same number of probes | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) | ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes,\ min_reciprocal_overlap=min_reciprocal_overlap) | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) | param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set(), array_id2qc_data={}) | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ | count_embedded_segment_as_match=count_embedded_segment_as_match, \ min_reciprocal_overlap=min_reciprocal_overlap, report=False) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, min_reciprocal_overlap: %s.\n"%\ | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) | data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, min_reciprocal_overlap)) | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
for max_boundary_diff in [10000]: for max_diff_perc in [0.20, 0.3]: CNV.countNoOfCNVDeletionsMatchQC(db_250k, input_fname_ls, ecotype_id=ecotype_id, data_source_id=data_source_id, \ cnv_type_id=1,\ | for min_reciprocal_overlap in [0.4, 0.6, 0.8]: CNV.countNoOfCNVDeletionsMatchQC(db_250k, input_fname_ls, ecotype_id=ecotype_id, data_source_id=data_source_id, \ cnv_type_id=1,\ | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
max_boundary_diff=max_boundary_diff, max_diff_perc=max_diff_perc, \ | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
|
count_embedded_segment_as_match=count_embedded_segment_as_match) """ @classmethod def addAmplitudeFunctor(cls, cnv_segment_obj, cnv_qc_call, param_obj): """ | count_embedded_segment_as_match=count_embedded_segment_as_match,\ min_reciprocal_overlap=min_reciprocal_overlap) input_fname_ls = [] for i in range(1,6): input_fname_ls.append(os.path.expanduser('~/mnt2/panfs/250k/CNV/call_method_48_CNV_intensity_QNorm_sub_ref_chr%s.GADA_A0.5T4M5.tsv'%i)) ecotype_id_data_source_id_ls = [(6932, 7)] min_QC_segment_size = 5 min_no_of_probes = 5 count_embedded_segment_as_match = True for ecotype_id, data_source_id in ecotype_id_data_source_id_ls: for deletion_cutoff in [-0.33, -0.5]: for min_reciprocal_overlap in [0.4, 0.8]: CNV.countNoOfCNVDeletionsMatchQC(db_250k, input_fname_ls, ecotype_id=ecotype_id, data_source_id=data_source_id, \ cnv_type_id=1,\ min_QC_segment_size=min_QC_segment_size, deletion_cutoff=deletion_cutoff, \ min_no_of_probes=min_no_of_probes,\ count_embedded_segment_as_match=count_embedded_segment_as_match,\ min_reciprocal_overlap=min_reciprocal_overlap) """ @classmethod def addAmplitudeFunctor(cls, param_obj, cnv_segment_obj, cnv_qc_call=None): """ 2009-12-9 adjust argument order and process only if cnv_qc_call is not None | def countNoOfCNVDeletionsMatchQC(cls, db_250k, input_fname_ls, ecotype_id=6909, data_source_id=3, cnv_type_id=1, \ min_QC_segment_size=200, deletion_cutoff=-0.33, max_boundary_diff=10000, \ max_diff_perc=0.10, min_no_of_probes=5,\ count_embedded_segment_as_match=True): """ 2009-10-29 for all CNV deletions, check how many are in QC dataset. """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, ecotype_id, cnv_type_id, min_QC_segment_size, min_no_of_probes) from pymodule import PassingData param_obj = PassingData(no_of_valid_deletions=0, cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.countMatchedDeletionsFunctor, param_obj, \ deletion_cutoff, max_boundary_diff, max_diff_perc, min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) sys.stderr.write("For ecotype_id %s, data_source_id %s, min_QC_segment_size %s, deletion_cutoff: %s, min_no_of_probes: %s, max_boundary_diff: %s, max_diff_perc %s.\n"%\ (ecotype_id, \ data_source_id, min_QC_segment_size, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc)) param_obj.ecotype_id2cnv_qc_call_data = ecotype_id2cnv_qc_call_data cls.outputFalsePositiveRate(param_obj) cls.outputFalseNegativeRate(param_obj) |
qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] param_obj.cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.amp_ls.append(cnv_segment_obj.amplitude) | if cnv_qc_call is not None: qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] param_obj.cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.amp_ls.append(cnv_segment_obj.amplitude) | def addAmplitudeFunctor(cls, cnv_segment_obj, cnv_qc_call, param_obj): """ 2009-11-4 """ if not hasattr(param_obj, 'amp_ls'): setattr(param_obj, 'amp_ls', []) qc_chromosome, qc_start, qc_stop = cnv_qc_call[:3] cnv_qc_call_id = cnv_qc_call[-1] param_obj.cnv_qc_call_id_set.add(cnv_qc_call_id) param_obj.amp_ls.append(cnv_segment_obj.amplitude) |
