code
stringlengths
1
46.1k
label
class label
1.18k classes
domain_label
class label
21 classes
index
stringlengths
4
5
my ($board_size, @occupied, @past, @solutions); sub try_column { my ($depth, @diag) = shift; if ($depth == $board_size) { push @solutions, "@past\n"; return; } $ for (0 .. $ $diag[ $past[$_] + $depth - $_ ] = 1; $diag[ $past[$_] - $depth + $_ ] = 1; } for my $row (0 .. $board_size - 1) { next if $occupied[$row] || $diag[$row]; push @past, $row; $occupied[$row] = 1; try_column($depth + 1); $occupied[$row] = 0; pop @past; } } $board_size = 12; try_column(0); print "total " . @solutions . " solutions\n";
543N-queens problem
2perl
5oqu2
null
540N'th
20typescript
meayd
local M = {}
558Morse code
1lua
k3kh2
import java.util.Random; public class Monty{ public static void main(String[] args){ int switchWins = 0; int stayWins = 0; Random gen = new Random(); for(int plays = 0;plays < 32768;plays++ ){ int[] doors = {0,0,0};
559Monty Hall problem
9java
cwm9h
func multiFactorial(_ n: Int, k: Int) -> Int { return stride(from: n, to: 0, by: -k).reduce(1, *) } let multis = (1...5).map({degree in (1...10).map({member in multiFactorial(member, k: degree) }) }) for (i, degree) in multis.enumerated() { print("Degree \(i + 1): \(degree)") }
552Multifactorial
17swift
ir3o0
<html> <head> <title> n x n Queen solving program </title> </head> <body> <?php echo ; $boardX = $_POST['boardX']; $boardY = $_POST['boardX']; function rotateBoard($p, $boardX) { $a=0; while ($a < count($p)) { $b = strlen(decbin($p[$a]))-1; $tmp[$b] = 1 << ($boardX - $a - 1); ++$a; } ksort($tmp); return $tmp; } function findRotation($p, $boardX,$solutions){ $tmp = rotateBoard($p,$boardX); if (in_array($tmp,$solutions)) {} else {$solutions[] = $tmp;} $tmp = rotateBoard($tmp,$boardX); if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;} $tmp = rotateBoard($tmp,$boardX); if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;} $tmp = array_reverse($p); if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;} $tmp = rotateBoard($tmp,$boardX); if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;} $tmp = rotateBoard($tmp,$boardX); if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;} $tmp = rotateBoard($tmp,$boardX); if (in_array($tmp,$solutions)){} else {$solutions[] = $tmp;} return $solutions; } function renderBoard($p,$boardX) { $img = ''; echo ; for ($y = 0; $y < $boardX; ++$y) { echo '<tr>'; for ($x = 0; $x < $boardX; ++$x){ if (($x+$y) & 1) { $cellCol = ' else {$cellCol = ' if ($p[$y] == 1 << $x) { echo .$cellCol..$img.;} else { echo .$cellCol.;} } echo '<tr>'; } echo '<tr></tr></table>&nbsp'; } function pc_next_permutation($p) { $size = count($p) - 1; for ($i = $size - 1; $p[$i] >= $p[$i+1]; --$i) { } if ($i == -1) { return false; } for ($j = $size; $p[$j] <= $p[$i]; --$j) { } $tmp = $p[$i]; $p[$i] = $p[$j]; $p[$j] = $tmp; for (++$i, $j = $size; $i < $j; ++$i, --$j) { $tmp = $p[$i]; $p[$i] = $p[$j]; $p[$j] = $tmp; } return $p; } function checkBoard($p,$boardX) { $a = 0; while ($a < count($p)) { $b = 1; while ($b < ($boardX - $a)){ $x = $p[$a+$b] << $b; $y = $p[$a+$b] >> $b; if ($p[$a] == $x | $p[$a] == $y) { return false; } ++$b; } ++$a; } return true; } if (isset($_POST['process']) && isset($_POST['boardX'])) { for ($x = 0; $x < $boardX; ++$x){ $row[$x] = 1 << $x; } $solcount = 0; $solutions = array(); while ($row != false) { if (checkBoard($row,$boardX)){ if(!in_array($row,$solutions)){ $solutions[] = $row; renderBoard($row,$boardX); $solutions = findRotation($row,$boardX,$solutions); ++$solcount; } } $row = pc_next_permutation($row); } echo .$boardX..$solcount..count($solutions).; } echo <<<_END <form name= action= method=> &nbsp&nbsp&nbsp&nbspNumber of columns/rows <select name= /> <option value=>One</option> <option value=>Two</option> <option value=>Three</option> <option value= >Four</option> <option value=>Five</option> <option value=>Six</option> <option value=>Seven</option> <option value= selected=>Eight</option> <option value=>Nine</option> <option value=>Ten</option> </select> <input type= name= value= /> &nbsp<input type= value= /> </form> _END; ?> </body> </html>
543N-queens problem
12php
ogv85
sub pi { my $nthrows = shift; my $inside = 0; foreach (1 .. $nthrows) { my $x = rand() * 2 - 1; my $y = rand() * 2 - 1; if (sqrt($x*$x + $y*$y) < 1) { $inside++; } } return 4 * $inside / $nthrows; } printf "%9d:%07f\n", $_, pi($_) for 10**4, 10**6;
557Monte Carlo methods
2perl
4ig5d
function montyhall(tests, doors) { 'use strict'; tests = tests ? tests : 1000; doors = doors ? doors : 3; var prizeDoor, chosenDoor, shownDoor, switchDoor, chosenWins = 0, switchWins = 0;
559Monty Hall problem
10javascript
58vur
<? $loop = 1000000; $count = 0; for ($i=0; $i<$loop; $i++) { $x = rand() / getrandmax(); $y = rand() / getrandmax(); if(($x*$x) + ($y*$y)<=1) $count++; } echo .number_format($loop)..number_format($count)..($count/$loop*4); ?>
557Monte Carlo methods
12php
irnov
>>> def extended_gcd(aa, bb): lastremainder, remainder = abs(aa), abs(bb) x, lastx, y, lasty = 0, 1, 1, 0 while remainder: lastremainder, (quotient, remainder) = remainder, divmod(lastremainder, remainder) x, lastx = lastx - quotient*x, x y, lasty = lasty - quotient*y, y return lastremainder, lastx * (-1 if aa < 0 else 1), lasty * (-1 if bb < 0 else 1) >>> def modinv(a, m): g, x, y = extended_gcd(a, m) if g != 1: raise ValueError return x% m >>> modinv(42, 2017) 1969 >>>
556Modular inverse
3python
k3phf
null
559Monty Hall problem
11kotlin
3btz5
sub F { my $n = shift; $n ? $n - M(F($n-1)) : 1 } sub M { my $n = shift; $n ? $n - F(M($n-1)) : 0 } foreach my $sequence (\&F, \&M) { print join(' ', map $sequence->($_), 0 .. 19), "\n"; }
542Mutual recursion
2perl
u8qvr
function playgame(player) local car = math.random(3) local pchoice = player.choice() local function neither(a, b)
559Monty Hall problem
1lua
6pz39
def extended_gcd(a, b) last_remainder, remainder = a.abs, b.abs x, last_x, y, last_y = 0, 1, 1, 0 while remainder!= 0 last_remainder, (quotient, remainder) = remainder, last_remainder.divmod(remainder) x, last_x = last_x - quotient*x, x y, last_y = last_y - quotient*y, y end return last_remainder, last_x * (a < 0? -1: 1) end def invmod(e, et) g, x = extended_gcd(e, et) if g!= 1 raise 'The maths are broken!' end x % et end
556Modular inverse
14ruby
pyabh
>>> import random, math >>> throws = 1000 >>> 4.0 * sum(math.hypot(*[random.random()*2-1 for q in [0,1]]) < 1 for p in xrange(throws)) / float(throws) 3.1520000000000001 >>> throws = 1000000 >>> 4.0 * sum(math.hypot(*[random.random()*2-1 for q in [0,1]]) < 1 for p in xrange(throws)) / float(throws) 3.1396359999999999 >>> throws = 100000000 >>> 4.0 * sum(math.hypot(*[random.random()*2-1 for q in [0,1]]) < 1 for p in xrange(throws)) / float(throws) 3.1415666400000002
557Monte Carlo methods
3python
gnr4h
fn mod_inv(a: isize, module: isize) -> isize { let mut mn = (module, a); let mut xy = (0, 1); while mn.1!= 0 { xy = (xy.1, xy.0 - (mn.0 / mn.1) * xy.1); mn = (mn.1, mn.0% mn.1); } while xy.0 < 0 { xy.0 += module; } xy.0 } fn main() { println!("{}", mod_inv(42, 2017)) }
556Modular inverse
15rust
1mepu
def gcdExt(u: Int, v: Int): (Int, Int, Int) = { @tailrec def aux(a: Int, b: Int, x: Int, y: Int, x1: Int, x2: Int, y1: Int, y2: Int): (Int, Int, Int) = { if(b == 0) (x, y, a) else { val (q, r) = (a / b, a % b) aux(b, r, x2 - q * x1, y2 - q * y1, x, x1, y, y1) } } aux(u, v, 1, 0, 0, 1, 1, 0) } def modInv(a: Int, m: Int): Option[Int] = { val (i, j, g) = gcdExt(a, m) if (g == 1) Option(if (i < 0) i + m else i) else Option.empty }
556Modular inverse
16scala
wlqes
<?php function F($n) { if ( $n == 0 ) return 1; return $n - M(F($n-1)); } function M($n) { if ( $n == 0) return 0; return $n - F(M($n-1)); } $ra = array(); $rb = array(); for($i=0; $i < 20; $i++) { array_push($ra, F($i)); array_push($rb, M($i)); } echo implode(, $ra) . ; echo implode(, $rb) . ; ?>
542Mutual recursion
12php
84v0m
monteCarloPi <- function(samples) { x <- runif(samples, -1, 1) y <- runif(samples, -1, 1) l <- sqrt(x*x + y*y) return(4*sum(l<=1)/samples) } monteCarlo2Pi <- function(samples, group=100) { lim <- ceiling(samples/group) olim <- lim c <- 0 while(lim > 0) { x <- runif(group, -1, 1) y <- runif(group, -1, 1) l <- sqrt(x*x + y*y) c <- c + sum(l <= 1) lim <- lim - 1 } return(4*c/(olim*group)) } print(monteCarloPi(1e4)) print(monteCarloPi(1e5)) print(monteCarlo2Pi(1e7))
557Monte Carlo methods
13r
v0u27
extension BinaryInteger { @inlinable public func modInv(_ mod: Self) -> Self { var (m, n) = (mod, self) var (x, y) = (Self(0), Self(1)) while n!= 0 { (x, y) = (y, x - (m / n) * y) (m, n) = (n, m% n) } while x < 0 { x += mod } return x } } print(42.modInv(2017))
556Modular inverse
17swift
b61kd
use Acme::AGMorse qw(SetMorseVals SendMorseMsg); SetMorseVals(20,30,400); SendMorseMsg('Hello World! abcdefg @\;'); exit;
558Morse code
2perl
zbztb
def approx_pi(throws) times_inside = throws.times.count {Math.hypot(rand, rand) <= 1.0} 4.0 * times_inside / throws end [1000, 10_000, 100_000, 1_000_000, 10_000_000].each do |n| puts % [n, approx_pi(n)] end
557Monte Carlo methods
14ruby
7fjri
null
556Modular inverse
20typescript
djtn0
extern crate rand; use rand::Rng; use std::f64::consts::PI;
557Monte Carlo methods
15rust
jth72
object MonteCarlo { private val random = new scala.util.Random def nextThrow: Double = (random.nextDouble * 2.0) - 1.0 def insideCircle(pt: (Double, Double)): Boolean = pt match { case (x, y) => (x * x) + (y * y) <= 1.0 } def simulate(times: Int): Double = { val inside = Iterator.tabulate (times) (_ => (nextThrow, nextThrow)) count insideCircle inside.toDouble / times.toDouble * 4.0 } def main(args: Array[String]): Unit = { val sims = Seq(10000, 100000, 1000000, 10000000, 100000000) sims.foreach { n => println(n+" simulations; pi estimation: "+ simulate(n)) } } }
557Monte Carlo methods
16scala
b6pk6
from itertools import permutations n = 8 cols = range(n) for vec in permutations(cols): if n == len(set(vec[i]+i for i in cols)) \ == len(set(vec[i]-i for i in cols)): print ( vec )
543N-queens problem
3python
4is5k
use strict; my $trials = 10000; my $stay = 0; my $switch = 0; foreach (1 .. $trials) { my $prize = int(rand 3); my $chosen = int(rand 3); my $show; do { $show = int(rand 3) } while $show == $chosen || $show == $prize; $stay++ if $prize == $chosen; $switch++ if $prize == 3 - $chosen - $show; } print "Stay win ratio " . (100.0 * $stay/$trials) . "\n"; print "Switch win ratio " . (100.0 * $switch/$trials) . "\n";
559Monty Hall problem
2perl
p6kb0
package main import ( "fmt" ) func main() { fmt.Print(" x |") for i := 1; i <= 12; i++ { fmt.Printf("%4d", i) } fmt.Print("\n---+") for i := 1; i <= 12; i++ { fmt.Print("----") } for j := 1; j <= 12; j++ { fmt.Printf("\n%2d |", j) for i := 1; i <= 12; i++ { if i >= j { fmt.Printf("%4d", i*j) } else { fmt.Print(" ") } } } fmt.Println("") }
560Multiplication tables
0go
ma3yi
import Foundation func mcpi(sampleSize size:Int) -> Double { var x = 0 as Double var y = 0 as Double var m = 0 as Double for i in 0..<size { x = Double(arc4random()) / Double(UINT32_MAX) y = Double(arc4random()) / Double(UINT32_MAX) if ((x * x) + (y * y) < 1) { m += 1 } } return (4.0 * m) / Double(size) } println(mcpi(sampleSize: 100)) println(mcpi(sampleSize: 1000)) println(mcpi(sampleSize: 10000)) println(mcpi(sampleSize: 100000)) println(mcpi(sampleSize: 1000000)) println(mcpi(sampleSize: 10000000)) println(mcpi(sampleSize: 100000000))
557Monte Carlo methods
17swift
rd7gg
def printMultTable = { size = 12 -> assert size > 1
560Multiplication tables
7groovy
thnfh
queens <- function(n) { a <- seq(n) u <- rep(T, 2 * n - 1) v <- rep(T, 2 * n - 1) m <- NULL aux <- function(i) { if (i > n) { m <<- cbind(m, a) } else { for (j in seq(i, n)) { k <- a[[j]] p <- i - k + n q <- i + k - 1 if (u[[p]] && v[[q]]) { u[[p]] <<- v[[q]] <<- F a[[j]] <<- a[[i]] a[[i]] <<- k aux(i + 1) u[[p]] <<- v[[q]] <<- T a[[i]] <<- a[[j]] a[[j]] <<- k } } } } aux(1) m }
543N-queens problem
13r
2selg
<?php function montyhall($iterations){ $switch_win = 0; $stay_win = 0; foreach (range(1, $iterations) as $i){ $doors = array(0, 0, 0); $doors[array_rand($doors)] = 1; $choice = array_rand($doors); do { $shown = array_rand($doors); } while($shown == $choice || $doors[$shown] == 1); $stay_win += $doors[$choice]; $switch_win += $doors[3 - $choice - $shown]; } $stay_percentages = ($stay_win/$iterations)*100; $switch_percentages = ($switch_win/$iterations)*100; echo ; echo ; echo ; } montyhall(10000); ?>
559Monty Hall problem
12php
y1361
def F(n): return 1 if n == 0 else n - M(F(n-1)) def M(n): return 0 if n == 0 else n - F(M(n-1)) print ([ F(n) for n in range(20) ]) print ([ M(n) for n in range(20) ])
542Mutual recursion
3python
5osux
import time, winsound char2morse = { : , .-..-.$...-..-'.----.(-.--.)-.--.-+.-.-.,--..----....-..-.-.-/-..-.0-----1.----2..---3...--4....-5.....6-....7--...8---..9----.:---...;-.-.-.=-...-?..--..@.--.-.A.-B-...C-.-.D-..E.F..-.G--.H....I..J.---K-.-L.-..M--N-.O---P.--.Q--.-R.-.S...T-U..-V...-W.--X-..-Y-.--Z--..[-.--.]-.--.-_..--.-", } e = 50 f = 1280 chargap = 1 wordgap = 7 def gap(n=1): time.sleep(n * e / 1000) off = gap def on(n=1): winsound.Beep(f, n * e) def dit(): on(); off() def dah(): on(3); off() def bloop(n=3): winsound.Beep(f def windowsmorse(text): for word in text.strip().upper().split(): for char in word: for element in char2morse.get(char, '?'): if element == '-': dah() elif element == '.': dit() else: bloop() gap(chargap) gap(wordgap) while True: windowsmorse(input('A string to change into morse: '))
558Morse code
3python
3p3zc
import Data.Maybe (fromMaybe, maybe) mulTable :: [Int] -> [[Maybe Int]] mulTable xs = (Nothing: labels): zipWith (:) labels [[upperMul x y | y <- xs] | x <- xs] where labels = Just <$> xs upperMul x y | x > y = Nothing | otherwise = Just (x * y) main :: IO () main = putStrLn . unlines $ showTable . mulTable <$> [ [13 .. 20], [1 .. 12], [95 .. 100] ] showTable :: [[Maybe Int]] -> String showTable xs = unlines $ head rows: []: tail rows where w = succ $ (length . show) (fromMaybe 0 $ (last . last) xs) gap = replicate w ' ' rows = (maybe gap (rjust w ' ' . show) =<<) <$> xs rjust n c = (drop . length) <*> (replicate n c <>)
560Multiplication tables
8haskell
kz7h0
F <- function(n) ifelse(n == 0, 1, n - M(F(n-1))) M <- function(n) ifelse(n == 0, 0, n - F(M(n-1)))
542Mutual recursion
13r
lqece
def n_queens(n) if n == 1 return elsif n < 4 puts return end evens = (2..n).step(2).to_a odds = (1..n).step(2).to_a rem = n % 12 nums = evens nums.rotate if rem == 3 or rem == 9 if rem == 8 odds = odds.each_slice(2).flat_map(&:reverse) end nums.concat(odds) if rem == 2 nums[nums.index(1)], nums[nums.index(3)] = nums[nums.index(3)], nums[nums.index(1)] nums << nums.delete(5) end if rem == 3 or rem == 9 nums << nums.delete(1) nums << nums.delete(3) end nums.map do |q| a = Array.new(n,) a[q-1] = a*() end end (1 .. 15).each {|n| puts ; puts n_queens(n); puts}
543N-queens problem
14ruby
rd8gs
require 'win32/sound' class MorseCode MORSE = { => , .-..-.$...-..-'.----.(-.--.)-.--.-+.-.-.,--..----....-..-.-.-/-..-.0-----1.----2..---3...--4....-5.....6-....7--...8---..9----.:---...;-.-.-.=-...-?..--..@.--.-.A.-B-...C-.-.D-..E.F..-.G--.H....I..J.---K-.-L.-..M--N-.O---P.--.Q--.-R.-.S...T-U..-V...-W.--X-..-Y-.--Z--..[-.--.]-.--.-_..--.-your message is end def send @message.strip.upcase.split.each do |word| word.each_char do |char| send_char char pause CHARGAP print end pause WORDGAP puts end end private def send_char(char) MORSE[char].each_char do |code| case code when '.' then beep DIT when '-' then beep DAH end pause CHARGAP print code end end def beep(ms) ::Win32::Sound.beep(FREQ, ms) end def pause(ms) sleep(ms.to_f/1000.0) end end MorseCode.new('sos').send MorseCode.new('this is a test.').send
558Morse code
14ruby
yay6n
''' I could understand the explanation of the Monty Hall problem but needed some more evidence References: http: http: http: ''' from random import randrange doors, iterations = 3,100000 def monty_hall(choice, switch=False, doorCount=doors): door = [False]*doorCount door[randrange(doorCount)] = True chosen = door[choice] unpicked = door del unpicked[choice] alternative = True in unpicked if switch: return alternative else: return chosen print print doors, , iterations, print , print sum(monty_hall(randrange(3), switch=False) for x in range(iterations)), print , iterations, print , print sum(monty_hall(randrange(3), switch=True) for x in range(iterations)), print , iterations,
559Monty Hall problem
3python
1ybpc
public class MultiplicationTable { public static void main(String[] args) { for (int i = 1; i <= 12; i++) System.out.print("\t" + i); System.out.println(); for (int i = 0; i < 100; i++) System.out.print("-"); System.out.println(); for (int i = 1; i <= 12; i++) { System.out.print(i + "|"); for(int j = 1; j <= 12; j++) { System.out.print("\t"); if (j >= i) System.out.print("\t" + i * j); } System.out.println(); } } }