max_diff_perc=0.10, count_embedded_segment_as_match=True): | max_diff_perc=0.10, count_embedded_segment_as_match=True, min_reciprocal_overlap=0.6): | def drawHistOfAmpOfValidatedDeletions(cls, db_250k, input_fname_ls, output_fname_prefix, data_source_id=1, cnv_type_id=1, \ min_QC_segment_size=200, min_no_of_probes=5, max_boundary_diff=10000, \ max_diff_perc=0.10, count_embedded_segment_as_match=True): """ 2009-11-4 draw histogram of amplitude of segments who are validated according to certain QC data """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, cnv_type_id=cnv_type_id, \ min_QC_segment_size=min_QC_segment_size,\ min_no_of_probes=min_no_of_probes) from pymodule import PassingData param_obj = PassingData(amp_ls=[], cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.addAmplitudeFunctor, param_obj, \ deletion_cutoff=None, max_boundary_diff=max_boundary_diff, max_diff_perc=max_diff_perc,\ min_no_of_probes=min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) |
min_no_of_probes=min_no_of_probes) | min_no_of_probes=min_no_of_probes, \ min_reciprocal_overlap=min_reciprocal_overlap) | def drawHistOfAmpOfValidatedDeletions(cls, db_250k, input_fname_ls, output_fname_prefix, data_source_id=1, cnv_type_id=1, \ min_QC_segment_size=200, min_no_of_probes=5, max_boundary_diff=10000, \ max_diff_perc=0.10, count_embedded_segment_as_match=True): """ 2009-11-4 draw histogram of amplitude of segments who are validated according to certain QC data """ ecotype_id2cnv_qc_call_data = cls.getCNVQCDataFromDB(data_source_id, cnv_type_id=cnv_type_id, \ min_QC_segment_size=min_QC_segment_size,\ min_no_of_probes=min_no_of_probes) from pymodule import PassingData param_obj = PassingData(amp_ls=[], cnv_qc_call_id_set=set()) cls.compareCNVSegmentsAgainstQCHandler(input_fname_ls, ecotype_id2cnv_qc_call_data, cls.addAmplitudeFunctor, param_obj, \ deletion_cutoff=None, max_boundary_diff=max_boundary_diff, max_diff_perc=max_diff_perc,\ min_no_of_probes=min_no_of_probes, \ count_embedded_segment_as_match=count_embedded_segment_as_match) |
overlap_length = max(0, stop-self.start) - max(0, stop-self.stop) - max(0, start-self.start) overlap_length = float(overlap_length) overlap1 = overlap_length/(stop-start) overlap2 = overlap_length/self.segment_length if overlap1>=self.min_reciprocal_overlap and overlap2>=self.min_reciprocal_overlap: | is_overlap = is_reciprocal_overlap([start, stop], [self.start, self.stop], \ min_reciprocal_overlap=self.min_reciprocal_overlap) if is_overlap: | def addNewCNV(self, chromosome, start, stop, array_id=None): """ """ if self.chromosome is None: self.addOneCNV(chromosome, start, stop, array_id) elif self.chromosome is not None and chromosome!=self.chromosome: return False else: """ boundary_diff1 = abs(start-self.start) boundary_diff2 = abs(stop-self.stop) diff1_perc = boundary_diff1/float(self.segment_length) diff2_perc = boundary_diff2/float(self.segment_length) if boundary_diff1<=self.max_boundary_diff and boundary_diff2<=self.max_boundary_diff and \ diff1_perc<=self.max_diff_perc and diff2_perc<=self.max_diff_perc: self.addOneCNV(chromosome, start, stop, array_id) else: return False """ overlap_length = max(0, stop-self.start) - max(0, stop-self.stop) - max(0, start-self.start) # accomodates 6 scenarios overlap_length = float(overlap_length) overlap1 = overlap_length/(stop-start) overlap2 = overlap_length/self.segment_length if overlap1>=self.min_reciprocal_overlap and overlap2>=self.min_reciprocal_overlap: self.addOneCNV(chromosome, start, stop, array_id) else: return False |
2 functions: 1. detect deletions. make sure the deletion is covered by the sequencing. | Two functions: 1. deletion_only=True. make sure the deletion is covered by the sequencing. | def discoverLerDeletionDuplication(cls, db_250k, ler_blast_result_fname, output_fname, deletion_only=True, min_no_of_matches=25): """ 2009-12-7 ler_blast_result_fname is the output of blasting all CNV probes against Ler contigs http://www.arabidopsis.org/browse/Cereon/index.jsp. 2 functions: 1. detect deletions. make sure the deletion is covered by the sequencing. one naive criteria is if the boundary (two adjacent non-deleted probes) is within the same contig, then yes. 2. detect copy number changes. If two adjacent probes have different number of contigs, then it's a copy number change point. """ from pymodule import getColName2IndexFromHeader, PassingData, figureOutDelimiter sys.stderr.write("Reading from %s ... \n"%ler_blast_result_fname) counter = 0 real_counter = 0 import csv reader = csv.reader(open(ler_blast_result_fname), delimiter=figureOutDelimiter(ler_blast_result_fname)) header = reader.next() col_name2index = getColName2IndexFromHeader(header) probe_id2contig_id_ls = {} for row in reader: contig_label = row[col_name2index['Alignment_title']] probe_id = int(row[col_name2index['Probe_ID']]) no_of_matches = int(row[col_name2index['Number_matches']]) if no_of_matches>=min_no_of_matches: contig_id = ' '.join(contig_label.split()[1:]) if probe_id not in probe_id2contig_id_ls: probe_id2contig_id_ls[probe_id] = [] probe_id2contig_id_ls[probe_id].append(contig_id) sys.stderr.write("Done.