560Multiplication tables
9java
4ov58
null
558Morse code
15rust
memya
<!DOCTYPE html PUBLIC "-
560Multiplication tables
10javascript
htrjh
const N: usize = 8; fn try(mut board: &mut [[bool; N]; N], row: usize, mut count: &mut i64) { if row == N { *count += 1; for r in board.iter() { println!("{}", r.iter().map(|&x| if x {"x"} else {"."}.to_string()).collect::<Vec<String>>().join(" ")) } println!(""); return } for i in 0..N { let mut ok: bool = true; for j in 0..row { if board[j][i] || i+j >= row && board[j][i+j-row] || i+row < N+j && board[j][i+row-j] { ok = false } } if ok { board[row][i] = true; try(&mut board, row+1, &mut count); board[row][i] = false; } } } fn main() { let mut board: [[bool; N]; N] = [[false; N]; N]; let mut count: i64 = 0; try (&mut board, 0, &mut count); println!("Found {} solutions", count) }
543N-queens problem
15rust
7forc
def F(n) n == 0? 1: n - M(F(n-1)) end def M(n) n == 0? 0: n - F(M(n-1)) end p (Array.new(20) {|n| F(n) }) p (Array.new(20) {|n| M(n) })
542Mutual recursion
14ruby
gn84q
object MorseCode extends App { private val code = Map( ('A', ".- "), ('B', "-... "), ('C', "-.-. "), ('D', "-.. "), ('E', ". "), ('F', "..-. "), ('G', "--. "), ('H', ".... "), ('I', ".. "), ('J', ".--- "), ('K', "-.- "), ('L', ".-.. "), ('M', "-- "), ('N', "-. "), ('O', "--- "), ('P', ".--. "), ('Q', "--.- "), ('R', ".-. "), ('S', "... "), ('T', "- "), ('U', "..- "), ('V', "...- "), ('W', ".- - "), ('X', "-..- "), ('Y', "-.-- "), ('Z', "--.. "), ('0', "----- "), ('1', ".---- "), ('2', "..--- "), ('3', "...-- "), ('4', "....- "), ('5', "..... "), ('6', "-.... "), ('7', "--... "), ('8', "---.. "), ('9', "----. "), ('\'', ".----."), (':', "---... "), (',', "--..-- "), ('-', "-....- "), ('(', "-.--.- "), ('.', ".-.-.- "), ('?', "..--.. "), (';', "-.-.-. "), ('/', "-..-. "), ('-', "..--.- "), (')', "---.. "), ('=', "-...- "), ('@', ".--.-. "), ('"', ".-..-. "), ('+', ".-.-. "), (' ', "/"))
558Morse code
16scala
lqlcq
set.seed(19771025) N <- 10000 true_answers <- sample(1:3, N, replace=TRUE) host_opens <- 2 + (true_answers == 2) other_door <- 2 + (true_answers != 2) summary( other_door == true_answers ) summary( true_answers == 1) random_switch <- other_door random_switch[runif(N) >= .5] <- 1 summary(random_switch == true_answers) N <- 10000 true_answers <- sample(1:3, N, replace=TRUE) user_choice <- sample(1:3, N, replace=TRUE) host_chooser <- function(user_prize) { bad_choices <- unique(user_prize) choices <- c(1:3)[-bad_choices] if (length(choices) == 1) { return(choices)} else { return(sample(choices,1))} } host_choice <- apply( X=cbind(true_answers,user_choice), FUN=host_chooser,MARGIN=1) not_door <- function(x){ return( (1:3)[-x]) } other_door <- apply( X = cbind(user_choice,host_choice), FUN=not_door, MARGIN=1) summary( other_door == true_answers ) summary( true_answers == user_choice) random_switch <- user_choice change <- runif(N) >= .5 random_switch[change] <- other_door[change] summary(random_switch == true_answers)
559Monty Hall problem
13r
ht7jj
object NQueens { private implicit class RichPair[T]( pair: (T,T))( implicit num: Numeric[T] ) { import num._ def safe(x: T, y: T): Boolean = pair._1 - pair._2 != abs(x - y) } def solve(n: Int): Iterator[Seq[Int]] = { (0 to n-1) .permutations .filter { v => (0 to n-1).forall { y => (y+1 to n-1).forall { x => (x,y).safe(v(x),v(y)) } } } } def main(args: Array[String]): Unit = { val n = args.headOption.getOrElse("8").toInt val (solns1, solns2) = solve(n).duplicate solns1 .zipWithIndex .foreach { case (soln, i) => Console.out.println(s"Solution #${i+1}") output(n)(soln) } val n_solns = solns2.size if (n_solns == 1) { Console.out.println("Found 1 solution") } else { Console.out.println(s"Found $n_solns solutions") } } def output(n: Int)(board: Seq[Int]): Unit = { board.foreach { queen => val row = "_|" * queen + "Q" + "|_" * (n-queen-1) Console.out.println(row) } } }
543N-queens problem
16scala
k3dhk
fn f(n: u32) -> u32 { match n { 0 => 1, _ => n - m(f(n - 1)) } } fn m(n: u32) -> u32 { match n { 0 => 0, _ => n - f(m(n - 1)) } } fn main() { for i in (0..20).map(f) { print!("{} ", i); } println!(""); for i in (0..20).map(m) { print!("{} ", i); } println!("") }
542Mutual recursion
15rust
rdog5
null
560Multiplication tables
11kotlin
lxmcp
n = 10_000 stay = switch = 0 n.times do doors = [ :goat, :goat, :car ].shuffle guess = rand(3) begin shown = rand(3) end while shown == guess || doors[shown] == :car if doors[guess] == :car stay += 1 else switch += 1 end end puts % (100.0 * stay / n) puts % (100.0 * switch / n)
559Monty Hall problem
14ruby
e91ax
def F(n:Int):Int = if (n == 0) 1 else n - M(F(n-1)) def M(n:Int):Int = if (n == 0) 0 else n - F(M(n-1)) println((0 until 20).map(F).mkString(", ")) println((0 until 20).map(M).mkString(", "))
542Mutual recursion
16scala
hzdja
extern crate rand; use rand::Rng; use rand::seq::SliceRandom; #[derive(Clone, Copy, PartialEq)] enum Prize {Goat , Car} const GAMES: usize = 3_000_000; fn main() { let mut switch_wins = 0; let mut rng = rand::thread_rng(); for _ in 0..GAMES { let mut doors = [Prize::Goat; 3]; *doors.choose_mut(&mut rng).unwrap() = Prize::Car;
559Monty Hall problem
15rust
wcae4
import scala.util.Random object MontyHallSimulation { def main(args: Array[String]) { val samples = if (args.size == 1 && (args(0) matches "\\d+")) args(0).toInt else 1000 val doors = Set(0, 1, 2) var stayStrategyWins = 0 var switchStrategyWins = 0 1 to samples foreach { _ => val prizeDoor = Random shuffle doors head; val choosenDoor = Random shuffle doors head; val hostDoor = Random shuffle (doors - choosenDoor - prizeDoor) head; val switchDoor = doors - choosenDoor - hostDoor head; (choosenDoor, switchDoor) match { case (`prizeDoor`, _) => stayStrategyWins += 1 case (_, `prizeDoor`) => switchStrategyWins += 1 } } def percent(n: Int) = n * 100 / samples val report = """|%d simulations were ran. |Staying won%d times (%d%%) |Switching won%d times (%d%%)""".stripMargin println(report format (samples, stayStrategyWins, percent(stayStrategyWins), switchStrategyWins, percent(switchStrategyWins))) } }
559Monty Hall problem
16scala
svxqo
io.write( " |" ) for i = 1, 12 do io.write( string.format( "%#5d", i ) ) end io.write( "\n", string.rep( "-", 12*5+4 ), "\n" ) for i = 1, 12 do io.write( string.format( "%#2d |", i ) ) for j = 1, 12 do if j < i then io.write( " " ) else io.write( string.format( "%#5d", i*j ) ) end end io.write( "\n" ) end
560Multiplication tables
1lua
2q9l3
WITH RECURSIVE positions(i) AS ( VALUES(0) UNION SELECT ALL i+1 FROM positions WHERE i < 63 ), solutions(board, n_queens) AS ( SELECT '----------------------------------------------------------------', CAST(0 AS BIGINT) FROM positions UNION SELECT substr(board, 1, i) || '*' || substr(board, i+2),n_queens + 1 AS n_queens FROM positions AS ps, solutions WHERE n_queens < 8 AND substr(board,1,i)!= '*' AND NOT EXISTS ( SELECT 1 FROM positions WHERE substr(board,i+1,1) = '*' AND ( i% 8 = ps.i%8 OR CAST(i / 8 AS INT) = CAST(ps.i / 8 AS INT) OR CAST(i / 8 AS INT) + (i% 8) = CAST(ps.i / 8 AS INT) + (ps.i% 8) OR CAST(i / 8 AS INT) - (i% 8) = CAST(ps.i / 8 AS INT) - (ps.i% 8) ) LIMIT 1 ) ORDER BY n_queens DESC -- remove this when using Postgres (they don't support ORDER BY in CTEs) ) SELECT board,n_queens FROM solutions WHERE n_queens = 8;
543N-queens problem
19sql
1mzpg
package main import ( "fmt" "math" ) const MAXITER = 151 func minkowski(x float64) float64 { if x > 1 || x < 0 { return math.Floor(x) + minkowski(x-math.Floor(x)) } p := uint64(x) q := uint64(1) r := p + 1 s := uint64(1) d := 1.0 y := float64(p) for { d = d / 2 if y+d == y { break } m := p + r if m < 0 || p < 0 { break } n := q + s if n < 0 { break } if x < float64(m)/float64(n) { r = m s = n } else { y = y + d p = m q = n } } return y + d } func minkowskiInv(x float64) float64 { if x > 1 || x < 0 { return math.Floor(x) + minkowskiInv(x-math.Floor(x)) } if x == 1 || x == 0 { return x } contFrac := []uint32{0} curr := uint32(0) count := uint32(1) i := 0 for { x *= 2 if curr == 0 { if x < 1 { count++ } else { i++ t := contFrac contFrac = make([]uint32, i+1) copy(contFrac, t) contFrac[i-1] = count count = 1 curr = 1 x-- } } else { if x > 1 { count++ x-- } else { i++ t := contFrac contFrac = make([]uint32, i+1) copy(contFrac, t) contFrac[i-1] = count count = 1 curr = 0 } } if x == math.Floor(x) { contFrac[i] = count break } if i == MAXITER { break } } ret := 1.0 / float64(contFrac[i]) for j := i - 1; j >= 0; j-- { ret = float64(contFrac[j]) + 1.0/ret } return 1.0 / ret } func main() { fmt.Printf("%19.16f%19.16f\n", minkowski(0.5*(1+math.Sqrt(5))), 5.0/3.0) fmt.Printf("%19.16f%19.16f\n", minkowskiInv(-5.0/9.0), (math.Sqrt(13)-7)/6) fmt.Printf("%19.16f%19.16f\n", minkowski(minkowskiInv(0.718281828)), minkowskiInv(minkowski(0.1213141516171819))) }
561Minkowski question-mark function
0go
giv4n
unsigned digit_sum(unsigned n) { unsigned sum = 0; do { sum += n % 10; } while(n /= 10); return sum; } unsigned a131382(unsigned n) { unsigned m; for (m = 1; n != digit_sum(m*n); m++); return m; } int main() { unsigned n; for (n = 1; n <= 70; n++) { printf(, a131382(n)); if (n % 10 == 0) printf(); } return 0; }
562Minimum multiple of m where digital sum equals m
5c
vsm2o
import Data.Tree import Data.Ratio import Data.List intervalTree :: (a -> a -> a) -> (a, a) -> Tree a intervalTree node = unfoldTree $ \(a, b) -> let m = node a b in (m, [(a,m), (m,b)]) Node a _ ==> Node b [] = const b Node a [] ==> Node b _ = const b Node a [l1, r1] ==> Node b [l2, r2] = \x -> case x `compare` a of LT -> (l1 ==> l2) x EQ -> b GT -> (r1 ==> r2) x mirror :: Num a => Tree a -> Tree a mirror t = Node 0 [reflect (negate <$> t), t] where reflect (Node a [l,r]) = Node a [reflect r, reflect l] sternBrocot :: Tree Rational sternBrocot = toRatio <$> intervalTree mediant ((0,1), (1,0)) where mediant (p, q) (r, s) = (p + r, q + s) toRatio (p, q) = p % q minkowski :: Tree Rational minkowski = toRatio <$> intervalTree mean ((0,1), (1,0)) mean (p, q) (1, 0) = (p+1, q) mean (p, q) (r, s) = (p*s + q*r, 2*q*s) questionMark, invQuestionMark :: Rational -> Rational questionMark = mirror sternBrocot ==> mirror minkowski invQuestionMark = mirror minkowski ==> mirror sternBrocot sternBrocotF :: Tree Double sternBrocotF = mirror $ fromRational <$> sternBrocot minkowskiF :: Tree Double minkowskiF = mirror $ intervalTree mean (0, 1/0) where mean a b | isInfinite b = a + 1 | otherwise = (a + b) / 2 questionMarkF, invQuestionMarkF :: Double -> Double questionMarkF = sternBrocotF ==> minkowskiF invQuestionMarkF = minkowskiF ==> sternBrocotF
561Minkowski question-mark function
8haskell
sveqk
import Foundation func montyHall(doors: Int = 3, guess: Int, switch: Bool) -> Bool { guard doors > 2, guess > 0, guess <= doors else { fatalError() } let winningDoor = Int.random(in: 1...doors) return winningDoor == guess?!`switch`: `switch` } var switchResults = [Bool]() for _ in 0..<1_000 { let guess = Int.random(in: 1...3) let wasRight = montyHall(guess: guess, switch: true) switchResults.append(wasRight) } let switchWins = switchResults.filter({ $0 }).count print("Switching would've won \((Double(switchWins) / Double(switchResults.count)) * 100)% of games") print("Not switching would've won \(((Double(switchResults.count - switchWins)) / Double(switchResults.count)) * 100)% of games")
559Monty Hall problem
17swift
amp1i
package main import ( "fmt" "math" "math/rand" "strings" "time" ) func rng(modifier func(x float64) float64) float64 { for { r1 := rand.Float64() r2 := rand.Float64() if r2 < modifier(r1) { return r1 } } } func commatize(n int) string { s := fmt.Sprintf("%d", n) if n < 0 { s = s[1:] } le := len(s) for i := le - 3; i >= 1; i -= 3 { s = s[0:i] + "," + s[i:] } if n >= 0 { return s } return "-" + s } func main() { rand.Seed(time.Now().UnixNano()) modifier := func(x float64) float64 { if x < 0.5 { return 2 * (0.5 - x) } return 2 * (x - 0.5) } const ( N = 100000 NUM_BINS = 20 HIST_CHAR = "" HIST_CHAR_SIZE = 125 ) bins := make([]int, NUM_BINS)
563Modified random distribution
0go
e9ha6
import System.Random import Data.List import Text.Printf modify :: Ord a => (a -> a) -> [a] -> [a] modify f = foldMap test . pairs where pairs lst = zip lst (tail lst) test (r1, r2) = if r2 < f r1 then [r1] else [] vShape x = if x < 0.5 then 2*(0.5-x) else 2*(x-0.5) hist b lst = zip [0,b..] res where res = (`div` sum counts) . (*300) <$> counts counts = map length $ group $ sort $ floor . (/b) <$> lst showHist h = foldMap mkLine h where mkLine (b,n) = printf "%.2f\t%s%d%%\n" b (replicate n '') n
563Modified random distribution
8haskell
3bizj
struct ModularArithmetic { int value; int modulus; }; struct ModularArithmetic make(const int value, const int modulus) { struct ModularArithmetic r = { value % modulus, modulus }; return r; } struct ModularArithmetic add(const struct ModularArithmetic a, const struct ModularArithmetic b) { return make(a.value + b.value, a.modulus); } struct ModularArithmetic addi(const struct ModularArithmetic a, const int v) { return make(a.value + v, a.modulus); } struct ModularArithmetic mul(const struct ModularArithmetic a, const struct ModularArithmetic b) { return make(a.value * b.value, a.modulus); } struct ModularArithmetic pow(const struct ModularArithmetic b, int pow) { struct ModularArithmetic r = make(1, b.modulus); while (pow-- > 0) { r = mul(r, b); } return r; } void print(const struct ModularArithmetic v) { printf(, v.value, v.modulus); } struct ModularArithmetic f(const struct ModularArithmetic x) { return addi(add(pow(x, 100), x), 1); } int main() { struct ModularArithmetic input = make(10, 13); struct ModularArithmetic output = f(input); printf(); print(input); printf(); print(output); printf(); return 0; }
564Modular arithmetic
5c
madys
let maxn = 31 func nq(n: Int) -> Int { var cols = Array(repeating: 0, count: maxn) var diagl = Array(repeating: 0, count: maxn) var diagr = Array(repeating: 0, count: maxn) var posibs = Array(repeating: 0, count: maxn) var num = 0 for q0 in 0...n-3 { for q1 in q0+2...n-1 { let bit0: Int = 1<<q0 let bit1: Int = 1<<q1 var d: Int = 0 cols[0] = bit0 | bit1 | (-1<<n) diagl[0] = (bit0<<1|bit1)<<1 diagr[0] = (bit0>>1|bit1)>>1 var posib: Int = ~(cols[0] | diagl[0] | diagr[0]) while (d >= 0) { while(posib!= 0) { let bit: Int = posib & -posib let ncols: Int = cols[d] | bit let ndiagl: Int = (diagl[d] | bit) << 1; let ndiagr: Int = (diagr[d] | bit) >> 1; let nposib: Int = ~(ncols | ndiagl | ndiagr); posib^=bit num += (ncols == -1? 1: 0) if (nposib!= 0){ if(posib!= 0) { posibs[d] = posib d += 1 } cols[d] = ncols diagl[d] = ndiagl diagr[d] = ndiagr posib = nposib } } d -= 1 posib = d<0? n: posibs[d] } } } return num*2 } if(CommandLine.arguments.count == 2) { let board_size: Int = Int(CommandLine.arguments[1])! print ("Number of solutions for board size \(board_size) is: \(nq(n:board_size))") } else { print("Usage: 8q <n>") }
543N-queens problem
17swift
gn049
use strict; use warnings; use feature 'say'; use POSIX qw(floor); my $MAXITER = 50; sub minkowski { my($x) = @_; return floor($x) + minkowski( $x - floor($x) ) if $x > 1 || $x < 0 ; my $y = my $p = floor($x); my ($q,$s,$d) = (1,1,1); my $r = $p + 1; while () { last if ( $y + ($d /= 2) == $y ) or ( my $m = $p + $r) < 0 or ( my $n = $q + $s) < 0; $x < $m/$n ? ($r,$s) = ($m, $n) : ($y += $d and ($p,$q) = ($m, $n) ); } return $y + $d } sub minkowskiInv { my($x) = @_; return floor($x) + minkowskiInv($x - floor($x)) if $x > 1 || $x < 0; return $x if $x == 1 || $x == 0 ; my @contFrac = 0; my $i = my $curr = 0 ; my $count = 1; while () { $x *= 2; if ($curr == 0) { if ($x < 1) { $count++ } else { $i++; push @contFrac, 0; $contFrac[$i-1] = $count; ($count,$curr) = (1,1); $x--; } } else { if ($x > 1) { $count++; $x--; } else { $i++; push @contFrac, 0; @contFrac[$i-1] = $count; ($count,$curr) = (1,0); } } if ($x == floor($x)) { @contFrac[$i] = $count; last } last if $i == $MAXITER; } my $ret = 1 / $contFrac[$i]; for (my $j = $i - 1; $j >= 0; $j--) { $ret = $contFrac[$j] + 1/$ret } return 1 / $ret } printf "%19.16f%19.16f\n", minkowski(0.5*(1 + sqrt(5))), 5/3; printf "%19.16f%19.16f\n", minkowskiInv(-5/9), (sqrt(13)-7)/6; printf "%19.16f%19.16f\n", minkowski(minkowskiInv(0.718281828)), minkowskiInv(minkowski(0.1213141516171819));
561Minkowski question-mark function
2perl
thifg
func F(n: Int) -> Int { return n == 0? 1: n - M(F(n-1)) } func M(n: Int) -> Int { return n == 0? 0: n - F(M(n-1)) } for i in 0..20 { print("\(F(i)) ") } println() for i in 0..20 { print("\(M(i)) ") } println()
542Mutual recursion
17swift
4i05g