\n") del reader import Stock_250kDB from DB_250k2Array import DB_250k2Array session = db_250k.session probes, xy_ls, chr_pos_ls, total_probe_id_ls = DB_250k2Array.get_probes(db_250k.metadata.bind, Stock_250kDB.Probes.table.name, \ snps=None, run_type=2) chr2xy_ls, chr2probe_id_ls = DB_250k2Array.organizeProbesIntoChromosome(xy_ls, chr_pos_ls, total_probe_id_ls) writer = csv.writer(open(output_fname, 'w'), delimiter='\t') header_row = ['start_probe_id', 'start_chr_pos', 'stop_probe_id', 'stop_chr_pos', 'no_of_probes', 'length', 'copy_number'] writer.writerow(header_row) sys.stderr.write("Discovering deletions ...\n") counter = 0 real_counter = 0 for chr, probe_id_ls in chr2probe_id_ls.iteritems(): no_of_probes = len(probe_id_ls) index_of_prev_probe_within_a_contig = None index_of_prev_probe_with_a_different_copy_number = None for i in range(no_of_probes): probe_id = probe_id_ls[i] contig_id_ls = probe_id2contig_id_ls.get(probe_id,[]) copy_number = len(contig_id_ls) if i==0: index_of_prev_probe_with_a_different_copy_number = -1 # set before the first probe (index=0) else: prev_probe_contig_id_ls = probe_id2contig_id_ls.get(probe_id_ls[i-1],[]) prev_copy_number = len(prev_probe_contig_id_ls) if not deletion_only: if copy_number != prev_copy_number: # a change point of copy number if index_of_prev_probe_with_a_different_copy_number is not None: start_probe_id = probe_id_ls[index_of_prev_probe_with_a_different_copy_number+1] start_probe = probes.get_one_probe(start_probe_id) start_chr_pos = '%s_%s'%(start_probe.chr, start_probe.pos) stop_probe_id = probe_id_ls[i-1] stop_probe = probes.get_one_probe(stop_probe_id) stop_chr_pos = '%s_%s'%(stop_probe.chr, stop_probe.pos) row = [start_probe_id, start_chr_pos, stop_probe_id, stop_chr_pos, \ i-index_of_prev_probe_with_a_different_copy_number-1, stop_probe.pos-start_probe.pos, prev_copy_number] writer.writerow(row) real_counter += 1 index_of_prev_probe_with_a_different_copy_number = i-1 else: # look for deleton only. The only difference from above is make sure the deletion is covered by the sequencing. #one naive criteria is if the boundary is within the same contig, then yes. if prev_copy_number>0 and copy_number==0: # from non-deletion to deletion index_of_prev_probe_within_a_contig = i-1 elif prev_copy_number==0 and copy_number>0: # from deletion to non-deletion if index_of_prev_probe_within_a_contig is not None: # found a potential deletion current_contig_id_set = set(contig_id_ls) prev_non_deleted_probe_id = probe_id_ls[index_of_prev_probe_within_a_contig] prev_non_deleted_probe_contig_id_ls = probe_id2contig_id_ls.get(prev_non_deleted_probe_id, []) prev_non_deleted_probe_contig_id_set = set(prev_non_deleted_probe_contig_id_ls) if len(prev_non_deleted_probe_contig_id_set¤t_contig_id_set)>0: #share at least one contig. deletion confirmed deletion_start_probe_id = probe_id_ls[index_of_prev_probe_within_a_contig+1] deletion_start_probe = probes.get_one_probe(deletion_start_probe_id) deletion_start_chr_pos = '%s_%s'%(deletion_start_probe.chr, deletion_start_probe.pos) deletion_stop_probe_id = probe_id_ls[i-1] deletion_stop_probe = probes.get_one_probe(deletion_stop_probe_id) deletion_stop_chr_pos = '%s_%s'%(deletion_stop_probe.chr, deletion_stop_probe.pos) row = [deletion_start_probe_id, deletion_start_chr_pos, deletion_stop_probe_id, deletion_stop_chr_pos, \ i-index_of_prev_probe_within_a_contig-1, deletion_stop_probe.pos-deletion_start_probe.pos, prev_copy_number] writer.writerow(row) real_counter += 1 index_of_prev_probe_within_a_contig = i elif prev_copy_number>0 and copy_number>0: # from non-deletion to non-deletion index_of_prev_probe_within_a_contig = i counter += 1 if counter%10000==0: sys.stderr.write("%s%s\t%s"%('\x08'*80, counter, real_counter)) # don't forget the last segment if it's not in the deletion_only mode. if not deletion_only and index_of_prev_probe_with_a_different_copy_number is not None: start_probe_id = probe_id_ls[index_of_prev_probe_with_a_different_copy_number+1] start_probe = probes.get_one_probe(start_probe_id) start_chr_pos = '%s_%s'%(start_probe.chr, start_probe.pos) stop_probe_id = probe_id_ls[i] # watch: not i-1. stop_probe = probes.get_one_probe(stop_probe_id) stop_chr_pos = '%s_%s'%(stop_probe.chr, stop_probe.pos) row = [start_probe_id, start_chr_pos, stop_probe_id, stop_chr_pos, \ i-index_of_prev_probe_with_a_different_copy_number, stop_probe.pos-start_probe.pos, copy_number] # watch no -1, and it's copy_number writer.writerow(row) real_counter += 1 sys.stderr.write("Done.\n") del writer |