use strict; use warnings; use List::Util 'max'; sub distribution { my %param = ( function => \&{scalar sub {return 1}}, sample_size => 1e5, @_); my @values; do { my($r1, $r2) = (rand, rand); push @values, $r1 if &{$param{function}}($r1) > $r2; } until @values == $param{sample_size}; wantarray ? @values : \@values; } sub modifier_notch { my($x) = @_; return 2 * ( $x < 1/2 ? ( 1/2 - $x ) : ( $x - 1/2 ) ); } sub print_histogram { our %param = (n_bins => 10, width => 80, @_); my %counts; $counts{ int($_ * $param{n_bins}) / $param{n_bins} }++ for @{$param{data}}; our $max_value = max values %counts; print "Bin Counts Histogram\n"; printf "%4.2f%6d:%s\n", $_, $counts{$_}, hist($counts{$_}) for sort keys %counts; sub hist { scalar ('') x ( $param{width} * $_[0] / $max_value ) } } print_histogram( data => \@{ distribution() } ); print "\n\n"; my @samples = distribution( function => \&modifier_notch, sample_size => 50_000); print_histogram( data => \@samples, n_bins => 20, width => 64);
563Modified random distribution
2perl
vsy20
package main import ( "fmt" "strings" ) const limit = 50000 var ( divs, subs []int mins [][]string )
565Minimal steps down to 1
0go
o4a8q
import random from typing import List, Callable, Optional def modifier(x: float) -> float: return 2*(.5 - x) if x < 0.5 else 2*(x - .5) def modified_random_distribution(modifier: Callable[[float], float], n: int) -> List[float]: d: List[float] = [] while len(d) < n: r1 = prob = random.random() if random.random() < modifier(prob): d.append(r1) return d if __name__ == '__main__': from collections import Counter data = modified_random_distribution(modifier, 50_000) bins = 15 counts = Counter(d mx = max(counts.values()) print() last: Optional[float] = None for b, count in sorted(counts.items()): delta = 'N/A' if last is None else str(count - last) print(f f) last = count
563Modified random distribution
3python
u0mvd
import Data.List import Data.Ord import Data.Function (on) data Memo a = Node a (Memo a) (Memo a) deriving Functor memo :: Integral a => Memo p -> a -> p memo (Node a l r) n | n == 0 = a | odd n = memo l (n `div` 2) | otherwise = memo r (n `div` 2 - 1) nats :: Integral a => Memo a nats = Node 0 ((+1).(*2) <$> nats) ((*2).(+1) <$> nats) memoize :: Integral a => (a -> b) -> (a -> b) memoize f = memo (f <$> nats) data Step = Div Int | Sub Int deriving Show run :: Int -> Step -> [(Step, Int)] run n s = case s of Sub i | n > i -> [(s, n - i)] Div d | n `mod` d == 0 -> [(s, n `div` d)] _ -> [] minSteps :: [Step] -> Int -> (Int, [Step]) minSteps steps = go where go = memoize goM goM 1 = (0, []) goM n = minimumBy (comparing fst) $ do (s, k) <- steps >>= run n let (m, ss) = go k return (m+1, s:ss)
565Minimal steps down to 1
8haskell
2qzll
import math MAXITER = 151 def minkowski(x): if x > 1 or x < 0: return math.floor(x) + minkowski(x - math.floor(x)) p = int(x) q = 1 r = p + 1 s = 1 d = 1.0 y = float(p) while True: d /= 2 if y + d == y: break m = p + r if m < 0 or p < 0: break n = q + s if n < 0: break if x < m / n: r = m s = n else: y += d p = m q = n return y + d def minkowski_inv(x): if x > 1 or x < 0: return math.floor(x) + minkowski_inv(x - math.floor(x)) if x == 1 or x == 0: return x cont_frac = [0] current = 0 count = 1 i = 0 while True: x *= 2 if current == 0: if x < 1: count += 1 else: cont_frac.append(0) cont_frac[i] = count i += 1 count = 1 current = 1 x -= 1 else: if x > 1: count += 1 x -= 1 else: cont_frac.append(0) cont_frac[i] = count i += 1 count = 1 current = 0 if x == math.floor(x): cont_frac[i] = count break if i == MAXITER: break ret = 1.0 / cont_frac[i] for j in range(i - 1, -1, -1): ret = cont_frac[j] + 1.0 / ret return 1.0 / ret if __name__ == : print( .format( minkowski(0.5 * (1 + math.sqrt(5))), 5.0 / 3.0, ) ) print( .format( minkowski_inv(-5.0 / 9.0), (math.sqrt(13) - 7) / 6, ) ) print( .format( minkowski(minkowski_inv(0.718281828)), minkowski_inv(minkowski(0.1213141516171819)), ) )
561Minkowski question-mark function
3python
zkntt
library(NostalgiR) modifier <- function(x) 2*abs(x - 0.5) gen <- function() { repeat { random <- runif(2) if(random[2] < modifier(random[1])) return(random[1]) } } data <- replicate(100000, gen()) NostalgiR::nos.hist(data, breaks = 20, pch = "
563Modified random distribution
13r
cwz95
int main() { mpz_t a, b, m, r; mpz_init_set_str(a, , 0); mpz_init_set_str(b, , 0); mpz_init(m); mpz_ui_pow_ui(m, 10, 40); mpz_init(r); mpz_powm(r, a, b, m); gmp_printf(, r); mpz_clear(a); mpz_clear(b); mpz_clear(m); mpz_clear(r); return 0; }
566Modular exponentiation
5c
586uk
package main import "rcu" func main() { var res []int for n := 1; n <= 70; n++ { m := 1 for rcu.DigitSum(m*n, 10) != n { m++ } res = append(res, m) } rcu.PrintTable(res, 7, 10, true) }
562Minimum multiple of m where digital sum equals m
0go
svaqa
import Data.Bifunctor (first) import Data.List (elemIndex, intercalate, transpose) import Data.List.Split (chunksOf) import Data.Maybe (fromJust) import Text.Printf (printf) a131382 :: [Int] a131382 = fromJust . (elemIndex <*> productDigitSums) <$> [1 ..] productDigitSums :: Int -> [Int] productDigitSums n = digitSum . (n *) <$> [0 ..] main :: IO () main = (putStrLn . table " ") $ chunksOf 10 $ show <$> take 40 a131382 digitSum :: Int -> Int digitSum 0 = 0 digitSum n = uncurry (+) (first digitSum $ quotRem n 10) table :: String -> [[String]] -> String table gap rows = let ws = maximum . fmap length <$> transpose rows pw = printf . flip intercalate ["%", "s"] . show in unlines $ intercalate gap . zipWith pw ws <$> rows
562Minimum multiple of m where digital sum equals m
8haskell
9ezmo
(defn powerMod "modular exponentiation" [b e m] (defn m* [p q] (mod (* p q) m)) (loop [b b, e e, x 1] (if (zero? e) x (if (even? e) (recur (m* b b) (/ e 2) x) (recur (m* b b) (quot e 2) (m* b x))))))
566Modular exponentiation
6clojure
jfl7m
package main import "fmt"
564Modular arithmetic
0go
am71f
import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; public class MinimalStepsDownToOne { public static void main(String[] args) { runTasks(getFunctions1()); runTasks(getFunctions2()); runTasks(getFunctions3()); } private static void runTasks(List<Function> functions) { Map<Integer,List<String>> minPath = getInitialMap(functions, 5);
565Minimal steps down to 1
9java
6po3z
__int128 imax(__int128 a, __int128 b) { if (a > b) { return a; } return b; } __int128 ipow(__int128 b, __int128 n) { __int128 res; if (n == 0) { return 1; } if (n == 1) { return b; } res = b; while (n > 1) { res *= b; n--; } return res; } __int128 imod(__int128 m, __int128 n) { __int128 result = m % n; if (result < 0) { result += n; } return result; } bool valid(__int128 n) { if (n < 0) { return false; } while (n > 0) { int r = n % 10; if (r > 1) { return false; } n /= 10; } return true; } __int128 mpm(const __int128 n) { __int128 *L; __int128 m, k, r, j; if (n == 1) { return 1; } L = calloc(n * n, sizeof(__int128)); L[0] = 1; L[1] = 1; m = 0; while (true) { m++; if (L[(m - 1) * n + imod(-ipow(10, m), n)] == 1) { break; } L[m * n + 0] = 1; for (k = 1; k < n; k++) { L[m * n + k] = imax(L[(m - 1) * n + k], L[(m - 1) * n + imod(k - ipow(10, m), n)]); } } r = ipow(10, m); k = imod(-r, n); for (j = m - 1; j >= 1; j--) { if (L[(j - 1) * n + k] == 0) { r = r + ipow(10, j); k = imod(k - ipow(10, j), n); } } if (k == 1) { r++; } return r / n; } void print128(__int128 n) { char buffer[64]; int pos = (sizeof(buffer) / sizeof(char)) - 1; bool negative = false; if (n < 0) { negative = true; n = -n; } buffer[pos] = 0; while (n > 0) { int rem = n % 10; buffer[--pos] = rem + '0'; n /= 10; } if (negative) { buffer[--pos] = '-'; } printf(&buffer[pos]); } void test(__int128 n) { __int128 mult = mpm(n); if (mult > 0) { print128(n); printf(); print128(mult); printf(); print128(n * mult); printf(); } else { print128(n); printf(); } } int main() { int i; for (i = 1; i <= 10; i++) { test(i); } for (i = 95; i <= 105; i++) { test(i); } test(297); test(576); test(594); test(891); test(909); test(999); test(1998); test(2079); test(2251); test(2277); test(2439); test(2997); test(4878); return 0; }
567Minimum positive multiple in base 10 using only 0 and 1
5c
q2jxc
import Data.Modular f :: /13 -> /13 f x = x^100 + x + 1 main :: IO () main = print (f 10)
564Modular arithmetic
8haskell
zk8t0
public class ModularArithmetic { private interface Ring<T> { Ring<T> plus(Ring<T> rhs); Ring<T> times(Ring<T> rhs); int value(); Ring<T> one(); default Ring<T> pow(int p) { if (p < 0) { throw new IllegalArgumentException("p must be zero or greater"); } int pp = p; Ring<T> pwr = this.one(); while (pp-- > 0) { pwr = pwr.times(this); } return pwr; } } private static class ModInt implements Ring<ModInt> { private int value; private int modulo; private ModInt(int value, int modulo) { this.value = value; this.modulo = modulo; } @Override public Ring<ModInt> plus(Ring<ModInt> other) { if (!(other instanceof ModInt)) { throw new IllegalArgumentException("Cannot add an unknown ring."); } ModInt rhs = (ModInt) other; if (modulo != rhs.modulo) { throw new IllegalArgumentException("Cannot add rings with different modulus"); } return new ModInt((value + rhs.value) % modulo, modulo); } @Override public Ring<ModInt> times(Ring<ModInt> other) { if (!(other instanceof ModInt)) { throw new IllegalArgumentException("Cannot multiple an unknown ring."); } ModInt rhs = (ModInt) other; if (modulo != rhs.modulo) { throw new IllegalArgumentException("Cannot multiply rings with different modulus"); } return new ModInt((value * rhs.value) % modulo, modulo); } @Override public int value() { return value; } @Override public Ring<ModInt> one() { return new ModInt(1, modulo); } @Override public String toString() { return String.format("ModInt(%d,%d)", value, modulo); } } private static <T> Ring<T> f(Ring<T> x) { return x.pow(100).plus(x).plus(x.one()); } public static void main(String[] args) { ModInt x = new ModInt(10, 13); Ring<ModInt> y = f(x); System.out.print("x ^ 100 + x + 1 for x = ModInt(10, 13) is "); System.out.println(y); System.out.flush(); } }
564Modular arithmetic
9java
o4e8d
use strict; use warnings; use ntheory qw( sumdigits ); my @answers = map { my $m = 1; $m++ until sumdigits($m*$_) == $_; $m; } 1 .. 70; print "@answers\n\n" =~ s/.{65}\K /\n/gr;
562Minimum multiple of m where digital sum equals m
2perl
gi24e
use strict; use warnings; no warnings 'recursion'; use List::Util qw( first ); use Data::Dump 'dd'; for ( [ 2000, [2, 3], [1] ], [ 2000, [2, 3], [2] ] ) { my ( $n, $div, $sub ) = @$_; print "\n", '-' x 40, " divisors @$div subtractors @$sub\n"; my ($solve, $max) = minimal( @$_ ); printf "%4d takes%s step(s):%s\n", $_, $solve->[$_] =~ tr/ // - 1, $solve->[$_] for 1 .. 10; print "\n"; printf "%d number(s) below%d that take $ $max->[-1] =~ tr/ //, $n, $max->[-1]; ($solve, $max) = minimal( 20000, $div, $sub ); printf "%d number(s) below%d that take $ $max->[-1] =~ tr/ //, 20000, $max->[-1]; } sub minimal { my ($top, $div, $sub) = @_; my @solve = (0, ' '); my @maximal; for my $n ( 2 .. $top ) { my @pick; for my $d ( @$div ) { $n % $d and next; my $ans = "/$d $solve[$n / $d]"; $pick[$ans =~ tr/ //] //= $ans; } for my $s ( @$sub ) { $n > $s or next; my $ans = "-$s $solve[$n - $s]"; $pick[$ans =~ tr/ //] //= $ans; } $solve[$n] = first { defined } @pick; $maximal[$solve[$n] =~ tr/ // - 1] .= " $n"; } return \@solve, \@maximal; }
565Minimal steps down to 1
2perl
jf27f
null
564Modular arithmetic
11kotlin
xlkws
'''A131382''' from itertools import count, islice def a131382(): '''An infinite series of the terms of A131382''' return ( elemIndex(x)( productDigitSums(x) ) for x in count(1) ) def productDigitSums(n): '''The sum of the decimal digits of n''' return (digitSum(n * x) for x in count(0)) def main(): '''First 40 terms of A131382''' print( table(10)([ str(x) for x in islice( a131382(), 40 ) ]) ) def chunksOf(n): '''A series of lists of length n, subdividing the contents of xs. Where the length of xs is not evenly divisible, the final list will be shorter than n. ''' def go(xs): return ( xs[i:n + i] for i in range(0, len(xs), n) ) if 0 < n else None return go def digitSum(n): '''The sum of the digital digits of n. ''' return sum(int(x) for x in list(str(n))) def elemIndex(x): '''Just the first index of x in xs, or None if no elements match. ''' def go(xs): try: return next( i for i, v in enumerate(xs) if x == v ) except StopIteration: return None return go def table(n): '''A list of strings formatted as right-justified rows of n columns. ''' def go(xs): w = len(xs[-1]) return '\n'.join( ' '.join(row) for row in chunksOf(n)([ s.rjust(w, ' ') for s in xs ]) ) return go if __name__ == '__main__': main()
562Minimum multiple of m where digital sum equals m
3python
rnvgq
from functools import lru_cache DIVS = {2, 3} SUBS = {1} class Minrec(): def __init__(self, divs=DIVS, subs=SUBS): self.divs, self.subs = divs, subs @lru_cache(maxsize=None) def _minrec(self, n): if n == 1: return 0, ['=1'] possibles = {} for d in self.divs: if n% d == 0: possibles[f'/{d}=>{n for s in self.subs: if n > s: possibles[f'-{s}=>{n - s:2}'] = self._minrec(n - s) thiskind, (count, otherkinds) = min(possibles.items(), key=lambda x: x[1]) ret = 1 + count, [thiskind] + otherkinds return ret def __call__(self, n): ans = self._minrec(n)[1][:-1] return len(ans), ans if __name__ == '__main__': for DIVS, SUBS in [({2, 3}, {1}), ({2, 3}, {2})]: minrec = Minrec(DIVS, SUBS) print('\nMINIMUM STEPS TO 1: Recursive algorithm') print(' Possible divisors: ', DIVS) print(' Possible decrements:', SUBS) for n in range(1, 11): steps, how = minrec(n) print(f' minrec({n:2}) in {steps:2} by: ', ', '.join(how)) upto = 2000 print(f'\n Those numbers up to {upto} that take the maximum, :') stepn = sorted((minrec(n)[0], n) for n in range(upto, 0, -1)) mx = stepn[-1][0] ans = [x[1] for x in stepn if x[0] == mx] print(' Taking', mx, f'steps is/are the {len(ans)} numbers:', ', '.join(str(n) for n in sorted(ans))) print()
565Minimal steps down to 1
3python
htvjw
function make(value, modulo) local v = value % modulo local tbl = {value=v, modulo=modulo} local mt = { __add = function(lhs, rhs) if type(lhs) == "table" then if type(rhs) == "table" then if lhs.modulo ~= rhs.modulo then error("Cannot add rings with different modulus") end return make(lhs.value + rhs.value, lhs.modulo) else return make(lhs.value + rhs, lhs.modulo) end else error("lhs is not a table in +") end end, __mul = function(lhs, rhs) if lhs.modulo ~= rhs.modulo then error("Cannot multiply rings with different modulus") end return make(lhs.value * rhs.value, lhs.modulo) end, __pow = function(b,p) if p<0 then error("p must be zero or greater") end local pp = p local pwr = make(1, b.modulo) while pp > 0 do pp = pp - 1 pwr = pwr * b end return pwr end, __concat = function(lhs, rhs) if type(lhs) == "table" and type(rhs) == "string" then return "ModInt("..lhs.value..", "..lhs.modulo..")"..rhs elseif type(lhs) == "string" and type(rhs) == "table" then return lhs.."ModInt("..rhs.value..", "..rhs.modulo..")" else return "todo" end end } setmetatable(tbl, mt) return tbl end function func(x) return x ^ 100 + x + 1 end
564Modular arithmetic
1lua
q2bx0
our $max = 12; our $width = length($max**2) + 1; printf "%*s", $width, $_ foreach 'x|', 1..$max; print "\n", '-' x ($width - 1), '+', '-' x ($max*$width), "\n"; foreach my $i (1..$max) { printf "%*s", $width, $_ foreach "$i|", map { $_ >= $i and $_*$i } 1..$max; print "\n"; }
560Multiplication tables
2perl
q2ex6
import Foundation func digitSum(_ num: Int) -> Int { var sum = 0 var n = num while n > 0 { sum += n% 10 n /= 10 } return sum } for n in 1...70 { for m in 1... { if digitSum(m * n) == n { print(String(format: "%8d", m), terminator: n% 10 == 0? "\n": " ") break } } }
562Minimum multiple of m where digital sum equals m
17swift
7durq
func minToOne(divs: [Int], subs: [Int], upTo n: Int) -> ([Int], [[String]]) { var table = Array(repeating: n + 2, count: n + 1) var how = Array(repeating: [""], count: n + 2) table[1] = 0 how[1] = ["="] for t in 1..<n { let thisPlus1 = table[t] + 1 for div in divs { let dt = div * t if dt <= n && thisPlus1 < table[dt] { table[dt] = thisPlus1 how[dt] = how[t] + ["/\(div)=> \(t)"] } } for sub in subs { let st = sub + t if st <= n && thisPlus1 < table[st] { table[st] = thisPlus1 how[st] = how[t] + ["-\(sub)=> \(t)"] } } } return (table, how.map({ $0.reversed().dropLast() })) } for (divs, subs) in [([2, 3], [1]), ([2, 3], [2])] { print("\nMINIMUM STEPS TO 1:") print(" Possible divisors: \(divs)") print(" Possible decrements: \(subs)") let (table, hows) = minToOne(divs: divs, subs: subs, upTo: 10) for n in 1...10 { print(" mintab( \(n)) in { \(table[n])} by: ", hows[n].joined(separator: ", ")) } for upTo in [2_000, 50_000] { print("\n Those numbers up to \(upTo) that take the maximum, \"minimal steps down to 1\":") let (table, _) = minToOne(divs: divs, subs: subs, upTo: upTo) let max = table.dropFirst().max()! let maxNs = table.enumerated().filter({ $0.element == max }) print( " Taking", max, "steps are the \(maxNs.count) numbers:", maxNs.map({ String($0.offset) }).joined(separator: ", ") ) } }
565Minimal steps down to 1
17swift
kzuhx