2. detect copy number changes. If two adjacent probes have different number of contigs, then it's a copy number change point. | 2. deletion_only=False, detect copy number changes. If two adjacent probes have different number of contigs, then it's a copy number change point. | def discoverLerDeletionDuplication(cls, db_250k, ler_blast_result_fname, output_fname, deletion_only=True, min_no_of_matches=25): """ 2009-12-7 ler_blast_result_fname is the output of blasting all CNV probes against Ler contigs http://www.arabidopsis.org/browse/Cereon/index.jsp. 2 functions: 1. detect deletions. make sure the deletion is covered by the sequencing. one naive criteria is if the boundary (two adjacent non-deleted probes) is within the same contig, then yes. 2. detect copy number changes. If two adjacent probes have different number of contigs, then it's a copy number change point. """ from pymodule import getColName2IndexFromHeader, PassingData, figureOutDelimiter sys.stderr.write("Reading from %s ... \n"%ler_blast_result_fname) counter = 0 real_counter = 0 import csv reader = csv.reader(open(ler_blast_result_fname), delimiter=figureOutDelimiter(ler_blast_result_fname)) header = reader.next() col_name2index = getColName2IndexFromHeader(header) probe_id2contig_id_ls = {} for row in reader: contig_label = row[col_name2index['Alignment_title']] probe_id = int(row[col_name2index['Probe_ID']]) no_of_matches = int(row[col_name2index['Number_matches']]) if no_of_matches>=min_no_of_matches: contig_id = ' '.join(contig_label.split()[1:]) if probe_id not in probe_id2contig_id_ls: probe_id2contig_id_ls[probe_id] = [] probe_id2contig_id_ls[probe_id].append(contig_id) sys.stderr.write("Done.\n") del reader import Stock_250kDB from DB_250k2Array import DB_250k2Array session = db_250k.session probes, xy_ls, chr_pos_ls, total_probe_id_ls = DB_250k2Array.get_probes(db_250k.metadata.bind, Stock_250kDB.Probes.table.name, \ snps=None, run_type=2) chr2xy_ls, chr2probe_id_ls = DB_250k2Array.organizeProbesIntoChromosome(xy_ls, chr_pos_ls, total_probe_id_ls) writer = csv.writer(open(output_fname, 'w'), delimiter='\t') header_row = ['start_probe_id', 'start_chr_pos', 'stop_probe_id', 'stop_chr_pos', 'no_of_probes', 'length', 'copy_number'] writer.writerow(header_row) sys.stderr.write("Discovering deletions ...\n") counter = 0 real_counter = 0 for chr, probe_id_ls in chr2probe_id_ls.iteritems(): no_of_probes = len(probe_id_ls) index_of_prev_probe_within_a_contig = None index_of_prev_probe_with_a_different_copy_number = None for i in range(no_of_probes): probe_id = probe_id_ls[i] contig_id_ls = probe_id2contig_id_ls.get(probe_id,[]) copy_number = len(contig_id_ls) if i==0: index_of_prev_probe_with_a_different_copy_number = -1 # set before the first probe (index=0) else: prev_probe_contig_id_ls = probe_id2contig_id_ls.get(probe_id_ls[i-1],[]) prev_copy_number = len(prev_probe_contig_id_ls) if not deletion_only: if copy_number != prev_copy_number: # a change point of copy number if index_of_prev_probe_with_a_different_copy_number is not None: start_probe_id = probe_id_ls[index_of_prev_probe_with_a_different_copy_number+1] start_probe = probes.get_one_probe(start_probe_id) start_chr_pos = '%s_%s'%(start_probe.chr, start_probe.pos) stop_probe_id = probe_id_ls[i-1] stop_probe = probes.get_one_probe(stop_probe_id) stop_chr_pos = '%s_%s'%(stop_probe.chr, stop_probe.pos) row = [start_probe_id, start_chr_pos, stop_probe_id, stop_chr_pos, \ i-index_of_prev_probe_with_a_different_copy_number-1, stop_probe.pos-start_probe.pos, prev_copy_number] writer.writerow(row) real_counter += 1 index_of_prev_probe_with_a_different_copy_number = i-1 else: # look for deleton only. The only difference from above is make sure the deletion is covered by the sequencing. #one naive criteria is if the boundary is within the same contig, then yes. if prev_copy_number>0 and copy_number==0: # from non-deletion to deletion index_of_prev_probe_within_a_contig = i-1 elif prev_copy_number==0 and copy_number>0: # from deletion to non-deletion if index_of_prev_probe_within_a_contig is not None: # found a potential deletion current_contig_id_set = set(contig_id_ls) prev_non_deleted_probe_id = probe_id_ls[index_of_prev_probe_within_a_contig] prev_non_deleted_probe_contig_id_ls = probe_id2contig_id_ls.get(prev_non_deleted_probe_id, []) prev_non_deleted_probe_contig_id_set = set(prev_non_deleted_probe_contig_id_ls) if len(prev_non_deleted_probe_contig_id_set¤t_contig_id_set)>0: #share at least one contig. deletion confirmed deletion_start_probe_id = probe_id_ls[index_of_prev_probe_within_a_contig+1] deletion_start_probe = probes.get_one_probe(deletion_start_probe_id) deletion_start_chr_pos = '%s_%s'%(deletion_start_probe.chr, deletion_start_probe.pos) deletion_stop_probe_id = probe_id_ls[i-1] deletion_stop_probe = probes.get_one_probe(deletion_stop_probe_id) deletion_stop_chr_pos = '%s_%s'%(deletion_stop_probe.chr, deletion_stop_probe.pos) row = [deletion_start_probe_id, deletion_start_chr_pos, deletion_stop_probe_id, deletion_stop_chr_pos, \ i-index_of_prev_probe_within_a_contig-1, deletion_stop_probe.pos-deletion_start_probe.pos, prev_copy_number] writer.writerow(row) real_counter += 1 index_of_prev_probe_within_a_contig = i elif prev_copy_number>0 and copy_number>0: # from non-deletion to non-deletion index_of_prev_probe_within_a_contig = i counter += 1 if counter%10000==0: sys.stderr.write("%s%s\t%s"%('\x08'*80, counter, real_counter)) # don't forget the last segment if it's not in the deletion_only mode. if not deletion_only and index_of_prev_probe_with_a_different_copy_number is not None: start_probe_id = probe_id_ls[index_of_prev_probe_with_a_different_copy_number+1] start_probe = probes.get_one_probe(start_probe_id) start_chr_pos = '%s_%s'%(start_probe.chr, start_probe.pos) stop_probe_id = probe_id_ls[i] # watch: not i-1. stop_probe = probes.get_one_probe(stop_probe_id) stop_chr_pos = '%s_%s'%(stop_probe.chr, stop_probe.pos) row = [start_probe_id, start_chr_pos, stop_probe_id, stop_chr_pos, \ i-index_of_prev_probe_with_a_different_copy_number, stop_probe.pos-start_probe.pos, copy_number] # watch no -1, and it's copy_number writer.writerow(row) real_counter += 1 sys.stderr.write("Done.\n") del writer |