Unix build: make CPPFLAGS=-DNDEBUG LDLIBS=-lcurses mines dwlmines, by David Lambert; sometime in the twentieth Century. The program is meant to run in a terminal window compatible with curses if unix is defined to cpp, or to an ANSI terminal when compiled without unix macro defined. I suppose I have built this on a windows 98 computer using gcc running in a cmd window. The original probably came from a VAX running VMS with a vt100 sort of terminal. Today I have xterm and gcc available so I will claim only that it works with this combination. As this program can automatically play all the trivially counted safe squares. Action is quick leaving the player with only the thoughtful action. Whereas 's' steps on the spot with the cursor, capital 'S' (Stomp) invokes autoplay. The cursor motion keys are as in the vi editor; hjkl move the cursor. 'd' displays the number of unclaimed bombs and cells. 'f' flags a cell. The numbers on the field indicate the number of bombs in the unclaimed neighboring cells. This is more useful than showing the values you expect. You may find unflagging a cell adjacent to a number will help you understand this. There is extra code here. The multidimensional array allocator allocarray is much better than those of Numerical Recipes in C. If you subtracted the offset 1 to make the arrays FORTRAN like then allocarray could substitute for those of NR in C. void error(int status,const char *message) { fprintf(stderr, , message); exit(status); } void*dwlcalloc(int n,size_t bytes) { void*rv = (void*)calloc(n,bytes); if (NULL == rv) error(1,); DEBUG_CODE(fprintf(stderr,,rv);) return rv; } void*allocarray(int rank,size_t*shape,size_t itemSize) { size_t size,i,j,dataSpace,pointerSpace,pointers,nextLevelIncrement; char*memory,*pc,*nextpc; if (rank < 2) { if (rank < 0) error(1,); size = rank < 1 ? 1 : *shape; return dwlcalloc(size,itemSize); } pointerSpace = 0, dataSpace = 1; for (i = 0; i < rank-1; ++i) pointerSpace += (dataSpace *= shape[i]); pointerSpace *= sizeof(char*); dataSpace *= shape[i]*itemSize; memory = pc = dwlcalloc(1,pointerSpace+dataSpace); pointers = 1; for (i = 0; i < rank-2; ) { nextpc = pc + (pointers *= shape[i])*sizeof(char*); nextLevelIncrement = shape[++i]*sizeof(char*); for (j = 0; j < pointers; ++j) *((char**)pc) = nextpc, pc+=sizeof(char*), nextpc += nextLevelIncrement; } nextpc = pc + (pointers *= shape[i])*sizeof(char*); nextLevelIncrement = shape[++i]*itemSize; for (j = 0; j < pointers; ++j) *((char**)pc) = nextpc, pc+=sizeof(char*), nextpc += nextLevelIncrement; return memory; } if (NULL == print_elt) \ printf(,*(double*)(element)); \ else \ (*print_elt)(element) void matprint(void*a,int rank,size_t*shape,size_t size,void(*print_elt)()) { union { unsigned **ppu; unsigned *pu; unsigned u; } b; int i; if (rank <= 0 || NULL == shape) PRINT(a); else if (1 < rank) { for (i = 0; i < shape[0]; ++i) matprint(((void**)a)[i], rank-1,shape+1,size,print_elt); putchar('\n'); for (i = 0, b.pu = a; i < shape[0]; ++i, b.u += size) { PRINT(b.pu); putchar(' '); } } } void addch(int c) { putchar(c); } void addstr(const char*s) { fputs(s,stdout); } void initscr(void) { printf(,AllocConsole()); } void cbreak(void) { ; } void noecho(void) { ; } void nonl(void) { ; } int move(int r,int c) { ANSI; return printf(,r+1,c+1); } int mvaddch(int r,int c,int ch) { move(r,c); addch(ch); } void refresh(void) { ; } int attr_on(int a,void*p) { ANSI; return printf(,a); } int attr_off(int a,void*p) { attr_on(0,NULL); } void printw(const char*fmt,...) { va_list args; va_start(args,fmt); vprintf(fmt,args); va_end(args); } void clrtoeol(void) { ANSI;addstr(); } cell status UNKN --- contains virgin earth (initial state) MINE --- has a mine FLAG --- was flagged enum {UNKN,MINE,FLAG}; DEBUG_CODE( \ void pchr(void*a) { \ putchar('A'+*(char*a)); \ } \ ) char**bd; size_t shape[2]; void populate(int x,int y,int pct) { int i,j,c; x = BIND(x,4,200), y = BIND(y,4,400); shape[0] = x+2, shape[1] = y+2; bd = (char**)allocarray(2,shape,sizeof(char)); memset(*bd,1<<UNKN,shape[0]*shape[1]*sizeof(char)); for (i = 0; i < shape[0]; ++i) bd[i][0] = bd[i][shape[1]-1] = 0; for (i = 0; i < shape[1]; ++i) bd[0][i] = bd[shape[0]-1][i] = 0; { time_t seed; printf(,(unsigned)seed); time(&seed), SRANDOM((unsigned)seed); } c = BIND(pct,1,99)*x*y/100; while(c) { i = RANDOM(), j = 1+i%y, i = 1+(i>>16)%x; if (! DETECT(bd[i][j],MINE)) --c, SET_BIT(bd[i][j],MINE); } DEBUG_CODE(matprint(bd,2,shape,sizeof(int),pchr);) RWS = x+1, CLS = y+1; } struct { int i,j; } neighbor[] = { {-1,-1}, {-1, 0}, {-1, 1}, { 0,-1}, { 0, 1}, { 1,-1}, { 1, 0}, { 1, 1} }; int cnx(int i,int j,char w) { int k,c = 0; for (k = 0; k < DIM(neighbor); ++k) c += DETECT(NEIGHBOR(i,j,k),w); return c; } int row,col; int step(void) { if (DETECT(ME,FLAG)) return 1; if (DETECT(ME,MINE)) return 0; CLR_BIT(ME,UNKN); return 1; } int autoplay(void) { int i,j,k,change,m; if (!step()) return 0; do for (change = 0, i = 1; i < RWS; ++i) for (j = 1; j < CLS; ++j) if (!DETECT(bd[i][j],UNKN)) { m = cnx(i,j,MINE); if (cnx(i,j,FLAG) == m) { for (k = 0; k < DIM(neighbor); ++k) if (DETECT(NEIGHBOR(i,j,k),UNKN)&&!DETECT(NEIGHBOR(i,j,k),FLAG)) { if (DETECT(NEIGHBOR(i,j,k),MINE)) { row = i+neighbor[k].i-1, col = j+neighbor[k].j-1; return 0; } change = 1, CLR_BIT(NEIGHBOR(i,j,k),UNKN); } } else if (cnx(i,j,UNKN) == m) for (k = 0; k < DIM(neighbor); ++k) if (DETECT(NEIGHBOR(i,j,k),UNKN)) change = 1, SET_BIT(NEIGHBOR(i,j,k),FLAG); } while (change); return 1; } void takedisplay(void) { initscr(), cbreak(), noecho(), nonl(); } void help(void) { move(RWS,1),clrtoeol(), printw(); } void draw(void) { int i,j,w; const char*s1 = ; move(1,1); for (i = 1; i < RWS; ++i, addstr()) for (j = 1; j < CLS; ++j, addch(' ')) { w = bd[i][j]; if (!DETECT(w,UNKN)) { w = cnx(i,j,MINE)-cnx(i,j,FLAG); if (w < 0) attr_on(WA_STANDOUT,NULL), w = -w; addch(s1[w]); attr_off(WA_STANDOUT,NULL); } else if (DETECT(w,FLAG)) addch('F'); else addch('*'); } move(row+1,2*col+1); refresh(); } void show(int win) { int i,j,w; const char*s1 = ; move(1,1); for (i = 1; i < RWS; ++i, addstr()) for (j = 1; j < CLS; ++j, addch(' ')) { w = bd[i][j]; if (!DETECT(w,UNKN)) { w = cnx(i,j,MINE)-cnx(i,j,FLAG); if (w < 0) attr_on(WA_STANDOUT,NULL), w = -w; addch(s1[w]); attr_off(WA_STANDOUT,NULL); } else if (DETECT(w,FLAG)) if (DETECT(w,MINE)) addch('F'); else attr_on(WA_STANDOUT,NULL), addch('F'),attr_off(WA_STANDOUT,NULL); else if (DETECT(w,MINE)) addch('M'); else addch('*'); } mvaddch(row+1,2*col,'('), mvaddch(row+1,2*(col+1),')'); move(RWS,0); refresh(); } const char*s3=, *s4=; void dbg(int r, int c) { int i,j,unkns=0,mines=0,flags=0,pct; char o[6]; static int hint; for (i = 1; i < RWS; ++i) for (j = 1; j < CLS; ++j) unkns += DETECT(bd[i][j],UNKN), mines += DETECT(bd[i][j],MINE), flags += DETECT(bd[i][j],FLAG); move(RWS,1), clrtoeol(); pct = 0.5+100.0*(mines-flags)/MAX(1,unkns-flags); if (++hint<4) o[0] = HINTBIT(UNKN), o[1] = HINTBIT(MINE), o[2] = HINTBIT(FLAG), o[3] = HINTBIT(UNKN), o[4] = NEIGCNT(MINE), o[5] = NEIGCNT(FLAG); else memset(o,'?',sizeof(o)); printw(, o[0],o[1],o[2],o[3],o[4],o[5],mines-flags,unkns-flags,pct); } void toggleflag(void) { if (DETECT(ME,UNKN)) TGL_BIT(ME,FLAG); } int sureflag(void) { toggleflag(); return autoplay(); } int play(int*win) { int c = getch(), d = tolower(c); if ('q' == d) return 0; else if ('?' == c) help(); else if ('h' == d) col = MODDEC(col,CLS-1); else if ('l' == d) col = MODINC(col,CLS-1); else if ('k' == d) row = MODDEC(row,RWS-1); else if ('j' == d) row = MODINC(row,RWS-1); else if ('f' == c) toggleflag(); else if ('s' == c) return *win = step(); else if ('S' == c) return *win = autoplay(); else if ('F' == c) return *win = sureflag(); else if ('d' == d) dbg(row+1,col+1); return 1; } int convert(const char*name,const char*s) { if (strlen(s) == strspn(s,)) return atoi(s); fprintf(stderr,,name); fprintf(stderr,,name); exit(EXIT_SUCCESS); } void parse_command_line(int ac,char*av[],int*a,int*b,int*c) { switch (ac) { default: case 4: *c = convert(*av,av[3]); case 3: *b = convert(*av,av[2]); case 2: *a = convert(*av,av[1]); case 1: ; } } int main(int ac,char*av[],char*env[]) { int win = 1, rows = 20, cols = 30, prct = 25; parse_command_line(ac,av,&rows,&cols,&prct); populate(rows,cols,prct); takedisplay(); while(draw(), play(&win)); show(win); free(bd); { const char*s = ; execl(s,s,,(const char*)NULL); } return 0; }
568Minesweeper game
5c
3bqza
use Math::ModInt qw(mod); sub f { my $x = shift; $x**100 + $x + 1 }; print f mod(10, 13);
564Modular arithmetic
2perl
2q3lf