session = db_250k.session | def discoverLerDeletionDuplication(cls, db_250k, ler_blast_result_fname, output_fname, deletion_only=True, min_no_of_matches=25): """ 2009-12-7 ler_blast_result_fname is the output of blasting all CNV probes against Ler contigs http://www.arabidopsis.org/browse/Cereon/index.jsp. 2 functions: 1. detect deletions. make sure the deletion is covered by the sequencing. one naive criteria is if the boundary (two adjacent non-deleted probes) is within the same contig, then yes. 2. detect copy number changes. If two adjacent probes have different number of contigs, then it's a copy number change point. """ from pymodule import getColName2IndexFromHeader, PassingData, figureOutDelimiter sys.stderr.write("Reading from %s ... \n"%ler_blast_result_fname) counter = 0 real_counter = 0 import csv reader = csv.reader(open(ler_blast_result_fname), delimiter=figureOutDelimiter(ler_blast_result_fname)) header = reader.next() col_name2index = getColName2IndexFromHeader(header) probe_id2contig_id_ls = {} for row in reader: contig_label = row[col_name2index['Alignment_title']] probe_id = int(row[col_name2index['Probe_ID']]) no_of_matches = int(row[col_name2index['Number_matches']]) if no_of_matches>=min_no_of_matches: contig_id = ' '.join(contig_label.split()[1:]) if probe_id not in probe_id2contig_id_ls: probe_id2contig_id_ls[probe_id] = [] probe_id2contig_id_ls[probe_id].append(contig_id) sys.stderr.write("Done.\n") del reader import Stock_250kDB from DB_250k2Array import DB_250k2Array session = db_250k.session probes, xy_ls, chr_pos_ls, total_probe_id_ls = DB_250k2Array.get_probes(db_250k.metadata.bind, Stock_250kDB.Probes.table.name, \ snps=None, run_type=2) chr2xy_ls, chr2probe_id_ls = DB_250k2Array.organizeProbesIntoChromosome(xy_ls, chr_pos_ls, total_probe_id_ls) writer = csv.writer(open(output_fname, 'w'), delimiter='\t') header_row = ['start_probe_id', 'start_chr_pos', 'stop_probe_id', 'stop_chr_pos', 'no_of_probes', 'length', 'copy_number'] writer.writerow(header_row) sys.stderr.write("Discovering deletions ...\n") counter = 0 real_counter = 0 for chr, probe_id_ls in chr2probe_id_ls.iteritems(): no_of_probes = len(probe_id_ls) index_of_prev_probe_within_a_contig = None index_of_prev_probe_with_a_different_copy_number = None for i in range(no_of_probes): probe_id = probe_id_ls[i] contig_id_ls = probe_id2contig_id_ls.get(probe_id,[]) copy_number = len(contig_id_ls) if i==0: index_of_prev_probe_with_a_different_copy_number = -1 # set before the first probe (index=0) else: prev_probe_contig_id_ls = probe_id2contig_id_ls.get(probe_id_ls[i-1],[]) prev_copy_number = len(prev_probe_contig_id_ls) if not deletion_only: if copy_number != prev_copy_number: # a change point of copy number if index_of_prev_probe_with_a_different_copy_number is not None: start_probe_id = probe_id_ls[index_of_prev_probe_with_a_different_copy_number+1] start_probe = probes.get_one_probe(start_probe_id) start_chr_pos = '%s_%s'%(start_probe.chr, start_probe.pos) stop_probe_id = probe_id_ls[i-1] stop_probe = probes.get_one_probe(stop_probe_id) stop_chr_pos = '%s_%s'%(stop_probe.chr, stop_probe.pos) row = [start_probe_id, start_chr_pos, stop_probe_id, stop_chr_pos, \ i-index_of_prev_probe_with_a_different_copy_number-1, stop_probe.pos-start_probe.pos, prev_copy_number] writer.writerow(row) real_counter += 1 index_of_prev_probe_with_a_different_copy_number = i-1 else: # look for deleton only. The only difference from above is make sure the deletion is covered by the sequencing. #one naive criteria is if the boundary is within the same contig, then yes. if prev_copy_number>0 and copy_number==0: # from non-deletion to deletion index_of_prev_probe_within_a_contig = i-1 elif prev_copy_number==0 and copy_number>0: # from deletion to non-deletion if index_of_prev_probe_within_a_contig is not None: # found a potential deletion current_contig_id_set = set(contig_id_ls) prev_non_deleted_probe_id = probe_id_ls[index_of_prev_probe_within_a_contig] prev_non_deleted_probe_contig_id_ls = probe_id2contig_id_ls.get(prev_non_deleted_probe_id, []) prev_non_deleted_probe_contig_id_set = set(prev_non_deleted_probe_contig_id_ls) if len(prev_non_deleted_probe_contig_id_set¤t_contig_id_set)>0: #share at least one contig. deletion confirmed deletion_start_probe_id = probe_id_ls[index_of_prev_probe_within_a_contig+1] deletion_start_probe = probes.get_one_probe(deletion_start_probe_id) deletion_start_chr_pos = '%s_%s'%(deletion_start_probe.chr, deletion_start_probe.pos) deletion_stop_probe_id = probe_id_ls[i-1] deletion_stop_probe = probes.get_one_probe(deletion_stop_probe_id) deletion_stop_chr_pos = '%s_%s'%(deletion_stop_probe.chr, deletion_stop_probe.pos) row = [deletion_start_probe_id, deletion_start_chr_pos, deletion_stop_probe_id, deletion_stop_chr_pos, \ i-index_of_prev_probe_within_a_contig-1, deletion_stop_probe.pos-deletion_start_probe.pos, prev_copy_number] writer.writerow(row) real_counter += 1 index_of_prev_probe_within_a_contig = i elif prev_copy_number>0 and copy_number>0: # from non-deletion to non-deletion index_of_prev_probe_within_a_contig = i counter += 1 if counter%10000==0: sys.stderr.write("%s%s\t%s"%('\x08'*80, counter, real_counter)) # don't forget the last segment if it's not in the deletion_only mode. if not deletion_only and index_of_prev_probe_with_a_different_copy_number is not None: start_probe_id = probe_id_ls[index_of_prev_probe_with_a_different_copy_number+1] start_probe = probes.get_one_probe(start_probe_id) start_chr_pos = '%s_%s'%(start_probe.chr, start_probe.pos) stop_probe_id = probe_id_ls[i] # watch: not i-1. stop_probe = probes.get_one_probe(stop_probe_id) stop_chr_pos = '%s_%s'%(stop_probe.chr, stop_probe.pos) row = [start_probe_id, start_chr_pos, stop_probe_id, stop_chr_pos, \ i-index_of_prev_probe_with_a_different_copy_number, stop_probe.pos-start_probe.pos, copy_number] # watch no -1, and it's copy_number writer.writerow(row) real_counter += 1 sys.stderr.write("Done.\n") del writer |
|
snpData = SNPData(input_fname=inputFname, turn_into_array=1) | row_id_key_set = set([row_id1, row_id2]) snpData = SNPData(input_fname=inputFname, turn_into_array=1, row_id_key_set=row_id_key_set) | def cmpOneRowToTheOther(cls, inputFname, row_id1, row_id2): """ 2009-6-17 compare SNP data of one accession to the other in the same dataset """ sys.stderr.write("Comparing one row to the other ... \n") from pymodule import SNPData, TwoSNPData, PassingData snpData = SNPData(input_fname=inputFname, turn_into_array=1) twoSNPData = TwoSNPData(SNPData1=snpData, SNPData2=snpData) print twoSNPData.cmpOneRow(row_id1, row_id2) |
inputFname = '/Network/Data/250k/db/dataset/call_method_29.tsv' row_id1 = ('6910', '62') row_id2 = ('8290', '181') AnalyzeSNPData.cmpOneRowToTheOther(inputFname, row_id1, row_id2) | inputFname = '/Network/Data/250k/db/dataset/call_method_29.tsv' row_id1 = ('6910', '62') row_id2 = ('8290', '181') AnalyzeSNPData.cmpOneRowToTheOther(inputFname, row_id1, row_id2) inputFname = os.path.expanduser('~/mnt2/panfs/NPUTE_data/input/250k_l3_y.85_20091208.tsv') row_id1 = ('7034', '1338') row_id2 = ('7035', '336') AnalyzeSNPData.cmpOneRowToTheOther(inputFname, row_id1, row_id2) """ @classmethod def cmpAllDuplicatesOfOneEcotype(cls, inputFname, ecotype_id_ls): """ 2009-12-11 For each ecotype_id in ecotype_id_ls, compare mismatch-rates between duplicates """ sys.stderr.write("Comparing one row to the other ... \n") from pymodule import SNPData, TwoSNPData, PassingData ecotype_id_set = set(ecotype_id_ls) def row_id_hash_func(row_id): return int(row_id[0]) snpData = SNPData(input_fname=inputFname, turn_into_array=1, row_id_key_set=ecotype_id_set, row_id_hash_func=row_id_hash_func) ecotype_id2row_id_to_check_ls = {} for row_id in snpData.row_id_ls: ecotype_id = int(row_id[0]) if ecotype_id in ecotype_id_set: if ecotype_id not in ecotype_id2row_id_to_check_ls: ecotype_id2row_id_to_check_ls[ecotype_id] = [] ecotype_id2row_id_to_check_ls[ecotype_id].append(row_id) twoSNPData = TwoSNPData(SNPData1=snpData, SNPData2=snpData) for ecotype_id, row_id_to_check_ls in ecotype_id2row_id_to_check_ls.iteritems(): if len(row_id_to_check_ls)>1: print "ecotype_id: %s"%ecotype_id no_of_arrays = len(row_id_to_check_ls) for i in range(no_of_arrays): for j in range(i+1, no_of_arrays): row_id1 = row_id_to_check_ls[i] row_id2 = row_id_to_check_ls[j] print "row_id1 %s vs row_id2 %s"%(row_id1, row_id2) print twoSNPData.cmpOneRow(row_id1, row_id2) """ inputFname = os.path.expanduser('~/mnt2/panfs/NPUTE_data/input/250k_l3_y.85_20091208.tsv') ecotype_id_ls = [8297, 7317, 6910, 8274, 6911, 6905, 7034, 6909, 6962, 7373, 7270, 6983, 6899] AnalyzeSNPData.cmpAllDuplicatesOfOneEcotype(inputFname, ecotype_id_ls) | def cmpOneRowToTheOther(cls, inputFname, row_id1, row_id2): """ 2009-6-17 compare SNP data of one accession to the other in the same dataset """ sys.stderr.write("Comparing one row to the other ... \n") from pymodule import SNPData, TwoSNPData, PassingData snpData = SNPData(input_fname=inputFname, turn_into_array=1) twoSNPData = TwoSNPData(SNPData1=snpData, SNPData2=snpData) print twoSNPData.cmpOneRow(row_id1, row_id2) |
ler_blast_result_fname = '/Network/Data/250k/tmp-dazhe/tair9_raw.csv' output_fname = '/tmp/Col-copy-number.tsv' CNV.discoverLerDeletionDuplication(db_250k, ler_blast_result_fname, output_fname, deletion_only=False) """ cnv_intensity_fname = os.path.expanduser('~/mnt2/panfs/250k/CNV/call_method_48_CNV_intensity.tsv') aAlpha_ls = [0.2, 0.5, 0.8, 1.0, 2.0] T_ls = [2.0,4.0,8.0,12.0,14.0] M_ls = [5,10] deletion_cutoff_ls = [-0.33, -0.4, -0.5, -0.6] max_boundary_diff = 20000 max_diff_perc = 0.2 for aAlpha in aAlpha_ls: for T in T_ls: for M in M_ls: for deletion_cutoff in deletion_cutoff_ls: for min_no_of_probes in [5,10,20,40]: for min_reciprocal_overlap in [0.4, 0.6, 0.8]: GADA_output_fname_ls = [] for chr in range(1,6): fname = os.path.expanduser('~/mnt2/panfs/250k/CNV/GADA_output/call_method_48_CNV_intensity_QNorm_sub_ref_chr%s_A%sT%sM%s.tsv'%(chr, aAlpha, T, M)) if os.path.isfile(fname): GADA_output_fname_ls.append(fname) output_fname_prefix = '/Network/Data/250k/tmp-yh/CNV/CNVOccurrenceByOverlap/call_48_A%sT%sM%s_delCutoff%s_min_p%s_mdist%s_mperc%s_moverlap%s'%\ (aAlpha, T, M, deletion_cutoff, min_no_of_probes, max_boundary_diff, max_diff_perc, min_reciprocal_overlap) CNV.plotCNVOccurrenceInReplicatesHist(db_250k, cnv_intensity_fname, GADA_output_fname_ls, \ output_fname_prefix, \ min_no_of_replicates=5, \ min_no_of_probes=min_no_of_probes, deletion_cutoff=deletion_cutoff, \ max_boundary_diff=max_boundary_diff, \ max_diff_perc=max_diff_perc, min_reciprocal_overlap=min_reciprocal_overlap) """ | ler_blast_result_fname = '/Network/Data/250k/tmp-dazhe/ler_raw_CNV_QC.csv' max_delta_ratio = 0.4 max_length_delta = 10000 for max_length_delta in range(1,7): max_length_delta = max_length_delta*10000 output_fname = '/tmp/Ler-span-over-Col-mdr%s-mld%s.tsv'%(max_delta_ratio, max_length_delta) CNV.discoverLerContigSpanOverCol(ler_blast_result_fname, output_fname, min_no_of_matches=25, max_delta_ratio=max_delta_ratio, max_length_delta=max_length_delta) """ max_copy_number = 16 input_fname_ls = [] for i in range(1,6): input_fname_ls.append(os.path.expanduser('~/mnt2/panfs/250k/CNV/call_method_48_CNV_intensity_QNorm_sub_ref_chr%s.tsv'%i)) output_fname_prefix = os.path.expanduser('~/tmp/call_48_Col_intensity_QNorm_sub_ref_vs_true_copy_number_m%s'%max_copy_number) CNV.drawIntensityVsProbeTrueCopyNumber(db_250k, input_fname_ls, output_fname_prefix, \ ecotype_id=6909, data_source_id=9, cnv_type_id=None, max_copy_number=max_copy_number) input_fname_ls = [os.path.expanduser('~/mnt2/panfs/250k/CNV/call_method_48_CNV_intensity.tsv')] output_fname_prefix = os.path.expanduser('~/tmp/call_48_Col_intensity_vs_true_copy_number_m%s'%max_copy_number) CNV.drawIntensityVsProbeTrueCopyNumber(db_250k, input_fname_ls, output_fname_prefix, \ ecotype_id=6909, data_source_id=9, cnv_type_id=None, max_copy_number=max_copy_number) input_fname_ls = [os.path.expanduser('~/mnt2/panfs/250k/CNV/call_method_48_CNV_intensity.tsv')] output_fname_prefix = os.path.expanduser('~/tmp/call_48_Ler_intensity_vs_true_copy_number_m%s'%max_copy_number) CNV.drawIntensityVsProbeTrueCopyNumber(db_250k, input_fname_ls, output_fname_prefix, \ ecotype_id=6932, data_source_id=8, cnv_type_id=None, max_copy_number=max_copy_number) input_fname_ls = [] for i in range(1,6): input_fname_ls.append(os.path.expanduser('~/mnt2/panfs/250k/CNV/call_method_48_CNV_intensity_QNorm_sub_ref_chr%s.tsv'%i)) output_fname_prefix = os.path.expanduser('~/tmp/call_48_Ler_intensity_QNorm_sub_ref_vs_true_copy_number_m%s'%max_copy_number) CNV.drawIntensityVsProbeTrueCopyNumber(db_250k, input_fname_ls, output_fname_prefix, \ ecotype_id=6932, data_source_id=8, cnv_type_id=None, max_copy_number=max_copy_number) """ | def linkEcotypeIDFromSuziPhenotype(cls, fname_with_ID, fname_with_phenotype, output_fname): """ 2009-7-31 she gave me two files one has phenotype data and accession names but with no ecotype ID 2nd is a map from accession name to ecotype ID """ sys.stderr.write("Linking accession names to ecotype ID ... ") import csv inf_phenotype = csv.reader(open(fname_with_phenotype, 'r'), delimiter='\t') accession_name_ls = [] #skip two lines inf_phenotype.next() inf_phenotype.next() for row in inf_phenotype: accession_name_ls.append(row[0]) del inf_phenotype inf_with_ID = csv.reader(open(fname_with_ID), delimiter='\t') inf_with_ID.next() accession_name2ecotype_id = {} for row in inf_with_ID: ecotype_id = row[0] accession_name = row[5] accession_name2ecotype_id[accession_name] = ecotype_id del inf_with_ID print accession_name2ecotype_id writer = csv.writer(open(output_fname, 'w'), delimiter='\t') for accession_name in accession_name_ls: ecotype_id = accession_name2ecotype_id.get(accession_name) writer.writerow([accession_name, ecotype_id]) del writer sys.stderr.write("Done.\n") |
overlap1 = overlap_length/(qc_stop-qc_start) overlap2 = overlap_length/(segment_stop_pos-segment_start_pos) | overlap1 = overlap_length/(segment_stop_pos-segment_start_pos) overlap2 = overlap_length/(qc_stop-qc_start) | def get_overlap_ratio(span1_ls, span2_ls): """ 2009-12-13 calculate the two overlap ratios for two segments """ segment_start_pos, segment_stop_pos = span1_ls qc_start, qc_stop = span2_ls overlap_length = max(0, segment_stop_pos - qc_start) - max(0, segment_stop_pos - qc_stop) - max(0, segment_start_pos - qc_start) # accomodates 6 scenarios overlap_length = float(overlap_length) overlap1 = overlap_length/(qc_stop-qc_start) overlap2 = overlap_length/(segment_stop_pos-segment_start_pos) return overlap1, overlap2 |