package main import ( "fmt" "github.com/shabbyrobe/go-num" "strings" "time" ) func b10(n int64) { if n == 1 { fmt.Printf("%4d:%28s %-24d\n", 1, "1", 1) return } n1 := n + 1 pow := make([]int64, n1) val := make([]int64, n1) var count, ten, x int64 = 0, 1, 1 for ; x < n1; x++ { val[x] = ten for j := int64(0); j < n1; j++ { if pow[j] != 0 && pow[(j+ten)%n] == 0 && pow[j] != x { pow[(j+ten)%n] = x } } if pow[ten] == 0 { pow[ten] = x } ten = (10 * ten) % n if pow[0] != 0 { break } } x = n if pow[0] != 0 { s := "" for x != 0 { p := pow[x%n] if count > p { s += strings.Repeat("0", int(count-p)) } count = p - 1 s += "1" x = (n + x - val[p]) % n } if count > 0 { s += strings.Repeat("0", int(count)) } mpm := num.MustI128FromString(s) mul := mpm.Quo64(n) fmt.Printf("%4d:%28s %-24d\n", n, s, mul) } else { fmt.Println("Can't do it!") } } func main() { start := time.Now() tests := [][]int64{{1, 10}, {95, 105}, {297}, {576}, {594}, {891}, {909}, {999}, {1998}, {2079}, {2251}, {2277}, {2439}, {2997}, {4878}} fmt.Println(" n B10 multiplier") fmt.Println("----------------------------------------------") for _, test := range tests { from := test[0] to := from if len(test) == 2 { to = test[1] } for n := from; n <= to; n++ { b10(n) } } fmt.Printf("\nTook%s\n", time.Since(start)) }
567Minimum positive multiple in base 10 using only 0 and 1
0go
2qfl7
typedef uint8_t card_t; unsigned int rand_n(unsigned int n) { unsigned int out, mask = 1; while (mask < n) mask = mask<<1 | 1; do { out = rand() & mask; } while (out >= n); return out; } card_t rand_card() { return rand_n(52); } void print_card(card_t card) { static char *suits = ; static char *cards[] = {,,,,,,,,,,,,}; printf(, cards[card>>2], suits[card&3]); } void shuffle(card_t *pack) { int card; card_t temp, randpos; for (card=0; card<52; card++) { randpos = rand_card(); temp = pack[card]; pack[card] = pack[randpos]; pack[randpos] = temp; } } int trick() { card_t pack[52]; card_t blacks[52/4], reds[52/4]; card_t top, x, card; int blackn=0, redn=0, blacksw=0, redsw=0, result; for (card=0; card<52; card++) pack[card] = card; shuffle(pack); printf(); for (card=0; card<52; card += 2) { top = pack[card]; if (top & 1) { blacks[blackn++] = pack[card+1]; } else { reds[redn++] = pack[card+1]; } print_card(top); } printf(); x = rand_n(min(blackn, redn)); for (card=0; card<x; card++) { blacksw = rand_n(blackn); redsw = rand_n(redn); top = blacks[blacksw]; blacks[blacksw] = reds[redsw]; reds[redsw] = top; } result = 0; for (card=0; card<blackn; card++) result += (blacks[card] & 1) == 1; for (card=0; card<redn; card++) result -= (reds[card] & 1) == 0; result = !result; printf( , result? : ); return result; } int main() { unsigned int seed, i, successes = 0; FILE *r; if ((r = fopen(, )) == NULL) { fprintf(stderr, ); return 255; } if (fread(&seed, sizeof(unsigned int), 1, r) != 1) { fprintf(stderr, ); return 255; } fclose(r); srand(seed); for (i=1; i<=SIM_N; i++) { printf(, i); successes += trick(); printf(); } printf(, successes, SIM_N); return 0; }
569Mind boggling card trick
5c
rn6g7
import Data.Bifunctor (bimap) import Data.List (find) import Data.Maybe (isJust) b10 :: Integral a => a -> Integer b10 n = read (digitMatch rems sums) :: Integer where (_, rems, _, Just (_, sums)) = until (\(_, _, _, mb) -> isJust mb) ( \(e, rems, ms, _) -> let m = rem (10 ^ e) n newSums = (m, [m]): fmap (bimap (m +) (m:)) ms in ( succ e, m: rems, ms <> newSums, find ( (0 ==) . flip rem n . fst ) newSums ) ) (0, [], [], Nothing) digitMatch :: Eq a => [a] -> [a] -> String digitMatch [] _ = [] digitMatch xs [] = '0' <$ xs digitMatch (x: xs) yys@(y: ys) | x /= y = '0': digitMatch xs yys | otherwise = '1': digitMatch xs ys main :: IO () main = mapM_ ( putStrLn . ( \x -> let b = b10 x in justifyRight 5 ' ' (show x) <> " * " <> justifyLeft 25 ' ' (show $ div b x) <> " -> " <> show b ) ) ( [1 .. 10] <> [95 .. 105] <> [297, 576, 594, 891, 909, 999] ) justifyLeft, justifyRight :: Int -> a -> [a] -> [a] justifyLeft n c s = take n (s <> replicate n c) justifyRight n c = (drop . length) <*> (replicate n c <>)
567Minimum positive multiple in base 10 using only 0 and 1
8haskell
am41g
package main import ( "fmt" "math/big" ) func main() { a, _ := new(big.Int).SetString( "2988348162058574136915891421498819466320163312926952423791023078876139", 10) b, _ := new(big.Int).SetString( "2351399303373464486466122544523690094744975233415544072992656881240319", 10) m := big.NewInt(10) r := big.NewInt(40) m.Exp(m, r, nil) r.Exp(a, b, m) fmt.Println(r) }
566Modular exponentiation
0go
85p0g
sem_t sem; int count = 3; void acquire() { sem_wait(&sem); count--; } void release() { count++; sem_post(&sem); } void* work(void * id) { int i = 10; while (i--) { acquire(); printf(, *(int*)id, getcount()); usleep(rand() % 4000000); release(); usleep(0); } return 0; } int main() { pthread_t th[4]; int i, ids[] = {1, 2, 3, 4}; sem_init(&sem, 0, count); for (i = 4; i--;) pthread_create(th + i, 0, work, ids + i); for (i = 4; i--;) pthread_join(th[i], 0); printf(); return sem_destroy(&sem); }
570Metered concurrency
5c
85j04
bool Contains(int lst[], int item, int size) { for (int i = size - 1; i >= 0; i--) if (item == lst[i]) return true; return false; } int * MianChowla() { static int mc[n]; mc[0] = 1; int sums[nn]; sums[0] = 2; int sum, le, ss = 1; for (int i = 1; i < n; i++) { le = ss; for (int j = mc[i - 1] + 1; ; j++) { mc[i] = j; for (int k = 0; k <= i; k++) { sum = mc[k] + j; if (Contains(sums, sum, ss)) { ss = le; goto nxtJ; } sums[ss++] = sum; } break; nxtJ:; } } return mc; } int main() { clock_t st = clock(); int * mc; mc = MianChowla(); double et = ((double)(clock() - st)) / CLOCKS_PER_SEC; printf(); for (int i = 0; i < 30; i++) printf(, mc[i]); printf(); for (int i = 90; i < 100; i++) printf(, mc[i]); printf(, et); }
571Mian-Chowla sequence
5c
svgq5
println 2988348162058574136915891421498819466320163312926952423791023078876139.modPow( 2351399303373464486466122544523690094744975233415544072992656881240319, 10000000000000000000000000000000000000000)
566Modular exponentiation
7groovy
wc7el
modPow :: Integer -> Integer -> Integer -> Integer -> Integer modPow b e 1 r = 0 modPow b 0 m r = r modPow b e m r | e `mod` 2 == 1 = modPow b' e' m (r * b `mod` m) | otherwise = modPow b' e' m r where b' = b * b `mod` m e' = e `div` 2 main = do print (modPow 2988348162058574136915891421498819466320163312926952423791023078876139 2351399303373464486466122544523690094744975233415544072992656881240319 (10 ^ 40) 1)
566Modular exponentiation
8haskell
lxfch
import operator import functools @functools.total_ordering class Mod: __slots__ = ['val','mod'] def __init__(self, val, mod): if not isinstance(val, int): raise ValueError('Value must be integer') if not isinstance(mod, int) or mod<=0: raise ValueError('Modulo must be positive integer') self.val = val% mod self.mod = mod def __repr__(self): return 'Mod({}, {})'.format(self.val, self.mod) def __int__(self): return self.val def __eq__(self, other): if isinstance(other, Mod): if self.mod == other.mod: return self.val==other.val else: return NotImplemented elif isinstance(other, int): return self.val == other else: return NotImplemented def __lt__(self, other): if isinstance(other, Mod): if self.mod == other.mod: return self.val<other.val else: return NotImplemented elif isinstance(other, int): return self.val < other else: return NotImplemented def _check_operand(self, other): if not isinstance(other, (int, Mod)): raise TypeError('Only integer and Mod operands are supported') if isinstance(other, Mod) and self.mod != other.mod: raise ValueError('Inconsistent modulus: {} vs. {}'.format(self.mod, other.mod)) def __pow__(self, other): self._check_operand(other) return Mod(pow(self.val, int(other), self.mod), self.mod) def __neg__(self): return Mod(self.mod - self.val, self.mod) def __pos__(self): return self def __abs__(self): return self def _make_op(opname): op_fun = getattr(operator, opname) def op(self, other): self._check_operand(other) return Mod(op_fun(self.val, int(other))% self.mod, self.mod) return op def _make_reflected_op(opname): op_fun = getattr(operator, opname) def op(self, other): self._check_operand(other) return Mod(op_fun(int(other), self.val)% self.mod, self.mod) return op for opname, reflected_opname in [('__add__', '__radd__'), ('__sub__', '__rsub__'), ('__mul__', '__rmul__')]: setattr(Mod, opname, _make_op(opname)) setattr(Mod, reflected_opname, _make_reflected_op(opname)) def f(x): return x**100+x+1 print(f(Mod(10,13)))
564Modular arithmetic
3python
vs629