a key designed to represent a CNV segment in a binary search tree (BinarySearchTree.py), which could be used to do == or >, or < operators | a key designed to represent a CNV segment in the node of a binary search tree (BinarySearchTree.py) or RBTree (RBTree.py), It has custom comparison function based on the is_reciprocal_overlap() function. | def is_reciprocal_overlap(span1_ls, span2_ls, min_reciprocal_overlap=0.6): """ 2009-12-12 return True if both overlap ratios are above the min_reciprocal_overlap """ overlap1, overlap2 = get_overlap_ratio(span1_ls, span2_ls) if overlap1>=min_reciprocal_overlap and overlap2>=min_reciprocal_overlap: return True else: return False |
return self.span_ls[0]>=other.span_ls[0] and self.span_ls[1]<=other.span_ls[0] | return self.span_ls[0]<=other.span_ls[0] and self.span_ls[1]>=other.span_ls[0] | def __eq__(self, other): """ 2009-12-12 """ if self.chromosome==other.chromosome: if len(self.span_ls)==1: if len(other.span_ls)==1: return self.span_ls[0]==other.span_ls[0] elif len(other.span_ls)>1: return self.span_ls[0]>=other.span_ls[0] and self.span_ls[0]<=other.span_ls[1] # equal if self is within the "other" segment else: return None elif len(self.span_ls)>1: if len(other.span_ls)==1: # self is a segment. other is a point position. return self.span_ls[0]>=other.span_ls[0] and self.span_ls[1]<=other.span_ls[0] # if self includes the point position, yes it's equal elif len(other.span_ls)>1: # need to calculate min_reciprocal_overlap return is_reciprocal_overlap(self.span_ls, other.span_ls, min_reciprocal_overlap=self.min_reciprocal_overlap) #return self.span_ls[1]<other.span_ls[0] # whether the stop of this segment is ahead of the start of other else: return None else: return False |
import os, sys | import os, sys, math | def getCNVDataFromFileInGWA(input_fname_ls, array_id, max_amp=-0.33, min_amp=-0.33, min_size=50, min_no_of_probes=None, report=False): """ 2009-10-31 get deletion (below max_amp) or duplication (above min_amp) from files (output by RunGADA.py) """ sys.stderr.write("Getting CNV calls for array %s, min_size %s, min_no_of_probes %s from %s ..."%\ (array_id, min_size, min_no_of_probes, repr(input_fname_ls))) gwr_name = "(a-id %s)"%(array_id) gwr = GenomeWideResult(name=gwr_name) gwr.data_obj_ls = [] #list and dictionary are crazy references. gwr.data_obj_id2index = {} genome_wide_result_id = id(gwr) amp_ls = [] array_id2array = {} counter = 0 real_counter = 0 no_of_segments = 0 input_handler = fileinput.input(input_fname_ls) header = input_handler.readline().strip().split('\t') col_name2index = getColName2IndexFromHeader(header) ecotype_id = None for line in input_handler: if line.find("array_id")!=-1: continue line = line.strip() row = line.split('\t') cnv_array_id = int(row[col_name2index['array_id']]) cnv_ecotype_id = int(row[col_name2index.get('ecotype_id', col_name2index['array_id'])]) counter += 1 if cnv_array_id==array_id: no_of_segments += 1 if ecotype_id is None: ecotype_id = cnv_ecotype_id start_probe = row[col_name2index['start_probe']].split('_') # split chr_pos start_probe = map(int, start_probe) start_probe_id = row[col_name2index.get('start_probe_id', col_name2index['start_probe'])] stop_probe = row[col_name2index['end_probe']].split('_') stop_probe = map(int, stop_probe) end_probe_id = row[col_name2index.get('end_probe_id', col_name2index['end_probe'])] no_of_probes = int(row[col_name2index['length']]) if min_no_of_probes is not None and no_of_probes<min_no_of_probes: continue amplitude = float(row[col_name2index['amplitude']]) segment_chromosome = start_probe[0] segment_start_pos = start_probe[1]-12 segment_stop_pos = stop_probe[1]+12 segment_length = abs(segment_stop_pos-segment_start_pos) if min_size is not None and segment_length<min_size: continue if amplitude<=max_amp or amplitude>=min_amp: real_counter += 1 data_obj = DataObject(chromosome=segment_chromosome, position=segment_start_pos, stop_position=segment_stop_pos, \ value=amplitude) data_obj.comment = 'start probe-id %s, end probe-id %s, no of probes %s'%\ (start_probe_id, end_probe_id, no_of_probes) data_obj.genome_wide_result_id = genome_wide_result_id gwr.add_one_data_obj(data_obj) if report and counter%10000==0: sys.stderr.write('%s%s\t%s\t%s'%('\x08'*80, counter, no_of_segments, real_counter)) sys.stderr.write("\n") if gwr.max_value<3: # insertion at y=3 gwr.max_value=3 if gwr.min_value>-1: # deletion at y = -1 gwr.min_value = -1 gwr.name = '%s '%ecotype_id + gwr.name setattr(gwr, 'ecotype_id', ecotype_id) sys.stderr.write(" %s segments. Done.\n"%(len(gwr.data_obj_ls))) return gwr |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.